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16 Introduction to Semidefinite Programming (SDP)

16.1 Introduction

Semidefinite programming (SDP ) is probably the most exciting development in mathematical
programming in the last ten years. SDP has applications in such diverse fields as traditional
convex constrained optimization, control theory, and combinatorial optimization. Because SDP is
solvable via interior-point methods (and usually requires about the same amount of computational
resources as linear optimization), most of these applications can usually be solved fairly efficiently
in practice as well as in theory.

16.2 A Slightly Different View of Linear Programming

Consider the linear programming problem in standard form:

LP : minimize c · x
s.t. ai · x = bi, i = 1, . . . ,m

x ∈ Rn
+.

Here x is a vector of n variables, and we write “c ·x” for the inner-product “
∑n

j=1 cjxj”, etc.

Also, Rn
+ := {x ∈ Rn | x ≥ 0}, and we call Rn

+ the nonnegative orthant. In fact, Rn
+ is a closed convex

cone, where K is called a closed a convex cone if K satisfies the following two conditions:

• If x,w ∈ K, then αx + βw ∈ K for all nonnegative scalars α and β.

• K is a closed set.

In words, LP is the following problem:

“Minimize the linear function c · x, subject to the condition that x must solve m given equations
ai · x = bi, i = 1, . . . ,m, and that x must lie in the closed convex cone K = Rn

+.”

We will write the standard linear programming dual problem as:

LD : maximize
m∑

i=1
yibi

s.t.
m∑

i=1
yiai + s = c

s ∈ Rn
+.

Given a feasible solution x of LP and a feasible solution (y, s) of LD, the duality gap is simply
c · x −

∑m
i=1 yibi = (c −

∑m
i=1 yiai) · x = s · x ≥ 0, because x ≥ 0 and s ≥ 0. We know from LP

duality theory that so long as the primal problem LP is feasible and has bounded optimal objective
value, then the primal and the dual both attain their optima with no duality gap. That is, there
exists x∗ and (y∗, s∗) feasible for the primal and dual, respectively, for which c · x∗ −

∑m
i=1 y∗i bi =

s∗ · x∗ = 0.



IOE 511/Math 562, Section 1, Fall 2007 109

16.3 Facts about Matrices and the Semidefinite Cone

16.3.1 Facts about the Semidefinite Cone

If X is an n × n matrix, then X is a symmetric positive semidefinite (SPSD) matrix if X = XT

and
vT Xv ≥ 0 for any v ∈ Rn.

If X is an n×n matrix, then X is a symmetric positive definite (SPD) matrix if X = XT and

vT Xv > 0 for any v ∈ Rn, v %= 0.

Let Sn denote the set of symmetric n×n matrices, and let Sn
+ denote the set of symmetric positive

semidefinite (SPSD) n×n matrices. Similarly let Sn
++ denote the set of symmetric positive definite

(SPD) n× n matrices.

Let X and Y be any symmetric matrices. We write “X & 0” to denote that X is SPSD, and we
write “X & Y ” to denote that X − Y & 0. We write “X ' 0” to denote that X is SPD, etc.

Sn
+ = {X ∈ Sn | X & 0} is a closed convex cone in Rn2 of dimension n× (n + 1)/2.

To see why this remark is true, suppose that X, W ∈ Sn
+. Pick any scalars α, β ≥ 0. For any

v ∈ Rn, we have:
vT (αX + βW )v = αvT Xv + βvT Wv ≥ 0,

whereby αX + βW ∈ Sn
+. This shows that Sn

+ is a cone. It is also straightforward to show that Sn
+

is a closed set.

16.3.2 Facts about Eigenvalues and Eigenvectors

If M is a square n × n matrix, then λ is an eigenvalue of M with corresponding eigenvector x
if

Mx = λx and x %= 0.

Note that λ is an eigenvalue of M if and only if λ is a root of the polynomial:

p(λ) := det(M − λI),

that is
p(λ) = det(M − λI) = 0.

This polynomial will have n roots counting multiplicities, that is, there exist λ1, λ2, . . . , λn for
which:

p(λ) := det(M − λI) = Πn
i=1 (λi − λ) .

If M is symmetric, then all eigenvalues λ of M must be real numbers, and these eigenvalues can
be ordered so that λ1 ≥ λ2 ≥ · · · ≥ λn if we so choose.

The corresponding eigenvectores q1, . . . , qn of M can be chosen so that they are orthogonal, namely(
qi

)T (
qj

)
= 0 for i %= j, and can be scaled so that

(
qi

)T (
qi

)
= 1. This means that the matrix:

Q :=
[
q1 q2 · · · qn

]



IOE 511/Math 562, Section 1, Fall 2007 110

satisfies:
QT Q = I,

or put another way:
QT = Q−1.

We call such a matrix orthonormal.

Let us assemble the ordered eigenvalues λ1, λ2, . . . , λn into a diagonal matrix D:

D :=





λ1 0 0
0 λ2 0

. . .
0 λn




.

Then we have:

Property: M = QDQT . To prove this, notice that MQ = QD, and so post-multiplying by QT

yields: M = MQQT = QDQT .

The decomposition of M into M = QDQT is called its eigendecomposition.

16.3.3 Facts about symmetric matrices

• If X ∈ Sn, then X = QDQT for some orthonormal matrix Q and some diagonal matrix D.
(Recall that Q is orthonormal means that Q−1 = QT , and that D is diagonal means that the
off-diagonal entries of D are all zeros.)

• If X = QDQT as above, then the columns of Q form a set of n orthogonal eigenvectors of X,
whose eigenvalues are the corresponding entries of the diagonal matrix D.

• X & 0 if and only if X = QDQT where the eigenvalues (i.e., the diagonal entries of D) are
all nonnegative.

• X ' 0 if and only if X = QDQT where the eigenvalues (i.e., the diagonal entries of D) are
all positive.

• If M is symmetric, then det(M) = Πn
j=1λj .

• If X & 0 then Xii ≥ 0, i = 1, . . . , n.

• If X & 0 and if Xii = 0, then Xij = Xji = 0 for all j = 1, . . . , n.

• Consider the matrix M defined as follows:

M =
(

P v
vT d

)
,

where P ' 0, v is a vector, and d is a scalar. Then M & 0 if and only if d− vT P−1v ≥ 0.

• For a given column vector a, the matrix X := aaT is SPSD, i.e., X = aaT & 0.

Also note the following:

• If M & 0, then there is a matrix N for which M = NT N . To see this, simply take N = D
1
2 QT .

• If M is symmetric, then
∑n

j=1 Mjj =
∑n

j=1 λj
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16.4 Semidefinite Programming

Let X ∈ Sn. We can think of X as a matrix, or equivalently, as an array of n2 components of the
form (x11, . . . , xnn). We can also just think of X as an object (a vector) in the space Sn. All three
different equivalent ways of looking at X will be useful.

What will a linear function of X look like? If C(X) is a linear function of X, then C(X) can be
written as C • X, where

C • X :=
n∑

i=1

n∑

j=1

CijXij .

If X is a symmetric matrix, there is no loss of generality in assuming that the matrix C is also
symmetric. With this notation, we are now ready to define a semidefinite program. A semidefinite
program (SDP ) is an optimization problem of the form:

SDP : minimize C • X
s.t. Ai • X = bi, i = 1, . . . ,m,

X & 0.

Notice that in an SDP that the variable is the matrix X, but it might be helpful to think of X as
an array of n2 numbers or simply as a vector in Sn. The objective function is the linear function
C •X and there are m linear equations that X must satisfy, namely Ai •X = bi, i = 1, . . . ,m. The
variable X also must lie in the (closed convex) cone of positive semidefinite symmetric matrices
Sn

+. Note that the data for SDP consists of the symmetric matrix C (which is the data for the
objective function) and the m symmetric matrices A1, . . . , Am, and the m−vector b, which form
the m linear equations.

Let us see an example of an SDP for n = 3 and m = 2. Define the following matrices:

A1 =




1 0 1
0 3 7
1 7 5



 , A2 =




0 2 8
2 6 0
8 0 4



 , b =
(

11
19

)
, and C =




1 2 3
2 9 0
3 0 7



 .

Then the variable X will be the 3× 3 symmetric matrix:

X =




x11 x12 x13

x21 x22 x23

x31 x32 x33



 ,

and so, for example,

C • X = x11 + 2x12 + 3x13 + 2x21 + 9x22 + 0x23 + 3x31 + 0x32 + 7x33

= x11 + 4x12 + 6x13 + 9x22 + 0x23 + 7x33.

since, in particular, X is symmetric. Therefore the SDP can be written as:

SDP : minimize x11 + 4x12 + 6x13 + 9x22 + 0x23 + 7x33

s.t. x11 + 0x12 + 2x13 + 3x22 + 14x23 + 5x33 = 11
0x11 + 4x12 + 16x13 + 6x22 + 0x23 + 4x33 = 19

X =




x11 x12 x13

x21 x22 x23

x31 x32 x33



 & 0.
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Notice that SDP looks remarkably similar to a linear program. However, the standard LP con-
straint that x must lie in the nonnegative orthant is replaced by the constraint that the variable
X must lie in the cone of positive semidefinite matrices. Just as “x ≥ 0” states that each of the n
components of x must be nonnegative, it may be helpful to think of “X & 0” as stating that each
of the n eigenvalues of X must be nonnegative. It is easy to see that a linear program LP is a
special instance of an SDP . To see one way of doing this, suppose that (c, a1, . . . , am, b1, . . . , bm)
comprise the data for LP . Then define:

Ai =





ai1 0 . . . 0
0 ai2 . . . 0
...

... . . . ...
0 0 . . . ain




, i = 1, . . . ,m, and C =





c1 0 . . . 0
0 c2 . . . 0
...

... . . . ...
0 0 . . . cn




.

Then LP can be written as:

SDP : minimize C • X
s.t. Ai • X = bi, i = 1, . . . ,m,

Xij = 0, i = 1, . . . , n, j = i + 1, . . . , n,
X & 0,

with the association that

X =





x1 0 . . . 0
0 x2 . . . 0
...

... . . . ...
0 0 . . . xn




.

Of course, in practice one would never want to convert an instance of LP into an instance of
SDP . The above construction merely shows that SDP includes linear programming as a special
case.

16.5 Semidefinite Programming Duality

The dual problem of SDP is defined (or derived from first principles) to be:

SDD : maximize
m∑

i=1
yibi

s.t.
m∑

i=1
yiAi + S = C

S & 0.

One convenient way of thinking about this problem is as follows. Given multipliers y1, . . . , ym,
the objective is to maximize the linear function

∑m
i=1 yibi. The constraints of SDD state that the

matrix S defined as

S = C −
m∑

i=1

yiAi

must be positive semidefinite. That is,

C −
m∑

i=1

yiAi & 0.
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We illustrate this construction with the example presented earlier. The dual problem is:

SDD : maximize 11y1 + 19y2

s.t. y1




1 0 1
0 3 7
1 7 5



 + y2




0 2 8
2 6 0
8 0 4



 + S =




1 2 3
2 9 0
3 0 7





S & 0,

which we can rewrite in the following form:

SDD : maximize 11y1 + 19y2

s.t. 


1− 1y1 − 0y2 2− 0y1 − 2y2 3− 1y1 − 8y2

2− 0y1 − 2y2 9− 3y1 − 6y2 0− 7y1 − 0y2

3− 1y1 − 8y2 0− 7y1 − 0y2 7− 5y1 − 4y2



 & 0.

It is often easier to “see” and to work with a semidefinite program when it is presented in the
format of the dual SDD, since the variables are the m multipliers y1, . . . , ym.

As in linear programming, we can switch from one format of SDP (primal or dual) to any other
format with great ease, and there is no loss of generality in assuming a particular specific format
for the primal or the dual.

The following proposition states that weak duality must hold for the primal and dual of SDP :

Proposition 91 Given a feasible solution X of SDP and a feasible solution (y, S) of SDD, the
duality gap is C • X −

∑m
i=1 yibi = S • X ≥ 0. If C • X −

∑m
i=1 yibi = 0, then X and (y, S) are

each optimal solutions to SDP and SDD, respectively, and furthermore, SX = 0.

In order to prove Proposition 91, it will be convenient to work with the trace of a matrix, defined
below:

trace(M) =
n∑

j=1

Mjj .

Simple arithmetic can be used to establish the following two elementary identifies:

Property: A • B = trace(AT B). To prove this, notice that trace(AT B) =
∑n

j=1

(
AT B

)
jj

=∑n
j=1 (

∑n
i=1 AijBij) = A • B.

Property: trace(MN) = trace(NM). To prove this, simply notice that trace(MN) = MT • N =∑n
i=1

∑n
j=1 MjiNij =

∑n
i=1

∑n
j=1 NijMji =

∑n
i=1

∑n
j=1 NjiMij = NT • M = trace(NM).

Proof of Proposition 91. For the first part of the proposition, we must show that if S & 0 and
X & 0, then S • X ≥ 0. Let S = PDP T and X = QEQT where P,Q are orthonormal matrices
and D,E are nonnegative diagonal matrices. We have:

S • X = trace(ST X) = trace(SX) = trace(PDP T QEQT )

= trace(DP T QEQT P ) =
n∑

j=1

Djj(P T QEQT P )jj ≥ 0,
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where the last inequality follows from the fact that all Djj ≥ 0 and the fact that the diagonal of
the symmetric positive semidefinite matrix P T QEQT P must be nonnegative.

To prove the second part of the proposition, suppose that trace(SX) = 0. Then from the above
equalities, we have

n∑

j=1

Djj(P T QEQT P )jj = 0.

However, this implies that for each j = 1, . . . , n, either Djj = 0 or the (P T QEQT P )jj = 0.
Furthermore, the latter case implies that the jth row of P T QEQT P is all zeros. Therefore
DP T QEQT P = 0, and so SX = PDP T QEQT = 0.

Unlike the case of linear programming, we cannot assert that either SDP or SDD will attain their
respective optima, and/or that there will be no duality gap, unless certain regularity conditions
hold. One such regularity condition which ensures that strong duality will prevail is a version of
the “Slater condition,” summarized in the following theorem which we will not prove:

Theorem 92 Let z∗P and z∗D denote the optimal objective function values of SDP and SDD,
respectively. Suppose that there exists a feasible solution X̂ of SDP such that X̂ ' 0, and that
there exists a feasible solution (ŷ, Ŝ) of SDD such that Ŝ ' 0. Then both SDP and SDD attain
their optimal values, and z∗P = z∗D.

16.6 Key Properties of Linear Programming that do not extend to SDP

The following summarizes some of the more important properties of linear programming that do
not extend to SDP :

• There may be a finite or infinite duality gap. The primal and/or dual may or may not
attain their optima. However, as noted above in Theorem 92, both programs will attain their
common optimal value if both programs have feasible solutions that are SPD.

• There is no finite algorithm for solving SDP . There is a simplex algorithm, but it is not a
finite algorithm. There is no direct analog of a “basic feasible solution” for SDP .

16.7 SDP in Combinatorial Optimization

SDP has wide applicability in combinatorial optimization. A number of NP−hard combinatorial
optimization problems have convex relaxations that are semidefinite programs. In many instances,
the SDP relaxation is very tight in practice, and in certain instances in particular, the optimal
solution to the SDP relaxation can be converted to a feasible solution for the original problem
with provably good objective value. An example of the use of SDP in combinatorial optimization
is given below.

16.7.1 An SDP Relaxation of the MAX CUT Problem

Let G be an undirected graph with nodes N = {1, . . . , n}, and edge set E. Let wij = wji be the
weight on edge (i, j), for (i, j) ∈ E. We assume that wij ≥ 0 for all (i, j) ∈ E. The MAX CUT
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problem is to determine a subset S of the nodes N for which the sum of the weights of the edges
that cross from S to its complement S̄ is maximized (where S̄ := N \ S).

We can formulate MAX CUT as an integer program as follows. Let xj = 1 for j ∈ S and xj = −1
for j ∈ S̄. Then our formulation is:

MAXCUT : maximizex
1
4

n∑
i=1

n∑
j=1

wij(1− xixj)

s.t. xj ∈ {−1, 1}, j = 1, . . . , n.

Now let
Y = xxT ,

whereby
Yij = xixj , i = 1, . . . , n, j = 1, . . . , n.

Also let W be the matrix whose (i, j)th element is wij for i = 1, . . . , n and j = 1, . . . , n. Then MAX
CUT can be equivalently formulated as:

MAXCUT : maximizeY,x
1
4

n∑
i=1

n∑
j=1

wij − 1
4W • Y

s.t. xj ∈ {−1, 1}, j = 1, . . . , n
Y = xxT .

Notice in this problem that the first set of constraints are equivalent to Yjj = 1, j = 1, . . . , n. We
therefore obtain:

MAXCUT : maximizeY,x
1
4

n∑
i=1

n∑
j=1

wij − 1
4W • Y

s.t. Yjj = 1, j = 1, . . . , n
Y = xxT .

Last of all, notice that the matrix Y = xxT is a symmetric rank-1 positive semidefinite matrix.
If we relax this condition by removing the rank-1 restriction, we obtain the following relaxtion of
MAX CUT, which is a semidefinite program:

RELAX : maximizeY
1
4

n∑
i=1

n∑
j=1

wij − 1
4W • Y

s.t. Yjj = 1, j = 1, . . . , n
Y & 0.

It is therefore easy to see that RELAX provides an upper bound on MAXCUT, i.e.,

MAXCUT ≤ RELAX.

As it turns out, one can also prove without too much effort that:

0.87856 RELAX ≤MAXCUT ≤ RELAX.

This is an impressive result, in that it states that the value of the semidefinite relaxation is guar-
anteed to be no more than 12.2% higher than the value of NP -hard problem MAX CUT.
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16.8 SDP in Convex Optimization

As stated above, SDP has very wide applications in convex optimization. The types of constraints
that can be modelled in the SDP framework include: linear inequalities, convex quadratic in-
equalities, lower bounds on matrix norms, lower bounds on determinants of SPSD matrices, lower
bounds on the geometric mean of a nonnegative vector, plus many others. Using these and other
constructions, the following problems (among many others) can be cast in the form of a semidefi-
nite program: linear programming, optimizing a convex quadratic form subject to convex quadratic
inequality constraints, minimizing the volume of an ellipsoid that covers a given set of points and
ellipsoids, maximizing the volume of an ellipsoid that is contained in a given polytope, plus a variety
of maximum eigenvalue and minimum eigenvalue problems. In the subsections below we demon-
strate how some important problems in convex optimization can be re-formulated as instances of
SDP .

16.8.1 SDP for Convex Quadratically Constrained Quadratic Programming

A convex quadratically constrained quadratic program is a problem of the form:

QCQP : minimize xT Q0x + qT
0 x + c0

x
s.t. xT Qix + qT

i x + ci ≤ 0, i = 1, . . . ,m,

where the Q0 & 0 and Qi & 0, i = 1, . . . ,m. This problem is the same as:

QCQP : minimize θ
x, θ
s.t. xT Q0x + qT

0 x + c0 − θ ≤ 0
xT Qix + qT

i x + ci ≤ 0, i = 1, . . . ,m.

We can factor each Qi into
Qi = MT

i Mi

for some matrix Mi. Then note the equivalence:
(

I Mix
xT MT

i −ci − qT
i x

)
& 0 ⇐⇒ xT Qix + qT

i x + ci ≤ 0.

In this way we can write QCQP as:

QCQP : minimize θ
x, θ
s.t. (

I M0x
xT MT

0 −c0 − qT
0 x + θ

)
& 0

(
I Mix

xT MT
i −ci − qT

i x

)
& 0, i = 1, . . . ,m.

Notice in the above formulation that the variables are θ and x and that all matrix coefficients are
linear functions of θ and x.
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16.8.2 SDP for Second-Order Cone Optimization

A second-order cone optimization problem (SOCP) is an optimization problem of the form:

SOCP: minx cT x
s.t. Ax = b

‖Qix + di‖ ≤
(
gT
i x + hi

)
, i = 1, . . . , k.

In this problem, the norm ‖v‖ is the standard Euclidean norm:

‖v‖ :=
√

vT v.

The norm constraints in SOCP are called “second-order cone” constraints. Note that these are
convex constraints.

Here we show that any second-order cone constraint can be written as an SDP constraint. Indeed
we have:

Property:

‖Qx + d‖ ≤
(
gT x + h

)
⇐⇒

(
(gT x + h)I (Qx + d)
(Qx + d)T gT x + h

)
& 0.

Note in the above that the matrix involved here is a linear function of the variable x, and so is in
the general form of an SDP constraint. This property is a direct consequence of the fact (stated
earlier) that

M =
(

P v
vT d

)
& 0 ⇐⇒ d− vT P−1v ≥ 0.

Therefore we can write the second-order cone optimization problem as:

SDPSOCP: minx cT x
s.t. Ax = b(

(gT
i x + hi)I (Qix + di)

(Qix + di)T gT
i x + hi

)
& 0 , i = 1, . . . , k.

16.8.3 SDP for Eigenvalue Optimization

There are many types of eigenvalue optimization problems that can be formulated as SDP s. In a
typical eigenvalue optimization problem, we are given symmetric matrices B and Ai, i = 1, . . . , k,
and we choose weights w1, . . . , wk to create a new matrix S:

S := B −
k∑

i=1

wiAi.

In some applications there might be restrictions on the weights w, such as w ≥ 0 or more generally
linear inequalities of the form Gw ≤ d. The typical goal is then to choose w in such a way that the
eigenvalues of S are “well-aligned,” for example:

• λmin(S) is maximized

• λmax(S) is minimized
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• λmax(S)− λmin(S) is minimized

•
∑n

j=1 λj(S) is minimized or maximized

Let us see how to work with these problems using SDP . First, we have:

Property: M & tI if and only if λmin(M) ≥ t.

To see why this is true, let us consider the eigenvalue decomposition of M = QDQT , and consider
the matrix R defined as:

R = M − tI = QDQT − tI = Q(D − tI)QT .

Then
M & tI ⇐⇒ R & 0 ⇐⇒ D − tI & 0 ⇐⇒ λmin(M) ≥ t.

Property: M - tI if and only if λmax(M) ≤ t.

To see why this is true, let us consider the eigenvalue decomposition of M = QDQT , and consider
the matrix R defined as:

R = M − tI = QDQT − tI = Q(D − tI)QT .

Then
M - tI ⇐⇒ R - 0 ⇐⇒ D − tI - 0 ⇐⇒ λmax(M) ≤ t.

Now suppose that we wish to find weights w to minimize the difference between the largest and
the smallest eigenvalues of S. This problem can be written down as:

EOP : minimize λmax(S)− λmin(S)
w, S

s.t. S = B −
k∑

i=1
wiAi

Gw ≤ d.

Then EOP can be written as:

EOP : minimize µ− λ
w, S, µ, λ

s.t. S = B −
k∑

i=1
wiAi

Gw ≤ d
λI - S - µI.

This last problem is a semidefinite program.

Using constructs such as those shown above, very many other types of eigenvalue optimization
problems can be formulated as SDP s. For example, suppose that we would like to work with∑n

j=1 λj(S). Then one can use elementary properties of the determinant function to prove:

Property: If M is symmetric, then
∑n

j=1 λj(S) =
∑n

j=1 Mjj .
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Then we can work with
∑n

j=1 λj(S) by using instead I • S. Therefore enforcing a constraint that
the sum of the eigenvalues must lie between l and u can be written as:

EOP2 : minimize µ− λ
w, S, µ, λ

s.t. S = B −
k∑

i=1
wiAi

Gw ≤ d
λI - S - µI
l ≤ I • S ≤ u.

This last problem is a semidefinite program.

16.8.4 The Logarithmic Barrier Function

At the heart of an interior-point method is a barrier function that exerts a repelling force from the
boundary of the feasible region. For SDP , we need a barrier function whose values approach +∞
as points X approach the boundary of the semidefinite cone Sn

+.

Let X ∈ Sn
+. Then X will have n eigenvalues, say λ1(X), . . . , λn(X) (possibly counting multiplici-

ties). We can characterize the boundary of the semidefinite cone as follows:

∂Sn
+ = {X ∈ Sn | λj(X) ≥ 0, j = 1, . . . , n, and λj(X) = 0 for some j ∈ {1, . . . , n}}.

A natural barrier function to use to repel X from the boundary of Sn
+ then is

B(X) := −
n∑

j=1

ln(λi(X)) = − ln(
n∏

j=1

λi(X)) = − ln(det(X)).

This function is called the log-determinant function or the logarithmic barrier function for the
semidefinite cone. It is not too difficult to derive the gradient and the Hessian of B(X) and to
construct the following quadratic Taylor expansion of B(X) :

B(X̄ + αS) ≈ B(X̄) + αX̄−1 • S +
1
2
α2

(
X̄− 1

2 SX̄− 1
2

)
•

(
X̄− 1

2 SX̄− 1
2

)
.

The barrier function B(X) has the same remarkable properties in the context of interior-point
methods for SDP as the barrier function −

∑n
j=1 ln(xj) does in the context of linear optimiza-

tion.

16.8.5 The Analytic Center Problem for SDP

Just as in linear optimization, we can consider the analytic center problem for SDP . Given a
system of the form:

m∑

i=1

yiAi - C,
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x̂

P

Eout

Ein

Figure 5: Illustration of the ellipsoid construction at the analytic center.

the analytic center is the solution (ŷ, Ŝ) of the following optimization problem:

(ACP:) maximizey,S

n∏
i=1

λi(S)

s.t.
∑m

i=1 yiAi + S = C
S & 0.

This is easily seen to be the same as:

(ACP:) minimizey,S − ln det(S)
s.t.

∑m
i=1 yiAi + S = C

S ' 0.

Just as in linear inequality systems, the analytic center possesses a very nice “centrality” property
in the feasible region P of the semi-definite inequality system. Suppose that (ŷ, Ŝ) is the analytic
center. Then there are easy-to-construct ellipsoids EIN and EOUT, both centered at ŷ and where
EOUT is a scaled version of EIN with scale factor n, with the property that:

EIN ⊂ P ⊂ EOUT,

as illustrated in Figure 5.

16.8.6 SDP for the Minimum Volume Circumscription Problem

A given matrix R ' 0 and a given point z can be used to define an ellipsoid in Rn:

ER,z := {y | (y − z)T R(y − z) ≤ 1}.

One can prove that the volume of ER,z is proportional to
√

det(R−1).

Suppose we are given a convex set X ∈ Rn described as the convex hull of k points c1, . . . , ck. We
would like to find an ellipsoid circumscribing these k points that has minimum volume, see Figure
6.
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Figure 6: Illustration of the circumscribed ellipsoid problem.

Our problem can be written in the following form:

MCP : minimize vol (ER,z)
R, z
s.t. ci ∈ ER,z, i = 1, . . . , k,

which is equivalent to:

MCP : minimize − ln(det(R))
R, z
s.t. (ci − z)T R(ci − z) ≤ 1, i = 1, . . . , k

R ' 0,

Now factor R = M2 where M ' 0 (that is, M is a square root of R), and now MCP becomes:

MCP : minimize − ln(det(M2))
M, z
s.t. (ci − z)T MT M(ci − z) ≤ 1, i = 1, . . . , k,

M ' 0.

Next notice the equivalence:
(

I Mci −Mz
(Mci −Mz)T 1

)
& 0 ⇐⇒ (ci − z)T MT M(ci − z) ≤ 1

In this way we can write MCP as:

MCP : minimize −2 ln(det(M))
M, z

s.t.
(

I Mci −Mz
(Mci −Mz)T 1

)
& 0, i = 1, . . . , k,

M ' 0.

Last of all, make the substitution y = Mz to obtain:

MCP : minimize −2 ln(det(M))
M,y

s.t.
(

I Mci − y
(Mci − y)T 1

)
& 0, i = 1, . . . , k,

M ' 0.
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Notice that this last program involves semidefinite constraints where all of the matrix coefficients
are linear functions of the variables M and y. The objective function is the logarithmic barrier
function − ln(det(M)). As discussed earlier, this function has the same remarkable properties as
the logarithmic barrier function −

∑n
j=1 ln(xj) does for linear optimization, and optimization of

this function using Newton’s method is extremely easy.

Finally, note that after solving the formulation of MCP above, we can recover the matrix R and
the center z of the optimal ellipsoid by computing

R = M2 and z = M−1y.

16.9 SDP in Control Theory

A variety of control and system problems can be cast and solved as instances of SDP . However,
this topic is beyond the scope of these notes.

16.10 Interior-point Methods for SDP

The primal and dual SDP problems are:

SDP : minimize C • X
s.t. Ai • X = bi, i = 1, . . . ,m,

X & 0,

and
SDD : maximize

m∑
i=1

yibi

s.t.
m∑

i=1
yiAi + S = C

S & 0.

If X and (y, S) are feasible for the primal and the dual, the duality gap is:

C • X −
m∑

i=1

yibi = S • X ≥ 0.

Also,
S • X = 0 ⇐⇒ SX = 0.

Interior-point methods for semidefinite optimization are based on the logarithmic barrier func-
tion:

B(X) = −
n∑

j=1

ln(λi(X)) = − ln(
n∏

j=1

λi(X)) = − ln(det(X)).

Consider the logarithmic barrier problem BSDP (µ) parameterized by the positive barrier param-
eter µ:

BSDP (µ) : minimize C • X − µ ln(det(X))
s.t. Ai • X = bi, i = 1, . . . ,m,

X ' 0.
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Let fµ(X) denote the objective function of BSDP (µ). Then it is not too difficult to derive:

−∇fµ(X) = C − µX−1,

and so the Karush-Kuhn-Tucker conditions for BSDP (µ) are:





Ai • X = bi, i = 1, . . . ,m,
X ' 0,

C − µX−1 =
m∑

i=1
yiAi.

We can define
S = µX−1,

which implies
XS = µI,

and we can rewrite the Karush-Kuhn-Tucker conditions as:





Ai • X = bi, i = 1, . . . ,m,
X ' 0
m∑

i=1
yiAi + S = C

XS = µI.

It follows that if (X, y, S) is a solution of this system, then X is feasible for SDP , (y, S) is feasible
for SDD, and the resulting duality gap is

S • X =
n∑

i=1

n∑

j=1

SijXij =
n∑

j=1

(SX)jj =
n∑

j=1

(µI)jj = nµ.

This suggests that we try solving BSDP (µ) for a variety of values of µ as µ→ 0.

Interior-point methods for SDP are very similar to those for linear optimization, in that they use
Newton’s method to solve the KKT system as µ→ 0.

16.11 Website for SDP

A good website for semidefinite programming is:

http://www-user.tu-chemnitz.de/ helmberg/semidef.html.


