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Abstract

Compressive Sensing (CS) exploits the surprising fact that the information contained in a
sparse signal can be preserved in a small number of compressive, often random linear mea-
surements of that signal. Strong theoretical guarantees have been established concerning the
embedding of a sparse signal family under a random measurement operator and on the accuracy
to which sparse signals can be recovered from noisy compressive measurements. In this paper,
we address similar questions in the context of a different modeling framework. Instead of sparse
models, we focus on the broad class of manifold models, which can arise in both parametric
and non-parametric signal families. Using tools from the theory of empirical processes, we
improve upon previous results concerning the embedding of low-dimensional manifolds under
random measurement operators. We also establish both deterministic and probabilistic instance-
optimal bounds in ℓ2 for manifold-based signal recovery and parameter estimation from noisy
compressive measurements. In line with analogous results for sparsity-based CS, we conclude
that much stronger bounds are possible in the probabilistic setting. Our work supports the
growing evidence that manifold-based models can be used with high accuracy in compressive
signal processing.

Keywords. Manifolds, Compressive Sensing, dimensionality reduction, random projections, man-
ifold embeddings, signal recovery, parameter estimation.

AMS Subject Classification. 53A07, 57R40, 62H12, 68P30, 94A12, 94A29.

1 Introduction

1.1 Concise signal models

A significant byproduct of the Information Age has been an explosion in the sheer quantity of raw
data demanded from sensing systems. From digital cameras to mobile devices, scientific computing
to medical imaging, and remote surveillance to signals intelligence, the size (or dimension) N of a
typical desired signal continues to increase. Naturally, the dimension N imposes a direct burden on
the various stages of the data processing pipeline, from the data acquisition itself to the subsequent
transmission, storage, and/or analysis.

Fortunately, in many cases, the information contained within a high-dimensional signal actually
obeys some sort of concise, low-dimensional model. Such a signal may be described as having just
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K ≪ N degrees of freedom for some K. Periodic signals bandlimited to a certain frequency are one
example; they live along a fixed K-dimensional linear subspace of RN . Piecewise smooth signals
are an example of sparse signals, which can be written as a succinct linear combination of just
K elements from some basis such as a wavelet dictionary. Still other signals may live along K-
dimensional submanifolds of the ambient signal space R

N ; examples include collections of signals
observed from multiple viewpoints in a camera or sensor network. In general, the conciseness of
these models suggests the possibility for efficient processing and compression of these signals.

1.2 Compressive measurements

Recently, the conciseness of certain signal models has led to the use of compressive measurements
for simplifying the data acquisition process. Rather than designing a sensor to measure a signal
x ∈ R

N , for example, it often suffices to design a sensor that can measure a much shorter vector
y = Φx, where Φ is a linear measurement operator represented as an M × N matrix, and where
typically M ≪ N . As we discuss below in the context of Compressive Sensing (CS), when Φ is
properly designed, the requisite number of measurements M typically scales with the information
level K of the signal, rather than with its ambient dimension N .

Surprisingly, the requirements on the measurement matrix Φ can often be met by choosing
Φ randomly from an acceptable distribution. Most commonly, the entries of Φ are chosen to be
independent and identically distributed (i.i.d.) Gaussian random variables, although the use of
structured random matrices is on the rise [25, 37]. Physical architectures have been proposed for
hardware that will enable the acquisition of signals using compressive measurements [10,22,30,36].
The potential benefits for data acquisition are numerous. These systems can enable simple, low-
cost acquisition of a signal directly in compressed form without requiring knowledge of the signal
structure in advance. Some of the many possible applications include distributed source coding in
sensor networks [23], medical imaging [40], and high-rate analog-to-digital conversion [10,30,56].

1.3 Signal understanding from compressive measurements

Having acquired a signal x in compressed form (in the form of a measurement vector y), there are
many questions that may then be asked of the signal. These include:

Q1. Recovery: What was the original signal x?

Q2. Sketching: Supposing that x was sparse or nearly so, what were the K basis vectors used to
generate x?

Q3. Parameter estimation: Supposing x was generated from a K-dimensional parametric model,
what was the original K-dimensional parameter that generated x?

Given only the measurements y (possibly corrupted by noise), solving any of the above problems
requires exploiting the concise, K-dimensional structure inherent in the signal.1 CS addresses
questions Q1 and Q2 under the assumption that the signal x is K-sparse (or approximately so) in
some basis or dictionary; in Section 2.1 we outline some key theoretical bounds from CS regarding
the accuracy to which these questions may be answered.

1Other problems, such as finding the nearest neighbor to x in a large database of signals [34], can also be solved
using compressive measurements and do not require assumptions about the concise structure in x.
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Figure 1: (a) The articulated signal fθ(t) = g(t − θ) is defined via shifts of a primitive function g, where
g is a Gaussian pulse. Each signal is sampled at N points, and as θ changes, the resulting signals trace out
a 1-D manifold in RN . (b) Projection of the manifold from RN into R3 via a random 3 × N matrix; the
color/shading represents different values of θ ∈ [0, 1].

1.4 Manifold models for signal understanding

In this paper, we will address these questions in the context of a different modeling framework for
concise signal structure. Instead of sparse models, we focus on the broad class of manifold models,
which arise both in settings where a K-dimensional parameter θ controls the generation of the
signal and also in non-parametric settings.

As a very simple illustration, consider the articulated signal in Figure 1(a). We let g(t) be a
fixed continuous-time Gaussian pulse centered at t = 0 and consider a shifted version of g denoted
as the parametric signal fθ(t) := g(t − θ) with t, θ ∈ [0, 1]. We then suppose the discrete-time
signal x = xθ ∈ R

N arises by sampling the continuous-time signal fθ(t) uniformly in time, i.e.,
xθ(n) = fθ(n/N) for n = 1, 2, . . . , N . As the parameter θ changes, the signals xθ trace out a
continuous one-dimensional (1-D) curve M = {xθ : θ ∈ [0, 1]} ⊂ R

N . The conciseness of our
model (in contrast with the potentially high dimension N of the signal space) is reflected in the
low dimension of the path M.

In the real world, manifold models may arise in a variety of settings. AK-dimensional parameter
θ could reflect uncertainty about the 1-D timing of the arrival of a signal (as in Figure 1(a); see
also [24]), the 2-D orientation and position of an edge in an image, the 2-D translation of an
image under study [45], the multiple degrees of freedom in positioning a camera or sensor to
measure a scene [15], the physical degrees of freedom in an articulated robotic or sensing system,
or combinations of the above. Manifolds have also been proposed as approximate models for signal
databases such as collections of images of human faces or of handwritten digits [4, 33,57].

Consequently, the potential applications of manifold models are numerous in signal processing.
In some applications, the signal x itself may be the object of interest, and the concise manifold
model may facilitate the acquisition or compression of that signal. Alternatively, in parametric
settings one may be interested in using a signal x = xθ to infer the parameter θ that generated
that signal. In an application known as manifold learning, one may be presented with a collection
of data {xθ1 , xθ2 , . . . , xθn} sampled from a parametric manifold and wish to discover the underlying
parameterization that generated that manifold. Multiple manifolds can also be considered simulta-
neously, for example in problems that require recognizing an object from one of n possible classes,
where the viewpoint of the object is uncertain during the image capture process. In this case, we
may wish to know which of n manifolds is closest to the observed image x.

While any of these questions may be answered with full knowledge of the high-dimensional signal
x ∈ R

N , there is growing theoretical and experimental support that they can also be answered from
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only compressive measurements y = Φx. In past work [3], we have shown that given a sufficient
numberM of random measurements, one can ensure with high probability that a manifoldM ⊂ R

N

has a stable embedding in the measurement space R
M under the operator Φ, such that pairwise

Euclidean and geodesic distances are approximately preserved on its image ΦM. We will discuss
this in more detail later in Section 3, but a key aspect is that the number of requisite measurements
M is linearly proportional to the information level of the signal, i.e., the dimension K of the
manifold. In that work, the number of measurements was also logarithmically dependent on the
ambient dimension N , although this dependence was later removed in the asymptotic case in [12]
using a different set of assumptions on the manifold.

The first contribution of this paper—presented in Section 3—is that we provide an improved
lower bound on the number of random measurements to guarantee a stable embedding of a signal
manifold. In particular, we make the same assumptions on the manifold as in our past work [3]
but provide a measurement bound that is independent of the ambient dimension N . Our bound is
non-asymptotic, and we provide explicit constants.

In order to do this, we use tools from the theory of empirical processes (namely, the idea of
“generic chaining” [55]), which have recently been used to develop state-of-the-art RIP results
for structured measurement matrices in CS [24, 37, 47, 49–52, 56]. More elementary arguments
(e.g., involving simple concentration of measure inequalities) have previously been used in CS
(see, e.g., [2]) for deriving RIP bounds for unstructured i.i.d. measurement matrices, and we also
used such arguments in [3] to derive a manifold embedding guarantee. However, it appears that
the stronger machinery of the empirical process approach is necessary to derive stronger bounds,
both in RIP problems and in manifold embedding problems. A chaining argument was employed
in [12], and in this paper we present a chaining argument that is suitable for studying the manifold
embedding problem under our set of assumptions on the manifold. Because this chaining framework
is fairly technical, we develop it entirely in the appendices so that the body of the paper will be as
self-contained and expository as possible for someone seeking merely to understand the substance
and context of our results.

As a very simple illustration of the embedding phenomenon, Figure 1(b) presents an experi-
ment where just M = 3 compressive measurements are acquired from each point xθ described in
Figure 1(a). We let N = 1024 and construct a randomly generated 3×N matrix Φ whose entries
are i.i.d. Gaussian random variables with zero mean and variance of 1/3. Each point xθ from the
original manifold M ⊂ R

1024 maps to a unique point Φxθ in R
3; the manifold embeds in the low-

dimensional measurement space. Given any y = Φxθ′ for θ
′ unknown, then, it is possible to infer

the value θ′ using only knowledge of the parametric model for M and the measurement operator
Φ. Moreover, as the number M of compressive measurements increases, the manifold embedding
becomes much more stable and remains highly self-avoiding.

Indeed, there is strong evidence that, as a consequence of this phenomenon, questions such as
Q1 (signal recovery) and Q3 (parameter estimation) can be accurately solved using only compres-
sive measurements of a signal x, and that these procedures are robust to noise and to deviations of
the signal x away from the manifold M [14, 53,60]. Additional theoretical and empirical justifica-
tion has followed for the manifold learning [32] and multiclass recognition problems [14] described
above. Consequently, many of the advantages of compressive measurements that are beneficial
in sparsity-based CS (low-cost sensor design, reduced transmission requirements, reduced storage
requirements, lack of need for advance knowledge of signal structure, simplified computation in the
low-dimensional space RM , etc.) may also be enjoyed in settings where manifold models capture the
concise signal structure. Moreover, the use of a manifold model can often capture the structure of a
signal in many fewer degrees of freedom K than would be required in any sparse representation, and
thus the measurement rate M can be greatly reduced compared to sparsity-based CS approaches.
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In this paper, we will focus on questions Q1 (signal recovery) and Q3 (parameter estimation).
The second contribution of this paper—presented in Section 4—is that we establish theoretical bounds
on the accuracy to which these questions may be answered. To do this, we rely largely on the new
analytical chaining framework described above. We consider both deterministic and probabilistic
instance-optimal bounds, and we see strong similarities to analogous results that have been derived
for sparsity-based CS. As with sparsity-based CS, we show for manifold-based CS that for any fixed
Φ, uniform deterministic ℓ2 recovery bounds for recovery of all x are necessarily poor. We then
show that, as with sparsity-based CS, providing for any x a probabilistic bound that holds over
most Φ is possible with the desired accuracy. We consider both noise-free and noisy measurement
settings and compare our bounds with sparsity-based CS.

We feel that a third contribution of this paper comes in the form of the analytical tools we use
to study the above problems. Our chaining argument allows us to study not only the embedding
problem (as in [12]) but also Q1 and Q3. Moreover, in Appendix A, which we call the “Toolbox,”
we present a collection of implications of our assumption that the manifold has bounded condition
number (see Section 2.2 for definition). This elementary property, also known as the reach of a
manifold in the geometric measure theory literature [26,43], has become somewhat popular in the
analysis of manifold models for signal processing (e.g., see [3, 14, 15, 35, 43, 58, 62]). The seminal
paper [43] contains a collection of implications of bounded condition number that have been used
directly or indirectly in numerous works, including [3, 14, 15, 35, 58, 62]. We restate some of these
implications in the Toolbox. Unfortunately, after very careful study we were unable to confirm
for ourselves some of the original proofs appearing in [43]. Therefore, some of the statements and
proofs in the Toolbox below differ slightly from their original counterparts in [43]. We hope that
these results will provide a useful reference for the continued study of manifolds with bounded
condition number.

1.5 Paper organization

Section 2 provides the necessary background on sparsity-based CS and on manifold models to
place our work in the proper context. In Section 3, we state our improved bound regarding stable
embeddings of manifolds. In Section 4, we then formalize our criteria for answering questions Q1
and Q3 in the context of manifold models. We first confront the task of deriving deterministic
instance-optimal bounds in ℓ2 and then consider probabilistic instance-optimal bounds in ℓ2. We
conclude in Section 5 with a final discussion. The Toolbox (Appendix A) establishes a collection
of useful results in differential geometry that are frequently used throughout our technical proofs,
which appear in the remaining appendices.

2 Background

2.1 Sparsity-Based Compressive Sensing

2.1.1 Sparse models

The concise modeling framework used in CS is sparsity. Consider a signal x ∈ R
N and suppose

the N × N matrix Ψ = [ψ1 ψ2 · · · ψN ] forms an orthonormal basis for R
N . We say x is K-

sparse in the basis Ψ if for α ∈ R
N we can write x = Ψα, where ‖α‖0 = K < N . (The ℓ0-norm

notation counts the number of nonzeros of the entries of α.) In a sparse representation, the actual
information content of a signal is contained exclusively in the K < N positions and values of its
nonzero coefficients.
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For those signals that are approximately sparse, we may measure their proximity to sparse
signals as follows. We define αK ∈ R

N to be the vector containing only the largest K entries of
α in magnitude, with the remaining entries set to zero. Similarly, we let xK = ΨαK . It is then
common to measure the proximity to sparseness using either ‖α−αK‖1 or ‖α− αK‖ (the latter of
which equals ‖x− xK‖ because Ψ is orthonormal). Here and elsewhere in this paper, ‖ · ‖ stands
for the ℓ2 norm.

2.1.2 Stable embeddings of sparse signal families

CS uses the concept of sparsity to simplify the data acquisition process. Rather than designing
a sensor to measure a signal x ∈ R

N , for example, it often suffices to design a sensor that can
measure a much shorter vector y = Φx, where Φ is a linear measurement operator represented as
an M ×N matrix, and typically M ≪ N .

The measurement matrix Φ must have certain properties in order to be suitable for CS. One
desirable property (which leads to the theoretical results we mention in Section 2.1.3) is known as
the Restricted Isometry Property (RIP) [6–8]. We say a matrix Φ meets the RIP of order K with
respect to the basis Ψ if for some δK > 0,

(1− δK) ‖α‖ ≤ ‖ΦΨα‖ ≤ (1 + δK) ‖α‖

holds for all α ∈ R
N with ‖α‖0 ≤ K. Intuitively, the RIP can be viewed as guaranteeing a stable

embedding of the collection of K-sparse signals within the measurement space R
M . In particular,

supposing the RIP of order 2K is satisfied with respect to the basis Ψ, then for all pairs of K-sparse
signals x1, x2 ∈ R

N , we have

(1− δ2K) ‖x1 − x2‖ ≤ ‖Φx1 − Φx2‖ ≤ (1 + δ2K) ‖x1 − x2‖ . (1)

Although deterministic constructions of matrices meeting the RIP are still a work in progress,
it is known that the RIP can often be met by choosing Φ randomly from an acceptable distribution.
For example, let Ψ be a fixed orthonormal basis for RN and suppose that

M ≥ C1K log(N/K) (2)

for some constant C1. Then supposing that the entries of the M ×N matrix Φ are drawn as i.i.d.
Gaussian random variables with mean 0 and variance 1

M , it follows that with high probability Φ
meets the RIP of order K with respect to the basis Ψ. Two aspects of this construction deserve
special notice: first, the number M of measurements required is linearly proportional to the infor-
mation level K (and logarithmic in the ambient dimension N), and second, neither the sparse basis
Ψ nor the locations of the nonzero entries of α need be known when designing the measurement
operator Φ. Other random distributions for Φ may also be used, all requiring approximately the
same number of measurements [25,37,48].

2.1.3 Sparsity-based signal recovery and sketching

Although the sparse structure of a signal x need not be known when collecting measurements
y = Φx, a hallmark of CS is the use of the sparse model in order to facilitate understanding from
the compressive measurements. A variety of algorithms have been proposed to answer Q1 (signal
recovery), where we seek to solve the apparently undercomplete set of M linear equations y = Φx
for N unknowns. The canonical method [5,8,18] is known as ℓ1-minimization and is formulated as
follows: first solve

α̂ = argminα′∈RN ‖α′‖1 subject to y = ΦΨα′, (3)
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and then set x̂ = Ψα̂. This recovery program can also be extended to account for measurement
noise. The following bound is known.

Theorem 1. [9] Suppose that Φ satisfies the RIP of order 2K with respect to Ψ and with constant
δ2K <

√
2− 1. Let x ∈ R

N , and suppose that y = Φx+ n where ‖n‖ ≤ ǫ. Then let

α̂ = arg min
α′∈RN

‖α′‖1 subject to
∥∥y − ΦΨα′

∥∥ ≤ ǫ,

and set x̂ = Ψα̂. Then

‖x− x̂‖ = ‖α− α̂‖ ≤ C1K
− 1

2 ‖α− αK‖1 + C2ǫ. (4)

for constants C1 and C2.

This result is not unique to ℓ1 minimization; similar bounds have been established for signal
recovery using greedy iterative algorithms OMP [16], ROMP [42], and CoSAMP [41]. Bounds
of this type are extremely encouraging for signal processing. From only M measurements, it is
possible to recover x with quality that is comparable to its proximity to the nearest K-sparse
signal, and if x itself is K-sparse and there is no measurement noise, then x can be recovered
exactly. Moreover, despite the apparent ill-conditioning of the inverse problem, the measurement
noise is not dramatically amplified in the recovery process.

These bounds are known as deterministic, instance-optimal bounds because they hold deter-
ministically for any Φ that meets the RIP, and because for a given Φ they give a guarantee for
recovery of any x ∈ R

N based on its proximity to the concise model.
The use of ℓ1 as a measure for proximity to the concise model (on the right hand side of (4))

arises due to the difficulty in establishing ℓ2 bounds on the right hand side. Indeed, it is known that
deterministic ℓ2 instance-optimal bounds cannot exist that are comparable to (4). In particular,
for any Φ, to ensure that ‖x− x̂‖ ≤ C3 ‖x− xK‖ for all x, it is known [13] that this requires that
M ≥ C4N regardless of K.

However, it is possible to obtain an instance-optimal ℓ2 bound for sparse signal recovery in the
noise-free setting by changing from a deterministic formulation to a probabilistic one [13, 17]. In
particular, by considering any given x ∈ R

N , it is possible to show that for most random Φ, letting
the measurements y = Φx, and recovering x̂ via ℓ1-minimization (3), it holds that

‖x− x̂‖ ≤ C5 ‖x− xK‖ . (5)

While the proof of this statement [17] does not involve the RIP directly, it holds for many of
the same random distributions that work for RIP matrices, and it requires the same number of
measurements (2) up to a constant.

Similar bounds hold for the closely related problem of Q2 (sketching), where the goal is to
use the compressive measurement vector y to identify and report only approximately K expansion
coefficients that best describe the original signal, i.e., a sparse approximation to αK . In the case
where Ψ = I, an efficient randomized measurement process coupled with a customized recovery al-
gorithm [29] provides signal sketches that meet a deterministic mixed-norm ℓ2/ℓ1 instance-optimal
bound analogous to (4) in the noise-free setting. A desirable aspect of this construction is that the
computational complexity scales with only log(N) (and is polynomial in K); this is possible because
only approximately K pieces of information must be computed to describe the signal. Though at
a higher computational cost, the aforementioned greedy algorithms (such as CoSaMP) for signal
recovery can also be interpreted as sketching techniques in that they produce explicit sparse ap-
proximations to αK . Finally, for signals that are sparse in the Fourier domain (Ψ consists of the
DFT vectors), probabilistic ℓ2/ℓ2 instance-optimal bounds have been established for a specialized
sketching algorithm [27,28] that are analogous to (5).
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2.2 Manifold models and properties

As we have discussed in Section 1.4, there are many possible modeling frameworks for capturing
concise signal structure. Among these possibilities are the broad class of manifold models.

Manifold models arise, for example, in settings where the signals of interest vary continuously as
a function of some K-dimensional parameter. Suppose, for instance, that there exists some param-
eter θ that controls the generation of the signal. We let xθ ∈ R

N denote the signal corresponding to
the parameter θ, and we let Θ denote the K-dimensional parameter space from which θ is drawn.
In general, Θ itself may be a K-dimensional manifold and need not be embedded in an ambient
Euclidean space. For example, supposing θ describes the 1-D rotation parameter in a top-down
satellite image, we have Θ = S

1.
Under certain conditions on the parameterization θ 7→ xθ, it follows that M := {xθ : θ ∈

Θ} forms a K-dimensional submanifold of RN . An appropriate visualization is that the set M
forms a nonlinear K-dimensional “surface” within the high-dimensional ambient signal space R

N .
Depending on the circumstances, we may measure the distance between points two points xθ1 and
xθ2 on the manifold M using either the ambient Euclidean distance ‖xθ1 − xθ2‖ or the geodesic
distance along the manifold, which we denote as dM(xθ1 , xθ2). In the case where the geodesic
distance along M equals the native distance in parameter space, i.e., when

dM(xθ1 , xθ2) = dΘ(θ1, θ2), (6)

we say that M is isometric to Θ. The definition of the distance dΘ(θ1, θ2) depends on the appro-
priate metric for the parameter space Θ; supposing Θ is a convex subset of Euclidean space, then
we can let dΘ(θ1, θ2) = ‖θ1 − θ2‖.

While our discussion above concentrates on the case of manifoldsM generated by underlying pa-
rameterizations, we stress that manifolds have also been proposed as approximate low-dimensional
models within R

N for nonparametric signal classes such as images of human faces or handwritten
digits [4, 33,57]. These signal families may also be considered.

The results we present in this paper will make reference to certain characteristic properties of
the manifold under study. These terms are originally defined in [3, 43] and are repeated here for
completeness. First, our results will depend on a measure of regularity for the manifold. For this
purpose, we adopt the notion of the condition number of a manifold, which is also known as the
reach of a manifold in the geometric measure theory literature [26,43].

Definition 1. [43] Let M be a compact Riemannian submanifold of RN . The condition number
is defined as 1/τ , where τ is the largest number having the following property: The open normal
bundle about M of radius r is embedded in R

N for all r < τ .

The condition number 1/τ controls both local properties and global properties of the manifold.
Its role is summarized in two key relationships (see the Toolbox and [43] for more detail). First, the
the curvature of any unit-speed geodesic path on M is bounded by 1/τ . Second, at long geodesic
distances, the condition number controls how close the manifold may curve back upon itself. For
example, supposing x1, x2 ∈ M with dM(x1, x2) > τ , it must hold that ‖x1 − x2‖ > τ/2.

We conclude with a brief but concrete example to illustrate specific values for these quantities.
Let N > 0, κ > 0, Θ = R mod 2π, and suppose xθ ∈ R

N is given by

xθ = [κ cos(θ); κ sin(θ); 0; 0; · · · 0]T .
In this case, M = {xθ : θ ∈ Θ} forms a circle of radius κ in the x(1), x(2) plane. The man-
ifold dimension K = 1, and the condition number 1/τ = 1/κ. We also refer in our results to
the K-dimensional volume of the M, denoted by VM, which in this example corresponds to the
circumference 2πκ of the circle.
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3 Stable embeddings of manifolds

In cases where the signal class of interest M forms a low-dimensional submanifold of RN , we have
theoretical justification that the information necessary to distinguish and recover signals x ∈ M can
be well-preserved under a sufficient number of compressive measurements y = Φx. In particular, it
was first shown in [3] that an RIP-like property holds for families of manifold-modeled signals. The
result stated that, under a random projection onto R

M , pairwise distances between the points on
M are approximately preserved with high probability, provided that M , number of measurements,
is large enough. Mainly, M should scale linearly with the dimension K of M and logarithmically
with the ambient dimension N . The dependence on N was later removed in [12], which used a
different set of assumptions on the manifold to help derive a sharper lower bound on the requisite
number of random measurements. Unfortunately, the results given in [12] hold only as the isometry
constant ǫ→ 0 in (1), with asymptotic threshold and constants fixed but unspecified. The manifold
properties assumed in [12] are arguably more complicated and less commonly used than the manifold
volume and condition number which are at the heart of our results. (On the other hand, there do
exist manifolds where the properties assumed in [12] clearly provide a stronger analysis.)

In this section, we establish an improved lower bound on M to ensure a stable embedding of a
manifold. We make the same assumptions on the manifold as in our past work [3] but provide a
measurement bound that is independent of the ambient dimension N . Our bound holds for every
ǫ ≤ 1/3 and we provide explicit constants. The proof, presented in Appendix B, draws from the
ideas in generic chaining [55], which have been recently used to develop state-of-the-art RIP results
for structured measurement matrices in CS [24,37,47,49–52,56]. As in [12], we control the failure
probability of the manifold embedding by forming a so-called chain on a sequence of increasingly
finer covers on the index set of the random process [39, 55]. Aside from delivering an improved
bound (and also allowing us to study Q1 and Q3 in Section 4), we hope that our exposition in this
paper will encourage yet more researchers in the field of CS to use this powerful technique.

Theorem 2. Let M be a compact K-dimensional Riemannian submanifold of RN having condition
number 1/τ and volume VM. Conveniently assume that2

VM
τK

≥
(

21

2
√
K

)K

. (7)

Fix 0 < ǫ ≤ 1/3 and 0 < ρ < 1. Let Φ be a random M ×N matrix populated with i.i.d. zero-mean
Gaussian random variables with variance of 1/M with

M ≥ 18ǫ−2 max

(
24K + 2K log

(√
K

τǫ2

)
+ log(2V 2

M), log

(
8

ρ

))
. (8)

Then with probability at least 1− ρ the following statement holds: For every pair of points x1, x2 ∈
M,

(1− ǫ) ‖x1 − x2‖ ≤ ‖Φx1 − Φx2‖ ≤ (1 + ǫ) ‖x1 − x2‖ . (9)

The proof of the above result can be found in Appendix B. In essence, manifolds with higher
volume or with greater curvature have more complexity, which leads to an increased number of
measurements (8). By comparing (1) with (9), we see a strong analogy to the RIP of order 2K.

2Theorem 2 still holds, with worse constants, after relaxing this assumption.
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This theorem establishes that, like the class ofK-sparse signals, a collection of signals described by a
K-dimensional manifold M ⊂ R

N can have a stable embedding in an M -dimensional measurement
space. Moreover, the requisite number of random measurements M is once again almost linearly
proportional to the information level (or number of degrees of freedom) K. It is important to note
that in (8), the combined dependence on the manifold dimension K, condition number 1/τ , and
volume VM cannot, generally speaking, be improved. In particular, according to (64), when M is
a K-dimensional unit ball in R

N , VM = VBK
scales like K−K/2 and the lower bound on M in (8)

scales with K (since the logK terms cancel), which is clearly optimal.
As was the case with the RIP for sparse signal processing, this sort of result has a number

of possible implications for manifold-based signal processing. First, individual signals obeying a
manifold model can be acquired and stored efficiently using compressive measurements, and it is
unnecessary to employ the manifold model itself as part of the compression process. Rather, the
model needs only to be used for signal understanding from the compressive measurements. Second,
problems such as Q1 (signal recovery) and Q3 (parameter estimation) can be addressed, as we
discuss in Section 4. Aside from this theoretical analysis, we have reported promising experimen-
tal recovery/estimation results with various classes of parametric signals [14, 60]. Also, taking a
different analytical perspective (a statistical one, assuming additive white Gaussian measurement
noise), estimation-theoretic quantities such as the Cramer-Rao Lower Bound (for a specialized set
of parametric problems) have been shown to be preserved in the compressive measurement space
as a consequence of the stable embedding [46]. Third, the stable embedding results can also be ex-
tended to the case of multiple manifolds that are simultaneously embedded [14]; this allows both the
classification of an observed object to one of several possible models (different manifolds) and the
estimation of a parameter within that class (position on a manifold). Fourth, collections of signals
obeying a manifold model (such as multiple images of a scene photographed from different perspec-
tives) can be acquired using compressive measurements, and the resulting manifold structure will be
preserved among the suite of measurement vectors in R

M [15,45]. Fifth, we have provided empirical
and theoretical support for the use of manifold learning in the reduced-dimensional space [32]; this
can dramatically simplify the computational and storage demands on a system for processing large
databases of signals.

4 Manifold-based signal recovery and parameter estimation

In this section, we establish theoretical bounds on the accuracy to which problems Q1 (signal
recovery) and Q3 (parameter estimation) can be solved under a manifold model. To be specific, let
us consider a length-N signal x that is not necessarily K-sparse, but rather that we assume lives
on or near some known K-dimensional manifold M ⊂ R

N . From a collection of measurements

y = Φx+ n,

where Φ is a random M × N matrix and n ∈ R
M is an additive noise vector, we would like to

recover either x or a parameter θ that generates x.
For the signal recovery problem, we will consider the following as a method for estimating x:

x̂ = arg min
x′∈M

∥∥y − Φx′
∥∥ , (10)

supposing here and elsewhere that the minimum is uniquely defined. We also let x∗ be the optimal
“nearest neighbor” to x on M, i.e.,

x∗ = arg min
x′∈M

∥∥x− x′
∥∥ . (11)
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To consider signal recovery successful, we would like to guarantee that ‖x− x̂‖ is not much larger
than ‖x− x∗‖.

For the parameter estimation problem, where we presume x ≈ xθ for some θ ∈ Θ, we propose
a similar method for estimating θ from the compressive measurements:

θ̂ = arg min
θ′∈Θ

‖y − Φxθ′‖ . (12)

Let θ∗ be the “optimal estimate” that could be obtained using the full data x ∈ R
N , i.e.,

θ∗ = arg min
θ′∈Θ

‖x− xθ′‖ . (13)

(If x = xθ exactly for some θ, then θ∗ = θ; otherwise this formulation allows us to consider signals
x that are not precisely on the manifold M in R

N . This generalization has practical relevance;
a local image block, for example, may only approximately resemble a straight edge, which has a
simple parameterization.) To consider parameter estimation successful, we would like to guarantee
that dΘ(θ̂, θ

∗) is small.
As we will see, bounds pertaining to accurate signal recovery can often be extended to imply

accurate parameter estimation as well. However, the relationships between distance dΘ in parameter
space and distances dM and ‖ · ‖ in the signal space can vary depending on the parametric signal
model under study. Thus, for the parameter estimation problem, our ability to provide generic
bounds on dΘ(θ̂, θ

∗) will be restricted. In this paper we focus primarily on the signal recovery
problem and provide preliminary results for the parameter estimation problem that pertain most
strongly to the case of isometric parameterizations.

In this paper, we do not confront in depth the question of how a recovery program such as (10)
can be efficiently solved. Some efforts in this direction have recently appeared in [31,35,53]. In [53],
the authors guarantee the success of a gradient-projection algorithm for recovering a signal that
lives exactly on the manifold from noisy compressive measurements. The keys to the success of this
method are a stable embedding of the manifold (as is guaranteed by [3] or our Theorem 2) and the
knowledge of the projection operator onto the manifold within R

N . In [35], the authors construct
a geometric multi-resolution approximation of a manifold using a collection of affine subspaces.
A major contribution of that work is a recovery algorithm that works by assigning a measured
signal to the closest projected affine subspace in the compressed domain. Two recovery results
are presented. In the first of these, the number of measurements is independent of the ambient
dimension and the recovery error holds for any given signal in the ambient space. All of this is
analogous to our Theorem 4 (a probabilistic instance-optimal bound in ℓ2), but the recovery is
guaranteed for a particular algorithm. Unlike that result, however, our Theorem 4 includes explicit
constants, allows for the consideration of measurement noise, and falls nearly for free out of our
novel analytical framework based on chaining. A second result appearing in [35] provides a special
type of deterministic instance-optimal bound for signal recovery and involves embedding arguments
that extend those in [3]. It would be interesting to see if our improved embedding guarantees
in the present paper could now be used to remove the dependence on the ambient dimension
appearing in that result. In [11], the authors provide a Bayesian treatment of the signal recovery
problem using a mixture of (low-rank) Gaussians for approximating the manifold. Furthermore,
some discussion of signal recovery is provided in [3], with application-specific examples provided
in [14, 60]. Unfortunately, it is difficult to propose a single general-purpose algorithm for solving
(10) in R

M , as even the problem (11) in R
N may be difficult to solve depending on certain nuances

(such as topology) of the individual manifold. Additional complications arise when the manifold
M is non-differentiable, as may happen when the signals x represent 2-D images. However, just as

11



a multiscale regularization can be incorporated into Newton’s method for solving (11) (see [61]),
an analogous regularization can be incorporated into a compressive measurement operator Φ to
facilitate Newton’s method for solving (10) (see [19,21,60]). For manifolds that lack differentiability,
additional care must be taken when applying results such as Theorem 2. We therefore expect that
the research on signal recovery and approximation based on low-dimensional manifold models will
witness even more growth in the future.

It is also crucial to study the theoretical limits and guarantees in this problem; in what follows,
we will consider both deterministic and probabilistic instance-optimal bounds for signal recovery
and parameter estimation, and we will draw comparisons to the sparsity-based CS results of Sec-
tion 2.1.3. Our bounds are formulated in terms of generic properties of the manifold (as mentioned
in Section 2.2), which will vary from signal model to signal model. In some cases, calculating
these may be possible, whereas in other cases it may not. Nonetheless, we feel the results in this
paper highlight the relative importance of these properties in determining the requisite number of
measurements.

4.1 A deterministic instance-optimal bound in ℓ2

We begin by seeking an instance-optimal bound. That is, for a measurement matrix Φ that meets
(9) for all x1, x2 ∈ M, we seek an upper bound for the relative reconstruction error

‖x− x̂‖
‖x− x∗‖

that holds uniformly for all x ∈ R
N . In this section we consider only the signal recovery problem;

however, similar bounds would apply to parameter estimation. We have the following result for the
noise-free case, the proof of which can be found in Appendix H.

Theorem 3. Fix 0 < ǫ ≤ 1/3 and 0 < ρ < 1. Let M be as described in Theorem 2. Assume that
Φ satisfies (9) for all pairs of points x1, x2 ∈ M. Take x ∈ R

N , let y = Φx, and let the recovered
estimate x̂ and the optimal estimate x∗ be as defined in (10) and (11). Then the following holds:

‖x− x̂‖
‖x− x∗‖ ≤ 1

1− ǫ
(2σM (Φ) + 1) (14)

where σM (Φ) is the largest singular value of Φ.

In particular, it is interesting to consider the case where Φ is a random Gaussian matrix as
described in Theorem 2. It is well-known, e.g., [59, Corollary 5.35], that the nonzero singular
values of Φ satisfy the following:

P

{
σM (Φ) >

√
N

M
+ 1 + t

}
≤ e−t2M/2, (15)

P

{
σm(Φ) <

√
N

M
− 1− t

}
≤ e−t2M/2, (16)

for t > 0. Here, σM (Φ) and σm(Φ) are the largest and smallest (nonzero) singular values of Φ,
respectively. Suppose that M satisfies (8) so that the promises of Theorem 2 hold except for a
probability of at most ρ. Set t = 1 in (15). Now since e−M/2 ≤ ρ, we have that

σM (Φ) ≤
√
N

M
+ 2,
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except with a probability of at most ρ. In combination with Theorem 3, it finally follows that,
except with a probability of at most 2ρ, Φ satisfies (9) for every pair of points on the manifold and
that

‖x− x̂‖
‖x− x∗‖ ≤ 1

1− ǫ

(
2

√
N

M
+ 5

)
, (17)

for every x ∈ R
N . Here, x̂ and x∗ are as defined in (10) and (11). As M

N → 0, the bound on the

right hand side of (17) grows as 2
1−ǫ

√
N
M . Unfortunately, this is not desirable for signal recovery.

Supposing, for example, that we wish to ensure ‖x− x̂‖ ≤ C6 ‖x− x∗‖ for all x ∈ R
N , then using

the bound (17) we would require that M ≥ C7N regardless of the dimension K of the manifold.
The weakness of this bound is a geometric necessity; indeed, the bound itself is quite tight in

general, as the following simple example illustrates. The proof can be found in Appendix I.

Proposition 1. Fix 0 < ǫ ≤ 1/3. Let M denote the line segment in R
N joining the origin and

e1 := [1, 0, 0, . . . , 0]T . Suppose that Φ satisfies (9) for all x1, x2 ∈ M and that σm(Φ) ≥ 8/3. Then,
there exists a point x ∈ R

N such that

‖x− x̂‖
‖x− x∗‖ ≥ 1

2(1 + ǫ)
σm(Φ),

where x̂ and x∗ are defined in (10) and (11).

In particular, consider the case where Φ is a random Gaussian matrix as described in Theorem 2.
According to (45) and (16) (with t = 1), the following two statements are valid except with a
probability of at most 2e−Mǫ2/6 + 2e−M/2 ≤ 4e−Mǫ2/6. First, (9) holds for every x1, x2 ∈ M.
Second,

σm(Φ) ≥
√
N

M
− 2. (18)

If we assume that N/M ≥ (14/3)2, we can conclude, using Proposition 1, that Φ satisfies (9) for
every x1, x2 ∈ M and yet there exists x ∈ R

N such that

‖x− x̂‖
‖x− x∗‖ ≥ 1

4(1 + ǫ)

√
N

M
,

except with a probability of at most 4e−Mǫ2/6 on the choice of Φ.
It is worth recalling that, as we discussed in Section 2.1.3, similar difficulties arise in sparsity-

based CS when attempting to establish a deterministic ℓ2 instance-optimal bound. In particular,
to ensure that ‖x− x̂‖ ≤ C3 ‖x− xK‖ for all x ∈ R

N , it is known [13] that this requires M ≥ C4N
regardless of the sparsity level K.

In sparsity-based CS, there have been at least two types of alternative approaches. The first
are the deterministic “mixed-norm” results of the type given in (4). These involve the use of an
alternative norm such as the ℓ1 norm to measure the distance from the coefficient vector α to its
best K-term approximation αK . While it may be possible to pursue similar directions for manifold-
modeled signals, we feel this is undesirable as a general approach because when sparsity is no longer
part of the modeling framework, the ℓ1 norm has less of a natural meaning. Instead, we prefer to
seek bounds using ℓ2, as that is the most conventional norm used in signal processing to measure
energy and error.

Thus, the second type of alternative bounds in sparsity-based CS have involved ℓ2 bounds in
probability, as we discussed in Section 2.1.3. Indeed, the performance of both sparsity-based and
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manifold-based CS is often much better in practice than a deterministic ℓ2 instance-optimal bound
might indicate. The reason is that, for any Φ, such bounds consider the worst case signal over all
possible x ∈ R

N . Fortunately, this worst case is not typical. As a result, it is possible to derive
much stronger results that consider any given signal x ∈ R

N and establish that for most random
Φ, the recovery error of that signal x will be small.

4.2 Probabilistic instance-optimal bounds in ℓ2

For a given measurement operator Φ, our bound in Theorem 3 applies uniformly to any signal in
R
N . However, a much sharper bound can be obtained by relaxing the deterministic requirement.

4.2.1 Signal recovery

Our first bound applies to the signal recovery problem, and we include the consideration of additive
noise in the measurements. This result is proved in Appendix J and, like that of Theorem 2, involves
a generic chaining argument.

Theorem 4. Suppose x ∈ R
N . Let M be a compact K-dimensional Riemannian submanifold of

R
N having condition number 1/τ and volume VM. Conveniently assume that3

VM
τK

≥
(

21√
K

)K

.

Fix 0 < ǫ ≤ 1/3 and 0 < ρ < 1. Let Φ be an M ×N random matrix populated with i.i.d. zero-mean
Gaussian random variables with variance 1/M , chosen independently of x, with

M ≥ 18ǫ−2 max

(
11K +K log

(√
K

τǫ2
+

)
+ log VM , log

(
16

ρ

))
. (19)

Let n ∈ R
M , let y = Φx + n, and let the recovered estimate x̂ and the optimal estimate x∗ be as

defined in (10) and (11). Then with a probability of at least 1− ρ, the following statement holds:

‖x− x̂‖ ≤ (1 + 2ǫ) ‖x− x∗‖+ (2 + ǫ) ‖n‖+ ǫτ

40
. (20)

Let us now compare and contrast our bound with the analogous results for sparsity-based CS.
Like Theorem 1, we consider the problem of signal recovery in the presence of additive measurement
noise. Both bounds relate the recovery error ‖x− x̂‖ to the proximity of x to its nearest neighbor
in the concise model class (either xK or x∗ depending on the model), and both bounds relate the
recovery error ‖x− x̂‖ to the amount ‖n‖ of additive measurement noise. However, Theorem 1 is
a deterministic bound whereas Theorem 4 is probabilistic, and our bound (20) measures proximity
to the concise model in the ℓ2 norm, whereas (4) uses the ℓ1 norm.

Our bound can also be compared with (5), as both are instance-optimal bounds in probability,
and both use the ℓ2 norm to measure proximity to the concise model. However, we note that unlike
(5), our bound (20) allows the consideration of measurement noise.

Finally, we note that there is an additional term ǫτ
40 appearing on the right hand side of (20).

This term becomes relevant only when both ‖x− x∗‖ and ‖n‖ are significantly smaller than the

3Theorem 4 still holds, with worse constants, after relaxing this assumption.
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condition number τ , since ǫ ≤ 1/3. Indeed, in these regimes the signal recovery remains accurate
(much smaller than τ), but the quantity ‖x− x̂‖ may not remain strictly proportional to ‖x− x∗‖
and ‖n‖. We emphasize that this bound may also be sharpened by artificially assuming a condition
number 1/τ ′ > 1/τ for the purpose of choosing a number of measurements M in (19). This will
decrease the last term in (20) as ǫτ ′

40 . In the case where n = 0, it is also possible to resort to the
bound (17); this bound is inferior to (20) when ‖x− x∗‖ is large but ensures that ‖x− x̂‖ → 0
when ‖x− x∗‖ → 0.

4.2.2 Parameter estimation

Above we have derived a bound for the signal recovery problem, with an error metric that measures
the discrepancy between the recovered signal x̂ and the original signal x.

However, in some applications it may be the case that the original signal x ≈ xθ∗ , where θ
∗ ∈ Θ

is a parameter of interest. In this case we may be interested in using the compressive measurements
y = Φx+ n to solve the problem (12) and recover an estimate θ̂ of the underlying parameter.

Of course, these two problems are closely related. However, we should emphasize that guar-
anteeing ‖x− x̂‖ ≈ ‖x− x∗‖ does not automatically guarantee that dM(x

θ̂
, xθ∗) is small (and

therefore does not ensure that dΘ(θ̂, θ
∗) is small). If the manifold is shaped like a horseshoe, for

example, then it could be the case that xθ∗ sits at the end of one arm but x
θ̂
sits at the end of the

opposing arm. These two points would be much closer in a Euclidean metric than in a geodesic
one.

Consequently, in order to establish bounds relevant for parameter estimation, our concern fo-
cuses on guaranteeing that the geodesic distance dM(x

θ̂
, xθ∗) is itself small. Our next result is

proved in Appendix L.

Theorem 5. Suppose x ∈ R
N . Let M and Φ be as described in Theorem 2. Fix 0 < ǫ ≤ 1/3

and 0 < ρ < 1. Assume that M satisfies (19) and that the convenient assumption (4) holds. Let
n ∈ R

M , let y = Φx+n, and let the recovered estimate x̂ and the optimal estimate x∗ be as defined
in (10) and (11). If ‖x− x∗‖ + 7

8 ‖n‖ ≤ 0.184τ , then with probability at least 1 − ρ the following
statement holds:

dM(x̂, x∗) ≤ (4 + 4ǫ) ‖x− x∗‖+ (4 + 2ǫ) ‖n‖+ ǫτ

20
. (21)

In several ways, this bound is similar to (20). Both bounds relate the recovery error to the
proximity of x to its nearest neighbor x∗ on the manifold and to the amount ‖n‖ of additive
measurement noise. Both bounds also have an additive term on the right hand side that is small
in relation to the condition number τ .

In contrast, (21) guarantees that the recovered estimate x̂ is near to the optimal estimate x∗ in
terms of geodesic distance along the manifold. Establishing this condition required the additional
assumption that ‖x− x∗‖+ 7

8 ‖n‖ ≤ 0.184τ . Because τ relates to the degree to which the manifold
can curve back upon itself at long geodesic distances, this assumption prevents exactly the type of
“horseshoe” problem that was mentioned above, where it may happen that dM(x̂, x∗) ≫ ‖x̂− x∗‖.
Suppose, for example, it were to happen that ‖x− x∗‖ ≈ τ and x was approximately equidistant
from both ends of the horseshoe; a small distortion of distances under Φ could then lead to an
estimate x̂ for which ‖x− x̂‖ ≈ ‖x− x∗‖ but dM(x̂, x∗) ≫ 0. Similarly, additive noise could cause
a similar problem of “crossing over” in the measurement space. Although our bound provides
no guarantee in these situations, we stress that under these circumstances, accurate parameter
estimation would be difficult (or perhaps even unimportant) in the original signal space R

N .
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Finally, we revisit the situation where the original signal x ≈ xθ∗ for some θ∗ ∈ Θ (with θ∗

satisfying (13)), where the measurements y = Φx+ n, and where the recovered estimate θ̂ satisfies
(12). We consider the question of whether (21) can be translated into a bound on dΘ(θ̂, θ

∗). As
described in Section 2.2, in signal models where M is isometric to Θ, this is automatic: we have
simply that

dM(x
θ̂
, xθ∗) = dΘ(θ̂, θ

∗).

Such signal models are not nonexistent. Work by Donoho and Grimes [20], for example, has
characterized a variety of articulated image classes for which (6) holds or for which dM(xθ1 , xθ2) =
C8dΘ(θ1, θ2) for some constant C8 > 0. In other models it may hold that

C9dM(xθ1 , xθ2) ≤ dΘ(θ1, θ2) ≤ C10dM(xθ1 , xθ2)

for constants C9, C10 > 0. Each of these relationships may be incorporated to the bound (21).

5 Conclusions

In this paper, we have provided an improved and non-asymptotic lower bound on the number of
requisite measurements to ensure a stable embedding of a manifold under a random linear mea-
surement operator. We have also considered the tasks of signal recovery and parameter estimation
using compressive measurements of a manifold-modeled signal, and we have established theoretical
bounds on the accuracy to which these questions may be answered. Although these problems differ
substantially from the mechanics of sparsity-based CS, we have seen a number of similarities that
arise due to the low-dimensional geometry of the each of the concise models. First, we have seen
that a sufficient number of compressive measurements can guarantee a stable embedding of either
type of signal family, and the requisite number of measurements scales essentially linearly with the
information level of the signal. Second, we have seen that deterministic instance-optimal bounds in
ℓ2 are necessarily weak for both problems. Third, we have seen that probabilistic instance-optimal
bounds in ℓ2 can be derived that give the optimal scaling with respect to the signal proximity to
the concise model and with respect to the amount of measurement noise. Thus, our work supports
the growing evidence that manifold-based models can be used with high accuracy in compressive
signal processing.

Most of our analysis in this paper rests on a new analytical framework for studying manifold
embeddings that uses tools from the theory of empirical processes (namely, the idea of generic
chaining). While such tools are becoming more widely adopted in the analysis of sparsity-based CS
problems, we believe they are also very promising for studying the interactions of nonlinear signal
families (such as manifolds) with random, compressive measurement operators. We hope that the
chaining argument in this paper will be useful for future investigations along these lines.

Acknowledgements

M.B.W. is grateful to Rich Baraniuk and the Rice CS research team for many stimulating discus-
sions. A.E. thanks Justin Romberg for introducing him to the generic chaining and other topics in
the theory of empirical processes, Han Lun Yap for his valuable contributions to an early version
of the proof of Theorem 2 and many productive discussions about the topic, and Alejandro Wein-
stein for helpful discussions. Finally, both authors would like to acknowledge the tremendous and
positive influence that the late Partha Niyogi has had on our work.

16



A Toolbox

We begin by introducing some notation that will be used throughout the rest of the appendices.
In this paper, N stands for the set of nonnegative integers. The tangent space of M at p ∈ M

is denoted Tp. The orthogonal projection operator onto this linear subspace is denoted by ↓p. We
let ∠ [·, ·] represent the angle between two vectors after being shifted to the same starting point.
Throughout this paper, dM (·, ·) measures the geodesic distance between two points on M. By
r-ball we refer to a Euclidean (open) ball of radius r > 0. In addition, with BN we denote the unit
ball in R

N with volume VBN
and we reserve BN (p, r) to represent an N -dimensional r-ball centered

at p in R
N . For r > 0, let AM(p, r) := M∩BN (p, r)− p denote a (relatively) open neighborhood

of p on M after being shifted to the origin. Here the subtraction is in the Minkowski’s sense. A K-
dimensional r-ball centered at the origin and along Tp will be denoted by BTp(r). Unless otherwise
stated, all distances are measured in the Euclidean metric.

A collection of N -dimensional r-balls that covers M is called an r-cover for M, with their
centers forming an r-net for M. Notice that in general we do not require a net for M to be a
subset of M. However, we define the covering number of M at scale r, NM(r), to be the cardinality
of a minimal r-net for M among all subsets of M. (In other words, NM(r) is the smallest number
of r-balls centered on M that it takes to cover M.) A maximal r-separated subset of M is called
an r-packing for M. The packing number of M at scale r > 0, denoted by PM(r), is the cardinality
of such a set. It can be easily verified that an r-packing for M is also an r-cover for M, so

NM(r) ≤ PM(r). (22)

The concept of (principal) angle between subspaces will later come in handy. The (principal) an-
gle between two linear subspaces S1 and S2 is defined such that cos(∠[S1,S2]) := minu maxv |〈u, v〉|,
where the unit vectors u and v belong to S1 and S2, respectively. It is known that

‖(↓S1 − ↓S2)(·)‖2,2 = sin(∠[S1,S2]), (23)

where ↓S1 and ↓S2 are orthogonal projectors onto S1 and S2, respectively [54, Theorem 2.5]. The
norm above is the spectral norm.

We will also use the following conventions to clarify the exposition. For x1 6= x2 ∈ R
N , define

U (x1, x2) :=
x2 − x1
‖x2 − x1‖

.

Additionally, we let U(S1, S2) denote the set of directions of all the chords connecting two sets
S1, S2 ⊆ R

N , namely

U(S1, S2) := {U (x1, x2) : x1 ∈ S1, x2 ∈ S2, x1 6= x2} .

Clearly, U(S1, S2) ⊆ S
N−1, where S

N−1 is the unit sphere in R
N . Whenever possible, we also

simplify our notation by using U (S) := U(S, S).
Below we list a few useful results (mostly from differential geometry) which are used throughout

the rest of the paper. We begin with a well-known bound on the covering number of Euclidean
balls, e.g., [59, Lemma 5.2].4

Lemma 1. A K-dimensional unit ball can be covered by at most (3/r)K r-balls with r ≤ 1.

4Lemma 5.2 in [59] concerns the unit sphere in R
K , but the result still holds for the unit Euclidean ball using

essentially the same argument.
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We now recall several results from Sections 5 and 6 in [43]. Unfortunately we were unable to
confirm for ourselves some of the original proofs appearing in [43]. Therefore, some of the statements
and proofs below differ slightly from their original counterparts. The first result is closely related
to Lemma 5.3 in [43].

Lemma 2. Fix p, q ∈ M, such that ‖q − p‖ < 2τ . Then ∠ [q − p, ↓p (q − p)] < sin−1 (‖q − p‖/2τ).

Proof. Consider the unit vector v along (q − p)− ↓p (q − p) ⊥ Tp and the point z := p+ τ · v. By
definition of the condition number of the manifold, ‖z − q‖ > τ , since p is the nearest point on
the manifold to z.5 Now consider the triangle formed by the points p, q, z and the line l passing
through z and perpendicular to q − p. Let z′ denote the intersection of l with the line passing
through p and q. It is clear that ∠[q − p, z − p] ≤ π/2. Also since ‖z − q‖ > ‖z − p‖ = τ , we
have ∠[z − q, p − q] ≤ ∠[z − p, q − p] ≤ π/2. Therefore, z′ is indeed between p and q. The angle
between l and the line passing through p and z equals the angle between q − p and ↓p (q − p). To
obtain an upper bound for the latter angle, we again note that ‖z − q‖ > ‖z − p‖ and therefore
‖z′ − q‖ > ‖z′ − p‖, or ‖z′ − p‖ < 1

2‖q − p‖. So, this angle is bounded by sin−1 (‖q − p‖/2τ). This
completes the proof of Lemma 2.

Lemma 3. [43, Lemma 5.4] For p ∈ M, the derivative of ↓p is nonsingular on AM(p, τ/2).

Lemma 4. [43, Proposition 6.1] Let γ(·) denote a smooth unit-speed geodesic curve on M defined
on an interval I ⊂ R. For every t ∈ I, the following holds.

‖γ′′(t)‖ ≤ 1/τ.

Lemma 5. [43, Proposition 6.2] Fix p, q ∈ M. The angle between Tp and Tq, ∠[Tp,Tq], satisfies
cos(∠[Tp,Tq]) ≥ 1− dM (p, q) /τ .

The next lemma guarantees that two points separated by a small Euclidean distance are also
separated by a small geodesic distance, and so the manifold does not “curve back” upon itself.

Lemma 6. [43, Proposition 6.3] For p, q ∈ M with ‖q − p‖ ≤ τ/2, we have

dM (p, q) ≤ τ − τ

√
1− 2

τ
‖q − p‖. (24)

Proof. The first part of the proof of Proposition 6.3 in [43] establishes that for any p, q ∈ M,

‖q − p‖ ≥ dM (p, q)− (dM (p, q))2

2τ
, (25)

which is satisfied only if (24) is satisfied or if

dM (p, q) ≥ τ + τ

√
1− 2

τ
‖q − p‖ (26)

is satisfied. We provide the following argument to complete the proof.

5To see this, suppose, in contradiction, that q′ 6= p is a point on M that minimizes the distance to z so that
‖z − q′‖ ≤ τ = ‖z − p‖. On the other hand, z − q′ is orthogonal to Tq′ and thus ‖z − q′‖ > τ by the definition of
condition number. Therefore we have reached a contradiction and p is indeed the unique nearest neighbor of z on
M.
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For fixed p ∈ M, let us consider

q̂ := arg min
q∈M,dM(p,q)≥τ

‖q − p‖.

We know the minimizer q̂ exists because we are minimizing a continuous function over a compact
set. We consider two cases. First, if dM (p, q̂) = τ , then by (25), we will have ‖q̂ − p‖ ≥ τ/2.
Second, if dM (p, q̂) > τ , then there must exist an open neighborhood of q̂ on M over which the
distance to p is minimized at q̂. This implies that p − q̂ will be normal to M at q̂, which by the
definition of condition number (and the fact that p ∈ M) means that we must have ‖q̂ − p‖ ≥ 2τ .

Now, for any p, q ∈ M such that ‖q − p‖ < τ/2, (24) would imply that dM (p, q) < τ and (26)
would imply that dM (p, q) > τ . From the paragraph above, we see that if dM (p, q) ≥ τ , then
‖q − p‖ ≥ ‖q̂ − p‖ ≥ τ/2, and so we can rule out the possibility that (26) is true. Thus, (24) must
hold for any p, q ∈ M with ‖q − p‖ < τ/2.

For any p, q ∈ M such that ‖q− p‖ = τ/2, (24) would imply that dM (p, q) ≤ τ and (26) would
imply that dM (p, q) ≥ τ . From the paragraph above involving q̂, we see that any point q ∈ M
satisfying both dM (p, q) ≥ τ and ‖q − p‖ = τ/2 would have to be a local minimizer of ‖q − p‖ on
the convex set and in fact would have to fall into the first case, implying that dM (p, q) = τ exactly.
It follows that (24) must hold for any p, q ∈ M with ‖q − p‖ = τ/2.

The next lemma concerns the invertibility of ↓p within the neighborhood of p and is closely
related to Lemma 5.3 in [43].

Lemma 7. For p ∈ M, ↓p is invertible on AM(p, τ/4).

Proof. Lemma 3 states that the derivative of ↓p is nonsingular on AM(p, τ/2). The inverse function
theorem then implies that there exists an r > 0 such that ↓p is invertible on AM(p, rτ); without
loss of generality assume that r < 1/4 (otherwise we are done). Now, suppose that there exists
c > 0 and distinct points q, z ∈ M such that ‖q− p‖ = cτ , ‖z− p‖ ≤ cτ , and ↓p (q− p) =↓p (z− p).
In particular, this implies that

z − q ⊥ Tp. (27)

That is, for any unit vector v ∈ Tp, we have

〈z − q, v〉 = 0. (28)

Our goal is to show that c > 1/4. Suppose, in contradiction that indeed c ≤ 1/4. Let γ(·) be the
unit-speed geodesic curve connecting q to z, such that γ(0) = q and γ(dM(q, z)) = z. By applying
the fundamental theorem of calculus twice, we realize that

z − q = γ (dM(q, z))− γ(0)

=

∫ dM(q,z)

0
γ′(α) dα

=

∫ dM(q,z)

0

(
γ′(0) +

∫ α

0
γ′′(β) dβ

)
dα

= γ′(0) · dM(q, z) +

∫ dM(q,z)

0

∫ α

0
γ′′(β) dβdα.
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Invoking Lemma 4, we can write that

‖(z − q)− γ′(0) · dM(q, z)‖ ≤
∫ dM(q,z)

0

∫ α

0
‖γ′′(β)‖ dβdα

≤ 1

τ

∫ dM(q,z)

0

∫ α

0
dβdα

=
d2M(q, z)

2τ
. (29)

Meanwhile, having ‖z − q‖ ≤ 2cτ implies, via Lemma 6, that

dM(q, z) ≤ τ − τ
√
1− 4c, (30)

which, after plugging back into (29), yields

∥∥∥∥
z − q

dM(q, z)
− γ′(0)

∥∥∥∥ ≤ 1

2
− 1

2

√
1− 4c. (31)

So, for any unit vector v ∈ Tp, we have

∣∣〈γ′(0), v
〉∣∣ ≤

∣∣∣∣
〈
γ′(0) − z − q

dM (q, z)
, v

〉∣∣∣∣+
∣∣∣∣
〈

z − q

dM (q, z)
, v

〉∣∣∣∣

=

∣∣∣∣
〈
γ′(0) − z − q

dM (q, z)
, v

〉∣∣∣∣

≤
∥∥∥∥γ

′(0) − z − q

dM (q, z)

∥∥∥∥

≤ 1

2
− 1

2

√
1− 4c, (32)

where the first line follows from the triangle inequality, and the second line uses (28). The last line
uses (31). To reiterate, (32) is valid for any unit vector v ∈ Tp.

On the other hand, Lemma 5 implies that

cos (∠[Tq,Tp]) ≥ 1− 1

τ
dM(p, q)

≥
√
1− 2

τ
‖q − p‖

=
√
1− 2c, (33)

where the second line follows from Lemma 6, and the last line uses ‖q− p‖ = cτ . By the definition
of the angle between subspaces, (33) implies that there exists a unit vector v0 ∈ Tp such that

∣∣〈v0, γ′(0)
〉∣∣ ≥

√
1− 2c (34)

because γ′(0) ∈ Tq. Combining this bound with (32) for v = v0, we realize that

√
1− 2c ≤ 1

2
− 1

2

√
1− 4c.

This inequality is not met for any c ≤ 1/4. Thus, indeed c > 1/4. In particular, this means that
↓p is invertible on AM(p, τ/4).
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The next three lemmas are of importance when approximating the long and short chords on M
with, respectively, nearby long chords and vectors on the nearby tangent planes.

Lemma 8. [12, Implicit in Lemma 4.1] Consider two pair of points a1, a2 and b1, b2, all in
R
N , such that ‖a1 − b1‖ , ‖a2 − b2‖ ≤ r, and that ‖a1 − a2‖ ≥ κ

√
r, for some r, κ > 0. Then

‖U (a1, a2)− U (b1, b2)‖ ≤ 4κ−1√r.
Lemma 9. For a, b ∈ M with ‖a− b‖ ≤ l1 < τ/2, it holds true that

‖ ↓a v− ↓b v‖ ≤
√

2l1
τ
,

for every unit vector v ∈ R
N .

Proof. It follows from (23) that

‖ ↓a v− ↓b v‖ ≤ ‖(↓a − ↓b)(·)‖2,2 = sin(∠[Ta,Tb]). (35)

On the other hand, since ‖a− b‖ ≤ l1 < τ/2, Lemma 6 implies that

dM (a, b) ≤ τ − τ

√
1− 2l1

τ
,

and thus, using Lemma 5, we arrive at

cos (∠ [Ta,Tb]) ≥
√

1− 2l1
τ
.

Plugging back the estimate above into (35), we conclude that ‖ ↓a v− ↓b v‖ ≤
√
2l1/τ , as claimed.

Lemma 10. Fix p ∈ M, and take two points x1, x2 ∈ M such that ‖x1−p‖ ≤ l1 and ‖x2−x1‖ ≤ l2,
l1, l2 < τ/2. Then, we have that

‖U(x1, x2)− ↓p U(x1, x2)‖ ≤
√

2l1
τ

+
l2
2τ
.

Proof. The triangle inequality implies that

‖U(x1, x2)− ↓p U(x1, x2)‖ ≤ ‖U(x1, x2)− ↓x1 U(x1, x2)‖ + ‖ ↓x1 U(x1, x2)− ↓p U(x1, x2)‖. (36)

Since ‖x2 − x1‖ ≤ l2 < 2τ , Lemma 2 is the right tool to bound the first term on the right hand
side of (36):

‖U (x1, x2)− ↓x1 U (x1, x2)‖ = sin (∠ [U (x1, x2) , ↓x1 U (x1, x2)])

= sin (∠ [x2 − x1, ↓x1 (x2 − x1)])

≤ l2
2τ
. (37)

Since ‖x1 − p‖ ≤ l1 < τ/2, a bound on the second term follows from an application of Lemma 9:

‖ ↓x1 U(x1, x2)− ↓p U(x1, x2)‖ ≤
√

2l1
τ
. (38)

Combining (37) and (38) immediately proves our claim.
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B Proof of Theorem 2

It is easily verified that our objective is to find an upper bound for

P

{
sup

y∈U(M)
|‖Φy‖ − 1| > ǫ

}
,

when ǫ ≤ 1/3.
The remainder of this section is divided to two parts. In the first part, we construct a sequence

of increasingly finer nets for M. This is in turn used to construct a sequence of covers for the set
of all directions in M, U(M). In the second part, we apply a chaining argument that utilizes this
later sequence of covers to prove Theorem 2.

B.1 Sequence of covers for U(M)

For η > 0, let C0(η) ⊂ M denote a minimal η-net for M over all η-nets that are a subset of M.
Upper and lower bounds for #C0(η) = NM(η) are known for sufficiently small η [43], where #C0(η)
denotes the cardinality of C0(η). Since the claim below slightly differs from the one in [43], the
proof is included in Appendix C.

Lemma 11. When η ≤ τ/2, it holds that

#C0 (η) ≤
(

2

θ (η/4τ) η

)K VM
VBK

=: c0(η), (39)

where θ (α) :=
√
1− α2 for |α| ≤ 1.

By replacing η with 4−jη, we can construct a sequence of increasingly finer nets for M, {Cj(η)},
such that Cj(η) ⊂ M is a (4−jη)-net for M, for every j ∈ N. In light of Lemma 11, we have that

#Cj(η) ≤ 4jK · c0(η). (40)

Construction of a sequence of covers for U(M) demands the following setup. For η′ > 0 and
j ∈ N, let Cj(η′) denote a minimal (2−jη′)-net for BK . For p ∈ Cj(η), we can naturally map Cj(η′)
to live in the K-dimensional unit ball along Tp (and anchored at the origin). We represent this set
of vectors by Cj,p(η′) and define

C ′
j(η, η

′) :=
⋃

p∈Cj(η)

Cj,p(η′),

which forms a (2−jη′)-net for the unit balls along the tangent spaces at every point in Cj(η) ⊂ M.
For δ > 0, let us specify η and η′ as functions of δ. For C2, C3 > 0 to be set later, take η = η(δ) =
C2
2τδ

2 and η′ = η′(δ) = C3

√
η/τ = C2C3δ. Now, for every j ∈ N, simply set

Tj(δ) := U(Cj(η)) ∪ C ′
j(η, η

′).

It turns out that U(Cj(η)), the set of all directions in Cj(η), provides a net for the directions of
long chords on M. In contrast, C ′

j(η, η
′) forms a net for the directions in U(M) that correspond

to the short chords on M. It is therefore not surprising that {Tj(δ)} proves to be a sequence of
increasingly finer covers for U(M). This discussion is formalized in the next lemma and proved in
Appendix D. We remark that Lemma 12 holds more generally for all constants C2, C3 that satisfy
the conditions listed in the proof.
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Lemma 12. Set C2 = 0.4 and C3 = 1.7 −
√
2. For every j ∈ N, Tj(δ), as constructed above, is a

(2−jδ)-net for U(M), when δ ≤ 1/2. Under the mild assumption that

VM
τK

≥
(

21

2
√
K

)K

, (41)

it also holds that

#Tj(δ) ≤ 2 · 42jK
(
6.12

√
K

δ2

)2K (
VM
τK

)2

=: tj(δ). (42)

B.2 Applying the chaining argument

Every y ∈ U(M) can be represented with a chain of points in {Tj(δ)}. Let πj(y) be the nearest
point to y in Tj(δ). This way we obtain a sequence {πj(y)} that represents y via an almost surely
convergent telescoping sum, that is

y = π0 (y) +
∑

j∈N

(πj+1(y)− πj(y)) . (43)

Note that, for every j ∈ N and every y ∈ M, the length of the chord connecting πj(y) to πj+1(y) is
no longer than 2−j+1δ. We are now ready to state a generic chaining argument, proved in Appendix
E, that allows us to bound the failure probability of obtaining a stable embedding of M in terms
of its geometrical properties. The interested reader is referred to [55] for more information about
the generic chaining.

Lemma 13. Fix 0 < δ < ǫ1 < ǫ ≤ 1/3, and ǫ2 > 0 such that ǫ1 + ǫ2 = ǫ. Choose C4, C5 > 0 so
that ǫ1/δ ≥ 1+C4

1−C4
and ǫ2/δ ≥ C5. Then, under (41), we have that

P

{
sup

y∈U(M)
|‖Φy‖ − 1| > ǫ

}
≤ 2 t0(δ) · max

t0∈T0(δ)
P {|‖Φt0‖ − ‖t0‖| > C4ǫ1‖t0‖}

+ 2
∑

j∈N

t2j+1(δ) · max
(tj ,sj)∈Qj(δ)

P
{
‖Φsj −Φtj‖ > 8−1C5(j + 1)‖sj − tj‖

}
,

(44)

where {tj(δ)} were previously defined in Lemma 12. For j ∈ N, Qj(δ) is defined as

Qj(δ) := {(tj , sj) : πj(y) = tj and πj+1(y) = sj for some y ∈ U(M)} .

There are two type of probabilities involved in the upper bound above. One controls the large
deviations of ‖Φt0‖ from its expectation, and the other corresponds to very large (one sided)
deviations of ‖Φsj − Φtj‖ from its expectation. As claimed in the next lemma and proved in
Appendix F, both of these probabilities are exponentially small when M is large enough.

Lemma 14. Fix 0 ≤ λ ≤ 1/3 and λ′ ≥ 1/5. Then, for fixed y1, y2 ∈ R
N , we have

P {|‖Φy1‖ − ‖y1‖| > λ‖y1‖} ≤ 2e−
Mλ2

6 (45)

P
{
‖Φy2 − Φy1‖ >

(
1 + λ′

)
‖y2 − y1‖

}
≤ e−

Mλ′

7 . (46)
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Now fix ǫ ≤ 1/3 and set ǫ1 = 9ǫ/10. Taking C4 =
√

6/7, C5 = 16, δ = ǫ/160 and finally
assuming (41) guarantees that Lemma 12 is in force. Under this setup, note that an upper bound
for the first term on the right hand side of (44) can be found by applying (45) (after plugging in
for C4):

2 t0(δ) · max
t0∈T0(δ)

P

{
|‖Φt0‖ − ‖t0‖| >

√
6

7
ǫ1‖t0‖

}
≤ 2 t0(δ) · 2e−

Mǫ21
7 ,

and, assuming that
M ≥ 14ǫ−2

1 logN0(δ), (47)

we arrive at

2 t0(δ) · max
t0∈T0(δ)

P

{
|‖Φt0‖ − ‖t0‖| >

√
6

7
ǫ1‖t0‖

}
≤ 4e−

Mǫ21
14 . (48)

In order to bound the second term on the right hand side of (44), we proceed as follows. After
plugging in for C5 and applying (46), we obtain that

max
(tj ,sj)∈Qj(δ)

P {‖Φsj − Φtj‖ > 2(j + 1)‖sj − tj‖} ≤ e−
(2j+1)M

7 .

Using the estimate above and Lemma 12, we get an upper bound for the second term on the right
hand side of (44) (after plugging in for C5):

2
∑

j∈N

t2j+1(δ) · max
(tj ,sj)∈Qj(δ)

P {‖Φsj − Φtj‖ > 2(j + 1)‖sj − tj‖}

≤ 2 t20(δ)e
−M

7 44K
∑

j∈N

44jKe−
2
7
jM . (49)

Assuming that
M ≥ max(32 log t0(δ), 310K) (50)

allows us to continue simplifying (49), therefore arriving at

2
∑

t2j+1(δ) · max
(tj ,sj)∈Qj(δ)

P {‖Φsj − Φtj‖ > 2(j + 1)‖sj − tj‖}

≤ 4e−
M
17 . (51)

We can now combine (48) and (51) to obtain

P

{
sup
y

|‖Φy‖ − 1| > ǫ

}
≤ 4e−

Mǫ21
14 + 4e−

M
17 ≤ 8e−

Mǫ21
14 ,

where the second inequality follows since ǫ1 ≤ 1/3 and thus ǫ21/14 ≤ 1/17. In particular, to achieve
a failure probability of at most ρ ≤ 1, we need

M ≥ 14ǫ−2
1 log (8/ρ) . (52)
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Assuming that (41) holds and ǫ ≤ 1/3, (50) is absorbed into (47) and (52), which are in turn
lumped into a single lower bound on M (after plugging in for δ), that is

M ≥ 18ǫ−2 max

(
log(2V 2

M) + 24K + 2K log

(√
K

τǫ2

)
, log

(
8

ρ

))

≥ 18ǫ−2 max


log


2V 2

M

(
6
√
K

τδ2

)2K

 , log

(
8

ρ

)


= 18ǫ−2 max (logN0(δ), log (8/ρ))

≥ 14ǫ−2
1 max (logN0(δ), log (8/ρ)) . (53)

So far, we proved that

P

{
sup

y∈U(M)
|‖Φy‖ − 1| > ǫ

}
≤ ρ,

provided that M satisfies (53). This completes the proof of Theorem 2.

C Proof of Lemma 11

To prove this bound, we first need the following result regarding the local properties of M, which
is closely related to Lemma 5.3 in [43]. The proof can be found in Appendix G.

Lemma 15. Let p ∈ M and r ≤ τ/4. Then the following holds:

volK(AM(p, r)) ≥
(
1− r2

4τ2

)K
2

rKVBK
,

where volK(·) measures the K-dimensional volume.

Now, using (22) and a simple volume comparison argument, we observe that

#C0(η) = NM(η) ≤ PM(η) ≤ VM
infp∈M volK(AM(p, η/2))

.

Since η/2 ≤ τ/4, we can apply Lemma 15 (with r = η/2) and obtain that

#C0(η) ≤
VM

(
1− η2

16τ2

)K
2 (η

2

)K
VBK

=

(
2

θ(η/4τ)η

)K VM
VBK

,

This completes the proof of Lemma 11.

D Proof of Lemma 12

Consider two arbitrary but distinct points x1, x2 ∈ M. For C6 > 0 to be set later in the proof, we
separate the treatment of long and short chords, i.e., ‖x2−x1‖/τ > C6

√
η/τ =: γ and ‖x2−x1‖/τ ≤
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γ, and in this strategy we follow [3,12]. Short chords are distinct in that, as we will see later, they
have to be approximated with nearby tangent vectors. For convenience, let us also define

U l
γ(M) := {U(z1, z2) : ‖z2 − z1‖ > γτ, z1, z2 ∈ M},

U s
γ (M) := {U(z1, z2) : 0 < ‖z2 − z1‖ ≤ γτ, z1, z2 ∈ M}.

Of course, U l
γ(M) ∪ U s

γ (M) = U(M), although their intersection might not be empty.

Suppose that ‖x2 − x1‖/τ > γ = C6

√
η/τ so that U(x1, x2) ∈ U l

γ(M). Since C0(η) is an η-net
for M, there exist p1 and p2 in C0(η) such that ‖x1 − p1‖, ‖x2 − p2‖ ≤ η. It then follows from
Lemma 8 (with a1 = x1, a2 = x2, b1 = p1, and b2 = p2) that

‖U(x1, x2)− U(p1, p2)‖ ≤ 4

C6

√
η

τ
=

4C2δ

C6
. (54)

Now, assuming that
4C2 = C6, (55)

and leveraging the fact that the choice of x1, x2 ∈ M was arbitrary, we conclude that U(C0(η)) is
a δ-net for U l

γ(M).

On the other hand, suppose that 0 < ‖x2 − x1‖/τ ≤ γ = C6

√
η/τ = 4C2

√
η/τ so that

U(x1, x2) ∈ U s
γ (M). We assume that

η

τ
= C2

2δ
2 < min

(
1

64C2
2

,
1

2

)
, (56)

so that, in particular, ‖x2−x1‖ < τ/2. Since C0(η) is an η-net for M, there exists a point p ∈ C0(η)
such that ‖x1 − p‖ ≤ η < τ/2. Lemma 10 (with l1 = η and l2 = 4C2

√
τη) then implies that the

direction of the chord connecting x1 to x2 can be approximated with a tangent vector in Tp, that is

‖U(x1, x2)− ↓p U(x1, x2)‖ ≤
√

2η

τ
+ 2C2

√
η

τ
=
(√

2 + 2C2

)
C2δ. (57)

Recall that C0,p(η′) is an η′-net for the unit ball centered at p and along Tp. So, there also exists
a vector v ∈ C0,p(η′) such that ‖ ↓p U(x1, x2)− v‖ ≤ η′ = C2C3δ. Using the triangle inequality, we
therefore arrive at

‖U(x1, x2)− v‖ ≤
(√

2 + 2C2 + C3

)
C2δ. (58)

Assuming that √
2 + 2C2 + C3 = C−1

2 , (59)

and leveraging the fact that the choice of x1, x2 ∈ M was arbitrary, we conclude that C ′
0(η, η

′) is
a δ-net for U s

γ (M). Overall, under (55), (56), and (59), T0(δ) = U(C0(η)) ∪ C ′
0(η, η

′) is a δ-net
for U(M). By repeating the argument above (with η, δ, η′, γ replaced with η/4j , δ/2j , η′/2j , γ/2j)
we observe that Tj(δ) is a (2−jδ)-net for U(M), for every j ∈ N. In particular, the choice of
C2 = 0.4, C3 = 1.7 −

√
2, C6 = 1.6 satisfies the conditions above for every δ ≤ 1/2 and completes

the proof of the first statement in Lemma 12.
In order to bound the cardinality of Tj(δ), we begin with estimating #C ′

j(η, η
′). According to

Lemma 1, we can write that

#C ′
j

(
η, η′

)
≤
(
3 · 2j
η′

)K

·#Cj (η) , (60)
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which holds assuming that η′ ≤ 1, i.e., C2C3δ ≤ 1. (Our choice of C2, C3 above satisfies this
condition.) It is possible now to write that

#Tj(δ) ≤ (#Cj(η))
2 +#C ′

j(η, η
′)

≤ (#Cj(η))
2 +

(
3 · 2j
η′

)K

·#Cj (η)

≤ 2max

(
4jK c0(η),

(
3 · 2j
η′

)K
)

· 4jK c0(η), (61)

where we used (60) in the second line and (40) in the last line. To guarantee that the first term
dominates the maximum in (61), it suffices (according to the definition of c0(η) in (39)) to enforce
that (

2

θ(η/4τ)η

)K VM
VBK

≥
(
3

η′

)K

,

which, after plugging in for η and η′ in terms of δ and using the hypothesis that δ ≤ 1, is satisfied
under the mild assumption that

VM
τK

≥ 2.5KVBK
≥
(
3C2

2C3

)K

VBK
. (62)

The assumption in (62) allows us to simplify (61) and obtain that

#Tj(δ) ≤ 2 · 42jK c20(η). (63)

It follows from (63) and the definition of c0(η) in (39) that

#Tj(δ) ≤ 2 · 42jK
(

2

θ(C2
2/4)C

2
2τδ

2

)2K ( VM
VBK

)2

≤ 2 · 42jK
(
12.52

τδ2

)2K ( VM
VBK

)2

,

where we used the fact that δ ≤ 1. We remind the reader that

(
4π

K + 2

)K/2

≤ VBK
=

πK/2

Γ
(
K
2 + 1

) ≤
(

2eπ

K + 2

)K/2

, (64)

where the inequalities follow from the fact that (K/e)K−1 ≤ Γ (K) ≤ (K/2)K−1 for K ∈ N [44].
Here Γ(·) denotes the Gamma function. The above inequality leads us to

#Tj(δ) ≤ 2 · 42jK
(
6.12

√
K

δ2

)2K (
VM
τK

)2

,

which holds under the mild assumption that VM/τK ≥ (21/
√
K)K . Indeed, this assumption is

obtained by plugging our choice of C2, C3 into (62). This completes the proof of Lemma 12.
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E Proof of Lemma 13

For notational convenience, let us denote the infinite sum in (43) by Σ(y). Then, using the triangle
inequality, we observe that

P

{
sup

y∈U(M)
‖Φy‖ > 1 + ǫ

}
= P

{
sup
y

‖Φπ0 (y) + ΦΣ(y)‖ > 1 + ǫ1 + ǫ2

}

≤ P

{
sup
y

‖Φπ0 (y)‖+ sup
y

‖ΦΣ(y)‖ > 1 + ǫ1 + ǫ2

}

≤ P

{
sup
y

‖Φπ0 (y)‖ − 1 > ǫ1

}
+P

{
sup
y

‖ΦΣ(y)‖ > ǫ2

}
,

and similarly,

P

{
inf

y∈U(M)
‖Φy‖ < 1− ǫ

}
= P

{
inf
y
‖Φπ0 (y) + ΦΣ(y)‖ < 1− ǫ1 − ǫ2

}

≤ P

{
inf
y
‖Φπ0 (y)‖ − sup

y
‖ΦΣ(y)‖ < 1− ǫ1 − ǫ2

}

≤ P

{
sup
y

1− ‖Φπ0 (y)‖ > ǫ1

}
+ P

{
sup
y

‖ΦΣ(y)‖ > ǫ2

}
.

We can therefore argue that

P

{
sup

y∈U(M)
|‖Φy‖ − 1| > ǫ

}
≤ P

{
sup
y

‖Φy‖ > 1 + ǫ

}
+ P

{
inf
y
‖Φy‖ < 1− ǫ

}

≤ 2P

{
sup
y

|‖Φπ0 (y)‖ − 1| > ǫ1

}
+ 2P

{
sup
y

‖ΦΣ(y)‖ > ǫ2

}
. (65)

Consider the first probability on the last line of (65):

P

{
sup

y∈U(M)
|‖Φπ0 (y)‖ − 1| > ǫ1

}
≤ P

{
sup
y

|‖Φπ0(y)‖ − ‖π0(y)‖| + sup
y

|‖π0(y)‖ − 1| > ǫ1

}

≤ P

{
sup
y

|‖Φπ0(y)‖ − ‖π0(y)‖| > ǫ1 − δ

}

≤ P

{
sup
y

|‖Φπ0(y)‖ − ‖π0(y)‖|
‖π0(y)‖

>
ǫ1 − δ

1 + δ

}

≤ P

{
sup
y

|‖Φπ0(y)‖ − ‖π0(y)‖|
‖π0(y)‖

> C4ǫ1

}

≤ P

{
max

t0∈T0(δ)

|‖Φt0‖ − ‖t0‖|
‖t0‖

> C4ǫ1

}

≤ #T0 (δ) · max
t0∈T0(δ)

P {|‖Φt0‖ − ‖t0‖| > C4ǫ1‖t0‖}

where the first line uses the triangle inequality. The second and third lines hold on account of T0(δ)
being a net for a subset of SN−1, namely U(M). An application of the union bound gives the last
line above.
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Now consider the second probability on the last line of (65). By the definition of Σ(y), we
observe that

P

{
sup

y∈U(M)
‖ΦΣ(y)‖ > ǫ2

}

= P

{
sup
y

∥∥∥
∑

Φπj+1(y)− Φπj(y)
∥∥∥ > ǫ2

}

≤ P




∑

j

max
(tj ,sj)∈Qj(δ)

‖Φsj − Φtj‖ > C5δ





= P




∑

j

max
(tj ,sj)∈Qj(δ)

‖Φsj − Φtj‖ > C5

∑

j

(j + 1)2−j−2δ





≤
∑

j

P

{
max

(tj ,sj)∈Qj(δ)
‖Φsj −Φtj‖ > C5(j + 1)2−j−2δ

}

≤
∑

j

P

{
max

(tj ,sj)∈Qj(δ)
‖Φsj −Φtj‖ > 8−1C5(j + 1)‖sj − tj‖

}

≤
∑

j

#T 2
j+1(δ) max

(tj ,sj)∈Qj(δ)
P
{
‖Φsj − Φtj‖ > 8−1C5(j + 1)‖sj − tj‖

}
.

The third line above uses the triangle inequality and the assumption on ǫ2, while the fifth and last
lines use the union bound. It can be easily verified that the infinite sum on the right hand side of
the inequality in the fourth line equals one. Having upper bounds for both terms on the last line
of (65), we overall arrive at

P

{
sup

y∈U(M)
|‖Φy‖ − 1| > ǫ

}
≤ 2#T0 (δ) · max

t0∈T0(δ)
P {|‖Φt0‖ − ‖t0‖| > C4ǫ1‖t0‖}

+ 2
∑

j

#T 2
j+1 (δ) max

(tj ,sj)∈Qj(δ)
P
{
‖Φsj − Φtj‖ > 8−1C5(j + 1)‖sj − tj‖

}
.

From Lemma 12, #Tj(δ) ≤ tj(δ). This establishes Lemma 13.

F Proof of Lemma 14

The proof is elementary. It is easily verified that E ‖Φy1‖2 = ‖y1‖2, and we then note that

P {|‖Φy1‖ − ‖y1‖| > λ‖y1‖} = P {‖Φy1‖ > (1 + λ)‖y1‖}+ P {‖Φy1‖ < (1− λ)‖y1‖}
≤ P

{
‖Φy1‖2 > (1 + λ)‖y1‖2

}
+ P

{
‖Φy1‖2 < (1− λ)‖y1‖2

}

≤ 2e
−M

2

(
λ2

2
−λ3

3

)

≤ 2e−
Mλ2

2 ( 1
2
− 1

9)

≤ 2e−
Mλ2

6 ,

where the third line uses a well-known concentration bound [1]. The fourth line holds because
λ ≤ 1/3. This establishes the first inequality in Lemma 14. For the second inequality, we begin by
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observing that

P
{
‖Φ (y2 − y1)‖ >

(
1 + λ′

)
‖y2 − y1‖

}
= P

{
‖Φ · U (y1, y2)‖ > 1 + λ′

}

≤ P
{
‖Φ · U (y1, y2)‖2 > 1 + 2λ′

}

= P

{
M−1

M∑

i=1

n2i − 1 > 2λ′

}

= P

{
M∑

i=1

n2i −M > 2λ′M

}
, (66)

where n1, n2, · · · , nM are zero-mean and unit-variance Gaussian random variables. The third line
above follows since the entries of the vector Φ·U(y1, y2) are distributed as i.i.d. zero-mean Gaussians
with variance of 1/M . We now recall Lemma 1 in [38], which states that

P

{
M∑

i=1

n2i −M > 2
√
Mα+ 2α

}
≤ e−α, (67)

for α > 0. Comparing the last line in (66) to the inequality above, we observe that taking

α =
M

4

(√
1 + 4λ′ − 1

)2

allows us to continue simplifying (66) to obtain that

P
{
‖Φ (y2 − y1)‖ >

(
1 + λ′

)
‖y2 − y1‖

}
≤ P

{
M∑

i=1

n2i −M > 2
√
Mα+ 2α

}
≤ e−α. (68)

It is easily verified that
√
1 + 4λ′ − 1 ≥ (3−

√
5)
√
λ′ when λ′ ≥ 1/5. It follows that

α ≥ M

4
· (3−

√
5)2λ′ ≥Mλ′/7, (69)

and consequently,

P
{
‖Φ (y2 − y1)‖ >

(
1 + λ′

)
‖y2 − y1‖

}
≤ e−

Mλ′

7 ,

as claimed. This establishes the second inequality in Lemma 14 and completes the proof.

G Proof of Lemma 15

As in the proof of Lemma 5.3 in [43], we will show that for some r′ > 0 to be defined below,

BTp(r
′) ⊂↓p (AM(p, r)),

as our claim follows directly from the inclusion above. To show the above inclusion, we use the
following argument. Let us denote the inverse of ↓p on AM(p, τ/4) with g(·).

From Lemma 7, ↓p is invertible on AM(p, r) and therefore ↓p (AM(p, r)) is an open set. Thus
there exists s > 0 such that BTp(s) ⊂↓p (AM(p, r)). We can keep increasing s until at s = s∗ we
reach a point y on the boundary of the closure of BTp(s

∗) such that y /∈↓p (AM(p, r)). Consider
a sequence {yi} ⊂ BTp(s

∗) ⊂↓p (AM(p, r)) such that yi → y when i → ∞. Note that {g(yi)} ⊂
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AM(p, r) and, because every sequence in a compact space contains a convergent subsequence, there
exist a convergent sebsequence {g(yik)} and x in the closure of AM(p, r) such that g(yik) → x.
Since ↓p is continuous, ↓p x = y. Therefore y =↓p x /∈↓p (AM(p, r)), and x /∈ AM(p, r) and thus x
is on the boundary of the closure of AM(p, r) and ‖x‖ = r. Now we invoke Lemma 2 with q = x+p
to obtain that

cos(∠[x, y]) ≥
√

1− r2

4τ2
.

It follows that

s∗ = ‖y‖
= cos(∠[x, y]) · r

≥
√

1− r2

4τ2
· r =: r′,

and thus BTp(r
′) ⊂↓p (AM(p, r)). This completes the proof of Lemma 15 since

volK(AM(p, r)) ≥ volK(↓p (AM(p, r))) ≥ volK(BTp(r
′)) = (r′)Kvol(BK),

where the first inequality holds because projection onto a subspace is non-expansive.

H Proof of Theorem 3

Fix α ∈ [1− ǫ, 1 + ǫ]. We consider any two points wa, wb ∈ M such that

‖Φwa − Φwb‖
‖wa − wb‖

= α,

and supposing that x is closer to wa, i.e.,

‖x− wa‖ ≤ ‖x− wb‖ ,

but Φx is closer to Φwb, i.e.,
‖Φx− Φwb‖ ≤ ‖Φx− Φwa‖ ,

we seek the maximum value that
‖x− wb‖
‖x− wa‖

may take. In other words, we wish to bound the worst possible “mistake” (according to our error
criterion) between two candidate points on the manifold whose distance is scaled by the factor α.

This can be posed in the form of an optimization problem

max
x∈RN ,wa,wb∈M

‖x− wb‖
‖x− wa‖

s.t. ‖x− wa‖ ≤ ‖x− wb‖ ,

‖Φx− Φwb‖ ≤ ‖Φx− Φwa‖ ,
‖Φwa − Φwb‖
‖wa − wb‖

= α.

For simplicity, we may expand the constraint set to include all wa, wb ∈ R
N ; the solution to this

larger problem is an upper bound for the solution to the case where wa, wb ∈ M.
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The constraints and objective function now are invariant to adding a constant to all three
variables or to a constant rescaling of all three. Hence, without loss of generality, we set wa = 0

and ‖x‖ = 1. This leaves

max
x,wb∈R

N
‖x− wb‖ s.t. ‖x‖ = 1,

‖x− wb‖ ≥ 1,

‖Φx− Φwb‖ ≤ ‖Φx‖ ,
‖Φwb‖
‖wb‖

= α.

We may safely ignore the second constraint (because of its relation to the objective function).
Under the constraints above, the objective satisfies

‖x− wb‖ ≤ ‖x‖+ ‖wb‖
= 1 + ‖Φwb‖/α
≤ 1 + 2‖Φx‖/α

≤ 1 +
2σM (Φ)

1− ǫ

≤ 1

1− ǫ
(2σM (Φ) + 1) .

The first line follows from the triangle inequality. The identity above uses the first constraint. The
third constraint (via the triangle inequality) implies that ‖Φwb‖ ≤ 2‖Φx‖ and the third line thus
follows. The fourth line follows from the fact that ‖x‖ = 1 and after considering the possible range
of α. Returning to the original optimization problem, this implies that

‖x− wb‖
‖x− wa‖

≤ 1

1− ǫ
(2σM (Φ) + 1)

for any observation x that could be mistakenly paired with wb instead of wa (under a Φ that scales
the distance ‖wa − wb‖ by α). This completes the proof of Theorem 3.

I Proof of Proposition 1

Set
δ := (1 + ǫ) (σm(Φ))−1 ,

and let
x = e1 + δu,

where ‖u‖ ≤ 1 belongs to the row span of Φ and satisfies Φx = Φ(e1 + δu) = 0. Finding such u is
possible because

‖Φe1‖ ≤ (1 + ǫ)‖e1‖ = 1 + ǫ = δ · σm(Φ) = δ · σm(Φ)‖v‖ ≤ δ‖Φv‖,

for every unit vector v in the row span of Φ. The first inequality holds because e1,0 ∈ M and
Φ stably embeds M. The second equality holds by our choice of δ, and the last inequality holds
because v belongs to the row span of Φ. With our choice of x above, we have Φx = 0 and therefore
x̂ = 0. On the other hand,

‖x− x∗‖ ≤ ‖x− e1‖ ≤ δ.
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It follows that

‖x− x̂‖
‖x− x∗‖ ≥ ‖x− x̂‖

‖x− e1‖
≥ ‖x‖

δ
≥ 1− δ

δ
≥ 1

2δ
=

1

2(1 + ǫ)
σm(Φ).

Indeed, one can verify that δ ≤ 1/2 because (by hypothesis) ǫ ≤ 1/3 and σm(Φ) ≥ 8/3. This
immediately implies the second to last inequality above. This completes the proof of Proposition 1.

J Proof of Theorem 4

Our success in stably embedding M via random linear measurements (and what distinguished
Theorem 2 from embedding of a point cloud) relied on the smoothness of M. This assumption
enabled us to control the behavior of short chords on M. However, x does not generally belong to
M and hence, in general, we cannot control the direction of short chords connecting x to M. To
deal with this issue, we proceed as follows. For fixed γ > 0 to be specified later, define

Mγ := {z ∈ M : ‖z − x‖ > γτ} ,

and let MC
γ := M\Mγ , i.e., the complement of Mγ in M. Note that one of the two sets may be

empty. Our first step towards a proof is to show that, for every z ∈ Mγ with an appropriately
chosen γ, we have

(1− ǫ) ‖z − x‖ ≤ ‖Φz − Φx‖ ≤ (1 + ǫ) ‖z − x‖ . (70)

In other words, we first study the stable embedding of the directions of all the chords connecting x
to Mγ , namely U(Mγ , x), for an appropriate γ. This is addressed next and proved in Appendix K.

Lemma 16. Choose 0 < ǫ ≤ 1/3 and 0 < ρ < 1. Conveniently assume that

VM
τK

≥
(

21√
K

)K

.

If

M ≥ 18ǫ−2 max

(
11K +K log

(√
K

τǫ2

)
+ log VM , log

(
8

ρ

))
,

then, except with a probability of at most ρ, (70) holds for every z ∈ Mǫ/40.

We now combine Lemma 16 and an elementary argument to complete the proof of Theorem 4.
It is possible to recognize two different cases: when x̂ ∈ MC

ǫ/40 and when x̂ ∈ Mǫ/40. Clearly,

‖x− x∗‖ ≤ ‖x− x̂‖ ≤ ǫτ

40
, when x̂ ∈ MC

ǫ/40. (71)

If, however, x̂ ∈ Mǫ/40, then a more detailed analysis is required. An application on Lemma 14
implies that (70) holds for z = x∗, except with a probability of at most ρ and provided that
M ≥ 6ǫ−2 log(2/ρ). Suppose the assumptions in Lemma 16 are met. Therefore, (70) holds for
every z ∈ Mǫ/40 ∪ {x∗}, except with a probability of at most 2ρ. Also, by the definition of x∗ and
x̂, it holds true that

‖x− x∗‖ ≤ ‖x− x̂‖
‖(Φx+ n)− Φx̂‖ ≤ ‖(Φx+ n)− Φx∗‖ .
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Now, combining all these bounds and using several applications of the triangle inequality we obtain
that

‖x− x̂‖ ≤ (1− ǫ)−1 ‖Φx− Φx̂‖
≤ (1− ǫ)−1 ‖(Φx+ n)− Φx̂‖+ (1− ǫ)−1 ‖n‖
≤ (1− ǫ)−1 ‖(Φx+ n)− Φx∗‖+ (1− ǫ)−1 ‖n‖
≤ (1− ǫ)−1 ‖(Φx+ n)− Φx∗‖+ (1− ǫ)−1 ‖n‖
≤ (1− ǫ)−1 ‖Φx− Φx∗‖+ 2 (1− ǫ)−1 ‖n‖

≤ 1 + ǫ

1− ǫ
‖x− x∗‖+ 2 (1− ǫ)−1 ‖n‖ .

Since ǫ ≤ 1/3, one can easily check that

(1− ǫ)−1 ≤ 1 + ǫ/2,

1 + ǫ

1− ǫ
≤ 1 + 2ǫ.

Consequently, we obtain that

‖x− x̂‖ ≤ (1 + 2ǫ) ‖x− x∗‖+ (2 + ǫ) ‖n‖ , when x̂ ∈Mǫ/40. (72)

Combining (71) and (72), we overall obtain that

‖x− x̂‖ ≤ max
( ǫτ
40
, (1 + 2ǫ) ‖x− x∗‖+ (2 + ǫ) ‖n‖

)
,

which, to emphasize, is valid under the assumptions of Lemma 16 and with a probability of at least
1− 2ρ. This completes the proof of Theorem 4.

K Proof of Lemma 16

The proof strategy is identical to that in Section B. We will prove that (70) holds for every z ∈
Mǫ/40, with high probability and provided that M is large enough. As before, this is achieved by
finding an upper bound on

P

{
sup

y∈U(Mǫ/40,x)
|‖Φy‖ − 1| > ǫ

}
, (73)

for ǫ ≤ 1/3.
We begin again by constructing a sequence of increasingly finer covers for U (Mγ , x), with γ to

be set later. We denote this sequence by {Lj (δ)}—each Lj(δ) is a (2−jδ)-net for U(Mγ , x). For
0 < δ ≤ 1/

√
2, set η = δ2τ and γ = 4δ. We form {Lj (δ)} from {Cj (η)}, the sequence of covers for

M constructed in Section B.1. Indeed, the same argument in that section proves that U(Cj(η), x)
is a (2−jδ)-cover for U(Mγ , x). It also holds that

#Lj(δ) ≤ #Cj(η) ≤ 4jK
(

2

θ(δ2/4)δ2τ

)K VM
VBK

≤ 4jK

(√
K

δ2τ

)K

VM =: lj(δ). (74)

As before, we can represent every y ∈ U(Mγ , x) with an infinite chain of points from the sequence
of covers {Lj (δ)}. After setting δ = ǫ/160, using the same argument as the one in Section B.2,
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and exploiting the estimates above, one can verify that the failure probability in (73) is at most ρ,
provided that

M ≥ 18ǫ−2 max

(
11K +K log

(√
K

τǫ2

)
+ log VM, log

(
8

ρ

))
.

L Proof of Theorem 5

Using the triangle inequality and (20), we have

‖x̂− x∗‖ ≤ ‖x− x̂‖+ ‖x− x∗‖ ≤ 2(1 + ǫ) ‖x− x∗‖+ (2 + ǫ) ‖n‖+ ǫτ

40
. (75)

Now, since both x̂ and x∗ belong to M, we can invoke Lemma 6 from the Toolbox, which states
that if ‖x̂− x∗‖ ≤ τ/2, then

dM(x̂, x∗) ≤ τ − τ
√

1− 2 ‖x̂− x∗‖ /τ . (76)

To apply this lemma, it is sufficient to know that

2(1 + ǫ) ‖x− x∗‖+ (2 + ǫ) ‖n‖+ ǫτ

40
≤ τ/2,

i.e., that

‖x− x∗‖+ 2 + ǫ

2(1 + ǫ)
‖n‖ ≤ τ

4

(
1− ǫ/20

1 + ǫ

)
.

For the sake of neatness, we may tighten this condition to ‖x− x∗‖+ 7
8 ‖n‖ ≤ 0.184τ , which implies

the sufficient condition above (since ǫ ≤ 1/3). Thus, if ‖x− x∗‖ and ‖n‖ are sufficiently small (on
the order of the condition number τ), then we may combine (75) and (76), giving

dM(x̂, x∗) ≤ τ − τ

√
1− 2

τ

(
2(1 + ǫ) ‖x− x∗‖+ (2 + ǫ) ‖n‖+ ǫτ

40

)

= τ − τ

√
1−

(
4 + 4ǫ

τ
‖x− x∗‖+ 4 + 2ǫ

τ
‖n‖+ ǫ

20

)
. (77)

Under the assumption that ‖x− x∗‖+ 7
8 ‖n‖ ≤ 0.184τ , it follows that the term inside the parenthesis

in the last line above does not exceed one and therefore,

dM(x̂, x∗) ≤ (4 + 4ǫ) ‖x− x∗‖+ (4 + 2ǫ) ‖n‖+ ǫτ

20
.

This completes the proof of Theorem 5.
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