MTH 995-003: Intro to CS and Big Data Spring 2014

Lecture 28 — April 10, 2014
Inst. Mark ITwen Scribe: Chinh Dang

1 Review

From lectures 26 and 27 we know that 34 € {0, I}O(k2 logk N/=*) %N that is <K = M, UogkND—
coherent, and has (A (K,n)Z); € B <a;n, W) for more than half of j € [K] ¥n € N, and
reCV.

For the remainder of this lecture,

e A is the matrix above. It is entirely deterministic, and easy to store (or encode in hardware).
e A(K,n) is a submatrix of A for all n. So, if we know AZ, we also know (A (K,n) 7) ¥n € N
e The rows in A (K,n) can be found quickly “on the fly” in O(K -log;, N)-time

2 Main Lecture

We will consider the following reconstruction algorithm for approximating & given AZ, and a subset

S C[N].
Algorithm 1.
Input: AZ, and S C [N]

1. For eachn € S

2. Let Re[z,] be the median of the entries Re {A (K, n) &}
Let Im [2,] be the median of the entries Im {A (K, n) Z}

3. End for
4. Sort Zg by the magnitude of its entries |z, | > |2zn,| > ...
5. Output z3 for S = {ni,...,no}
Running time of Algorithm 1:
Lines 1- 3: O (|S| K'log N)
Line 4: O (|S|log|S])

Hence, the total runtime becomes O (|S| %%2]\[) In case S = [N], it will run in O (Nmz#)—

time.



Theorem 1. Let & € CV and A € {0,1}™ " be as above. Let So(k) C [N] be the |k]-largest
magnitude entries of & € CN for any k € (1, N). Suppose that the S passed into Algorithm 1 has
So(k) C S, [S| > 2k, then the output of Algorithm 1, zg € CN satisfies:

22¢||T — Ty (r/0) |,

Vi

(%)

1% =25, < |17 = Zsom ||, +

Proof: Let § = w. Theorem 1 from lecture 27 implies |z, — Z,| < V25 Vn € S
Thus:

17 = Z5ll, < 17 = Z5ll, + 175 = Z5ll, < 17 - @], + 2vko

Since

17— 350, = [lF-Famls+ D [@l— D |7.f
ne ne

So(k)\S 5\So(k)

2
weneed Y |z [P— 2 |zt < (20\/%5) in order to get (*). Let
neSo(k)\S neS\So (k)

V= Z |2 — Z ENE
neSo(k)\S neS\So(k)

There are 3 cases to consider:

~ 2
o Case 1. Sy(k)\S = 0. It implies that v < 0 < (20\/%)

e Cases 2 and 3. Suppose j; € So(k)\g. Since So(k) C S, this only happens if line 4 of
Algorithm 1 found |z,| > |2;,| for all n € S\Sy(k).
However, |z,| > |2;| implies that

|2, | + V26 > |zn| + V20 > [2n| > |25,] > |aj,| — V20 > |2, | — V26

Thus, ,
S laal® = [8\So()| (1l — 2v30)
neS\So (k)
> A:=2 ‘So(k)\§’ (\xjk\ - 2@5)2.

- 2 )
On the other hand, B := ‘So(k‘)\S‘ <|l’jk| +2\/ﬁ) > Y mn
neSo(k)\S
Case 2: if A > B, we got the result.
Case 3: if B > A, we have:

|zk|* — 12v/26 || + 802 < 0
= |z < (8 +6x/§) 5 < (200)2.

Thus, we have our result. O



Note: If we can quickly find an S with Sy(k) C S, then theorem 1 implies that Algorithm 1 will
quickly produce a good approximation to Z. In the next lecture, we will focus on how to find such
an S C [N] quickly. This will be done with “bit testing matrices”.

Definition 1. The N bit testing matriz is By € {0, 1}1F1082NDXNpp 0.

By —{ ] ifi=0
Nij = (1 — 1)th bit in the binary expansion of j ifi >0

Example 1. By € {0,1}***, we have

11
By=1 01
00

_ o =
— =

We will also need “row tensor products” of matrices.

Definition 2. Let A € R™*N ¢ € R™*N | Their row tensor product is A® C € Rmm)XN  ap
(A®C)y = Aimodm,j Ciztimoa m) I

m ’

Example 2. Let A = < jl 21 31 41 ), and let the matriz By be as above. Then, their row
tensor product is
1 2 3 4
-1 1 1 1
0 2 0 4
A® By = 0101
0 0 3 4
0 011
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