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1 Hoeffding’s Inequality and Corollary

This adds to Lecture 11 from Spring 2014, which details Cramer’s Theorem used below.

Theorem 1 (Hoeffding’s Inequality). Let X1, X2, . . . , XM be independent random variables such
that E [Xl] = 0 and |Xl| ≤ Bl ∀ l ∈ [M ]. Then, ∀ t > 0
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Proof: We will estimate E [exp (θXl)] and then use Cramer’s theorem.
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If we apply Cramer’s theorem with θ = t̃∑M
l=1 B

2
l

, rearrange with alegbra, we get the result in

Equations 1 and 2.

Corollary. Let a ∈ RN and
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Let random vector ~b have entries bl = Xl and be I.I.D. Then, ∀u > 0 we have
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By Hoeffding’s Inequality
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