MTH 995-003: Intro to CS and Big Data Spring 2014

Lecture 20 — Mar. 13, 2014
Inst. Mark Iwen Scribe: Jun Zhang

1 Overview

In this lecture we will construct fast J-L embeddings via BOS RIP matrices, and then use them to
quickly solve overdetermined least-squares problems.

2 A Fast J-L Embedding Matrix

— We choose a BOS with K = 1, D = [N], and ¢, (t) = e 2m(=D@=D/N “for all t,w € [N]. Then,

©={¢1,- -, on}

is a BOS, w.r.t. the uniform discrete probability measure v.

— We construct a random sampling matrix with entries Fl,w = ﬁgﬁ)w ()= \/—%6_2“(75_1)(”_1)/ N for
allw € [N], and [ € S, where |S| = m is a set of random rows from the full DFT matrix. That is, we
randomly select m rows independently from a DFT matrix according to v (i.e., uniformly selecting).

— Theorem 1 from Lecture 19 tells us that F will have eg,(F) < /4 for any chosen p,e € (0,1)
and integers M > k > 161n (%) with probability > 1 — N_IHSN, provided that m > a%kzln4 N.

Here, C' is universal constant.

— Form a diagonal random matrix, D € R¥*N with 41 on the diagonal, each with probility 1/2:

Dy = { 1_,1 with prob. (1)

with prob.

D=0 =

— Theorem 3 from Lecture 16 now tells us that FD € C™*N will be a strict J-L embedding for any

arbitrary set P C RY having cardinality |P| < M with probability > p — N~ In® N , provided that

m > %ln(%) In* N. Here C’ is an absolute constant.

Theorem 1. Let P C RY have |P| < M, and p,e € (0,1). Form FD e C™N s above. Then,
(L=)lZ|3 < ||FDZ|[3 < (1 + )73,

with hold for all ¥ € P with probability at least p — N_IHSN, provided that FD has at least m =
8% ln(%) In* N rows. Here C' is a universal constant.



Proof: Follows from the argument above. O
— Note that D € C™*N has a fast matrix-vector multiply, which is the whole point...
To computer F D7 we can:

e Computer DZ in O(N) multiplies.

e Take the DFT of Dz with the FFT in O((N log V)-operations

So F'D has an O(N log N) matrix-vector multiply!

3 The Overdetermined Least Squares Problem [1]
Compute .

Ymin = arg mingpn || AZ — b||,
for Ae CN*" N > n, and b e CV.

Standard deterministic solution approaches (e.g., via the QR-decomposition) use O(Nn?) opera-
tions.

If n < N are both large, we want to solve this faster.

4 A Randomized Algorithm for Solving the Problem

Theorem 2. There exists a universal constant C € Rt such that a fast J-L embedding matriz

FD e C™N  withm =C(n+1)In <ngw> In* N rows, will satisfy

1, - T
SIIA7 = Blla < |FDA — FD|l, < 51147~ 2

for all ij € R™, with probability at least p — N~"0°N.

— Let
-/ . ~ — R
Ymin ‘= arg mlnfER”HFD(Am - b)HQ

If Theorem 2 holds we have that

LI O NN SRR
§||Aymin - bH2 < HFD(Aymln - b)HQ < HFD(Aymm - b)HQ < §|’Aymin - bH2

Therefore, ||Ag .. — bl|2 < 3||Amin — b||2. This implies that 7. . is a decent approximation to the
optimal solution Ymin!

— The computational cost of computing g]jmin is:



1. Computing FDA and F Db takes O(nN log N)-time, using the FFT.

2. Solving for mein takes O(mn?) operations (e.g., via the QR-decomposition).
The total running time is O (nN log(N) +n3In (ﬁ\/ﬁ) In? N).

~Ifn = ©(V/N), and p is considered at constant, the deterministic method takes O(N?)-operations,
while the randomized approach takes O(N!® log? N )-operations. This is a clear improvement when
N is large.

Proof of Theorem 2: Let d; € RY be the 5 column of A. Consider the subspace S := span{dy, - - - , @y, 5}

—S is (n + 1)-dimensional subspace C CV. The unit ball B in S is isomorphic to the unit ball in
R?"2. Thus, C, /5(B) < (14 16/¢)*"*? by Lemma 2 in Lecture 14.

—Apply the proof of Lemma 3 in Lecture 14 (sub§pace embedding) to strictly embed S with FD,
setting € = % Theorem 1 above guarantees that F'D will embed B with high probability, etc.. [

— Note: Theorem 2 is only useful in practice if FDA is about as well conditioned as A is. This
comment requires us to recall the definition of the condition number of a matrix...

o1(A) - 0
— Consider the SVD of A, A=U : : V*,
0 o on(A)

where U € CN*N_ V* € C™", Let U, be the j'h column of V.

— We know that 0,,(A) := inf) |31 [|AZ]|2 = |[AT,[|2, and 01(A) = supz=1 ||AZ]|2 = [|Avi]|2.

Definition 1. The condition number of A € RN*" is k(A) := o1(4)

— The proof of Theorem 2 also implies that F DA is about as well conditioned as A was in the first
place! If 0; is the j*P-right singular vector of FDA we can see that

on(A) _ [ATull2 _ [[AT.2

< |FDAG, |2 = on(F
; 2 < 5 < | FDAR |y = 0u(FDA) (2)

~ ~ - S - 3
< 01(FDA) = |[FDAG ||z < 5[4tz < 5o1(4). (3)

Thus, k(FDA) < 3r(A).



— Reference [1] notes that one can use a pre-conditioner for FDA to quickly construct a pre-
conditioner for A. We can then boost relative accuracy from 3 to ¢ in O(log(%)) steps of a pre-
conditioned conjugate gradient method (see [1] for more info.).
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