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1 Schur Complements

In this note, we provide some details and proofs of some results from Appendix A.5 (especially
Section A.5.5) of Convex Optimization by Boyd and Vandenberghe [1].

Let M be an n× n matrix written a as 2× 2 block matrix

M =

(
A B
C D

)
,

where A is a p× p matrix and D is a q × q matrix, with n = p+ q (so, B is a p× q matrix
and C is a q × p matrix). We can try to solve the linear system(

A B
C D

)(
x

y

)
=

(
c

d

)
,

that is

Ax+By = c

Cx+Dy = d,

by mimicking Gaussian elimination, that is, assuming that D is invertible, we first solve for
y getting

y = D−1(d− Cx)

and after substituting this expression for y in the first equation, we get

Ax+B(D−1(d− Cx)) = c,

that is,
(A−BD−1C)x = c−BD−1d.
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If the matrix A−BD−1C is invertible, then we obtain the solution to our system

x = (A−BD−1C)−1(c−BD−1d)

y = D−1(d− C(A−BD−1C)−1(c−BD−1d)).

The matrix, A−BD−1C, is called the Schur Complement of D in M . If A is invertible,
then by eliminating x first using the first equation we find that the Schur complement of
A in M is D − CA−1B (this corresponds to the Schur complement defined in Boyd and
Vandenberghe [1] when C = B>).

The above equations written as

x = (A−BD−1C)−1c− (A−BD−1C)−1BD−1d

y = −D−1C(A−BD−1C)−1c+ (D−1 +D−1C(A−BD−1C)−1BD−1)d

yield a formula for the inverse of M in terms of the Schur complement of D in M , namely(
A B
C D

)−1

=

(
(A−BD−1C)−1 −(A−BD−1C)−1BD−1

−D−1C(A−BD−1C)−1 D−1 +D−1C(A−BD−1C)−1BD−1

)
.

A moment of reflexion reveals that(
A B
C D

)−1

=

(
(A−BD−1C)−1 0

−D−1C(A−BD−1C)−1 D−1

)(
I −BD−1

0 I

)
,

and then (
A B
C D

)−1

=

(
I 0

−D−1C I

)(
(A−BD−1C)−1 0

0 D−1

)(
I −BD−1

0 I

)
.

It follows immediately that(
A B
C D

)
=

(
I BD−1

0 I

)(
A−BD−1C 0

0 D

)(
I 0

D−1C I

)
.

The above expression can be checked directly and has the advantage of only requiring the
invertibility of D.

Remark: If A is invertible, then we can use the Schur complement, D − CA−1B, of A to
obtain the following factorization of M :(

A B
C D

)
=

(
I 0

CA−1 I

)(
A 0
0 D − CA−1B

)(
I A−1B
0 I

)
.

If D−CA−1B is invertible, we can invert all three matrices above and we get another formula
for the inverse of M in terms of (D − CA−1B), namely,(

A B
C D

)−1

=

(
A−1 + A−1B(D − CA−1B)−1CA−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

)
.
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If A,D and both Schur complements A − BD−1C and D − CA−1B are all invertible, by
comparing the two expressions for M−1, we get the (non-obvious) formula

(A−BD−1C)−1 = A−1 + A−1B(D − CA−1B)−1CA−1.

Using this formula, we obtain another expression for the inverse of M involving the Schur
complements of A and D (see Horn and Johnson [5]):(

A B
C D

)−1

=

(
(A−BD−1C)−1 −A−1B(D − CA−1B)−1

−(D − CA−1B)−1CA−1 (D − CA−1B)−1

)
.

If we set D = I and change B to −B we get

(A+BC)−1 = A−1 − A−1B(I − CA−1B)−1CA−1,

a formula known as the matrix inversion lemma (see Boyd and Vandenberghe [1], Appendix
C.4, especially C.4.3).

2 A Characterization of Symmetric Positive Definite

Matrices Using Schur Complements

Now, if we assume that M is symmetric, so that A,D are symmetric and C = B>, then we
see that M is expressed as

M =

(
A B
B> D

)
=

(
I BD−1

0 I

)(
A−BD−1B> 0

0 D

)(
I BD−1

0 I

)>
,

which shows that M is similar to a block-diagonal matrix (obviously, the Schur complement,
A − BD−1B>, is symmetric). As a consequence, we have the following version of “Schur’s
trick” to check whether M � 0 for a symmetric matrix, M , where we use the usual notation,
M � 0 to say that M is positive definite and the notation M � 0 to say that M is positive
semidefinite.

Proposition 2.1 For any symmetric matrix, M , of the form

M =

(
A B
B> C

)
,

if C is invertible then the following properties hold:

(1) M � 0 iff C � 0 and A−BC−1B> � 0.

(2) If C � 0, then M � 0 iff A−BC−1B> � 0.
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Proof . (1) Observe that (
I BD−1

0 I

)−1

=

(
I −BD−1

0 I

)
and we know that for any symmetric matrix, T , and any invertible matrix, N , the matrix
T is positive definite (T � 0) iff NTN> (which is obviously symmetric) is positive definite
(NTN> � 0). But, a block diagonal matrix is positive definite iff each diagonal block is
positive definite, which concludes the proof.

(2) This is because for any symmetric matrix, T , and any invertible matrix, N , we have
T � 0 iff NTN> � 0.

Another version of Proposition 2.1 using the Schur complement of A instead of the
Schur complement of C also holds. The proof uses the factorization of M using the Schur
complement of A (see Section 1).

Proposition 2.2 For any symmetric matrix, M , of the form

M =

(
A B
B> C

)
,

if A is invertible then the following properties hold:

(1) M � 0 iff A � 0 and C −B>A−1B � 0.

(2) If A � 0, then M � 0 iff C −B>A−1B � 0.

When C is singular (or A is singular), it is still possible to characterize when a symmetric
matrix, M , as above is positive semidefinite but this requires using a version of the Schur
complement involving the pseudo-inverse of C, namely A−BC†B> (or the Schur complement,
C − B>A†B, of A). But first, we need to figure out when a quadratic function of the form
1
2
x>Px + x>b has a minimum and what this optimum value is, where P is a symmetric

matrix. This corresponds to the (generally nonconvex) quadratic optimization problem

minimize f(x) =
1

2
x>Px+ x>b,

which has no solution unless P and b satisfy certain conditions.

3 Pseudo-Inverses

We will need pseudo-inverses so let’s review this notion quickly as well as the notion of
SVD which provides a convenient way to compute pseudo-inverses. We only consider the
case of square matrices since this is all we need. For comprehensive treatments of SVD and
pseudo-inverses see Gallier [3] (Chapters 12, 13), Strang [7], Demmel [2], Trefethen and Bau
[8], Golub and Van Loan [4] and Horn and Johnson [5, 6].
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Recall that every square n× n matrix, M , has a singular value decomposition, for short,
SVD , namely, we can write

M = UΣV >,

where U and V are orthogonal matrices and Σ is a diagonal matrix of the form

Σ = diag(σ1, . . . , σr, 0, . . . , 0),

where σ1 ≥ · · · ≥ σr > 0 and r is the rank of M . The σi’s are called the singular values of M
and they are the positive square roots of the nonzero eigenvalues of MM> and M>M . Fur-
thermore, the columns of V are eigenvectors of M>M and the columns of U are eigenvectors
of MM>. Observe that U and V are not unique.

If M = UΣV > is some SVD of M , we define the pseudo-inverse, M †, of M by

M † = V Σ†U>,

where
Σ† = diag(σ−1

1 , . . . , σ−1
r , 0, . . . , 0).

Clearly, when M has rank r = n, that is, when M is invertible, M † = M−1, so M † is a
“generalized inverse” of M . Even though the definition of M † seems to depend on U and
V , actually, M † is uniquely defined in terms of M (the same M † is obtained for all possible
SVD decompositions of M). It is easy to check that

MM †M = M

M †MM † = M †

and both MM † and M †M are symmetric matrices. In fact,

MM † = UΣV >V Σ†U> = UΣΣ†U> = U

(
Ir 0
0 0n−r

)
U>

and

M †M = V Σ†U>UΣV > = V Σ†ΣV > = V

(
Ir 0
0 0n−r

)
V >.

We immediately get

(MM †)2 = MM †

(M †M)2 = M †M,

so both MM † and M †M are orthogonal projections (since they are both symmetric). We
claim that MM † is the orthogonal projection onto the range of M and M †M is the orthogonal
projection onto Ker(M)⊥, the orthogonal complement of Ker(M).

Obviously, range(MM †) ⊆ range(M) and for any y = Mx ∈ range(M), as MM †M = M ,
we have

MM †y = MM †Mx = Mx = y,
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so the image of MM † is indeed the range of M . It is also clear that Ker(M) ⊆ Ker(M †M)
and since MM †M = M , we also have Ker(M †M) ⊆ Ker(M) and so,

Ker(M †M) = Ker(M).

Since M †M is Hermitian, range(M †M) = Ker(M †M)⊥ = Ker(M)⊥, as claimed.

It will also be useful to see that range(M) = range(MM †) consists of all vector y ∈ Rn

such that

U>y =

(
z

0

)
,

with z ∈ Rr.

Indeed, if y = Mx, then

U>y = U>Mx = U>UΣV >x = ΣV >x =

(
Σr 0
0 0n−r

)
V >x =

(
z

0

)
,

where Σr is the r × r diagonal matrix diag(σ1, . . . , σr). Conversely, if U>y =
(
z
0

)
, then

y = U
(
z
0

)
and

MM †y = U

(
Ir 0
0 0n−r

)
U>y

= U

(
Ir 0
0 0n−r

)
U>U

(
z

0

)
= U

(
Ir 0
0 0n−r

)(
z

0

)
= U

(
z

0

)
= y,

which shows that y belongs to the range of M .

Similarly, we claim that range(M †M) = Ker(M)⊥ consists of all vector y ∈ Rn such that

V >y =

(
z

0

)
,

with z ∈ Rr.

If y = M †Mu, then

y = M †Mu = V

(
Ir 0
0 0n−r

)
V >u = V

(
z

0

)
,
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for some z ∈ Rr. Conversely, if V >y =
(
z
0

)
, then y = V

(
z
0

)
and so,

M †MV

(
z

0

)
= V

(
Ir 0
0 0n−r

)
V >V

(
z

0

)
= V

(
Ir 0
0 0n−r

)(
z

0

)
= V

(
z

0

)
= y,

which shows that y ∈ range(M †M).

If M is a symmetric matrix, then in general, there is no SVD, UΣV >, of M with U = V .
However, if M � 0, then the eigenvalues of M are nonnegative and so the nonzero eigenvalues
of M are equal to the singular values of M and SVD’s of M are of the form

M = UΣU>.

Analogous results hold for complex matrices but in this case, U and V are unitary
matrices and MM † and M †M are Hermitian orthogonal projections.

If M is a normal matrix which, means that MM> = M>M , then there is an intimate
relationship between SVD’s of M and block diagonalizations of M . As a consequence, the
pseudo-inverse of a normal matrix, M , can be obtained directly from a block diagonalization
of M .

If M is a (real) normal matrix, then it can be block diagonalized with respect to an
orthogonal matrix, U , as

M = UΛU>,

where Λ is the (real) block diagonal matrix,

Λ = diag(B1, . . . , Bn),

consisting either of 2× 2 blocks of the form

Bj =

(
λj −µj

µj λj

)
with µj 6= 0, or of one-dimensional blocks, Bk = (λk). Assume that B1, . . . , Bp are 2 × 2
blocks and that λ2p+1, . . . , λn are the scalar entries. We know that the numbers λj± iµj, and

the λ2p+k are the eigenvalues of A. Let ρ2j−1 = ρ2j =
√
λ2
j + µ2

j for j = 1, . . . , p, ρ2p+j = λj

for j = 1, . . . , n − 2p, and assume that the blocks are ordered so that ρ1 ≥ ρ2 ≥ · · · ≥ ρn.
Then, it is easy to see that

UU> = U>U = UΛU>UΛ>U> = UΛΛ>U>,
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with
ΛΛ> = diag(ρ2

1, . . . , ρ
2
n)

so, the singular values, σ1 ≥ σ2 ≥ · · · ≥ σn, of A, which are the nonnegative square roots of
the eigenvalues of AA>, are such that

σj = ρj, 1 ≤ j ≤ n.

We can define the diagonal matrices

Σ = diag(σ1, . . . , σr, 0, . . . , 0)

where r = rank(A), σ1 ≥ · · · ≥ σr > 0, and

Θ = diag(σ−1
1 B1, . . . , σ

−1
2p Bp, 1, . . . , 1),

so that Θ is an orthogonal matrix and

Λ = ΘΣ = (B1, . . . , Bp, λ2p+1, . . . , λr, 0, . . . , 0).

But then, we can write
A = UΛU> = UΘΣU>

and we if let V = UΘ, as U is orthogonal and Θ is also orthogonal, V is also orthogonal and
A = V ΣU> is an SVD for A. Now, we get

A+ = UΣ+V > = UΣ+Θ>U>.

However, since Θ is an orthogonal matrix, Θ> = Θ−1 and a simple calculation shows that

Σ+Θ> = Σ+Θ−1 = Λ+,

which yields the formula
A+ = UΛ+U>.

Also observe that if we write

Λr = (B1, . . . , Bp, λ2p+1, . . . , λr),

then Λr is invertible and

Λ+ =

(
Λ−1

r 0
0 0

)
.

Therefore, the pseudo-inverse of a normal matrix can be computed directly from any block
diagonalization of A, as claimed.

Next, we will use pseudo-inverses to generalize the result of Section 2 to symmetric

matrices M =

(
A B
B> C

)
where C (or A) is singular.
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4 A Characterization of Symmetric Positive Semidefi-

nite Matrices Using Schur Complements

We begin with the following simple fact:

Proposition 4.1 If P is an invertible symmetric matrix, then the function

f(x) =
1

2
x>Px+ x>b

has a minimum value iff P � 0, in which case this optimal value is obtained for a unique
value of x, namely x∗ = −P−1b, and with

f(P−1b) = −1

2
b>P−1b.

Proof . Observe that

1

2
(x+ P−1b)>P (x+ P−1b) =

1

2
x>Px+ x>b+

1

2
b>P−1b.

Thus,

f(x) =
1

2
x>Px+ x>b =

1

2
(x+ P−1b)>P (x+ P−1b)− 1

2
b>P−1b.

If P has some negative eigenvalue, say −λ (with λ > 0), if we pick any eigenvector, u, of
P associated with λ, then for any α ∈ R with α 6= 0, if we let x = αu − P−1b, then as
Pu = −λu we get

f(x) =
1

2
(x+ P−1b)>P (x+ P−1b)− 1

2
b>P−1b

=
1

2
αu>Pαu− 1

2
b>P−1b

= −1

2
α2λ ‖u‖2

2 −
1

2
b>P−1b,

and as α can be made as large as we want and λ > 0, we see that f has no minimum.
Consequently, in order for f to have a minimum, we must have P � 0. In this case, as
(x + P−1b)>P (x + P−1b) ≥ 0, it is clear that the minimum value of f is achieved when
x+ P−1b = 0, that is, x = −P−1b.

Let us now consider the case of an arbitrary symmetric matrix, P .

Proposition 4.2 If P is a symmetric matrix, then the function

f(x) =
1

2
x>Px+ x>b
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has a minimum value iff P � 0 and (I − PP †)b = 0, in which case this minimum value is

p∗ = −1

2
b>P †b.

Furthermore, if P = U>ΣU is an SVD of P , then the optimal value is achieved by all x ∈ Rn

of the form

x = −P †b+ U>
(

0

z

)
,

for any z ∈ Rn−r, where r is the rank of P .

Proof . The case where P is invertible is taken care of by Proposition 4.1 so, we may assume
that P is singular. If P has rank r < n, then we can diagonalize P as

P = U>
(

Σr 0
0 0

)
U,

where U is an orthogonal matrix and where Σr is an r× r diagonal invertible matrix. Then,
we have

f(x) =
1

2
x>U>

(
Σr 0
0 0

)
Ux+ x>U>Ub

=
1

2
(Ux)>

(
Σr 0
0 0

)
Ux+ (Ux)>Ub.

If we write Ux =
(
y
z

)
and Ub =

(
c
d

)
, with y, c ∈ Rr and z, d ∈ Rn−r, we get

f(x) =
1

2
(Ux)>

(
Σr 0
0 0

)
Ux+ (Ux)>Ub

=
1

2
(y>, z>)

(
Σr 0
0 0

)(
y

z

)
+ (y>, z>)

(
c

d

)
=

1

2
y>Σry + y>c+ z>d.

For y = 0, we get
f(x) = z>d,

so if d 6= 0, the function f has no minimum. Therefore, if f has a minimum, then d = 0.
However, d = 0 means that Ub =

(
c
0

)
and we know from Section 3 that b is in the range of

P (here, U is U>) which is equivalent to (I − PP †)b = 0. If d = 0, then

f(x) =
1

2
y>Σry + y>c

and as Σr is invertible, by Proposition 4.1, the function f has a minimum iff Σr � 0, which
is equivalent to P � 0.
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Therefore, we proved that if f has a minimum, then (I − PP †)b = 0 and P � 0.
Conversely, if (I − PP †)b = 0 and P � 0, what we just did proves that f does have a
minimum.

When the above conditions hold, the minimum is achieved if y = −Σ−1
r c, z = 0 and

d = 0, that is for x∗ given by Ux∗ =
(−Σ−1

r c
0

)
and Ub =

(
c
0

)
, from which we deduce that

x∗ = −U>
(

Σ−1
r c

0

)
= −U>

(
Σ−1

r c 0
0 0

)(
c

0

)
= −U>

(
Σ−1

r c 0
0 0

)
Ub = −P †b

and the minimum value of f is

f(x∗) = −1

2
b>P †b.

For any x ∈ Rn of the form

x = −P †b+ U>
(

0

z

)
for any z ∈ Rn−r, our previous calculations show that f(x) = −1

2
b>P †b.

We now return to our original problem, characterizing when a symmetric matrix,

M =

(
A B
B> C

)
, is positive semidefinite. Thus, we want to know when the function

f(x, y) = (x>, y>)

(
A B
B> C

)(
x

y

)
= x>Ax+ 2x>By + y>Cy

has a minimum with respect to both x and y. Holding y constant, Proposition 4.2 implies
that f(x, y) has a minimum iff A � 0 and (I −AA†)By = 0 and then, the minimum value is

f(x∗, y) = −y>B>A†By + y>Cy = y>(C −B>A†B)y.

Since we want f(x, y) to be uniformly bounded from below for all x, y, we must have
(I−AA†)B = 0. Now, f(x∗, y) has a minimum iff C−B>A†B � 0. Therefore, we established
that f(x, y) has a minimum over all x, y iff

A � 0, (I − AA†)B = 0, C −B>A†B � 0.

A similar reasoning applies if we first minimize with respect to y and then with respect to x
but this time, the Schur complement, A− BC†B>, of C is involved. Putting all these facts
together we get our main result:

Theorem 4.3 Given any symmetric matrix, M =

(
A B
B> C

)
, the following conditions are

equivalent:

(1) M � 0 (M is positive semidefinite).
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(2) A � 0, (I − AA†)B = 0, C −B>A†B � 0.

(2) C � 0, (I − CC†)B> = 0, A−BC†B> � 0.

If M � 0 as in Theorem 4.3, then it is easy to check that we have the following factor-
izations (using the fact that A†AA† = A† and C†CC† = C†):(

A B
B> C

)
=

(
I BC†

0 I

)(
A−BC†B> 0

0 C

)(
I 0

C†B> I

)
and (

A B
B> C

)
=

(
I 0

B>A† I

)(
A 0
0 C −B>A†B

)(
I A†B
0 I

)
.
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