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1 Manifold models for Data in R”

— A more general model for “intrinsically simple”, intrinsically low-dimensional data. Sparsity is a

special case.
— Consider a C? and 1 — 1 function ® : R? - RP, & = (®,--- ,®p), where ®; : R? — R, Vj € [D].

— The domains of each ® will be always be a “regular region” R* C R? (“regular” means here that
the boundary of R* is C2, and that R* is convex). We will call ®(R*) C R a simple d-dimensional

manifold.

e.g.
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Definition 1. Recall the derivative of ® : R — RP at 7€ R* is
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The columns of D®|; span the tangent space to the d-dimensional manifold ®(R*) at ®(p).
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The column span{D®|;} is a d-dim subspace and the affine subspace parallel to it passing through
¢ (p) is tangent to ®(R*) at ®(p).

Definition 2. The d-dimensional volume element of ®(R*) is
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1.1 Examples

Example 1. Suppose ¢: [0,1] — RP parametrizes a path. We can calculate the length of the path
by fol ¢ (t)||2dt. The area (i.e., arc length) element is dV = ||¢'(t)||, and R* = [0,1], since

[elay
ot

dep
ot
where ¢ = (c1,--- ,cp); ¢+ [0,1] = R.
Example 2. Find the surface area of A = {(z,y, 2)|z% +y* + 22 =1,z > 0}.

- A = ®(R*) where R* is the 2-dimensional rectangle [0, 27| x [0, 7 /2], and ®(0, ¢) = (cos 0 sin ¢, sin @ sin ¢, cos @).
Thus, the upper half of the sphere is a simple 2-dimensional manifold according to our definition,
and dV can be computed by
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We can now see that dV = sin ¢ =, and the surface area of the upper half of the sphere is
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— Simple manifolds are a bit too simple, so we will combine several simple manifolds to parametrize
more complicated subsets of R,

Definition 3. When I say that M C R is a d-dimensional manifold, I mean that 31 C Z (finite)
such that

1 R; C R, is a reqular region Vi € I

2 ®;: R — RY that are C%, 1-1 functions on R} s.t.

8 ©i(R; NR;) =@;(Ry N R;), Vi,j € I with Rf N R} # 0 and
4 M =Uier®i(R)



@, (R}) should agree with
®,(R3) on the overlap

©y(R3)

I will call (®;, ®;)icr an atlas for M C RP.

— I will also generally assume that M is path connected (i.e 3 a C?-path, 7 : [0,1] — M, for any
Z,j € M st p(0) = & and p(1) = 7)

Definition 4. Given a d-dimensional M C RP, we define the geodesic distance dyq : Mx M — RT

1
by dy(Z,9) == inf D' (t)||2dt (i.e., the shortest distance from ¥ to ij on M)
pathp:[0,1] =M Jqo
with(0) =&
and p(1)=y

1.2 Homework

Show that {Z € RP,||Z]|o = d} C RP is a d-dimensional manifold by constructing an atlas.
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