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1 Overview

In the last lecture we discussed LSH approach, and its runtime. In this lecture we will recall LSH
and introduce Large Deviation Inequalities for related matrices.

2  What is known about LSH for /,-norms?

Recall that the runtimes that we could set all depends on p := iggg L, where p; > py. For a good
LSH function, we want p small.

Theorem 1 (See [1]). Let p € (0,2], 6, ¢ € (1,00), and v € RT. There exists a LSH function h:
z,

RP = Z, wort. d(Z,5) = ||F — llp, with p = 122 < §-max{Z, +}.

For p = 2 (Euclidean case), we showed how to do this with Gaussian random vectors.

Theorem 2 (See [2]). There exists an LSH function w.r.t. la-distance, and for all r € R* c €
1
2

(1,00), that has p = loglog | X|

+0 "
log3 |X]|

C

). (Here X C RP is the arbitrary finite set we are hashing.)

Theorem 3 (See [3]). For large D (i.e. in the limit), there exists r, py for which p > %482 for
any LSH funtion, w.r.t. any ly-norm, for all c,p > 1.

3 Large Deviation Bounds Related to LSH

3.1 Problem

Given g~ N(0,Ipxp), and & € Rp, show that

P[| < §,&>2 —|Z|2| > t/|7]2] is small in ¢ (1)

For LSH, we had computations involving < g, 7 > for ¥ € RP.5 € N(0,Ipxp), since h(Z) =
Lq’xTMJ LSH worked for /9 exactly because this hash function sent vectors to buckets ~ equal
to their length with high probability!



3.2 Discussion

Two very nice things happened that let us set our LSH function work for ¢5:

1: < &,§ >~ N(0,||#]|3) because Gaussians are stable (i.e., when we add two Gaussians we get
another one).

2: The bound (Eq. 1) held because the inner product was another Gaussian. This meant for LSH
that vectors were hashed to ~ their length (modulo w).

We are now going to generalize Equation 1 a little bit, and consider what happens if we take several
gaussian measurements of a vector Z.

If X ~ N(0,1), then X2 ~ x? (chi-square r.v. with 1 degree of freedom).

D
Suppose that we have D x? (i.i.d.) Y1,---,Yp, let a € RT, Z = Zl aYj. Note that Z ~ x3,, with
]:

D degrees of freedom. The moment generating function (MGF) for Z is E[e%?] = (1 — 2@‘%7 for
all u € (—oo, %), and E[Z] = D.
P(|Z—D| > L1 =P[Z > D(1+ £)] +P[Z < D(1 — £)].

Note that,

P [(1 - t) D> Z] =P [e“—ﬁ)Du—uZ > 1}

< (1~ Duy [e7#] (by the Markov Inequality)

= e(lfﬁ)D“(l + 2u)*D/2.

Similarly, P[(l + ﬁ)D < Z] < 67(1+ﬁ)Du(1 B 2U)_D/2,

So,
IP)HZ _ D’ Z t/a] S e—(1+ﬁ)Du(1 o 2u)—D/2 + e(l—t/Da)Dﬂ(l 4 2&)—D/2 (2)

holds for any v < 1/2, and @ > —1/2.
Define f(u) := e_(1+ﬁ)D“(l —2u)~P/2 and g(a) := e(1-H/POIDE(] 4 27)~D/2,

Optimize the choices of v and 4 by minimizing

In(f(w)) = — <1 + t> Du — %mu — o)

Da
In(g(@)) = (1 - l;) Du— gln(l + 20)

It is calculated that the following values minimize each of these:

S t/(Da) o t/(Da) ' 3)
91 4+-t/(Da))’ ™ 2(1 —t/(Da))

2



Plugging these values of upiy and @iy back into (2) we see that

2 —3t2+2t3/(Da)

]P)Hz - D| > t/a] < 6_4Lt)a2 +e 12Da? , (4)

for all t,a € R*, D € N.

We have basically proven the following,

Lemma 1. Let G € R™P be a random matriz with i.i.d. N(0,1) entries, and ¥ € RP, then
Pllm=|GZ||3 — ||Z][3] > t]| ]3] < e=*m/4 4 (=3 +27)m/12,

Proof: |IGI3 ~ 1713 X2, so that, P~ |GZ|3 — 73] > 78] = PIZ — m]] > tm], where
Z ~ x2. The work above (see Equation (4)) now gives us the result when we set a = 1/m,
D =m. O

Note that m = 1 above is exactly the case of (1) related to LSH.
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