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1 Overview

In the last lecture, we discussed feasibility and PCA (i.e., subspace approximation with τ = 2). In
this lecture, we discuss subspace approximation with τ =∞.

2 Subspace Approximation

• In the case of τ =∞.

• Illustrate using SDP as part of “convex relaxation + rounding” strategy.

2.1 Definitions

Definition 1. A d-dimensional affine subspace, A, is a set of points {~a+ ~x|~x ∈ SA}, where SA is
a d-dimensional subspace and ~a ∈ RD.
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Definition 2. Given a d-dimensional affine subspace, A, we define

~aA := argmin~x∈A‖~x‖2.

Thus, A− ~aA = SA and ~aA ∈ S⊥A .

Definition 3. Given an affine subspace A, we can define a projection onto A to be

ΠA~x := ΠSA
~x+ ~aA, ∀~x ∈ RD

where ΠSA
is the projection onto SA.

Definition 4. Given a subspace, S, d̃− dimensional for d̃ ≥ d ≥ 1, we will define

Πd(S) = {all d− dimensional affine subspaces of S}.

2.2 Main Problem

Given P = {~x1, · · · , ~xN} ⊆ RD, we want to estimate

Rd(P ) = infA∈Πd(RD)R∞(A,P ) := infA∈Πd(RD) (maxj=1,··· ,N‖~xj −ΠA~xj‖2)

• How quickly can we find a Ã ∈ Πd(RD) such that R∞(Ã, P ) ≈ Rd(P )?

• NOTE : This is related to bounding box/shape problems in computational geometry.

• Assumptions about P :

1. ~0 ∈ P
2. ~xj ∈ P ⇔ −~xj ∈ P

2



2.3 Solving the Problem

Note that Rd(P ) can be found by solving the following optimization problem:

R2
d(P ) := min α

satisfying the constraints:

1.
∑D−d

i=1 < ~xj , ~yi >
2≤ α, ∀~xj ∈ P

2. ‖~yi‖ = 1, i = 1, · · · , D − d.

3. < ~yi, ~yk >= 0, i 6= k

This problem finds Rd(P ) because:

• An optimal d-dimensional subspaceA withR∞(A,P ) = Rd(P ) will be given by (span{~y1, · · · , ~yD−d})⊥.
That is, we are finding an orthonormal basis for A⊥.

• We are trying to minimize ‖(I −ΠA)~xj‖22 =
∑D−d

i=1 < ~xj , ~yi >
2 over all j = 1, . . . , N

• Here, α and the entries of ~y1, · · · , ~yD−d ∈ RD are the variables. There are D(D−d) + 1 total.

2.4 A convex relaxation of the problem [SDP(2)]

Consider this related optimization problem:

Calculate α̃ := the minimal α ∈ R+ satisfying the following constraints for some Y ∈ SD

1.

~xTj Y ~xj = Trace(~xj~x
T
j Y ) ≤ α,∀~xj ∈ P.

=
D∑

k=1

Ykk(xj)
2
k + 2

D∑
k=1

D∑
l=k+1

Yl,k(xj)l(xj)k ≤ α,∀~xj ∈ P.

(Notice that this is linear in the entries of Y.)

2. trace(Y ) = D − d.

3. I − Y � 0.

4. Y � 0.

This problem can be solved as a semidefinite program! Note that:
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• The variables are α, and the independent entries of Y ∈ SD. There are D(D+1)
2 + 1 total

variables.

• Constraint 1 is linear in the variables ⇒ it is OK for an SDP.

• Constraint 2 is a linear equality constraint in the variables & so it is OK for an SDP. It implies
that the eigenvalues of Y sum to D − d.

• Constraint 3 : I − Y � 0⇒ I � Y ⇒ All the eigenvalues of Y are ≤ 1.

• Constraint 4 : All the eigenvalues of Y should be nonnegative.

• Constraints 3 and 4 force all eigenvalues of Y to belong to [0, 1].

• Thus, α̃ can be computed via an SDP.

• What’s left : Show that α̃ has something to do with Rd(P )!

2.5 Homework Problems(due Feb 11th(Tue.))

homework 1. Let P̄ := (P − ~x1) ∪ (~x1 − P ) where P = {~x1, · · · , ~xN}
This is now both symmetric about the origin, and contains ~0. Prove that Rd(P̄ ) ≤ 2Rd(P ).

homework 2. Prove that any affine subspace A with R∞(A, P̄ ) = Rd(P̄ ) will be a subspace (i.e.,
will have ~aA = ~0).

Problem 3. Show that any optimal orthonormal basis for first optimization problem in section 2.3,
{~y1, · · · , ~yD−d}, satisfies all four constraints for the optimization problem in section 2.4 if we set
Y =

∑D−d
i=1 ~yl~y

T
l . Conclude that α̃ ≤ R2

d(P ).
Hint: The fact that α̃ ≤ R2

d(P ) is related to an α you can achieve with this Y in Constraint 1.

2.6 Showing that a solution to [SDP(2)] has something to do with Rd(P )

Lemma 1. Let Ỹ ∈ SD be an optimal solution to [SDP(2)] in section 2.4. Then Ỹ will have
r ≥ D − d eigenvalues λ1, · · · , λr ∈ (0, 1] and r(orthogonal unit) eigenvectors ṽ1, · · · , ṽr with the
property that

∑
l=1 λl < ~xj , ~vl >

2≤ R2
d(P ), ∀~xj ∈ P .

Proof. Constraints 2 through 4 of [SDP(2)] in section 2.4 guarantee that we have λ1, · · · , λr ∈ (0, 1]
for r ≥ D − d. Also, their associated eigenvectors ~v1, · · · , ~vr are perpendicular. We have that

r∑
l=1

λl < ~xj , ~vl >
2 = Trace

(
~xj~x

T
j

r∑
l=1

λl~vl~v
T
l

)
= Trace(~xj~x

T
j Ỹ )

≤ α̃ (by [SDP(2)] Constraint 1)

≤ R2
d(P ) (by Homework Problem 3)

holds for all j = 1, . . . , N .
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