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1. Introduction.

An affine map Φ: Rn → Rn is a map of the form

Φ(x) := Ax + b

where A : Rn → Rn is linear and b ∈ Rn is a constant vector. This is
nonsingular iff detA 6= 0. An ellipsoid in Rn the image of the closed unit
ball Bn of Rn under a nonsingular affine map. Our goal here is to prove the
following famous result of Fritz John.

Theorem 1 (John [3]). Let K ⊂ Rn be a convex body (that is a compact
convex set with nonempty interior). Then there is an ellipsoid E (called the
John ellipsoid which will turn out to be the ellipsoid of maximal volume
contained in K) so that if c is the center of E then the inclusions

E ⊆ K ⊆ c + n(E − c).

hold. (Here c + n(E − c) is the set of points {c + n(x− c) : x ∈ E}. This is
the dilation of E by a factor of n with center c.)
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Remark 1.1. This result is sharp in the sense that the dilation factor n can
not be replaced by a smaller factor. As an example let x0, . . . , xn be an
affinely independent set of points in Rn and let K be the convex hull of
{x0, . . . , xn}. That is K is an n dimensional simplex in Rn. Then if E is
the ellipsoid of maximal volume in K then E ⊆ K ⊆ c+n(E− c), but there
is no ellipsoid E′ ⊆ K so that E′ ⊆ K ⊆ c′ +m(E′− c′) for any real number
m < n. For the outline the proof of these claims see Section 4.1. For anther
example see Remark 2.3. ¤

The proof here is one I came up with based loosely on ideas in the ex-
pository article [2] of Berger where he gives a similar proof in the case K is
symmetric about the origin. For a different proof, which in many ways is
preferable to the bare handed approach here, see the article of Keith Ball [1].
John original proof [3] (and I thank Steve Dilworth for giving me a copy of
this paper) is quite different and deduces the result from a more general
result on maxima and minima of functions subject to inequality constraints
very much in spirit of what is now called “geometric programming”.

2. Proof of the theorem.

For the rest of this section K will be a convex body in Rn. The basic
idea of the proof is to choose E ⊂ Rn to be an ellipsoid of maximal volume.
Then by an affine change of variables we can assume that E is the unit
ball Bn. The proof is completed by showing that if K contains a point p
at a distance greater than n from the origin of Rn then the convex hull of
Bn ∪ {p}, and thus also K, contains an ellipsoid of volume greater than Bn

which would contradict that Bn has maximal volume. See Figure 1

p

Bn

E If ‖p‖ is large enough then conv{Bn, p}
will contain an ellipsoid E with

Vol(E) > Vol(Bn).

Figure 1

We start by showing that K contains an ellipsoid of maximal volume. If
Φ(x) = Ax + b is an affine max then the volume of the ellipsoid E = Φ[Bn]
is Vol(E) = | det(A)|Vol(Bn). This is a standard piece of affine geometry,
but it can also be deduced from the change of variable formula for integrals.

Lemma 2.1. The convex body K contains an ellipsoid of maximal volume.

Proof. Let N := n + n2. Then the set of ordered pairs (A, b) where A is an
n × n matrix and b ∈ Rn is just RN . Let E := {(A, b) ∈ RN : ABn + b ⊂
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K}. Then E is a closed bounded and thus compact subset of RN and
(A, b) 7→ |det(A)| is a continuous function on E . Thus there is an (A0, b0)
that maximizes this function on E . Then E := A0B

n + b0 is the desired
ellipsoid. ¤

If E = A0B
n+b0 is an ellipsoid of maximal volume in K then by replacing

K by A−1
0 (K − b0) we can assume that Bn = A−1

0 (E − b0) is an ellipsoid
of maximal volume in K. Then to prove John’s Theorem it is enough to
show that if p ∈ K then ‖p‖ ≤ n (where ‖ · ‖ is the standard Euclidean
norm). The geometric idea of the proof is shown in Figure 1. If ‖p‖ is large
then the convex hull conv{Bn, p} of Bn and p will contain an ellipsoid E
with Vol(E) > Vol(Bn). But K is convex so E ⊂ conv{Bn, p} ⊆ K which
contradicts that Bn is an ellipsoid of maximal volume in K. What takes
some work is showing the critical distance where Bn stops having maximal
volume in conv{Bn, p} is ‖p‖ > n.

B2

Φλ
t [B2]

x = −1

Figure 2

We will construct the ellipsoid E as an affine image of the ball Bn. This
will first be done in two dimensions and then extended to higher dimensions
by symmetry. As it is a truth universally acknowledged that any problem in
analysis needs a differential equation to be taken seriously, we will construct
our affine maps as flows of solutions to differential equations. Let λ > 0
then in the plane consider the system of equations

ẋ = 1 + x

ẏ = −λy.

The solution with initial condition x(0) = x0 and y(0) = y0 is

x(t) = −1 + et(1 + x0)

y(t) = e−λty0.

Therefore if Φλ
t is the one parameter group of diffeomorphisms generated

by this system of equations (or what is the same thing the one parameter
group generated by the vector field (1 + x) ∂

∂x − λ ∂
∂y ) is

Φλ
t (x, y) = (−1 + et(1 + x), e−λty) = (−1 + et, 0) + (etx, e−λty)
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so that for each fixed t the map (x, y) 7→ Φλ
t (x, y) is an affine map. The

lines x = −1 and y = 0 are fixed (set-wise) by Φλ
t . The effect of Φλ

t on the
two dimensional ball B2 for a small positive value of t is shown in Figure 2.

For a > 1 let Ca := conv{B2, (a, 0)} be the convex hull of the two dimen-
sion ball B2 and the point (a, 0). See Figure 3

(a, 0)B2

Ca is convex hull of B2 and (a, 0).

Figure 3

The following is the hard step in the proof of John’s theorem.

Lemma 2.2. If λ >
1

a − 1
then Φλ

t [B2] ⊂ Ca for small positive values of t.

Proof. We first note that the tangent lines to ∂B2 through (a, 0) (which are
part of the boundary of Ca) are y = ±1√

a2−1
(x − a). To see this consider the

line y = −1√
a2−1

(x − a). Direct calculation shows that both the points (a, 0)

and
(

1
a ,

√
a2−1
a

)
are on this line and the point

(
1
a ,

√
a2−1
a

)
is on the unit

circle (see Figure 4). The slope of the radius to ∂B2 ending at
(

1
a ,

√
a2−1
a

)
is

√
a2 − 1). The slope of y = −1√

a2−1
(x − a) is −1√

a2−1
which is the negative

reciprocal of the slope of the redius to ∂B2 ending at
(

1
a ,

√
a2−1
a

)
. Therefore

y = −1√
a2−1

(x−a) is prependicular to the radius where it meets ∂B2 and this
is tangent.

y = −1√
a2−1

(x − a)

(
1
a
,

√
a2−1

a

)

(a, 0)

Figure 4

Therefore to prove the lemma it is enough to show that for λ > 1
a−1 and

small t that Φλ
t

(
1
a ,

√
a2−1
a

)
lies below the line y = −1√

a2−1
(x − a). (For as
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∂B2 is tangent to this line at
(

1
a ,

√
a2−1
a

)
it will also be caried into Ca by

Φλ
t . See Figure 5.) (

1
a
,

√
a2−1

a

)

Φλ
t

(
1
a
,

√
a2−1

a

)

Figure 5

Either directly from the definition of Φλ
t or from the system of differential

equations defining it we have

d

dt
Φλ

t

(
1
a
,

√
a2 − 1
a

)∣∣∣∣∣
t=0

= (ẋ(0), ẏ(0)) =
(

1 +
1
a
,
−λ

√
a2 − 1
a

)
.

Therefore the slope of the tangent to the flow line t 7→ Φλ
t

(
1
a ,

√
a2−1
a

)
at(

1
a ,

√
a2−1
a

)
is

ẏ(0)
ẋ(0)

=
−λ

√
a2 − 1

a + 1
.

Therfore Φλ
t

(
1
a ,

√
a2−1
a

)
will be below the line y = −1√

a2−1
(x − a) provided

−λ
√

a2 − 1
a + 1

<
−1√
a2 − 1

.

A little algebra shows this is equivalent to λ > 1
a−1 . This completes the

proof of the lemma ¤
Proof of Thoerem 1. Assume that Bn ⊂ K is an ellipsoid of maximal vol-
ume in K. Then we need to show that then is not a point p of K with
‖p‖ > n. Assume, toward a contradiction, that there is such a point.
Choose orthogonal coordinates (x, y1, . . . , yn−1) on Rn so that p is on the
positive x axis. Then if a = ‖p‖ then in these coordinates p = (a, 0, . . . , 0).
The higher dimensional version of Ca used above it Cn

a := conv{Bn, p} =
conv{Bn, (a, 0, . . . , 0)}. Define the higher dimensional analogue Φλ

t , that is

Ψλ
t (x, y1, . . . , yn−1) = (−1 + et(x + 1), e−λty1, . . . , e−λtyn−1).

As before this is an affine map. From Lemma 2.2 and symmetry we have
that Ψλ

t [Bn] ⊂ Cn
a ⊂ K for small t provided λ > 1

a−1 . The volume of the
ellipsoid Ψλ

t [Bn
a ] is

Vol(Ψλ
t [Bn]) = e(1−(n−1)λ)t Vol(Bn).
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Now if a > n then it is possible to choose λ with λ > 1
a−1 and 1−(n−1)λ > 0.

This implies for small positive t that Ψλ
t [Bn] ⊂ Cn

a ⊆ K and Vol(Ψλ
t [Bn]) >

Vol(Bn). This contradiction completes the proof of John’s theorem. ¤
Remark 2.3. The proof of the theorem gives anther example showing that
the dilation factor n is sharp in John’s theorem. If a = n then Bn will be
the ellipsoid of maximal volume in Ca and Ca ⊂ αBn only for α ≥ n. ¤

3. The case of centrally symmetric convex bodies.

When K is symmetric about the origin, that is −K = K, then the dilation
factor in John’s Theorem can be improved.

Theorem 2. Let K be a convex body in Rn which is symmetric about the
origin. Then there is an ellipsoid E, also symmetric about the origin, so
that

E ⊆ K ⊆ √
nE.

Remark 3.1. The factor
√

n is this result is sharp. As an example consider
K := {(x1, . . . , xn) ∈ Rn : |xi| ≤ 1} be the unit ball of `∞n . Then the
unit ball Bn is the ellipsoid of maximal volume in K and the point P :=
(1, , . . . , 1) ∈ K has ‖p‖ =

√
n which shows that

√
n is best possible. ¤

Remark 3.2. Let (X, | · |X) and (Y, | · |Y ) be two finite n-dimensional vector
spaces. Then define the Banach-Mazur distance between the two spaces
as

distBM (X, Y ) := inf
T : X→Y

‖T‖‖T−1‖
where T ranges over all linear isomorphisms of T : X → Y and ‖ · ‖ is
the operator norm. Then a restatement of Theorem 2 is that for and n
dimensional X that distBM(X, `2

n) ≤ √
n and Remark 3.1 implies that

distBM (`∞n , `2
n) = dist(`1

n, `2
n) =

√
n so that this is the sharp bound. ¤

Proof. The proof is very much like the general case. A variant on Lemma 2.1
shows there as a symmetric ellipsoid E ⊂ K that has maximal volume. By
an affine change of coordinates we can assume that the ball Bn is the ellipsoid
of maximal volume in K.

Again we start by looking at a two dimensional problem. This time let
Sa := conv(B2 ∪{(a, 0), (−a, 0)} (See Figure 6.) As we wish to preserve the
symmetry of figures this time we look at the flow of the equations

ẋ = x

ẏ = −λy

where λ > 0. This has as flow

Φλ
t (x, y) = (etx, e−λty)

which is linear. Again we want to know when Φλ
t [B2] ⊂ Sa for small t. As

in the proof of Lemma 2.2 looking at what happens to the point
(

1
a ,

√
a2−1
a

)
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1
a
,

√
a2−1

a

)

(
1
a
,
−
√

a2−1

a

)
(a, 0)(−a, 0)

(
−1
a

,

√
a2−1

a

)

(
−1
a

,
−
√

a2−1

a

)

B2

y = −1√
a2−1

(x − a)

Figure 6

is the key. We have

d

dt
Φλ

t

(
1
a
,

√
a2 − 1
a

)∣∣∣∣∣
t=0

= (ẋ(0), ẏ(0)) =
(

1
a
,
−λ

√
a2 − 1
a

)
.

Thus the condition for Φλ
t

(
1
a ,

√
a2−1
a

)
to be below the line y = −1√

a2−1
(x−a)

for small t is that
ẏ(0)
ẏ(0)

= −λ
√

a2 − 1 <
−1√
a2 − 1

.

Some algebra then shows that Φλ
t [B2] ⊂ Sa for small t if λ? 1

a2−1
.

To complete the proof if K is a symmetric convex body so that Bn is
the ellipsoid of maximum volume contained in K then we wish to show that
any p ∈ K satisfies ‖p‖ ≤ √

n. We can choose coordinates x, y1, . . . , yn−1

so that p is on the positive x-axis. Then p = (a, 0, . . . , 0). By symmetry
−p = (a, 0, . . . , 0) is also in K. Let Sn

a = conv(Bn ∪ {p,−p}) and define a
one parameter group of linear maps acting on Rn by

Ψλ
t (x, y1, . . . , yn−1) = (etx, e−λty1, . . . , e−λtyn−1).

Then by symmetry Ψλ
t [Bn] ⊂ Sa ⊆ K for small t if λ > 1

a2−1
. The volume

of Ψλ
t [Bn] is

Vol(Ψλ
t [Bn]) = e(1−(n−1)λ)t Vol(Bn).

Now if a = ‖p‖ >
√

n then it is possible to choose λ so that λ > 1
a2−1

(so that Ψλ
t [Bn] ⊂ Sa ⊆ K for small t) and 1 − (n − 1)λ > 0 (so that

Vol(Ψλ
t [Bn]) > Vol(Bn). This is a contradiction and completes the proof of

Theorem 2. ¤

4. Proof of the uniquness of the John ellipsoid.

Theorem 3. If K ⊂ Rn is a compact body then the ellipsoid of maximal
volume is unique.

Lemma 4.1. Let E be an ellipsoind in Rn, so that E = ABn + b with A
linear and b ∈ Rn. Then in this representation we can take A to be positive
definite.
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Proof. It is a standard result from linear algebra (the “polar decomposition”)
that any nonsingular matrix can be expresses as a product A = PU where P
is positive definite and U is orthogonal. For any orthogonal matrix we have
UBn = Bn. Thus ABn = PUBn = PBn. Thus we can replace A by P in
the representation E = ABn + b and assume that A is positive definite. ¤

Proposition 4.2. Let A and B be n × n positive definite matrices. Then

det(A + B)
1
n ≥ det(A)

1
n + det(B)

1
n

with equality iff there is a positive constant c so that B = cA. In particular
if equality holds and det(A) = det(B) then A = B.

Proof. As A is positive definite it has a positive definite square root P . That
is A = P 2. Then

det(A + B)
1
n = det(P 2 + B)

1
n = det(P )

2
n det(I + P−1BP−1)

1
n

and

det(A)
1
n + det(B)

1
n = det(P )

2
n (1 + det(P−1AP−1)

1
n ).

Thus letting C = P−1BP−1 it is enough to show det(I +C)
1
n ≥ 1+det(C)

1
n

with equality iff C = cI. (If C = cI then P−1BP−1 = cI so that B = cP 2 =
cA.) Now let λ1, . . . , λn be the eigenvalues of C. Then det(I + C)

1
n ≥

1 + det(C)
1
b is equivalent to

(4.1)
( n∏

k=1

(1 + λk)
) 1

n

≥ 1 + (λ1 · · ·λn)
1
n

with equality iff λk = c for all k and some positive c. Let σk = σk(λ1, . . . , λn)
be the k elementary symmetric function of λ1, . . . , λn. That is

σk(λ1, . . . , λn) :=
∑

1≤i1<i2<···<ik≤n

λi1λi2 · · ·λik .

Then

n∏
k=1

(1 + λk) = 1 + σ1 + σ2 + · · · + σn.
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(Note σn = λ1 · · ·λn.) By the inequality between the arithmetic and geo-
metric means we have

σk(λ1, . . . , λn) =
(

n

k

) ∑
1≤i1<i2<···<ik≤n

λi1λi2 · · ·λik(
n

k

)

≥
(

n

k

) ∏
1≤i1<i2<···<ik≤n

(λi1λi2 · · ·λik)
1

(n
k)

=
(

n

k

)
(λ1λ2 · · ·λn)

(n−1
k−1)
(n

k)

=
(

n

k

)
(λ1λ2 · · ·λn)

k
n

and equality will hold iff λi1λi2 · · ·λik = λj1λj2 · · ·λjk
for all subsets {i1, . . . , ik}

and {i1, . . . , ik} of {1, . . . , n} of size k. This is the case iff there is a c so
that λi = c for all i.

Using this inequality we have

(1 + (λ1 · · ·λn)
1
n )n =

n∑
k=0

(
n

k

)
(λ1 · · ·λn)

k
n

≤ 1 + σ1 + σ2 + · · · + σn

=
n∏

k=1

(1 + λk)

with equality iff λk = c for some c > 0. But this inequality is equivalent to
the inequality (4.1). This completes the proof. ¤
Proof of Theorem 3. As above let Pn be the set of n × n positive definite
matrices and let K := Pn × Rn. Let E := {(A, b) ∈ K : ABn + b ⊆ K}. By
Lemma 4.1 every ellipsoid contained in K is of the form ABn + b for some
(A, b) ∈ K. Also as K is convex the set E is also convex. Let E1 = A1B

n+b1

and E2 = A2B
n + b2 be two ellipsoids of maximal volume contained in K.

The volume of the ellipsoid ABn + b is det(A)Vol(Bn), so as E1 and E2

are both maximal we have det(A1) = det(A2). Let A3 = 1
2(A1 + A2) and

b3 = 1
2(b1 + b2). Then as E is convex the ellipsoid E3 = A3B

n + b3 ⊆ K.
But from Proposition 4.2

det(A3)
1
n =

1
2

det(A1 + A2)
1
n ≥ 1

2
(det(A1)

1
n + det(A2)

1
n ) = det(A1)

1
n .

But as E1 has maximal volume this implies det(A3) = det(A1) = det(A2)
so that equality holds in the inequality. By Proposition 4.2 this implies
A1 = A2. That is E2 is a translate of E1.

If only remains to show b1 = b2. If b1 6= b2 then K will contain the convex
hull of E1 ∪ E2. Let b3 = 1

2(b1 + b2). Then conv(E1 ∪ E2) will contain an
ellipsoid E3 centered and b3 that has volume Vol(E3) > Vol(E1) as it will
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. ..b3b1 b2

E3

E2
E1

Translate of E1 centered at b3.

E3 contains a translate of

E1 and thus has greater volume.

Figure 7

contain a translate of E1 centered at b3 (see Figure 7 where we have done
an affine transformation so that we can assume that E1 and E2 are balls.)

But this contradicts that E1 had maximal volume and so b1 = b2. This
completes the proof. ¤
4.1. Examples of where the inequalities are sharp. Above we we men-
tioned some examples there the inequalities are sharp. However to show that
this is the case by direct calculation is not easy so we show here that the
uniqueness result Theorem 3 can be used to find the ellipsoid of maximum
volume in case where symmetry is present. Consider the case of a the stan-
dard regular simplex σn. The easiest realization of this is to view the affine
space Rn as the hyperplane in Rn+1 defined by x1+x2+· · ·+xn+1 = 1. Then
let e1, . . . , en+1 be the standard basis of Rn+1. Then σn is the convex hull of
e1, . . . , en+1. That is σ is the subset of Rn+1 defined by x1 + · · ·+ xn+1 = 1
and xi ≥ 0. Let Sn+1 be the permutation group on n + 1 objects. Then
Sn+1 acts on σn ⊂ Rn by permuting its vertices e1, . . . , en+1. This action is
by affine maps and in fact by isometries. This implies that this action maps
ellipsoids to ellipsoids and that it preserves their volume. As the ellipsoid
of maximal volume in σn is unique this implies that it is left fixed by all
elements of Sn+1. However it is not hard to check that the only ellipsoids
in Rn invariant under all elements are the balls centered at ( 1

n+1 , . . . , 1
n+1).

Using this and that all simplexes are affinely equivalent it is not hard to
verify the claims in Remark 1.1.

The claims of Remark 3.1 can be checked in a similar manner.
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