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ABSTRACTA lassi result of Johnson and Lindenstrauss asserts thatany set of n points in d-dimensional Eulidean spae an beembedded into k-dimensional Eulidean spae | where k islogarithmi in n and independent of d| so that all pairwisedistanes are maintained within an arbitrarily small fator.All known onstrutions of suh embeddings involve projet-ing the n points onto a random k-dimensional hyperplane.We give a novel onstrution of the embedding, suitable fordatabase appliations, whih amounts to omputing a sim-ple aggregate over k random attribute partitions.
1. INTRODUCTIONConsider projeting the points of your favorite sulpture �rstonto a plane and then onto a single line. The result amplydemonstrates the power of dimensionality.Conversely, given a high-dimensional pointset it is naturalto ask whether it exploits its full allotment of dimensionalityor, rather, it ould be embedded into a lower dimensionalspae without su�ering great distortion.In general, suh questions involve a, perhaps in�nite, olle-tion of points endowed with some distane funtion (metri).In this paper, we will only deal with �nite sets of points inEulidean spae (so the Eulidean distane is the metri).In partiular, it will be onvenient to think of n points inRd as an n�d table (matrix) A with eah point representedas a row (vetor) with d attributes (oordinates).Given suh a matrix A, one of the most ommon embeddingsis the one suggested by its Singular Value Deomposition.In partiular, to embed the n points into Rk we projetthem onto the k-dimensional spae spanned by the singularvetors orresponding to the k largest singular values of A.If one rewrites the result of this projetion as a (rank k)�Address: Mirosoft Corporation, One Mirosoft Way, Red-mond WA, 98052, U.S.A. Email: optas�mirosoft.om

n � d matrix Ak, we are guaranteed that for every rank kmatrix D jA�Akj � jA�Dj ;for any unitarily invariant norm, suh as the Frobenius orthe L2 norm. Thus, distortion here amounts to a ertain dis-tane (norm) between the set of projeted points, Ak, andthe original set of points A. If we assoiate with eah row(point) a vetor orresponding to the di�erene between itsoriginal and its new position then, for example, under theFrobenius norm the distortion equals the sum of the squaredlengths of these vetors. It is lear that suh a notion of dis-tortion aptures a signi�ant global property. At the sametime, though, it does not o�er any loal guarantees. Forexample, the distane between a pair of points an be arbi-trarily smaller than what it was in the original spae, if thatis advantageous to minimizing the total distortion.The study of embeddings that respet loal properties is arih area of mathematis with deep and beautiful results.Suh embeddings an guarantee, for example, that all dis-tanes between pairs of points are approximately maintainedor, more generally, that for a given q � 2, a ertain no-tion of \volume" is maintained for all olletions of up toq points (thus apturing higher order loal struture). Thealgorithmi uses of suh embeddings were �rst onsidered inthe seminal paper of Linial, London and Rabinovih [9℄ andhave by now beome an important part of modern algorith-mi design. A real gem in this area has been the followingresult of Johnson and Lindenstrauss [7℄.Lemma 1 ([7℄). Given � > 0 and an integer n, let kbe a positive integer suh that k � k0 = O(��2 log n). Forevery set P of n points in Rd there exists f : Rd ! Rk suhthat for all u; v 2 P(1� �)jju� vjj2 � jjf(u)� f(v)jj2 � (1 + �)jju� vjj2 :We will refer to embeddings providing a guarantee akin tothat of Lemma 1 as JL-embeddings. In the last few years,JL-embeddings have been useful in solving a variety of prob-lems. The rough idea is the following. By providing a low di-mensional representation of the data, JL-embeddings speedup ertain algorithms dramatially, in partiular algorithmswhose run-time depends exponentially in the dimension ofthe working spae (there are a number of pratial problemsfor whih the best known algorithms have suh behaviour).At the same time, the provided guarantee regarding pair-wise distanes is often enough to establish that the solution



found by working in the low dimensional spae is a goodapproximation to the optimal solution in the original spae.We give a few examples below.Papadimitriou, Raghavan, Tamaki and Vempala [10℄, provedthat embedding the points of A in a low-dimensional spaean signi�antly speed up the omputation of a low rank ap-proximation to A, without signi�antly a�eting its quality.In [6℄, Indyk and Motwani showed that JL-embeddings areuseful in solving the "-approximate nearest neighbor prob-lem, where (after some preproessing of the pointset P ) oneis to answer queries of the following type: \Given an ar-bitrary point x, �nd a point y 2 P , suh that for everypoint z 2 P , jjx� zjj � (1� ")jjx� yjj." In a di�erent vein,Shulman [11℄ used JL-embeddings as part of an approxima-tion algorithm for the version of lustering where we seek tominimize the sum of the squares of intraluster distanes.Reently, Indyk [5℄ showed that JL-embeddings an also beused in the ontext of \data-stream" omputation, whereone has limited memory and is allowed only a single passover the data (stream).
1.1 Our contributionOver the years, the probabilisti method has allowed for theoriginal proof of Johnson and Lindenstrauss to be greatlysimpli�ed and sharpened [4, 6, 3℄, while at the same timegiving oneptually simple randomized algorithms for on-struting the embedding. Roughly speaking, all suh algo-rithms projet the input points onto a spherially randomhyperplane through the origin.Performing suh a projetion, while oneptually simple, isnon-trivial, espeially in a database environment. Moreover,its omputational ost an be prohibitive for ertain appli-ations. At the same time, JL-embeddings have beome animportant algorithmi design tool and in ertain domainsthey are a desirable standard data proessing step. Withthis in mind, it is natural to ask if we an ompute suhembeddings in a manner that is simpler and more eÆientthan the one suggested by the urrent methods.Our main result, below, is a �rst step in this diretion, as-serting that one an replae projetions onto random hyper-planes with muh simpler and faster operations, requiringextremely simple probability distributions. In partiular,these operations an be implemented readily using standardSQL primitives without any additional funtionality. More-over, somewhat surprisingly, this omes without any sari-�e in the quality of the embedding. In fat, we will see thatfor every �xed value of d we an get slightly better boundsthan all urrent methods.We desribe the main result below in standard mathematialterminology. Following that, we give an example of how toompute the embedding using database operations. As inLemma 1, the parameter � ontrols the auray in distanepreservation, while now � ontrols the probability of suess.Theorem 2. Let P be an arbitrary set of n points in Rd,represented as an n� d matrix A. Given �; � > 0 letk0 = 4 + 2��2=2� �3=3 log n :

For integer k � k0, let R be a d � k random matrix withR(i; j) = rij, where frijg are independent random variablesfrom either one of the following two probability distributions:rij = � +1 with probability 1=2�1 �� 1=2 ;rij = p3� 8<: +1 with probability 1=60 �� 2=3�1 �� 1=6 :Let E = 1pk AR :Let f : Rd ! Rk map the ith row of A to the ith row of E.With probability at least 1� n��, for all u; v 2 P(1� �)jju� vjj2 � jjf(u)� f(v)jj2 � (1 + �)jju� vjj2 :In a database system, all operations needed to ompute ARare very eÆient and easy to implement. For example, withthe seond distribution above, the embedding amounts togenerating k new attributes, eah one formed by apply-ing the same proess: throw away 2=3 of all attributes atrandom; partition the remaining attributes randomly intotwo equal parts; for eah partition, produe a new attributeequal to the sum of all attributes; take the di�erene of thetwo sum-attributes.All in all, using Theorem 2, one needs very simple probabil-ity distributions, no oating point arithmeti, and all om-putation amounts to highly optimized database operations(aggregation). By using the seond probability distribution,where rij = 0 with probability 2=3, we also get a threefoldspeedup as we only need to proess a third of all attributesfor eah of the k oordinates. On the other hand, whenrij 2 f�1;+1g, oneptually the onstrution seems to beabout as simple as one ould hope for.Looking a bit more losely into the matrix E we see thateah row (vetor) of A is projeted onto k random vetorswhose oordinates frijg are independent random variableswith mean 0 and variane 1. If the frijg were independentNormal random variables with mean 0 and variane 1, it iswell-known that the resulting vetors would point to uni-formly random diretions in spae. Projetions onto suhrandom lines through the origin have been onsidered in anumber of settings, inluding the work of Kleinberg on ap-proximate nearest neighbors [8℄ and of Vempala on learningintersetions of halfspaes [12℄. More reently, suh proje-tions have also been used in learning mixture of Gaussiansmodels, starting with the work of Dasgupta [2℄ and laterwith the work of Arora and Kannan [1℄.Our proof will suggest that for any �xed vetor �, the be-havior of its projetion onto a random vetor  is mandatedby the even moments of jj� �jj. In fat, our result follows byshowing that for every vetor �, under our distributions forfrijg, these moments are dominated by the orrespondingmoments for the ase where  is spherially symmetri. As aresult, projeting onto vetors whose entries are distributed



like the olumns of matrix R ould replae projetion ontorandom lines; it is omputationally simpler and results inprojetions that are at least as niely behaved.Finally, we note that Theorem 2 allows one to use signi�-antly fewer random bits than all previous methods for on-struting JL-embeddings. While the amount of randomnessneeded is still quite large, suh attempts for randomness re-dution are of independent interest and our result an beviewed as a �rst step in that diretion.
2. PREVIOUS WORKLet us write X D= Y to denote that X is distributed as Yand reall thatN(0; 1) denotes the standard Normal randomvariable having mean 0 and variane 1.As we will see, in all methods for produing JL-embeddings,inluding ours, the heart of the matter is showing that forany vetor, the squared length of its projetion is sharplyonentrated around its expeted value. Armed with a suf-�iently strong suh onentration bound, one then provesthe assertion of Lemma 1 for a olletion of n points in Rd byapplying the union bound for the �n2� events orrespondingto eah distane-vetor being distorted by more than (1��).The original proof of Johnson and Lindenstrauss [7℄ usesquite heavy geometri approximation mahinery to yieldsuh a onentration bound when the projetion is ontoa uniformly random hyperplane through the origin. Thatproof was greatly simpli�ed and sharpened by Frankl andMeahara [4℄ who onsidered a diret projetion onto k ran-dom orthonormal vetors, yielding the following result.Theorem 3 ([4℄). For any � 2 (0; 1=2), any suÆientlylarge set P 2 Rd, and k � k0 = d9(�2�2�3=3)�1 log jP je+1,there exists a map f : P ! Rk suh that for all u; v 2 P ,(1� �)jju� vjj2 � jjf(u)� f(v)jj2 � (1 + �)jju� vjj2 :The next great simpli�ation of the proof of Lemma 1 wasgiven, independently, by Indyk and Motwani [6℄ and Das-gupta and Gupta [3℄, the latter also giving a slight sharp-ening of the bound for k0. Below we state our rendition ofhow this simpli�ation was ahieved.Assume that we try to implement the sheme of Frankl andMaehara [4℄ but we are lazy about enforing either normality(unit length) or orthogonality among our k vetors. Instead,we just pik our k vetors independently, in a spheriallysymmetri manner. As we saw earlier, we an ahieve this bytaking as the oordinates of eah vetor independent N(0; 1)random variables. We then merely sale eah vetor by 1=pdso that its expeted length is 1.An immediate gain of this approah is that now, for any �xedvetor �, the length of its projetion onto eah of our vetorsis also a Normal random variable. This is due to a powerfuland deep fat, namely the 2-stability of the Gaussian dis-tribution: for any real numbers �1; �2; : : : ; �d, if fZigdi=1 isa family of independent Normal random variables and X =Pdi=1 �iZi, then X D= N(0; 1), where  = (�21+� � �+�2d)1=2.

As a result, if we interpret eah of the k projetion lengths asa oordinate in Rk , then the squared length of the resultingvetor follows the Chi-square distribution for whih strongonentration bounds are readily available.And what have we lost? Surprisingly little. While we didnot insist upon either orthogonality, or normality, with highprobability, the resulting k vetors ome very lose to havingboth these properties. In partiular, the length of eah ofthe k vetors is sharply onentrated (around 1) as the sumof d independent random variables. Moreover, sine the kvetors point in uniformly random diretions in Rd , they getrapidly loser to being orthogonal as d grows.Unlike Indyk and Motwani [6℄, Dasgupta and Gupta [3℄ ex-ploited spherial symmetry without appealing diretly tothe 2-stability of the Gaussian distribution. Instead theyobserve that, by symmetry, the projetion of any unit ve-tor � on a random hyperplane through the origin is dis-tributed exatly like the projetion of a random point fromthe surfae of the d-dimensional sphere onto a �xed subspaeof dimension k. Suh a projetion an be studied readily,though, as now eah oordinate is a saled Normal randomvariable. Their analysis gave the strongest known bound,namely k � k0 = 4(�2=2� �3=3)�1. Note that this is exatlythe same as our bound in Theorem 2 as � tends to 0.
3. SOME INTUITIONBy ombining the analysis of [3℄ with the viewpoint of [6℄it is in fat not hard to show that Theorem 2 holds if forall i; j, rij D= N(0; 1). Thus, our ontribution essentiallybegins with the realization that spherial symmetry, whilemaking life extremely omfortable, is not essential. Whatis essential is onentration. So, at least in priniple, one isfree to onsider other andidate distributions for the frijg,if perhaps at the expense of omfort.As we saw earlier, eah olumn of our matrix R will give usa oordinate of the projetion in Rk . Moreover, the squaredlength of the projetion is merely the sum of the squaresof these oordinates. So, e�etively, eah olumn ats asan estimator of the original vetor's length (by taking itsinner produt with it), while in the end we take the on-sensus estimate (sum) over our k estimators. From thispoint of view, requiring our k vetors to be orthonormalhas the pleasant statistial interpretation of \greatest eÆ-ieny". In any ase, though, as long as eah olumn isan unbiased, bounded variane estimator the Central LimitTheorem asserts that by taking enough olumns we an getan arbitrarily good estimate of the original length. Natu-rally, how many estimators are \enough" depends solely onthe variane of the estimators.So, already we see that the key issue is the onentration ofthe projetion of an arbitrary �xed vetor � onto a singlerandom vetor. The main tehnial diÆulty that resultsfrom giving up spherial symmetry is that this onentra-tion an now depend on �. Our main tehnial ontribu-tion lies in determining probability distributions for frijgfor whih this onentration, for all vetors, is as good aswhen rij D= N(0; 1). In fat, it will turn out that for ev-ery �xed value of d, we an get a (minusule) improvement



over the onentration for that ase. Thus, for every �xedd, we an atually get a stritly better bound for k, albeitmarginally, than by taking spherially random vetors.The reader might be wondering \how an it be that perfetspherial symmetry does not buy us anything?" (and is infat slightly worse for eah �xed d). At a high level, an an-swer to this question might go as follows. Given that we donot have spherial symmetry anymore, an adversary ouldtry to pik a vetor � so that the length of its projetionis as variable as possible. It is lear that not all vetors �are equal with respet to this variability. What then does aworst-ase vetor w look like? How muh are we exposingto the adversary by ommitting to pik our olumn vetorsamong lattie points rather than arbitrary points in Rd?As we will see, the worst-ase vetor is w = (1=pd) (1; : : : ; 1)(and all 2d vetors resulting by sign-ipping w's oordi-nates). So, the worst-ase vetor turns out to be a moreor less \typial" vetor, at least in terms of the utuationsin its oordinates, unlike say (1; 0; : : : ; 0). As a result it isnot hard to believe that the adversary would not fare muhworse by piking a random vetor. But in that ase theadversary does not bene�t at all from our ommitment.To get a more satisfatory answer, it seems like one has todelve into the proof. In partiular, both for the spheriallyrandom ase and for our distributions, the bound on k ismandated by the probability of overestimating the projetedlength. Thus, the \bad events" amount to the spanningvetors being too \well-aligned" with �. As a result, forany �xed d one has to onsider the tradeo� between theprobability and the extent of alignment.For example, let us onsider the projetion onto a singlerandom vetor when d = 2 and rij 2 f�1;+1g. As wesaid above, the worst ase vetor is w = (1=p2)(1; 1). So,it's easy to see that with probability 1=2 we have perfetalignment (when our random vetor is �w) and with proba-bility 1=2 we have orthogonality. On the other hand, for thespherially symmetri ase, we have to onsider the integralover all points on the plane, weighted by their probabilityunder the two-dimensional Gaussian distribution. By a on-vexity argument it turns out that for every �xed d, the evenmoments of the projeted length are (marginally) greater inthe spherially symmetri ase. This leads to a (marginally)weaker probability bound for that ase. As one might guess,the two bounds oinide as d tends to in�nity.
4. PRELIMINARIESLet x � y denote the inner produt of vetors x; y. To sim-plify notation in the alulations, we will work with matrixR saled by 1=pd. Thus, R is a random d� k matrix withR(i; j) = rij=pd, where the frijg are distributed as in Theo-rem 2. As a result, to get E we need to sale A�R bypd=krather than 1=pk. Therefore, if j denotes the jth olumnof R, then fjgkj=1 is a family of k i.i.d. random unit vetorsin Rd and for all � 2 Rd , f(�) =pd=k (� � 1; : : : ; � � d).In pratie, of ourse, suh saling an be postponed untilafter the matrix multipliation (projetion) has been per-formed, so that we maintain the advantage of only having

f�1; 0;+1g in the projetion matrix.Let us start by omputing E �jjf(�)jj2� for an arbitrary ve-tor � 2 Rd . Let fQjgkj=1 be de�ned asQj = � � j :ThenE (Qj) = E 1pd dXi=1 �irij! = 1pd dXi=1 �iE (rij) = 0 ; (1)andE �Q2j� = E0� 1pd dXi=1 �irij!21A= 1dE dXi=1 (�irij)2 + dXl=1 dXm=1 2�l�mrljrmj!= 1d dXi=1 �2i E �r2ij�+ 1d dXl=1 dXm=1 2�l�mE (rlj)E (rmj)= 1d � jj�jj2 : (2)Note that to get (1) and (2) we only used that frijg areindependent, E(rij) = 0 and Var(rij) = 1. Using (2) we getE �jjf(�)jj2� = dk � kXj=1E �Q2j� = jj�jj2 :That is, E �jjf(�)jj2� = jj�jj2 for any independent family offrijg with E(rij) = 0 and Var(rij) = 1.From the above we see that any distribution where E(rij) =0 and Var(rij) = 1 is, in priniple, a andidate for the entriesof R. In fat, in [13℄, Arriaga and Vempala independentlysuggested the possibility of getting JL-embeddings by pro-jeting onto a matrix where rij 2 f�1;+1g but did not giveany bounds on the neessary value of k.As we mentioned earlier, having a JL-embedding amounts tothe following: for eah of the �n2� pairs u; v 2 P , the squarednorm of the vetor u � v, is maintained within a fator of1 � �. Therefore, if we an prove that for some � > 0 andevery vetor � 2 Rd ,Pr[(1��)jj�jj2 � jjf(�)jj2 � (1+�)jj�jj2℄ � 1� 2n2+� ; (3)then the probability that our projetion does not yield aJL-embedding is bounded by �n2�� 2=n2+� < 1=n� .Let us note that sine for a �xed projetion matrix, jjf(�)jj2is proportional to jj�jj, it suÆes to onsider probabilitybounds for arbitrary unit vetors. Moreover, note that whenE(jjf(�)jj2) = jj�jj2, inequality (3) merely asserts that therandom variable jjf(�)jj2 is onentrated around its expe-tation. Before onsidering this point for our distributionsfor frijg, let us �rst wrap up the spherially random ase.Getting a onentration inequality for jjf(�)jj2 when rij D=N(0; 1) is straightforward. Due to the 2-stability of the Nor-mal distribution, for every unit vetor �, we have jjf(�)jj2 D=



�2(k)=k, where �2(k) denotes the Chi-square distributionwith k degrees of freedom. The fat that we get the samedistribution for every vetor � orresponds to the intuitionthat \all vetors are the same" with respet to projetiononto a spherially random vetor. Standard tail-bounds forthe Chi-square distribution readily yield the following.Lemma 4. Let rij D= N(0; 1) for all i; j. Then, for any� > 0 and any unit-vetor � 2 Rd,Pr �jjf(�)jj2 � (1 + �)k=d� < exp��k2 (�2=2� �3=3)� ;Pr �jjf(�)jj2 � (1� �)k=d� < exp��k2 (�2=2� �3=3)� :Thus, to get a JL-embedding we need only require2� exp��k2 (�2=2� �3=3)� � 2n2+� ;whih holds for k � 4 + 2��2=2� �3=3 log n :Let us note that the bound on the upper tail of jjf(�)jj2above is tight (up to lower order terms). As a result, as longas the union bound is used, one annot hope for a betterbound on k while using spherially random vetors.To prove our result we use the exat same approah, arguingthat for every unit vetor � 2 Rd , the random variable jj�jj2is sharply onentrated around its expetation, where  is aolumn of our projetion matrix R. In the next setion westate a lemma analogous to Lemma 4 above and show howit follows from bounds on ertain moments of jj�jj2 . Weprove those bounds in Setion 6.
5. PROBABILITY BOUNDSTo simplify notation let us de�ne for an arbitrary vetor �,S = S(�) = kXj=1 (� � j)2 = kXj=1Q2j (�) ;where j is the jth olumn of R, so that jjf(�)jj2 = S�d=k.Lemma 5. Let rij have any of the two distributions inTheorem 2. Then, for any � > 0 and any unit vetor � 2 Rd,Pr [S > (1 + �)k=d℄ < exp��k2 (�2=2� �3=3)� ;Pr [S < (1� �)k=d℄ < exp��k2 (�2=2� �3=3)� :In proving Lemma 5 we will generally omit the dependeneof probabilities on �, making it expliit only when it a�etsour alulations.We will use the standard tehnique of applying Markov'sinequality to the moment generating funtion of S. In par-

tiular, for arbitrary h > 0 we writePr �S > (1 + �)kd� = Pr �exp(hS) > exp�h(1 + �)kd��< E (exp (hS)) exp��h(1 + �)kd� :Sine fQjgkj=1 are i.i.d. we getE (exp (hS)) = E kYj=1 exp �hQ2j�! (4)= kYj=1E �exp �hQ2j�� (5)= �E �exp �hQ21���k ; (6)where passing from (4) to (5) uses that the fQjgkj=1 areindependent, while passing from (5) to (6) uses that theyare identially distributed. Thus, for any � > 0Pr �S > (1 + �)kd�< �E �exp �hQ21���k exp��h(1 + �)kd� : (7)We will get a tight bound on E �exp �hQ21�� from Lemma 6below.Similarly, but this time onsidering exp(�hS) for arbitraryh > 0, we get that for any � > 0Pr �S < (1� �)kd�< �E �exp ��hQ21���k exp�h(1� �)kd� : (8)Rather than bounding E �exp ��hQ21�� diretly, this timewe will expand exp(hQ21) to getPr �S < (1� �)kd� (9)<  E 1� hQ21 + ��hQ21�22! !!k exp�h(1� �)kd�= �1� hd + h22 E �Q41��k exp�h(1� �)kd� ; (10)where E(Q21) was given by (2).We will get a tight bound on E �Q41� from Lemma 6 below.Lemma 6. For all h 2 [0; d=2) and all d � 1,E �exp �hQ21�� � 1p1� 2h=d ; (11)E �Q41� � 3d2 : (12)The proof of Lemma 6 will omprise Setion 6. Below weshow how it implies Lemma 5 and thus Theorem 2.



Proof of Lemma 5. Substituting (11) in (7) we get (13).To optimize the bound we set the derivative in (13) withrespet to h to 0. This gives h = d2 �1+� < d2 . Substitutingthis value of h we get (14) and series expansion yields (15).Pr �S > (1 + �)kd��  1p1� 2h=d!k exp��h(1 + �)kd� (13)= ((1 + �) exp(��))k=2 (14)< exp��k2 (�2=2� �3=3)� : (15)Similarly, substituting (12) in (8) we get (16). This timetaking h = d2 �1+� is not optimal but it is \good enough",giving (17). Again, series expansion yields (18).Pr �S < (1� �)kd��  1� hd + 32 �hd�2!k exp�h(1� �)kd� (16)= �1� �2(1 + �) + 3�28(1 + �)2�k exp��(1� �)k2(1 + �) � (17)< exp��k2 (�2=2� �3=3)� : (18)2
6. MOMENT BOUNDSHere we prove bounds on ertain moments of Q1. To sim-plify notation, we drop the subsript, writing it as Q.It should be lear that the distribution of Q depends on �,i.e., Q = Q(�). This is preisely what we give up by notprojeting onto spherially symmetri vetors. Our strategyfor giving bounds on the moments of Q will be to determinea \worst ase" unit vetor w and onsider Q(w). Our preiselaim is the following.Lemma 7. Let w = 1pd (1; : : : ; 1) :For every unit vetor � 2 Rd, and for all k = 0; 1; : : :E�Q(�)2k� � E�Q(w)2k� : (19)Moreover, we will prove that the even moments of Q(w) aredominated by the even moments of an appropriately saledNormal random variable, i.e., the orresponding momentsfrom the spherially symmetri ase.Lemma 8. Let T D= N(0; 1=d) :For all d � 1 and all k = 0; 1; : : :E�Q(w)2k� � E�T 2k� : (20)

Postponing the proof of Lemmata 7 and 8 for a moment, letus use them to prove Lemma 6.Proof of Lemma 6. We start by observing thatE �T 4� = Z +1�1 1p2� exp(��2=2)��4d2�d� = 3d2 :Along with (19) and (20) this readily implies (12).For any real-valued random variable U , the Monotone Con-vergene Theorem (MCT) impliesE �exp �hU2�� = E 1Xk=0 (hU2)kk! ! = 1Xk=0 hkk! E�U2k�for all h suh that E �exp �hU2�� is bounded.For E �exp �hT 2��, below, taking h 2 [0; d=2) makes theintegral onverge, giving (21). Thus, for suh h we an applythe MCT to get (22). Now, applying (19) and (20) to (22)gives (23). Applying the MCT one more gives (24).E �exp �hT 2�� = Z +1�1 1p2� exp(��2=2) exp�h�2d �d�= 1p1� 2h=d (21)= 1Xk=0 hkk! E�T 2k� (22)� 1Xk=0 hkk! E�Q2k� (23)= E �exp �hQ2�� : (24)Thus, E �exp �hQ2�� � 1=p1� 2h=d for h 2 [0; d=2), whihis preisely inequality (11). 2To prove Lemma 7 we need the following lemma. It's proofappears in the Appendix.Lemma 9. Let r1; r2 be i.i.d. r.v. having one of the fol-lowing two probability distributions: ri 2 f�1;+1g, eahvalue having probability 1/2, or, ri 2 f�p3; 0;+p3g with 0having probability 2/3 and �p3 being equiprobable.For real numbers a; b let  =p(a2 + b2)=2. Then, for all Tand all k = 0; 1; : : :E�(T + ar1 + br2)2k� � E�(T + r1 + r2)2k� :Proof of Lemma 7. Reall that for any vetor �, Q(�) =Q1(�) = � � 1 where1 = 1pd (r11; : : : ; rd1) :If � = (�1; : : : ; �d) is suh that �2i = �2j for all i; j, thenby symmetry, Q(�) and Q(w) are identially distributedand the lemma holds trivially. Otherwise, we an assumewithout loss of generality, that �21 6= �22 and onsider the



\more balaned" unit vetor � = (; ; �3; : : : ; �d), where =p(�21 + �22)=2. We will prove thatE�Q(�)2k� � E�Q(�)2k� : (25)Applying this argument repeatedly yields the lemma, as �eventually beomes w.To prove (25), below we �rst express E �Q(�)2k� as a sumof averages over r11; r21. We then apply Lemma 9 to getthat eah term (average) in the sum, is bounded by theorresponding average for vetor �. More preisely,E�Q(�)2k�= 1dk XR E�(R+ �1r11 + �2r21)2k�Pr" dXi=3 �iri1 = Rpd#� 1dk XR E�(R+ r11 + r21)2k�Pr" dXi=3 �iri1 = Rpd#= E�Q(�)2k� : 2Proof of Lemma 8. Reall that T D= N(0; 1=d). We will�rst express T as the saled sum of d independent standardNormal random variables. This will allow for a diret om-parison of the terms in eah of the two expetations.Spei�ally, let fTigdi=1 be a family of i.i.d. standard Nor-mal random variables. Then Pdi=1 Ti is a Normal randomvariable with variane d. Therefore,T D= 1d dXi=1 Ti :Reall also that Q(w) = Q1(w) = w � 1 where1 = 1pd (r11; : : : ; rd1) :To simplify notation let us write ri1 = Yi and let us alsodrop the dependene of Q on w. Thus,Q = 1d dXi=1 Yi ;where fYigdi=1 are i.i.d. r.v. having one of the following twodistributions: Yi 2 f�1;+1g, eah value having probability1=2, or Yi 2 f�p3; 0;+p3g with 0 having probability 2/3and �p3 being equiprobable.We are now ready to ompare E �Q2k� with E �T 2k�. We�rst observe that for every k = 0; 1; : : :E�T 2k� = 1d2k dXi1=1 � � � dXi2k=1E (Ti1 � � �Ti2k ) ; andE�Q2k� = 1d2k dXi1=1 � � � dXi2k=1E (Yi1 � � �Yi2k ) :

To prove the lemma we will show that for every value as-signment to the indies i1; : : : ; i2k,E (Yi1 � � �Yi2k ) � E (Ti1 � � �Ti2k ) : (26)Let V = hv1; v2; : : : ; v2ki be the value assignment onsid-ered. For i 2 f1; : : : ; dg, let CV (i) be the number of timesthat i appears in V . Observe that if for some i, V (i) is oddthen both expetations appearing in (26) are 0, sine bothfYigdi=1 and fTigdi=1 are independent families and E(Yi) =E(Ti) = 0 for all i. Thus, we an assume that there ex-ists a set fj1; j2; : : : ; jpg of indies and orresponding values`1; `2; : : : ; `p suh thatE (Yi1 � � �Yi2k) = E�Y 2`1j1 Y 2`2j2 � � �Y 2`pjp � ; andE (Ti1 � � � Ti2k) = E�T 2`1j1 T 2`2j2 � � �T 2`pjp � :Note now that sine the indies j1; j2; : : : ; jp are distint,fYjtgpt=1 and fTjtgpt=1 are families of i.i.d. r.v. Therefore,E (Yi1 � � �Yi2k) = E�Y 2`1j1 �� � � � �E�Y 2`pjp � ; andE (Ti1 � � �Ti2k ) = E�T 2`1j1 �� � � � �E�T 2`pjp � :So, without loss of generality, in order to prove (26) it suÆesto prove that for every ` = 0; 1; : : :E�Y 2`1 � � E�T 2`1 � : (27)This, though, is ompletely trivial. Moreover, along withLemma 9, it is the only point were we need to use propertiesof the distribution for the rij (here alled Yi).Let us �rst reall the well-known fat that the (2`)th mo-ment of N(0; 1) is (2`�1)!! = (2`)!=(`!2`) � 1. Furthermore:{ If Y1 2 f�1;+1g then E �Y 2`1 � = 1.{ If Y1 2 f�p3; 0;+p3g then E(Y 2`1 ) = 3`�1 � (2`)!=(`!2`),where the last inequality follows by an easy indution. 2Let us note that sine E �Y 2`1 � < E �T 2`1 � for ertain l, onean get that for eah �xed d, both inequalities in Lemma 6are atually strit, yielding slightly better tails bounds forS and a orrespondingly better bound for k0.As a last remark we note that by using Jensen's inequalityone an get a diret bound for E(Q2k) when Yi 2 f�1;+1g,i.e., without omparing it to E(T 2k). That simpli�es theproof for that ase and shows that taking Yi 2 f�1;+1g isthe minimizer of E �exp �hQ2�� for all h.
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APPENDIXProof of Lemma 9. Let us �rst onsider the ase whereri 2 f�1;+1g, eah value having probability 1=2.If a2 = b2 then a =  and the lemma holds with equality.Otherwise, let us writeE�(T + r1 + r2)2k��E�(T + ar1 + br2)2k� = Sk4whereSk = (T + 2)2k + 2T 2k + (T � 2)2k � (T + a+ b)2k�(T + a� b)2k � (T � a+ b)2k � (T � a� b)2k :We will show that Sk � 0 for all k � 0.Sine a2 6= b2 we an use the binomial theorem to expandevery term other than 2T 2k in Sk and getSk = 2T 2k + 2kXi=0  2ki !T 2k�iDi ;whereDi = (2)i+(�2)i�(a+b)i�(a�b)i�(�a+b)i�(�a�b)i :Observe now that for odd i, Di = 0. Moreover, we laimthat D2j � 0 for all j � 1. To see this laim observe that(2a2 + 2b2) = (a+ b)2 + (a� b)2 and that for all j � 1 andx; y � 0, (x+ y)j � xj + yj . Thus,Sk = 2T 2k + kXj=0 2k2j!T 2(k�j)D2j= kXj=1 2k2j!T 2(k�j)D2j� 0 :The proof for the ase where ri 2 f�p3; 0;+p3g is merelya more umbersome version of the proof above, so we omitit. That proof, though, brings forward an interesting point.If one tries to take ri = 0 with probability greater than2=3, while maintaining a range of size 3 and variane 1, thelemma fails. In other words, 2/3 is tight in terms of howmuh probability mass we an put to ri = 0 and still havethe all-ones vetor be the worst-ase one. 2


