
MTH 995-003: Intro to CS and Big Data Spring 2014

Lecture 29 — 15 April, 2014

Inst. Mark Iwen Scribe: Oleksii Karpenko

1 Overview

In this lecture, we present the algorithm for fast support identification. We want to design mea-
surements that allow us to quickly find an S ⊂ [N ] such that S0(k) ⊂ S for ~x ∈ CN .

2 Notational review

Let A ∈ {0, 1}m×N and BN be the N th bit testing matrix. Let {~b0,~b1, . . . ,~bdlog2Ne} ∈ {0, 1}
N be

the rows of BN . Given (A ⊗ BN )~x we also get (A ⊗~bi)~x ∈ Cm, ∀i = 0 . . . dlog2Ne. This means
that we get A~x as well as (A(K,n)⊗~bi)~x, ∀n ∈ [N ] and ∀i = 0 . . . dlog2Ne.

Note that (A(K,n) ⊗ ~bi) ∈ {0, 1}K×N is exactly the matrix A(K,n) with its lth-column set to
zero-vector if and only if l ∈ [N ] has a zero in its ith bit when written in binary.

Example 1. (
1 1 1 1
2 2 2 2

)
⊗
(

1 0 1 0
)

=

(
1 0 1 0
2 0 2 0

)

Let n ∈ [N ] and assume that matrix A is (K,α)-coherent with K > 4k̃α
ε , where ε ∈ (0, 1) for sparsity

k̃. Theorem 1 (Lecture 27) tells us that more than 1/2 of the j ∈ [K] satisfy (A(K,n)~x)j ∈ B(xn, δ),
where

δ :=
ε

k̃

∣∣∣∣∣∣∣∣~x− ~xS0

(
k̃
ε

)∣∣∣∣∣∣∣∣
1

k̃ ∈ [N ],∀ε ∈ (0, 1) (1)

Definition 1. Given ~x ∈ CN, let |~x| ∈ RN be such that |~x|j := |~xj | , ∀j ∈ [N ].

Note that δ is the same for both ~x and |~x|.

Now let’s let ~a′j ∈ {0, 1}N be the jth row of A(K,n) and suppose that

(i) 〈~a′j , |~x|〉 ∈ B(|xn|, δ), and

(ii) |xn| > δ.

1



From Theorem 1 (Lecture 27) we know that more than 1/2 of the rows, ~a′j , of A(K,n) will satisfy

(i). Supposing that |xn| > δ and that the ith bit of n in binary is 1:∣∣∣〈~a′j ⊗~bi, ~x〉∣∣∣ ≥ |xn| − ∑
l∈supp(~a′j) s.t. l 6=n;

ith bit of l=1

|xl|

≥ δ −
∑

l∈supp(~a′j) s.t. l 6=n;
ith bit of l=1

|xl|

≥
∑

l∈supp(~a′j) s.t. l 6=n;
ith bit of l=0

|xl|

≥
∣∣∣〈~a′j − ~a′j ⊗~bi, ~x〉∣∣∣

(2)

Essentially the same argument shows that
∣∣∣〈~a′j − ~a′j ⊗~bi, ~x〉∣∣∣ > ∣∣∣〈~a′j ⊗~bi〉, ~x∣∣∣, whenever the ith bit

of n is zero. We have now shown that the algorithm below will identify all n ∈ [N ] with |xn| > δ
more than K/2 times apeice.

Algortihm 1.

1. S = ∅

2. For j ∈ [m]

3. For i = 0 . . . dlog2Ne − 1

4. If
∣∣∣〈~a′j ⊗~bi, ~x〉∣∣∣ > ∣∣∣〈~a′j − ~a′j ⊗~bi, ~x〉∣∣∣

Set ni = 1

5. Else
Set ni = 0

6. End For

7. Set n =
∑dlog2Ne−1

i=0 ni · 2i (translate from binary to decimal);

8. S = S ∪ {n}

9. End For

It takes O(m logN) operations to go through steps 1 to 9. Also, we know that, e.g., m = K2 is
possible (from Lecture 26). Therefore, the total runtime of Algorithm 1 is generally sublinear in
N . For example,

m = O

(
k̃2 log3N

ε2

)
� N (3)

works.

2



Measurements m can be randomized/reduced to get the total runtime of O
(
k̃ log

(
N
1−p

)
log k̃

)
,

which has the same accuracy as the deterministic variant with probability at least p.

It is true that |S| ≤ m, but we also know that every n ∈ [N ] such that |xn| > δ is recovered at least

K/2 times. Therefore, |S| = O (K), and we expect S ⊃ S0

(
2k̃
ε

)
, which follows from the Lemma

below.

Lemma 1. Suppose that |xn| > δ. Then, n ∈ S0

(
2k̃
ε

)
. As a result, Algorithm 1 finds all n ∈

S0

(
2k̃
ε

)
with |xn| > δ.

Note that n ∈ S0
(
2k̃
ε

)
with |xn| ≤ δ are “OK to miss”.

Next time we will use results from Lectures 28 and 29 to help construct Sparse Fast Fourier
Transforms (SFFTs).

3


