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1 Continuing from Lecture 23

Here we resume the proof of Lemma 3 from Lecture 23. Recall that we wanted to establish

a bound
Vol(B,(p) " M) > f(r,7) for “most” p e M

for some function f of r and 7 := reach(M).

Proof. We saw that if

B.(p) NTp C Iz, (B, (p) N M) (1)
for some
/ T2
T Z 1— 4—7_2 - T,

then we would obtain the desired result.

Now, from Lemma 1 of Lecture 23, we know that Ilz, is invertible on B,(p) N M for all
r € [0,%). This fact implies that Iz, (B,(p) N M) is open in T,. Thus, there exists s € R*
such that

By(p) N Ty, C g, (B,(p) N M). (2)

Let s* be the supremum of all s € R satisfying (2).
There is y € 0(Bs(p) N Tp) N O(Ilg, (Br(p) N M)). Set

x =TIz, (y).
One can see that x € 9(B,(p) N M). Hence

[x =pll2 =7
as long as, e.g., B.(p) N OM = (). Finally, set

t:=|lx—yl}-



Lemma 2 of Lecture 23 tells us

Zypx < arcsin (L),

2T
implying
t T
<.
r 27
And so
T
meaning (1) follows by setting ' := s*. O

The discussion at the end of Lecture 22 now gives us a covering number bound for at least
the interior of M.

Definition 1. For a d-dimensional manifold M C R, the r-interior of M is

int,(M) = {p e M : B,(p) NOM = &}

We have proven the following result, which will help us prove Theorem 2, the desired mani-
fold embedding result.

Theorem 1. Let M C RP be a d-dimensional manifold with 7 := reach(M) > 0. Let
r € [0,%). Then the covering number will obey

—d
Volg(M) (1 . 4—> 2 —d
Vol(unit ball in RY)

C, (int,(M)) <



2 The Johnson-Lindenstrauss Lemma and Manifold Em-
beddings

We wanted to show that a random matrix (in our case, one with subgaussian entries) will
nearly isometrically embed any compact, d-dimensional manifold M C RP with positive
reach, into R™ such that m << D. The following theorem tells us precisely what this means.

Theorem 2. Let M C RP be a d-dimensional, C*-manifold with Volg(M) < oo, T =
reach(M) > 0, and

d(p,int,(M)) <r forallre [0, %), for all p € M.

Let €,0 € (0,1). Finally, let A € R™P with i.i.d. subgaussian entries (with parameter c).
Then

<(I+4¢|x—yla+9d foralx,yec M

N e ]
2

1
A(x —
’\/m (=)
with probability at least p € (0,1), provided

(64c)(16¢ + 1)

7 1= min 1—5 T
o VDisye 4f
e Theorem 1 tells us

o Voly(M) 16\ 2 D 18y 4)°
Cr(int=(M) = Vol(unit ball in RY) (B) max{\/_ or

oty ¢ b
" 2 min{7,1}(1 —p)d d

m >

In (1 fpo,%(int;w))),

for

Thus,

for D > 2d and constants ¢’ and C' depending on ¢, and log (Volg(M)), and assuming
d < D.

With a bit more work, one can prove variants of Theorem 1 that make m independent of D,

specifically N
d Cd
!
~(C'=1 .
me gl (min{r,l}u —p)a)

With a substantial amount of work, one can prove

,d Cd
" C€2ln min{7,1}(1 —p) )

3




For these results, see [1, 2], respectively.

Let’s now prove Theorem 2.

Proof. Let C C M be a minimal r-cover of intz(M). Note that C is also a 2r-cover of
M CRP,

Theorem 1 of Lecture 14 guarantees that A= LmA, with m as above, will satisfy
(1—¢) <V1-— <M<\/l+e<l+e for all p,q € C (3)
P —qj2
with probability at least 1 — 1_—p

Now, Theorem 1 of Lecture 15 guarantees that A also has the RIP of order d for € < 1, with
probability at least 1 — 152, That is, e4(A) € (0, 1), implying

) < 2V2 \/7 (4)

by Lemma 2 of Lecture 16. The union bound implies that (3) and (4) hold simultaneously
with probability at least p.

Thus,
JA(x = y)ll2 < [|A(x = po)ll2 + [ A(Px — Py)l2 + | A(Py = ¥)l2

<2\f\/ (I = pxll2 + Py = ¥ll2) + (1 + €)[Px — Pyll2,

where px and py are the closest points in C' to x and y, respectively. That is,

px =argmin||p — x|l» and py, =argmin|p —y|.
peC

As C is a 2r-cover, ||x — px||2 and ||py — y||2 are bounded from above by 2r, while an
additional application of the triangle inequality gives ||px — Pyll2 < ||x — y||2 + 4. When
used above, these estimates yield

~ 60
1AG =32 < 5 + A +)llx —yllz,

giving the desired upper bound. An analogous argument gives the desired lower bound. [J
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