
SIAM J. COMPUT. c© 2007 Society for Industrial and Applied Mathematics
Vol. 36, No. 6, pp. 1764–1776

APPROXIMATING THE RADII OF POINT SETS∗

KASTURI VARADARAJAN† , S. VENKATESH‡ , YINYU YE§ , AND JIAWEI ZHANG¶

Abstract. We consider the problem of computing the outer-radii of point sets. In this problem,
we are given integers n, d, and k, where k ≤ d, and a set P of n points in �d. The goal is to compute
the outer k-radius of P , denoted by Rk(P), which is the minimum over all (d − k)-dimensional
flats F of maxp∈P d(p, F), where d(p, F) is the Euclidean distance between the point p and flat F .
Computing the radii of point sets is a fundamental problem in computational convexity with many
significant applications. The problem admits a polynomial time algorithm when the dimension d
is constant [U. Faigle, W. Kern, and M. Streng, Math. Program., 73 (1996), pp. 1–5]. Here we are
interested in the general case in which the dimension d is not fixed and can be as large as n, where the
problem becomes NP-hard even for k = 1. It is known that Rk(P) can be approximated in polynomial
time by a factor of (1 + ε) for any ε > 0 when d − k is a fixed constant [M. Bădoiu, S. Har-Peled,
and P. Indyk, in Proceedings of the ACM Symposium on the Theory of Computing, 2002; S. Har-
Peled and K. Varadarajan, in Proceedings of the ACM Symposium on Computing Geometry, 2002].
A polynomial time algorithm that guarantees a factor of O(

√
logn) approximation for R1(P), the

width of the point set P , is implied by the results of Nemirovski, Roos, and Terlaky [Math. Program.,
86 (1999), pp. 463–473] and Nesterov [Handbook of Semidefinite Programming Theory, Algorithms,
Kluwer Academic Publishers, Norwell, MA, 2000]. In this paper, we show that Rk(P) can be
approximated by a ratio of O(

√
logn) for any 1 ≤ k ≤ d, thus matching the previously best known

ratio for approximating the special case R1(P), the width of point set P . Our algorithm is based
on semidefinite programming relaxation with a new mixed deterministic and randomized rounding
procedure. We also prove an inapproximability result that gives evidence that our approximation
algorithm is doing well for a large range of k. We show that there exists a constant δ > 0 such that
the following holds for any 0 < ε < 1: there is no polynomial time algorithm that approximates

Rk(P) within (log n)δ for all k such that k ≤ d − dε unless NP ⊆ DTIME [2(log m)O(1)
]. Our

inapproximability result for Rk(P) extends a previously known hardness result of Brieden [Discrete
Comput. Geom., 28 (2002), pp. 201–209] and is proved by modifying Brieden’s construction using
basic ideas from probabilistically checkable proofs (PCP) theory.

Key words. approximation algorithms, semidefinite programming, computational convexity

AMS subject classifications. 68W20, 68W25, 68W40

DOI. 10.1137/050627472

1. Introduction. Computing the outer k-radius of a point set is a fundamental
problem in computational convexity with applications in global optimization, data

∗Received by the editors March 24, 2005; accepted for publication (in revised form) November
2, 2006; published electronically March 19, 2007. A preliminary version of this paper appeared as
(i) K. R. Varadarajan, S. Venkatesh, and J. Zhang, Approximating the radii of point sets in high
dimensions, in Proceedings of the 43rd IEEE Symposium on the Foundations of Computer Science,
2002 and (ii) Y. Ye and J. Zhang, An improved algorithm for approximating the radii of point sets,
in Proceedings of Approximation, Randomization, and Combinatorial Optimization: Algorithms and
Techniques (APPROX, 2003), Springer, 2003.

http://www.siam.org/journals/sicomp/36-6/62747.html
†Department of Computer Science, The University of Iowa, Iowa City, IA 52242-1419 (kvaradar@

cs.uiowa.edu, www: http://www.cs.uiowa.edu/˜kvaradar/). The research of this author was sup-
ported by NSF CAREER award CCR-0237431.

‡Department of Computer Science, University of Victoria, PO Box 3055, STN CSC, Victoria
V8W 3P6, BC, Canada (venkat@cs.uvic.ca, www: http://www.cs.uvic.ca/˜venkat). The research of
this author was supported by an NSERC discovery grant.

§Management Science and Engineering and, by courtesy, Electrical Engineering, Stanford Univer-
sity, Stanford, CA 94305 (yinyu-ye@stanford.edu). The research of this authors was supported by
NSF grant DMI-0231600.

¶IOMS-Operations Management, Stern School of Business, New York University, 44 W. 4th
Street, Suite 8-66, New York, NY 10012-1126 (jzhang@stern.nyu.edu, www: http://www.stern.
nyu.edu/˜jzhang). The research of this authors was supported by NSF grant DMI-0231600.

1764

APPROXIMATING THE RADII OF POINT SETS 1765

mining, statistics, and clustering, and it has received considerable attention in the
computational geometry literature [20, 21, 22]. In this problem, we are given integers
n, d, and k, where k ≤ d, and a set P of n points in �d. A flat or affine subspace
F in �d is specified by a point q ∈ �d and a linear subspace H; it is defined as
F = {q+h|h ∈ H}. The dimension of the flat F is defined to be the dimension of the
linear subspace H. For any flat F , let R(P, F) = maxp∈P d(p, F) denote the radius
of the flat F with respect to P , where d(p, F) is the Euclidean distance between the
point p and the flat F . The goal is to compute the outer k-radius of P , denoted
by Rk(P), which is the minimum of R(P, F) over all (d − k)-dimensional flats F . A
(d− k)-flat is simply a flat of dimension d− k. Roughly speaking, the outer k-radius
Rk(P) measures how well the point set P can be approximated by an affine subspace
of dimension d − k. A few special cases of Rk(P) which have received particular
attention include R1(P), half of the width of P ; Rd(P), the radius of the minimum
enclosing ball of P ; and Rd−1(P), the radius of the minimum enclosing cylinder of P .

When the dimension d is a fixed constant, Rk(P) can be computed exactly in
polynomial time [15]. It is also known that Rk(P) can be approximated by a factor
of (1+ε) for any ε > 0 in O(n+fd(

1
ε)) time [2, 6], where fd is a polynomial for every

fixed d. In this paper, we are interested in the general scenario when the dimensions
k and d are not fixed and d can be as large as n.

When the dimensions k and d are part of the input, the complexity of comput-
ing/approximating Rk(P) depends on the parameter d− k. It is well known that the
problem is polynomial time solvable when d− k = 0, i.e., the minimum enclosing ball
of a set of points can be computed in polynomial time (Gritzmann and Klee [20]).
Megiddo [25] shows that the problem of determining whether there is a line that inter-
sects a set of balls is NP-hard. In his reduction, the balls have the same radius, which
implies that computing the radius Rd−1(P) of the min-enclosing cylinder of a set of
points P is NP-hard. Bădoiu, Har-Peled, and Indyk [7] show that Rd−1(P) can be
approximated in polynomial time by a factor of (1 + ε) for any ε > 0. Har-Peled and
Varadarajan [22, 23] generalize the result and show that Rk(P) can be approximated
by a factor of (1 + ε) for any ε > 0 when d− k is constant.1

More hardness results are known when d − k becomes large or when k becomes
small. Bodlaender et al. [10] show that the problem is NP-hard when k = 1. This
is true even for the case n = d + 1 [20]. Gritzmann and Klee [20] also show that it
is NP-hard to compute Rk(P) if k ≤ c · d for any fixed 0 < c < 1. These negative
results are further improved by Brieden, Gritzmann, and Klee [11] and Brieden [14],
the latter of which has shown that it is NP-hard to approximate R1(P), the width of
a point set, to within any constant factor.

On the positive side, the algorithms of Nemirovski, Roos, and Terlaky [26] and
Nesterov [27] imply that R1(P), or equivalently the width of the point set P , can be
approximated within a factor of O(

√
log n). Another algorithm for approximating the

width of a point set is given by Brieden et al. [12, 13], and their algorithm has a per-
formance guarantee

√
d/ log d that is measured in the dimension d. Their algorithm

in fact works for any convex body given in terms of appropriate “oracles”; the number
of calls to the oracle is polynomial in the dimension d. They also show that this is
the best possible result in the oracle model even if randomization is allowed. (Their
algorithm actually gives a

√
d/ log n approximation with poly(n) calls to the oracle,

where n is the number of points in the set.) It is not clear if their algorithm can be
extended to compute Rk(P).

1Note that Ropt
k

in [23] is the same as Rd−k in this paper

1766 K. VARADARAJAN, S. VENKATESH, Y. YE, AND J. ZHANG

The problem of efficiently computing the low-rank approximation of matrices has
received considerable attention recently; see [1, 5, 17] and the references cited in these
papers. This problem corresponds to computing the best (d−k)-dimensional subspace
that fits a point set, where the quality of a subspace is the sum of the square of the
distance of each point from the flat. The problem is therefore related to the one we
study in this paper, where the quality of a flat is the maximum over the point-flat
distances. However, the low-rank approximation problem can be solved in polynomial
time for any 1 ≤ k ≤ d.

Our results and an overview. We show that Rk(P) can be approximated in
polynomial time by a factor of O(

√
log n) for all 1 ≤ k ≤ d, thereby generalizing

the result of Nemirovski, Roos, and Terlaky [26] to all values of k. Our algorithm is
based on a semidefinite programming (SDP) relaxation with a mixed deterministic and
randomized rounding procedure, in contrast to all other purely randomized rounding
procedures used for semidefinite programming approximation.

Generally speaking, the problem of computing Rk(P) can be formulated as a
quadratic minimization problem. SDP problems (where the unknowns are represented
by positive semidefinite matrices) have recently been developed for approximating
such problems; see, for example, Goemans and Williamson [18]. In the case of k =
1, computing R1(P) corresponds to a SDP problem plus an additional requirement
that the rank of the unknown matrix equals 1. Removing the rank requirement,
the SDP problem becomes a relaxation of the original problem and can be solved
within any given accuracy ε > 0 in time polynomial in ln 1

ε and the dimension of the
data specifying the problem. Once obtaining an optimal solution, say X, of the SDP
relaxation, one would like to generate a rank-1 matrix, say X̂ = yyT , from X, where
y is a column vector and serves as a solution to the original problem. Such rank
reduction is called “rounding.” Many rounding procedures are proposed, and almost
all of them are randomized; see, for example, [9].

One particular procedure has been proposed by Nemirovski, Roos, and Ter-
laky [26] which can be used for approximating R1(P). Their procedure is a simple
randomized rounding that can be described as follows: an optimal solution X of the
SDP relaxation, whose rank could be as large as d, can be represented as (for example,
by eigenvector decomposition)

X = λ1v1v
T
1 + λ2v2v

T
2 + · · · + λdvdv

T
d .

Then one can generate a single vector y by taking a random linear combination of
the vectors

√
λ1v1,

√
λ2v2, . . . ,

√
λdvd, where the coefficients of the combination take

values of −1 or 1 uniformly and independently.
For the case k ≥ 2, the SDP relaxation that we describe is best viewed as a direct

relaxation of the problem of computing Rk(P), rather than one that is obtained via a
quadratic program formulation of Rk(P). We then need to generate k rank-1 matrices
from X, the optimal solution of the SDP relaxation, such that

X̂ =

k∑
i=1

yiy
T
i ,

where yis are orthogonal to each other. Our rounding procedure works as follows:
having obtained an optimal solution for the SDP relaxation with

X = λ1v1v
T
1 + λ2v2v

T
2 + · · · + λdvdv

T
d ,

APPROXIMATING THE RADII OF POINT SETS 1767

we deterministically partition the vectors v1, v2, . . . , vd into k groups where group j
may contain nj vectors and each group can be seen as a single semidefinite matrix
with rank nj . We then generate one vector from each group using the randomized
rounding procedure similar to that of Nemirovski, Roos, and Terlaky [26]. The k
vectors generated by this rounding procedure will automatically satisfy the condition
that any pair of them must be orthogonal to each other. We then manage to show that
the quality of these vectors yields an approximation ratio of no more than O(

√
log n).

We also prove an inapproximability result that gives evidence that our approxi-
mation algorithm is close to the best possible for a large range of k. We show that
there exists a constant δ > 0 such that the following holds for any 0 < ε < 1: there is
no polynomial time algorithm that approximates Rk(P) within (logn)δ for all k such

that k ≤ d− dε unless NP ⊆ P̃ . P̃ denotes the complexity class DTIME[2(logm)O(1)

],
which is sometimes referred to as deterministic quasi-polynomial time. That is, P̃
contains the set of all problems for which there is an algorithm that runs in time

2(logm)O(1)

on inputs of size m.
To prove the lower bound result, we start with a two-prover protocol for 3SAT

in which the verifier has very low error probability. Such a protocol is obtained
as a consequence of the probabilistically checkable proofs (PCP) theorem of Arora
et al. [3], and Arora and Safra [4] and the parallel repetition theorem of Raz [28].
The construction of Brieden [14] then implies a reduction from Max-3SAT to width
computation such that the ratio of the width of point sets that correspond to satisfiable
instances to those that correspond to unsatisfiable instances is large. This separation
gives us the inapproximability result for the width. This result can then be extended
to an inapproximability result for Rk(P) for a large range of k.

The remainder of this paper is organized as follows: in section 2, we present our
algorithm for approximating the outer k-radius Rk(P) of a point set P . In section 3,
we describe our inapproximability results. We make some concluding remarks in
section 4.

2. Approximating the radius. We now present the quadratic program formu-
lation of the outer k-radius problem and its SDP relaxation. It will be helpful to first
introduce some notation that will be used later. The trace of a given square matrix
A, denoted by Tr(A), is the sum of the entries on the main diagonal of A. We use
I to denote the identity matrix whose dimension will be clear in the context. The
inner product of two vectors p and q is denoted by 〈p, q〉. The 2-norm of a vector x,
denoted by ‖x‖, is defined by

√
〈x, x〉. For a matrix X, we use the notation X � 0

to mean that X is a positive semidefinite matrix. For simplicity, we assume that P is
symmetric in the sense that if p ∈ P , then −p ∈ P . This is without loss of generality
for the following reason: we may, by performing a translation if necessary, assume
that 0 ∈ P . Denote the set {−p|p ∈ P} by −P , and let Q = P ∪ −P . It is clear that
Rk(P) ≤ Rk(Q) ≤ 2Rk(P). Therefore, if we found a good approximation for Rk(Q),
then it must also be a good approximation for Rk(P).

Since P is a symmetric point set, the best (d−k)-flat for P contains the origin so
that it is a subspace. Thus, the square of Rk(P) can be defined by the optimal value
of the following quadratic minimization problem:

Rk(P)2 := Minimize α

Subject to
∑k

i=1〈p, xi〉2 ≤ α ∀p ∈ P,
‖xi‖2 = 1, i = 1, . . . , k,
〈xi, xj〉 = 0 ∀i �= j.

(1)

1768 K. VARADARAJAN, S. VENKATESH, Y. YE, AND J. ZHANG

Assume that x1, x2, . . . , xk ∈ �d is the optimal solution of (1). Then one can easily
verify that the matrix X = x1x

T
1 + x2x

T
2 + · · · + xkx

T
k is a feasible solution for the

following semidefinite program:

α∗
k := Minimize α

Subject to Tr(ppTX) (= pTXp) ≤ α ∀p ∈ P,
Tr(X) = k,
I −X � 0, X � 0.

(2)

It follows that α∗
k ≤ Rk(P)2. The following lemma follows from the above observa-

tions.
Lemma 1. There exists an integer r ≥ k such that we can compute, in polynomial

time, r nonnegative reals λ1, λ2, . . . , λr and r orthogonal unit vectors v1, v2, . . . , vr
such that

1.
∑r

i=1 λi = k.
2. max1≤i≤r λi ≤ 1.
3.

∑r
i=1 λi〈p, vi〉2 ≤ Rk(P)2 for any p ∈ P .

Proof. We solve the semidefinite program (2) and let X∗ be an optimal solution
of (2). We claim that the rank of X∗, say r, is at least k. This follows from the fact
that Tr(X∗) = k and I −X∗ � 0. In other words, Tr(X∗) = k implies that the sum
of the eigenvalues of X∗ is equal to k, and I −X∗ � 0 implies that all the eigenvalues
are less than or equal to 1. Therefore, X∗ has at least k nonzero eigenvalues, which
implies that the rank of X∗ is at least k. Let λ1, λ2, . . . , λr be the r nonnegative
eigenvalues and v1, v2, . . . , vr be the corresponding eigenvectors (see [26, p. 466] for
details on computing the eigenvalues and eigenvectors in polynomial time). Then we
have

∑r
i=1 λi = k and max1≤i≤r λi ≤ 1. Furthermore, for any p ∈ P ,

r∑
i=1

λi〈p, vi〉2 = Tr(ppT
r∑

i=1

λiviv
T
i) = Tr(ppTX∗) ≤ α∗

k ≤ Rk(P)2.

2.1. Deterministic first rounding. In this section, we prove a lemma con-
cerning how to deterministically group the eigenvalues and their eigenvectors. The
proof of the lemma is elementary, but it plays an important role for proving our main
result.

Lemma 2. The index set {1, 2, . . . , r} can be partitioned into k sets I1, I2, . . . , Ik
such that, for any i : 1 ≤ i ≤ k,

∑
j∈Ii

λj ≥ 1
2 .

Proof. Recall that
∑r

j=1 λj = k and 0 ≤ λj ≤ 1 for all j. Without loss of
generality, we can assume that λ1 ≥ λ2 ≥ · · · ≥ λr. Our partitioning algorithm is
the same as the longest-processing-time heuristic algorithm for the parallel machine
scheduling problem. The algorithm works as follows:

1. For i = 1, 2, . . . , k, set Ii = ∅, and let Li = 0. Let I = {1, 2, . . . , r}.
2. While I �= ∅,

choose j from I with the smallest index;
choose set i with the smallest value Li.
Let Ii := Ii ∪ {j}, Li := Li + λj , and I := I − {j}.

It is clear that when the algorithm stops, the sets I1, I2, . . . , Ik are a partition of
{1, 2, . . . , r}. Now we prove the lemma by contradiction. Assume that there exists
some t such that

∑
j∈It

λj <
1
2 .

We now claim that, for all i,
∑

j∈Ii
λj ≤ 1. Otherwise, suppose

∑
j∈It′

λj > 1 for

some t′. Note that λj ≤ 1, for every j, and thus there are at least two eigenvalues

APPROXIMATING THE RADII OF POINT SETS 1769

assigned to It′ . Denote the last element within It′ by s′. It follows that
∑

j∈It′
λj −

λs′ =
∑

j∈It′\{s′} λj ≤
∑

j∈It
λj since, otherwise, we would have not assigned λs′ to

It′ in the algorithm. However, since
∑

j∈It
λj < 1

2 , we must have
∑

j∈It′
λj − λs′ =∑

j∈It′\{s′} λj < 1
2 . Thus, λs′ >

∑
j∈It′

λj − 1
2 > 1

2 . This is impossible since λs′ is
the last eigenvalue assigned to It′ , which implies λs′ ≤ λj for every j ∈ It′ , and
we have already proved that there must exist an l such that s′ �= l ∈ It′ and λl ≤∑

j∈It′\{s′} λj <
1
2 . Therefore,

∑
j∈Ii

λj ≤ 1 for all i, and in particular
∑

j∈It
λj <

1
2 .

It follows that
∑k

i=1

∑
j∈Ii

λj < k. However, we know that since I1, I2, . . . , Ik is a

partition of the index set {1, 2, . . . , r},
∑k

i=1

∑
j∈Ii

λj =
∑r

j=1 λj = k. This results in
a contradiction. Therefore, such a t does not exist, and the proof is completed.

Notice that the running time of the partitioning algorithm is bounded by O(r ·k).2

2.2. Randomized second rounding. Let us now assume that we have found
I1, I2, . . . , Ik. Then our next randomized rounding procedure works as follows:

1. Generate an r-dimensional random vector φ such that each entry of φ takes
value, independently, −1 or 1 with probability 1

2 each way.
2. For i = 1, 2, . . . , k, let

xi =

∑
j∈Ii

φj

√
λj · vj√∑

j∈Ii
λj

.

The following lemmas show that x1, x2, . . . , xk form a feasible solution for the
original problem. In other words, they are k orthogonal unit vectors.

Lemma 3. For i = 1, 2, . . . , k, ‖xi‖ = 1.
Proof. Recall that 〈vl, vj〉 = 0 for any l �= j and ‖vj‖ = 1. By definition,

‖xi‖2 =

〈∑
j∈Ii

φj

√
λjvj√∑

j∈Ii
λj

,

∑
j∈Ii

φj

√
λjvj√∑

j∈Ii
λj

〉

=
1∑

j∈Ii
λj

∑
j∈Ii

〈φj

√
λjvj , φj

√
λjvj〉

=
1∑

j∈Ii
λj

∑
j∈Ii

(φj)
2λj‖vj‖2

= 1.

Lemma 4. If s �= t, then 〈xs, xt〉 = 0.
Proof. Since for any j ∈ Is and l ∈ It, 〈vj , vl〉 = 0,

〈xs, xt〉 =

〈∑
j∈Is

φj

√
λjvj√∑

j∈Is
λj

,

∑
j∈It

φj

√
λjvj√∑

j∈It
λj

〉

=
1√∑

j∈Is
λj ·

∑
j∈It

λj

〈∑
j∈Is

φj

√
λjvj ,

∑
j∈It

φj

√
λjvj

〉

= 0.

2An alternative way of partitioning the eigenvalues is the following: first, put the eigenvalues
that are greater than or equal to 1/2 into distinct subsets. If the number of such eigenvalues, say l,
is not less than k, then we are done. Otherwise, arbitrarily put the remaining eigenvalues into k − l
subsets such that the sum of eigenvalues in each subset is greater than or equal to 1/2. This method
was suggested by an anonymous referee of a preliminary version of this paper.

1770 K. VARADARAJAN, S. VENKATESH, Y. YE, AND J. ZHANG

Now we establish a bound on the performance of our algorithm. First, let us
introduce Bernstein’s theorem (see, for example, [26]), which is a form of the Chernoff
bound.

Lemma 5. Let φ be a random vector whose entries are independent and either 1
or −1 with probability 1

2 each way. Then, for any vector e and β > 0,

prob{〈φ, e〉2 > β‖e‖2} < 2 · exp

(
−β

2

)
.

Let Cip =
∑

j∈Ii
λj〈p, vj〉2. Then we have

Lemma 6. For each i = 1, 2, . . . , k and each p ∈ P , we have

prob{〈p, xi〉2 > 12 log(n) · Cip} <
2

n3
.

Proof. Given i and p, define an |Ii|-dimensional vector e such that its entries are√
λj〈p, vj〉, j ∈ Ii, respectively. Furthermore, we define the |Ii|-dimensional vector

φ|Ii whose entries are those of φ with indices in Ii. First notice that

‖e‖2 =
∑
j∈Ii

(
√
λj〈p, vj〉)2 =

∑
j∈Ii

λj · 〈p, vj〉2 = Cip.

On the other hand, since
∑

j∈Ii
λj ≥ 1

2 ,

〈p, xi〉2 =

〈
p,

∑
j∈Ii

√
λjvjφj√∑

j∈Ii
λj

〉2

≤ 2

〈
p,

∑
j∈Ii

√
λjvjφj

〉2

= 2

⎛
⎝∑

j∈Ii

√
λjφj〈p, vj〉

⎞
⎠

2

= 2 〈φ|Ii , e〉
2
.

Thus

prob{〈p, xi〉2 > 12 log(n)Cip} ≤ prob{〈φ|Ii , e〉2 > 6 log(n)‖e‖2}.

Therefore, the conclusion of the lemma follows by using Lemma 5 and by letting
β = 6 log(n).

Theorem 1. We can compute in polynomial time a (d − k)-flat such that, with
probability at least 1 − 2

n , the distance between any point p ∈ P and F is at most√
12 log(n) ·Rk(P).

Proof. For given i = 1, 2, . . . , k and p ∈ P , consider the event

Bip = {φ|〈p, xi〉2 > 12 log(n) · Cip}

and B =
⋃

i,p Bip. The probability that the event B happens is bounded by

∑
i,p

prob{〈p, xi〉2 > 12 log(n) · Cip} <
2kn

n3
≤ 2

n
.

APPROXIMATING THE RADII OF POINT SETS 1771

If B does not happen, then for any i and p,

〈p, xi〉2 ≤ 12 log(n) · Cip.

Therefore, for each p ∈ P ,

k∑
i=1

〈p, xi〉2 ≤ 12 log(n)

k∑
i=1

Cip ≤ 12 log(n) ·Rk(P)2.

The last inequality follows from Lemma 1. This completes the proof by taking F as
the subspace which is orthogonal to the vectors x1, x2, . . . , xk.

3. The inapproximability results. We start with formal definitions of the
problems that will be used in the sequence of reductions from 3SAT to computing
the outer k-radius Rk(P) of a set P of points. Our starting point will be the classic
3SAT problem, in which we are given a 3CNF formula and we want to know if there
is an assignment to its variables that simultaneously satisfies all its clauses. The next
problem we consider is the resricted quadratic programming problem as defined by
Brieden [14].

Definition 1 (ζ-restricted quadratic programming). We are given nonnegative
integers λ, τ, κ, and σ and nonnegative rational numbers cp,q,a,b for p ∈ [λ], q ∈ [τ],
a ∈ [κ], and b ∈ [σ]. (For a nonnegative integer n, [n] denotes the set {1, 2, . . . , n}.)
Our goal is to maximize

f(x) =
∑

p,q,a,b

cp,q,a,bxp,ayq,b

over the polytope P ⊆ �λκ+τσ described by∑
a∈[κ]

xp,a = 1 for p ∈ [λ],

∑
b∈[σ]

yq,b = 1 for q ∈ [τ],

0 ≤ xp,a ≤ 1 for p ∈ [λ], a ∈ [κ],

0 ≤ yq,b ≤ 1 for q ∈ [τ], b ∈ [σ].

We denote instances in which κ, σ ≤ ζ and λ, τ ≤ Δ by ζ-restricted QP [Δ].
Definition 2 (symmetric full-dimensional norm maximization). We are given

a string (n,m,A), where n and m are natural numbers and A is a rational m × n
matrix. Our goal is to maximize

f(x) = ||x||2
over all vectors x that belong to the polytope P = {x| − 1 ≤ Ax ≤ 1}. We denote an
instance in which the number of rows of A is at most m and the number of columns
is at most n by NM [m,n].

We first prove an inapproximability result for the case k = 1 and later extend it
to a large range of k using a simple reduction. The crux of the proof is the following
lemma.

Lemma 7. There is a constant c > 1 such that for any sufficiently large integer
parameter t ≥ 1, there is a reduction T from 3SAT formulas of size m to computing
R1 for a point set of size n = 2O(t23t logm) in d = 2O(t logm) dimensions such that the
following hold:

1772 K. VARADARAJAN, S. VENKATESH, Y. YE, AND J. ZHANG

1. If ψ is satisfiable, then R1(T (ψ)) ≥ w for some w.
2. If ψ is unsatisfiable, then R1(T (ψ)) ≤ w′ for some w′.
3. w

w′ ≥ ct.

This reduction, including the computation of w and w′, runs in time 2O(t23t logm).
Proof. The proof involves a sequence of three reductions.
From 3SAT to quadratic programming. Bellare and Rogaway [8, section 4]

give a reduction from 3SAT to quadratic programming via a two-prover protocol for
3SAT. We use their reduction, but in order to get the right parameters in the hardness
of approximation result for quadratic programming, we need to replace the one-round
two-prover protocol that they start off with by a different one that is described in
Feige [16, section 2.2]. For completeness, we now describe this two-prover protocol
for 3SAT.

The two-prover protocol. Feige [16, Proposition 2.1.2] shows there exists a poly-
nomial time reduction T from 3CNF formulas to 3CNF formulas such that each clause
of T (ψ) has exactly three literals (corresponding to three different variables) and each
variable appears in exactly five clauses and furthermore the following hold:

1. If ψ is satisfiable, then T (ψ) is satisfiable.
2. If ψ is not satisfiable, then T (ψ) is at most (1−ε)-satisfiable for some constant

0 < ε < 1. That is, any assignment satisfies at most a fraction (1 − ε) of all
clauses in T (ψ).

Without the requirement that each variable appears in exactly five clauses, such
a reduction is known to be a consequence of the PCP theorem [3]. We now describe
the steps taken by the verifier in the two-prover protocol.

1. Convert ψ to T (ψ).
2. Choose t clauses uniformly at random (with replacement) from T (ψ). Ask

prover P1 for an assignment to the variables in each clause chosen.
3. From each chosen clause, choose one of the three variables in that clause

uniformly at random. We get t distinguished variables, possibly with repetitions. Ask
the prover P2 for an assignment to each of these t variables.

4. Accept if, for each chosen clause, it is satisfied by the assignment received from
prover P1 and the assignments made by the two provers to the distinguished variable
from the clause are consistent. (Acceptance means that the verifier declares ψ to be
satisfiable.) For example, suppose t = 2 and the verifier chose the clauses (¬x∨ y∨ z)
and (¬y∨ z∨w) and chose x and w as the respective distingushed variables. Suppose
that P1 returned the values x1, y1, and z1 for the variables in the first clause and the
values y2, z2, and w2 for the variables in the second clause. Suppose that P2 returned
values x3 and w3 for the distinguished variables. Then the verifier accepts if both
(¬x1 ∨ y1 ∨ z1) and (¬y2 ∨ z2 ∨ w2) evaluate to true, x1 = x3, and w2 = w3.

The prover P1 is any function that on seeing ψ and the identity of the t clauses in
T (ψ) returns 3t bits that the verifier interprets as an assignment to the 3t variables
in these clauses. Similarly, the prover P2 is any function that on seeing ψ and the
identity of the t distinguished variables returns t bits that the verifier interprets as an
assignment to the distinguished variables.

If ψ is satisfiable, so is T (ψ), and there exist provers (functions) that will cause
the verifier to accept on every outcome of the random choices. This can be seen by
picking a satisfying assignment to T (ψ) and defining the two provers so that they
answer according to this assignment. If ψ is unsatisfiable, what is the maximum
probability, over all choices of provers (functions) P1 and P2, that the verifier accepts
ψ? By Raz’s parallel repetition theorem [28], this error probabibility is bounded above
by st for some s < 1 (where the s depends on ε). We refer the reader to Feige [16,

APPROXIMATING THE RADII OF POINT SETS 1773

section 2.2] for a discussion of this and to the paper by H̊astad [24] for more details on
the use of two-prover protocols in inapproximability results. Also, note that in this
protocol the questions to the two provers are at most O(t logm) bits long, where m
is the input size, since O(logm) bits suffice to identify a clause or variable in T (ψ).
The answers from the two-provers P1 and P2 are 3t and t bits long.

We now plug this two-prover protocol into the reduction of Bellare and Rog-
away [8, section 4] from SAT to restricted quadratic programming via two-prover
protocols. Their description assumes for simplicity that the question and answer
lengths of the two-prover protocol are the same, but their reduction works even if
these sizes are different. Using the fact that the answer length is at most 3t, we
obtain the following.3

Lemma 8 (Bellare and Rogaway [8]). There is a constant f > 1 such that, for
any sufficiently large integer t ≥ 1, there is a reduction T1 that maps 3CNF formulas
of size m to 23t-restricted QP [2O(t logm)] such that the following hold:

1. If ψ is satisfiable, then OPT (T1(ψ)) = w1 for some w1.
2. If ψ is unsatisfiable, then OPT (T1(ψ)) ≤ w2 for some w2.
3. w1

w2
≥ f t.

Moreover, this reduction, including the computation of w1 and w2, runs in time
2O(t logm).

From quadratic programming to norm maximization. Brieden [14, Theo-
rem 3.4] describes a set of interesting reductions that converts an instance of quadratic
programming to an instance of the norm maximization problem. Using this reduction,
we obtain the following.

Lemma 9 (Brieden [14]). For any λ > 0, there is a reduction T2 from restricted
quadratic programming to symmetric full-dimensional norm maximization that maps
23t-restricted QP [2O(t logm)] into NM [2O(t23t logm), 2O(t logm)] with the following prop-
erty: for any input L of QP to T2,

OPT (L)

(1 + λ)
≤ OPT (T2(L)) ≤ (1 + λ)OPT (L).

Moreover, the reduction T2 runs in time 2O(t23t logm).
From norm maximization to width computation. The reduction from

symmetric full-dimensional norm maximization to width computation is simple [19]
and is in fact used by Brieden [14]. Let ai ∈ �n be the vector that corresponds to the
ith row of matrix A which is input to the norm-maximation problem for 1 ≤ i ≤ m.
Thus the norm-maximization problem is

γ := Maximize ||x||2
Subject to 〈ai, x〉2 ≤ 1 for 1 ≤ i ≤ m.

(3)

The reduction T3 simply constructs a set B of points by adding, for each 1 ≤ i ≤
m, the points ai and −ai to B. Since B is a symmetric point set, R1(B)2 is given by
the program

Minimize α

Subject to 〈ai, x〉2 ≤ α for 1 ≤ i ≤ m,
‖x‖2 = 1.

(4)

3In Bellare’s and Rogaway’s reduction, the connection between the parameters of the two-prover
protocol for 3SAT and the parameters of the resulting ζ-restricted QP [Δ] instance is as follows: ζ
is exponential in the answer length, Δ is exponential in the question length, and the “gap” f t in
Lemma 8 is the reciprocal of the error probability of the protocol.

1774 K. VARADARAJAN, S. VENKATESH, Y. YE, AND J. ZHANG

It is easy to verify that γ = 1/R1(B).
The reduction T claimed in Lemma 7 is obtained by composing the reductions

T1, T2, and T3. In particular, choose λ such that (1 + λ)2 < f , and let

c =
1

(1 + λ)2
f > 1.

It can now be checked that Lemma 7 holds with this choice of c.
Theorem 2.

1. There exists a constant δ > 0 such that the following holds: there is no quasi-
polynomial time algorithm that approximates R1(P) within (log n)δ unless NP
⊆ P̃ .

2. Fix any constant b ≥ 1. Then there is no quasi-polynomial time algorithm
that approximates R1(P) within (log d)b unless NP ⊆ P̃ .

Proof. To prove part 1, we apply the reduction of Lemma 7 with t = log logm
to obtain an instance of computing R1 for a set of n = 2O(t23t logm) in d = 2O(t logm)

dimensions. Choose δ′ < log c
5 . Then

ct

(t23t)δ′
≥ ct

(24t)δ′
≥

(c

24δ′

)t

> (2δ
′
)t ≥ (logm)δ

′
.

Thus ct > (t23t logm)δ
′
. Since n = 2O(t23t logm), we can choose δ < δ′ such that,

for n large enough,

ct > (log n)δ.

To prove part 2, we apply the reduction of Lemma 7 with t = 2p log logm
log c for some

sufficiently large constant p. Then,

ct

tp
≥ 22p log logm

tp
≥ 2p log logm 2p log logm

tp
= 2p log logm

(
logm

t

)p

> 2p log logm

since logm > t for sufficiently large m.
Thus, ct > tp2p log logm = (t logm)p. Since the dimension d is 2O(t logm), it follows

that for every constant b ≥ 1, we can choose p large enough such that

ct > (log d)b.

Observe that the reduction runs in quasi-polynomial time for our choice of t in both
cases and hence the theorem follows.

We now give the easy reduction from width to the outer k-radius that proves the
main result of this section.

Theorem 3.

1. There exists a constant δ > 0 such that the following holds for any 0 < ε < 1:
there is no quasi-polynomial time algorithm that approximates Rk(P) within
(log n)δ for all k such that k ≤ d− dε unless NP ⊆ P̃ .

2. Fix any ε > 0. Fix any constant c ≥ 1. Then there is no quasi-polynomial
time algorithm that approximates Rk(P) within (log d)c for all k such that
k ≤ d− dε unless NP ⊆ P̃ .

Proof. Let P be a set of n points in �d. We map P to a set P ′ of n points
in �d+k−1 using the function that takes a point (x1, . . . , xd) ∈ �d to the point
(x1, . . . , xd, 0, . . . , 0). It is easily checked that R1(P) = Rk(P

′). Theorem 3 follows

APPROXIMATING THE RADII OF POINT SETS 1775

from this reduction and some simple calculations: observe that the reduction runs
in polynomial time even if we set k to be d1/ε − d + 1. With this choice, the target
dimension d′ := d+k− 1 equals d1/ε. Thus k = d1/ε−d+1 ≥ d′−d′ε. Theorem 3(1)
now follows by applying Theorem 2(1). For part (2), we apply Theorem 2(2) with
b = 2c. Since

(log d)2c ≥ (ε log d′)2c = (ε2 log d′)c(log d′)c ≥ (log d′)c

for sufficiently large d′, Theorem 3(2) also follows.

4. Conclusions. Finding efficient rounding methods for SDP relaxation plays a
key role in constructing better approximation algorithms for various hard optimization
problems. All of them developed to date are randomized in nature. Therefore, the
mixed deterministic and randomized rounding procedure developed in this paper may
have its own independent value. We expect to see more applications of the procedure
in approximating various computational geometry and space embedding problems.

Acknowledgment. We wish to thank Andreas Brieden and the anonymous ref-
erees for their valuable feedback.

REFERENCES

[1] D. Achlioptas and F. McSherry, Fast computation of low rank matrix approximations, in
Proceedings of the ACM Symposium on the Theory of Computing, 2001.

[2] P. K. Agarwal, S. Har-Peled, and K. R. Varadarajan, Approximating extent measures of
points, J. ACM, 51 (2004), pp. 606–635.

[3] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy, Proof verification and hard-
ness of approximation problems, J. ACM, 45 (1998), pp. 501–555.

[4] S. Arora and S. Safra, Probabilistic checking of proofs: A new characterization of NP, J.
ACM, 45 (1998), pp. 70–122.

[5] Y. Azar, A. Fiat, A. Karlin, F. McSherry, and J. Saia, Spectral analysis of data, in
Proceedings of the ACM Symposium on the Theory of Computing, 2001.

[6] G. Barequet and S. Har-Peled, Efficiently approximating the minimum-volume bounding
box of a point set in three dimensions, J. Algorithms, 38 (2001), pp. 91–109.

[7] M. Bădoiu, S. Har-Peled, and P. Indyk, Approximate clustering via core-sets, in Proceedings
of the ACM Symposium on the Theory of Computing, 2002.

[8] M. Bellare and P. Rogaway, The complexity of approximating a nonlinear program, Math.
Program. B, 69 (1995), pp. 429–441.

[9] D. Bertsimas and Y. Ye, Semidefinite Relaxations, Multivariate Normal Distributions, and
Order Statistics, Handbook Combin. Optim. 3, D.-Z. Du and P. M. Pardalos, eds., Kluwer
Academic Publishers, Norwell, MA, 1998, pp. 1–19.

[10] H. L. Bodlaender, P. Gritzmann, V. Klee, and J. Van Leeuwen, The computational
complexity of norm maximization, Combinatorica, 10 (1990), pp. 203–225.

[11] A. Brieden, P. Gritzmann, and V. Klee, Inapproximability of some geometric and quadratic
optimization problems, in Approximation and Complexity in Numerical Optimization:
Continuous and Discrete Problems, P. M. Pardalos, ed., Kluwer Academic Publishers,
Norwell, MA, 2000, pp. 96–115.

[12] A. Brieden, P. Gritzmann, R. Kannan, V. Klee, L. Lovasz, and M. Simonovits, Deter-
ministic and randomized polynomial-time approximation of radii, Mathematika, 48 (2001),
pp. 63–105.

[13] A. Brieden, P. Gritzmann, R. Kannan, V. Klee, L. Lovasz, and M. Simonovits, Approxi-
mation of diameters: Randomization doesn’t help, in Proceedings of the IEEE Symposium
on the Foundations of Computer Science, 1998, pp. 244–251.

[14] A. Brieden, Geometric optimization problems likely not contained in APX, Discrete Comput.
Geom., 28 (2002), pp. 201–209.

[15] U. Faigle, W. Kern, and M. Streng, Note on the computational complexity of j-radii of
polytopes in Rn, Math. Program., 73 (1996), pp. 1–5.

[16] U. Feige, A threshold of lnn for approximating set cover, J. ACM, 45 (1998), pp. 634–652.

1776 K. VARADARAJAN, S. VENKATESH, Y. YE, AND J. ZHANG

[17] A. Frieze, R. Kannan, and S. Vempala, Fast Monte-Carlo algorithms for finding low rank
approximations, J. ACM, 51 (2004), pp. 1025–1041.

[18] M. X. Goemans and D. P. Williamson, Improved approximation algorithms for maximum cut
and satisfiability problems using semi-definite programming, J. ACM, 42 (1995), pp. 1115–
1145.

[19] P. Gritzmann and V. Klee, Inner and outer j-radii of convex bodies in finite-dimensional
normed spaces, Discrete Comput. Geom., 7 (1992), pp. 255–280.

[20] P. Gritzmann and V. Klee, Computational complexity of inner and outer j-radii of polytopes
in finite-dimensional normed spaces, Math. Program., 59 (1993), pp. 162–213.

[21] P. Gritzmann and V. Klee, On the complexity of some basic problems in computational
convexity: I. Containment problems, Discrete Math., 136 (1994), pp. 129–174.

[22] S. Har-Peled and K. Varadarajan, Projective clustering in high dimensions using core-sets,
in Proceedings of the 18th Annual Symposium on Computational Geometry, ACM Press,
2002, pp. 312–318.

[23] S. Har-Peled and K. Varadarajan, High-dimensional shape fitting in linear time, Discrete
Comput. Geom., 32 (2004), pp. 269–288.

[24] J. Håstad, Some optimal inapproximability results, J. ACM, 48 (2001), pp. 798–859.
[25] N. Megiddo, On the complexity of some geometric problems in unbounded dimension, J. Sym-

bolic Comput., 10 (1990), pp. 327–334.
[26] A. Nemirovski, C. Roos, and T. Terlaky, On maximization of quadratic forms over inter-

section of ellipsoids with common center, Math. Program., 86 (1999), pp. 463–473.
[27] Yu. Nesterov, Global quadratic optimization via conic relaxation, in Handbook of Semidefinite

Programming Theory, Algorithms, and Applications, H. Wolkowicz, R. Saigal, and L.
Vandenberghe, eds., Kluwer Academic Publishers, Norwell, MA, 2000.

[28] R. Raz, A parallel repetition theorem, SIAM J. Comput., 27 (1998), pp. 763–803.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

