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Abstract

Compressed sensing is a new area of signal processing. Its goal is to minimize the number of samples
that need to be taken from a signal for faithful reconstruction. The performance of compressed sensing on
signal classes is directly related to Gelfand widths. Similar to the deeper constructions of optimal subspaces
in Gelfand widths, most sampling algorithms are based on randomization. However, for possible circuit
implementation, it is important to understand what can be done with purely deterministic sampling. In
this note, we show how to construct sampling matrices using finite fields. One such construction gives
cyclic matrices which are interesting for circuit implementation. While the guaranteed performance of these
deterministic constructions is not comparable to the random constructions, these matrices have the best
known performance for purely deterministic constructions.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Compressed sensing (CS) offers an alternative to the classical Shannon theory for sampling
signals. The Shannon theory models signals as bandlimited and encodes them through their time
samples. The Shannon approach is problematic for broadband signals since the high sampling
rates cannot be implemented in circuitry. In CS one replaces the bandlimited model of signals by
the assumption that the signal is sparse or compressible with respect to some basis or dictionary of
wave forms and enlarges the concept of sample to include the application of any linear functional.
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Much of the methodology of CS traces back to early work on Gelfand widths and information
based complexity (IBC); see [6,5,4] for a discussion of these connections.

This paper will be concerned with the discrete CS problem where we are given a discrete signal
whichis a vector x € R" with N large and we wish to capture x by linear information. This means
that we are allowed to sample x by inner products v - x of x with vectors v. We are interested in
seeing how well we can do given a budget n < N in the number of samples we are allowed to
take. This should be contrasted to the usual paradigm in compression, where one represents the
signal with respect to some basis, computes all of its coefficients, but then retains only a small
number (in our case n) of the largest of these coefficients to obtain compression. Here we want
to see if we can avoid computing all of these coefficients and merely take a compressed number
of samples to begin with.

If we choose n sampling vectors then our sampling can be represented by an n x N matrix
® (called a CS matrix) whose rows are the vectors v that have been chosen for the sampling.
Thus, the information we extract from x through ® is the vector y = ®x which lies in the lower
dimensional space R". The question becomes: What are good sampling matrices ®?

To give this question a precise formulation, we need to specify several ingredients. First, what
will we allow as decoders of y. That is how will we recover x or an approximation x to x from y.
Here we will be very general and consider any mapping A from R” — RY as a potential decoder.
The mapping A will generally be nonlinear—in contrast to @ which is assumed to be linear. The
problem of having practical, numerically implementable decoders is an important one and to a
large extent separates CS from the earlier work on widths and IBC. However, this will not be
the concern of this paper. Given that the dimensions n, N of our problem are fixed, we let .«7,, y
denote the set of all encoding—decoding pairs (@, A) where @ is an n x N matrix and A maps
R" — RV,

A second ingredient is how we shall measure distortion. The vector X := A(®x) will in general
not be the same as x. We can measure the distortion x — X in any norm on R" . The typical choices
are the £} norms:

I/p
N
Il = { (ZJbl) 7 0<p <o (.

max -y, n |xjl, p = o0.

There are several ways in which we can measure performance of a CS matrix (see [4]). In this
paper, we shall restrict our attention to only one method which relates to Gelfand widths. Given
a vector x € RV, the performance of the encoding—decoding pair (®, A) in the metric of Eg is
given by

E(x, D, A)Eﬁz = lx — A(@x)”qy. (1.2)
Rather than measure the performance on each individual x, we shall measure performance on a

class K. If K is a bounded set contained in R, the error of this encoding—decoding on K is given
by

E(K, O, A)Zﬁ’ = sup E(x, D, A)ley. (1.3)

xekK

Thus, the error of the class K is determined by the largesterror on K . The best possible performance
of an encoder—decoder is given by

E, N(K)yn = inf E(K,D,A)n~. (1.4)
’ 4 (®,AN)esy N 4
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We say that an encoder—decoder pair (®, A) € o7, y is near optimal on K with constant M, if
E(K, D, A)gggMEn,N(K)elpy- (L.5)

If M = 1 we say the pair is optimal. This is the so-called min—max way of measuring optimality
prevalent in approximation theory, information based complexity, and statistics.
Givenaset K, the optimal performance E,, y(K) ey of CS is directly connected with the Gelfand

widths of the set K. If K is a compact set in £, and n is a positive integer, then the Gelfand width
of K is by definition

d”(K)lg = il;fsup{||x||£g:x e KNY}, (1.6)

where the infimum is taken over all subspaces Y of X with codimension<n.If K = —K and
K + K C CyK, for some constant Cp, then

d"(K)gg SEn N (K)gy <Cod"(K)g;v, I<n<N. (L.7)

In other words, finding the best performance of encoding—decoding on K is equivalent to finding
its Gelfand width. The relation between these two problems is the following. If (®, A) is an
encoding—decoding pair for CS on K, then the null space Y of ® is a space of codimension
n which is a candidate for Gelfand widths. Conversely, given any space Y for Gelfand widths
then any basis for its orthogonal complement gives a CS matrix @ for CS on K. Using these
correspondences, one easily proves (1.7) (see [4]).

The Gelfand widths of the unitballs K = U (¢ (IIV )in Kg are known up to multiplicative constants.
We highlight only one of these results for the Gelfand width of U (Z{V ) in EQ’ which is the deepest
result in this field. It states that there exist absolute constants C1, C; such that

C1y B el < 0o BT (1.8)

The upper estimate in (1.8) was proved by Kashin [8] save for the correct power of the logarithm.
Later Garneev and Gluskin proved the upper and lower bounds in (1.8) (see [7]). The upper bound
is proved via random constructions and there remains to this date no deterministic proof of the
upper bound in (1.8). In CS, their constructions correspond to random matrices whose entries are
independent realizations of a Gaussian or Bernouli random variable.

Our interest in this paper centers around deterministic constructions of matrices ® for CS. We
ask how close we can get to the Gelfand width of classes with such constructions. We shall give
constructions of matrices @ using finite fields which are related to the use of finite fields to prove
results on Kolmogorov widths as given in [2]. A related construction using number theory was
given by Maiorov [11] (see also [10] for another deterministic construction). Our constructions
will not give optimal or near optimal performance, as will be explained later. However, their
performance is the best known to the author for deterministic constructions. We shall also consider
modifications of this construction so that the resulting matrices ® are circulant (each row of @ is
a certain shift of the previous row with wrapping). The importance of circulant matrices is that
they can be more readily implemented in circuits.

An outline of our paper is the following. In the next section, we discuss the restricted isometry
property (RIP) introduced by Candes and Tao [3] and how this property guarantees upper bounds
for the performance of CS matrices on classes. The following section, gives our construction of CS
matrices and the proof that they satisfy a RIP. The final section gives some concluding remarks.
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2. Some simple results about CS matrices

How can we decide if a given matrix @ is good for CS? Candes and Tao [3] have introduced a
condition on matrices which they call the restricted isometry property and show that whenever a
matrix @ satisfies this property, we can obtain estimates for its performance on sets K = U (%V ).
For the remainder of this paper, || - || will always denote an £, norm. All other norms will be
subscripted.

If k> 1 is an integer, we denote by X the set of all vectors x € R" such that at most k of the
coordinates of x are nonzero. In other words, X is the union of all the k-dimensional spaces Xr,
#(T) =k, where T C {1, ..., N}and X7 is the linear space of all x € RY which vanish outside
of T. Given any vector x € RY . we define

ok = inf llx =<l @.1)

which is the error of k term approximation to x in eg’ .
Following Candés and Tao, we say that ® has the RIP of order k and constant ¢ € (0, 1) if

(1= xIP<IDx > <A+ )lIx)®,  x € Zp. (22)

Notice that ®x € R" so that || @x|| is the £5 norm.

To get a better understanding of this property, consider the n x #(7") matrices ®7 formed by
the columns of @ with indices from 7. Then (2.2) is equivalent to showing that the Grammian
matrices

Ar = 0407, #(T) =k, (2.3)

are bounded and boundedly invertible on £, with bounds as in (2.2), uniform for all T such that
#(T) = k. The matrix Ar is symmetric and nonnegatively definite, so this is equivalent to each
of these matrices having their eigenvalues in [1 — 9, 1 + J].

The importance of the RIP is seen from the following theorem of Candes and Tao [3] (reinter-
preted in [4]). If the n x N matrix ® satisfies RIP of order 3k for some o € (0, 1), then there is a
decoder A such that for any vector x € RN, we have

ok (x) ey
vk
This means that the bigger the value of k for which we can verify the RIP then the better guarantee

we have on the performance of @. As an example, let us return to the case of the set K = U (Z{V ).
If an n x N matrix ® has the RIP of order k then (2.4) shows that

v = A@x)y <C 24)

d"(U )y <Enn(UE))y <C/Vk. (2.5)

To get the optimal result we want O to satisfy RIP of order k = n/log(N/n). Matrices of this
type can be constructed using random variables such as Gaussian or Bernouli as their entries (see
[1] for example). However, there are no deterministic constructions for & of this size. In the next
section, we shall give a deterministic construction of matrices @ which satisfy RIP for a more
modest range of k.
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3. Deterministic constructions of CS matrices

We shall give a deterministic construction of matrices which satisfy the RIP. The vehicle for
this construction are finite fields F. For simplicity of this exposition, we shall consider only the
case that F has prime order and hence is the field of integers modulo p. The results we prove can
be established for other finite fields as well. Given F, we consider the set F' x F of ordered pairs.
Note that this set has n := p? elements. Given any integer 0 < r < p, we let P, denote the set
of polynomials of degree <r on F. There are N := p"*! such polynomials. Any polynomial
Q € P, can be represented as Q(x) = ag + ajx + - - - + a,x” where the coefficients a, . .., a,
are in F. If we consider this polynomial as a mapping of F' to F then its graph 4(Q) is the set of
ordered pairs (x, Q(x)), x € F. This graph is a subset of F' x F.

We order the elements of F x F lexicographically as (0, 0), (0, 1),...,(p — 1, p — 1). For
any Q € P,, we denote by vg the vector indexed on F' x F which takes the value one at any
ordered pair from the graph of Q and takes the value zero otherwise. Note that there are exactly
p ones in vg; one in the first p entries, one in the next p entries, and so on.

Theorem 3.1. Let ®g be the n x N matrix with columns vg, Q € P, with these columns ordered
lexicographically with respect to the coefficients of the polynomials. Then, the matrix ® := \/Lﬁ (O
satisfies the RIP with 6 = (k — 1)r/p foranyk < p/r + 1.

Proof. Let T be any subset of column indices with #(7') = k and let @7 be the matrix created
from @ by selecting these columns. The Grammian matrix Ay := CD’TCDT has entries va - UR
with O, R € P,. The diagonal entries of A7 are all one. For any Q, R € P, with Q # R, there
are at most r values of x € F suchthat Q(x) = R(x). So any off diagonal entry of A7 is <r/p. It
follows that the off diagonal entries in any row or column of A7 have sum <(k—1)r/p =9d < 1
whenever k < p/r + 1. Hence we can write

Ar =1+ Br, 3.1

where || By || <0 where the norm is taken on either of £; or £+.. By interpolation of operators, the
norm of Br is < as an operator from ¢; to £5. It follows that the spectral norm of A7 is <140
and that of its inverse is < (1 — )~!. This verifies (2.2) and proves the lemma. [

Notice that since n = p? and N = p’*1, log(N/n) = (r — 1)logp = (r — 1)log(n)/2, we
have constructed matrices that satisfy RIP for the range k — 1 < p/r < /nlogn/(2log(N/n)).

Our next goal is to modify the above construction to obtain circulant matrices ® = (¢; ;). A
circulant matrix has the property that

Pivijre = bij (3.2)

where £ := N/n and the arithmetic on indices is done modulo N. Hence a circulant matrix is
determined by its first £ columns. Once these columns have been specified, all other entries are
determined by imposing condition (3.2). Each other column will be a cyclic shift of one of the
first £ columns.

As in the previous theorem, our construction will use the vectors vg, Q € P, to generate the
first £ columns. However, now we must be more selective in which polynomials we shall choose
for these columns. Let us observe how we fill out the matrix from its first £ columns. The next
block of £ columns is each gotten by a cyclic shift. For example each column with index m + ¢
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withm € {1,..., £} is obtained by taking the entries in column m and shifting them down one
while the last entry in the mth column is moved to the top position. We continue in this fashion
to the next block of £ columns and so forth. There will be n = p? such blocks. Consider the
jth block, 0<j<n — 1. We can write j = a + bp witha,b € {0, ..., p — 1}. Each column
in this block will be a cyclic shift of the corresponding column vg from the first block. Recall
that we index the rows of ® by (x, y) € F' x F. The entry in the (x, y) position of vy will now
occupy the position (x’, y') where y/ = y + j = y 4+ a modulo p and x’ = x + b modulo p
or x’ = x + b + 1 modulo p. Since the ones in vy occur precisely in the positions (x, Q(x))
the new ones in the corresponding column of block j will occur either in position (x’, y') where
y' = Q(x) + a modulo p and x’ = x + b modulo p or x’ = x + b + 1 modulo p.

To describe the set of polynomials we shall use for the columns, we define the equivalence
relation that two polynomials P, Q of degree r over F are equivalent (written P = Q) if there
exist a, b € F such that

Px)=Qkx+4+a)+b, VxeF. 3.3)

Let us see what the structure of such an equivalence class is. For this, we use the simple lemma.

Lemma 3.2. If f is any function on F for which there exist a,b € F, not both zero, such that
f(x)= f(x+a)+Dbforall x € F,then f is a linear function.

Proof. It follows that f(a) = f(0) — b and more generally f(ka) = f(0) — kb, foreachk € F.
Ifa #0,thenka,k =1,..., pexhaust F andso f(x) = f(0) —a 'bx forall x € F so that f
is linear. If a = 0, then f(x) = f(x) 4+ b and hence b = 0 as well. [

Let us now consider the equivalence classes. One equivalence class consists of all the constant
functions; there are p functions in this equivalence class. For each P(x) = ax with o # 0, its
equivalence class will consist of all linear functions of the form ax + b, b € F; there are again
p functions in each of these equivalence classes. Finally if P is a polynomial which is not linear,
then its equivalence class will consist of the p? polynomials P(x + a) + b corresponding to the
p? choices of a, b (see Lemma 3.2).

Let A, consist of a set of representatives from each of the equivalence classes which do not
consist of linear polynomials. That is we choose one representative from each of these equivalence
classes except that we never take polynomials of degree < 1. Let us see what the cardinality of A,
is. There are p"*! polynomials of degree <r and p? linear polynomials. So there are p" ™! — p?
polynomials which are not linear. They are divided into sets of size p? (the equivalence classes).
Hence, £ := #(A,) = p"~! — 1. Now, there are n = p? cyclic shifts so N = p"T! — p2.

In going further in this section, let @y denote the circulant matrix whose first £ columns are
the vp, O € A, written in lexicographic order. Our next lemma bounds the inner products of any
two columns of @.

Lemma 3.3. For any two columns v # w from the matrix ®gy, we have
v-w|<L4r. 3.4)

Proof. Each of the columns v, w of @y can be described as a cyclic shift of vectors vg, vg with
0, R € A,. As we have observed above, there are integers ag, bo (depending only on v) such that
any one in column v occurs at a position (x’, y’) ifand only if x’ = x +bg+épand y’ = Q(x)+ag
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with x € F and &y € {0, 1}. Similarly, a one occurs in column w at position (x”, y”) if and only
ifx” =x+b;+¢ and y” = R(X) +a; withx € F and ¢; € {0, 1}. The inner product v - w
counts the number of row positions for which there is a one in each of these two columns. That is
the number of solutions to x + by + &y = X +b; +¢; and Q(x) +ag = R(x) +a; withx,x € F
and ¢, &1 € {0, 1}.

Consider first the case when Q # R. We fix one of the four possibilities for ¢, 1. These
equations mean that x = x + b and R(x + b) = Q(x) + a with b = by — b1 + ¢ — ¢ and
a = ap — ay. Since R # Q, we know that R(- + b) is not identical to Q(-) + a because these R
and Q are not equivalent. In this case the only possible x which can satisfy the above are the zeros
of the nonzero polynomial R(-+b) — Q(-) —a. Thus there are at most r such x because this latter
polynomial has degree <r. Since there are four possibilities for (&g, €1), we have |v - w|<4r as
desired.

Now consider the case when R = Q and any one of the four possible values for (¢g, ¢1). Similar
to the case just handled, we have that x = x 4+ b and Q(x 4+ b) — a = Q(x). We are interested
in the number of x for which this can happen. As long as these two polynomials are not identical
this can happen at most r times. But we know that they can only be identical if Q is linear (see
Lemma 3.2) and we know linear polynomials are not in A,. Thus, even in the case Q = R we
also have that |v - w|is at most4r. [

Theorem 3.4. The cyclic matrix ® := ﬁ@o has the RIP (2.2) with 6 = 4(k — 1)r/p whenever
k—1<p/ar.

Proof. The proof is the same as that of Theorem 3.1.

Notice thatsincen = p?and N = p" 1 —p2, log(N/n) < (r—1)log p = (r—1)log(n)/2, we
have constructed matrices that satisfy RIP forthe range k—1 < p/(4r) < /nlogn/(8log(N/n)).

4. Concluding remarks

The matrices of our two theorems satisfy RIP of order k for k < C./nlogn/log(N /n) which is
the largest range of k that is known to the author for deterministic constructions. However, it falls
far short of the range k < Cn/log(N/n) known for probabilistic constructions. The fact is that
we know from probabilistic constructions that there exist n x N matrices ® with entries +1/./n
that satisfy RIP for the larger range k < Cn/log(N/n). We just cannot explicitly describe one of
these matrices when N and n are large. It is therefore very interesting to try to obtain a larger
range of k with deterministic methods and to understand if there are any essential limitations to
deterministic methods.

Let us point out some of the deficiencies in our approach. First, we begin by asking what are
good compressed sensing matrices. The restricted isometry property is just a sufficient condition
to guarantee that a matrix ®@ has good performance on classes. Two matrices can has exactly the
same performance on classes and yet one will satisfy RIP and the other not. So there may be a
more direct avenue to constructing good CS matrices by not going through RIP.

The RIP is a condition on the spectral norm of the matrices Ay = <I)tT(I>T. We have bounded
the spectral norm by bounding the ¢; and £, norms (which are much easier to handle than the
spectral norm) and then using interpolation. The bounds we have gotten on k appear to be the
best we could expect to get by this approach. Indeed, with an eye toward results on distribution
of scalar products of unit vectors (see [9, Lemma 4.1, Chapter 14]), it seems that we could not
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improve much on the bounds we gave for diagonal dominance. Of course, the spectral norm of
a matrix can be much smaller than the £, £+, norms. Thus it may be that estimating the spectral
norm directly may be the way to go to obtain stronger results than ours.
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