MTH 995-003: Intro to CS and Big Data Spring 2014

Lecture 8 — January 30, 2014
Inst. Mark Twen Scribe: Kishavan Bhola

1 Overview

In this lecture, we begin a probablistic method for approximating the Nearest Neighbor problem
by way of a locality sensitive hash function. We compute the two probabilities for the relevant hash
function.

2 Problem

Given r € R*, ¢ > 1, and X := {71, ...,%p} C RP, compute
[Pl = [Plu{-1}
such that
L. d(%j, %)) < c-rforall j € [P] such that 3j # i € [P] with d(%;,7;) <r; and
2. f(j) = —1if there does not exist j # i € [P] with d(&},7;) <c-r.

Remark 1 The above can easily be generalized to arbitrary metric spaces, where d is the metric,
but in the following, we will focus on R” with d being the Euclidean 2-norm.

Remark 2 This is known as the (¢, r) - Nearest Neighbor Problem. Note that (1) and (2) do not
uniquely determine a function, and moreover, it is possible that Z'y(;) is not the nearest neighbor to
Zj (see Figure 1). Hence, such an f is an approximation to the standard Nearest Neighbor problem.

3 Naive Solution

1. Compute every pairwise distance ||Z; — |2, i # j. This takes O(P?D)-time.
2. Output the index of the closest point to each Z; as f(j).
Clearly such an f gives an exact solution to the Nearest-Neighbor problem, and thus also satisfies

(1) and (2) in the Problem statement. We wish to approximate this Naive solution with better
runtime than O(P2D).

Figure 1: Ambiguity of f

4 Idea

Project #1,...,Z), onto a ‘random vector’ or one dimensional subspace and then see how far their
projections are from one another (see Figure 2):

Runtime of Idea

1. Projecting all times is O(PD)-time (just inner products).

2. Finding close projected points is equivalent to sorting a list and thus has time-complexity
O(Plog(P)) (using, for example, merge-sort).

Therefore, the total time-complexity is O(P(D + log(P))). This is an approximation even to our
approximated problem, and so we would like error guarantees.

5 Solution

Definition Call a random function h : RP? — Z a locality sensitive hash function if there is
p1,p2 € (0,1) with p; > po and such that the following holds for arbitrary #, i € RP,

(i) ||& — 9]l < r implies h(Z) = h(y) with probability at least p;.

(ii) if ||Z — ¢]l2 > ¢ r, then h(Z) = h(y) with probability at most pa.

L1

Figure 2: Projection onto 1-Dimensional Subspace

Remark A locality sensitive hash function h sends points that are close to the same integer and
sends far points to different integers (this follows from (i) and (ii) and the fact that p; > pa).

Now consider the following random function: Pick w € R™*. Then let G~ N (6, Ipxp) and
U ~ U([0,w]). Finally, define h : R® — Z as

)

h(z) = {(gff) +uJ

w

where U = v and G = g are instances of the random variable and vector defined above.

Remark The above notation means that § is a random vector with independent, identically
distributed, mean 0, and variance 1, Gaussian entries. Similarly, u is a random uniform variable
from the closed interval [0, w].

Theorem 1. The function h defined by (*) is a locality-sensitive hash function.

Proof: Let &, i € RP be arbitrary. Define the following two events A and B,

A h(T) = h(y)
B: (3,7 - <w

Note, by the definition of h (*), if A occurs, then B occurs; that is P [B|A] = 1. Therefore, Bayes’
Law simplifies:
PIA]- P[B|A] = P[B] - P[A| B]

P[4] = P[B] - P[A|B] (1)

Then, by using the variable z := [(g, Z — ¥)|, and considering all possible values of z for which event
B is true, we may transform the right-hand side of (I) to an integral. Writing this all out, we get,

P[n(Z) = h(@)] = /Ow]P’[h(f) =h(y)lz =g, 7=l - Plz = (3,7 -)|l dz (2)

We now wish to simplify P[h(Z) = h(¥)|z = |(d,Z — ¥)|]. One can show that for 0 < z < w, we
have,

P[h(f) = h(gj)|z = ‘<§'7j’_g’>|] _ w—z

w

This follows from considering the different values of w in (*) that will either (¢) shift the integer
parts of (¢,Z)/w and (g, y)/w to be the same when they are different, or (¢7) shift them so that
they stay the same when they are already the same.

So (2) becomes

[i plga-pl=ads= [Bl@E-al=sd:- [2 Pllg.a- - 4d:
0 w 0 0o w
aive (= G o= [oow ())
= — = exp - ey zZ — — €eXp — | z
17 = gllvm \Jo 2[| — gl 0o w 2|| — gII?
Now writing n := ||& — 7], using the change of variables \/Zin — 2, and integrating the second

integral, we get,

P () = h(7)] = \; /0 () \/EZ [exp (- <\/2n>2> _ 1] (3)

J)]. (3) shows that

)
[¢]
=
=]
@
S
€
—
I
=
=
H
|
=
<

w

- Q6_<E>2 —1
= ﬁ—w

P(n)

so that pl,(n) < 0 for all n (since n > 0).

Now, let’s consider the two cases:

(i) » <r: this implies

Pul(n) > erf(\/u%) I 3% (e—(£) 1) —

where we have defined p; above.

(ii) n > er: this and p,(n) < 0 imply

Pu(n) < erf(\/;m) n \/37;5 <e_(2) _ 1) —: Py

where we have defined ps above.

Finally, we note p; and po satisfy the required properties in the definition of a locality sensitive hash
function. In particular, p; > po. Therefore, h is a locality sensitive hash function for Fuclidean
distance. O

References

[1] M. Datar, P. Indyk, N. Immorlica, and V. Mirrokni. Locality-Sensitive Hashing Scheme
Based on p-Stable Distributions. SCG’04 Proceedings of the twentieth annual symposium on
Computational Geometry, pages 253-262, 2004.

[2] P. Indyk and R. Motwani. Approzimate Nearest Neighbors: Towards Removing the Curse of
Dimensionality. STOC ’98 Proceedings of the thirtieth annual ACM symposium on Theory
of computing, pages 604-613, 1998.

