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1 Introduction

Consider an optimization problem in standard form:

min
x∈Rn

f0 (x) subject to

{
fi (x) ≤ 0, i = 1, . . . ,m

hi (x) = 0, i = 1, . . . , p.
(1)

We define the domain D of problem (1) as the intersection of the domains of all constraints. That
is,

D =

(
m⋂
i=1

dom fi

)
∩

(
p⋂

i=1

dom hi

)
,

We assume that D is non-empty, and denote by p∗ the optimal value of problem (1).

2 Duality

Definition 1. The Lagrangian associated with (1) is the function L : Rn×Rm×Rp → R defined
by

L (x, λ, ν) = f0 (x) +

m∑
i=1

λifi (x) +

p∑
i=1

νihi (x) ,

with dom L = D × Rm × Rp. Here
λ ∈ Rm, ν ∈ Rp

are called dual variables (or Lagrange multiplier vectors).

Definition 2. (Lagrange dual function) The dual function g : Rm × Rp → R is the minimum
value of the Lagrangian over all x; that is,

g (λ, ν) = inf
x∈D

L (x, λ, ν) = inf
x∈D

[
f0 (x) +

m∑
i=1

λifi (x) +

p∑
i=1

νihi (x)

]
.

Note that the dual function is always concave, being the pointwise infimum of affine functions.

Lemma 1. The dual function provides a lower bound on the optimal value p∗ for the optimization
problem (1); that is,

g (λ, ν) ≤ p∗ (2)

for all λ � 0 and for all ν.
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Remark. By λ � 0 we mean λi ≥ 0 for all i = 1, . . . ,m.

For a pair (λ, ν) with λ � 0 and (λ, ν) ∈ dom g, we say (λ, ν) are dual feasible.

Example 1. A simple linear program

Recall the optimization problem

min
x∈Rn

cTx subject to Ax = b, x � 0.

The Lagrangian associated with this problem is

L (x, λ, ν) = cTx−
∞∑
i=1

λixi + νT (Ax− b)

= −bT ν +
(
c+AT ν − λ

)T
x.

Here we have set the inequality constraints as fi (x) = −xi, for i = 1, . . . ,m.

The dual function associated with this problem is

g (λ, ν) = inf
x
L (x, λ, ν) =

{
−bT ν, if AT ν − λ+ c = 0,

−∞, otherwise.

Definition 3. (Lagrange dual problem) The dual problem associated with (1) is the optimization
problem

maximize g (λ, ν) subject to λ � 0. (3)

We say (λ∗, ν∗) are dual optimal is they are optimal for the above problem.

2.1 Duality Gap

Definition 4. Let d∗ denote the optimal value of the dual problem (3). We call p∗−d∗ the optimal
duality gap.

In general we have d∗ ≤ p∗; this is called weak duality; when d∗ = p∗, we have strong duality.

Slater’s Condition

Slater’s condition is a sufficient condition for strong duality to hold for a convex optimization
problem: if the primal problem (1) is convex, and if x is in the relative interior of D (x ∈ relintD),
that is

fi (x) < 0 for i = 1, . . . ,m,

hi (x) = 0 for i = 1, . . . , p,

then p∗ = d∗. In this case we say “x is strictly feasible.”

From (2), we see that (λ, ν) provides a proof or certificate that p∗ ≥ g (λ, ν).
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Suppose now that p∗ = d∗. Then if x∗ minimizes f0 (x), we have

f0 (x∗) = g (λ∗, ν∗)

= inf
x

(
f0 (x) +

m∑
i=1

λ∗i fi (x) +

p∑
i=1

ν∗i hi (x)

)

≤ f0 (x∗) +

m∑
i=1

λ∗i fi (x∗) +

p∑
i=1

ν∗i hi (x∗)

≤ f0 (x∗)

by the equality and inequality constraints. This means that x∗ minimizes L (x, λ∗, ν∗) over x, and
that

m∑
i=1

λ∗i fi (x∗) = 0.

Hence λ∗i fi (x∗) = 0 for i = 1, . . . ,m. This is called complementary slackness. In more detail,

λ∗i > 0 =⇒ fi (x∗) = 0 or fi (x∗) < 0 =⇒ λ∗i = 0.

2.2 KKT Conditions

Let f0, . . . , fm and h1, . . . , hm be differentiable functions. Let x∗ and (λ∗, ν∗) be the primal-dual
optimal points. We know x∗ minimizes L (x, λ∗, ν∗) over x. Thus

∇f0 (x∗) +
m∑
i=1

λ∗i∇fi (x∗) +

p∑
i=1

ν∗i∇hi (x∗) = 0.

This condition, along with the conditions
fi (x∗) ≤ 0, i = 1, . . . ,m

hi (x∗) = 0, i = 1, . . . , p

λ∗i ≥ 0, i = 1, . . . ,m

λ∗i fi (x∗) = 0, i = 1, . . . ,m

are called the KKT (Karush-Kahn-Tucker) Conditions.

For convex optimization problems with differentiable objective and constraints satisfying Slater’s
condition, the KKT conditions are necessary and sufficient for optimality.

3 Extension to Generalized Inequalities

We now consider the optimization problem

minimize f0 (x) subject to

{
fi (x) �Ki 0, i = 1, . . . ,m

hi (x) = 0, i = 1, . . . , p

where Ki ⊂ RKi are proper cones. Here x �K y ⇐⇒ y − x ∈ K.
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Definition 5. A cone is a set invariant under multiplication by nonnegative scalars. That is, if
x ∈ K and λ ≥ 0 then λx ∈ K.

Example 2. Here are some examples of cones:

1. Quadratic Cone:
Kq = {z ∈ Rm| ‖(z2, . . . , zm)‖2 ≤ z1} .

2. Positive Orthant:

K+ = {z ∈ Rm| z1 ≥ 0, z2 ≥ 0, . . . , zm ≥ 0} .

3. Positive-semidefinite cone:

KS+ =
{
X ∈ Sn×n|X � 0

}
.

Definition 6. The dual of a cone K in a linear space X with topological dual space X∗ is the
set

Dual (K) = {z ∈ X∗| 〈y, x〉 ≥ 0∀x ∈ K} ,

where 〈y, x〉 is the duality pairing between X and X∗.

In the case where K ⊂ Rn, the dual of K is

Dual (K) =
{
y ∈ Rn| yTx ≥ 0 ∀x ∈ K

}
.

Lemma 2. The positive orthant cone K+ in Rm is equal to its dual cone.

Lemma 3. The positive-semidefinite cone KS+ in Sn×n is equal to its dual cone.

4 Homework

Prove Lemmata 1,2, and 3.
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