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1 Overview

In the last lecture we introduced two important classes of random variables (RVs): sub-exponentials
and sub-gausians. Recall that X is a sub-gaussian RV if ∃ β, κ > 0 such that

P [|X| ≥ t] ≤ βe−κt2 ∀t > 0 (1)

This lecture provides a few more important results regarding the characterization of sub-gaussians.
We will begin by bounding the absolute moments of sub-gaussian RVs in terms of their parameters
β and κ.

2 Two Useful Lemmas Concerning Moments and MGFs

Lemma 1. If X is a subgaussian random variable with parameters β > 0 and κ > 0, then we can
bound its moments such that

(E [|X|p])
1
p ≤ κ−

1
2β

1
p p

1
2 ∀p ≥ 1 (2)

Proof :

Inequality (16) from Lecture 11 tells us that

E [|X|p] = p

∫ ∞
0

P [|X| ≥ t] tp−1dt (3)

After the change of variables t→ u√
2κ

we will have

E [|X|p] =
p

(2κ)
p
2

∫ ∞
0

P
[
|X| ≥ u√

2κ

]
up−1du ≤ βp

(2κ)
p
2

∫ ∞
0

e−
u2

2 up−1du (4)

where we have used the fact that X is a subgaussian RV. After the second change of variables
x→ −u2

2 :

E [|X|p] ≤ βp

2κ
p
2

∫ ∞
0

e−xx
p
2
−1dX (5)

Note that the integral above is the Gamma-function evaluated at p/2. Thus,

E [|X|p] ≤ βp

2κ
p
2

Γ
(p

2

)
(6)
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Applying Sterling’s formula to (6) yields

E [|X|p] ≤
√
π

2
· pβ
κ

p
2

·
(p

2

) p−1
2
e

−p
2 e

1
6p = κ−

p
2βp

p
2

[√
pπ

(2e)p
· e

1
6p

]
≤ 0.9 · κ−

p
2βp

p
2 (7)

∀p ≥ 1.

Lemma 2. If X is a subgaussian random variable with parameters β > 0 and κ > 0, then ∃ c ∈
(0, κ) and c̃ ≥ 1 + βcκ−1

1−cκ−1 such that

E
[
ecX

2
]
≤ c̃. (8)

Proof :

The moment estimate, (6), from the proof of Lemma 1 tells us that

E
[
|X|2n

]
≤ βκ−nnΓ(n) = βκ−nn! (9)

By Fubini and Taylor’s Theorem (once again...) we get that

E
[
ecX

2
]

=

∫ ∞
0

∞∑
n=0

cnX2n

n!
dP ≤

∞∑
n=0

cnE[|X|2n]

n!
. (10)

The assumption c ∈ (0, κ) ensures convergence. Applying (9) and then summing up the series
yields

E
[
ecX

2
]
≤ 1 + β

∞∑
n=1

cnκ−n ≤ 1 +
βcκ−1

1− cκ−1
≤ c̃. (11)

3 A Characterization of Subgaussian Random Variables

Theorem 1 (see [1], p.193). Let X be a random variable, then:

1. If X is a sub-gaussian RV with parameters β > 0, κ > 0, and has E [X] = 0, then ∀c ∈ R+

with

c > max

{
1

2κ
+

4e2

κ
ln (1 + β),

√
2βe2

κ
√
π

}
(12)

we have
E
[
eΘX

]
≤ ecΘ2 ∀Θ ∈ R (13)

2. If property (13) holds for c ∈ R, then E [X] = 0 and X is a sub-gaussian RV with parameters
β = 2 and κ = 1

4c .
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Proof of part (2):

Let Θ > 0 and t > 0. Then

P [X ≥ t] = P
[
eΘX ≥ eΘt

]
≤ e−Θt · E

[
eΘX

]
(14)

by Markov’s inequality. Using our assumption (13):

P [X ≥ t] ≤ ecΘ2−Θt (15)

After minimizimg over Θ, the optimal value can be shown to be Θ = t
2c . Hence,

P [X ≥ t] ≤ e−t2/4c. (16)

Similarly,
P [−X ≥ t] ≤ e−t2/4c. (17)

Applying the union bound, we have

P [|X| ≥ t] ≤ 2e−t
2/4c (18)

This gives us subgaussianity as needed, now we shall show that E [X] = 0. Note that 1 + x ≤ ex

for ∀x. Thus 1 + ΘX ≤ eΘX , ∀Θ ∈ R, and so

E [1 + ΘX] ≤ E
[
eΘX

]
(19)

Hence, by the inequality (13)

1 + E [ΘX] ≤ ecΘ2
(20)

If Θ is sufficiently small

1 + ΘE [X] ≤ 1 + 2cΘ2 ∀Θ ∈
(
− 1√

c
,

1√
c

)
(21)

|E [X]| ≤ 2cΘ ∀Θ ∈
[
0,

1√
2c

)
(22)

It follows that E [X] = 0.

Proof of part (1):

Let us expand E
[
eΘX

]
using Taylor’s Theorem, Fubini’s Theorem, and the assumption that E [X] =

0:

E
[
eΘX

]
≤ 1 +

∞∑
n=2

Θn

n!
E [|X|n] ≤ 1 +

∞∑
n=2

|Θ|n

n!
E [|X|n] (23)

Using Sterling’s approximation of n!, Lemma 1, and assuming that |Θ| ≤ Θ0 for Θ0 sufficiently
small, we have

E
[
eΘX

]
≤ 1 +

∞∑
n=2

|Θ|n κ−
n
2 βn

n
2

√
2πnne−n

≤ 1 +
βΘ2e2

√
2πκ

∞∑
n=0

(
Θ0κ

− 1
2 e
)n

= 1 +
Θ2βe2

√
2πκ

· 1

1−Θ0eκ
− 1

2

(24)
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provided that Θ0 <
√
κ
e . Setting Θ0 =

√
κ

2e results in

E
[
eΘX

]
≤ exp

{
Θ2
√

2βe2

√
πκ

}
. (25)

The exponent in (25) gives us one of our lower bounds on c we can achieve.

But what happens if |Θ| > Θ0? Note that

ΘX − c̃Θ2 = −
(√

c̃ |Θ| − X

2
√
c̃

)2

+
X2

4c̃
≤ X2

4c̃
(26)

∀ realizations of X and ∀c̃ ∈ R+. Let the constant from Lemma 2 be c2 ∈ (0, κ) such that

E
[
ec2X

2
]
≤ c′ (27)

by Lemma 2. Then take c̃ = 1
4c2

= 1
2κ . Now (26) and Lemma 2 imply that

E
[
exp

{
ΘX − Θ2

2κ

}]
≤ E

[
exp

{
X2κ

2

}]
≤ c′ = 1 + β. (28)

Hence,

E
[
eΘX

]
≤ (1 + β) exp

{
Θ2

2κ

}
= (1 + β) exp

{
− ln(1 + β)

Θ2

Θ2
0

}
· exp

{
Θ2

2κ
+ ln(1 + β)

Θ2

Θ2
0

}
(29)

Since |Θ| > Θ0 we now can see that

E
[
eΘX

]
≤ exp

{
Θ2 ·

(
1

2κ
+

ln(1 + β)

Θ2
0

)}
. (30)

The exponent in (30) gives us our other lower bound on c.

In the next lectures we will show that parameter c is quite important, because it is closely related
to the size (and sparsity!) of random sampling matrices used in Compressive Sensing.

4 Homework 3

3). Let X be a random variable with the PDF

f(x) = p · δ(x) +
(1− p)

3
2

√
2π

exp

{
−x2(1− p)

2

}
for p ∈ (0, 1) (31)

Show that X is a subgaussian random variable with E [X] = 0, VAR [X] = 1 and c = 1
2(1−p) .

4). Let X be a random variable with the PDF

f(x) = p · δ(x) +

(
1− p

2

)[
δ

(
x− 1√

1− p

)
+ δ

(
x+

1√
1− p

)]
for p ∈ (0, 1) (32)

Note that in this case X = 0 with probability p, and X = ± 1√
1−p each with probability 1−p

2 . Show

that X is a subgaussian random variable with E [X] = 0, VAR [X] = 1 and c = 1
1−p . For what

values of p can you achieve c = 1√
1−p?
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