
Discrete Comput Geom (2008) 39: 419–441
DOI 10.1007/s00454-008-9053-2

Finding the Homology of Submanifolds with High
Confidence from Random Samples

Partha Niyogi · Stephen Smale ·
Shmuel Weinberger

Received: 21 June 2005 / Revised: 16 March 2006
© Springer Science+Business Media, LLC 2008

Abstract Recently there has been a lot of interest in geometrically motivated ap-
proaches to data analysis in high-dimensional spaces. We consider the case where
data are drawn from sampling a probability distribution that has support on or near
a submanifold of Euclidean space. We show how to “learn” the homology of the
submanifold with high confidence. We discuss an algorithm to do this and provide
learning-theoretic complexity bounds. Our bounds are obtained in terms of a condi-
tion number that limits the curvature and nearness to self-intersection of the subman-
ifold. We are also able to treat the situation where the data are “noisy” and lie near
rather than on the submanifold in question.

1 Introduction

In recent years there has been considerable interest in the possibility of analyzing and
processing data in high-dimensional spaces. Following the intuition that naturally
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occurring data may be generated by structured systems with possibly much fewer
degrees of freedom than the ambient dimension would suggest, various researchers
(see [3, 10, 16, 17, 20]) have considered the case when the data live on or close
to a submanifold of the ambient space. One hopes then to estimate geometrical and
topological properties of the submanifold from random points (“scattered data”) lying
on this unknown submanifold. These questions belong to a class of problems that
have come to be known as manifold learning.

In this paper we consider the particular question of identifying the homology of
the submanifold from random samples. The homology of the submanifold (see [15]
for definitions) are natural topological invariants that provide a good characterization
of many aspects of it. For example, the dimensions of the homology groups, the Betti
numbers (b0, b1, . . .), have natural interpretations. b0, the dimension of the zeroth
homology group is the number of connected components of the submanifold. In data
analysis situations, the number of clusters of the data may sometimes be understood
in terms of the number of components of an underlying manifold (or other geometric
object). If the dimension of the submanifold is d , then one sees that bj = 0 for all
j > d . Thus the largest non-trivial homology gives us the dimension of the submani-
fold. If the submanifold is two-dimensional, then b0 and b1 are related to the number
of connected components and number of holes, respectively, of the submanifold.

We show that it is possible to identify the homology from random samples and
discuss an algorithm to do this. There are a few aspects of the developments in this
paper that are worth emphasizing. First, we provide sample complexity estimates on
the number of examples that are needed to identify the homology with high confi-
dence. Our results are in the style of learning–theoretic treatments (for example, the
Probably Approximately Correct framework [18]) where unknown objects (typically
functions in learning theory) are “learned” from random samples and confidence esti-
mates are provided. Second, we treat the situation where data might be drawn from a
distribution that is concentrated around the manifold rather than precisely on it. Un-
der specific models of noise, we show that our algorithm can work even with noisy
data. In all cases, estimates are provided in terms of a condition number that limits
the curvature and nearness to self-intersection of the submanifold.

Our results may also be of interest to researchers in computational geometry and
topology who have considered the question of computing homology from simplicial
complexes in the past (see [8, 14] for details and further references). A number of
researchers in these computational geometry and topology fields have considered the
problem of manifold reconstruction from point cloud data. Such work has typically
focused on the case of surfaces in R

3 and examples include algorithms associated
with the frameworks of alpha shapes [11], CRUST [1] and its variants, and CO-
CONE [2] and its generalizations. CRUST and COCONE provably recover a simpli-
cial 2-manifold that is homeomorphic to the surface. In [6] (written after the results
of our current paper were declared), it was shown how to extend these ideas to the
general setting of a k-manifold embedded in R

N . In much of this work the medial
axis plays a central role in characterizing the conditioning of the manifold (see our
later remarks in Sect. 2). It is also worth noting that none of the works mentioned
above considers the probabilistic setting where examples are drawn at random—so
no high confidence guarantees are provided. The theorems in [1, 2, 6] are analogous
to our Proposition 3.1. No version of our main theorem (Theorem 3.1) exists in the
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literature. Finally, it is also worth noting that there is a body of work on persistence
homology [7, 20] that seeks alternative topological characterizations of the manifold
and its homology. See the discussion after Proposition 3.1.

In conclusion, we hope that researchers in graphics, pattern recognition, solid
modeling, molecular biology, finance, and other areas where large amounts of high-
dimensional data are available may find some use for the topological perspective on
data analysis embodied in the algorithms and analyses of this paper.

2 Preliminaries

Consider a compact Riemannian submanifold M of a Euclidean space R
N . Sam-

ple the manifold according to a uniform probability measure on it. Thus points
x1, . . . , xn ∈ M are generated. This set of points x̄ = {x1, . . . , xn} is the data set on
the basis of which homology groups will be calculated. In later sections we consider
the case when the data are drawn from a probability measure with support close to
the manifold.

Throughout our discussion, we associate to M a condition number (1/τ ) where τ

is defined as the largest number having the property: The open normal bundle about
M of radius r is embedded in R

N for every r < τ . Its image Tubτ is a tubular
neighborhood of M with its canonical projection map

π0 : Tubτ → M.

Note that τ encodes both local curvature considerations as well as global ones: If M
is a union of several components, then τ bounds their separation. For example, if M
is a sphere, then τ is equal to its radius. If M is an annulus, then τ is the separation
of its components. In Sect. 6 we relate the condition number 1/τ to classical notions
of curvature in differential geometry via the second fundamental form.

Finally, it is also useful to relate τ to the notions of medial axis and local feature
size that have been developed in the computational geometry community. Given M,
one may define the set

G = {
x ∈ R

N such that ∃ distinct p,q ∈M where d(x,M) = ‖x − p‖ = ‖x − q‖},
where d(x,M) = infy∈M‖x − y‖ is the distance of x to M. The closure of G is
called the medial axis and for any point p ∈ M the local feature size σ(p) is the
distance of p to the medial axis. Then it is easy to check that

τ = inf
p∈M

σ(p).

3 An Outline of Our Main Results

Ultimately we wish to compute the homology of the manifold M ⊂ R
N from the

randomly sampled datapoints x̄ = {x1, . . . , xn} ⊂ M. We first begin by considering
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Euclidean balls (in the ambient space R
N ) of radius ε and center xi . We denote these

balls as Bε(xi). We can now define the open set U ⊂ R
N given by

U =
⋃

x∈x̄

Bε(x).

Our first proposition states that if x̄ = {x1, . . . , xn} is ε/2 dense in M, then M is a
deformation retract of U .

Proposition 3.1 Let x̄ be any finite collection of points x1, . . . , xn ∈ R
N such that it is

(ε/2) dense in M, i.e., for every p ∈M, there exists an x ∈ x̄ such that ‖p−x‖RN <

ε/2. Then for any ε <

√
3
5τ , we have that U deformation retracts to M. Therefore

the homology of U equals the homology of M.

We prove this proposition in Sect. 4. Subsequent to our work, the authors of [7]
presented a different type of calculation of the homology of M based on their homol-
ogy approximation theorem together with the method of computing persistent homol-
ogy (e.g., [20]). Their method does not give the homotopy type of M. On the other
hand, it does apply to a class of metric spaces more general than well-conditioned
manifolds. A related approach appears in [5].

In the case under consideration here, the points x1, . . . , xn are sampled in i.i.d.
fashion from the uniform probability distribution on M. By probabilistic considera-
tions, we will then prove (in Sect. 5) the following proposition.

Proposition 3.2 Let x̄ be drawn by sampling M in i.i.d. fashion according to the
uniform probability measure on M. Then with probability greater than 1 − δ, we
have that x̄ is (ε/2)-dense (ε < τ/2) in M provided

|x̄| > β1

(
log(β2) + log

(
1

δ

))
,

where

β1 = vol(M)

(cosk(θ1))vol(Bk
ε/4)

and β2 = vol(M)

(cosk(θ2))vol(Bk
ε/8)

.

Here k is the dimension of the manifold M and vol(Bk
ε ) denotes the k-dimensional

volume of the standard k-dimensional ball of radius ε. Finally, θ1 = arcsin(ε/8τ) and
θ2 = arcsin(ε/16τ ).

Putting these two propositions together, we see that we are able to provide a finite
sample estimate for how many times we need to sample M so that we are guaranteed
with high confidence that the homology of the random set U equals the homology
of M. Thus our main theorem is

Theorem 3.1 Let M be a compact submanifold of R
N with condition number τ .

Let x̄ = {x1, . . . , xn} be a set of n points drawn in i.i.d. fashion according to the
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uniform probability measure on M. Let 0 < ε < τ/2. Let U = ⋃
x∈x̄ Bε(x) be a

correspondingly random open subset of R
N . Then for all

n > β1

(
log(β2) + log

(
1

δ

))
,

the homology of U equals the homology of M with high confidence (probability
>1 − δ).

Remark Note that no version of our main theorem exists in the literature so far. How-
ever, versions of our Proposition 3.1 do exist. We have characterized Proposition 3.1
in terms of τ but one may obtain an alternate characterization in terms of the medial
axis and the local feature size. In fact, if one considers the union of balls centered
at the data points given by U = ⋃

x∈x̄ Bεx (x) where εx = rσ (x), then it is possible
to show that the homology of U coincides with that of M if x̄ is (εx/2)-dense in
M and for all r < 0.21. For the case of surfaces in R

3, a similar result is obtained
by Amenta et al. [2] for r < 0.06. The set x̄ is said to be (εx/2)-dense if for every
p ∈ M there exists some x ∈ x̄ such that ‖p − x‖ < εx/2. We will prove this in a
later paper. It is not obvious, however, how to obtain a version of our main theorem
in terms of the local feature size. Finally, we recall the recent results of [7] that we
have already alluded to.

3.1 Computing the Homology of U

One now needs to consider algorithms to compute the homology of U . Noting that
the Bε(xi)’s form a cover of U , one can construct the nerve of the cover. The nerve
is an abstract simplicial complex constructed as follows: One puts in a k-simplex for
every (k + 1)-tuple of intersecting elements of the cover. The Nerve Lemma (see [4])
applies in our case, as balls are convex, to show that the homology of U is the same as
the homology of this complex. The algorithm consists of the following components:

1. Given an ε, and a set of points x̄ = {x1, . . . , xn} in R
N , each j -simplex is given by

a subset of the n points that have non-zero intersection. Thus we may define Lj to
be the collection of all j -simplices. Each simplex σ ∈ Lj is associated with a set
of j + 1 points (p0(σ ), . . . , pj (σ ) ∈ x̄) such that

j⋂

i=0

Bε(pi(σ )) �= ∅.

An orientation for the simplex is chosen by picking an ordering and we denote the
oriented simplex by |p0(σ ), . . . , pj (σ )|.

2. A very crude upper bound on the size of Lj (denoted by |Lj |) is given by
(

n
j+1

)
.

However, it is clear that if two points xm and xl are more than 2ε apart, they cannot
be associated to a simplex. Therefore, there is a locality condition that the pi(σ )’s
must obey, which results in |Lj | being much smaller than this crude number. The

simplicial complex Kj = ⋃j

i=0 Lj together with face relations. The simplicial
complex corresponding to the nerve of U is K = KN .
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3. A basic subroutine for computing the simplicial complex (steps 1 and 2 above)
involves the decision problem: for any set of j points, determine whether balls of
radius ε around each of these points have non-empty intersection. This problem
is related to the smallest ball problem defined as follows: Given a set of j points,
find the ball with the smallest radius enclosing all these points. One can check
that

⋂j

i=1 Bε(pi) �= ∅ if and only if this smallest radius < ε. Fast algorithms for
the smallest ball problem exist. See [12] for theoretical discussion and [14] for
downloadable algorithms from the web.

4. We work in the field of coefficients R. Then a j -chain is a function c: Lj → R

and can be written as a formal sum

c =
∑

σ∈Lj

c(σ )σ.

By adding j -chains componentwise, one gets the vector space of j -chains denoted
by Cj .

5. The boundary operator ∂j is a linear operator from Cj to Cj−1 defined as follows.
For each (oriented) simplex σ ∈ Lj ,

∂jσ =
j∑

i=0

(−1)iσi,

where σi is a j −1 face of σ (facing point pi(σ )) and the orientation of σi is given
by |p0, . . . , pi−1,pi+1, . . . , pj |. Now ∂j is defined on j chains by additivity as

∂j

( ∑

σ∈Lj

c(σ )σ

)
=

∑

σ∈Lj

c(σ )∂jσ.

Thus, ∂j can be represented as an nj−1 × nj matrix where nj−1 = |Lj−1| and
nj = |Lj |, respectively. The matrix is usually sparse in our setting.

6. This defines the chain complex

· · · Cj+1
∂j+1−→ Cj

∂j−→ Cj−1 · · · .
One can finally define the image and kernel of the boundary operator given by

Im ∂j = {c ∈ Cj−1 | ∃c′ ∈ Cj where ∂j c
′ = c}

and

Ker ∂j = {c ∈ Cj | ∂j c = 0}.
Now Im ∂j+1 is the vector space of j -boundaries and Ker∂j is the vector space
of j cycles. Then the j th homology group is the quotient of Ker∂j over Im ∂j+1,
i.e.,

Hj = Ker∂j / Im ∂j+1.
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The calculation of Hj is seen to be an exercise in linear algebra given the matrix
representation of the boundary operators. In our exposition here, we have been
working over a field resulting in vector spaces which are characterized purely by
their ranks (the Betti numbers). One approach to this is also via the combinatorial
Laplacian as outlined in [13]. More generally, one can work over a ring and Hj

would then be an Abelian group.

4 The Deformation Retract Argument

In this section we prove Proposition 3.1. Recall that ε <
√

3/5τ . Consider the canon-
ical map π : U → M given by (π is the restriction of π0 to U )

π(x) = arg min
p∈M

‖x − p‖.

Then we see that the fibers π−1(p) are given by T ⊥
p ∩ U ∩ Bτ (p). The intersection

with Bτ (p) is necessary to eliminate distant regions of U that may intersect with Tp

(because the manifold may curve around over great distances) but do not belong to
the fiber. For example, for the standard circle in R

2, at any point p on the circle,
T ⊥

p intersects the circle at two points. One of these is in Bτ (p) and the other is not.
Therefore,

π−1(p) =
⋃

x∈x̄

Bε(x) ∩ T ⊥
p ∩ Bτ (p),

where T ⊥
p is the normal subspace at p ∈ M orthogonal to the tangent space Tp . Let

us also define st(p) as

st (p) =
⋃

{x∈x̄;x∈Bε(p)}
Bε(x) ∩ T ⊥

p ∩ Bτ (p).

It is immediately clear that

st (p) ⊆ π−1(p).

Then the following simple proposition is true.

Proposition 4.1 st(p) is star shaped relative to p and therefore contracts to p.

Proof Consider arbitrary v ∈ st (p). Then v ∈ Bε(x) ∩ T ⊥
p for some x ∈ x̄ such that

x ∈ Bε(p). Since x ∈ Bε(p), we immediately have p ∈ Bε(x). Since v,p are both in
Bε(x), by convexity of Euclidean balls, we have that the line segment v̄p joining v

to p is entirely contained in Bε(x). At the same time, v̄p is entirely contained in T ⊥
p

and it follows therefore that v̄p is contained in st(p). �

We next show that the inclusion of st(p) in π−1(p) is an equality proving that
π−1(p) contracts to p.
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Fig. 1 A picture showing the
worst case. The picture shows
the plane passing through points
v,p, and q . Tp and T ⊥

p are
shown intersecting with this
plane and are represented by the
dotted horizontal line and the
solid vertical line, respectively.
On the plane of interest, one
may then draw two circles (of
radius τ each) that are tangent to
Tp and are on either side of Tp

as shown. Clearly, v lies on T ⊥
p

and is marked in the figure. On
the other hand, q could potenti-
ally lie anywhere outside the two
circles. A moment’s reflection
shows that ‖v − p‖ is greatest
when q lies on one of the two
circles. Without loss of generali-
ty one may consider it to lie on
the top circle as shown. Over all
choices of such q , the worst
case is derived in Lemma 4.1

Proposition 4.2

st(p) = π−1(p).

Proof We need to show that π−1(p) ⊆ st (p). Consider an arbitrary v ∈ Bε(q) ∩
T ⊥

p ∩ Bτ (p) where q ∈ x̄ and q /∈ Bε(p). For such v the picture of Fig. 1 can be

drawn. Following Lemma 4.1, we see that the distance of v to p is at most ε2/τ .
Now by the fact that x̄ is (ε/2)-dense, we have that there is some point x ∈ x̄ which
is within ε/2 of p. The worst-case picture of this is shown in Fig. 2. From Lemma 4.2,
we see that v ∈ Bε(x) for this x. The proposition is proved. �

These two propositions taken together show that M is a deformation retract of U .
We see that M ⊂ U . Further let F(x, t) : U × [0,1] → U be given by F(x, t) =
tx + (1 − t)π(x). Then F is continuous, F(x,0) = π , and F(x,1) is the identity
map.

Lemma 4.1 Consider any q /∈ Bε(p). Let v ∈ Bε(q)∩T ⊥
p ∩Bτ (p). Then the Euclid-

ean distance from v to p is less than ε2/τ .

Proof We need to consider which configuration of v, q, and p makes the distance
‖v − p‖ as large as possible. It is easiest to reason about this in the plane passing
through these points. It suffices to consider q on the curve as shown in Fig. 1. See the
caption for further explanation. Following the symbols on the figure, we have

A = b sin(θ) +
√

ε2 − b2 cos2(θ),
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Fig. 2 A picture showing the
worst case. The picture is of the
plane containing the points p, v,
and x. The two circles are each
of radius τ and tangent to Tp .
Tp and T ⊥

p are represented by
their intersection with the plane
of interest as dotted horizontal
and solid vertical lines,
respectively

where b = 2τ sin(θ). Therefore, we have

A = 2τ sin2(θ) +
√

ε2 − 4τ 2 sin2(θ) cos2(θ).

From this we see that

dA

dθ
= 2τ sin(2θ) − 4τ 2 sin(2θ) cos(2θ)

2
√

ε2 − τ 2 sin2(2θ)

= 2τ sin(2θ)

(

1 − τ cos(2θ)
√

ε2 − τ 2 sin2(2θ)

)

.

It is easy to check that if ε < τ , then dA/dθ < 0, i.e., A is monotonically decreasing
with θ . Therefore the worst-case situation is when b = 2τ sin(θ) = ε. For this value
of θ , we see that A = ε2/τ . �

The following lemma ensures that there is an x ∈ x̄ ∩ Bε(p) such that v ∈
Bε(x) ∩ T ⊥

p .

Lemma 4.2 Let x̄ be (ε/2)-dense in M. For any p ∈ M, let v ∈ π−1(p). Then for
0 < ε <

√
3/5τ, we have that v ∈ Bε(x) ∩ T ⊥

p for some x ∈ Bε(p) ∩ x̄.
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Proof By the (ε/2)-dense property, we know that there is an x ∈ x̄ such that x ∈
Bε/2(p). Consider the picture in Fig. 2. This represents the most unfavorable position
that such an x might have for the current context. The picture shows the plane passing
through the points x, v, and p. By the same argument of Lemma 4.1 we see that

A =
√

ε2 − b2 cos2(θ) − b sin(θ),

where b = 2τ sin(θ) = ε/2. Putting this value in, we have

A =
√

ε2 − ε2

4

(
1 − ε2

16τ 2

)
− 2τ

ε2

16τ 2
.

Simplifying, we see that A > ε2/τ (needed by Lemma 4.1) if

√

ε2 − ε2

4

(
1 − ε2

16τ 2

)
>

9

8

ε2

τ
.

Squaring both sides, we have

3

4
ε2 + ε4

64τ 2
>

81ε4

64τ 2
.

This simplifies to

ε2

τ 2
<

3

5
.

Therefore, as long as ε <

√
3
5τ , we will have that v ∈ Bε(x) for a suitable x. �

5 Probability Bounds

Following our assumption, that the points xi are drawn at random, we now provide a
bound on how many examples need to be drawn so that the empirically constructed
complex has the same homology as the manifold. We begin with a basic probability
lemma.

Lemma 5.1 Let {Ai} for i = 1, . . . , l be a finite collection of measurable sets and
let μ be a probability measure on

⋃l
i=1 Ai such that for all 1 ≤ i ≤ l, we have

μ(Ai) > α. Let x̄ = {x1, . . . , xn} be a set of n i.i.d. draws according to μ. Then if

n ≥ 1

α

(
log l + log

(
1

δ

))

we are guaranteed that with probability > 1 − δ, the following is true:

∀i, x̄ ∩ Ai �= ∅.
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Proof This follows from a simple application of the union bound. Let Ei be the event
that x̄ ∩ Ai is empty. The probability with which this happens is given by

PEi = (
1 − μ(Ai)

)n ≤ (1 − α)n.

Therefore, by the union bound, we have

P

⋃

i
Ei ≤

l∑

i=1

PEi ≤ l(1 − α)n.

It remains to show that for n ≥ (1/α)(log l + log(1/δ)), we have

l(1 − α)n ≤ δ.

To see this, simply note that f (x) = xex − ex + 1 ≥ 0 for all x ≥ 0. This is seen by
noting that f (0) = 0 and f ′(x) = xex ≥ 0 for all x ≥ 0. Putting x = α in the above
function, we have

(1 − α) ≤ e−α

and therefore it is easily seen that

l(1 − α)n ≤ le−nα ≤ δ

for the appropriate choice of n. �

Applying this to our setting, we consider a cover of the manifold M by balls of
radius ε/4. Let {yi; 1 ≤ i ≤ l} be the centers of such balls that constitute a minimal
cover. Therefore, we can choose Ai = Bε/4(yi) ∩ M. Applying the above lemma,
we immediately have an estimate on the number of examples we need to collect. This
is given by

1

α

(
log l + log

(
1

δ

))
,

where

α = min
i

vol(Ai)

vol(M)

and l is the ε/4 covering number. These may be expressed entirely in terms of natural
invariants of the manifold and we derive these quantities below.

First, we note that the covering number may be bounded in terms of the packing
number, i.e., the maximum number of sets of the form Ni = Br ∩ M (at scale r)
that may be packed into M without overlap. In particular, if C(ε) is the ε-covering
number of M and P(ε) is the ε-packing number, then the following simple lemma
is true.

Lemma 5.2

P(2ε) ≤ C(2ε) ≤ P(ε).
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Proof The fact that P(2ε) ≤ C(2ε) follows from the definition. To see that C(2ε) ≤
P(ε), begin by letting Bε(x1), . . . ,Bε(xN) be a realization of an optimal ε-packing
so that N = P(ε). We claim that B2ε(x1), . . . ,B2ε(xN) form a 2ε-cover. If not, there
exists an x ∈ M such that Bε(x) ∩ Bε(xi) is empty for all i. In that case, one can add
Bε(x) to the collection to increase the packing number by 1 leading to a contradiction.
Since B2ε(x1), . . . ,B2ε(xN) is a valid 2ε-cover, we have C(2ε) ≤ N = P(ε). �

Since l is the ε/4 covering number, we see that l ≤ P(ε/8) from Lemma 5.2. Now
we need to bound the packing number. To do so, we need the following result.

Lemma 5.3 Let p ∈ M. Now consider A = M ∩ Bε(p). Then vol(A) ≥ (cos(θ))k

vol(Bk
ε (p)) where Bk

ε (p) is the k-dimensional ball in Tp centered at p, θ =
arcsin(ε/2τ ). All volumes are k-dimensional volumes where k is the dimension of M.

Proof Consider the tangent space at p given by Tp and let f be the projection of
R

N to Tp . Let Bk
r (p) be the k-dimensional ball of radius r = ε cos(θ) (where θ =

arcsin(ε/2τ )) centered at p lying in Tp . Let fA = {f (q) | q ∈ A} be the image of A

under f . We will show that Bk
r (p) ⊂ fA. Since f is a projection we have

vol(A) ≥ vol(fA) ≥ vol
(
Bk

r (p)
) = (

cosk(θ)
)
vol

(
Bk

ε (p)
)
.

To see that Bk
r (p) ⊂ fA, notice that f is an open map whose derivative is non-singular

for all q ∈ A (by Lemma 5.4). Therefore f is locally invertible and there exists a ball
Bk

s (p) of radius s such that f −1(Bk
s (p)) ⊂ A. One can keep increasing s until it hap-

pens for the first time (say at s = s′) that f −1(Bk
s (p)) �⊂ A. At this stage, there exists

a point q in the closure of A such that either (i) f is singular at q or (ii) q /∈ A. By
Lemma 5.4, we see that (i) is impossible. Therefore, q /∈ A but q is in the closure of
A implying that ‖q −p‖ = ε. We see that s′ = ε cos(φ) where φ is the angle between
the line q̄p (the line joining q to p) and the line ¯f (q)p (the line joining f (q) to p). By
the curvature bound implied by τ , we see that |φ| ≤ |θ | and therefore s′ = ε cos(φ) ≥
ε cos(θ) = r . �

Lemma 5.4 Let p ∈ M, let A = M ∩ Bε(p), and let f be the projection to the
tangent space at p (Tp). Then for all ε < τ/2, the derivative df is non-singular at all
points q ∈ A.

Proof Suppose d f was singular for some q ∈ A. That means that the tangent space
at q(Tq) is oriented so that the vector with origin q and endpoint f (q) lies in Tq .
Since q ∈ Bε(p), we have that d = ‖q − p‖ < τ/2. Putting Propositions 6.2 and 6.3
together, we get that

cos(φ) ≥
√

1 − 2d

τ
> 0,

where φ is the angle between Tp and Tq . From this we see that φ < π/2 leading to a
contradiction. �
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Using Lemma 5.3, we see that a simple bound on the packing number is obtained.
We obtain immediately that

P(ε) ≤ vol(M)

(cosk(θ))vol(Bk
ε (p))

.

Therefore, we have

l ≤ P

(
ε

8

)
≤ vol(M)

(cosk(θ2))vol(Bk
ε
8
(p))

,

where θ2 = arcsin(ε/16τ ). Similarly, we have that

1

α
≤ vol(M)

(cosk(θ1))vol(Bk
ε
4
(p))

,

where θ1 = arcsin(ε/8τ ).

6 Curvature and the Condition Number 1/τ

In this section1 we examine the consequences of the condition number 1/τ for the
submanifold M. As we have mentioned before, τ controls the curvature of the man-
ifold at every point. This fact has been exploited in our earlier proofs. For submani-
folds, one may formally study curvature through the second fundamental form (see,
e.g., [9]). Here we show formally that the norm of the second fundamental form is
bounded by 1/τ . Thus a large τ corresponds to a well-conditioned submanifold that
has low curvature.

Proposition 6.1 states the bound on the norm of the second fundamental form.
Proposition 6.2 states a bound on the maximum angle between tangent spaces at
different points in M. Proposition 6.3 states a bound on the maximum difference
between the geodesic distance and the ambient distance for neighboring points in M.

We begin by recalling the second fundamental form. Fix a point p ∈ M. Following
standard accounts (see, e.g., [9]), there exists a symmetric bilinear form B : Tp ×
Tp → T ⊥

p that maps any two vectors in the tangent space (u,v ∈ Tp) into a vector
B(u, v) in the normal space. Thus for any normal vector (unit norm) η ∈ T ⊥

p , one can
define the following:

Bη(u, v) = 〈
η,B(u, v)

〉 = 〈u,Lηv〉,
where the inner product 〈·, ·〉 is the usual inner product in the tangent space of the
ambient manifold (in our case R

N ). Since Bη: Tp × Tp → R is symmetric and bi-
linear, we see that Lη : Tp → Tp is a linear self-adjoint operator. The norm of the
second fundamental form in direction η is now given by

λη = sup
u∈Tp

〈u,Lηu〉
〈u,u〉 .

1Thanks to Nat Smale for discussions leading to the writing of this section.
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It is seen that λη is the largest eigenvalue of Lη. (In general, the eigenvalues are
also known as the principal curvatures in the normal direction η.) Given this, we can
prove the following proposition that characterizes the relation between the curvature
through the second fundamental form and the condition number of the submanifold.

Proposition 6.1 If M is a submanifold of R
N with condition number 1/τ , then the

norm of the second fundamental form is bounded by 1/τ in all directions. In other
words, for all points p ∈M and for all (unit norm) η ∈ T ⊥

p , we have

λη = sup
u∈Tp

〈u,Lηu〉
〈u,u〉 ≤ 1

τ
.

Proof We prove by contradiction. Suppose the proposition is false. Then there exists
a point p ∈ M, a tangent vector (unit norm) u ∈ Tp , and a normal vector (unit norm)
η such that

〈
η,B(u,u)

〉
>

1

τ
.

Consider a geodesic curve c(t) ∈ M parametrized by arc length such that c(0) = p

and ċ(0) = (dc/dt)(0) = u. For convenience, we place the origin at p so that c(0) =
0 = p. With this (ambient) coordinate system, consider the point given by τη, i.e.,
the point a distance τ from p in the direction η. By our hypothesis on the condition
number of the submanifold, we see that p ∈ M is the closest point on the manifold
to the center of the τ -ball given by τη:

for all t,
∥∥c(t) − τη

∥∥2 ≥ τ 2

from which we get

for all t,
〈
c(t), c(t)

〉 − 2τ
〈
c(t), η

〉 ≥ 0.

Consider the function g(t) = 〈c(t), c(t)〉 − 2τ 〈c(t), η〉. Since c(0) = 0, we see that
g(0) = 0. Further, we have g′(t) = 2〈c(t), ċ(t)〉 − 2τ 〈ċ(t), η〉. Since c(0) = 0 and
〈ċ(0), η〉 = 0, we see that g′(0) = 0. Finally, g′′(t) = 2〈ċ(t), ċ(t)〉 + 2〈c(t), c̈(t)〉 −
2τ 〈c̈(t), η〉. Since c is parametrized by arc length, we have 〈ċ(t), ċ(t)〉 = 1 and
g′′(0) = 2 − 2τ 〈c̈(0), η〉.

Noting that the tangent vector field dc/dt is parallel (see the proof of Proposi-
tion 6.2), we see that B(dc/dt, dc/dt) = c̈(t). Therefore, by assumption, we have
that

〈
η,B(u,u)

〉 =
〈
η,B

(
dc

dt
,
dc

dt

)〉
= 〈

η, c̈(0)
〉
>

1

τ
.

Therefore, g′′(0) < 2 − 2τ(1/τ) = 0. By continuity, there exists a t∗ such that
g(t∗) < 0. However, this leads to a contradiction since g(t) ≥ 0 for all t . �

Since the norm of the second fundamental form is bounded, we see that the man-
ifold cannot curve too much locally. As a result, the angle between tangent spaces at
nearby points cannot be too large. Let p and q be two points in the submanifold M
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with associated tangent spaces Tp and Tq . Since Tp and Tq are affine subspaces of
R

N , one can compare them in the ambient space in a standard way.
Formally, one may transport the tangent spaces to the origin (according to the

standard connection defined in the ambient space R
N ) and then compare vectors in

each of these tangent spaces with each other. Thus for any (unit norm) vectors u ∈ Tp

and v ∈ Tq , we may define the angle θ between them by

cos(θ) = ∣∣〈u′, v′〉∣∣,
where 〈·, ·〉 is the usual inner product in R

N , and u′, v′ are the vectors obtained by
parallel transport (in R

N ) of u and v, respectively, to the origin. Hereafter, we always
take this construction as standard. We drop the prime notation and use 〈u,v〉 to denote
〈u′, v′〉 in what follows.

We can now state the following proposition.

Proposition 6.2 Let M be a submanifold of R
N with condition number 1/τ . Let

p,q ∈ M be two points with geodesic distance given by dM(p, q). Let φ be the angle
between the tangent spaces Tp and Tq defined by cos(φ) = minu∈Tp maxv∈Tq |〈u,v〉|.
Then cos(φ) is greater than 1 − (1/τ)dM(p, q).

Consider two points p,q ∈ M connected by a geodesic curve c(t) ∈ M. Let c(t)

be parametrized (proportional to arc length) so that c(0) = p, and c(1) = q .
Now let vp ∈ Tp be a tangent vector (unit norm) and let v(t) be the parallel trans-

port of this vector along the curve c(t). Thus we have v(0) = vp , v(1) = vq ∈ Tq .
Clearly, 〈v(t), v(t)〉 = 1 for all t since v is parallel.

Notice that
〈
v(0), v(1)

〉 = 〈
v(0), v(0) + w

〉 = 1 + 〈
v(0),w

〉
, (1)

where

w =
∫ 1

0

(
dv

dt

)
dt. (2)

Combining (1) and (2), we see

cos(θ) = ∣∣〈v(0), v(1)
〉∣∣ ≥ 1 − ∣∣〈v(0),w

〉∣∣ ≥ 1 − ‖w‖, (3)

where θ is the angle between the vectors v(0) and v(1). Since vp = v(0) was arbi-
trary, it is easy to check that cos(φ) ≥ cos(θ).

Now
dv

dt
= ∇̄dc/dt v(t),

where ∇̄ denotes the connection in Euclidean space. At the same time

∇dc/dt v(t) = (∇̄dc/dt v(t)
)T

,

where for any r ∈ M and v ∈ T̄r (here T̄r is the tangent space of R
N at r) we de-

note by (v)T the projection of v onto Tr (here Tr is the tangent space to M at r
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viewed as an affine space with origin r). However, since v(t) is parallel, we have
that ∇dc/dt v(t) = 0. Therefore, ∇̄dc/dt v(t) is entirely in the space normal to Tc(t), but
the component of ∇̄dc/dt v(t) in the normal direction is precisely given by the second
fundamental form. Hence, we have that

dv

dt
= B

(
dc

dt
, v(t)

)
,

where B is a symmetric, bilinear form (the second fundamental form). Letting η be a
unit norm vector in the direction dv/dt , i.e., η = (1/‖dv/dt‖)(dv/dt), we see that

∥∥
∥∥
dv

dt

∥∥
∥∥ =

〈
η,

dv

dt

〉 =
〈
η,B

(
dc

dt
, v(t)

)〉
=

〈
dc

dt
,Lnv(t)

〉
,

where Ln is a self-adjoint linear operator. By Proposition 6.1, the norm of Lη is
bounded by 1/τ . Therefore, we have

∥
∥∥∥
dv

dt

∥
∥∥∥ ≤

∥
∥∥∥
dc

dt

∥
∥∥∥‖Lnv‖ ≤

∥
∥∥∥
dc

dt

∥
∥∥∥‖Lη‖,

and

‖w‖ =
∥∥∥∥

∫ 1

0

dv

dt

∥∥∥∥ ≤
∫ 1

0

∥∥∥∥
dv

dt

∥∥∥∥ ≤ ‖Ln‖
∫ 1

0

∥∥∥∥
dc

dt

∥∥∥∥dt ≤ 1

τ
dM(p, q). (4)

Combining (3) and (4), we get cos(φ) ≥ 1 − 1
τ
dM(p, q).

We next show a relationship between the geodesic distance dM(p, q) and the
ambient distance ‖p − q‖RN for any two points p and q on the submanifold M.

Proposition 6.3 Let M be a submanifold of R
N with condition number 1/τ . Let

p and q be two points in M such that ‖p − q‖RN = d . Then for all d ≤ τ/2, the
geodesic distance dM(p, q) is bounded by

dM(p, q) ≤ τ − τ

√

1 − 2d

τ
.

Consider two points p,q ∈ M and let c(t) be a geodesic curve joining them such
that c(0) = p and c(s) = q . Let c be parametrized by arc length so that ‖ċ(t)‖ = 1
for all t and dM(p, q) = s.

Noting that the tangent vector field ċ along the curve is parallel, we have c̈ =
B(ċ, ċ) and from Proposition 6.1 we see that for all t ,

‖c̈‖ = ∥∥B(ċ, ċ)
∥∥ ≤ 1

τ
.

The chord length between p and q is given by ‖c(s) − c(0)‖ and we now relate this
to the geodesic distance dM(p, q). Observe that

c(s) − c(0) =
∫ s

0
ċ(t) dt.
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Now

ċ(t) = ċ(0) +
∫ t

0
c̈(r) dr.

Thus ċ(t) = ċ(0) + u(t) where u(t) = ∫ t

0 c̈(r) dr . We see that

‖u(t)‖ ≤
∫ t

0

∥∥c̈(r) dr
∥∥ ≤ t

τ
.

Therefore,

∥∥c(s)−c(0)
∥∥ =

∥∥∥∥

∫ s

0
ċ(0) dt +

∫ s

0
u(t) dt

∥∥∥∥ ≥ s
∥∥ċ(0)

∥∥−
∫ s

0

∥∥u(t)
∥∥dt ≥ s−

∫ s

0

t

τ
dt.

Therefore we get

∥∥c(s) − c(0)
∥∥ = d ≥ s − s2

2τ
, (5)

where d is the ambient distance between the points p and q while s is the geodesic
distance between these same points. The inequality in (5) is satisfied only if s ≤
τ − τ

√
1 − 2d/τ or s ≥ τ + τ

√
1 − 2d/τ . Since s = 0 when d = 0, we know that

the second inequality does not apply. Therefore, from the first inequality, we have

s ≤ τ − τ

√
1 − 2d

τ
.

7 Handling Noisy Data

In this section we show that if our data are noisy in the sense that they are drawn from
a probability distribution that is concentrated around (rather than on) the manifold,
the homology of the manifold can still be computed from noisy data.

7.1 The Model of Noise

Consider a probability measure μ concentrated around the manifold. We assume that
μ satisfies the following two regularity conditions:

1. The support of μ (suppμ) is contained in the tubular neighborhood of radius r

around M. Thus suppμ ⊂ Tubr (M).
2. For every 0 < s < r , we have that

inf
p∈M

μ(Bs(p)) > ks,

where ks is a constant depending on s and independent of p.

In what follows we assume the data are drawn in an i.i.d. fashion according to a P

that satisfies the above properties.
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7.2 Main Topological Lemma: Sufficient Conditions

We proceed by constructing ε-balls centered on our data points. If these data are
s-dense on the manifold, then the homology of the union of these balls will equal that
of the manifold M even if the data are drawn from a noisy distribution. In order to
see that this might be the case, we provide a simple argument. This argument works
with non-optimal choices of ε and s and later sections enter into the considerations
of choosing better values for these parameters and therefore providing more natural
complexity estimates.

Let x̄ = {x1, . . . , xn} be a set of n points in the tubular neighborhood of radius r

around M. Let U be given by

U =
⋃

x∈x̄

Bε(x).

Proposition 7.1 If x̄ is r-dense in M, then M is a deformation retract of U for all
r < (

√
9 − √

8)τ and

ε ∈
(

(r + τ) − √
r2 + τ 2 − 6τr

2
,
(r + τ) + √

r2 + τ 2 − 6τr

2

)
.

Proof We show that for each p ∈ M, it is the case that π−1(p) contracts to p. Con-
sider a v ∈ π−1(p). Consider the line segment, v̄p, joining v to p. We claim that
this line segment is entirely contained in π−1(p). Clearly, if v ∈ Bε(x) for some
x ∈ x̄ ∩ Bε(p), this is immediate by the convexity of balls in Euclidean space. So we
only need to consider the situation where v ∈ Bε(x) for some x /∈ x̄ ∩ Bε(p). So let
v ∈ Bε(q) ∩ T ⊥

p . Let

u = arg min
x∈v̄p∩ ¯Bε(q)

‖x − p‖.

As long as u ∈ Bε(x) for some x ∈ x̄ ∩ Bε(p), we see that the line segment ūp is
contained in π−1(p) and therefore v contracts to p.

Since we choose r < ε, we are guaranteed that there is an x ∈ x̄ ∩Br(p) ⊂ Bε(p).
The worst-case picture is shown in Fig. 3. Following the symbols of the figure, as
long as

τ − A < ε − r,

we have that v contracts to p. Thus we need

(
τ − (ε − r)

)2
< A2 = (τ − r)2 − ε2. (6)

Expanding the squares, this reduces to

ε2 − ε(τ + r) + 2τr < 0.

This is a quadratic in ε and is satisfied for

ε ∈
(

(r + τ) − √
r2 + τ 2 − 6τr

2
,
(r + τ) + √

r2 + τ 2 − 6τr

2

)
(7)
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Fig. 3 A picture showing the
worst case. As before, we draw
the picture in the plane
connecting points v, p, and q .
Tp and T ⊥

p are intersected with
this plane in the picture and
shown by the dotted horizontal
line and solid vertical line,
respectively. The concentric
circles have the same center and
are of radius τ and τ − r ,
respectively, and follow our
usual construction in earlier
figures and arguments. All
lengths are marked by arrows

provided

r2 − 6τr + τ 2 > 0.

This, in turn, is a quadratic in r and it is easy to check that it is satisfied as long as

r <
(
3 − 2

√
2
)
τ = (√

9 − √
8
)
τ. (8)

Thus we see that for r, ε satisfying (7) and (8), we have that v contracts to p. �

We now need to compute the probability of drawing a random x̄ that is guaranteed
to be r-dense. The following proposition is true.

Proposition 7.2 Let Nr/2 be the (r/2)-covering number of the manifold. Let
p1, . . . , pNr/2 ∈ M be points on the manifold such that Br/2(pi) realize an (r/2)-
cover of the manifold. Let x̄ be generated by i.i.d. draws according to a proba-
bility measure μ that satisfies the regularity properties described earlier. Then if
|x̄| > (1/kr/2)(log(Nr/2) + log(1/δ)), with probability greater than 1 − δ, x̄ will be
r-dense in M.

Proof Take Ai = Br/2(pi) and apply Lemma 5.1. By the conclusion of that lemma,
we have that with high probability each of the Ai ’s is occupied by at least one
x ∈ x̄. Therefore it follows that for any p ∈ M, there is at least one x ∈ x̄ such
that ‖p − x‖ < r . Thus with high probability x̄ is r-dense on the manifold. �

Putting these together, our main conclusion is:
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Theorem 7.1 Let Nr/2 be the (r/2)-covering number of the submanifold M of R
N .

Let x̄ be generated by i.i.d. draws according to a probability measure μ that satis-
fies the regularity properties described earlier. Let U = ⋃

x∈x̄ Bε(x). Then if |x̄| >

(1/kr/2)(log(Nr/2) + log(1/δ)), with probability greater than 1 − δ, M is a defor-
mation retract of U as long as (i) r < (

√
9 − √

8)τ and (ii)

ε ∈
(

(r + τ) − √
r2 + τ 2 − 6τr

2
,
(r + τ) + √

r2 + τ 2 − 6τr

2

)
.

7.3 Main Topological Lemma—General Considerations

In general, we may demand points that are s-dense. Putting ε-balls around these
points we construct U in the usual way. The condition number τ and the noise
bound r are additional parameters that are outside our control and determined ex-
ternally. We now ask what is the feasible space (s, ε, r, τ ) that will guarantee that U

is homotopy equivalent to M?
Following our usual logic, we see that the worst-case situation is given by Fig. 4.

An arbitrary v ∈ Bε(q) ∩ T ⊥
p ∩ Bτ (p) will contract to p if

Bε(q) ∩ Bε(x) ∩ v̄p �= φ.

This is the same as requiring

(τ − w)2 < (τ − r)2 − ε2. (9)

Fig. 4 A picture showing the
worst case. As before, we draw
the picture in the plane
connecting points v, p, and q .
Tp and T ⊥

p are intersected with
this plane in the picture and
shown by the dotted horizontal
line and solid vertical line,
respectively. The concentric
circles have the same center and
are of radius τ and τ − r ,
respectively, and follow our
usual construction in earlier
figures and arguments. All
lengths are marked by arrows
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Additionally, we have the following equations that need to be satisfied (following
Fig. 4):

(τ − r)2 − (τ − β)2 = s2 − β2, (10)

s2 − β2 + (β + w)2 = ε2. (11)

If one eliminates w and β from the above equations, one will get a single inequality
relating s, ε, τ, r that describes for each τ, r the feasible set of possible choices of
s, ε that are sufficient to guarantee homotopy equivalence. Let us see how our earlier
theorems follow from particular choices of this general set of equations.

7.3.1 The Case when s = r

We have already examined the case when the points x̄ are chosen to be r-dense in M.
Putting s = r in (9)–(11), we see the following:

From (10), we have (for s = r)

(τ − r)2 − (τ − β)2 = r2 − β2.

This simplifies to give β = r .
Putting β = r and s = r in (11), we get

r2 − r2 + (r + w)2 = ε2,

giving us w = ε − r .
Finally, putting w = ε − r in inequality (9), we get

(
τ − (ε − r)

)2
< (τ − r)2 − ε2,

which is the same as inequality (6) whose solution was examined in the previous
section.

7.3.2 The Case when r = 0

We can recover our main theorem for the noise-free case by considering the case
r = 0. We proceed to do this now.

The fundamental inequality of (9) gives us (for r = 0)

(τ − w)2 < τ 2 − ε2.

This is the same as requiring

w2 − 2τ + ε2 < 0.

Using standard analysis for quadratic functions, we see that the following condition
is required:

w > τ −
√

τ 2 − ε2. (12)
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We can eliminate w using (10) and (11). Thus, from (10), we get β = s2/2τ and
substituting in (11), we get a quadratic equation in w whose positive solution is given
by w = −s2/2τ + √

s4/4τ 2 + (ε2 − s2). This gives rise to the following condition:

− s2

2τ
+

√
s4

4τ 2
+ (

ε2 − s2
)
> τ −

√
τ 2 − ε2. (13)

Inequality (13) gives the feasible region for s and ε for the homotopy equivalence
of U and M. Let us consider the special case when s = ε/2—a choice we made in
Sect. 3 without any attention to optimality. Putting in this value, after several simpli-
fying steps, one obtains that

ε4 + 51ε2τ 2 − 48τ 4 < 0. (14)

This is satisfied for all 0 < ε2 < 0.9244τ 2 or 0 < ε < 0.96τ .

Remark 1 Note that in our original proof of our main noise free theorem (Theo-
rem 3.1), the deformation retract argument of Sect. 3 passes through the construction
of st(p) and shows contraction of π−1(p) by equating it with st(p). This condition
is stronger than we require. Here we see that the condition Bε(q) ∩ Bε(x) ∩ v̄p �= φ

is sufficient. This latter condition is weaker and therefore gives us a slightly stronger
version of Theorem 3.1 in the sense that it holds for a larger range of ε.

Remark 2 If we assume that τ, r are beyond our control, the sample complexity de-
pends entirely upon s. Therefore if we wish to proceed by drawing the fewest number
of examples, then it is necessary to maximize s subject to the condition of (13).

Remark 3 The total complexity of finding the homology depends both upon s and
ε in a more complicated way. The size of x̄ depends entirely upon s and nothing
else. However, the number of k-tuples to consider in the simplicial complex depends
both upon the size of x̄ as well as ε because ε determines how many balls will have
non-empty intersections. We leave this more nuanced complexity analysis for future
consideration.

References

1. Amenta, N., Bern, M.: Surface reconstruction by Voronoi filtering. Discrete Comput. Geom. 22, 481–
504 (1999)

2. Amenta, N., Choi, S., Dey, T.K., Leekha, N.: A simple algorithm for homeomorphic surface recon-
struction. Int. J. Comput. Geom. Appl. 12, 125–141 (2002)

3. Belkin, M., Niyogi, P.: Semisupervised learning on Riemannian manifolds. Mach. Learn. 56, 209–239
(2004)

4. Bjorner, A.: Topological methods. In: Graham, R., Grotschel, M., Lovasz, L. (eds.) Handbook of
Combinatorics, pp. 1819–1872. North-Holland, Amsterdam (1995)

5. Chazal, F., Lieutier, A.: Weak feature size and persistent homology: computing homology of solids in
R

n from noisy data samples. Preprint
6. Cheng, S.W., Dey, T.K., Ramos, E.A.: Manifold reconstruction from point samples. In: Proceedings

of ACM-SIAM Symposium on Discrete Algorithms, pp. 1018–1027 (2005)



Discrete Comput Geom (2008) 39: 419–441 441

7. Cohen-Steiner, D., Edelsbrunner, H., Harer, J.: Stability of persistence diagrams. In: Proceedings of
the 21st Symposium on Computational Geometry, pp. 263–271 (2005)

8. Dey, T.K., Edelsbrunner, H., Guha, S.: Computational topology. In: Chazelle, B., Goodman, J.E.,
Pollack, R. (eds.) Advances in Discrete and Computational Geometry, Contemporary Mathematics,
vol. 223, pp. 109–143. AMS, Providence (1999)

9. Do Carmo, M.P.: Riemannian Geometry. Birkhäuser, Basel (1992)
10. Donoho, D., Grimes, C.: Hessian eigenmaps: new locally-linear embedding techniques for high-

dimensional data. Preprint. Department of Statistics, Stanford University (2003)
11. Edelsbrunner, H., Mucke, E.P.: Three-dimensional alpha shapes. ACM Trans. Graph. 13, 43–72

(1994)
12. Fischer, K., Gaertner, B., Kutz, M.: Fast smallest-enclosing-ball computation in high dimensions. In:

Proceedings of the 11th Annual European Symposium on Algorithms (ESA), pp. 630–641 (2003)
13. Friedman, J.: Computing Betti numbers via combinatorial laplacians. Algorithmica 21, 331–346

(1998)
14. Kaczynski, T., Mischaikow, K., Mrozek, M.: Computational Homology. Springer, New York (2004)
15. Munkres, J.: Elements of Algebraic Topology. Addison-Wesley, Menlo Park (1984)
16. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science

290, 2323–2326 (2000)
17. Tenenbaum, J.B., De Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimen-

sionality reduction. Science 290, 2319–2323 (2000)
18. Valiant, L.G.: A theory of the learnable. Commun. ACM 27(11), 1134–1142 (1984)
19. Website for smallest enclosing ball algorithm. http://www2.inf.ethz.ch/personal/gaertner/miniball.

html
20. Zomorodian, A., Carlsson, G.: Computing persistent homology. Discrete Comput. Geom. 33, 249–274

(2005)


	Finding the Homology of Submanifolds with High Confidence from Random Samples
	Abstract
	Introduction
	Preliminaries
	An Outline of Our Main Results
	Computing the Homology of U

	The Deformation Retract Argument
	Probability Bounds
	Curvature and the Condition Number 1/tau
	Handling Noisy Data
	The Model of Noise
	Main Topological Lemma: Sufficient Conditions
	Main Topological Lemma-General Considerations
	The Case when s=r
	The Case when r=0


	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


