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ABSTRACT

In sparse approximation theory, the fundamental problem is to reconstruct a signal A ∈ Rn

from linear measurements 〈A, ψi〉 with respect to a dictionary of ψi’s. Recently, there is
focus on the novel direction of Compressed Sensing [9] where the reconstruction can be done
with very few—O(k log n)—linear measurements over a modified dictionary if the signal is
compressible, that is, its information is concentrated in k coefficients with the original dic-
tionary. In particular, these results [9, 4, 22] prove that there exists a single O(k log n)× n
measurement matrix such that any such signal can be reconstructed from these measure-
ments, with error at most O(1) times the worst case error for the class of such signals.
Compressed sensing has generated tremendous excitement both because of the sophisticated
underlying Mathematics and because of its potential applications.

In this paper, we address outstanding open problems in Compressed Sensing. Our main
result is an explicit construction of a non-adaptive measurement matrix and the corre-
sponding reconstruction algorithm so that with a number of measurements polynomial in
k, log n, 1/ε, we can reconstruct any compressible signal. This is the first known polynomial
time explicit construction of any such measurement matrix. In addition, our result improves
the error guarantee from O(1) to 1 + ε and improves the reconstruction time from poly(n)
to poly(k log n).

Our second result is a randomized construction of O(k polylog(n)) measurements that
work for each signal with high probability and gives per-instance approximation guarantees
rather than over the class of all signals. Previous work on Compressed Sensing does not
provide such per-instance approximation guarantees; our result improves the best known
number of measurements known from prior work in other areas including Learning The-
ory [20], Streaming algorithms [11, 12, 6] and Complexity Theory [1] for this case.

Our approach is combinatorial. In particular, we use two parallel sets of group tests, one
to filter and the other to certify and estimate; the resulting algorithms are quite simple to
implement.



1 Introduction

We study a modern twist to a fundamental problem in sparse approximation theory, called
Compressed Sensing which has been proposed recently in the Mathematics community.

Sparse Approximation Theory Background. The dictionary Ψ denotes an orthonormal
basis for Rn, i.e. Ψ is a set of n real-valued vectors ψi each of dimension n and ψi ⊥ ψj. The
standard basis is the traditional coordinate system for n dimensions, namely, for i = 1, . . . , n,
the vector ψi = [ψi,j] where ψi,j = 1 iff i = j.1 A signal vector A in Rn is transformed by
this dictionary into a vector of coefficients θ(A) formed by inner products between A and
vectors from Ψ. That is, θi(A) = 〈A, ψi〉 and A =

∑
i θi(A)ψi by the orthonormality of Ψ.2

From now on (for convenience of reference only), we reorder the vectors in the dictionary so
|θ1| ≥ |θ2| ≥ . . . ≥ |θn|.

In the area of sparse approximation theory [8], one seeks representations of A that are
sparse, i.e., use few coefficients. Formally, R =

∑
i∈K θiψi, for some set K of coefficients,

|K| = k � n. Clearly, R(A) cannot exactly equal the signal A for all signals. The error is
typically taken as ‖R − A‖2

2 =
∑

i(Ri − Ai)
2. By the classical Parseval’s equality, this is

equivalently ‖θ(A) − θ(R)‖2
2. The optimal k representation of A under Ψ, Rk

opt, therefore
takes k coefficients with the largest |θi|’s. The error then is ‖A−Rk

opt‖2
2 =

∑n
i=k+1 θ

2
i . This

is the error in representing the signal A in a compressed form using k coefficients from Ψ.
In any application (say audio signal processing), one has a “class” of input signals (A’s)

(e.g.m sinusoidal waveforms comprising the audio signal), one chooses an appropriate dic-
tionary Ψ (say discrete Fourier) so that most of the signals are “compressible” using that
dictionary, and represents the signal using the adequate number (k � n) of coefficients
(θ1, . . . , θk). There are different notions of a signal being compressible in a dictionary. In
the past, e.g., in audio applications, researchers focused on the α-exponentially decaying case
where the coefficients decay faster than any polynomial. That is, for some α, |θi| = Θ(2−αi),
for all i. More recently, there is focus on the p-Compressible case. Specifically the coefficients
have a power-law decay: for some p ∈ (0, 1), and for all i, |θi| = Θ(i−1/p). Consequently,
‖A−Rk

opt‖2
2 ≤ Cpk

1−2/p for some constant Cp.
Study of sparse approximation problems involves the art of identifying suitable Ψ so the

signals from an application are compressible, and studying their mathematical properties.
This is a mature area of Mathematics with highly successful applications to signal processing,
communication theory and compression [8].

Compressed Sensing. Recently, Donoho posed a fundamental question [9]. Since most of
the information in the signal is contained in only a few coefficients and the rest of the signal
is not needed for the applications, can one directly determine (acquire) only the relevant
coefficients without reading (measuring) each of the coefficients? In a series of papers over
the past year, the following result has emerged.

1Examples of other basis are discrete Fourier where ψi,j = 1√
n

exp(−2π
√
−1ij/n); and Haar wavelet where

every ψi is a scaled and shifted copy of the same step like function. By applying an appropriate rotation to
the basis and signal vectors, our problem can be thought of in the standard basis only.

2We refer to θi where A is implicitly clear.
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Theorem 1. [9, 4, 22] There exists a non-adaptive set V of O(k log(n/k)) vectors in Rn

which can be constructed once and for all from the standard basis. Then, for fixed p ∈ (0, 1)
and any p-compressible signal A in the standard basis, given only measurements 〈A, vi〉,
vi ∈ V , a representation R can be determined in time polynomial in n such that ‖A−R‖2

2 =
O(k1−2/p).

There are several important points to note. First, since the worst case error for a p-
compressible signal is Cpk

1−2/p, the representation above is optimal, up to constant factors
for the class of all p-compressible signals, for a fixed p. Second, even if the signal consisted of
precisely k nonzero coefficients θi1 , . . . , θik , one needs k measurements 〈A, ψij〉 for j ∈ [1, k];
hence, the set V of measurements is only a log(n/k) factor larger than the naive lower bound
of measurements needed. Third, the proof shows existence of V by showing that a random
set of V vectors will satisfy the theorem with nonzero probability. The proof immediately
gives a Monte Carlo randomized algorithm by using such a random V .

This result has generated great excitement. A slew of results have strengthened the
result in different aspects [9, 24, 4, 22]; found interesting applications including MR imag-
ing [23] wireless communication [22] and generated implementations [21]; found mathemat-
ical applications to coding and information theory [3]; and extended the results to noisy
and distributed settings [2]. The excitement arises for two main reasons. First, there is
deep mathematics underlying the results, with interpretations in terms of high dimensional
geometry [22], uncertainty principles [4], and linear algebra [9]. Second, there are serious
applications—for example, in going from analog to digital representation of the signals, ex-
isting hardware chips can execute measurements 〈A, vi〉 extremely efficiently, so performing
O(k log(n/k)) measurements is significantly more efficient than measuring each component
of the signal (hence “compressed sensing”). The results have inspired a number of recent
workshops, meetings and talks [23, 15, 18].

Outstanding Problems and Our Results. There are several outstanding questions in
Compressed Sensing.

The most fundamental issue is to explicitly construct the non-adaptive measurement set
of vectors V (or equivalently, a transformation matrix T in which T [i, j] = vi[j]) in the
theorem. The existing results first show that if T satisfies certain conditions, then the theo-
rem holds; then, they show that T chosen from an appropriate random distribution suffices.
The necessary conditions are quite sophisticated, such as computing the eigenvalues of every
O(k log n) square submatrix of T [9], and testing that each such submatrix is an isometry,
behaving like an orthonormal system [4]. No explicit construction is known to produce T ’s
with these properties! Instead, algorithms for Compressed Sensing choose a random T , and
assume that the conditions are met. Thus, these are Monte Carlo algorithms, with some
probability of failure. This is a serious drawback for Compressed Sensing applications mo-
tivated by hardware implementations which will sense many, many signals over time. So it
is highly desirable that there be an explicit construction of T suitable for Compressed Sens-
ing. A natural approach is to take a random T and test whether it satisfies the necessary
conditions. However, this is much too expensive, taking time at least Ω(nk log n).
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There are several other outstanding questions. For example, the time to obtain a repre-
sentation from the measurements is significantly superlinear in n (it typically involves solving
a Linear Program [9, 4, 22]). Since we make a small number of measurements, it is much
preferable to find algorithms with running time polynomial in the number of measurements
and hence, sublinear in n. Lastly, the guarantee given by the above theorem is not relative
to the best possible for the given signal (i.e., per-instance), but to the worst case over the
whole class of p-compressible signals. Clearly per-instance error guarantees are preferable.

We address these outstanding questions and present the first known completely explicit
algorithms for Compressed Sensing. Our approach is combinatorial, and yields a number of
technical improvements such as sublinear time reconstruction, and tolerance to error. Our
main results are twofold.

1. We present a deterministic algorithm that in time polynomial in k and n constructs a
non-adaptive transformation matrix T of number of rows polynomial in k log n, and present
an associated reconstruction algorithm in the spirit of Theorem 1. More specifically, our
algorithm outputs a representation R such that ‖R−A‖2

2 < ‖Rk
opt−A‖2

2 + εCpk
1−2/p. This

is the first explicit construction known for this problem in polynomial time.
In addition, this result leads to the following improvements: (a) the reconstruction time

is subquadratic in the number of measurements (and hence sublinear in n), (b) the overall
error is optimal up to 1 + ε of the worst case error Cpk

1−2/p over the class of p-compressible
signals, improving the O(1) factor in prior results, and (c) the approach applies to other
cases of compressible signals with tighter bounds. For the exponentially decaying family,
the size of T is only O(k2 polylog(n)). The algorithms are simple and easy to implement,
without linear programming and without running into precision-issues inherent in the choice
of Gaussian random T in prior methods.

2. We address the issue of obtaining per-instance guarantees for each signal. We present a
randomized algorithm that on any given A, produces a T withO(k polylog(n)) rows such that
in time linear in O(k polylog(n)), we can reconstruct a R with ‖A−R‖2

2 ≤ (1+ε)‖A−Rk
opt‖2

2,
with probability at least 1− 1

nO(1) .
Notice crucially that this second result does not produce a T that works for all p-

compressible signals, merely, that on any given signal A, we can produce a good R with
high probability. In this regime, which is quite different from the regime in earlier papers
on Compressed Sensing where a fixed T works for all p-compressible signals, many results
in the Computer Science literature apply, in particular, from learning theory [20], streaming
algorithms [12, 11] and complexity theory [1]. These results can be thought of as producing
a T with O(k2+O(1) polylog(n)) rows which is improved by our result here. An exception is
the result in [13] which works by sampling (that is, finding 〈A, vi〉 where vi,j = 1 for some
j and is 0 elsewhere) for the Fourier basis, but can be thought of as solving our problem
using O(k polylog(1/ε, log n, log ‖A‖) measurements. Our result improves [13] in the term
polylog(‖A‖2) which governs the number of iterations in [13]. Finally, we extend to the case
when the measurements are noisy—an important practical concern articulated in [14]—and
obtain first known results that give per-instance approximation results.
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Technical Overview. The intuitive way to think about these problems is to consider
combinatorial group testing problems. We have a set U = [n] of items and a set D of
distinguished items, |D| ≤ k. We identify the items in D by performing group tests on
subsets Si ⊆ U whose output is 1 or 0, revealing whether that subset contains one or more
distinguished items, that is |Si∩D| ≥ 1. There exist collections of O((k log n)2) nonadaptive
tests which identify each of the distinguished items precisely.

There is a strong connection between this problem and Compressed Sensing. We can
treat θi’s as items and the largest (in magnitude) k as the members of D. Each test set
Si can be written as its characteristic vector χSi

of n dimensions. A difficulty arises in
interpreting the outcome of 〈A, χSi

〉. The discussion so far has been entirely combinatorial,
but the outcome of this linear-algebraic operation of inner product must be interpreted as a
binary outcome to apply standard combinatorial group testing methods. In general, there is
no direct connection between 〈A, χSi

〉 and presence or absence of the first k coefficients in
Si when the signal is from the p-compressible class. This is also the reason that prior work
on this problem has delved into the linear-algebraic and geometric structure of the problem.

Our approach here is combinatorial. Our first results show that one can focus attention
on some k′ > k coefficients, in order to meet our error guarantees. Then, we show that
separating the k′ coefficients using group testing methods serves as a filter and subsequently,
using a different set of group tests serves to certify and estimate the largest k coefficients in
magnitude. This use of two parallel sets of group tests is novel. For the second set of results,
combinatorial group testing has been applied previously in Learning Theory [20], Streaming
Algorithms [11, 12, 6] and Complexity Theory [1]. Here, our contribution is to adapt the
approach from our first set of results and provide a tighter analysis of the error in terms of
‖Rk

opt −A‖2 rather than in terms of ‖A‖2 as is more typical.

Note. A preliminary version of this paper appeared as a tech report [7] and is superseded
by the results here.

1.1 Preliminaries

Definition 1. A collection S of l subsets of {1 . . . n} is called k-selective if for any X such
that X ⊂ {1 . . . n} and |X| ≤ k, there exists Si ∈ S such that |Si ∩ X| = 1, i.e. there is a
member of X which occurs separated from all other members of X in some Si.

Definition 2. A collection S of m subsets of {1 . . . n} is called k-strongly selective if for
any X with |X| ≤ k, and for all x ∈ X there exists Si ∈ S such that Si ∩ X = {x}, i.e.
every member of X occurs separated from all other members of X in some Si.

We note that k-strongly selectivity is a stronger condition than k-selectivity, and im-
plies it. Explicit constructions of both collections of sets are known for arbitrary k and n.
Strongly selective sets are used heavily in group testing [10], and can be constructed using
superimposed codes [19] with m = O((k log n)2). Indyk provided explicit constructions of k-
selective collections of size l = O(k logO(1) n), where the power depends on the degree bounds
of constructions of disperser graphs [16]. Probabilistic constructions are also possible [5] of
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near-optimal size O(k log(n/k)), which yield a more expensive Las Vegas-style algorithm for
constructing such a set in O(nk poly(k log n)): for each of the (n

k) choices of X, verify that
the required property holds.

We will also make use of the Hamming code matrix Hn, which is the d1 + log2 ne matrix
whose ith column is 1 followed by the binary representation of i. We will combine matrices
together to get larger matrices by (a) concatenating the rows of N to M and get matrix
denoted M

⋃
N , or (b) a Tensor product-like operation we denote ⊗, defined as follows:

Definition 3. Given matrices V and W of dimension v × n and w × n respectively, define
the matrix (V ⊗W ) of dimension vw × n as (V ⊗W )iv+l,j = Vi,jWl,j.

2 Non-adaptive Constructions

We must describe the construction of a set of m (row) vectors Ψ′ that will allow us to
recover sufficient information to identify a good set of coefficients. We treat Ψ′ as an m× n
matrix whose ith row is Ψ′

i. When given the vector of measurements Ψ′A we must find an
approximate representation of A. Ψ′ is a function of Ψ, and more strongly (as is standard in
compressed sensing) we only consider matrices Ψ′ that can be written as a linear combination
of vectors from the dictionary Ψ, i.e., Ψ′ = TΨ, for some m× n transform matrix T . Thus
Ψ′A = T (ΨA) = Tθ. Recall that the best representation under Ψ using k coefficients is
given by picking k largest coefficients from θ. We use T to let us estimate k large coefficients
from θ, and use these to represent A; we show that the error in this representation can be
tightly bounded.

Observe that we could trivially use the identity matrix I as our transform matrix T .
From this we would have Tθ = θ, and so could recover A exactly. However, our goal is to
use a transform matrix that is much smaller than the n rows of I, preferably polynomial in
k and log n. In general, the only way to achieve exact recovery of the optimal representation
is to take a linear number of measurements:

Lemma 1. Any deterministic construction which returns k coefficients and guarantees error
exactly ‖Rk

opt −A‖2 requires Θ(n) measurements.

2.1 p-compressible signals

In the p-compressible case the coefficients (sorted by magnitude) obey |θi| = Θ(i−1/p) for
appropriate scaling constants and some parameter p. Previous work has focused on the cases
0 < p < 1 [4, 9]. Integrating shows that

∑n
i=k+1 θ

2
i = ‖Rk

opt−A‖2
2 = O(k1−2/p). Our results,

like those of [4, 9], are stated with respect to the error due to the worst case over all signals
in the class, which we denote ‖Ck

opt‖2 = O(k1−2/p). For any signal that is p-compressible
with fixed p and Cp it follows that ‖Rk

opt −A‖2 ≤ ‖Ck
opt‖2.

Our transform collects information based on two collections of strongly separating sets.
The first ensures that sufficient separation occurs, allowing all large coefficients to be recov-
ered. The second allows accurate estimates of the weight of each coefficient to be made.
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Transform Definition. We define our transform matrix as follows. Let k′ = c′(kε−p)1/(1−p)2

and k′′ = c′′(k′ log n
log k′

)2 for appropriately chosen c′ and c′′. Let S be a k′-strongly separating

collection of sets (so that the number of sets in the collection is k′′), and write T1 as the
matrix formed by the concatenation of χSi

for all Si in S. Similarly, let R be a k′′-strongly
separating collection of sets, and write T2 as its characteristic matrix. We form our transform
matrix Tp as (T1 ⊗H)

⋃
T2.

The intuition is that rather than ensuring separation for just the k largest coefficients, we
will guarantee separation for the top-k′ coefficients, where k′ is chosen so that the remaining
coefficients are so small that even if taken all together, the error introduced to the estimation
of any coefficient is still within our allowable error bounds.

Reconstruction Algorithm. Our algorithm for recovering a representation from the re-
sults of the measurements TpΨA is as follows: for each set of d1 + log ne measurements due
to Si ⊗H, we recover x0 . . . xdlog ne = (Si ⊗H)ΨA, and decode an identifier ji as

ji =

log n∑
b=1

2b−1 |xb| −min{|xb|, |x0 − xb|}
max{|xb|, |x0 − xb|} −min{|xb|, |x0 − xb|}

.

This generates a set of coefficients J = {j1, j2 . . . jk′′}. We then use the measurements due to
T2 to estimate the weight of each coefficient named in J : for each j ∈ J , we set θ̂j = χRi

ΨA
for J ∩ Ri = {j}. The strong separation properties of R ensure that there will be at least
one such Ri, and if there is more than one, then we can pick one arbitrarily. Our output is
the set of k pairs (j, θ̂j) with the k largest values of |θ̂j|.

Lemma 2. Let K ′ denote the set of the k′ largest coefficients.
1. ∀j ∈ K ′ : θ2

j ≥ ε2

25k
‖Ck

opt‖2
2 ⇒ j ∈ J .

2. ∀j ∈ J : |θ̂j − θj| ≤ ε
5
√

k
‖Ck

opt‖2.

Proof. Observe that the square of the (absolute) sums of coefficients after removing the top k′

is (
∑n

i=k′+1 |θi|)2 = O(k′2−2/p). Over the whole class of p-compressible signals, this is bounded

by O(k′2−2/p/k1−2/p)‖Ck
opt‖2

2. Substituting in k′ ≥ C(kε−p)1/(1−p) for an appropriately chosen

constant C ensures (
∑n

i=k′+1 |θi|)2 ≤ ε2

25k
‖Ck

opt‖2
2. Now consider θj that satisfies the condition

in the lemma.
Although K ′ is unknown, we can be sure that, since R is k′-strongly separating, there is

at least one set Ri such that K ′ ∩Ri = {j}. Consider the vector of measurements involving
this set, x = (χRi

⊕ H)ΨA. When Hj,b = 1, |xb| ≥ |θj| −
∑

l 6=j∈Ri
Hl,b|θl| and |x0 − xb| ≤∑

l 6=j∈Ri
(1 − Hl,b)|θl|. Since θ2

j >
ε2

25k
‖Ck

opt‖2
2, and

∑
l 6=j∈Ri

θl ≤
∑n

l=k′+1 |θl| ≤ ε
5
√

k
‖Ck

opt‖2,

we have |θj| >
∑

l 6=j∈Ri
Hl,b|θl| + (1 − Hl,b)|θl|. Hence min{|xb|, |x0 − xb|} = |x0 − xb|, and

max{xb|, |x0 − xb|} = |xb|. Thus

|xb| −min{|xb|, |x0 − xb|}
max{|xb|, |x0 − xb|} −min{|xb|, |x0 − xb|}

= 1 = Hj,b.
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Symmetrically, the results are reversed when Hj,b = 0, where

|xb| −min{|xb|, |x0 − xb|}
max{|xb|, |x0 − xb|} −min{|xb|, |x0 − xb|}

= 0 = Hj,b.

Thus the decoded identifier ji =
∑log n

b=1 2b−1Hj,b = j and so j ∈ J , showing (1).
For (2), observe that |J | ≤ k′′, since each Ri ∈ R generates at most one j ∈ J . Hence,

we can guarantee for each j ∈ J there is at least one Si such that J ∩ Si = j. We chose
our k′ to be sufficiently large that we can identify the (kε−p)1/1−p largest coefficients; since J
contains the (kε−p)1/1−p largest coefficients, we can be sure that |θ̂j − θj| = |χRi

ΨA− θj| =
|
∑

l∈Ri,l 6=j θl| ≤
∑n

l=(kε−p)1/1−p+1 |θl| ≤ ε
5
√

k
‖Ck

opt‖2.

Lemma 3 (Reconstruction accuracy). Given θ̂(A) = {θ̂i(A)} such that (θ̂i−θi)
2 ≤ ε2

25k
‖Ck

opt‖2
2

if θ2
i ≥ ε2

25k
‖Ck

opt‖2
2, picking the k largest coefficients from θ̂(A) gives an error ‖Rk

opt−A‖2
2 +

ε‖Ck
opt‖2

2 k-term representation of A.

Proof. As stated in the introduction, the error from picking the k largest coefficients exactly
is ‖θ(A)−θ(Rk

opt)‖2
2 =

∑n
i=k+1 θ

2
i (where we index the θis in decreasing order of magnitude).

We will write φ̂i for the ith largest approximate coefficient, and φi for its exact value. Let
π(i) denote the mapping such that φi = θπ(i), and let σ(i) denote a bijection satisfying
σ(i) = j ⇒ (i > k ∧ π(i) ≤ k ∧ j ≤ k ∧ π(j) > k).

Picking the k largest approximate coefficients has energy error

‖R−A‖2
2 =

k∑
i=1

(φi − φ̂i)
2 +

n∑
i=k+1

φ2
i

=
∑
i≤k

(φi − φ̂i)
2 +

∑
i>k,π(i)>k

φ2
i +

∑
i>k,π(i)≤k

φ2
i

≤
∑
i≤k

ε2

25k
‖Ck

opt‖2
2 +

∑
i>k,π(i)>k

φ2
i +

∑
i>k,π(i)≤k

φ2
i

Consider i such that i > k but π(i) ≤ k: this corresponds to a coefficient that belongs
in the top-k but whose estimate leads us to not choose it. Then either φ2

i ≤ ε2

2k
‖Ck

opt‖2
2, i.e.

the top-k coefficient is small compared to the optimal error, or else our estimate of φ2
σ(i) was

too high. In this case φ̂2
i < φ̂2

σ(i) but φ2
σ(i) ≤ φ2

i . Assuming this, we can write

φ2
i − φ2

σ(i) = (φi + φσ(i))(φi − φσ(i))

= (|φi|+ |φσ(i)|)(|φi| − |φσ(i)|)
= (2|φσ(i)|+ |φi| − |φσ(i)|)(|φi + φ̂i − φ̂i| − |φσ(i) + φ̂σ(i) − φ̂σ(i)|)
≤ (2|φσ(i)|+ |φi| − |φσ(i)|)(|φi − φ̂i|+ |φσ(i) − φ̂σ(i)|+ |φ̂i| − |φ̂σ(i)|)

≤ (2|φσ(i)|+
ε

5
√
k
‖Ck

opt‖2)(
2ε

5
√
k
‖Ck

opt‖2)
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In the case that φ2
i ≤ ε2

25k
‖Ck

opt‖2
2 we can immediately write

φ2
i − φ2

σ(i) ≤ φ2
i ≤

ε‖Ck
opt‖2

5
√

k
· ε‖Ck

opt‖2
5
√

k
≤ (2|φσ(i)|+ ε

5
√

k
‖Ck

opt‖2)(
2ε

5
√

k
‖Ck

opt‖2)

Substituting this bound into the expression above, we use the facts that
∑k

j=1 |aj| ≤√
k(

∑k
j=1 a

2
j)

1/2 and
∑

i>k,π(i)≤k φ
2
σi

=
∑

j≤k,π(j)>k φ
2
j , to obtain a bound on ‖R−A‖2

2 as∑
i≤k,π(i)≤k

ε

25k
‖Ck

opt‖2
2 +

∑
i>k,π(i)>k

φ2
i +

∑
i>k,π(i)≤k

(φ2
σ(i) + (2|φσ(i)|+

ε

5
√
k
‖Ck

opt‖2)(
2ε

5
√
k
‖Ck

opt‖2))

≤ ε
25
‖Ck

opt‖2
2 + (2

√
k + ε

√
k

5
) 2ε

5
√

k
‖Ck

opt‖2
2 +

∑
π(i)>k φ

2
i

≤ 23ε
25
‖Ck

opt‖2
2 +

∑
i>k θ

2
i < ‖Rk

opt −A‖2
2 + ε‖Ck

opt‖2
2

Theorem 2. We can construct a set of O((kεp)4/(1−p)2 log4 n) measurements in time poly-
nomial in k and n. For any p-compressible signal A, from these measurements of A,
we can return a representation R for A of at most k coefficients θ̂ under Ψ such that
‖θ̂ − θ‖2

2 = ‖R − A‖2
2 < ‖Rk

opt − A‖2
2 + ε‖Ck

opt‖2
2. The time required to produce the co-

efficients from the measurements is O((kεp)6/(1−p)2 log6 n).

Proof. Combining the above two lemmas shows that the result of the algorithm has the
desired accuracy. The reconstruction time can be broken down into the time to build J from
the coefficients and the time to estimate the weight of each j in J . Building J takes time
O(k′′ log n), since it requires a linear pass over the results of the measurements. To choose the
location to find estimates quickly, we can build a vector y = T2χ

T
J in time O(|J |(k′′ log n)2),

by selecting and summing the necessary columns. Then for each j ∈ J , we find some i such
that yi = T2j,i = 1 and return the measurement (T2ΨA) as θ̂j. This takes O((k′′ log n)2)
time per coefficient. Lastly, picking the k largest of the estimated coefficients can be done
with a linear pass over them. The dominating cost is O(|J |(k′′ log n)2) = O((k′′ log n)3) =
O((kεp)6/(1−p)2 log6 n).

The number of measurements is polynomial in k, log n (recall that p is fixed independent of
n and A). We have not optimized the various polynomial factors, but still, our methods will
not yield less than k4 measurements, due to the use of two collections of k-strongly separating
sets. It is an open problem to further improve the number of measurements in explicit non-
adaptive constructions. Note although we need to use p to define the measurements, we
do not need the exact value of p. Rather, we need an upper bound on the true value of p
(recall, the smaller the value of p, the faster the coefficients must reduce) — this is because
our construction will simply take more coefficients than is necessary to get the required
approximation accuracy.

2.2 Exponential Decay

As in the p-compressible case we state our results relative to the worst case error in the class
for given α and Cα. In the case that |θi| = Cα2−αi, we write ‖Ck

opt‖2
2 =

∑n
i=k+1 θ

2
i as the

worst case error over the class.
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Measurements. The set of measurements we make is similar to the p-compressible case
at the high level, but differs in the details. We set k′ = k + O( log((k log n)/ε)

α
), and k′′ =

O((k′ log n)2) As before, we build S, a k′-strongly separating collection of sets, and write T3

as the concatenation of χsi
for all Si ∈ S (k′′ is chosen as the number of sets in the collection).

However, we set Q to be a k′′-separating collection of sets (not strongly separating), and
write T4 as its characteristic matrix. We form T = (T3 ⊗H)

⋃
T4.

Reconstruction algorithm. We recover a representation from the measurements from
T3⊗H as before, to build a set J of identifiers. To make our estimates, we proceed iteratively
to build θ̂, the vector of approximate coefficients. Initially θ̂ = 0, andM = ∅. Let j1 ∈ (J\M)
satisfy (J\M)∩Qi = {j1} (there will be at least one suchQi and j1). We set θ̂j = χQi

(ΨA−θ̂)
and M = M ∪ {j1}. We now proceed to find a new j2 ∈ (J\M) with (J\M) ∩ Qi′ = {j2}
as the next coefficient to estimate, and proceed until J = M . We then return the k highest
estimated coefficients as before.

Lemma 4. Let K ′ denote the set of the k′ largest coefficients.
1. ∀j ∈ K ′ : θ2

j ≥ ε2

25k
‖Ck

opt‖2 ⇒ j ∈ J
2. ∀j ∈ J : |θ̂j − θj| ≤ ε

5
√

k
‖Ck

opt‖2.

Proof. To show (1), we must bound the tail sums of coefficients of α-exponentially decaying
signals. One can easily show that

∑n
i=k+1 θ

2
i ≤ cα2−2αk and (

∑n
i=k′+1 |θi|)2 = c′α2−αk′ . Over

the class of α-exponentially decaying signals, (
∑n

i=k′ |θi|)2 ≤ Cα2−α(k′−k)‖Ck
opt‖2

2. Setting

k′ = k + O( 1
α

log k
ε
) gives (

∑n
i=k′ |θi|)2 ≤ ε2

25k
‖Ck

opt‖2
2. The remainder of the proof of (1)

continues as in Lemma 2 (1).
To show (2), we scale ε by a factor of O(k′′). Note that this does not affect the asymptotic

size of k′. This now ensures that the first coefficient j1 is estimated with error |θ̂j1 − θj1| ≤∑n
l=k′+1 |θi| ≤ ε

k5/2‖Ck
opt‖2. Now consider the estimation of the next coefficient j2: it is

possible that j2 and j1 occur in the same set Qi′ , in which case the error is bounded by
|θ̂j2 − θj2| ≤ |(

∑
l 6=j2,l∈Qi2

θl)− θ̂j| ≤
∑

l 6=j1,l 6=j2,l∈Qi2
|θl|+ |θ̂j1 − θj1| ≤ 2ε

(k′ log n)5/2‖Ck
opt‖2; else

the error is bounded by ε
(k′ log n)5/2‖Ck

opt‖2 as before. One can therefore show inductively

that |θ̂jm − θjm| ≤ mε
5(k′ log n)5/2‖Ck

opt‖2, and so, since |J | ≤ k′′ = O((k′ log n)2), we have

∀j ∈ J.|θ̂j − θj| ≤ ε
5
√

k
‖Ck

opt‖2, as required.

Theorem 3. We can construct a set of O(k2 polylog(n)) measurements in time polynomial
in k and n. For any α-exponentially decaying signal A, from these measurements of A,
we can return a representation R for A of at most k coefficients θ̂ under Ψ such that
‖θ̂−θ‖2

2 = ‖R−A‖2
2 < ‖Rk

opt−A‖2
2 +ε‖Ck

opt‖2
2. The time required to produce the coefficients

from the measurements is O(k2 polylog(n))

Proof. Using the results of Lemma 4 allows us to apply Lemma 3 and achieve the main
theorem. For the time cost, we must first generate J , which takes time O(k′′ log n), and then
iteratively build the estimates. This can be done efficiently in time O(k′′ polylog(n)) per
coordinate, a constant number of operations on each of the O(k′′ polylog(n)) measurements.



– 10 –

For constant α and ε = O(poly(1/n)), we have k′ = O(k), k′′ = O((k log n)2) and the total
number of measurements = k′′ polylog(n) = O(k2 logO(1) n).

k-sparse signals. For k-sparse signals, the previous method yields an explicit construction
that guarantees exact reconstruction of the signal with O(k2 logO(1) n) measurements. The
key observation is that after finding a superset J of the non-zero coefficients, the estimate
of each of these coefficients is exact, since all coefficients not in J are zero. Thus,

Theorem 4. We can construct a set of O(k2 polylog(n)) measurements in time polynomial
in k and n. For any k-sparse signal A, from these measurements of A, we can return a
representation R for A of at most k coefficients θ̂ under Ψ such that ‖θ̂−θ‖2

2 = ‖R−A‖2
2 =

‖Rk
opt − A‖2

2 = 0. The time required to produce the coefficients from the measurements is
O(k2 polylog(n))

3 Randomized Constructions

Here we focus on providing per-instance error estimates. For compressible signals (indeed
this section works for arbitrary signals, but our focus is only on compressible signals as
is standard in sparse approximation theory), one can give randomized constructions which
guarantee to return a near-optimal representation for that signal, with high probability for
each signal.

Transform Definition. Instead of using collections of sets with guaranteed separating
properties, we make use of sets defined implicitly by hash functions to give a randomized
separation property. We also use a random ±1 valued vector to improve the accuracy of
estimation of the coefficients. The necessary components are defined as follows:
Separation matrix M . M is a 0/1 s× n matrix with the property that for every column,
exactly one entry is 1, and the rest are zero. We will define M based on a randomly chosen
function g : [n] → [s], where Pr[g(i) = j] = 1/s for i ∈ [n], j ∈ [s]. Hence, Mi,j = 1 ⇐⇒
g(i) = j, and zero otherwise. The effect is to separate out the contributions of the coefficients:
we say i is separated from a set K if ∀j ∈ K.g(i) 6= g(j). For our proofs, we require that
the mapping g is only three-wise independent, and we set s = O(k log n

ε2 ). This will ensure
sufficient probability that any i is separated from the largest coefficients.
Estimation vector E. E is a ±1 valued vector of dimension n so Pr[Ei = 1] = Pr[Ei =
−1] = 1

2
. We will use the function h : [n] → {−1,+1} to refer to E, so that Ei = h(i). For

our proofs, we only require h to be four-wise independent.
Lastly, we compose T from M , H and E by: T = M ⊗H ⊗ E.

Reconstruction Procedure. We consider each set of inner-products generated by the row
Mj. When composed with (H ⊗ E), this leads to 1 + log2 n inner products, x0 . . . xlog n =
(TΨA)j(1+log n) . . . θ

′
(j+1)(1+log n)−1. From this, we attempt to recover a coefficient i by setting

i =
∑log n

b=1 2b−1 x2
b−min {x2

b ,(x0−xb)
2}

max {x2
b ,(x0−xb)2}−min {x2

b ,(x0−xb)2}
, and add i to our set of approximate coefficients,
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θ̂. We estimate θ̂i = h(i)x0, and finally output as our approximate k largest coefficients those
obtaining the k largest values of |θ̂i|.

Lemma 5 (Coefficient recovery). (1) For every coefficient θi with θ2
i > ε2

25k
‖Rk

opt − A‖2
2,

there is constant probability that the reconstruction procedure will return i (over the random
choices of g and h).
(2) We obtain an estimate of θi as θ̂i such that (θi − θ̂i)

2 ≤ ε2

25k
‖Rk

opt −A‖2
2 with constant

probability.

Proof sketch. The outline of the proof is as follows: for each coefficient θi with θ2
i >

ε2

25k
‖Rk

opt−
A‖2

2, we show that there is constant probability that it is correctly recovered. Let
xb = (Ψ′A)g(i)(1+log n)+b =

∑
g(j)=g(i)Hj,bh(j)θj.

One can show that E(x2
b) ≤ Hi,bθi+O( ε2

k log n
)‖Rk

opt−A‖2
2 and Var(x2

b) ≤ O( ε2

k log n
θ2

iHi,b‖Rk
opt−

A‖2
2 + ε4

k2 log2 n
‖Rk

opt −A‖4
2). Using the Chebyshev inequality on both x2

b and (x0 − xb)
2, and

rearranging it can then be shown that Pr[θ2
i −Hi,b(x

2
b) − (1 −Hi,b)(x0 − xb)

2 ≤ θ2
i

2
] ≤ 2

9 log n

and Pr[(1 −Hi,b)x
2
b +Hi,b(x0 − xb)

2 ≥ θ2
i

2
] ≤ 2

9 log n
. Combining these two results enables us

to show that Pr[
x2

b−min {x2
b ,(x0−xb)

2}
max {x2

b ,(x0−xb)2}−min {x2
b ,(x0−xb)2}

6= Hi,b] ≤ 4
9 log n

. Thus, the probability that

we recover i correctly is at least 5
9
.

For (2), we consider θ̂i = h(i)x0 = h(i)
∑

g(j)=g(i) h(j)θj. One can easily verify that

E(θ̂i) = θi and Var(θ̂i) = E(
∑

g(j)=g(i),j 6=i θ
2
j ). We argue that with constant probability none

of the k largest coefficients collide with i under g, and so in expectation assuming this event
Var(θ̂i) = 1

s
‖Rk

opt −A‖2
2. Applying the Chebyshev inequality to this, we obtain

Pr[|θ̂i − θi| >
√

ε2

9k
‖Rk

opt −A‖2] <
Var(θ̂i)

ε2

9k
‖Rk

opt−A‖22
≤ 1

9 log n
.

showing (2) with (better than) constant probability.

Lemma 6 (Failure probability). By taking O( ck log3 n
ε2 ) measurements we obtain a set of

estimated coefficients θ̂i such that (θi− θ̂i)
2 ≤ ε2

25k
‖Rk

opt−A‖2
2 with probability at least 1− 1

nc .

Proof. In order to increase the probability of success from constant probability per coefficient
to high probability over all coefficients, we will repeat the construction of T several times
over using different randomly chosen functions g and h to generate the entries. We take
O(c log n) repetitions: this guarantees that the probability of not returning any i with θ2

i >
ε2

25k
‖Rk

opt−A‖2
2 is n−c, polynomially small. We also obtain O(c log n) estimates of θi from this

procedure, one from each repetition of T . Each is within the desired bounds with constant
probability at least 7

8
; taking the median of these estimates amplifies this to high probability

using a standard Chernoff bounds argument. T has m = s(log n + 1) = O(k log2 n
ε2 ) rows,

O(c log n) repetitions gives the stated bound.

Theorem 5. We can construct a dictionary Ψ′ = TΨ of O( ck log3 n
ε2 ) vectors, in time O(cn2 log n).

For any signal A, given the measurements Ψ′A, we can find a representation R of A under
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Ψ such that with probability at least 1− 1
nc ‖R−A‖2

2 ≤ (1+ε)‖Rk
opt−A‖2

2. The reconstruction

process takes time O( c2k log3 n
ε2 ).

The proof follows by combining the results of Lemma 5 with those of Lemma 3 to get
the main result. We modify Lemma 3 to use ‖Rk

opt − A‖2 in place of ‖Ck
opt‖2; the proof

is essentially the same. It is easy to verify that the number of coefficients identified by the

first part of the reconstruction process is O( ck log2 n
ε

) (taking time linear in m). We find an
accurate estimate of each recovered coefficient by taking the median of O(c log n) estimates
of each one.

If we spend linear time or more on reconstruction, we can work with fewer measurements.

Theorem 6. We can construct a dictionary Ψ′ = TΨ of O( ck log n
ε2 ) vectors, in time O(cn2 log n).

For any signal A, given the measurements Ψ′A, we can find a representation R of A under
Ψ such that with probability at least 1− 1

nc ‖R−A‖2
2 ≤ (1+ε)‖Rk

opt−A‖2
2. The reconstruction

process takes time O(cn log n).

Proof sketch. The construction here is similar to our main randomized result, but we do not
use H and reduce s by a log n factor. Using only the separation and estimation matrices,
we estimate each of the n coefficients, and take the k largest of them as before. By a similar
argument to Lemma 5 (2), each coefficient is estimated with accuracy ε2

25k
‖Rk

opt −A‖2
2, and

we can again apply Lemma 3.

Tolerance to Error. Several recent works have shown that compressed sensing-style tech-
niques allow accurate reconstruction of the original signal even in the presence of error in
the measurements (i.e. omission or distortion of certain θ′is). We adopt the same model of
error as [3, 22] and show:

Lemma 7. 1. If a fraction ρ = O(1) of the measurements are chosen at random to be
corrupted in an arbitrary fashion, we can still recover a representation R with error ‖R −
A‖2

2 ≤ (1 + ε)‖Rk
opt −A‖2

2 in time O(cn log n).

2. If only a ρ = O(log−1 n) fraction of the measurements are corrupted we can recover a

representation R with error ‖R−A‖2
2 ≤ (1 + ε)‖Rk

opt −A‖2
2 in time O(kc2 log n

ε2 ).

Proof. 1. Consider the estimation of each coefficient in the process outlined in Theorem 6.
Estimating θi takes the median of O(log n) estimates, each of which is accurate with constant
probability. If the probability of an estimate being inaccurate or an error corrupting it is
still constant, then the same Chernoff bounds argument guarantees accurate reconstruction.
As long as ρ is less than a constant (say, 1/10) then every coefficient is recovered with error
ε‖Rk

opt −A‖2, with high probability.
2. Consider the recovery of θi from T . We will be able to recover i provided the previous

conditions hold, and additionally the some set of log n measurements of θi are not corrupted
(we may still be able to recover i under corruption, but we pessimistically assume that this is
not the case). Provided ρ ≤ 1/(3 log n) then each set of log n measurements are uncorrupted
with constant probability at least 2/3 and hence we can recover i with high probability. The
same argument for estimating θi accurately holds as in case (1).
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Note that the results in [22, 3] consider the exact recovery of a signal by taking Ω(n) mea-
surements, and so do not compare to our result above of approximately recovering a signal
using o(n) measurements. Our randomized construction is also resilient to other models of
error, such as the measurements being perturbed by some random vector of bounded weight
(details omitted for brevity).

4 Concluding Remarks

We have presented a simple combinatorial approach of two sets of group tests with different
separation properties that yields the first known polynomial time explicit construction of
a non-adaptive transformation matrix and a reconstruction algorithm for the Compressed
Sensing problem. Our approach yields other results including sublinear reconstruction, im-
proved approximation in error and others. Given the excitement about Compressed Sensing
in the Applied Mathematics community, we expect many new results soon. The main open
problem is to reduce the number of measurements used by explicit algorithms: our result
here gives a cost polynomial in k, which is not close to the linear factor k in the existential
results of [4, 9, 22]. For the case of k-sparse signals, (which have no more than k nonzero
coefficients) Indyk has very recently developed a set of measurements, linear in k in number
(but has other superlogarithmic factors in n) [17].

Another outstanding question concerns the ability to choose the basis to reconstruct in
after the measurements have been made. Due to the random structure of the measurement
matrices in prior work [4, 9, 22], this “universality property” comes almost “for free”: it just
has to be incorporated into the linear program to be solved. In contrast, our reconstruction
techniques rely on the fact that the measurements are sparse vectors in the desired basis,
and so they do not naturally have the universality property. It remains open to extend our
results to allow the basis to be specified after measurements have been made.

Acknowledgments. We thank Ron Devore, Ingrid Daubechies, Anna Gilbert and Martin
Strauss for explaining compressed sensing.
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