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1 Schur Complements

In this note, we provide some details and proofs of some results from Appendix A.5 (especially
Section A.5.5) of Convex Optimization by Boyd and Vandenberghe [1].

Let M be an n X n matrix written a as 2 x 2 block matrix
A B
u=(c )

where A is a p X p matrix and D is a ¢ X ¢ matrix, with n = p + ¢ (so, B is a p X ¢ matrix
and C' is a ¢ X p matrix). We can try to solve the linear system

(e 0) ()= ()

Ar+ By = ¢
Cx+ Dy = d,

that is

by mimicking Gaussian elimination, that is, assuming that D is invertible, we first solve for

y getting
y=D"d - Cx)

and after substituting this expression for y in the first equation, we get
Az + B(D*(d— Cx)) =c,

that is,
(A— BD 'C)xr =c— BD'd.



If the matrix A — BD~!C is invertible, then we obtain the solution to our system
z = (A-BD'C)'(c— BD'd)
y = D '(d—C(A—-BD'C) '(c— BD™d)).
The matrix, A — BD7'C, is called the Schur Complement of D in M. If A is invertible,
then by eliminating x first using the first equation we find that the Schur complement of

Ain M is D — CA™'B (this corresponds to the Schur complement defined in Boyd and
Vandenberghe [1] when C' = BT).

The above equations written as

r = (A-BD'C)'¢—(A-BD'C)'BD'd
y = —D'C(A-BD'C) e+ (D' +D'C(A-BD'C)'BD ")d

yield a formula for the inverse of M in terms of the Schur complement of D in M, namely

A B\ (A— BD'C)! —(A—BD™'C)"'BD!
¢ D) ~\-D'C(A-BD'C)"' D'+ D'C(A—BD'C)"'BD)"

A moment of reflexion reveals that

A B\ (A— BD'C)! 0\ /I —BD!
¢ p) ~\-bplcaA-Bp'c)* p)\o 1 )’
and then

B8 - (he D 2) )

It follows immediately that

A B\ (I BD*\ (A-BD'C 0 I 0
C D) \0 I 0 D)\D7'C 1)°

The above expression can be checked directly and has the advantage of only requiring the
invertibility of D.

Remark: If A is invertible, then we can use the Schur complement, D — CA™'B, of A to
obtain the following factorization of M:

A B\ (I 0\/[A 0 I A'B
¢ p) - \cat 1)\o p-ca'B)\o 1 )

If D—CA~!B is invertible, we can invert all three matrices above and we get another formula
for the inverse of M in terms of (D — C A™'B), namely,

A B\' [A'4A'B(D—CA'B)"'ICA! —A'B(D-CA'B)!
c D) —(D—CA™'B)"lCA™! (D - CA'B)™! '
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If A, D and both Schur complements A — BD™'C and D — CA™!'B are all invertible, by
comparing the two expressions for M !, we get the (non-obvious) formula

(A-BD'C)'=A1+A'B(D-CA'B)tCA™.

Using this formula, we obtain another expression for the inverse of M involving the Schur
complements of A and D (see Horn and Johnson [5]):

(@ 5) -Coteitopen Blnis ™)

If we set D = I and change B to —B we get
(A+BC)'=A"1 - A'B(I -CA'B)'CA™,

a formula known as the matriz inversion lemma (see Boyd and Vandenberghe [1], Appendix
C.4, especially C.4.3).

2 A Characterization of Symmetric Positive Definite
Matrices Using Schur Complements

Now, if we assume that M is symmetric, so that A, D are symmetric and C = BT, then we
see that M is expressed as

o (A BY_(I BD™ (A-BD™'BT 0) (1 BD™\'
“\B" D) \0 1 0 D) \0 I ’
which shows that M is similar to a block-diagonal matrix (obviously, the Schur complement,
A — BD7 BT, is symmetric). As a consequence, we have the following version of “Schur’s
trick” to check whether M > 0 for a symmetric matrix, M, where we use the usual notation,

M = 0 to say that M is positive definite and the notation M > 0 to say that M is positive
semidefinite.

Proposition 2.1 For any symmetric matriz, M, of the form

A B
M:(BT C«)a

if C s invertible then the following properties hold:
(1) M =0 iff C =0 and A— BC~'BT = 0.
(2) If C = 0, then M = 0 iff A— BC71BT = 0.



Proof. (1) Observe that

I BD\"' (I —BD™!
0 I B

and we know that for any symmetric matrix, 7', and any invertible matrix, N, the matrix
T is positive definite (T = 0) iff NTNT (which is obviously symmetric) is positive definite
(NTNT = 0). But, a block diagonal matrix is positive definite iff each diagonal block is
positive definite, which concludes the proof.

(2) This is because for any symmetric matrix, 7', and any invertible matrix, N, we have
T>0if NTNT = 0. O

Another version of Proposition 2.1 using the Schur complement of A instead of the
Schur complement of C' also holds. The proof uses the factorization of M using the Schur
complement of A (see Section 1).

Proposition 2.2 For any symmetric matriz, M, of the form

A B
(28

if A is invertible then the following properties hold:
(1) M =0 iff A= 0 and C — B"A7'B = 0.
(2) If A= 0, then M =0 iff C — BTA™'B = 0.

When C'is singular (or A is singular), it is still possible to characterize when a symmetric
matrix, M, as above is positive semidefinite but this requires using a version of the Schur
complement involving the pseudo-inverse of C', namely A—BCTBT (or the Schur complement,
C — BTATB, of A). But first, we need to figure out when a quadratic function of the form
12"Pz + 27b has a minimum and what this optimum value is, where P is a symmetric

2
matrix. This corresponds to the (generally nonconvex) quadratic optimization problem

1
minimize f(x) = E:ETPm + 2",

which has no solution unless P and b satisfy certain conditions.

3 Pseudo-Inverses

We will need pseudo-inverses so let’s review this notion quickly as well as the notion of
SVD which provides a convenient way to compute pseudo-inverses. We only consider the
case of square matrices since this is all we need. For comprehensive treatments of SVD and
pseudo-inverses see Gallier [3] (Chapters 12, 13), Strang [7], Demmel [2], Trefethen and Bau
8], Golub and Van Loan [4] and Horn and Johnson [5, 6].
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Recall that every square n x n matrix, M, has a singular value decomposition, for short,

SVD, namely, we can write
M=UXVT,

where U and V' are orthogonal matrices and ¥ is a diagonal matrix of the form
¥ = diag(oy,...,0.,0,...,0),

where o1 > -++ > ¢, > 0 and r is the rank of M. The o;’s are called the singular values of M
and they are the positive square roots of the nonzero eigenvalues of MM " and M T M. Fur-
thermore, the columns of V' are eigenvectors of M " M and the columns of U are eigenvectors
of MMT. Observe that U and V are not unique.

If M =UXVT is some SVD of M, we define the pseudo-inverse, M', of M by
M =VvSiUT,

where
¥ = diag(oy?,...,0,%,0,...,0).

Y r o

Clearly, when M has rank r = n, that is, when M is invertible, MT = M~ so MT is a
“generalized inverse” of M. Even though the definition of MT seems to depend on U and
V, actually, MT is uniquely defined in terms of M (the same MT is obtained for all possible
SVD decompositions of M). It is easy to check that

MMM = M
MMM = Mt

and both MM' and MTM are symmetric matrices. In fact,

MM =UXV'VSIUT = USSiUT =U <{) OO ) U’

and

MM=vxtUTUsvT =visv =v (6 OO ) VT

We immediately get

(MM"? = MM
(MTM)* = MM,
so both MM and MTM are orthogonal projections (since they are both symmetric). We

claim that M M1 is the orthogonal projection onto the range of M and MTM is the orthogonal
projection onto Ker(M)*, the orthogonal complement of Ker(M).

Obviously, range(M M) C range(M) and for any y = Mx € range(M), as MMM = M,
we have
MMy = MM Mz = Mz =y,
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so the image of M M is indeed the range of M. It is also clear that Ker(M) C Ker(MTM)
and since MMTM = M, we also have Ker(MTM) C Ker(M) and so,

Ker(MTM) = Ker(M).

Since MTM is Hermitian, range(MTM) = Ker(MTM)+ = Ker(M)*, as claimed.

It will also be useful to see that range(M) = range(M M) consists of all vector y € R"
such that

with z € R".
Indeed, if y = Mx, then

UTy=U"Mz=UTUSV 2 =%V Tz = (20 00 ) Vi = <S)

where ¥, is the r x r diagonal matrix diag(cy,...,0,). Conversely, if Uy = (g), then

y="U(;) and

MMy = U<IT 0 )UTy

which shows that y belongs to the range of M.
Similarly, we claim that range(MTM) = Ker(M)* consists of all vector y € R" such that

with z € R".
If y = MTMu, then

I 0 z
T r T
y—MMu—V<O On_r>V U—V(0>,



for some z € R". Conversely, if VTy = (7), then y = V() and so,

MMV <g) -V (10 Ono_r) vTv(g>
- V({) onO_T) (S)
= V(S) =Y,

If M is a symmetric matrix, then in general, there is no SVD, UXV' ", of M with U = V.
However, if M > 0, then the eigenvalues of M are nonnegative and so the nonzero eigenvalues
of M are equal to the singular values of M and SVD’s of M are of the form

which shows that y € range(MTM).

M=UXU".

Analogous results hold for complex matrices but in this case, U and V are unitary
matrices and MMT and MM are Hermitian orthogonal projections.

If M is a normal matrix which, means that MM "™ = M "M, then there is an intimate
relationship between SVD’s of M and block diagonalizations of M. As a consequence, the

pseudo-inverse of a normal matrix, M, can be obtained directly from a block diagonalization
of M.

If M is a (real) normal matrix, then it can be block diagonalized with respect to an
orthogonal matrix, U, as
M=UAUT,

where A is the (real) block diagonal matrix,
A = diag(By, ..., By),

consisting either of 2 x 2 blocks of the form

B: — ()‘j _:Uj)
’ Hio A
with p; # 0, or of one-dimensional blocks, By = (). Assume that By,..., B, are 2 x 2
blocks and that Agpi1, ..., A, are the scalar entries. We know that the numbers \; &4y, and

the Agpyi are the eigenvalues of A. Let pyj_1 = poj = w//\? + ,u? for j=1,...,p, popt; = A

for j = 1,...,n — 2p, and assume that the blocks are ordered so that p; > ps > -+ > p,.
Then, it is easy to see that

UUT =U'U=UANUTUATUT = UAANTU T,



with
AAT = diag(p?, ..., p3)

so, the singular values, o0y > 09 > --- > 0, of A, which are the nonnegative square roots of
the eigenvalues of AAT, are such that

oj=pj, 1<j7<n
We can define the diagonal matrices
Y. = diag(oy,...,0.,0,...,0)
where r = rank(A), oy > -+ > 0, > 0, and
© = diag(o; ' By,...,04, By, 1,...,1),
so that © is an orthogonal matrix and
A=0X = (By,...,Bp, Aopt1,-- -, A, 0,...,0).

But then, we can write
A=UNUT =UOXU"

and we if let V = UO, as U is orthogonal and © is also orthogonal, V' is also orthogonal and
A=VXU" is an SVD for A. Now, we get

AT =0tV =Uste’U".
However, since © is an orthogonal matrix, @7 = ©~! and a simple calculation shows that
Yl =xte = AT

which yields the formula
AT =UA'UT.

Also observe that if we write

Ar = <B1> SRR Bpa )\2p+1> SRR >\r)a

AL O
+ _ T
e (50

Therefore, the pseudo-inverse of a normal matrix can be computed directly from any block
diagonalization of A, as claimed.

then A, is invertible and

Next, we will use pseudo-inverses to generalize the result of Section 2 to symmetric

matrices M = (;T g) where C' (or A) is singular.

8



4 A Characterization of Symmetric Positive Semidefi-
nite Matrices Using Schur Complements

We begin with the following simple fact:

Proposition 4.1 If P is an invertible symmetric matriz, then the function

1
flx) = §xTPa: +2'b

has a minimum value iff P = 0, in which case this optimal value is obtained for a unique
value of x, namely v* = —P~'b, and with

f(P7b) = —%bTPlb.

Proof. Observe that
1 13\ T -1 L+ o, Lrp
§(x+P b)' P(x+ P b):§x Px +z b+§bP b.

Thus,

1 1 1
f(x) = §$TP$ +a'b= §($ + P_lb)TP(;p + P_lb) _ ibTP_lb.

If P has some negative eigenvalue, say —\ (with A > 0), if we pick any eigenvector, u, of
P associated with A, then for any o € R with o # 0, if we let z = au — P~'b, then as
Pu = —X\u we get

1 1
flz) = 5(:(; + P ') Pz + P'b) — 5bTP*b

1 1
= §auTPOzu — §bTP_1b

1 1
= Al - b P,
2 2

and as a can be made as large as we want and A > 0, we see that f has no minimum.
Consequently, in order for f to have a minimum, we must have P > 0. In this case, as
(z + P71b)TP(x + P~1b) > 0, it is clear that the minimum value of f is achieved when
x+ P7'h =0, thatis, z = —P~'b.

Let us now consider the case of an arbitrary symmetric matrix, P.

Proposition 4.2 If P is a symmetric matriz, then the function

1
flx) = §$TP$ +2'b



has a minimum value iff P = 0 and (I — PP")b = 0, in which case this minimum value is
1
*=——b' P
P="3

Furthermore, if P = U'"XU is an SVD of P, then the optimal value is achieved by all x € R™

of the form
z=—-Po+UT (O)
z

for any z € R™™", where r is the rank of P.

Proof. The case where P is invertible is taken care of by Proposition 4.1 so, we may assume
that P is singular. If P has rank r < n, then we can diagonalize P as

(50
P_U(OOU,

where U is an orthogonal matrix and where ¥, is an r X r diagonal invertible matrix. Then,
we have

_ L (B0 TrrT
flz) = §a:U (O O)Ua:+xUUb

1
= 5(Ux)T (20 8) Uz + (Uz) " Ub.

If we write Ux = (Z) and Ub = (2), with y,c € R" and z,d € R"", we get

flz) = %(U@T (20 8) Uz + (Uz)Ub

L (3 ) ()

1
= ¥ Dytyletald
For y = 0, we get
fla)=2"d,

so if d # 0, the function f has no minimum. Therefore, if f has a minimum, then d = 0.
However, d = 0 means that Ub = (g) and we know from Section 3 that b is in the range of

P (here, U is U") which is equivalent to (I — PPT)b = 0. If d = 0, then

1
flz) = QyTEry +y'c

and as X, is invertible, by Proposition 4.1, the function f has a minimum iff 3. > 0, which
is equivalent to P > 0.
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Therefore, we proved that if f has a minimum, then (I — PP)b = 0 and P = 0.
Conversely, if (I — PP")b = 0 and P = 0, what we just did proves that f does have a
minimum.

When the above conditions hold, the minimum is achieved if y = =3 !¢, z = 0 and

d = 0, that is for z* given by Uz* = (_Zglc) and Ub = (8), from which we deduce that

y-1 -1 -1
= () (3 () (5 Yoo

and the minimum value of f is

1
f(z*) = —ébTPTb.

r=-Pp+UT (O>
z

for any z € R, our previous calculations show that f(z) = —3b" Pib. O

For any x € R" of the form

We now return to our original problem, characterizing when a symmetric matrix,
A B\ . . : . .
M = ( BT C’)’ is positive semidefinite. Thus, we want to know when the function

A B\ (z
fla,y)=('y") (BT O) (y) =a'Av+22' By +y' Cy

has a minimum with respect to both x and y. Holding y constant, Proposition 4.2 implies
that f(z,y) has a minimum iff A = 0 and (I — AA")By = 0 and then, the minimum value is

f(z*,y) =—y ' B"A'By+y"Cy=y"(C — B"AB)y.

Since we want f(z,y) to be uniformly bounded from below for all z,y, we must have
(I—AA"B = 0. Now, f(x*,y) has a minimum iff C— BT ATB = 0. Therefore, we established
that f(z,y) has a minimum over all x,y iff

A=0, (I-AANB=0, C—-B'A'B>0.

A similar reasoning applies if we first minimize with respect to y and then with respect to x
but this time, the Schur complement, A — BCTBT, of C is involved. Putting all these facts
together we get our main result:

A B

BT C’)’ the following conditions are

Theorem 4.3 Given any symmetric matriz, M = (

equivalent:

(1) M =0 (M is positive semidefinite).
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(2) A=0, (I-AANB=0, C-BTA'B>0.
(2) C=0, (I-CCHB"=0, A—-BC'BT =0.

If M > 0 as in Theorem 4.3, then it is easy to check that we have the following factor-
izations (using the fact that ATAAT = AT and CTCCT = C7):

A B\ (I BC™ (A-BC'B" 0 I 0
BT ¢) \o I 0 C)\C'B" I

A B\ (I 0\/(A 0 I A'B
BT ¢)~\BTAt 1)\0 c-BTAB)\0o 1 )
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