
MTH 995-003: Intro to CS and Big Data Spring 2014

Lecture 22 — Mar 20th, 2014
Inst. Mark Iwen Scribe: Erik Bates

1 Further Background on Manifolds

Definition 1. For a d-dimensional manifold M⊆ RD with atlas (Φi, R
∗
i )i∈I , we define

D(M)
def
= {x ∈ RD : there is a unique y ∈M with ‖x− y‖2 = d(x,M)},

where
M =

⋃
i∈I

Φi(R∗i )

and d(·, ·) is the Euclidean distance

d(x,M) = inf
y∈M
‖x− y‖2.

Thus, M⊆ D(M) and for x /∈M,

x ∈ D(M) ⇐⇒ there is r ∈ R+ such that |Br(x) ∩M| = 1.

For example, in the figure below, the point in red (on right) is not an element of D(M),
while the point in green (on left) is.

M

More concretely, suppose M is the sphere of radius r in RD, centered at c. Then

D(M) = RD \ {c}.
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If M is a d-dimensional affine subspace of RD, then

D(M) = RD.

Definition 2. For a d-dimensional manifold M ⊆ RD, the tube of radius r ∈ R+ around
M is

tuber(M)
def
= {x ∈ RD : d(x,M) < r}.

For example, if M is a line segment in R3, then tuber(M) is a filled segment of a cylinder
of radius r whose axis is the line segment, with hemispheres at the two ends.
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Definition 3. For a d-dimensional manifold M⊆ RD, the reach of M is

reach(M)
def
= sup{r > 0 : tuber(M) ⊆ D(M)}.

For example, if M = ∂
(
Br(c)

)
for some c ∈ RD, then

reach(M) = r.

If M is an affine subspace, then
reach(M) =∞.

The reach lets us bound many parameters of M (e.g. curvature, and self-avoidance). The
larger the reach is, the “better” behaved the manifold is with respect to these features. As a
demonstration, compare the three two-dimensional manifolds below, which have decreasing
reach from left to right:

The reach also tells us for what portion of RD (in terms of distance from M) a projection
onto M is well-defined.

Definition 4. The projection onto M is the function ΠM : D(M)→M defined by

ΠM(x) := y ∈M closest to x.

3



Our goal is to prove a manifold embedding result for a general class of “nice” manifolds.
Given M⊆ RD that is compact (closed and bounded) with reach(M) > 0, we want to find
A ∈ Rm×D with m << D such that

(1− ε)‖x− y‖2 ≤ ‖A(x− y)‖2 ≤ (1 + ε)‖x− y‖2 for all x,y ∈ RD (1)

For simplicity, we will prove (1) up to precision δ ∈ R+, a quantity we can make small
inexpensively.

We will approach this result in the same way we proved the Johnson-Lindenstrauss subspace
embedding result (Lemma 3, Lecture 14). Recall that to prove the subspace embedding
result, we needed

1. covering numbers for unit balls, since they “encode the geometry” of a subspace. Here
the manifold takes the place of the unit ball, and so we need covering numbers of
manifolds; and then

2. to apply Johnson-Lindenstrauss to a minimal cover and do “a little work.”

2 Covering Numbers for M⊆ RD

Here we describe the idea for bounding the covering number of compact manifolds with
positive reach: We need to know “how much” of the d-dimensional manifold M ⊆ RD is
contained in a (D-dimensional) ball centered at a point on the interior of the manifold. That
is, given x ∈Mo, what is the d-dimensional volume of M∩Br(x)?

We will want to find a function f : R+ → R+ such that

Vol(Br(p) ∩M) ≥ f(r) for all p ∈M,

as then we can bound the size of a minimal cover of M by

Cr(M) ≤ Pr(M)

≤ Vol(M)

infp∈M Vol(Br(p) ∩M)

≤ Vol(M)

f(r)
,

4



where the first inequality is the packing estimate obtained in Lemma 1 of Lecture 14. In the
next lecture we will focus on finding such an f .
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