MTH 995-003: Intro to CS and Big Data

Spring 2014

Lecture 27 — April 08, 2014

Inst. Mark Iwen Scribe: Ashwini Maurya

1 Combinatorial Properties of (k, α) Coherent Matrices

Let $A \in \{0,1\}^{m \times N}$ be a (k,α) coherent.

Definition 1. $A(K,n) \in \{0,1\}^{K \times N}$ for a chosen $n \in [N]$ is the $K \times N$ submatrix of A created by selecting the first K rows of A with non-zero entries in n^{th} column of A.

Example 1.

is (2,1) coherent. (Note that every column has exactly two 1's and the inner-product between any two columns in 1).

Then $A(2,3) \in \{0,1\}^{2\times 8}$, where K=2 and n=3, is

$$A(2,3) = \left(\begin{array}{cccccccc} 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 \end{array} \right).$$

(Recall: The column index starts from 0.)

Definition 2. $A'(K, n) \in \{0, 1\}^{K \times (N-1)}$ for $n \in [N]$ is the A(K, n) sub-matrix of A with it's n^{th} column deleted.

Example 2. If A is as in the first example, then

$$A'(2,3) = \left(\begin{array}{cccccc} 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 1 & 1 \end{array}\right).$$

Lemma 1. Suppose $A \in \{0,1\}^{m \times N}$ is (K,α) -coherent. Let $n \in [N]$, $\tilde{k} \in [1,\frac{K}{\alpha}]$ and $\vec{x} \in \mathbb{C}^{N-1}$. Then at most $\tilde{k}\alpha$ of the entries of $A'(K,n)\vec{x} \in \mathbb{C}^K$ will have magnitude

$$\geq \frac{\|\vec{x}\|_1}{\tilde{k}}$$

Proof. Let

$$B := \left\{ j \mid |(A'(K, n)\vec{x})_j| \ge \frac{\|\vec{x}\|_1}{\tilde{k}} \right\}.$$

Then,

$$|B| \le \frac{\tilde{k}}{\|\vec{x}\|_1} \|A'(K,n)\vec{x}\|_1 \le \tilde{k} \|A'(K,n)\|_{1\to 1}.$$

Bounding the operator norm of $A'(K, n)\vec{x}$ we get that

$$||A'(K,n)||_{1\to 1} = \max_{l\in[N-1]} ||l^{th} \text{ column of } A'(K,n)||_1$$
 (1)

$$\leq \max_{l \in [N] - \{n\}} \langle l^{th} \text{ column of } A, n^{th} \text{ column of } A \rangle \tag{2}$$

$$\leq \alpha.$$
 (3)

The result follows. \Box

Lemma 2. Suppose $A \in \{0,1\}^{m \times N}$ is (K,α) coherent. Let $n \in [N]$, $\tilde{k} \in [1,\frac{k}{\alpha}]$ and $S \subset [N]$ with $|S| \leq \tilde{k}$. Let $\vec{x} \in \mathbb{C}^{N-1}$ then $A'(K,n)\vec{x}$ and $A'(K,n)(\vec{x}-\vec{x}_S)$ will differ in at most $\tilde{k}\alpha$ entries.

Proof. Let $B \subset [K]$ defined by

$$B := \left\{ j \mid (A'(K, n)\vec{x})_j \neq (A'(K, n)(\vec{x} - \vec{x}_S)_j) \right\}.$$

Once can see that

$$|B| = \left| \left\{ j \mid (A'(K, n)\vec{x}_S)_j \neq 0 \right\} \right|.$$

Let $\vec{q} \in \mathbb{C}^{N-1}$ be a vector of all 1's. Note that:

- $|B| \le \left| \left\{ j \middle| (A'(K, n)\vec{q}_S)_j \ge 1 \right\} \right|$. Since $A'(K, n) \in \{0, 1\}^{k \times (N-1)}$.
- Applying Lemma 1 with $\vec{x} = \vec{q}_S, ||\vec{x}|| = |S| \leq \tilde{k}$ gives the result.

Theorem 1. Suppose A is (K,α) -coherent. Let $n \in [N]$, $\tilde{k} \in [1,\frac{k}{\alpha}]$, $\epsilon \in (0,1]$, $\epsilon \in [2,\infty)$ and $\vec{x} \in \mathbb{C}^N$. If $K > \frac{c\tilde{k}\alpha}{\epsilon}$ then

$$(A(K,n)\vec{x})_j \in B\left(x_n, \frac{\epsilon \left\|\vec{x} - \vec{x}_{S_0\left(\frac{\tilde{k}}{\epsilon}\right)}\right\|_1}{\tilde{k}}\right)$$

for more than $\frac{c-2}{c}K$ values of $j \in [K]$. Here $S_0(\tilde{k}) \subset [N]$ for a given $\vec{x} \in \mathbb{C}^N$ is the set of indexes $\left\{j_1, j_2, \cdots, j_{\frac{\tilde{k}}{\alpha}}\right\}$ where $|x_{j_1}| \geq |x_{j_2}| \geq \cdots, \geq \left|x_{j_{\frac{\tilde{k}}{\alpha}}}\right| \geq \cdots$

Proof. Let $\vec{y} \in \mathbb{C}^{N-1}$ be \vec{x} with x_n removed. i.e. $\vec{y} = (x_1, x_2, \dots, x_{n-1}, x_{n+1}, \dots, x_{N-1})$. Let $\vec{a_0}, \vec{a_1}, \dots, \vec{a_{N-1}}$ be $\{0, 1\}^{\tilde{K}}$ be the columns of A(K, n). We have the following.

$$A(K,n)\vec{x} = x_n \vec{a_n} + A'(K,n)\vec{y} = x_n \vec{1} + A'(K,n)\vec{y}.$$

Applying Lemma 2, we see that at most $\tilde{k}\alpha/\epsilon$ entries of $A'(K,n)\vec{y}$ can differ from $A'(K,n)\left(\vec{y}-\vec{y}_{S_0\left(\frac{\tilde{k}}{\epsilon}\right)}\right)$. Of the remaining $K-\frac{\tilde{k}\alpha}{\epsilon}$ entries of $A'(K,n)\vec{y}$ at most $\frac{\tilde{k}\alpha}{\epsilon}$ entries can have magnitude

$$\geq \frac{\epsilon}{\tilde{k}} \left\| \vec{y} - \vec{y}_{S_0\left(\frac{\tilde{k}}{\epsilon}\right)} \right\|_1$$

by Lemma 1. Hence, at least $K-2\frac{\tilde{k}\alpha}{\epsilon}>\frac{c-2}{c}K$ entries of $A'(K,n)\vec{y}$ will have magnitude

$$\leq \frac{\epsilon}{\tilde{k}} \left\| \vec{y} - \vec{y}_{S_0\left(\frac{k}{\epsilon}\right)} \right\|_1 \leq \frac{\epsilon}{\tilde{k}} \left\| \vec{x} - \vec{x}_{S_0\left(\frac{k}{\epsilon}\right)} \right\|_1.$$

The result follows. \Box

Note:

• Setting $c \geq 4$ in Theorem 1 tells us that the majority of $A(K,n)\vec{x}$ will be good (i.e., will lie within ball $B\left(x_n, \frac{\epsilon \left\|\vec{x} - \vec{x}_{S_0(\frac{k}{\alpha})}\right\|_1}{\tilde{k}}\right)$.

• Recall from Example 1 of Lecture 26 that $A \in \{0,1\}^{K^2 \times N}$ matrices that are $\left(K, \left\lfloor \frac{logN}{logK} \right\rfloor\right)$ -coherent exist. By Theorem 1, if we let

 $K \ge 4 \frac{\tilde{k} \log N}{\epsilon \log \tilde{k}}$

then more than half of the $A'(K, n)\vec{x}$ will estimate x_n well $\forall n, \vec{x}$. The number of rows is

$$m = K^2 = O\left(\tilde{k}^2 \frac{\log^2 N}{\epsilon^2 \log^2 \tilde{k}}\right).$$