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ABSTRACT

A classic result of Johnson and Lindenstrauss asserts that
any set of n points in d-dimensional Euclidean space can be
embedded into k-dimensional Euclidean space — where k is
logarithmic in n» and independent of d  so that all pairwise
distances are maintained within an arbitrarily small factor.
All known constructions of such embeddings involve project-
ing the n points onto a random k-dimensional hyperplane.
We give a novel construction of the embedding, suitable for
database applications, which amounts to computing a sim-
ple aggregate over k random attribute partitions.

1. INTRODUCTION

Consider projecting the points of your favorite sculpture first
onto a plane and then onto a single line. The result amply
demonstrates the power of dimensionality.

Conversely, given a high-dimensional pointset it is natural
to ask whether it exploits its full allotment of dimensionality
or, rather, it could be embedded into a lower dimensional
space without suffering great distortion.

In general, such questions involve a, perhaps infinite, collec-
tion of points endowed with some distance function (metric).
In this paper, we will only deal with finite sets of points in
Euclidean space (so the Euclidean distance is the metric).
In particular, it will be convenient to think of n points in
R? as an n x d table (matrix) A with each point represented
as a row (vector) with d attributes (coordinates).

Given such a matrix A, one of the most common embeddings
is the one suggested by its Singular Value Decomposition.
In particular, to embed the n points into R* we project
them onto the k-dimensional space spanned by the singular
vectors corresponding to the k largest singular values of A.
If one rewrites the result of this projection as a (rank k)
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n X d matrix Ak, we are guaranteed that for every rank k
matrix D

A—Ag| < [A-DJ,

for any unitarily invariant norm, such as the Frobenius or
the L2 norm. Thus, distortion here amounts to a certain dis-
tance (norm) between the set of projected points, Ay, and
the original set of points A. If we associate with each row
(point) a vector corresponding to the difference between its
original and its new position then, for example, under the
Frobenius norm the distortion equals the sum of the squared
lengths of these vectors. It is clear that such a notion of dis-
tortion captures a significant global property. At the same
time, though, it does not offer any local guarantees. For
example, the distance between a pair of points can be arbi-
trarily smaller than what it was in the original space, if that
is advantageous to minimizing the total distortion.

The study of embeddings that respect local properties is a
rich area of mathematics with deep and beautiful results.
Such embeddings can guarantee, for example, that all dis-
tances between pairs of points are approximately maintained
or, more generally, that for a given ¢ > 2, a certain no-
tion of “volume” is maintained for all collections of up to
q points (thus capturing higher order local structure). The
algorithmic uses of such embeddings were first considered in
the seminal paper of Linial, London and Rabinovich [9] and
have by now become an important part of modern algorith-
mic design. A real gem in this area has been the following
result of Johnson and Lindenstrauss [7].

LEmMMA 1 ([7]). Given € > 0 and an integer n, let k
be a positive integer such that k > ko = O(e *logn). For
every set P of n points in R? there exists f: RT — R* such
that for all u,v € P

(1= O)lu—|” <|If(w) = fO)” < (1 +€)l[u—ov||” .

We will refer to embeddings providing a guarantee akin to
that of Lemma 1 as JL-embeddings. In the last few years,
JL-embeddings have been useful in solving a variety of prob-
lems. The rough idea is the following. By providing a low di-
mensional representation of the data, JL-embeddings speed
up certain algorithms dramatically, in particular algorithms
whose run-time depends exponentially in the dimension of
the working space (there are a number of practical problems
for which the best known algorithms have such behaviour).
At the same time, the provided guarantee regarding pair-
wise distances is often enough to establish that the solution



found by working in the low dimensional space is a good
approximation to the optimal solution in the original space.
We give a few examples below.

Papadimitriou, Raghavan, Tamaki and Vempala [10], proved
that embedding the points of A in a low-dimensional space
can significantly speed up the computation of a low rank ap-
proximation to A, without significantly affecting its quality.
In [6], Indyk and Motwani showed that JL-embeddings are
useful in solving the e-approximate nearest neighbor prob-
lem, where (after some preprocessing of the pointset P) one
is to answer queries of the following type: “Given an ar-
bitrary point x, find a point y € P, such that for every
point z € P, ||z — z|| > (1 —¢€)||z — y||.” In a different vein,
Schulman [11] used JL-embeddings as part of an approxima-
tion algorithm for the version of clustering where we seek to
minimize the sum of the squares of intracluster distances.
Recently, Indyk [5] showed that JL-embeddings can also be
used in the context of “data-stream” computation, where
one has limited memory and is allowed only a single pass
over the data (stream).

1.1 Our contribution

Over the years, the probabilistic method has allowed for the
original proof of Johnson and Lindenstrauss to be greatly
simplified and sharpened [4, 6, 3], while at the same time
giving conceptually simple randomized algorithms for con-
structing the embedding. Roughly speaking, all such algo-
rithms project the input points onto a spherically random
hyperplane through the origin.

Performing such a projection, while conceptually simple, is
non-trivial, especially in a database environment. Moreover,
its computational cost can be prohibitive for certain appli-
cations. At the same time, JL-embeddings have become an
important algorithmic design tool and in certain domains
they are a desirable standard data processing step. With
this in mind, it is natural to ask if we can compute such
embeddings in a manner that is simpler and more efficient
than the one suggested by the current methods.

Our main result, below, is a first step in this direction, as-
serting that one can replace projections onto random hyper-
planes with much simpler and faster operations, requiring
extremely simple probability distributions. In particular,
these operations can be implemented readily using standard
SQL primitives without any additional functionality. More-
over, somewhat surprisingly, this comes without any sacri-
fice in the quality of the embedding. In fact, we will see that
for every fixed value of d we can get slightly better bounds
than all current methods.

We describe the main result below in standard mathematical
terminology. Following that, we give an example of how to
compute the embedding using database operations. As in
Lemma 1, the parameter € controls the accuracy in distance
preservation, while now 3 controls the probability of success.

THEOREM 2. Let P be an arbitrary set of n points in R?,
represented as an n X d matriz A. Given €,8 > 0 let

4+28

ko = €2/2 —€3/3

logn .

For integer k > ko, let R be a d X k random matriz with
R(i,j) = rij, where {rij} are independent random variables
from either one of the following two probability distributions:

o +1  with probability 1/2
T -1 - 1/2 ,

+1  with probability 1/6

Trij = \/§>< 0 - 2/3
~1 . 1/6 .

Let

1
E=— AR .
Vk

Let f: R - R* map the it" row of A to the it" row of E.

With probability at least 1 —n™?, for all u,v € P
(1= o)llu—oll* <|[f(w) = f@)II* < L +€)llu—o]* .

In a database system, all operations needed to compute A R
are very efficient and easy to implement. For example, with
the second distribution above, the embedding amounts to
generating k new attributes, each one formed by apply-
ing the same process: throw away 2/3 of all attributes at
random; partition the remaining attributes randomly into
two equal parts; for each partition, produce a new attribute
equal to the sum of all attributes; take the difference of the
two sum-attributes.

All in all, using Theorem 2, one needs very simple probabil-
ity distributions, no floating point arithmetic, and all com-
putation amounts to highly optimized database operations
(aggregation). By using the second probability distribution,
where r;; = 0 with probability 2/3, we also get a threefold
speedup as we only need to process a third of all attributes
for each of the k coordinates. On the other hand, when
rij € {—1,+1}, conceptually the construction seems to be
about as simple as one could hope for.

Looking a bit more closely into the matrix E we see that
each row (vector) of A is projected onto k random vectors
whose coordinates {r;;} are independent random variables
with mean 0 and variance 1. If the {r;;} were independent
Normal random variables with mean 0 and variance 1, it is
well-known that the resulting vectors would point to uni-
formly random directions in space. Projections onto such
random lines through the origin have been considered in a
number of settings, including the work of Kleinberg on ap-
proximate nearest neighbors [8] and of Vempala on learning
intersections of halfspaces [12]. More recently, such projec-
tions have also been used in learning mixture of Gaussians
models, starting with the work of Dasgupta [2] and later
with the work of Arora and Kannan [1].

Our proof will suggest that for any fixed vector «, the be-
havior of its projection onto a random vector ¢ is mandated
by the even moments of ||a-¢||. In fact, our result follows by
showing that for every vector «, under our distributions for
{ri; }, these moments are dominated by the corresponding
moments for the case where ¢ is spherically symmetric. As a
result, projecting onto vectors whose entries are distributed



like the columns of matrix R could replace projection onto
random lines; it is computationally simpler and results in
projections that are at least as nicely behaved.

Finally, we note that Theorem 2 allows one to use signifi-
cantly fewer random bits than all previous methods for con-
structing JL-embeddings. While the amount of randomness
needed is still quite large, such attempts for randomness re-
duction are of independent interest and our result can be
viewed as a first step in that direction.

2. PREVIOUSWORK

Let us write X 2 Y to denote that X is distributed as ¥’
and recall that N (0, 1) denotes the standard Normal random
variable having mean 0 and variance 1.

As we will see, in all methods for producing JL-embeddings,
including ours, the heart of the matter is showing that for
any vector, the squared length of its projection is sharply
concentrated around its expected value. Armed with a suf-
ficiently strong such concentration bound, one then proves
the assertion of Lemma 1 for a collection of n points in R? by
applying the union bound for the (’2’) events corresponding
to each distance-vector being distorted by more than (1+e).

The original proof of Johnson and Lindenstrauss [7] uses
quite heavy geometric approximation machinery to yield
such a concentration bound when the projection is onto
a uniformly random hyperplane through the origin. That
proof was greatly simplified and sharpened by Frankl and
Meahara [4] who considered a direct projection onto k ran-
dom orthonormal vectors, yielding the following result.

THEOREM 3 ([4]). For anye € (0,1/2), any sufficiently
large set P € RY, and k > ko = [9(e* —2¢3/3) ' log |P|] +1,
there exists a map f: P — R such that for all u,v € P,

(L= lfu— ol < |[f(u) ~ fF@)I* < @ +e)llu—o]* .

The next great simplification of the proof of Lemma 1 was
given, independently, by Indyk and Motwani [6] and Das-
gupta and Gupta [3], the latter also giving a slight sharp-
ening of the bound for kg. Below we state our rendition of
how this simplification was achieved.

Assume that we try to implement the scheme of Frankl and
Macehara [4] but we are lazy about enforcing either normality
(unit length) or orthogonality among our k vectors. Instead,
we just pick our k vectors independently, in a spherically
symmetric manner. As we saw earlier, we can achieve this by
taking as the coordinates of each vector independent N (0, 1)
random variables. We then merely scale each vector by 1/v/d
so that its expected length is 1.

An immediate gain of this approach is that now, for any fixed
vector a, the length of its projection onto each of our vectors
is also a Normal random variable. This is due to a powerful
and deep fact, namely the 2-stability of the Gaussian dis-
tribution: for any real numbers oy, as, ..., aq, if {Z;}4 is
a family of independent Normal random variables and X =

¢ @;Z;, then X 2 ¢N(0,1), where ¢ = (af +---4a3)"/?.

As aresult, if we interpret each of the k projection lengths as
a coordinate in R¥, then the squared length of the resulting
vector follows the Chi-square distribution for which strong
concentration bounds are readily available.

And what have we lost? Surprisingly little. While we did
not insist upon either orthogonality, or normality, with high
probability, the resulting k vectors come very close to having
both these properties. In particular, the length of each of
the k vectors is sharply concentrated (around 1) as the sum
of d independent random variables. Moreover, since the k
vectors point in uniformly random directions in R?, they get
rapidly closer to being orthogonal as d grows.

Uunlike Indyk and Motwani [6], Dasgupta and Gupta [3] ex-
ploited spherical symmetry without appealing directly to
the 2-stability of the Gaussian distribution. Instead they
observe that, by symmetry, the projection of any unit vec-
tor a on a random hyperplane through the origin is dis-
tributed exactly like the projection of a random point from
the surface of the d-dimensional sphere onto a fixed subspace
of dimension k. Such a projection can be studied readily,
though, as now each coordinate is a scaled Normal random
variable. Their analysis gave the strongest known bound,
namely k > ko = 4(¢*/2—¢*/3)"!. Note that this is exactly
the same as our bound in Theorem 2 as 8 tends to 0.

3. SOME INTUITION

By combining the analysis of [3] with the viewpoint of [6]
it is in fact not hard to show that Theorem 2 holds if for
all 4,7, r;;; = N(0,1). Thus, our contribution essentially
begins with the realization that spherical symmetry, while
making life extremely comfortable, is not essential. What
is essential is concentration. So, at least in principle, one is
free to consider other candidate distributions for the {r;;},
if perhaps at the expense of comfort.

As we saw earlier, each column of our matrix R will give us
a coordinate of the projection in R¥. Moreover, the squared
length of the projection is merely the sum of the squares
of these coordinates. So, effectively, each column acts as
an estimator of the original vector’s length (by taking its
inner product with it), while in the end we take the con-
sensus estimate (sum) over our k estimators. From this
point of view, requiring our k vectors to be orthonormal
has the pleasant statistical interpretation of “greatest effi-
ciency”. In any case, though, as long as each column is
an unbiased, bounded variance estimator the Central Limit
Theorem asserts that by taking enough columns we can get
an arbitrarily good estimate of the original length. Natu-
rally, how many estimators are “enough” depends solely on
the variance of the estimators.

So, already we see that the key issue is the concentration of
the projection of an arbitrary fixed vector o onto a single
random vector. The main technical difficulty that results
from giving up spherical symmetry is that this concentra-
tion can now depend on «. Our main technical contribu-
tion lies in determining probability distributions for {r;;}
for which this concentration, for all vectors, is as good as

when r;; L N(0,1). In fact, it will turn out that for ev-
ery fized value of d, we can get a (minuscule) improvement



over the concentration for that case. Thus, for every fixed
d, we can actually get a strictly better bound for k, albeit
marginally, than by taking spherically random vectors.

The reader might be wondering “how can it be that perfect
spherical symmetry does not buy us anything?” (and is in
fact slightly worse for each fixed d). At a high level, an an-
swer to this question might go as follows. Given that we do
not have spherical symmetry anymore, an adversary could
try to pick a vector a so that the length of its projection
is as variable as possible. It is clear that not all vectors a
are equal with respect to this variability. What then does a
worst-case vector w look like? How much are we exposing
to the adversary by committing to pick our column vectors
among lattice points rather than arbitrary points in R%??

As we will see, the worst-case vector is w = (1/v/d) (1,...,1)
(and all 2% vectors resulting by sign-flipping w’s coordi-
nates). So, the worst-case vector turns out to be a more
or less “typical” vector, at least in terms of the fluctuations
in its coordinates, unlike say (1,0,...,0). As a result it is
not hard to believe that the adversary would not fare much
worse by picking a random vector. But in that case the
adversary does not benefit at all from our commitment.

To get a more satisfactory answer, it seems like one has to
delve into the proof. In particular, both for the spherically
random case and for our distributions, the bound on k is
mandated by the probability of overestimating the projected
length. Thus, the “bad events” amount to the spanning
vectors being too “well-aligned” with a. As a result, for
any fixed d one has to consider the tradeoff between the
probability and the extent of alignment.

For example, let us consider the projection onto a single
random vector when d = 2 and r;; € {—1,+1}. As we
said above, the worst case vector is w = (1/v/2)(1,1). So,
it’s easy to see that with probability 1/2 we have perfect
alignment (when our random vector is +w) and with proba-
bility 1/2 we have orthogonality. On the other hand, for the
spherically symmetric case, we have to consider the integral
over all points on the plane, weighted by their probability
under the two-dimensional Gaussian distribution. By a con-
vexity argument it turns out that for every fixed d, the even
moments of the projected length are (marginally) greater in
the spherically symmetric case. This leads to a (marginally)
weaker probability bound for that case. As one might guess,
the two bounds coincide as d tends to infinity.

4. PRELIMINARIES

Let x - y denote the inner product of vectors z,y. To sim-
plify notation in the calculations, we will work with matrix
R scaled by 1/\/3 Thus, R is a random d X k matrix with
R(i,j) = rij/\/d, where the {r;;} are distributed as in Theo-
rem 2. As a result, to get E we need to scale A x R by \/d/_k
rather than 1/vk. Therefore, if ¢; denotes the j** column
of R, then {c;}}_, is a family of k i.i.d. random unit vectors

deandforallae]Rd fla) =+/d/k (a-c1,...,

In practice, of course, such scaling can be postponed until
after the matrix multiplication (projection) has been per-
formed, so that we maintain the advantage of only having

- cq).

{—1,0,+1} in the projection matrix.

Let us start by computing E (||f(c)||*) for an arbitrary vec-
tor @ € RY. Let {Q;}5_, be defined as

Qj=a-¢ .

Then

d d
E(Q;)=E ( Zaﬂ“i;) = %ZaiE(m) =0, (1)

1
Vd
and

. 1 & ’
E (QJZ) =E ((ﬁ X;Qirij>

d 4
= (Z (cirij)” + Z Z 2alamrljrm]>
=1 m=1

1
1 d 1 d d
= Eza? T’L] + EZ QQIQmE(T‘[]‘)E(T‘m]')
=1 =1 m=1
1 .
= Dl @

Note that to get (1)
independent, E(r;;) =

and (2) we only used that {r;;} are
0 and Var(r;;) = 1. Using (2) we get

k
< 2B (@) =l

That is, E (|| f()||*) = [||? for any independent family of
{ri; } with E(r;;) = 0 and Var(r;;) = 1.

B (If(@)F) = & x

From the above we see that any distribution where E(r;;) =
0 and Var(r;;) = 1is, in principle, a candidate for the entries
of R. In fact, in [13], Arriaga and Vempala independently
suggested the possibility of getting JL-embeddings by pro-
jecting onto a matrix where r;; € {—1,+1} but did not give
any bounds on the necessary value of k.

As we mentioned earlier, having a JL-embedding amounts to
the following: for each of the (’2’) pairs u,v € P, the squared
norm of the vector u — v, is maintained within a factor of
1 + €. Therefore, if we can prove that for some 8 > 0 and
every vector a € R?,

Pr[(1—¢)llall” <[[f(a)]]* <

then the probability that our projection does not yield a
JL-embedding is bounded by (}) x 2/n*™? < 1/n”.

A+allol?] > 1 25 . (3)

Let us note that since for a fixed projection matrix, || f(c)||?

is proportional to ||c||, it suffices to consider probability
bounds for arbitrary unit vectors. Moreover, note that when
E(||f(@)|]?) = ||a|?, inequality (3) merely asserts that the
random variable ||f(a)||? is concentrated around its expec-
tation. Before considering this point for our distributions
for {ri;}, let us first wrap up the spherically random case.

Getting a concentration inequality for ||f(a)||* when r;; L
N(0,1) is straightforward. Due to the 2-stability of the Nor-

mal distribution, for every unit vector c, we have ||f(a)]|? 2



x2(k)/k, where x?(k) denotes the Chi-square distribution
with k degrees of freedom. The fact that we get the same
distribution for every vector a corresponds to the intuition
that “all vectors are the same” with respect to projection
onto a spherically random vector. Standard tail-bounds for
the Chi-square distribution readily yield the following.

LEMMA 4. Let r;j Z N(0,1) for all i,5. Then, for any
€ > 0 and any unit-vector o € R?,

Pr{lf@IF > @+ ar/d] < exp (-2 Ep)
Prllf@IP < (- akfa) < exp(=5(2-¢73)

Thus, to get a JL-embedding we need only require

2 x exp <7§(62/2 763/3)> < nzi*‘ﬂ ,

which holds for

> 2128 4+2p

1 .
= 2/2-¢3/3 oen

Let us note that the bound on the upper tail of ||f(a)|?
above is tight (up to lower order terms). As a result, as long
as the union bound is used, one cannot hope for a better
bound on k while using spherically random vectors.

To prove our result we use the exact same approach, arguing
that for every unit vector o € R?, the random variable
is sharply concentrated around its expectation, where c is a
column of our projection matrix R. In the next section we
state a lemma analogous to Lemma 4 above and sho;v how
c||”. We

prove those bounds in Section 6.

5. PROBABILITY BOUNDS

To simplify notation let us define for an arbitrary vector a,

=D (@) =3 Qi) ,

where ¢; is the j** column of R, so that ||f(a)||* = S x d/k.

LEMMA 5. Let ri; have any of the two distributions in
Theorem 2. Then, for any e > 0 and any unit vector @ € R%,

Pr(S> (1+e)k/d < exp (-%(62/2 - 63/3)> ,
PrS < (1—e)k/d] < exp (-%(62/2 _ 63/3)>

In proving Lemma 5 we will generally omit the dependence
of probabilities on «, making it explicit only when it affects
our calculations.

We will use the standard technique of applying Markov’s
inequality to the moment generating function of S. In par-

ticular, for arbitrary h > 0 we write
k k
r|S>(Q1 +e)3 = Pr |exp(hS) >exp|h(l+ E)E
k
< E(exp(hS))exp (—h(l +E)E)

Since {Q;}5_, are i.i.d. we get

k
E(exp (hS)) = E (H exp (hQ?)) (4)

k
HE exp (hQ3)) (5)
= (E(exp (hQ1)))" (6)

where passing from (4) to (5) uses that the {Q;}j_, are
independent, while passing from (5) to (6) uses that they
are identically distributed. Thus, for any € > 0

Pr [S > (1+6)§}

k
< (E(exp (hQ%)))" exp <—h(1 + E)E) | )
We will get a tight bound on E (exp (th)) from Lemma 6
below.

Similarly, but this time considering exp(—hS) for arbitrary
h > 0, we get that for any € > 0

Pr [S <(1 —e)g}

< (E(exp (—hQ1i ))) exp <h(1fe)§) . (8)

Rather than bounding E (exp (—th)) directly, this time
we will expand exp(h@?) to get

r {s <q —e)g] (9)

e IR
() enfoo-) o

where E(Q7?) was given by (2).

We will get a tight bound on E (Q‘f) from Lemma 6 below.

LEMMA 6. For all h € [0,d/2) and alld > 1,

__
1—2h/d
3

Z (12)

E (exp (hQY)) < , (11)

E (Q1)

IN

The proof of Lemma 6 will comprise Section 6. Below we
show how it implies Lemma 5 and thus Theorem 2.



Proof of Lemma 5. Substituting (11) in (7) we get (13).
To optimize the bound we set the derlvative in (13) with
respect to h to 0. This gives h = 5 = < %. Substituting
this value of h we get (14) and series expansion yields (15).

T [S> (1+6)g}

k
1 k

((1 +€) exp(—e))*/? (14)

exp (-5(e2- 1) (15)

A

Similarly, substituting (12) in (8) we get (16). This time
taking h = %%ﬁ is not optimal but it is “good enough”,
giving (17). Again, series expansion yields (18).

r {S< (1—e)§]

< (1 - g + g (g)j k exp (h(l - e)g) (16)
- (1 e 8(13i>2)k e (H) (17)
< exp (%(3/%5’/3)) . (18)

O

6. MOMENT BOUNDS

Here we prove bounds on certain moments of ();. To sim-
plify notation, we drop the subscript, writing it as Q.

It should be clear that the distribution of ) depends on «,

e., @ = Q(a). This is precisely what we give up by not
projecting onto spherically symmetric vectors. Our strategy
for giving bounds on the moments of ) will be to determine
a “worst case” unit vector w and consider Q(w). Our precise
claim is the following.

LEMMA 7. Let

and for allk =0,1,...

For every unit vector o € R?,

E(Q@™) <E(Qw)™) . (19)

Moreover, we will prove that the even moments of Q(w) are
dominated by the even moments of an appropriately scaled
Normal random variable, i.e., the corresponding moments
from the spherically symmetric case.

LEMMA 8. Let
T 2 N(0,1/d) .
For alld>1 and allk =0,1,...

E (Q(w)2k) <E (T”) . (20)

Postponing the proof of Lemmata 7 and 8 for a moment, let
us use them to prove Lemma 6.

Proof of Lemma 6. We start by observing that

—+oo

E(T4)— \/_exp( ,\2/2)(22)@—5 .

Along with (19) and (20) this readily implies (12).

For any real-valued random variable U, the Monotone Con-
vergence Theorem (MCT) implies

a5 5

k=0

E (exp (

for all A such that E (exp (hUQ)) is bounded.

For E (exp (hT?)), below, taking h € [0,d/2) makes the
integral converge, giving (21). Thus, for such h we can apply
the MCT to get (22). Now, applying (19) and (20) to (22)
gives (23). Applying the MCT once more gives (24).

—+ oo

\/_

o (21)

JI_2h/d
o Lk
=3 %E (T”‘) (22)

E (exp (hTQ)) = exp(—A?/2) exp( Z)d/\

k=0
> 3G (e) (23)
= E (exp (hQ%)) . (24)
Thus, E (exp (hQ?)) < 1/4/1=2h/d for h € [0,d/2), whlch

is prec1sely inequality (11).

To prove Lemma 7 we need the following lemma. It’s proof
appears in the Appendix.

LEMMA 9. Let ri,r2 be i.i.d. r.v. having one of the fol-
lowing two probability distributions: r; € {—1,+1}, each
value having probability 1/2, or, ri € {—/3,0,+v/3} with 0
having probability 2/3 and ++/3 being equiprobable.

For real numbers a,b let ¢ = \/(a? +b%)/2. Then, for all T
and oll k=0,1,...

E ((T +ar:+ br2)2k) <E ((T +cr1 + crz)%)

Proof of Lemma 7. Recall that for any vector o, Q(a) =
Q1(a) = a - ¢1 where

c1 = ﬁ (r11,...,7a1) -

If @ = (an,...,q) is such that af = a? for all 4, 7, then
by symmetry, Q(a) and Q(w) are identically distributed
and the lemma holds trivially. Otherwise, we can assume

without loss of generality, that a? # o3 and consider the



“more balanced” unit vector § = (¢, ¢, as,...,aq), where
(a2 + a2)/2. We will prove that

E(Q@™) <E(Q0)") . (25)

Applying this argument repeatedly yields the lemma, as 6
eventually becomes w.

To prove (25), below we first express E (Q(a)?") as a sum
of averages over ri1,r21. We then apply Lemma 9 to get
that each term (average) in the sum, is bounded by the
corresponding average for vector §. More precisely,

E (Q(Q)Qk)
= dik XR:E ((R +airi; + a21"21)2k) Pr |:Z; QT = %]

< 1 E((R 26\ p 2 . _ R
T ZR: (( +cri1 +cra1) ) r [iz_;a,rﬂ =7
= £ (Q0)™)

Proof of Lemma 8. Recall that T 2 N(0, 1/d). We will
first express T as the scaled sum of d independent standard
Normal random variables. This will allow for a direct com-
parison of the terms in each of the two expectations.

Specifically, let {T;}?_; be a family of i.i.d. standard Nor-
mal random variables. Then 2?21 T; is a Normal random
variable with variance d. Therefore,

d
ZT,— .
i=1

[IS]

ISHE

T

Recall also that Q(w) = Q1(w) = w - ¢1 where
1

Cc1 = % (7"11,~--77"d1) .
To simplify notation let us write r;1 = Y; and let us also
drop the dependence of ) on w. Thus,

d
D Vi
i=1

where {Y; }le are i.i.d. r.v. having one of the following two
distributions: Y; € {—1,+1}, each value having probability
1/2, or Y; € {—V/3,0,++/3} with 0 having probability 2/3
and £+1/3 being equiprobable.

Q:

ISHE

We are now ready to compare E (Q%) with E (T%). We
first observe that for every k = 0,1, ...

d d
T
i1=1 igp=1
. 1 &Y
E(QM) - diZ E(Yi, - Yiy,) -

1

s
=
Il
=
S
[~
=~
Il

To prove the lemma we will show that for every value as-

signment to the indices i1, ..., i,
E(Klllli/;dk)SE(Til...TiQk) : (26)
Let V = (v1,v2,...,v2) be the value assignment consid-

ered. For i € {1,...,d}, let Cv (i) be the number of times
that ¢ appears in V. Observe that if for some i, cy (i) is odd
then both expectations appearing in (26) are 0, since both
{Y:}?_, and {T;}?_, are independent families and E(Y;) =
E(T;) = 0 for all 4. Thus, we can assume that there ex-
ists a set {j1, j2,...,Jp} of indices and corresponding values
l1,45,...,4, such that

E(Yi Vi) = B0V v27), and
E(T), - Th,) = E(T]?I‘IT]?;Q---T;‘P)

Note now that since the indices ji,j2,...,Jp are distinct,
{Y;, }_, and {T},}}_, are families of i.i.d. r.v. Therefore,

E(Y, Viy) = E(30)x-xE(Y)"), and
(T Ty) = E(T) < xE(1]7)

So, without loss of generality, in order to prove (26) it suffices
to prove that for every £=10,1,...

E (Yf"f) <E (TE‘) . (27)

This, though, is completely trivial. Moreover, along with
Lemma 9, it is the only point were we need to use properties
of the distribution for the r;; (here called Y;).

Let us first recall the well-known fact that the (2¢)th mo-

ment of N(0,1) is (26—1)!! = (2)!/(¢!2*) > 1. Furthermore:
If Y1 € {~1,+1} then E (¥7) = 1.

~IfY: € {—V3,0,+/3} then E(Y) = 3! < (20)!/(£12%),

where the last inequality follows by an easy induction. O

Let us note that since E (Ylﬂ) < E (Tlﬂ) for certain I, one
can get that for each fixed d, both inequalities in Lemma 6
are actually strict, yielding slightly better tails bounds for
S and a correspondingly better bound for kq.

As a last remark we note that by using Jensen’s inequality
one can get a direct bound for E(Q**) when Y; € {—1, +1},
i.e., without comparing it to E(T>*). That simplifies the
proof for that case and shows that taking Y; € {—1,+1} is
the minimizer of E (exp (hQZ)) for all h.
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APPENDIX

Proof of Lemma 9. Let us first consider the case where
r; € {—1,+1}, each value having probability 1/2.

If a®> = b? then a = ¢ and the lemma holds with equality.
Otherwise, let us write

S
E ((T +cri + cr2)2k) —-E ((T +ari + br2)2k) = Ik
where
Sy = (T+2) +27% 4+ (T — 2¢)** — (T + a +b)**

—(T+a—-b*—(T-a+b)* —(T-a-b)* .
We will show that S > 0 for all &k > 0.

Since a? # b® we can use the binomial theorem to expand
every term other than 277?% in Sy and get

2% ok
S, — 972k T?Ic—iDi

where
D; = (20)i+(—20)i— (a+b)i— (a—b)i—(—a+b)i—(—a—b)i .

Observe now that for odd i, D; = 0. Moreover, we claim
that Dy; > 0 for all 5 > 1. To see this claim observe that
(2a* + 2b?) = (a + b)*> + (a — b)? and that for all j > 1 and
2,y >0, (x+y) >a’ +y’. Thus,

k
Sio= 2% 4y (;’;) 7209 p,

j=0

J
> 0.

The proof for the case where r; € {—+/3,0,4+1/3} is merely
a more cumbersome version of the proof above, so we omit
it. That proof, though, brings forward an interesting point.
If one tries to take r; = 0 with probability greater than
2/3, while maintaining a range of size 3 and variance 1, the
lemma fails. In other words, 2/3 is tight in terms of how
much probability mass we can put to r; = 0 and still have
the all-ones vector be the worst-case one. O



