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1 Overview

In the last lecture, we discussed Singular Value Decomposition and its perturbation bounds, and
introduced Semi-definite Programming and Convexity. In this lecture, discuss Linear Programming
as a special case of Semi-definite Programming, and show examples of how to reduce other problems
through algebraic manipulations into linear or semi-definite programs.

2 Linear Programming (LP)

2.1 Standard Form

Minimize c¢Tx subject to Ax —b > 0.

Given constants are ¢ € R, b € RV, and A € RV*™. The minimization variables are x € R™.



2.2 Examples

Example 1. We can re-express equality constraints in LP standard form.

Ax=D
=Ax>b&Ax<Db
=Ax>b&—-Ax> -b

(A= (5)

Example 2. Compressive Sensing Recovery, aka Basis Pursuit (BP). (See Ch.3 of [FR13].)

Equality constraints are OK for LP.

Minimize ||z||1 such that Az =y (= Ax, where x is the signal to be recovered), where A € R™*N

and m < N.

This problem can be solved as a LP by first introducing two new vectors to replace z € RN as
variables. Let zy,z_ € RN with constraints z, > 0,z_ > 0 (i.e. with only non-negative entries —
we want to think of these as z =z, —z_).

Then, we re-express the constraint as A(z4 —z_) =Yy, i.e.

Al (2 ) =y

The LP problem statement is then:
Minimize ((1,...,1),(z4+|z—)) subject to

2.3 Homework Problems

Problem 5 In reference to Example 2, suppose that z* has minimal ||z||; such that Az =y (BP).
Let z*4 and z*_ be the solution to the LP. Show that

And deduce that
llz*[[v = |[z"+ —2z"—[h

i.e. both BP and LP solutions have the same l1-norm.



2.4 Relation to Semi-definite Programming (SDP)

Every LP is also a SDP, since the linear coordinate-wise inequality Ax + b > 0 can be expressed
as

Ax+b=(ajlaz|...|lany)x+b

N
:b+2xjaj
j=1
by -+ 0 N (aj)l 0
= +Za:j :
0 by J=1 0 (CL])N
=Fx)>0

e SDPs are a superset of CS recovery algorithms, at least as far as BP goes.

e Casting problems as SDPs, or approximating solutions using SDPs, often involves re-expressing
problem constraints using positive semi-definite matrices.

3 Casting Problems as SDPs

3.1 Examples

Example 3. Having two constraints G(x) > 0 and F(x) > 0 can be re-expressed as

[FE)X) G?x>] =0

Example 4. Minimize the operator norm (i.e. the largest singular value) of a matriz A(x) =
ZJI'(:1 z;A; over all x € RE, where A; € RPX4.

We can cast this operator norm problem as a SDP. Introduce t € RT as an extra variable, so we
now have K + 1 variables (t,x). Then solve:

Minimize t subject to
tI A(x)
>
L

which is equivalent to

K
tI 0 0 A,
F(x) = [0 tI] +2x3 [A]T 0] =0
‘7:
Lemma 1. The minimal t is the minimal largest singular value, o1, of A(x) over all x € RK,

Proof: Fix x € RE and let A(x) = A € RP*9. Then the constraint

{ 1 Alx)

AT ] =0



is the same as

Vz, € RP &VZQ c RY
(i

T, T | 121 + Az
>
21 23] |:ATZ1 +tzo| = 0

Vz1 € RP &Vzy € RY

)
t)|z1||2 + 2T Az + 24 ATz +t||z2]|2 > 0
Vz, € RP &\V/ZQ c R4

This last expression is minimized when we choose z1&zo from the SVD of A such that
Z9 — V1 &Zl = —u

where vi € R? is the first column of V € R?%?, u; € RP is the first column of U € RP*P, and
A =UXVT is the SVD of A. The expression then becomes

2t — 201 >0
which further reduces to ¢ = 01 when minimizing ¢. O
3.2 Schur Complements
Suppose M € SV has the block form
A B
M- o o]

Then, the following properties must hold

i) M > 0iff (C>0and A—-BC BT >0).
ii) C>0= (M >0iff A—BC!BT >0).
iii) A>0= (M >0iff C—-BTA"IB >0).
)

iv) M > 0iff (A >0and C—BTAIB > 0).
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