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1 Preliminaries

A signal or data point will always be a vector ~x ∈ RD, where D is usually large!

2 Overview

In this lecture we introduce the technique of Compressive Sensing, and motivate it by means of
concrete examples.

We will focus on two problems:

1. Given a huge set of data points X = {~x1, . . . , ~xN} ⊆ RD, where N and D are very large, how
can we accurately and efficiently summarize X?

By summarizing we generally mean approximating by some fit model. In simple cases, this
could be regression, interpolation by a smooth function, or a manifold model. This problem
is very related to data compression.

2. Given a manifold model - possibly some model from (1) we learned from a training set -
how can we efficiently and accurately project a given vector ~x ∈ RD onto the model, using
“reduced information”?

Here’s an example for the second problem.

Example 1. Suppose we can gather only a small number, m, of inner products of ~x ∈ RD, where
m� D. That is, for fixed measurement vectors ~a1, . . . ,~am ∈ RD, we get to see only

〈~a1, ~x〉 , . . . , 〈~am, ~x〉 .

How well can we possibly approximate ~x given that it sits on a given manifold model? In other words,
given the information {〈~ai, ~x〉}mi=1, find a point on the manifold model which best approximates ~x.

This is a slight generalization of compressive sensing!

3 Manifold Models: from Simple to more Complex

3.1 Affine linear subspace of RD of dimension d

The goal is to find an affine linear subspace ~a + S, given a set of data points X, then use it find a
representation of a new point not in X. In more details,
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1. Find S, the “best fit” d-dimensional subspace, S, for X − 1
N

∑N
j=1 ~xj , then let

~a = ΠS⊥

(
1
N

∑N
j=1 ~xj

)
,

where ΠK is the operator that projects onto the subset K. (Here ~a ∈ RD ∩ S⊥ is a shift.)

2. Projection problem: given ~y ∈ RD, not in X, we project it onto ~a + S by

ΠS (~y − ~a) + ~a.

3.2 Smooth d-dimensional submanifold of RD

Again, this is a two-step process: manifold learning, and finding an efficient way to project a
vector ~x onto the manifold.

3.3 Sparsity

Denote [D] := {1, 2, . . . , D}. For a given set S ⊆ [D], with cardinality |S| = d, let

AS = Span {~ej |j ∈ S} ,

where ~ej is a canonical basis vector. Thus a vector in the subspace AS has at most d nonzero
entries, indexed by S. Now let

M =
⋃

S⊆[D]
|S|=d

AS ⊆ RD

The set M, which contains
(
D
d

)
d-dimensional subspaces, is the set of all possible vectors with at

most d nonzero entries.

The compressive sensing problem is to determine how to project ~x onto the manifold M, given
a few inner products. This niavely exponentially hard problem can be remarkably be solved in
only polynomial time.

Example 2. Sparse Interpolation of a periodic function

Suppose

f (x) =
∑
w∈S

Cw · eiwx

for some subset S ⊆ [D] and large D, where |S| = d � D. The small number d could correspond
to the number of transmitters. Here Cw ∈ C.

How many samples, or function evaluations f (x1) , . . . , f (xm) do we need to learn f? Surely,
we would like to use as few samples as possible. It turns out we can use radically fewer samples
than D, and still learn f .

It is clear that we learn f if and only if we learn all C ′ws, and S ⊆ [D]. Every function evaluation
f (xj) is a linear combination of the constants Cw. Say

f (xj) =
〈
~C, ~Fxj

〉
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where ~C ∈ CD has d nonzero entries equal to the C ′ws, in positions indexed by S ⊆ D, and ~Fxj is
the xthj column of an inverse Fourier transform matrix.

We get linear samples of ~C ∈ CD (by sampling), and we know that ~C ∈ M. The compressive
sensing problem, in this noiseless setting, is to project ~C onto M.

We will learn a lower bound on the number of samples needed to learn f . Moreover, we will learn
how to deal with noise; that is, when

f (x) =
∑
w∈S

Cw · eiwx + g (x) ,

where g (x) is small in comparison to f (x).

Example 3. Sales Model (Heavy Hitters)

Imagine we collect global sales information from all Walmart stores, and get updates such as

(-2 bubble gums, -1 sodas, . . . )

when two bubble gums and one soda bottle are sold, and other updates such as

(+2000 bubble gums,. . . )

when a new shipment is received from a supplier to one of our many warehouses.

Let D be the number of all products sold in any store, anywhere. D is obviously large. Let ~x ∈ ZD
+

represent the sum of all updates, sent to corporate headquarters, on a minute-by-minute basis.

Goal: In the first five seconds of each minute, we would like to identify the top one hundred
selling items, and then raise their price by 1 cent. It is clear that we need to identify these one
hundred items very fast!

In other words, we need to project ~x ontoM quickly. In general, it is too slow, if D is large enough,
to update all of ~x and then use it to project onto M in a trivial way (for physical reasons, such as
slowly spinning hard disks, etc., etc...).

To overcome this problem, we design a linear map M ∈ Rm×D, where d < m� D, and only store
M~x ∈ Rm. Then,

M (~x + updtate) = M~x + M (update) ∈ Rm.

We can use M~x (as inner products) to project onto M. For efficiency, we design M so that
M (update) is computed fast, and so that M~x supports super fast projections onto M, our manifold
of all 100 sparse vectors.
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