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1 Overview
In the last lecture we introduced two important classes of random variables (RVs): sub-exponentials
(1)

and sub-gausians. Recall that X is a sub-gaussian RV if 3 8,k > 0 such that
P[IX| > {] < Be "’ vt >0

This lecture provides a few more important results regarding the characterization of sub-gaussians.
We will begin by bounding the absolute moments of sub-gaussian RVs in terms of their parameters

(2)

8 and k.
2 Two Useful Lemmas Concerning Moments and MGF's
Lemma 1. If X is a subgaussian random variable with parameters 5 > 0 and x > 0, then we can

bound its moments such that
E[XP)F <n 285p2  Vp21

Proof:
Inequality (16) from Lecture 11 tells us that
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After the change of variables t — \/LQ? we will have
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where we have used the fact that X is a subgaussian RV. After the second change of variables
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Note that the integral above is the Gamma-function evaluated at p/2. Thus,
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Applying Sterling’s formula to (6) yields
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Lemma 2. If X is a subgaussian random variable with parameters > 0 and x > 0, then 3 ¢ €
-1
(0,k) and ¢ > 1+ 1'3_6;,1 such that

E [ec)ﬂ <G (8)

Proof:

The moment estimate, (6), from the proof of Lemma 1 tells us that
E {\X\Qn} < Br"nI'(n) = r"n! 9)

By Fubini and Taylor’s Theorem (once again...) we get that

E[edﬂ :/Oooi nX2nd]P’< Zﬂ (10)
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The assumption ¢ € (0, ) ensures convergence. Applying (9) and then summing up the series
yields
Ber™!
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3 A Characterization of Subgaussian Random Variables

Theorem 1 (see [1], p.193). Let X be a random variable, then:

1. If X is a sub-gaussian RV with parameters 8 > 0, k > 0, and has E[X] = 0, then Ve € RT

with
1 4 2¢?
c>max{2+el (1+5), {5; } (12)
we have ,
E [e9%] < e VO € R (13)

2. If property (13) holds for ¢ € R, then E[X] =0 and X is a sub-gaussian RV with parameters
B=2and Kk = ﬁ.



Proof of part (2):
Let © > 0 and t > 0. Then

PX >t =P [eGX > e@t] <e ®.E [e@X] (14)

by Markov’s inequality. Using our assumption (13):

P[X > < O (15)
After minimizimg over ©, the optimal value can be shown to be © = 2% Hence,

P[X > <e /% (16)
Similarly,

P[-X >1] < e ¥/t (17)
Applying the union bound, we have

P[IX| > 1] < 2e /4 (18)

This gives us subgaussianity as needed, now we shall show that E[X] = 0. Note that 1 + z < e”
for Vz. Thus 1 + X < e®X, VO € R, and so

E[1+6X] <E[e®] (19)

Hence, by the inequality (13)
1+ E[0X] < e® (20)

If © is sufficiently small

1+OE[X] <14 20?2 VO ¢ (— ,1> (21)
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It follows that E [X] = 0.

Proof of part (1):

Let us expand E [eeX ] using Taylor’s Theorem, Fubini’s Theorem, and the assumption that E [X] =
0:
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Using Sterling’s approximation of n!, Lemma 1, and assuming that |©] < ©¢ for Oq sufficiently
small, we have
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provided that O < @ Setting ©g = % results in

E [e@X} < exp {@2\\;;2562} . (25)

The exponent in (25) gives us one of our lower bounds on ¢ we can achieve.

But what happens if |©| > 0?7 Note that

X\ x?_ x?
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V realizations of X and Vé € Rt. Let the constant from Lemma 2 be ¢2 € (0, ) such that
E [eCQXQ] </ (27)
by Lemma 2. Then take ¢ = ﬁ = i Now (26) and Lemma 2 imply that
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Hence,
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Since || > Oy we now can see that
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The exponent in (30) gives us our other lower bound on c. O

In the next lectures we will show that parameter c is quite important, because it is closely related
to the size (and sparsity!) of random sampling matrices used in Compressive Sensing.

4 Homework 3

3). Let X be a random variable with the PDF

3
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Show that X is a subgaussian random variable with E [X] =0, VAR[X] =1 and ¢ = ﬁ.

4). Let X be a random variable with the PDF
_ 1—p 1 1
f(x)—p-d(x)—i-(Z) {5 (x—m>+5<x+m>} for pe(0,1) (32)

Note that in this case X = 0 with probability p, and X = +—-— each with probability %. Show

Vi-p
that X is a subgaussian random variable with E[X] = 0, VAR [X] = 1 and ¢ = lflp. For what
. _ 1 9
values of p can you achieve c Tip
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