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ABSTRACT
We present a novel Locality-Sensitive Hashing scheme for the Ap-
proximate Nearest Neighbor Problem under lp norm, based on p-
stable distributions.

Our scheme improves the running time of the earlier algorithm
for the case of the l2 norm. It also yields the first known provably
efficient approximate NN algorithm for the case p < 1. We also
show that the algorithm finds the exactnear neigbhor in O(log n)
time for data satisfying certain “bounded growth” condition.

Unlike earlier schemes, our LSH scheme works directly on points
in the Euclidean space without embeddings. Consequently, the re-
sulting query time bound is free of large factors and is simple and
easy to implement. Our experiments (on synthetic data sets) show
that the our data structure is up to 40 times faster than kd-tree.

Categories and Subject Descriptors
E.1 [Data]: Data Structures; F.0 [Theory of Computation]: Gen-
eral

General Terms
Algorithms, Experimentation, Design, Performance, Theory

Keywords
Sublinear Algorithm, Approximate Nearest Neighbor, Locally Sen-
sitive Hashing, p-Stable Distributions

1. INTRODUCTION
A similarity search problem involves a collection of objects (doc-

uments, images, etc.) that are characterized by a collection of rel-
evant features and represented as points in a high-dimensional at-
tribute space; given queries in the form of points in this space, we
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are required to find the nearest (most similar) object to the query. A
particularly interesting and well-studied instance is d-dimensional
Euclidean space. This problem is of major importance to a variety
of applications; some examples are: data compression, databases
and data mining, information retrieval, image and video databases,
machine learning, pattern recognition, statistics and data analysis.
Typically, the features of the objects of interest (documents, im-
ages, etc) are represented as points in <d and a distance metric is
used to measure similarity of objects. The basic problem then is
to perform indexing or similarity searching for query objects. The
number of features (i.e., the dimensionality) ranges anywhere from
tens to thousands.

The low-dimensional case (say, for the dimensionality d equal to
2 or 3) is well-solved, so the main issue is that of dealing with a
large number of dimensions, the so-called “curse of dimensional-
ity”. Despite decades of intensive effort, the current solutions are
not entirely satisfactory; in fact, for large enough d, in theory or in
practice, they often provide little improvement over a linear algo-
rithm which compares a query to each point from the database. In
particular, it was shown in [28] (both empirically and theoretically)
that all current indexing techniques (based on space partitioning)
degrade to linear search for sufficiently high dimensions.

In recent years, several researchers proposed to avoid the run-
ning time bottleneck by using approximation(e.g., [3, 22, 19, 24,
15], see also [12]). This is due to the fact that, in many cases, ap-
proximate nearest neighbor is almost as good as the exact one; in
particular, if the distance measure accurately captures the notion
of user quality, then small differences in the distance should not
matter. In fact, in situations when the quality of the approximate
nearest neighbor is much worse than the quality of the actual near-
est neighbor, then the nearest neighbor problem is unstable, and it
is not clear if solving it is at all meaningful [4, 17].

In [19, 14], the authors introduced an approximate high-dimensional
similarity search scheme with provably sublinear dependence on
the data size. Instead of using tree-like space partitioning, it re-
lied on a new method called locality-sensitive hashing (LSH). The
key idea is to hash the points using several hash functions so as to
ensure that, for each function, the probability of collision is much
higher for objects which are close to each other than for those which
are far apart. Then, one can determine near neighbors by hashing
the query point and retrieving elements stored in buckets containing
that point. In [19, 14] the authors provided such locality-sensitive
hash functions for the case when the points live in binary Hamming
space f0; 1gd. They showed experimentally that the data structure
achieves large speedup over several tree-based data structures when
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the data is stored on disk. In addition, since the LSH is a hashing-
based scheme, it can be naturally extended to the dynamicsetting,
i.e., when insertion and deletion operations also need to be sup-
ported. This avoids the complexity of dealing with tree structures
when the data is dynamic.

The LSH algorithm has been since used in numerous applied
settings, e.g., see [14, 10, 16, 27, 5, 7, 29, 6, 26, 13]. However,
it suffers from a fundamental drawback: it is fast and simple only
when the input points live in the Hamming space (indeed, almost
all of the above applications involved binary data). As mentioned
in [19, 14], it is possible to extend the algorithm to the l2 norm, by
embedding l2 space into l1 space, and then l1 space into Hamming
space. However, it increases the query time and/or error by a large
factor and complicates the algorithm.

In this paper we present a novel version of the LSH algorithm.
As with the previous schemes, it works for the (R; c)-Near Neigh-
bor (NN) problem, where the goal is to report a point within dis-
tance cR from a query q, if there is a point in the data set P within
distance R from q. Unlike the earlier algorithm, our algorithm
works directly on points in Euclidean space without embeddings.
As a consequence, it has the following advantages over the previous
algorithm:

� For the l2 norm, its query time is O(dn�(c) log n), where
�(c) < 1=c for c 2 (1; 10] (the inequality is strict, see Fig-
ure 1(b)). Thus, for large range of values of c, the query time
exponent is better than the one in [19, 14].

� It is simple and quite easy to implement.

� It works for any lp norm, as long as p 2 (0; 2]. Specifically,
we show that for any p 2 (0; 2] and 
 > 0 there exists an
algorithm for (R; c)-NN under lpd which uses O(dn+n1+�)
space, with query time O(n� log1=
 n), where where � �
(1 + 
) � max

�
1
cp
; 1
c

�
. To our knowledge, this is the only

known provablealgorithm for the high-dimensional nearest
neighbor problem for the case p < 1. Similarity search under
such fractionalnorms have recently attracted interest [1, 11].

Our algorithm also inherits two very convenient properties of
LSH schemes. The first one is that it works well on data that is
extremely high-dimensional but sparse. Specifically, the running
time bound remains unchanged if d denotes the maximum number
of non-zero elements in vectors. To our knowledge, this property
is not shared by other known spatial data structures. Thanks to
this property, we were able to use our new LSH scheme (specif-
ically, the l1 norm version) for fast color-based image similarity
search [20]. In that context, each image was represented by a point
in roughly 1003-dimensional space, but only about 100 dimensions
were non-zero per point. The use of our LSH scheme enabled
achieving order(s) of magnitude speed-up over the linear scan.

The second property is that our algorithm provably reports the
exactnear neighbor very quickly, if the data satisfies certain bounded
growth property. Specifically, for a query point q, and c � 1, let
N(q; c) be the number of c-approximate nearest neighbors of q in
P . If N(q; c) grows “sub-exponentially” as a function of c, then
the LSH algorithm reports p, the nearest neighbor, with constant
probability within time O(d log n), assuming it is given a constant
factor approximation to the distance from q to its nearest neighbor.
In particular, we show that if N(q; c) = O(cb), then the running
time is O(log n+2O(b)). Efficient nearest neighbor algorithms for
data sets with polynomial growth properties in general metrics have
been recently a focus of several papers [9, 21, 23]. LSH solves an
easier problem (near neighbor under l2 norm), while working under

weaker assumptions about the growth function. It is also somewhat
faster, due to the fact that the log n factor in the query time of the
earlier schemes is multipliedby a function of b, while in our case
this factor is additive.

We complement our theoretical analysis with experimental eval-
uation of the algorithm on data with wide range of parameters. In
particular, we compare our algorithm to an approximate version of
the kd-tree algorithm [2]. We performed the experiments on syn-
thetic data sets containing “planted” near neighbor (see section 5
for more details); similar model was earlier used in [30]. Our ex-
periments indicate that the new LSH scheme achieves query time of
up to 40 times better than the query time of the kd-tree algorithm.

1.1 Notations and problem definitions
We use ldp to denote the space <d under the lp norm. For any

point v 2 <d, we denote by jj~vjjp the lp norm of the vector ~v. Let
M = (X; d) be any metric space, and v 2 X . The ball of radius r
centered at v is defined as B(v; r) = fq 2 X j d(v; q) � rg.

Let c = 1 + �. In this paper we focus on the (R; c)-NN prob-
lem. Observe that (R; c)-NN is simply a decision version of the
Approximate Nearest Neighbor problem. Although in many ap-
plications solving the decision version is good enough, one can
also reduce the approximate NN problem to approximate NN via
binary-search-like approach. In particular, it is known [19, 15] that
the c-approximate NN problem reduces to O(log(n=�)) instances
of (R; c)-NN. Then, the complexity of c-approximate NN is the
same (within log factor) as that of the (R; c)-NN problem.

2. LOCALITY-SENSITIVE HASHING
An important technique from [19], to solve the (R; c)-NN prob-

lem is locality sensitive hashing or LSH. For a domain S of the
points set with distance measure D, an LSH family is defined as:

DEFINITION 1. A familyH = fh : S ! Ug is called(r1; r2; p1; p2)-
sensitive for D if for any v; q 2 S

� if v 2 B(q; r1) thenPrH[h(q) = h(v)] � p1,

� if v =2 B(q; r2) thenPrH[h(q) = h(v)] � p2.

In order for a locality-sensitive hash (LSH) family to be useful, it
has to satisfy inequalities p1 > p2 and r1 < r2.

We will briefly describe, from [19], how a LSH family can be
used to solve the (R; c)-NN problem: We choose r1 = R and
r2 = c � R. Given a family H of hash functions with parame-
ters (r1; r2; p1; p2) as in Definition 1, we amplify the gap between
the “high” probability p1 and “low” probability p2 by concate-
nating several functions. In particular, for k specified later, de-
fine a function family G = fg : S ! Ukg such that g(v) =
(h1(v); : : : ; hk(v)), where hi 2 H. For an integer L we choose
L functions g1; : : : ; gL from G, independently and uniformly at
random. During preprocessing, we store each v 2 P (input point
set) in the bucket gj(v), for j = 1; : : : ; L. Since the total num-
ber of buckets may be large, we retain only the non-empty buck-
ets by resorting to hashing. To process a query q, we search all
buckets g1(q); : : : ; gL(q); as it is possible (though unlikely) that
the total number of points stored in those buckets is large, we in-
terrupt search after finding first 3L points (including duplicates).
Let v1; : : : ; vt be the points encountered therein. For each vj , if
vj 2 B(q; r2) then we return YES and vj , else we return NO.

The parameters k and L are chosen so as to ensure that with a
constant probability the following two properties hold:

1. If there exists v� 2 B(q; r1) then gj(v�) = gj(q) for some
j = 1 : : : L, and
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2. The total number of collisions of q with points from P �
B(q; r2) is less than 3L, i.e.

LX
j=1

j(P �B(q; r2)) \ g�1j (gj(q))j < 3L:

Observe that if (1) and (2) hold, then the algorithm is correct.
It follows (see [19] Theorem 5 for details) that if we set k =
log1=p2 n, and L = n� where � = ln 1=p1

ln 1=p2
then (1) and (2) hold

with a constant probability. Thus, we get following theorem (slightly
different version of Theorem 5 in [19]), which relates the efficiency
of solving (R; c)-NN problem to the sensitivity parameters of the
LSH.

THEOREM 1. Suppose there is a(R; cR; p1; p2)-sensitive fam-
ily H for a distance measureD. Then there exists an algorithm
for (R; c)-NN under measureD which usesO(dn+ n1+�) space,
with query time dominated byO(n�) distance computations, and
O(n� log1=p2 n) evaluations of hash functions fromH, where� =
ln 1=p1
ln 1=p2

.

3. OUR LSH SCHEME
In this section, we present a LSH family based on p-stable dis-

tributions, that works for all p 2 (0; 2].
Since we consider points in ldp, without loss of generality we can

consider R = 1, which we assume from now on.

3.1 p-stable distributions
Stable distributions [31] are defined as limits of normalized sums

of independent identically distributed variables (an alternate defini-
tion follows). The most well-known example of a stable distribu-
tion is Gaussian (or normal) distribution. However, the class is
much wider; for example, it includes heavy-tailed distributions.
Stable Distribution: A distribution D over < is called p-stable, if
there exists p � 0 such that for any n real numbers v1 : : : vn and
i.i.d. variables X1 : : : Xn with distribution D, the random variableP

i viXi has the same distribution as the variable (
P

i jvijp)1=pX ,
where X is a random variable with distribution D.

It is known [31] that stable distributions exist for any p 2 (0; 2].
In particular:

� a Cauchy distributionDC , defined by the density function
c(x) = 1

�
1

1+x2
, is 1-stable

� a Gaussian (normal) distributionDG, defined by the density
function g(x) = 1p

2�
e�x

2=2, is 2-stable

We note from a practical point of view, despite the lack of closed
form density and distribution functions, it is known [8] that one
can generate p-stable random variables essentially from two inde-
pendent variables distributed uniformly over [0; 1].

Stable distribution have found numerous applications in various
fields (see the survey [25] for more details). In computer science,
stable distributions were used for “sketching” of high dimensional
vectors by Indyk ([18]) and since have found use in various ap-
plications. The main property of p-stable distributions mentioned
in the definition above directly translates into a sketching tech-
nique for high dimensional vectors. The idea is to generate a ran-
dom vector a of dimension d whose each entry is chosen indepen-
dently from a p-stable distribution. Given a vector v of dimension
d, the dot product a:v is a random variable which is distributed
as (
P

i jvijp)1=pX (i.e., jjvjjpX), where X is a random variable
with p-stable distribution. A small collection of such dot products

(a:v), corresponding to different a’s, is termed as the sketch of
the vector v and can be used to estimate jjvjjp (see [18] for de-
tails). It is easy to see that such a sketch is linearly composable, i.e.
a:(v1 � v2) = a:v1 � a:v2.

3.2 Hash family
In this paper we use p-stable distributions in a slightly different

manner. Instead of using the dot products (a:v) to estimate the lp
norm we use them to assign a hash value to each vector v. Intu-
itively, the hash function family should be locality sensitive, i.e. if
two vectors (v1;v2) are close (small jjv1�v2jjp) then they should
collide (hash to the same value) with high probability and if they
are far they should collide with small probability. The dot product
a:v projects each vector to the real line; It follows from p-stability
that for two vectors (v1;v2) the distance between their projections
(a:v1�a:v2) is distributed as jjv1�v2jjpX where X is a p-stable
distribution. If we “chop” the real line into equi-width segments of
appropriate size r and assign hash values to vectors based on which
segment they project onto, then it is intuitively clear that this hash
function will be locality preserving in the sense described above.

Formally, each hash function ha;b(v) : Rd ! N maps a d
dimensional vector v onto the set of integers. Each hash function
in the family is indexed by a choice of random a and b where a is,
as before, a d dimensional vector with entries chosen independently
from a p-stable distribution and b is a real number chosen uniformly
from the range [0; r]. For a fixed a; b the hash function ha;b is
given by ha;b(v) = ba�v+b

r
c

Next, we compute the probability that two vectors v1;v2 collide
under a hash function drawn uniformly at random from this family.
Let fp(t) denote the probability density function of the absolute
value of the p-stable distribution. We may drop the subscript p
whenever it is clear from the context. For the two vectors v1; v2,
let c = jjv1�v2jjp. For a random vectorawhose entries are drawn
from a p-stable distribution, a:v1�a:v2 is distributed as cX where
X is a random variable drawn from a p-stable distribution. Since b
is drawn uniformly from [0; r] it is easy to see that

p(c) = Pra;b[ha;b(v1) = ha;b(v2)] =

Z r

0

1

c
fp(

t

c
)(1� t

r
)dt

For a fixed parameter r the probability of collision decreases
monotonically with c = jjv1 � v2jjp. Thus, as per Definition 1
the family of hash functions above is (r1; r2; p1; p2)-sensitive for
p1 = p(1) and p2 = p(c) for r2=r1 = c.

In what follows we will bound the ratio � = ln 1=p1
ln 1=p2

, which as
discussed earlier is critical to the performance when this hash fam-
ily is used to solve the (R; c)-NN problem.

Note that we have not specified the parameter r, for it depends
on the value of c and p. For every c we would like to choose a finite
r that makes � as small as possible.

4. COMPUTATIONAL ANALYSIS OF THE
RATIO � = ln 1=P1

ln 1=P2

In this section we focus on the cases of p = 1; 2. In these cases
the ratio � can be explicitly evaluated. We compute and plot this
ratio and compare it with 1=c. Note, 1=c is the best (smallest)
known exponent for n in the space requirement and query time that
is achieved in [19] for these cases.

4.1 Computing the ratio � for special cases
For the special cases p = 1; 2 we can compute the probabili-

ties p1; p2, using the density functions mentioned before. A simple
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calculation shows that p2 = 2 tan
�1(r=c)
�

� 1
�(r=c)

ln(1 + (r=c)2)

for p = 1 (Cauchy) and p2 = 1 � 2norm(�r=c) � 2p
2�r=c

(1 �
e�(r

2=2c2)) for p = 2 (Gaussian), where norm(�) is the cumu-
lative distribution function (cdf) for a random variable that is dis-
tributed as N(0; 1). The value of p1 can be obtained by substituting
c = 1 in the formulas above.

For c values in the range [1; 10] (in increments of 0:05) we com-
pute the minimum value of �, �(c) = minr log(1=p1)= log(1=p2),
using Matlab. The plot of c versus �(c) is shown in Figure 1. The
crucial observation for the case p = 2 is that the curve correspond-
ing to optimal ratio � (�(c)) lies strictly below the curve 1=c. As
mentioned earlier, this is a strict improvement over the previous
best known exponent 1=c from [19]. While we have computed here
�(c) for c in the range [1; 10], we believe that �(c) is strictly less
than 1=c for all values of c.

For the case p = 1, we observe that �(c) curve is very close
to 1=c, although it lies above it. The optimal �(c) was computed
using Matlabas mentioned before. The Matlabprogram has a limit
on the number of iterations it performs to compute the minimum of
a function. We reached this limit during the computations. If we
compute the true minimum, then we suspect that it will be very
close to 1=c, possibly equal to 1=c, and that this minimum might
be reached at r =1.

If one were to implement our LSH scheme, ideally they would
want to know the optimal value of r for every c. For p = 2, for a
given value of c, we can compute the value of r that gives the op-
timal value of �(c). This can be done using programs like Matlab.
However, we observe that for a fixed c the value of � as a function
of r is more or less stable after a certain point (see Figure 2). Thus,
we observe that � is not very sensitive to r beyond a certain point
and as long we choose r “sufficiently” away from 0, the � value
will be close to optimal. Note, however that we should not choose
an r value that is too large. As r increases, both p1 and p2 get closer
to 1. This increases the query time, since k, which is the “width” of
each hash function (refer to Subsection 2), increases as log1=p2 n.

We mention that for the l2 norm, the optimal value of r appears
to be a (finite) function of c.

We also plot � as a function of c for a few fixed r values(See
Figure 3). For p = 2, we observe that for moderate r values the
� curve “beats” the 1=c curve over a large range of c that is of
practical interest. For p = 1, we observe that as r increases the �
curve drops lower and gets closer and closer to the 1=c curve.

5. EMPIRICAL EVALUATION OF OUR TECH-
NIQUE

In this section we present an experimental evaluation of our novel
LSH scheme. We focus on the Euclidean norm case, since this oc-
curs most frequently in practice. Our data structure is implemented
for main memory.

In what follows, we briefly discuss some of the issues pertaining
to the implementation of our technique. We then report some pre-
liminary performance results based on an empirical comparison of
our technique to the kd-tree data structure.
Parameters and Performance Tradeoffs: The three main param-
eters that affect the performance of our algorithm are: number of
projections per hash value (k), number of hash tables (l) and the
width of the projection (r). In general, one could also introduce an-
other parameter (say T ), such that the query procedure stops after
retrieving T points. In our analysis, T was set to 3l. In our exper-
iments, however, the query procedure retrieved all points colliding
with the query (i.e., we used T =1). This reduces the number of
parameters and simplifies the choice of the optimal.

For a given value of k, it is easy to find the optimal value of l
which will guarantee that the fraction of false negatives are no more
than a user specified threshold. This process is exactly the same as
in an earlier paper by Cohen et al. ([10]) that uses locality sensitive
hashing to find similar column pairs in market-basket data, with
the similarity exceeding a certain user specified threshold. In our
experiments we tried a few values of k (between 1 and 10) and
below we report the k that gives the best tradeoff for our scenario.
The parameter k represents a tradeoff between the time spent in
computing hash values and time spent in pruning false positives, i.e.
computing distances between the query and candidates; a bigger k
value increases the number of hash computations. In general we
could do a binary search over a large range to find the optimal k
value. This binary search can be avoided if we have a good model
of the relative times of hash computations to distance computations
for the application at hand.

Decreasing the width of the projection (r) decreases the proba-
bility of collision for any two points. Thus, it has the same effect as
increasing k. As a result, we would like to set r as small as possi-
ble and in this way decrease the number of projections we need to
make. However, decreasing r below a certain threshold increases
the quantity �, thereby requiring us to increase l. Thus we cannot
decrease r by too much. For the l2 norm we found the optimal
value of r using Matlab which we used in our experiments.

Before we report our performance numbers we will next describe
the data set and query set that we used for testing.
Data Set: We used synthetically generated data sets and query
points to test our algorithm. The dimensionality of the underlying
l2 space was varied between 20 and 500. We considered generating
all the data and query points independently at random. Thus, for a
data point (or query point) its coordinate along every dimension
would be chosen independently and uniformly at random from a
certain range [�a; a]. However, if we did that, given a query point
all the data points would be sharply concentrated at the same dis-
tance from the query point as we are operating in high dimensions.
Therefore, approximate nearest neighbor search would not make
sense on such a data set. Testing approximate nearest neighbor re-
quires that for every query point q, there are few data points within
distance R from q and most of the points are at a distance no less
than (1 + �)R. We call this a “planted nearest neighbor model”.

In order to ensure this property we generate our points as follows
(a similar approach was used in [30]). We first generate the query
points at random, as above. We then generate the data points in
such a way that for every query point, we guarantee at least a single
point within distanceR and all other points are distance no less than
(1 + �)R. This novel way of generating data sets ensures every
query point has a few (in our case, just one) approximate nearest
neighbors, while most points are far from the query.

The resulting data set has several interesting properties. Firstly,
it constitutes the worst-case input to LSH (since there is only one
correct nearest neighbor, and all other points are “almost” correct
nearest neighbors). Moreover, it captures the typical situation oc-
curring in real life similarity search applications, in which there are
few points that are relatively close to the query point, and most of
the database points lie quite far from the query point.

For our experiments the range [�a; a] was set to [�50; 50]. The
total number of data points was varied between 104 and 105 . Both
our algorithm and the kd-tree take as input the approximation factor
c = (1 + �). However, in addition to c our algorithm also requires
as input the value of the distance R (upper bound) to the nearest
neighbor. This can be avoided by guessing the value of R and
doing a binary search. We feel that for most real life applications it
is easy to guess a range for R that is not too large. As a result the
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Figure 1: Optimal � vs c

additional multiplicative overhead of doing a binary search should
not be much and will not cancel the gains that we report.

Experimental Results: We did three sets of experiments to eval-
uate the performance of our algorithm versus that of kd-tree: we
increased the number n of data points, the dimensionality d of the
data set, and the approximation factor c = (1 + �). In each set of
experiments we report the average query processing times for our
algorithm and the kd-tree algorithm, and also the ratio of the two
((average query time for kd-tree)/( average query time for our al-
gorithm)), i.e. the speedup achieved by our algorithm. We ran our
experiments on a Sun workstation with 650 MHz UltraSPARC-IIi,
512KB L2 cache processor, having no special support for vector
computations, with 512 MB of main memory.

For all our experiments we set the parameters k = 10 and ` =
30. Moreover, we set the percentage of false negatives that we can
tolerate up to 10% and indeed for all the experiments that we report
below we did not get the more than 7:5% false negatives, in fact less
in most cases.

For all the query time graphs that we present, the curve that lies
above is that of kd-tree and the one below is for our algorithm.

For the first experiment we fixed � = 1, d = 100 and r = 4 (the
width of projection). We varied the number of data points from
104 to 105. Figures 4(a) and 4(b) show the processing times and
speedup respectively as n is varied. As we see from the Figures,
the speedup seems to increase linearly with n.

For the second experiment we fixed � = 1, n = 105 and r = 4.
We varied the dimensionality of the data set from 20 to 500. Fig-
ures 5(a) and 5(b) show the processing times and speedup respec-
tively as d is varied. As we see from the Figures, the speedup seems
to increase with the dimension.

For the third experiment we fixed n = 105 and d = 100. The
approximation factor (1+ �) was varied from 1:5 to 4. The width r
was set appropriately as a function of �. Figures 6(a) and 6(b) show
the processing times and speedup respectively as � is varied.
Memory Requirement: The memory requirement for our algo-
rithm equals the memory to store the data points themselves and
the memory required to store the hash tables. From our experi-
ments, typical values of k and l are 10 and 30 respectively. If we
insert each point in the hash tables along with their hash values and

a pointer to the data point itself, it will require l � (k + 1) words
(int) of memory, which for our typical k; l values evaluates to 330
words. We can reduce the memory requirement by not storing the
hash value explicitly as concatenation of k projections, but instead
hash these k values in turn to get a single word for the hash. This
would reduce the memory requirement to l�2, i.e. 60 words per data
point. If the data points belong to a high dimensional space (e.g.,
with 500 dimension or more), then the overhead of maintaining the
hash table is not much (around 12% with the optimization above)
as compared to storing the points themselves. Thus, the memory
overhead of our algorithm is small.

6. CONCLUSIONS
In this paper we present a new LSH scheme for the similarity

search in high-dimensional spaces. The algorithm is easy to im-
plement, and generalizes to arbitrary lp norm, for p 2 [0; 2]. We
provide theoretical, computational and experimental evaluations of
the algorithm.

Although the experimental comparison of LSH and kd-tree-based
algorithm suggests that the former outperforms the latter, there are
several caveats that one needs to keep in mind:

� We used the kd-tree structure “as is”. Tweaking its parame-
ters would likely improve its performance.

� LSH solves the decision version of the nearest neighbor prob-
lem, while kd-tree solves the optimization version. Although
the latter reduces to the former, the reduction overhead in-
creases the running time.

� One could run the approximate kd-tree algorithm with ap-
proximation parameter c that is much larger than the intended
approximation. Although the resulting algorithm would pro-
vide very weak guarantee on the quality of the returned neigh-
bor, typically the actual error is much smaller than the guar-
antee.
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APPENDIX

A. GROWTH-RESTRICTED DATA SETS
In this section we focus exclusively on data sets living in the ld2

norm.
Consider a data set P , query q, and let p be the closest point

in P to q. Assume we know the distance kp � qk, in which case
we can assume that it is equal to 1, by scaling1. For c � 1, let
P (q; c) = P \B(q; c) and let N(q; c) = jP (q; c)j.

We consider a “single shot” LSH algorithm, i.e., one that uses
only L = 1 indices, but examines all points in the bucket contain-
ing q. We use the parameters k = r = T log n, for some constant
T > 1. This implies that the hash function can be evaluated in time
O(log n).

THEOREM 2. If N(q; c) = O(cb) for someb > 1, then the
“single shot” LSH algorithm findsp with constant probability in
expected timed(log n+ 2O(b)).

Proof: For any point p0 such that kp0 � qk = c, the probability
that h(p0) = h(q) is equal to p(c) =

R r
0

1
c
f2(

t
c
)(1� t

r
)dt, where

f2(x) =
2p
2�
e�x

2=2. Therefore

p(c) =
2p
2�

Z r

0

1

c
e�(

t
c
)2=2dt� 2p

2�

Z r

0

1

c
e�(

t
c
)2=2 t

r
dt

= S1(c)� S2(c)

Note that S1(c) � 1. Moreover

S2(c) =
2p
2�

� c
r

Z r

0

e�(
t
c
)2=2 t

c2
dt

S2(c) =
2p
2�

� c
r

Z r2=(2c2)

0

e�ydy

S2(c) =
2p
2�

c

r
[1� e�r

2=(2c2)]

We have p(1) = S1(1)�S2(1) � 1�er2=2� 2p
2�r

� 1�A=r,
for some constant A > 0. This implies that the probability that p
1Similar guarantees can be proved when we only know a constant
approximation to the distance.
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Figure 4: Gain as data size varies

collides with q is at least (1� A=r)k � e�A. Thus the algorithm
is correct with constant probability.

If c2 � r2=2, then we have

p(c) � 1� 2p
2�

c

r
(1� 1=e)

or equivalently p(c) � 1�Bc=r, for proper constants B > 0.
Now consider the expected number of points colliding with q.

Let C be a multiset containing all values of c = kp0 � qk=kp� qk
over p0 2 P . We have

E[jP \ g�1(q)j] =
X
c2C

p(c)k

=
X

c2C;c�r=
p
2

p(c)k +
X

c2C;c>r=
p
2

p(c)k

�
X

c2C;c�r=p2
(1�Bc=r)k + (1� Bp

2
)rn

�
Z r=

p
2

1

(1�Bc=r)kN(q; c+ 1)dc+O(1)

�
Z r=

p
2

1

e�BcN(q; c+ 1)dc+O(1)

If N(q; t) = O(cb), then we have

E[jP \ g�1(q)j] = O

 Z r=
p
2

1

e�Bc(c+ 1)bdc

!
= 2O(b)

B. ASYMPTOTIC ANALYSIS FOR THE GEN-
ERAL CASE

THEOREM 3. For any p 2 (0; 2] there is a(r1; r2; p1; p2)-
sensitive familyH for ldp such that for any
 > 0,

� =
ln 1=p1
ln 1=p2

� (1 + 
) �max

�
1

cp
;
1

c

�
:

We prove that for the general case (p 2 (0; 2]) the ratio �(c) gets
arbitrarily close to max

�
1
cp
; 1
c

�
. For the case p < 1, our algorithm

is the first algorithm to solve this problem, and so there is no ex-
isting ratio against which we can compare our result. However, we
show that for this case � is arbitrarily close to 1

cp
. The proof follows

from the following two Lemmas, which together imply Theorem 3.
Let l = 1�p2

1�p1 , x = 1� p1. Then � = log(1�x)
log(1�lx) � 1�p1

1�p2 by the
following lemma.

LEMMA 1. For x 2 [0; 1) and l � 1 such that1� lx > 0,

log(1 � x)

log(1� lx)
� 1

l
:

Proof: Noting log(1� lx) < 0, the claim is equivalent to l log(1�
x) � log(1� lx). This in turn is equivalent to

g(x) � (1� lx)� (1� x)l � 0:

This is trivially true for x = 0. Furthermore, taking the derivative,
we see g0(x) = �l + l(1 � x)l�1, which is non-positive for x 2
[0; 1) and l � 1. Therefore, g is non-increasing in the region in
which we are interested, and so g(x) � 0 for all values in this
region.

Now our goal is to upper bound 1�p1
1�p2 .

LEMMA 2. For any
 > 0, there isr = r(c; p; 
) such that

1 � p1
1 � p2

� (1 + 
) �max

�
1

cp
;
1

c

�
:

Proof: Using the values of p1; p2 calculated in Sub-section 3.2,
followed by a change of variables, we get

1� p1
1� p2

=
1� R r

0
(1� t0

r
)f(t0)dt0

1� R r
0
(1� t0

r
) 1
c
f( t

0

c
)dt0

=
1� R r

0
(1� t

r
)f(t)dt

1� R r=c
0

(1� tc
r
)f(t)dt

=
(1� R r

0
f(t)dt) + 1

r

R r
0
tf(t)dt

(1� R r=c
0

f(t)dt) + c
r

R r=c
0

tf(t)dt
:
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Figure 5: Gain as dimension varies

Setting

F (x) = 1�
Z x

0

f(t)dt

and

G(x) =
1

x

Z x

0

tf(t)dt

we see

1� p1
1� p2

=
F (r) +G(r)

F (r=c) +G(r=c)

� max

�
F (r)

F (r=c)
;
G(r)

G(r=c)

�
:

First, we consider p 2 (0; 2)�f1g and discuss the special cases
p = 1 and p = 2 towards the end. We bound F (r)=F (r=c). Notice
F (x) = Pra[a > x] for a drawn according to the absolute value
of a p-stable distribution with density function f(�). To estimate
F (x), we can use the Pareto estimation ([25]) for the cumulative
distribution function, which holds for 0 < p < 2,

8Æ > 0 9x0 s:t: 8x � x0;
Cpx

�p(1� Æ) � F (x) � Cpx
�p(1 + Æ)

where Cp = 2
�
�(p) sin(�p=2). Note that the extra factor 2 is due

to the fact that the distribution function is for the absolute value of
the p-stable distribution. Fix Æ = min(
=4; 1=2). For this value of
Æ let r0 be the x0 in the equation above.

If we set r > r0 we get

F (r)

F (r=c)
� Cpr

�p(1 + Æ)

Cp(r=c)�p(1� Æ)

� r�p(1 + Æ)(1 + 2Æ)

(r=c)�p

�
�
1

c

�p
(1 + 4Æ)

�
�
1

c

�p
(1 + 
) :

Now we bound G(r)=G(r=c). We break the proof down into
two cases based on the value of p.

Case 1: p > 1. For these p-stable distributions,
R1
0

tf(t)dt con-
verges to, say, kp (since the random variables drawn from those
distributions have finite expectations). As tf(t) is non-negative
on [0;1),

R x
0
tf(t)dt is a monotonically increasing function of x

which converges to kp. Thus, for every Æ0 > 0 there is some r00
such that

(1� Æ0)kp �
Z r0

0

0

tf(t)dt:

Set Æ0 = min(
=2; 1=2) and choose r0 > cr00. Then

G(r0)
G(r0=c)

=
1
r0

R r0
0
tf(t)dt

c
r0

R r0
0

0
tf(t)dt+ c

r0

R r0=c
r0
0

tf(t)dt

�
1
r0

R1
0

tf(t)dt

c
r0

R r0
0

0
tf(t)dt

�
1
r0
kp

c
r0
(1� Æ0)kp

� 1

c
(1 + 2Æ0)

� 1

c
(1 + 
): (1)

Case 2: p < 1. For this case we will choose our parameters so that
we can use the Pareto estimation for the density function. Choose
x0 large enough so that the Pareto estimation is accurate to within
a factor of (1� Æ) for x > x0. Then for x > x0,

G(x) = 1
x

R x0
0

tf(t)dt+ 1
x

R x
x0
tf(t)dt

< 1
x

R x0
0

tf(t)dt+ 1+Æ
x

R x
x0
pCpt

�pdt

= 1
x

R x0
0

tf(t)dt +

(
pCp

x(1�p)x
�p+1 � pCp

x(1�p)x0
�p+1)(1 + Æ)

= 1
x
(
R x0
0

tf(t)dt� pCp(1+Æ)

(1�p) x0
�p+1) +

1
xp

(
pCp

(1�p) (1 + Æ)):
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Since x0 is a constant that depends on Æ, the first term decreases as
1=x while the second term decreases as 1=xp where p < 1. Thus
for every Æ0 there is some x1 such that for all x > x1, the first term
is at most Æ0 times the second term. We choose Æ0 = Æ. Then for
x > max(x1; x0),

G(x) < (1 + Æ)2
�

pCp

(1� p)xp

�
:

In the same way we obtain

G(x) > (1� Æ)2
�

pCp

(1� p)xp

�
:

Using these two bounds, we see for r > cmax(x1; x0),

G(r)

G(r=c)
<

(1 + Æ)2
�

pCp

(1�p)rp
�

(1� Æ)2
�

pCp

(1�p)(r=c)p
�

� 1

cp
(1 + 9Æ)

� 1

cp
(1 + 
)

for Æ < min(
=9; 1=2).
We now consider the special cases of p 2 f1; 2g. For the case

of p = 1, we have the Cauchy distribution and we can compute

directly G(r) = ln(r2+1)
�r

and F (r) = 1 � 2
�
tan�1(r). In fact

for the ratio F (r)
F (r=c)

, the previous analysis for general p works here.

As for the ratio G(r)

G(r=c)
, we can prove the upper bound of 1

c
using

L’Hopital rule, as follows:

lim
r!1

G(r)

G( r
c
)

= lim
r!1

ln(r2 + 1)

c ln((r=c)2 + 1)

= lim
r!1

2r
(r2+1)

c( 2r
c2(r2=c2+1)

)

= lim
r!1

c2(r2=c2 + 1)

c(r2 + 1)

= lim
r!1

c2(2r=c2)

2cr

=
1

c
:

Also for the case p = 2, i.e. the normal distribution, the compu-
tation is straightforward. We use the fact that for this case F (r) '
f(r)=r and G(r) = 2p

2�

1�e
�r2

2

r
, where f(r) is the normal den-

sity function. For large values of r, G(r) clearly dominates F (r),

because F (r) decreases exponentially (e�r
2=2) while G(r) de-

creases as 1=r. Thus, we need to approximate G(r)
G(r=c)

as r tends

to infinity, which is clearly 1
c

.

lim
r!1

G(r)

G( r
c
)
= lim

r!1
1� e

�r2

2

c(1� e
� r2

2c2 )
=

1

c

Notice that similar to the previous parts, we can find the appro-
priate r(c; p; 
) such that 1�p1

1�p2 is at most most (1 + 
) 1
c

.
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