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1 Introduction

Consider an optimization problem in standard form:

fi(x) <0, i=1,....,m

hi(z)=0, i=1,...,p. )

i subject to
min fo(z)  subj {

We define the domain D of problem (1) as the intersection of the domains of all constraints. That

is,
m p
D= (ﬂ dom f1> N (ﬂ dom hi) )
i=1 i=1

We assume that D is non-empty, and denote by p* the optimal value of problem (1).

2 Duality
Definition 1. The Lagrangian associated with (1) is the function L : R™ x R™ x RP — R defined
by
m p
Lz, A\ v)=fo(z)+ > Nfi(x)+ Y vihi(z),
i=1 i=1

with dom L = D x R™ x RP. Here
AeR™ veRP

are called dual variables (or Lagrange multiplier vectors).

Definition 2. (Lagrange dual function) The dual function g : R™ x RP — R is the minimum
value of the Lagrangian over all x; that is,

m p
g\ v) = wiggL (x,\,v) = 11161{) fo(x) + ; Aifi(x) + ; vih; ()

Note that the dual function is always concave, being the pointwise infimum of affine functions.

Lemma 1. The dual function provides a lower bound on the optimal value p* for the optimization
problem (1); that is,
gA\v)<p* (2)

for all A > 0 and for all v.



Remark. By A = 0 we mean A\; > 0 for allt=1,...,m.

For a pair (\,v) with A > 0 and (\,v) € dom g, we say (\,v) are dual feasible.
Example 1. A simple linear program

Recall the optimization problem

min ¢’z subject to Az =b, x> 0.
z€R™

The Lagrangian associated with this problem is
oo
Lz, \v) = clo— Z)\ixi + T (Az —b)
i=1

= —bv+ (c + ATy — )\)T x.
Here we have set the inequality constraints as f; (x) = —x;, fori=1,...,m.
The dual function associated with this problem is

by, if ATv—A+c=0,

—00,  otherwise.

Q(AvV)ZigfL(x,A,y):{

Definition 3. (Lagrange dual problem) The dual problem associated with (1) is the optimization
problem
maximize g (\,v)  subject to X\ > 0. (3)

We say (A*,v*) are dual optimal is they are optimal for the above problem.

2.1 Duality Gap

Definition 4. Let d* denote the optimal value of the dual problem (3). We call p* —d* the optimal
duality gap.

In general we have d* < p*; this is called weak duality; when d* = p*, we have strong duality.

Slater’s Condition

Slater’s condition is a sufficient condition for strong duality to hold for a convex optimization
problem: if the primal problem (1) is convex, and if x is in the relative interior of D (z € relintD),
that is

fi(x) < Ofori=1,...,m,
hi(z) = Ofori=1,...,p,

then p* = d*. In this case we say “x is strictly feasible.”

From (2), we see that (A, v) provides a proof or certificate that p* > g (\,v).



Suppose now that p* = d*. Then if * minimizes fy (x), we have
foz®) = g\,

= inf <f0 (@) + > Affi () + > vih (x))
=1 i=1

< fo ($*)+Z)\?fz’ ($*)+Zﬁhi (z*)
=1 =1
< fo(z")

by the equality and inequality constraints. This means that «* minimizes L (z, \*,v*) over x, and
that

m
Y Afi(a) =0.
i=1
Hence X! f; (*) =0 for i = 1,...,m. This is called complementary slackness. In more detail,

MN>0 = fi(2")=0 or fi(z")<0 = A\ =0.

2.2 KKT Conditions

Let fo,..., fm and hy,..., hy, be differentiable functions. Let z* and (A*,v*) be the primal-dual
optimal points. We know z* minimizes L (z, \*,v*) over x. Thus

m p
Vio (@) + Y NV (") + Y v Vhi (2*) = 0.
=1 =1

This condition, along with the conditions

fi(z*) <0, i=1,....m

hi(l'*)zo, i=1,...,p

AF >0, i=1,....m

XNfi(x*)=0, i=1,....,m
are called the KKT (Karush-Kahn-Tucker) Conditions.

For convex optimization problems with differentiable objective and constraints satisfying Slater’s
condition, the KKT conditions are necessary and sufficient for optimality.

3 Extension to Generalized Inequalities

We now consider the optimization problem

fi(x) =k, 0, i=1,...,m

minimize x) subject to
Jo(w)  subj {hz(x)—O, i=1,....p

where K; C R¥i are proper cones. Here x <y < y—z € K.



Definition 5. A cone is a set invariant under multiplication by nonnegative scalars. That is, if
z € K and A >0 then \x € K.

Example 2. Here are some examples of cones:

1. Quadratic Cone:
Kq={z e R"| [|(z2,---,2m)lly < 21}

2. Positive Orthant:

K, ={2€R™2,>0,20>0,..., 2z, > 0}.

3. Positive-semidefinite cone:
K5+ = {X € Snxn|X b 0} .

Definition 6. The dual of a cone K in a linear space X with topological dual space X* is the
set
Dual(K) ={z € X*| (y,z) > 0Vx € K},

where (y, ) is the duality pairing between X and X*.
In the case where K C R", the dual of K is

Dual(K) = {y € R"| y'e>0vVz e K}.

Lemma 2. The positive orthant cone K1 in R™ is equal to its dual cone.

S'ILX'IZ

Lemma 3. The positive-semidefinite cone Kg,_ in s equal to its dual cone.

4 Homework

Prove Lemmata 1,2, and 3.



