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ABSTRACTA 
lassi
 result of Johnson and Lindenstrauss asserts thatany set of n points in d-dimensional Eu
lidean spa
e 
an beembedded into k-dimensional Eu
lidean spa
e | where k islogarithmi
 in n and independent of d| so that all pairwisedistan
es are maintained within an arbitrarily small fa
tor.All known 
onstru
tions of su
h embeddings involve proje
t-ing the n points onto a random k-dimensional hyperplane.We give a novel 
onstru
tion of the embedding, suitable fordatabase appli
ations, whi
h amounts to 
omputing a sim-ple aggregate over k random attribute partitions.
1. INTRODUCTIONConsider proje
ting the points of your favorite s
ulpture �rstonto a plane and then onto a single line. The result amplydemonstrates the power of dimensionality.Conversely, given a high-dimensional pointset it is naturalto ask whether it exploits its full allotment of dimensionalityor, rather, it 
ould be embedded into a lower dimensionalspa
e without su�ering great distortion.In general, su
h questions involve a, perhaps in�nite, 
olle
-tion of points endowed with some distan
e fun
tion (metri
).In this paper, we will only deal with �nite sets of points inEu
lidean spa
e (so the Eu
lidean distan
e is the metri
).In parti
ular, it will be 
onvenient to think of n points inRd as an n�d table (matrix) A with ea
h point representedas a row (ve
tor) with d attributes (
oordinates).Given su
h a matrix A, one of the most 
ommon embeddingsis the one suggested by its Singular Value De
omposition.In parti
ular, to embed the n points into Rk we proje
tthem onto the k-dimensional spa
e spanned by the singularve
tors 
orresponding to the k largest singular values of A.If one rewrites the result of this proje
tion as a (rank k)�Address: Mi
rosoft Corporation, One Mi
rosoft Way, Red-mond WA, 98052, U.S.A. Email: optas�mi
rosoft.
om

n � d matrix Ak, we are guaranteed that for every rank kmatrix D jA�Akj � jA�Dj ;for any unitarily invariant norm, su
h as the Frobenius orthe L2 norm. Thus, distortion here amounts to a 
ertain dis-tan
e (norm) between the set of proje
ted points, Ak, andthe original set of points A. If we asso
iate with ea
h row(point) a ve
tor 
orresponding to the di�eren
e between itsoriginal and its new position then, for example, under theFrobenius norm the distortion equals the sum of the squaredlengths of these ve
tors. It is 
lear that su
h a notion of dis-tortion 
aptures a signi�
ant global property. At the sametime, though, it does not o�er any lo
al guarantees. Forexample, the distan
e between a pair of points 
an be arbi-trarily smaller than what it was in the original spa
e, if thatis advantageous to minimizing the total distortion.The study of embeddings that respe
t lo
al properties is ari
h area of mathemati
s with deep and beautiful results.Su
h embeddings 
an guarantee, for example, that all dis-tan
es between pairs of points are approximately maintainedor, more generally, that for a given q � 2, a 
ertain no-tion of \volume" is maintained for all 
olle
tions of up toq points (thus 
apturing higher order lo
al stru
ture). Thealgorithmi
 uses of su
h embeddings were �rst 
onsidered inthe seminal paper of Linial, London and Rabinovi
h [9℄ andhave by now be
ome an important part of modern algorith-mi
 design. A real gem in this area has been the followingresult of Johnson and Lindenstrauss [7℄.Lemma 1 ([7℄). Given � > 0 and an integer n, let kbe a positive integer su
h that k � k0 = O(��2 log n). Forevery set P of n points in Rd there exists f : Rd ! Rk su
hthat for all u; v 2 P(1� �)jju� vjj2 � jjf(u)� f(v)jj2 � (1 + �)jju� vjj2 :We will refer to embeddings providing a guarantee akin tothat of Lemma 1 as JL-embeddings. In the last few years,JL-embeddings have been useful in solving a variety of prob-lems. The rough idea is the following. By providing a low di-mensional representation of the data, JL-embeddings speedup 
ertain algorithms dramati
ally, in parti
ular algorithmswhose run-time depends exponentially in the dimension ofthe working spa
e (there are a number of pra
ti
al problemsfor whi
h the best known algorithms have su
h behaviour).At the same time, the provided guarantee regarding pair-wise distan
es is often enough to establish that the solution



found by working in the low dimensional spa
e is a goodapproximation to the optimal solution in the original spa
e.We give a few examples below.Papadimitriou, Raghavan, Tamaki and Vempala [10℄, provedthat embedding the points of A in a low-dimensional spa
e
an signi�
antly speed up the 
omputation of a low rank ap-proximation to A, without signi�
antly a�e
ting its quality.In [6℄, Indyk and Motwani showed that JL-embeddings areuseful in solving the "-approximate nearest neighbor prob-lem, where (after some prepro
essing of the pointset P ) oneis to answer queries of the following type: \Given an ar-bitrary point x, �nd a point y 2 P , su
h that for everypoint z 2 P , jjx� zjj � (1� ")jjx� yjj." In a di�erent vein,S
hulman [11℄ used JL-embeddings as part of an approxima-tion algorithm for the version of 
lustering where we seek tominimize the sum of the squares of intra
luster distan
es.Re
ently, Indyk [5℄ showed that JL-embeddings 
an also beused in the 
ontext of \data-stream" 
omputation, whereone has limited memory and is allowed only a single passover the data (stream).
1.1 Our contributionOver the years, the probabilisti
 method has allowed for theoriginal proof of Johnson and Lindenstrauss to be greatlysimpli�ed and sharpened [4, 6, 3℄, while at the same timegiving 
on
eptually simple randomized algorithms for 
on-stru
ting the embedding. Roughly speaking, all su
h algo-rithms proje
t the input points onto a spheri
ally randomhyperplane through the origin.Performing su
h a proje
tion, while 
on
eptually simple, isnon-trivial, espe
ially in a database environment. Moreover,its 
omputational 
ost 
an be prohibitive for 
ertain appli-
ations. At the same time, JL-embeddings have be
ome animportant algorithmi
 design tool and in 
ertain domainsthey are a desirable standard data pro
essing step. Withthis in mind, it is natural to ask if we 
an 
ompute su
hembeddings in a manner that is simpler and more eÆ
ientthan the one suggested by the 
urrent methods.Our main result, below, is a �rst step in this dire
tion, as-serting that one 
an repla
e proje
tions onto random hyper-planes with mu
h simpler and faster operations, requiringextremely simple probability distributions. In parti
ular,these operations 
an be implemented readily using standardSQL primitives without any additional fun
tionality. More-over, somewhat surprisingly, this 
omes without any sa
ri-�
e in the quality of the embedding. In fa
t, we will see thatfor every �xed value of d we 
an get slightly better boundsthan all 
urrent methods.We des
ribe the main result below in standard mathemati
alterminology. Following that, we give an example of how to
ompute the embedding using database operations. As inLemma 1, the parameter � 
ontrols the a

ura
y in distan
epreservation, while now � 
ontrols the probability of su

ess.Theorem 2. Let P be an arbitrary set of n points in Rd,represented as an n� d matrix A. Given �; � > 0 letk0 = 4 + 2��2=2� �3=3 log n :

For integer k � k0, let R be a d � k random matrix withR(i; j) = rij, where frijg are independent random variablesfrom either one of the following two probability distributions:rij = � +1 with probability 1=2�1 �� 1=2 ;rij = p3� 8<: +1 with probability 1=60 �� 2=3�1 �� 1=6 :Let E = 1pk AR :Let f : Rd ! Rk map the ith row of A to the ith row of E.With probability at least 1� n��, for all u; v 2 P(1� �)jju� vjj2 � jjf(u)� f(v)jj2 � (1 + �)jju� vjj2 :In a database system, all operations needed to 
ompute ARare very eÆ
ient and easy to implement. For example, withthe se
ond distribution above, the embedding amounts togenerating k new attributes, ea
h one formed by apply-ing the same pro
ess: throw away 2=3 of all attributes atrandom; partition the remaining attributes randomly intotwo equal parts; for ea
h partition, produ
e a new attributeequal to the sum of all attributes; take the di�eren
e of thetwo sum-attributes.All in all, using Theorem 2, one needs very simple probabil-ity distributions, no 
oating point arithmeti
, and all 
om-putation amounts to highly optimized database operations(aggregation). By using the se
ond probability distribution,where rij = 0 with probability 2=3, we also get a threefoldspeedup as we only need to pro
ess a third of all attributesfor ea
h of the k 
oordinates. On the other hand, whenrij 2 f�1;+1g, 
on
eptually the 
onstru
tion seems to beabout as simple as one 
ould hope for.Looking a bit more 
losely into the matrix E we see thatea
h row (ve
tor) of A is proje
ted onto k random ve
torswhose 
oordinates frijg are independent random variableswith mean 0 and varian
e 1. If the frijg were independentNormal random variables with mean 0 and varian
e 1, it iswell-known that the resulting ve
tors would point to uni-formly random dire
tions in spa
e. Proje
tions onto su
hrandom lines through the origin have been 
onsidered in anumber of settings, in
luding the work of Kleinberg on ap-proximate nearest neighbors [8℄ and of Vempala on learninginterse
tions of halfspa
es [12℄. More re
ently, su
h proje
-tions have also been used in learning mixture of Gaussiansmodels, starting with the work of Dasgupta [2℄ and laterwith the work of Arora and Kannan [1℄.Our proof will suggest that for any �xed ve
tor �, the be-havior of its proje
tion onto a random ve
tor 
 is mandatedby the even moments of jj� �
jj. In fa
t, our result follows byshowing that for every ve
tor �, under our distributions forfrijg, these moments are dominated by the 
orrespondingmoments for the 
ase where 
 is spheri
ally symmetri
. As aresult, proje
ting onto ve
tors whose entries are distributed



like the 
olumns of matrix R 
ould repla
e proje
tion ontorandom lines; it is 
omputationally simpler and results inproje
tions that are at least as ni
ely behaved.Finally, we note that Theorem 2 allows one to use signi�-
antly fewer random bits than all previous methods for 
on-stru
ting JL-embeddings. While the amount of randomnessneeded is still quite large, su
h attempts for randomness re-du
tion are of independent interest and our result 
an beviewed as a �rst step in that dire
tion.
2. PREVIOUS WORKLet us write X D= Y to denote that X is distributed as Yand re
all thatN(0; 1) denotes the standard Normal randomvariable having mean 0 and varian
e 1.As we will see, in all methods for produ
ing JL-embeddings,in
luding ours, the heart of the matter is showing that forany ve
tor, the squared length of its proje
tion is sharply
on
entrated around its expe
ted value. Armed with a suf-�
iently strong su
h 
on
entration bound, one then provesthe assertion of Lemma 1 for a 
olle
tion of n points in Rd byapplying the union bound for the �n2� events 
orrespondingto ea
h distan
e-ve
tor being distorted by more than (1��).The original proof of Johnson and Lindenstrauss [7℄ usesquite heavy geometri
 approximation ma
hinery to yieldsu
h a 
on
entration bound when the proje
tion is ontoa uniformly random hyperplane through the origin. Thatproof was greatly simpli�ed and sharpened by Frankl andMeahara [4℄ who 
onsidered a dire
t proje
tion onto k ran-dom orthonormal ve
tors, yielding the following result.Theorem 3 ([4℄). For any � 2 (0; 1=2), any suÆ
ientlylarge set P 2 Rd, and k � k0 = d9(�2�2�3=3)�1 log jP je+1,there exists a map f : P ! Rk su
h that for all u; v 2 P ,(1� �)jju� vjj2 � jjf(u)� f(v)jj2 � (1 + �)jju� vjj2 :The next great simpli�
ation of the proof of Lemma 1 wasgiven, independently, by Indyk and Motwani [6℄ and Das-gupta and Gupta [3℄, the latter also giving a slight sharp-ening of the bound for k0. Below we state our rendition ofhow this simpli�
ation was a
hieved.Assume that we try to implement the s
heme of Frankl andMaehara [4℄ but we are lazy about enfor
ing either normality(unit length) or orthogonality among our k ve
tors. Instead,we just pi
k our k ve
tors independently, in a spheri
allysymmetri
 manner. As we saw earlier, we 
an a
hieve this bytaking as the 
oordinates of ea
h ve
tor independent N(0; 1)random variables. We then merely s
ale ea
h ve
tor by 1=pdso that its expe
ted length is 1.An immediate gain of this approa
h is that now, for any �xedve
tor �, the length of its proje
tion onto ea
h of our ve
torsis also a Normal random variable. This is due to a powerfuland deep fa
t, namely the 2-stability of the Gaussian dis-tribution: for any real numbers �1; �2; : : : ; �d, if fZigdi=1 isa family of independent Normal random variables and X =Pdi=1 �iZi, then X D= 
N(0; 1), where 
 = (�21+� � �+�2d)1=2.

As a result, if we interpret ea
h of the k proje
tion lengths asa 
oordinate in Rk , then the squared length of the resultingve
tor follows the Chi-square distribution for whi
h strong
on
entration bounds are readily available.And what have we lost? Surprisingly little. While we didnot insist upon either orthogonality, or normality, with highprobability, the resulting k ve
tors 
ome very 
lose to havingboth these properties. In parti
ular, the length of ea
h ofthe k ve
tors is sharply 
on
entrated (around 1) as the sumof d independent random variables. Moreover, sin
e the kve
tors point in uniformly random dire
tions in Rd , they getrapidly 
loser to being orthogonal as d grows.Unlike Indyk and Motwani [6℄, Dasgupta and Gupta [3℄ ex-ploited spheri
al symmetry without appealing dire
tly tothe 2-stability of the Gaussian distribution. Instead theyobserve that, by symmetry, the proje
tion of any unit ve
-tor � on a random hyperplane through the origin is dis-tributed exa
tly like the proje
tion of a random point fromthe surfa
e of the d-dimensional sphere onto a �xed subspa
eof dimension k. Su
h a proje
tion 
an be studied readily,though, as now ea
h 
oordinate is a s
aled Normal randomvariable. Their analysis gave the strongest known bound,namely k � k0 = 4(�2=2� �3=3)�1. Note that this is exa
tlythe same as our bound in Theorem 2 as � tends to 0.
3. SOME INTUITIONBy 
ombining the analysis of [3℄ with the viewpoint of [6℄it is in fa
t not hard to show that Theorem 2 holds if forall i; j, rij D= N(0; 1). Thus, our 
ontribution essentiallybegins with the realization that spheri
al symmetry, whilemaking life extremely 
omfortable, is not essential. Whatis essential is 
on
entration. So, at least in prin
iple, one isfree to 
onsider other 
andidate distributions for the frijg,if perhaps at the expense of 
omfort.As we saw earlier, ea
h 
olumn of our matrix R will give usa 
oordinate of the proje
tion in Rk . Moreover, the squaredlength of the proje
tion is merely the sum of the squaresof these 
oordinates. So, e�e
tively, ea
h 
olumn a
ts asan estimator of the original ve
tor's length (by taking itsinner produ
t with it), while in the end we take the 
on-sensus estimate (sum) over our k estimators. From thispoint of view, requiring our k ve
tors to be orthonormalhas the pleasant statisti
al interpretation of \greatest eÆ-
ien
y". In any 
ase, though, as long as ea
h 
olumn isan unbiased, bounded varian
e estimator the Central LimitTheorem asserts that by taking enough 
olumns we 
an getan arbitrarily good estimate of the original length. Natu-rally, how many estimators are \enough" depends solely onthe varian
e of the estimators.So, already we see that the key issue is the 
on
entration ofthe proje
tion of an arbitrary �xed ve
tor � onto a singlerandom ve
tor. The main te
hni
al diÆ
ulty that resultsfrom giving up spheri
al symmetry is that this 
on
entra-tion 
an now depend on �. Our main te
hni
al 
ontribu-tion lies in determining probability distributions for frijgfor whi
h this 
on
entration, for all ve
tors, is as good aswhen rij D= N(0; 1). In fa
t, it will turn out that for ev-ery �xed value of d, we 
an get a (minus
ule) improvement



over the 
on
entration for that 
ase. Thus, for every �xedd, we 
an a
tually get a stri
tly better bound for k, albeitmarginally, than by taking spheri
ally random ve
tors.The reader might be wondering \how 
an it be that perfe
tspheri
al symmetry does not buy us anything?" (and is infa
t slightly worse for ea
h �xed d). At a high level, an an-swer to this question might go as follows. Given that we donot have spheri
al symmetry anymore, an adversary 
ouldtry to pi
k a ve
tor � so that the length of its proje
tionis as variable as possible. It is 
lear that not all ve
tors �are equal with respe
t to this variability. What then does aworst-
ase ve
tor w look like? How mu
h are we exposingto the adversary by 
ommitting to pi
k our 
olumn ve
torsamong latti
e points rather than arbitrary points in Rd?As we will see, the worst-
ase ve
tor is w = (1=pd) (1; : : : ; 1)(and all 2d ve
tors resulting by sign-
ipping w's 
oordi-nates). So, the worst-
ase ve
tor turns out to be a moreor less \typi
al" ve
tor, at least in terms of the 
u
tuationsin its 
oordinates, unlike say (1; 0; : : : ; 0). As a result it isnot hard to believe that the adversary would not fare mu
hworse by pi
king a random ve
tor. But in that 
ase theadversary does not bene�t at all from our 
ommitment.To get a more satisfa
tory answer, it seems like one has todelve into the proof. In parti
ular, both for the spheri
allyrandom 
ase and for our distributions, the bound on k ismandated by the probability of overestimating the proje
tedlength. Thus, the \bad events" amount to the spanningve
tors being too \well-aligned" with �. As a result, forany �xed d one has to 
onsider the tradeo� between theprobability and the extent of alignment.For example, let us 
onsider the proje
tion onto a singlerandom ve
tor when d = 2 and rij 2 f�1;+1g. As wesaid above, the worst 
ase ve
tor is w = (1=p2)(1; 1). So,it's easy to see that with probability 1=2 we have perfe
talignment (when our random ve
tor is �w) and with proba-bility 1=2 we have orthogonality. On the other hand, for thespheri
ally symmetri
 
ase, we have to 
onsider the integralover all points on the plane, weighted by their probabilityunder the two-dimensional Gaussian distribution. By a 
on-vexity argument it turns out that for every �xed d, the evenmoments of the proje
ted length are (marginally) greater inthe spheri
ally symmetri
 
ase. This leads to a (marginally)weaker probability bound for that 
ase. As one might guess,the two bounds 
oin
ide as d tends to in�nity.
4. PRELIMINARIESLet x � y denote the inner produ
t of ve
tors x; y. To sim-plify notation in the 
al
ulations, we will work with matrixR s
aled by 1=pd. Thus, R is a random d� k matrix withR(i; j) = rij=pd, where the frijg are distributed as in Theo-rem 2. As a result, to get E we need to s
ale A�R bypd=krather than 1=pk. Therefore, if 
j denotes the jth 
olumnof R, then f
jgkj=1 is a family of k i.i.d. random unit ve
torsin Rd and for all � 2 Rd , f(�) =pd=k (� � 
1; : : : ; � � 
d).In pra
ti
e, of 
ourse, su
h s
aling 
an be postponed untilafter the matrix multipli
ation (proje
tion) has been per-formed, so that we maintain the advantage of only having

f�1; 0;+1g in the proje
tion matrix.Let us start by 
omputing E �jjf(�)jj2� for an arbitrary ve
-tor � 2 Rd . Let fQjgkj=1 be de�ned asQj = � � 
j :ThenE (Qj) = E 1pd dXi=1 �irij! = 1pd dXi=1 �iE (rij) = 0 ; (1)andE �Q2j� = E0� 1pd dXi=1 �irij!21A= 1dE dXi=1 (�irij)2 + dXl=1 dXm=1 2�l�mrljrmj!= 1d dXi=1 �2i E �r2ij�+ 1d dXl=1 dXm=1 2�l�mE (rlj)E (rmj)= 1d � jj�jj2 : (2)Note that to get (1) and (2) we only used that frijg areindependent, E(rij) = 0 and Var(rij) = 1. Using (2) we getE �jjf(�)jj2� = dk � kXj=1E �Q2j� = jj�jj2 :That is, E �jjf(�)jj2� = jj�jj2 for any independent family offrijg with E(rij) = 0 and Var(rij) = 1.From the above we see that any distribution where E(rij) =0 and Var(rij) = 1 is, in prin
iple, a 
andidate for the entriesof R. In fa
t, in [13℄, Arriaga and Vempala independentlysuggested the possibility of getting JL-embeddings by pro-je
ting onto a matrix where rij 2 f�1;+1g but did not giveany bounds on the ne
essary value of k.As we mentioned earlier, having a JL-embedding amounts tothe following: for ea
h of the �n2� pairs u; v 2 P , the squarednorm of the ve
tor u � v, is maintained within a fa
tor of1 � �. Therefore, if we 
an prove that for some � > 0 andevery ve
tor � 2 Rd ,Pr[(1��)jj�jj2 � jjf(�)jj2 � (1+�)jj�jj2℄ � 1� 2n2+� ; (3)then the probability that our proje
tion does not yield aJL-embedding is bounded by �n2�� 2=n2+� < 1=n� .Let us note that sin
e for a �xed proje
tion matrix, jjf(�)jj2is proportional to jj�jj, it suÆ
es to 
onsider probabilitybounds for arbitrary unit ve
tors. Moreover, note that whenE(jjf(�)jj2) = jj�jj2, inequality (3) merely asserts that therandom variable jjf(�)jj2 is 
on
entrated around its expe
-tation. Before 
onsidering this point for our distributionsfor frijg, let us �rst wrap up the spheri
ally random 
ase.Getting a 
on
entration inequality for jjf(�)jj2 when rij D=N(0; 1) is straightforward. Due to the 2-stability of the Nor-mal distribution, for every unit ve
tor �, we have jjf(�)jj2 D=



�2(k)=k, where �2(k) denotes the Chi-square distributionwith k degrees of freedom. The fa
t that we get the samedistribution for every ve
tor � 
orresponds to the intuitionthat \all ve
tors are the same" with respe
t to proje
tiononto a spheri
ally random ve
tor. Standard tail-bounds forthe Chi-square distribution readily yield the following.Lemma 4. Let rij D= N(0; 1) for all i; j. Then, for any� > 0 and any unit-ve
tor � 2 Rd,Pr �jjf(�)jj2 � (1 + �)k=d� < exp��k2 (�2=2� �3=3)� ;Pr �jjf(�)jj2 � (1� �)k=d� < exp��k2 (�2=2� �3=3)� :Thus, to get a JL-embedding we need only require2� exp��k2 (�2=2� �3=3)� � 2n2+� ;whi
h holds for k � 4 + 2��2=2� �3=3 log n :Let us note that the bound on the upper tail of jjf(�)jj2above is tight (up to lower order terms). As a result, as longas the union bound is used, one 
annot hope for a betterbound on k while using spheri
ally random ve
tors.To prove our result we use the exa
t same approa
h, arguingthat for every unit ve
tor � 2 Rd , the random variable jj�
jj2is sharply 
on
entrated around its expe
tation, where 
 is a
olumn of our proje
tion matrix R. In the next se
tion westate a lemma analogous to Lemma 4 above and show howit follows from bounds on 
ertain moments of jj�
jj2 . Weprove those bounds in Se
tion 6.
5. PROBABILITY BOUNDSTo simplify notation let us de�ne for an arbitrary ve
tor �,S = S(�) = kXj=1 (� � 
j)2 = kXj=1Q2j (�) ;where 
j is the jth 
olumn of R, so that jjf(�)jj2 = S�d=k.Lemma 5. Let rij have any of the two distributions inTheorem 2. Then, for any � > 0 and any unit ve
tor � 2 Rd,Pr [S > (1 + �)k=d℄ < exp��k2 (�2=2� �3=3)� ;Pr [S < (1� �)k=d℄ < exp��k2 (�2=2� �3=3)� :In proving Lemma 5 we will generally omit the dependen
eof probabilities on �, making it expli
it only when it a�e
tsour 
al
ulations.We will use the standard te
hnique of applying Markov'sinequality to the moment generating fun
tion of S. In par-

ti
ular, for arbitrary h > 0 we writePr �S > (1 + �)kd� = Pr �exp(hS) > exp�h(1 + �)kd��< E (exp (hS)) exp��h(1 + �)kd� :Sin
e fQjgkj=1 are i.i.d. we getE (exp (hS)) = E kYj=1 exp �hQ2j�! (4)= kYj=1E �exp �hQ2j�� (5)= �E �exp �hQ21���k ; (6)where passing from (4) to (5) uses that the fQjgkj=1 areindependent, while passing from (5) to (6) uses that theyare identi
ally distributed. Thus, for any � > 0Pr �S > (1 + �)kd�< �E �exp �hQ21���k exp��h(1 + �)kd� : (7)We will get a tight bound on E �exp �hQ21�� from Lemma 6below.Similarly, but this time 
onsidering exp(�hS) for arbitraryh > 0, we get that for any � > 0Pr �S < (1� �)kd�< �E �exp ��hQ21���k exp�h(1� �)kd� : (8)Rather than bounding E �exp ��hQ21�� dire
tly, this timewe will expand exp(hQ21) to getPr �S < (1� �)kd� (9)<  E 1� hQ21 + ��hQ21�22! !!k exp�h(1� �)kd�= �1� hd + h22 E �Q41��k exp�h(1� �)kd� ; (10)where E(Q21) was given by (2).We will get a tight bound on E �Q41� from Lemma 6 below.Lemma 6. For all h 2 [0; d=2) and all d � 1,E �exp �hQ21�� � 1p1� 2h=d ; (11)E �Q41� � 3d2 : (12)The proof of Lemma 6 will 
omprise Se
tion 6. Below weshow how it implies Lemma 5 and thus Theorem 2.



Proof of Lemma 5. Substituting (11) in (7) we get (13).To optimize the bound we set the derivative in (13) withrespe
t to h to 0. This gives h = d2 �1+� < d2 . Substitutingthis value of h we get (14) and series expansion yields (15).Pr �S > (1 + �)kd��  1p1� 2h=d!k exp��h(1 + �)kd� (13)= ((1 + �) exp(��))k=2 (14)< exp��k2 (�2=2� �3=3)� : (15)Similarly, substituting (12) in (8) we get (16). This timetaking h = d2 �1+� is not optimal but it is \good enough",giving (17). Again, series expansion yields (18).Pr �S < (1� �)kd��  1� hd + 32 �hd�2!k exp�h(1� �)kd� (16)= �1� �2(1 + �) + 3�28(1 + �)2�k exp��(1� �)k2(1 + �) � (17)< exp��k2 (�2=2� �3=3)� : (18)2
6. MOMENT BOUNDSHere we prove bounds on 
ertain moments of Q1. To sim-plify notation, we drop the subs
ript, writing it as Q.It should be 
lear that the distribution of Q depends on �,i.e., Q = Q(�). This is pre
isely what we give up by notproje
ting onto spheri
ally symmetri
 ve
tors. Our strategyfor giving bounds on the moments of Q will be to determinea \worst 
ase" unit ve
tor w and 
onsider Q(w). Our pre
ise
laim is the following.Lemma 7. Let w = 1pd (1; : : : ; 1) :For every unit ve
tor � 2 Rd, and for all k = 0; 1; : : :E�Q(�)2k� � E�Q(w)2k� : (19)Moreover, we will prove that the even moments of Q(w) aredominated by the even moments of an appropriately s
aledNormal random variable, i.e., the 
orresponding momentsfrom the spheri
ally symmetri
 
ase.Lemma 8. Let T D= N(0; 1=d) :For all d � 1 and all k = 0; 1; : : :E�Q(w)2k� � E�T 2k� : (20)

Postponing the proof of Lemmata 7 and 8 for a moment, letus use them to prove Lemma 6.Proof of Lemma 6. We start by observing thatE �T 4� = Z +1�1 1p2� exp(��2=2)��4d2�d� = 3d2 :Along with (19) and (20) this readily implies (12).For any real-valued random variable U , the Monotone Con-vergen
e Theorem (MCT) impliesE �exp �hU2�� = E 1Xk=0 (hU2)kk! ! = 1Xk=0 hkk! E�U2k�for all h su
h that E �exp �hU2�� is bounded.For E �exp �hT 2��, below, taking h 2 [0; d=2) makes theintegral 
onverge, giving (21). Thus, for su
h h we 
an applythe MCT to get (22). Now, applying (19) and (20) to (22)gives (23). Applying the MCT on
e more gives (24).E �exp �hT 2�� = Z +1�1 1p2� exp(��2=2) exp�h�2d �d�= 1p1� 2h=d (21)= 1Xk=0 hkk! E�T 2k� (22)� 1Xk=0 hkk! E�Q2k� (23)= E �exp �hQ2�� : (24)Thus, E �exp �hQ2�� � 1=p1� 2h=d for h 2 [0; d=2), whi
his pre
isely inequality (11). 2To prove Lemma 7 we need the following lemma. It's proofappears in the Appendix.Lemma 9. Let r1; r2 be i.i.d. r.v. having one of the fol-lowing two probability distributions: ri 2 f�1;+1g, ea
hvalue having probability 1/2, or, ri 2 f�p3; 0;+p3g with 0having probability 2/3 and �p3 being equiprobable.For real numbers a; b let 
 =p(a2 + b2)=2. Then, for all Tand all k = 0; 1; : : :E�(T + ar1 + br2)2k� � E�(T + 
r1 + 
r2)2k� :Proof of Lemma 7. Re
all that for any ve
tor �, Q(�) =Q1(�) = � � 
1 where
1 = 1pd (r11; : : : ; rd1) :If � = (�1; : : : ; �d) is su
h that �2i = �2j for all i; j, thenby symmetry, Q(�) and Q(w) are identi
ally distributedand the lemma holds trivially. Otherwise, we 
an assumewithout loss of generality, that �21 6= �22 and 
onsider the



\more balan
ed" unit ve
tor � = (
; 
; �3; : : : ; �d), where
 =p(�21 + �22)=2. We will prove thatE�Q(�)2k� � E�Q(�)2k� : (25)Applying this argument repeatedly yields the lemma, as �eventually be
omes w.To prove (25), below we �rst express E �Q(�)2k� as a sumof averages over r11; r21. We then apply Lemma 9 to getthat ea
h term (average) in the sum, is bounded by the
orresponding average for ve
tor �. More pre
isely,E�Q(�)2k�= 1dk XR E�(R+ �1r11 + �2r21)2k�Pr" dXi=3 �iri1 = Rpd#� 1dk XR E�(R+ 
r11 + 
r21)2k�Pr" dXi=3 �iri1 = Rpd#= E�Q(�)2k� : 2Proof of Lemma 8. Re
all that T D= N(0; 1=d). We will�rst express T as the s
aled sum of d independent standardNormal random variables. This will allow for a dire
t 
om-parison of the terms in ea
h of the two expe
tations.Spe
i�
ally, let fTigdi=1 be a family of i.i.d. standard Nor-mal random variables. Then Pdi=1 Ti is a Normal randomvariable with varian
e d. Therefore,T D= 1d dXi=1 Ti :Re
all also that Q(w) = Q1(w) = w � 
1 where
1 = 1pd (r11; : : : ; rd1) :To simplify notation let us write ri1 = Yi and let us alsodrop the dependen
e of Q on w. Thus,Q = 1d dXi=1 Yi ;where fYigdi=1 are i.i.d. r.v. having one of the following twodistributions: Yi 2 f�1;+1g, ea
h value having probability1=2, or Yi 2 f�p3; 0;+p3g with 0 having probability 2/3and �p3 being equiprobable.We are now ready to 
ompare E �Q2k� with E �T 2k�. We�rst observe that for every k = 0; 1; : : :E�T 2k� = 1d2k dXi1=1 � � � dXi2k=1E (Ti1 � � �Ti2k ) ; andE�Q2k� = 1d2k dXi1=1 � � � dXi2k=1E (Yi1 � � �Yi2k ) :

To prove the lemma we will show that for every value as-signment to the indi
es i1; : : : ; i2k,E (Yi1 � � �Yi2k ) � E (Ti1 � � �Ti2k ) : (26)Let V = hv1; v2; : : : ; v2ki be the value assignment 
onsid-ered. For i 2 f1; : : : ; dg, let CV (i) be the number of timesthat i appears in V . Observe that if for some i, 
V (i) is oddthen both expe
tations appearing in (26) are 0, sin
e bothfYigdi=1 and fTigdi=1 are independent families and E(Yi) =E(Ti) = 0 for all i. Thus, we 
an assume that there ex-ists a set fj1; j2; : : : ; jpg of indi
es and 
orresponding values`1; `2; : : : ; `p su
h thatE (Yi1 � � �Yi2k) = E�Y 2`1j1 Y 2`2j2 � � �Y 2`pjp � ; andE (Ti1 � � � Ti2k) = E�T 2`1j1 T 2`2j2 � � �T 2`pjp � :Note now that sin
e the indi
es j1; j2; : : : ; jp are distin
t,fYjtgpt=1 and fTjtgpt=1 are families of i.i.d. r.v. Therefore,E (Yi1 � � �Yi2k) = E�Y 2`1j1 �� � � � �E�Y 2`pjp � ; andE (Ti1 � � �Ti2k ) = E�T 2`1j1 �� � � � �E�T 2`pjp � :So, without loss of generality, in order to prove (26) it suÆ
esto prove that for every ` = 0; 1; : : :E�Y 2`1 � � E�T 2`1 � : (27)This, though, is 
ompletely trivial. Moreover, along withLemma 9, it is the only point were we need to use propertiesof the distribution for the rij (here 
alled Yi).Let us �rst re
all the well-known fa
t that the (2`)th mo-ment of N(0; 1) is (2`�1)!! = (2`)!=(`!2`) � 1. Furthermore:{ If Y1 2 f�1;+1g then E �Y 2`1 � = 1.{ If Y1 2 f�p3; 0;+p3g then E(Y 2`1 ) = 3`�1 � (2`)!=(`!2`),where the last inequality follows by an easy indu
tion. 2Let us note that sin
e E �Y 2`1 � < E �T 2`1 � for 
ertain l, one
an get that for ea
h �xed d, both inequalities in Lemma 6are a
tually stri
t, yielding slightly better tails bounds forS and a 
orrespondingly better bound for k0.As a last remark we note that by using Jensen's inequalityone 
an get a dire
t bound for E(Q2k) when Yi 2 f�1;+1g,i.e., without 
omparing it to E(T 2k). That simpli�es theproof for that 
ase and shows that taking Yi 2 f�1;+1g isthe minimizer of E �exp �hQ2�� for all h.
AcknowledgmentsI am grateful to Marek Biskup for his help with the proof ofLemma 8 and to Jeong Han Kim for suggesting the approa
hof equation (10). Many thanks also to Paul Bradley, AnnaKarlin, Elias Koutsoupias and Piotr Indyk for 
omments onearlier versions of the paper and useful dis
ussions.
7. REFERENCES[1℄ S. Arora and R. Kannan. Learning mixtures ofarbitrary Gaussians. Submitted, 2000.



[2℄ S. Dasgupta. Learning mixtures of Gaussians. In 40thAnnual Symposium on Foundations of ComputerS
ien
e (New York, NY, 1999), pages 634{644. IEEEComput. So
. Press, Los Alamitos, CA, 1999.[3℄ S. Dasgupta and A. Gupta. An elementary proof ofthe Johnson-Lindenstrauss lemma. Te
hni
al report99-006, UC Berkeley, Mar
h 1999.[4℄ P. Frankl and H. Maehara. The Johnson-Lindenstrausslemma and the spheri
ity of some graphs. J. Combin.Theory Ser. B, 44(3):355{362, 1988.[5℄ P. Indyk. Stable distributions, pseudorandomgenerators, embeddings and data stream 
omputation.In 41st Annual Symposium on Foundations ofComputer S
ien
e (Redondo Bea
h, CA, 2000), pages189{197. IEEE Comput. So
. Press, Los Alamitos,CA, 2000.[6℄ P. Indyk and R. Motwani. Approximate nearestneighbors: towards removing the 
urse ofdimensionality. In 30th Annual ACM Symposium onTheory of Computing (Dallas, TX), pages 604{613.ACM, New York, 1998.[7℄ W. B. Johnson and J. Lindenstrauss. Extensions ofLips
hitz mappings into a Hilbert spa
e. InConferen
e in modern analysis and probability (NewHaven, Conn., 1982), pages 189{206. Amer. Math.So
., Providen
e, R.I., 1984.[8℄ J. Kleinberg. Two algorithms for nearest-neighborsear
h in high dimensions. In 29th Annual ACMSymposium on Theory of Computing (El Paso, TX,1997), pages 599{608. ACM, New York, 1997.[9℄ N. Linial, E. London, and Y. Rabinovi
h. Thegeometry of graphs and some of its algorithmi
appli
ations. Combinatori
a, 15(2):215{245, 1995.[10℄ C. H. Papadimitriou, P. Raghavan, H. Tamaki, andS. Vempala. Latent semanti
 indexing: A probabilisti
analysis. In 17th Annual Symposium on Prin
iples ofDatabase Systems (Seattle, WA, 1998), pages 159{168,1998.[11℄ L. J. S
hulman. Clustering for edge-
ost minimization.In 32nd Annual ACM Symposium on Theory ofComputing (Portland, OR, 2000), pages 547{555.ACM, New York, 2000.[12℄ S. Vempala. A random sampling based algorithm forlearning the interse
tion of half-spa
es. In 38th AnnualSymposium on Foundations of Computer S
ien
e(Miami, FL, 1997), pages 508{513. IEEE Comput.So
. Press, Los Alamitos, CA, 1997.[13℄ S. Vempala and R. I. Arriaga. An algorithmi
 theoryof learning: robust 
on
epts and random proje
tion. In40th Annual Symposium on Foundations of ComputerS
ien
e (New York, NY, 1999), pages 616{623. IEEEComput. So
. Press, Los Alamitos, CA, 1999.

APPENDIXProof of Lemma 9. Let us �rst 
onsider the 
ase whereri 2 f�1;+1g, ea
h value having probability 1=2.If a2 = b2 then a = 
 and the lemma holds with equality.Otherwise, let us writeE�(T + 
r1 + 
r2)2k��E�(T + ar1 + br2)2k� = Sk4whereSk = (T + 2
)2k + 2T 2k + (T � 2
)2k � (T + a+ b)2k�(T + a� b)2k � (T � a+ b)2k � (T � a� b)2k :We will show that Sk � 0 for all k � 0.Sin
e a2 6= b2 we 
an use the binomial theorem to expandevery term other than 2T 2k in Sk and getSk = 2T 2k + 2kXi=0  2ki !T 2k�iDi ;whereDi = (2
)i+(�2
)i�(a+b)i�(a�b)i�(�a+b)i�(�a�b)i :Observe now that for odd i, Di = 0. Moreover, we 
laimthat D2j � 0 for all j � 1. To see this 
laim observe that(2a2 + 2b2) = (a+ b)2 + (a� b)2 and that for all j � 1 andx; y � 0, (x+ y)j � xj + yj . Thus,Sk = 2T 2k + kXj=0 2k2j!T 2(k�j)D2j= kXj=1 2k2j!T 2(k�j)D2j� 0 :The proof for the 
ase where ri 2 f�p3; 0;+p3g is merelya more 
umbersome version of the proof above, so we omitit. That proof, though, brings forward an interesting point.If one tries to take ri = 0 with probability greater than2=3, while maintaining a range of size 3 and varian
e 1, thelemma fails. In other words, 2/3 is tight in terms of howmu
h probability mass we 
an put to ri = 0 and still havethe all-ones ve
tor be the worst-
ase one. 2


