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1 Further Background on Manifolds

Definition 1. For a d-dimensional manifold M C RP with atlas (®;, R} )ic1, we define
D(M) £ {x € R” : there is a unique y € M with ||x — y||» = d(x, M)},
where o o
M= @i(R])
i€l

and d(-,-) is the Euclidean distance

d(x, M) = inf [x =yl
yeEM

Thus, M C D(M) and for x ¢ M,

x € D(M) <= there is r € R such that |B,(x) N M| = 1.

For example, in the figure below, the point in red (on right) is not an element of D(M),
while the point in green (on left) is.

More concretely, suppose M is the sphere of radius r in R”, centered at c. Then

D(M) =R”\ {c}.



If M is a d-dimensional affine subspace of R?, then

Definition 2. For a d-dimensional manifold M C RP, the tube of radius r € R* around
M is
tube, (M) = {x € RP : d(x, M) < r}.

For example, if M is a line segment in R?, then tube,(M) is a filled segment of a cylinder
of radius r whose axis is the line segment, with hemispheres at the two ends.



Definition 3. For a d-dimensional manifold M C R, the reach of M is

reach(M) = sup{r > 0 : tube,(M) € D(M)}.

For example, if M = (B, (c)) for some ¢ € R”, then
reach(M) = r.

If M is an affine subspace, then
reach(M) = oo.

The reach lets us bound many parameters of M (e.g. curvature, and self-avoidance). The
larger the reach is, the “better” behaved the manifold is with respect to these features. As a
demonstration, compare the three two-dimensional manifolds below, which have decreasing
reach from left to right:

The reach also tells us for what portion of R? (in terms of distance from M) a projection
onto M is well-defined.

Definition 4. The projection onto M is the function Iy : D(M) — M defined by

M (x) :==y € M closest to x.



Our goal is to prove a manifold embedding result for a general class of “nice” manifolds.
Given M C RP that is compact (closed and bounded) with reach(M) > 0, we want to find
A € R™P with m << D such that

I-elx=yl: < l[Ax=y): < (1 +e)x—yll2 foralxyeR” (1)
For simplicity, we will prove (1) up to precision 6 € Rt a quantity we can make small

inexpensively.

We will approach this result in the same way we proved the Johnson-Lindenstrauss subspace
embedding result (Lemma 3, Lecture 14). Recall that to prove the subspace embedding
result, we needed

1. covering numbers for unit balls, since they “encode the geometry” of a subspace. Here
the manifold takes the place of the unit ball, and so we need covering numbers of
manifolds; and then

2. to apply Johnson-Lindenstrauss to a minimal cover and do “a little work.”

2 Covering Numbers for M C R”

Here we describe the idea for bounding the covering number of compact manifolds with
positive reach: We need to know “how much” of the d-dimensional manifold M C R? is
contained in a (D-dimensional) ball centered at a point on the interior of the manifold. That
is, given x € M°, what is the d-dimensional volume of M N B,(x)?

We will want to find a function f : R™ — R* such that
Vol(B,(p) " M) > f(r) forall pe M,
as then we can bound the size of a minimal cover of M by
Co(M) < P.AM)
Vol(M)
~ infpem Vol(B,(p) N M)
Vol(M)
flr) 7

<



where the first inequality is the packing estimate obtained in Lemma 1 of Lecture 14. In the
next lecture we will focus on finding such an f.
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