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Lecture 19 — Mar 11th, 2014
Inst. Mark ITwen Scribe: Xianfeng Hu

1 Bounded Orthonormal Systems(BONS) and the RIP

Let D C R%, v be a probability measure on D, and & = {¢1, b2, -+ ,¢n} be an orthonormal set of
functions, ¢; : D — C, j € [N], with respect to v. That is, suppose that
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Definition 1. We will call an ONS ® a bounded ONS with constant K if

0 [[9lloo = max (Suplcﬁj(f)!) <K
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HW:
e Problems one and two can be found in Lecture 15.
e 3.) Prove K > 1 must hold;
e 4.) Do 12.1 in page 431;

e 5.) Do 12.2 in page 431.

1.1 Examples of Bounded ONS

Example 1. Trigonometric polynomials are BONS (with K =1).
Let D = [0,1] and set ¢,(t) := ™t for any w € Z. Let v be the uniform (Lebesque measure) on
[0,1], and restrict w € [N] (for example).

Then |¢,(t)] =1 Yw,t = @ :={¢1,...,0n} is a BONS with K = 1.

Example 2. Consider DFT matriz F € CV*N,

E,k . jfﬁewii(lfl)(kfl)/N7 Vi ke [N]

Let v be discrete uniform measure on [N], s.t v(B) = |B|/N, VB C [N], and D = [N]. Set
bu(t) := VNF,, (i.e., our functions are the columns of F'). Once again, |¢,(t)| =1 Yw,t = K =1
works for our bound. And, the system is still orthonormal since



S $u()ur (D) du(t) = 5 S, e N = §(w, o)

Finally, the Fast Fourier Transform (FFT) allows any subset of F’s rows to be multiplied by a
given vector in O(N log N) time.

Example 3. Any unitary matriz U € CN*N can be represented as a Bounded ONS with ¢ (1) :=
Uik, and v := the discrete uniform measure on [N]. The only difference from above is that we should

set K = HII%X’\/N Uikl

Theorem 1 (Thm 12.31 from [1]). Let A € C™N be a matriz formed by sampling m points,
{1, ,tm € D independently, w.r.t. v for any given BOS ® = {¢1,--+ , 0N}, and then setting
Ay = ¢i(ty) for 1 € [m], k € [N], 1 € [m]. If, for e € (0,1) and k € [N], we have

m > (CK/e®) - k-In* N,

then with probability at least 1 — NN the restricted isometry constant f—:k(jl) < e for A= ﬁA.
The constant C > 0 is universal (i.e. independent of k, K, N,e,...).

1.2 Applications of Theorem 1

N
Application 1 Suppose that f() = ij -¢;(t) for a BONS, ® = {¢1,--- ,¢n}. We assume (or

j=1
hope) that # = the coefficient vector is sparse, or compressible. That is, we hope that | 1an i |21
zllo<
is small.
We can try to learn f by learning Z as follows: We sample t1,- - - , &, from D according to v, and

then use f(f1),--- , f(fm) to recover Z (and therefore f).

We have
f(t) or(ty)  d2(hr) on(l) \ (=
f(t2) _ #1(t2)  Pa(t2) on(t2) T2
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That is, we have

f (&)
where A;; := gi)l(f;) Theorem 1 says that this A has the RIP, so we can interpolate f(£1),--- , f(tm)
to learn f by

g - 271054
1 Taking t1,- - ,t;, from D for m > W;



2 Using BP to find the Z with minimal /; norm subject to AZ = AZ (Lecture 16 — this gives
us a good result).

Example 4 (Chebyshev Polynomials of the first kind). They are defined by To(x) = 1; Ti(x) = x;
To(z) =222 — 1; -+ ; Tyy1 = 22T, (z) — T, — 1(z). It is also true that Tj(x) = cos(j - arccos(z))
holds for all j.

1 1
Here we have D = [—1,1], and v(A) = / ﬁd:n, for all A C [-1,1].
TJA —x

Thus, Chebyshev polynomials provide a BONS with ® := {\/2T(z),v2Ts(x), -+ ,V/2Tn(z)}.
That is, we have ¢j(z) = /2 cos(j - arccos(x)) for all j € [N]. It is now easy to see that K = /2.

Since Chebyschev polynomials form a BONS, we can interpolate Chebyschev-sparse functions using
a small number of function samples!

Application 2 Recall from lecture 16, Theorem 3, that RIP matrices = J-L embedding matrices:
If A has RIP, take D = diag(x, - -- ,*) with random +1 on the diagonal, and then AD will serve as
a J-L embedding. Note that AD will now be fast to multiply if A is formed using the columns of
a DFT matrix. This leads to “fast JL-embedding” matrices. More on this next time...
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