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1 Overview

In this lecture, we present the algorithm for fast support identification. We want to design mea-
surements that allow us to quickly find an S C [N] such that So(k) C S for & € CV.

2 Notational review

Let A € {0,1}™*N and By be the N bit testing matrix. Let {bg, by, .. .,g[logQ n1} € {0,131 be
the rows of By. Given (A ® By)Z we also get (A ® b;)& € C™, Vi = 0...[log, N]. This means
that we get AZ as well as (A(K,n) ®@ b;)@, Vn € [N] and Vi =0... [logy N|.

Note that (A(K,n) ® b;) € {0,115V is exactly the matrix A(K,n) with its I*'-column set to
zero-vector if and only if I € [N] has a zero in its i*" bit when written in binary.
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Let n € [N] and assume that matrix A is (K, «)-coherent with K > 4’%‘“, where ¢ € (0, 1) for sparsity
k. Theorem 1 (Lecture 27) tells us that more than 1/2 of the j € [K] satisfy (A(K, n)x); € B(zn,0),
where

§ = % k € [N],Ve € (0,1) (1)
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Definition 1. Given ¥ € CV, let |Z] € RN be such that |Z; := || ,Vj € [N].
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Note that ¢ is the same for both # and |Z|.
Now let’s let @ € {0,1}" be the j* row of A(K,n) and suppose that

(i) (@, [Z]) € B(|wal,0), and

(i) |zn| > 0.



From Theorem 1 (Lecture 27) we know that more than 1/2 of the rows, @, of A(K,n) will satisfy
(i). Supposing that |z,| > § and that the i*" bit of n in binary is 1:
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lEsupp(&';-) s.t. l#n;
ith bit of 1=1 (2)
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lEsupp((i;) s.t. l#n;
ith bit of 1=0
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Essentially the same argument shows that ‘(&’; —a;® by, a_c'>‘ > }(Ei;- @ bi), & ’, whenever the " bit
of n is zero. We have now shown that the algorithm below will identify all n € [N] with |x,| > §
more than K /2 times apeice.

Algortihm 1.

1. S=10
2. For j € [m]

3. Fori=0...[loga N| —1

4. If ]<a’;®6,-,f>‘ > (@ — @ @ b, @)
Setn; =1
D. Else
Set n; = 0
6. End For
7. Set n = 2512052 NI=tp, 2 (translate from binary to decimal);

8. S=SuU{n}

9. End For

It takes O(mlog N) operations to go through steps 1 to 9. Also, we know that, e.g., m = K? is
possible (from Lecture 26). Therefore, the total runtime of Algorithm 1 is generally sublinear in

N. For example,
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works.



Measurements m can be randomized/reduced to get the total runtime of O <l~€ log (%) log l%),
which has the same accuracy as the deterministic variant with probability at least p.

It is true that |S| < m, but we also know that every n € [IN] such that |z, | > § is recovered at least
K /2 times. Therefore, |S| = O (K), and we expect S D Sp (%’“), which follows from the Lemma
below.

Lemma 1. Suppose that |x,| > §. Then, n € Sy (%) As a result, Algorithm 1 finds all n €
So (%) with |z,| > 4.

Note that n € Sp (%) with |z,| < ¢ are “OK to miss”.

Next time we will use results from Lectures 28 and 29 to help construct Sparse Fast Fourier
Transforms (SFFTSs).



