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1 Preliminaries

A signal or data point will always be a vector & € R, where D is usually large!

2 Overview

In this lecture we introduce the technique of Compressive Sensing, and motivate it by means of
concrete examples.

We will focus on two problems:

1. Given a huge set of data points X = {Z1,...,Znx} C R”, where N and D are very large, how
can we accurately and efficiently summarize X7

By summarizing we generally mean approximating by some fit model. In simple cases, this
could be regression, interpolation by a smooth function, or a manifold model. This problem
is very related to data compression.

2. Given a manifold model - possibly some model from (1) we learned from a training set -
how can we efficiently and accurately project a given vector & € RP onto the model, using
“reduced information”?

Here’s an example for the second problem.

Example 1. Suppose we can gather only a small number, m, of inner products of & € RP, where
m < D. That is, for fived measurement vectors dy, . ..,am € RP, we get to see only

(@1, 2) ... (G, T) .

How well can we possibly approximate I given that it sits on a given manifold model? In other words,
gwen the information {(d;, @)}.", find a point on the manifold model which best approzimates T.

This is a slight generalization of compressive sensing!

3 Manifold Models: from Simple to more Complex

3.1 Affine linear subspace of R” of dimension d

The goal is to find an affine linear subspace @ + .5, given a set of data points X, then use it find a
representation of a new point not in X. In more details,



1. Find S, the “best fit” d-dimensional subspace, S, for X — % Z;VZI Zj, then let
o N =
a = HsL (% Zj:l :cj),
where Il is the operator that projects onto the subset K. (Here @ € R” N S+ is a shift.)

2. Projection problem: given i € R”, not in X, we project it onto @+ S by

3.2 Smooth d-dimensional submanifold of R”

Again, this is a two-step process: manifold learning, and finding an efficient way to project a
vector & onto the manifold.

3.3 Sparsity

Denote [D] :={1,2,...,D}. For a given set S C [D], with cardinality |S| = d, let
Ag = Span{éjj € S},

where €; is a canonical basis vector. Thus a vector in the subspace Ag has at most d nonzero
entries, indexed by S. Now let

M= |J AscRr”
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The set M, which contains (g) d-dimensional subspaces, is the set of all possible vectors with at
most d nonzero entries.

The compressive sensing problem is to determine how to project ¥ onto the manifold M, given
a few inner products. This niavely exponentially hard problem can be remarkably be solved in
only polynomial time.

Example 2. Sparse Interpolation of a periodic function
Suppose
f(x)= Z C,, -
for some subset S C [D] and large D, where |S| = d < D. The small number d could correspond
to the number of transmitters. Here C,, € C.

How many samples, or function evaluations f(x1),...,f () do we need to learn f? Surely,
we would like to use as few samples as possible. It turns out we can use radically fewer samples
than D, and still learn f.

It is clear that we learn f if and only if we learn all Cl,s, and S C [D]. Every function evaluation
f(x;) is a linear combination of the constants Cy,. Say

f(z)) = <é, ﬁ>

2



where C' € CP has d nonzero entries equal to the C! s, in positions indexed by S C D, and ﬁxj 18
the a:?h column of an inverse Fourier transform matriz.

We get linear samples of Cec? (by sampling), and we know that C € M. The compressive
sensing problem, in this noiseless setting, is to project C onto M.

We will learn a lower bound on the number of samples needed to learn f. Moreover, we will learn
how to deal with noise; that is, when

fl@)=> Cy- ™ +g(x),
weS

where g () is small in comparison to f (z).

Example 3. Sales Model (Heavy Hitters)

Imagine we collect global sales information from all Walmart stores, and get updates such as
(-2 bubble gums, -1 sodas, ... )
when two bubble gums and one soda bottle are sold, and other updates such as

(+2000 bubble gums,. .. )

when a new shipment is received from a supplier to one of our many warehouses.

Let D be the number of all products sold in any store, anywhere. D is obviously large. Let ¥ € Zf
represent the sum of all updates, sent to corporate headquarters, on a minute-by-minute basis.

Goal: In the first five seconds of each minute, we would like to identify the top one hundred
selling items, and then raise their price by 1 cent. It is clear that we need to identify these one
hundred items very fast!

In other words, we need to project ¥ onto M quickly. In general, it is too slow, if D is large enough,
to update all of ¥ and then use it to project onto M in a trivial way (for physical reasons, such as
slowly spinning hard disks, etc., etc...).

To overcome this problem, we design a linear map M € R™*P

MZ € R™. Then,

, where d < m <« D, and only store

M (& + updtate) = MZ + M (update) € R™.

We can use MZ (as inner products) to project onto M. For efficiency, we design M so that
M (update) is computed fast, and so that MZ supports super fast projections onto M, our manifold
of all 100 sparse vectors.



