
MTH 995-003: Intro to CS and Big Data Spring 2014

Lecture 28 — April 10, 2014

Inst. Mark Iwen Scribe: Chinh Dang

1 Review

From lectures 26 and 27 we know that ∃A ∈ {0, 1}O(k2 log2k N/ε2)×N that is
(
K := 4kdlogkNe

ε , blogkNc
)

-

coherent, and has (A (K,n) ~x)j ∈ B
(
xn,

ε‖~x−~xS0(k/ε)‖1
k

)
for more than half of j ∈ [K] ∀n ∈ N, and

~x ∈ CN .

For the remainder of this lecture,

• A is the matrix above. It is entirely deterministic, and easy to store (or encode in hardware).

• A (K,n) is a submatrix of A for all n. So, if we know A~x, we also know (A (K,n)−→x) ∀n ∈ N

• The rows in A (K,n) can be found quickly “on the fly” in O(K · logkN)-time

2 Main Lecture

We will consider the following reconstruction algorithm for approximating ~x given A~x, and a subset
S ⊆ [N].

Algorithm 1.

Input: A~x, and S ⊆ [N]

1. For each n ∈ S

2. Let Re [zn] be the median of the entries Re {A (K,n) ~x}
Let Im [zn] be the median of the entries Im {A (K,n) ~x}

3. End for

4. Sort ~zS by the magnitude of its entries |zn1 | ≥ |zn2 | ≥ . . .

5. Output ~z
S̃

for S̃ = {n1, . . . , n2k}

Running time of Algorithm 1:

Lines 1- 3: O (|S|K logN)

Line 4: O (|S| log |S|)

Hence, the total runtime becomes O
(
|S| Klog2N

ε2

)
. In case S = [N], it will run in O

(
N Klog2N

ε2

)
-

time.

1

Theorem 1. Let ~x ∈ CN and A ∈ {0, 1}m×N be as above. Let S0(k) ⊂ [N] be the bkc-largest
magnitude entries of ~x ∈ CN for any k ∈ (1, N). Suppose that the S passed into Algorithm 1 has
S0(k) ⊂ S, |S| ≥ 2k, then the output of Algorithm 1, z

S̃
∈ CN satisfies:

∥∥~x− ~z
S̃

∥∥
2
≤
∥∥~x− ~xS0(k)

∥∥
2

+
22ε
∥∥~x− ~xS0(k/ε)

∥∥
1√

k
(∗)

Proof: Let δ =
ε‖x−xS0(k/ε)‖1

k . Theorem 1 from lecture 27 implies |~zn − ~xn| ≤
√

2δ ∀n ∈ S
Thus:

∥∥~x− ~z
S̃

∥∥
2
≤
∥∥~x− ~x

S̃

∥∥
2

+
∥∥~x

S̃
− ~z

S̃

∥∥
2
≤
∥∥~x− ~x

S̃

∥∥
2

+ 2
√
kδ

Since ∥∥~x− ~x
S̃

∥∥
2

=
√∥∥~x− ~xS0(k)

∥∥2
2

+
∑

n∈S0(k)\S̃

|~xn|2−
∑

n∈S̃\S0(k)

|~xn|2

we need
∑

n∈S0(k)\S̃
|xn|2−

∑
n∈S̃\S0(k)

|xn|2 ≤
(

20
√
kδ
)2

in order to get (∗). Let

ν :=
∑

n∈S0(k)\S̃

|xn|2−
∑

n∈S̃\S0(k)

|xn|2.

There are 3 cases to consider:

• Case 1. S0(k)\S̃ = ∅. It implies that ν ≤ 0 <
(

20
√
kδ
)2

• Cases 2 and 3. Suppose jl ∈ S0(k)\S̃. Since S0(k) ⊂ S, this only happens if line 4 of
Algorithm 1 found |zn| ≥ |zjl | for all n ∈ S̃\S0(k).
However, |zn| ≥ |zjl| implies that

|xjk |+
√

2δ ≥ |xn|+
√

2δ ≥ |zn| ≥ |zjl | ≥ |xjl | −
√

2δ ≥ |xjk | −
√

2δ

Thus, ∑
n∈S̃\S0(k)

|xn|2 ≥
∣∣∣S̃\S0(k)

∣∣∣ (|xjk | − 2
√

2δ
)2

≥ A := 2
∣∣∣S0(k)\S̃

∣∣∣ (|xjk | − 2
√

2δ
)2
.

On the other hand, B :=
∣∣∣S0(k)\S̃

∣∣∣ (|xjk |+ 2
√

2δ
)2
≥

∑
n∈S0(k)\S̃

|xn|2.

Case 2: if A ≥ B, we got the result.
Case 3: if B > A, we have:

|xjk|2 − 12
√

2δ |xjk|+ 8δ2 < 0

⇒ |xjk| ≤
(

8 + 6
√

2
)
δ ≤ (20δ)2.

Thus, we have our result.

2

Note: If we can quickly find an S with S0(k) ⊂ S, then theorem 1 implies that Algorithm 1 will
quickly produce a good approximation to ~x. In the next lecture, we will focus on how to find such
an S ⊂ [N] quickly. This will be done with “bit testing matrices”.

Definition 1. The N th bit testing matrix is BN ∈ {0, 1}(1+dlog2Ne)×N where:

(BN)ij =

{
1 if i = 0

(i− 1)th bit in the binary expansion of j if i > 0
.

Example 1. B4 ∈ {0, 1}3×4, we have

B4 =

 1 1 1 1
0 1 0 1
0 0 1 1


We will also need “row tensor products” of matrices.

Definition 2. Let A ∈ Rm×N , C ∈ Rm̃×N . Their row tensor product is A⊗ C ∈ R(m·m̃)×N with

(A⊗ C)ij = Ai mod m,j C i−(i mod m)
m

,j
.

Example 2. Let A =

(
1 2 3 4
−1 1 1 1

)
, and let the matrix B4 be as above. Then, their row

tensor product is

A⊗B4 =



1 2 3 4
−1 1 1 1
0 2 0 4
0 1 0 1
0 0 3 4
0 0 1 1

 .

References

[1] Iwen, M. A. Compressed sensing with sparse binary matrices: Instance optimal error guaran-
tees in near-optimal time.Journal of Complexity (2013).

[2] Cormode, Graham, and S. Muthukrishnan. Combinatorial algorithms for compressed sens-
ing. In Structural Information and Communication Complexity, pp. 280-294. Springer Berlin
Heidelberg, 2006.

[3] Gilbert, Anna C., Martin J. Strauss, Joel A. Tropp, and Roman Vershynin. One sketch for
all: fast algorithms for compressed sensing. In Proceedings of the thirty-ninth annual ACM
symposium on Theory of computing, pp. 237-246. ACM, 2007.

[4] Gilbert, Anna C., Yi Li, Ely Porat, and Martin J. Strauss. Approximate sparse recovery:
optimizing time and measurements.SIAM Journal on Computing 41, no. 2 (2012): 436-453.

[5] Bailey, J., Mark A. Iwen, and Craig V. Spencer. On the design of deterministic matrices for fast
recovery of fourier compressible functions.SIAM Journal on Matrix Analysis and Applications
33, no. 1 (2012): 263-289.

3

