Applied and Numerical Harmonic Analysis

Gerlind Plonka
Daniel Potts
Gabriele Steidl
Manfred Tasche

Numerical

 FourierAnalysis
(Birkhäuser

Applied and Numerical Harmonic Analysis

Series Editor
John J. Benedetto
University of Maryland
College Park, MD, USA

Editorial Advisory Board

Akram Aldroubi

Vanderbilt University
Nashville, TN, USA
Douglas Cochran
Arizona State University
Phoenix, AZ, USA
Hans G. Feichtinger
University of Vienna
Vienna, Austria

Christopher Heil

Georgia Institute of Technology
Atlanta, GA, USA

Stéphane Jaffard

University of Paris XII
Paris, France
Jelena Kovačević
Carnegie Mellon University
Pittsburgh, PA, USA

Gitta Kutyniok

Technische Universität Berlin
Berlin, Germany

Mauro Maggioni

Duke University
Durham, NC, USA

Zuowei Shen

National University of Singapore
Singapore, Singapore

Thomas Strohmer

University of California
Davis, CA, USA

Yang Wang
Michigan State University
East Lansing, MI, USA

Gerlind Plonka • Daniel Potts• Gabriele Steidl • Manfred Tasche

Numerical Fourier Analysis

Gerlind Plonka
University of Göttingen
Göttingen, Germany

Daniel Potts
Chemnitz University of Technology
Chemnitz, Germany

Gabriele Steidl
TU Kaiserslautern
Kaiserslautern, Germany

Manfred Tasche
University of Rostock
Rostock, Germany

ISSN 2296-5009
ISSN 2296-5017 (electronic)
Applied and Numerical Harmonic Analysis
ISBN 978-3-030-04305-6 ISBN 978-3-030-04306-3 (eBook)
https://doi.org/10.1007/978-3-030-04306-3
Library of Congress Control Number: 2018963834
Mathematics Subject Classification (2010): 42-01, 65-02, 42A10, 42A16, 42A20, 42A38, 42A85, 42B05, 42B10, 42C15, 65B05, 65D15, 65D32, 65F35, 65G50, 65T40, 65T50, 65Y20, 94A11, 94A12, 94A20, 15A12, 15A22

© Springer Nature Switzerland AG 2018

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This book is published under the imprint Birkhäuser, www.birkhauser-science.com by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

ANHA Series Preface

The Applied and Numerical Harmonic Analysis (ANHA) book series aims to provide the engineering, mathematical, and scientific communities with significant developments in harmonic analysis, ranging from abstract harmonic analysis to basic applications. The title of the series reflects the importance of applications and numerical implementation, but richness and relevance of applications and implementation depend fundamentally on the structure and depth of theoretical underpinnings. Thus, from our point of view, the interleaving of theory and applications and their creative symbiotic evolution is axiomatic.

Harmonic analysis is a wellspring of ideas and applicability that has flourished, developed, and deepened over time within many disciplines and by means of creative cross-fertilization with diverse areas. The intricate and fundamental relationship between harmonic analysis and fields such as signal processing, partial differential equations (PDEs), and image processing is reflected in our state-of-theart ANHA series.

Our vision of modern harmonic analysis includes mathematical areas such as wavelet theory, Banach algebras, classical Fourier analysis, time-frequency analysis, and fractal geometry, as well as the diverse topics that impinge on them.

For example, wavelet theory can be considered an appropriate tool to deal with some basic problems in digital signal processing, speech and image processing, geophysics, pattern recognition, biomedical engineering, and turbulence. These areas implement the latest technology from sampling methods on surfaces to fast algorithms and computer vision methods. The underlying mathematics of wavelet theory depends not only on classical Fourier analysis, but also on ideas from abstract harmonic analysis, including von Neumann algebras and the affine group. This leads to a study of the Heisenberg group and its relationship to Gabor systems, and of the metaplectic group for a meaningful interaction of signal decomposition methods. The unifying influence of wavelet theory in the aforementioned topics illustrates the justification for providing a means for centralizing and disseminating information from the broader, but still focused, area of harmonic analysis. This will be a key role of ANHA. We intend to publish with the scope and interaction that such a host of issues demands.

Along with our commitment to publish mathematically significant works at the frontiers of harmonic analysis, we have a comparably strong commitment to publish major advances in the following applicable topics in which harmonic analysis plays a substantial role:

Antenna theory
Biomedical signal processing
Digital signal processing
Fast algorithms
Gabor theory and applications
Image processing
Prediction theory
Radar applications
Sampling theory
Spectral estimation
Speech processing
Time-frequency and
Numerical partial differential equations time-scaleanalysis

Wavelet theory

The above point of view for the ANHA book series is inspired by the history of Fourier analysis itself, whose tentacles reach into so many fields.

In the last two centuries Fourier analysis has had a major impact on the development of mathematics, on the understanding of many engineering and scientific phenomena, and on the solution of some of the most important problems in mathematics and the sciences. Historically, Fourier series were developed in the analysis of some of the classical PDEs of mathematical physics; these series were used to solve such equations. In order to understand Fourier series and the kinds of solutions they could represent, some of the most basic notions of analysis were defined, e.g., the concept of "function." Since the coefficients of Fourier series are integrals, it is no surprise that Riemann integrals were conceived to deal with uniqueness properties of trigonometric series. Cantor's set theory was also developed because of such uniqueness questions.

A basic problem in Fourier analysis is to show how complicated phenomena, such as sound waves, can be described in terms of elementary harmonics. There are two aspects of this problem: first, to find, or even define properly, the harmonics or spectrum of a given phenomenon, e.g., the spectroscopy problem in optics; second, to determine which phenomena can be constructed from given classes of harmonics, as done, for example, by the mechanical synthesizers in tidal analysis.

Fourier analysis is also the natural setting for many other problems in engineering, mathematics, and the sciences. For example, Wiener's Tauberian theorem in Fourier analysis not only characterizes the behavior of the prime numbers, but also provides the proper notion of spectrum for phenomena such as white light; this latter process leads to the Fourier analysis associated with correlation functions in filtering and prediction problems, and these problems, in turn, deal naturally with Hardy spaces in the theory of complex variables.

Nowadays, some of the theory of PDEs has given way to the study of Fourier integral operators. Problems in antenna theory are studied in terms of unimodular trigonometric polynomials. Applications of Fourier analysis abound in signal processing, whether with the fast Fourier transform (FFT), or filter design, or the
adaptive modeling inherent in time-frequency-scale methods such as wavelet theory. The coherent states of mathematical physics are translated and modulated Fourier transforms, and these are used, in conjunction with the uncertainty principle, for dealing with signal reconstruction in communications theory. We are back to the raison d'être of the ANHA series!

University of Maryland
College Park, MD, USA

John J. Benedetto
Series Editor

Preface

Fourier analysis has grown to become an essential mathematical tool with numerous applications in applied mathematics, engineering, physics, and other sciences. Many recent technological innovations from spectroscopy and computer tomography to speech and music signal processing are based on Fourier analysis. Fast Fourier algorithms are the heart of data processing methods, and their societal impact can hardly be overestimated.

The field of Fourier analysis is continuously developing toward the needs in applications, and many topics are part of ongoing intensive research. Due to the importance of Fourier techniques, there are several books on the market focusing on different aspects of Fourier theory, as e.g. [28, 58, 72, 113, 119, 125, 146, 205, 219, $221,260,268,303,341,388,392$], or on corresponding algorithms of the discrete Fourier transform, see e.g. [36, 46, 47, 63, 162, 257, 307, 362], not counting further monographs on special applications and generalizations as wavelets [69, 77, 234].

So, why do we write another book? Examining the existing textbooks in Fourier analysis, it appears as a shortcoming that the focus is either set only on the mathematical theory or vice versa only on the corresponding discrete Fourier and convolution algorithms, while the reader needs to consult additional references on the numerical techniques in the one case or on the analytical background in the other.

The urgent need for a unified presentation of Fourier theory and corresponding algorithms particularly emerges from new developments in function approximation using Fourier methods. It is important to understand how well a continuous signal can be approximated by employing the discrete Fourier transform to sampled spectral data. A deep understanding of function approximation by Fourier representations is even more crucial for deriving more advanced transforms as the nonequispaced fast Fourier transform, which is an approximative algorithm by nature, or sparse fast Fourier transforms on special lattices in higher dimensions.

This book encompasses the required classical Fourier theory in the first part in order to give deep insights into the construction and analysis of corresponding fast Fourier algorithms in the second part, including recent developments on
nonequispaced and sparse fast Fourier transforms in higher dimensions. In the third part of the book, we present a selection of mathematical applications including recent research results on nonlinear function approximation by exponential sums.

Our book starts with two chapters on classical Fourier analysis and Chap. 3 on the discrete Fourier transform in one dimension, followed by Chap. 4 on the multivariate case. This theoretical part provides the background for all further chapters and makes the book self-contained.

Chapters 5-8 are concerned with the construction and analysis of corresponding fast algorithms in the one- and multidimensional case. While Chap. 5 covers the well-known fast Fourier transforms, Chaps. 7 and 8 are concerned with the construction of the nonequispaced fast Fourier transforms and the high-dimensional fast Fourier transforms on special lattices. Chapter 6 is devoted to discrete trigonometric transforms and Chebyshev expansions which are closely related to Fourier series.

The last part of the book contains two chapters on applications of numerical Fourier methods for improved function approximation.

Starting with Sects. 5.4 and 5.5, the book covers many recent well-recognized developments in numerical Fourier analysis which cannot be found in other books in this form, including research results of the authors obtained within the last 20 years.
This includes topics such as:

- The analysis of the numerical stability of the radix-2 FFT in Sect. 5.5
- Fast trigonometric transforms based on orthogonal matrix factorizations and fast discrete polynomial transforms in Chap. 6
- Fast Fourier transforms and fast trigonometric transforms for nonequispaced data in space and/or frequency in Sects. 7.1-7.4
- Fast summation at nonequispaced knots in Sect. 7.5

More recent research results can be found on:

- Sparse FFT for vectors with presumed sparsity in Sect. 5.4
- High-dimensional sparse fast FFT on rank-1 lattices in Chap. 8
- Applications of multi-exponential analysis and Prony method for recovery of structured functions in Chap. 10

An introductory course on Fourier analysis at the advanced undergraduate level can for example be built using Sects. 1.2-1.4, 2.1-2.2, 3.2-3.3, 4.1-4.3, and 5.15.2. We assume that the reader is familiar with basic knowledge on calculus of univariate and multivariate functions (including basic facts on Lebesgue integration and functional analysis) and on numerical linear algebra. Focusing a lecture on discrete fast algorithms and applications, one may consult Chaps. 3, 5, 6, and 9. Chapters 7, 8, and 10 are at an advanced level and require pre-knowledge from Chaps. 1, 2, and 4.

Parts of the book are based on a series of lectures and seminars given by the authors to students of mathematics, physics, computer science, and electrical engineering. Chapters $1,2,3,5$, and 9 are partially based on teaching material written by G. Steidl and M. Tasche that was published in 1996 by the University of Hagen under the title "Fast Fourier Transforms-Theory and Applications" (in German). The authors wish to express their gratitude to the University of Hagen for the friendly permission to use this material for this book.

Last but not least, the authors would like to thank Springer/Birkhäuser for publishing this book.

Göttingen, Germany
Chemnitz, Germany
Kaiserslautern, Germany
Rostock, Germany
Gerlind Plonka
Daniel Potts
Gabriele Steidl
October 2018

Contents

1 Fourier Series 1
1.1 Fourier's Solution of Laplace Equation 1
1.2 Fourier Coefficients and Fourier Series 6
1.3 Convolution of Periodic Functions 16
1.4 Pointwise and Uniform Convergence of Fourier Series 27
1.4.1 Pointwise Convergence 30
1.4.2 Uniform Convergence 40
1.4.3 Gibbs Phenomenon 45
1.5 Discrete Signals and Linear Filters 51
2 Fourier Transforms 61
$2.1 \quad$ Fourier Transforms on $L_{1}(\mathbb{R})$ 61
2.2 Fourier Transforms on $L_{2}(\mathbb{R})$ 78
2.3 Poisson Summation Formula and Shannon's Sampling Theorem 83
2.4 Heisenberg's Uncertainty Principle 88
2.5 Fourier-Related Transforms in Time-Frequency Analysis 95
2.5.1 Windowed Fourier Transform 95
2.5.2 Fractional Fourier Transforms 101
3 Discrete Fourier Transforms 107
3.1 Motivations for Discrete Fourier Transforms 107
3.1.1 Approximation of Fourier Coefficients and Aliasing Formula 108
3.1.2 Computation of Fourier Series and Fourier Transforms 112
3.1.3 Trigonometric Polynomial Interpolation 114
3.2 Fourier Matrices and Discrete Fourier Transforms 118
3.2.1 Fourier Matrices 118
3.2.2 Properties of Fourier Matrices 124
3.2.3 DFT and Cyclic Convolutions 130
3.3 Circulant Matrices 137
3.4 Kronecker Products and Stride Permutations 142
3.5 Discrete Trigonometric Transforms 151
4 Multidimensional Fourier Methods 159
4.1 Multidimensional Fourier Series 159
4.2 Multidimensional Fourier Transforms 166
4.2.1 Fourier Transforms on $\mathscr{S}\left(\mathbb{R}^{d}\right)$ 167
4.2.2 Fourier Transforms on $L_{1}\left(\mathbb{R}^{d}\right)$ and $L_{2}\left(\mathbb{R}^{d}\right)$ 176
4.2.3 Poisson Summation Formula 178
4.2.4 Fourier Transforms of Radial Functions 180
4.3 Fourier Transform of Tempered Distributions 183
4.3.1 Tempered Distributions 183
4.3.2 Fourier Transforms on $\mathscr{S}^{\prime}\left(\mathbb{R}^{d}\right)$ 193
4.3.3 Periodic Tempered Distributions 199
4.3.4 Hilbert Transform and Riesz Transform 205
4.4 Multidimensional Discrete Fourier Transforms 213
4.4.1 Computation of Multivariate Fourier Coefficients 213
4.4.2 Two-Dimensional Discrete Fourier Transforms 217
4.4.3 Higher-Dimensional Discrete Fourier Transforms 226
5 Fast Fourier Transforms 231
5.1 Construction Principles of Fast Algorithms 231
5.2 Radix-2 FFTs 235
5.2.1 Sande-Tukey FFT in Summation Form 236
5.2.2 Cooley-Tukey FFT in Polynomial Form 239
5.2.3 Radix-2 FFT's in Matrix Form 242
5.2.4 Radix-2 FFT for Parallel Programming 247
5.2.5 Computational Costs of Radix-2 FFT's 250
5.3 Other Fast Fourier Transforms 253
5.3.1 Chinese Remainder Theorem 254
5.3.2 Fast Algorithms for DFT of Composite Length 256
5.3.3 Radix-4 FFT and Split-Radix FFT 263
5.3.4 Rader FFT and Bluestein FFT 269
5.3.5 Multidimensional FFTs 276
5.4 Sparse FFT 281
5.4.1 Single Frequency Recovery 282
5.4.2 Recovery of Vectors with One Frequency Band 285
5.4.3 Recovery of Sparse Fourier Vectors 288
5.5 Numerical Stability of FFT 295
6 Chebyshev Methods and Fast DCT Algorithms. 305
6.1 Chebyshev Polynomials and Chebyshev Series 305
6.1.1 Chebyshev Polynomials 306
6.1.2 Chebyshev Series 312
6.2 Fast Evaluation of Polynomials 320
6.2.1 Horner Scheme and Clenshaw Algorithm 320
6.2.2 Polynomial Evaluation and Interpolation at Chebyshev Points 323
6.2.3 Fast Evaluation of Polynomial Products 330
6.3 Fast DCT Algorithms 333
6.3.1 Fast DCT Algorithms via FFT 334
6.3.2 Fast DCT Algorithms via Orthogonal Matrix Factorizations 338
6.4 Interpolation and Quadrature Using Chebyshev Expansions 348
6.4.1 Interpolation at Chebyshev Extreme Points 348
6.4.2 Clenshaw-Curtis Quadrature 357
6.5 Discrete Polynomial Transforms 365
6.5.1 Orthogonal Polynomials 365
6.5.2 Fast Evaluation of Orthogonal Expansions 367
7 Fast Fourier Transforms for Nonequispaced Data 377
7.1 Nonequispaced Data Either in Space or Frequency Domain 377
7.2 Approximation Errors for Special Window Functions 385
7.3 Nonequispaced Data in Space and Frequency Domain 394
7.4 Nonequispaced Fast Trigonometric Transforms 397
7.5 Fast Summation at Nonequispaced Knots 403
7.6 Inverse Nonequispaced Discrete Transforms 410
7.6.1 Direct Methods for Inverse NDCT and Inverse NDFT 411
7.6.2 Iterative Methods for Inverse NDFT 417
8 High-Dimensional FFT 421
8.1 Fourier Partial Sums of Smooth Multivariate Functions 422
8.2 Fast Evaluation of Multivariate Trigonometric Polynomials 427
8.2.1 Rank-1 Lattices 428
8.2.2 Evaluation of Trigonometric Polynomials on Rank-1 Lattice 430
8.2.3 Evaluation of the Fourier Coefficients 432
8.3 Efficient Function Approximation on Rank-1 Lattices 434
8.4 Reconstructing Rank-1 Lattices 437
8.5 Multiple Rank-1 Lattices 442
9 Numerical Applications of DFT 449
9.1 Cardinal Interpolation by Translates 449
9.1.1 Cardinal Lagrange Function 454
9.1.2 Computation of Fourier Transforms 464
9.2 Periodic Interpolation by Translates 468
9.2.1 Periodic Lagrange Function 469
9.2.2 Computation of Fourier Coefficients 475
9.3 Quadrature of Periodic Functions 478
9.4 Accelerating Convergence of Fourier Series 485
9.4.1 Krylov-Lanczos Method 486
9.4.2 Fourier Extension 490
9.5 Fast Poisson Solvers. 495
9.6 Spherical Fourier Transforms 507
9.6.1 Discrete Spherical Fourier Transforms 510
9.6.2 Fast Spherical Fourier Transforms 511
9.6.3 Fast Spherical Fourier Transforms for Nonequispaced Data 513
9.6.4 Fast Quadrature and Approximation on \mathbb{S}^{2} 518
10 Prony Method for Reconstruction of Structured Functions 523
10.1 Prony Method 523
10.2 Recovery of Exponential Sums 529
10.2.1 MUSIC and Approximate Prony Method 531
10.2.2 ESPRIT 536
10.3 Stability of Exponentials 542
10.4 Recovery of Structured Functions 556
10.4.1 Recovery from Fourier Data 556
10.4.2 Recovery from Function Samples 561
10.5 Phase Reconstruction 567
A List of Symbols and Abbreviations 575
A. 1 Table of Some Fourier Series 575
A. 2 Table of Some Chebyshev Series 576
A. 3 Table of Some Fourier Transforms 577
A. 4 Table of Some Discrete Fourier Transforms 578
A. 5 Table of Some Fourier Transforms of Tempered Distributions 579
References 589
Index 607
Applied and Numerical Harmonic Analysis (90 Volumes) 615

Chapter 1
 Fourier Series

Chapter 1 covers the classical theory of Fourier series of 2π-periodic functions. In the introductory section, we sketch Fourier's theory on heat propagation. Section 1.2 introduces some basic notions such as Fourier coefficients and Fourier series of a 2π-periodic function. The convolution of 2π-periodic functions is handled in Sect. 1.3. Section 1.4 presents main results on the pointwise and uniform convergence of Fourier series. For a 2π-periodic, piecewise continuously differentiable function f, a complete proof of the important convergence theorem of DirichletJordan is given. Further we describe the Gibbs phenomenon for partial sums of the Fourier series of f near a jump discontinuity. Finally, in Sect. 1.5, we apply Fourier series in digital signal processing and describe the linear filtering of discrete signals.

1.1 Fourier's Solution of Laplace Equation

In 1804, the French mathematician and egyptologist Jean Baptiste Joseph Fourier (1768-1830) began his studies on the heat propagation in solid bodies. In 1807, he finished a first paper about heat propagation. He discovered the fundamental partial differential equation of heat propagation and developed a new method to solve this equation. The mathematical core of Fourier's idea was that each periodic function can be well approximated by a linear combination of sine and cosine terms. This theory contradicted the previous views on functions and was met with resistance by some members of the French Academy of Sciences, so that a publication was

Fig. 1.1 The mathematician and egyptologist Jean Baptiste Joseph Fourier (1768-1830)

initially prevented. Later, Fourier presented these results in the famous book "The Analytical Theory of Heat" published firstly 1822 in French, cf. [119]. For an image of Fourier, see Fig. 1.1 (Image source: https://commons.wikimedia.org/wiki/File: Joseph_Fourier.jpg).

In the following, we describe Fourier's idea by a simple example. We consider the open unit disk $\Omega=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}<1\right\}$ with the boundary $\Gamma=$ $\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}=1\right\}$. Let $v(x, y, t)$ denote the temperature at the point $(x, y) \in \Omega$ and the time $t \geq 0$. For physical reasons, the temperature fulfills the heat equation

$$
\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}=c \frac{\partial v}{\partial t}, \quad(x, y) \in \Omega, t>0
$$

with some constant $c>0$. At steady state, the temperature is independent of the time such that $v(x, y, t)=v(x, y)$ satisfies the Laplace equation

$$
\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}=0, \quad(x, y) \in \Omega
$$

What is the temperature $v(x, y)$ at any point $(x, y) \in \Omega$, if the temperature at each point of the boundary Γ is known?

Using polar coordinates

$$
x=r \cos \varphi, y=r \sin \varphi, \quad 0<r<1,0 \leq \varphi<2 \pi,
$$

we obtain for the temperature $u(r, \varphi):=v(r \cos \varphi, r \sin \varphi)$ by chain rule

$$
\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}=\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} u}{\partial \varphi^{2}}=0 .
$$

If we extend the variable φ periodically to the real line \mathbb{R}, then $u(r, \varphi)$ is 2π-periodic with respect to φ and fulfills

$$
\begin{equation*}
r^{2} \frac{\partial^{2} u}{\partial r^{2}}+r \frac{\partial u}{\partial r}=-\frac{\partial^{2} u}{\partial \varphi^{2}}, \quad 0<r<1, \varphi \in \mathbb{R} \tag{1.1}
\end{equation*}
$$

Since the temperature at the boundary Γ is given, we know the boundary condition

$$
\begin{equation*}
u(1, \varphi)=f(\varphi), \quad \varphi \in \mathbb{R} \tag{1.2}
\end{equation*}
$$

where f is a given continuously differentiable, 2π-periodic function. Applying separation of variables, we seek nontrivial solutions of (1.1) of the form $u(r, \varphi)=$ $p(r) q(\varphi)$, where p is bounded on $(0,1)$ and q is 2π-periodic. From (1.1) it follows

$$
\left(r^{2} p^{\prime \prime}(r)+r p^{\prime}(r)\right) q(\varphi)=-p(r) q^{\prime \prime}(\varphi)
$$

and hence

$$
\begin{equation*}
\frac{r^{2} p^{\prime \prime}(r)+r p^{\prime}(r)}{p(r)}=-\frac{q^{\prime \prime}(\varphi)}{q(\varphi)} \tag{1.3}
\end{equation*}
$$

The variables r and φ can be independently chosen. If φ is fixed and r varies, then the left-hand side of (1.3) is a constant. Analogously, if r is fixed and φ varies, then the right-hand side of (1.3) is a constant. Let λ be the common value of both sides. Then we obtain two linear differential equations

$$
\begin{align*}
r^{2} p^{\prime \prime}(r)+r p^{\prime}(r)-\lambda p(r) & =0, \tag{1.4}\\
q^{\prime \prime}(\varphi)+\lambda q(\varphi) & =0 . \tag{1.5}
\end{align*}
$$

Since nontrivial solutions of (1.5) must have the period 2π, we obtain the solutions $\frac{a_{0}}{2}$ for $\lambda=0$ and $a_{n} \cos (n \varphi)+b_{n} \sin (n \varphi)$ for $\lambda=n^{2}, n \in \mathbb{N}$, where a_{0}, a_{n}, and b_{n} with $n \in \mathbb{N}$ are real constants. For $\lambda=0$, the linear differential equation (1.4) has the linearly independent solutions 1 and $\ln r$, where only 1 is bounded on $(0,1)$. For $\lambda=n^{2}$, Eq. (1.4) has the linearly independent solutions r^{n} and r^{-n}, where only r^{n} is bounded on $(0,1)$. Thus we see that $\frac{a_{0}}{2}$ and $r^{n}\left(a_{n} \cos (n \varphi)+b_{n} \sin (n \varphi)\right)$, $n \in \mathbb{N}$, are the special solutions of the Laplace equation (1.1). If u_{1} and u_{2} are
solutions of the linear equation (1.1), then $u_{1}+u_{2}$ is a solution of (1.1) too. Using the superposition principle, we obtain a formal solution of (1.1) of the form

$$
\begin{equation*}
u(r, \varphi)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} r^{n}\left(a_{n} \cos (n \varphi)+b_{n} \sin (n \varphi)\right) \tag{1.6}
\end{equation*}
$$

By the boundary condition (1.2), the coefficients a_{0}, a_{n}, and b_{n} with $n \in \mathbb{N}$ must be chosen so that

$$
\begin{equation*}
u(1, \varphi)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos (n \varphi)+b_{n} \sin (n \varphi)\right)=f(\varphi), \quad \varphi \in \mathbb{R} \tag{1.7}
\end{equation*}
$$

Fourier conjectured that this could be done for an arbitrary 2π-periodic function f. We will see that this is only the case, if f fulfills some additional conditions. As shown in the next section, from (1.7) it follows that

$$
\begin{array}{ll}
a_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} f(\psi) \cos (n \psi) \mathrm{d} \psi, & n \in \mathbb{N}_{0} \\
b_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} f(\psi) \sin (n \psi) \mathrm{d} \psi, & n \in \mathbb{N} . \tag{1.9}
\end{array}
$$

By assumption, f is bounded on \mathbb{R}, i.e., $|f(\psi)| \leq M$. Thus we obtain that

$$
\left|a_{n}\right| \leq \frac{1}{\pi} \int_{0}^{2 \pi}|f(\psi)| \mathrm{d} \psi \leq 2 M, \quad n \in \mathbb{N}_{0}
$$

Analogously, it holds $\left|b_{n}\right| \leq 2 M$ for all $n \in \mathbb{N}$.
Now we have to show that the constructed function (1.6) with the coefficients (1.8) and (1.9) is really a solution of (1.1) which fulfills the boundary condition (1.2). Since the 2π-periodic function f is continuously differentiable, we will see by Theorem 1.37 that

$$
\sum_{n=1}^{\infty}\left(\left|a_{n}\right|+\left|b_{n}\right|\right)<\infty
$$

Introducing $u_{n}(r, \varphi):=r^{n}\left(a_{n} \cos (n \varphi)+b_{n} \sin (n \varphi)\right)$, we can estimate

$$
\left|u_{n}(r, \varphi)\right| \leq\left|a_{n}\right|+\left|b_{n}\right|, \quad(r, \varphi) \in[0,1] \times \mathbb{R} .
$$

From Weierstrass criterion for uniform convergence it follows that the series $\frac{a_{0}}{2}+$ $\sum_{n=1}^{\infty} u_{n}$ converges uniformly on $[0,1] \times \mathbb{R}$. Since each term u_{n} is continuous on $[0,1] \times \mathbb{R}$, the sum u of this uniformly convergent series is continuous on $[0,1] \times \mathbb{R}$, too. Note that the temperature in the origin of the closed unit disk is equal to the mean value $\frac{a_{0}}{2}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(\psi) \mathrm{d} \psi$ of the temperature f at the boundary.

Now we show that u fulfills the Laplace equation in $[0,1) \times \mathbb{R}$. Let $0<r_{0}<1$ be arbitrarily fixed. By

$$
\frac{\partial^{k}}{\partial \varphi^{k}} u_{n}(r, \varphi)=r^{n} n^{k}\left(a_{n} \cos \left(n \varphi+\frac{k \pi}{2}\right)+b_{n} \sin \left(n \varphi+\frac{k \pi}{2}\right)\right)
$$

for arbitrary $k \in \mathbb{N}$, we obtain

$$
\left|\frac{\partial^{k}}{\partial \varphi^{k}} u_{n}(r, \varphi)\right| \leq 4 r^{n} n^{k} M \leq 4 r_{0}^{n} n^{k} M
$$

for $0 \leq r \leq r_{0}$. The series $4 M \sum_{n=1}^{\infty} r_{0}^{n} n^{k}$ is convergent. By the Weierstrass criterion, $\sum_{n=1}^{\infty} \frac{\partial^{k}}{\partial \varphi^{k}} u_{n}$ is uniformly convergent on $\left[0, r_{0}\right] \times \mathbb{R}$. Consequently, $\frac{\partial^{k}}{\partial \varphi^{k}} u$ exists and

$$
\frac{\partial^{k}}{\partial \varphi^{k}} u=\sum_{n=1}^{\infty} \frac{\partial^{k}}{\partial \varphi^{k}} u_{n}
$$

Analogously, one can show that $\frac{\partial^{k}}{\partial r^{k}} u$ exists and

$$
\frac{\partial^{k}}{\partial r^{k}} u=\sum_{n=1}^{\infty} \frac{\partial^{k}}{\partial r^{k}} u_{n}
$$

Since all u_{n} are solutions of the Laplace equation (1.1) in $[0,1) \times \mathbb{R}$, it follows by term by term differentiation that u is also a solution of (1.1) in $[0,1) \times \mathbb{R}$.

Finally, we simplify the representation of the solution (1.6) with the coefficients (1.8) and (1.9). Since the series in (1.6) converges uniformly on $[0,1] \times \mathbb{R}$, we can change the order of summation and integration such that

$$
u(r, \varphi)=\frac{1}{\pi} \int_{0}^{2 \pi} f(\psi)\left(\frac{1}{2}+\sum_{n=1}^{\infty} r^{n} \cos (n(\varphi-\psi))\right) \mathrm{d} \psi
$$

Taking the real part of the geometric series

$$
1+\sum_{n=1}^{\infty} r^{n} \mathrm{e}^{\mathrm{i} n \theta}=\frac{1}{1-r \mathrm{e}^{\mathrm{i} \theta}}
$$

it follows

$$
1+\sum_{n=1}^{\infty} r^{n} \cos (n \theta)=\frac{1-r \cos \theta}{1+r^{2}-2 r \cos \theta}
$$

and hence

$$
\frac{1}{2}+\sum_{n=1}^{\infty} r^{n} \cos (n \theta)=\frac{1}{2} \frac{1-r^{2}}{1+r^{2}-2 r \cos \theta}
$$

Thus for $0 \leq r<1$ and $\varphi \in \mathbb{R}$, the solution of (1.6) can be represented as Poisson integral

$$
u(r, \varphi)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(\psi) \frac{1-r^{2}}{1+r^{2}-2 r \cos (\varphi-\psi)} \mathrm{d} \psi
$$

1.2 Fourier Coefficients and Fourier Series

A complex-valued function $f: \mathbb{R} \rightarrow \mathbb{C}$ is 2π-periodic or periodic with period 2π, if $f(x+2 \pi)=f(x)$ for all $x \in \mathbb{R}$. In the following, we identify any 2π-periodic function $f: \mathbb{R} \rightarrow \mathbb{C}$ with the corresponding function $f: \mathbb{T} \rightarrow \mathbb{C}$ defined on the torus \mathbb{T} of length 2π. The torus \mathbb{T} can be considered as quotient space $\mathbb{R} /(2 \pi \mathbb{Z})$ or its representatives, e.g. the interval $[0,2 \pi]$ with identified endpoints 0 and 2π. For short, one can also geometrically think of the unit circle with circumference 2π. Typical examples of 2π-periodic functions are $1, \cos (n \cdot), \sin (n \cdot)$ for each angular frequency $n \in \mathbb{N}$ and the complex exponentials $\mathrm{e}^{\mathrm{i} k}$ for each $k \in \mathbb{Z}$.

By $C(\mathbb{T})$ we denote the Banach space of all continuous functions $f: \mathbb{T} \rightarrow \mathbb{C}$ with the norm

$$
\|f\|_{C(\mathbb{T})}:=\max _{x \in \mathbb{T}}|f(x)|
$$

and by $C^{r}(\mathbb{T}), r \in \mathbb{N}$ the Banach space of r-times continuously differentiable functions $f: \mathbb{T} \rightarrow \mathbb{C}$ with the norm

$$
\|f\|_{C^{r}(\mathbb{T})}:=\|f\|_{C(\mathbb{T})}+\left\|f^{(r)}\right\|_{\left.C_{(\mathbb{T}}\right)} .
$$

Clearly, we have $C^{r}(\mathbb{T}) \subset C^{s}(\mathbb{T})$ for $r>s$.
Let $L_{p}(\mathbb{T}), 1 \leq p \leq \infty$ be the Banach space of measurable functions $f: \mathbb{T} \rightarrow$ \mathbb{C} with finite norm

$$
\begin{aligned}
\|f\|_{L_{p}(\mathbb{T})} & :=\left(\frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(x)|^{p} \mathrm{~d} x\right)^{1 / p}, \quad 1 \leq p<\infty \\
\|f\|_{L_{\infty}(\mathbb{T})} & :=\operatorname{ess} \sup \{|f(x)|: x \in \mathbb{T}\}
\end{aligned}
$$

where we identify almost equal functions. If a 2π-periodic function f is integrable on $[-\pi, \pi]$, then we have

$$
\int_{-\pi}^{\pi} f(x) \mathrm{d} x=\int_{-\pi+a}^{\pi+a} f(x) \mathrm{d} x
$$

for all $a \in \mathbb{R}$ so that we can integrate over any interval of length 2π.
Using Hölder's inequality it can be shown that the spaces $L_{p}(\mathbb{T})$ for $1 \leq p \leq \infty$ are continuously embedded as

$$
L_{1}(\mathbb{T}) \supset L_{2}(\mathbb{T}) \supset \ldots \supset L_{\infty}(\mathbb{T})
$$

In the following we are mainly interested in the Hilbert space $L_{2}(\mathbb{T})$ consisting of all absolutely square-integrable functions $f: \mathbb{T} \rightarrow \mathbb{C}$ with inner product and norm

$$
\langle f, g\rangle_{L_{2}(\mathbb{T})}:=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) \overline{g(x)} \mathrm{d} x, \quad\|f\|_{L_{2}(\mathbb{T})}:=\left(\frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(x)|^{2} \mathrm{~d} x\right)^{1 / 2}
$$

If it is clear from the context which inner product or norm is addressed, we abbreviate $\langle f, g\rangle:=\langle f, g\rangle_{L_{2}(\mathbb{T})}$ and $\|f\|:=\|f\|_{L_{2}(\mathbb{T})}$. For all $f, g \in L_{2}(\mathbb{T})$ it holds the Cauchy-Schwarz inequality

$$
\left|\langle f, g\rangle_{L_{2}(\mathbb{T})}\right| \leq\|f\|_{L_{2}(\mathbb{T})}\|g\|_{L_{2}(\mathbb{T})}
$$

Theorem 1.1 The set of complex exponentials

$$
\begin{equation*}
\left\{\mathrm{e}^{\mathrm{i} k \cdot}=\cos (k \cdot)+\mathrm{i} \sin (k \cdot): k \in \mathbb{Z}\right\} \tag{1.10}
\end{equation*}
$$

forms an orthonormal basis of $L_{2}(\mathbb{T})$.

Proof

1. By definition, an orthonormal basis is a complete orthonormal system. First we show the orthonormality of the complex exponentials in (1.10). We have

$$
\left\langle\mathrm{e}^{\mathrm{i} k \cdot}, \mathrm{e}^{\mathrm{i} j \cdot}\right\rangle=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \mathrm{e}^{\mathrm{i}(k-j) x} \mathrm{~d} x,
$$

which implies for integers $k=j$

$$
\left\langle\mathrm{e}^{\mathrm{i} k \cdot}, \mathrm{e}^{\mathrm{i} k \cdot}\right\rangle=\frac{1}{2 \pi} \int_{-\pi}^{\pi} 1 \mathrm{~d} x=1
$$

On the other hand, we obtain for distinct integers j, k

$$
\begin{aligned}
\left\langle\mathrm{e}^{\mathrm{i} k \cdot}, \mathrm{e}^{\mathrm{i} j \cdot}\right\rangle & =\frac{1}{2 \pi \mathrm{i}(k-j)}\left(\mathrm{e}^{\pi \mathrm{i}(k-j)}-\mathrm{e}^{-\pi \mathrm{i}(k-j)}\right) \\
& =\frac{2 \mathrm{i} \sin \pi(k-j)}{2 \pi \mathrm{i}(k-j)}=0
\end{aligned}
$$

2. Now we prove the completeness of the set (1.10). We have to show that $\left\langle f, \mathrm{e}^{\mathrm{i} k \cdot}\right\rangle=$ 0 for all $k \in \mathbb{Z}$ implies $f=0$.

First we consider a continuous function $f \in C(\mathbb{T})$ having $\left\langle f, \mathrm{e}^{\mathrm{i} k \cdot}\right\rangle=0$ for all $k \in \mathbb{Z}$. Let us denote by

$$
\begin{equation*}
\mathscr{T}_{n}:=\left\{\sum_{k=-n}^{n} c_{k} \mathrm{e}^{\mathrm{i} k \cdot}: c_{k} \in \mathbb{C}\right\} \tag{1.11}
\end{equation*}
$$

the space of all trigonometric polynomials up to degree n. By the approximation theorem of Weierstrass, see Theorem 1.21, there exists for any function $f \in$ $C(\mathbb{T})$ a sequence $\left(p_{n}\right)_{n \in \mathbb{N}_{0}}$ of trigonometric polynomials $p_{n} \in \mathscr{T}_{n}$, which converges uniformly to f, i.e.,

$$
\left\|f-p_{n}\right\|_{C(\mathbb{T})}=\max _{x \in \mathbb{T}}\left|f(x)-p_{n}(x)\right| \rightarrow 0 \quad \text { for } n \rightarrow \infty
$$

By assumption we have

$$
\left\langle f, p_{n}\right\rangle=\left\langle f, \sum_{k=-n}^{n} c_{k} \mathrm{e}^{\mathrm{i} k \cdot}\right\rangle=\sum_{k=-n}^{n} \bar{c}_{k}\left\langle f, \mathrm{e}^{\mathrm{i} k \cdot}\right\rangle=0 .
$$

Hence we conclude

$$
\begin{equation*}
\|f\|^{2}=\langle f, f\rangle-\left\langle f, p_{n}\right\rangle=\left\langle f, f-p_{n}\right\rangle \rightarrow 0 \tag{1.12}
\end{equation*}
$$

as $n \rightarrow \infty$, so that $f=0$.
3. Now let $f \in L_{2}(\mathbb{T})$ with $\left\langle f, \mathrm{e}^{\mathrm{i} k \cdot}\right\rangle=0$ for all $k \in \mathbb{Z}$ be given. Then

$$
h(x):=\int_{0}^{x} f(t) \mathrm{d} t, \quad x \in[0,2 \pi)
$$

is an absolutely continuous function satisfying $h^{\prime}(x)=f(x)$ almost everywhere. We have further $h(0)=h(2 \pi)=0$. For $k \in \mathbb{Z} \backslash\{0\}$ we obtain

$$
\begin{aligned}
\left\langle h, \mathrm{e}^{\mathrm{i} k \cdot}\right\rangle & =\frac{1}{2 \pi} \int_{0}^{2 \pi} h(x) \mathrm{e}^{-\mathrm{i} k x} \mathrm{~d} x \\
& =-\left.\frac{1}{2 \pi \mathrm{i} k} h(x) \mathrm{e}^{-\mathrm{i} k x}\right|_{0} ^{2 \pi}+\frac{1}{2 \pi \mathrm{i} k} \int_{0}^{2 \pi} \underbrace{h^{\prime}(x)}_{=f(x)} \mathrm{e}^{-\mathrm{i} k x} \mathrm{~d} x=\frac{1}{2 \pi \mathrm{i} k}\left\langle f, \mathrm{e}^{\mathrm{i} k \cdot}\right\rangle=0 .
\end{aligned}
$$

Hence the 2π-periodically continued continuous function $h-\langle h, 1\rangle$ fulfills $\langle h-$ $\left.\langle h, 1\rangle, \mathrm{e}^{\mathrm{i} k \cdot}\right\rangle=0$ for all $k \in \mathbb{Z}$. Using the first part of this proof, we obtain $h=\langle h, 1\rangle=$ const. Since $f(x)=h^{\prime}(x)=0$ almost everywhere, this yields the assertion.

Once we have an orthonormal basis of a Hilbert space, we can represent its elements with respect to this basis. Let us consider the finite sum

$$
S_{n} f:=\sum_{k=-n}^{n} c_{k}(f) \mathrm{e}^{\mathrm{i} k \cdot} \in \mathscr{T}_{n}, \quad c_{k}(f):=\left\langle f, \mathrm{e}^{\mathrm{i} k \cdot}\right\rangle=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) \mathrm{e}^{-\mathrm{i} k x} \mathrm{~d} x
$$

called nth Fourier partial sum of f with the Fourier coefficients $c_{k}(f)$. By definition $S_{n}: L_{2}(\mathbb{T}) \rightarrow L_{2}(\mathbb{T})$ is a linear operator which possesses the following important approximation property.

Lemma 1.2 The Fourier partial sum operator $S_{n}: L_{2}(\mathbb{T}) \rightarrow L_{2}(\mathbb{T})$ is an orthogonal projector onto \mathscr{T}_{n}, i.e.

$$
\left\|f-S_{n} f\right\|=\min \left\{\|f-p\|: p \in \mathscr{T}_{n}\right\}
$$

for arbitrary $f \in L_{2}(\mathbb{T})$. In particular, it holds

$$
\begin{equation*}
\left\|f-S_{n} f\right\|^{2}=\|f\|^{2}-\sum_{k=-n}^{n}\left|c_{k}(f)\right|^{2} \tag{1.13}
\end{equation*}
$$

Proof

1. For each trigonometric polynomial

$$
\begin{equation*}
p=\sum_{k=-n}^{n} c_{k} \mathrm{e}^{\mathrm{i} k .} \tag{1.14}
\end{equation*}
$$

with arbitrary $c_{k} \in \mathbb{C}$ and all $f \in L_{2}(\mathbb{T})$ we have

$$
\begin{aligned}
\|f-p\|^{2} & =\|f\|^{2}-\langle p, f\rangle-\langle f, p\rangle+\|p\|^{2} \\
& =\|f\|^{2}+\sum_{k=-n}^{n}\left(-\overline{c_{k}} c_{k}(f)-c_{k} \overline{c_{k}(f)}+\left|c_{k}\right|^{2}\right) \\
& =\|f\|^{2}-\sum_{k=-n}^{n}\left|c_{k}(f)\right|^{2}+\sum_{k=-n}^{n}\left|c_{k}-c_{k}(f)\right|^{2}
\end{aligned}
$$

Thus,

$$
\|f-p\|^{2} \geq\|f\|^{2}-\sum_{k=-n}^{n}\left|c_{k}(f)\right|^{2}
$$

where equality holds only in the case $c_{k}=c_{k}(f), k=-n, \ldots, n$, i.e., if and only if $p=S_{n} f$.
2. For $p \in \mathscr{T}_{n}$ of the form (1.14), the corresponding Fourier coefficients are $c_{k}(p)=c_{k}$ for $k=-n, \ldots, n$ and $c_{k}(p)=0$ for all $|k|>n$. Thus we have $S_{n} p=p$ and $S_{n}\left(S_{n} f\right)=S_{n} f$ for arbitrary $f \in L_{2}(\mathbb{T})$. Hence $S_{n}: L_{2}(\mathbb{T}) \rightarrow L_{2}(\mathbb{T})$ is a projection onto \mathscr{T}_{n}. By

$$
\left\langle S_{n} f, g\right\rangle=\sum_{k=-n}^{n} c_{k}(f) \overline{c_{k}(g)}=\left\langle f, S_{n} g\right\rangle
$$

for all $f, g \in L_{2}(\mathbb{T})$, the Fourier partial sum operator S_{n} is self-adjoint, i.e., S_{n} is an orthogonal projection. Moreover, S_{n} has the operator norm $\left\|S_{n}\right\|_{L_{2}(\mathbb{T}) \rightarrow L_{2}(\mathbb{T})}=1$.

As an immediate consequence of Lemma 1.2 we obtain the following:
Theorem 1.3 Every function $f \in L_{2}(\mathbb{T})$ has a unique representation of the form

$$
\begin{equation*}
f=\sum_{k \in \mathbb{Z}} c_{k}(f) \mathrm{e}^{\mathrm{i} k \cdot}, \quad c_{k}(f):=\left\langle f, \mathrm{e}^{\mathrm{i} k \cdot}\right\rangle=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) \mathrm{e}^{-\mathrm{i} k x} \mathrm{~d} x \tag{1.15}
\end{equation*}
$$

where the series $\left(S_{n} f\right)_{n=0}^{\infty}$ converges in $L_{2}(\mathbb{T})$ to f, i.e.

$$
\lim _{n \rightarrow \infty}\left\|S_{n} f-f\right\|=0 .
$$

Further the Parseval equality is fulfilled

$$
\begin{equation*}
\|f\|^{2}=\sum_{k \in \mathbb{Z}}\left|\left\langle f, \mathrm{e}^{\mathrm{i} k \cdot}\right\rangle\right|^{2}=\sum_{k \in \mathbb{Z}}\left|c_{k}(f)\right|^{2}<\infty \tag{1.16}
\end{equation*}
$$

Proof By Lemma 1.2, we know that for each $n \in \mathbb{N}_{0}$

$$
\left\|S_{n} f\right\|^{2}=\sum_{k=-n}^{n}\left|c_{k}(f)\right|^{2} \leq\|f\|^{2}<\infty
$$

For $n \rightarrow \infty$, we obtain Bessel's inequality

$$
\sum_{k=-\infty}^{\infty}\left|c_{k}(f)\right|^{2} \leq\|f\|^{2}
$$

Consequently, for arbitrary $\varepsilon>0$, there exists an index $N(\varepsilon) \in \mathbb{N}$ such that

$$
\sum_{|k|>N(\varepsilon)}\left|c_{k}(f)\right|^{2}<\varepsilon
$$

For $m>n \geq N(\varepsilon)$ we obtain

$$
\left\|S_{m} f-S_{n} f\right\|^{2}=\left(\sum_{k=-m}^{-n-1}+\sum_{k=n+1}^{m}\right)\left|c_{k}(f)\right|^{2} \leq \sum_{|k|>N(\varepsilon)}\left|c_{k}(f)\right|^{2}<\varepsilon
$$

Hence $\left(S_{n} f\right)_{n=0}^{\infty}$ is a Cauchy sequence. In the Hilbert space $L_{2}(\mathbb{T})$, each Cauchy sequence is convergent. Assume that $\lim _{n \rightarrow \infty} S_{n} f=g$ with $g \in L_{2}(\mathbb{T})$. Since

$$
\left\langle g, \mathrm{e}^{\mathrm{i} k \cdot}\right\rangle=\lim _{n \rightarrow \infty}\left\langle S_{n} f, \mathrm{e}^{\mathrm{i} k \cdot}\right\rangle=\lim _{n \rightarrow \infty}\left\langle f, S_{n} \mathrm{e}^{\mathrm{i} k \cdot}\right\rangle=\left\langle f, \mathrm{e}^{\mathrm{i} k \cdot}\right\rangle
$$

for all $k \in \mathbb{Z}$, we conclude by Theorem 1.1 that $f=g$. Letting $n \rightarrow \infty$ in (1.13) we obtain the Parseval equality (1.16).

The representation (1.15) is the so-called Fourier series of f. Figure 1.2 shows 2π-periodic functions as superposition of two 2π-periodic functions.

Clearly, the partial sums of the Fourier series are the Fourier partial sums. The constant term $c_{0}(f)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) \mathrm{d} x$ in the Fourier series of f is the mean value of f.

Remark 1.4 For fixed $L>0$, a function $f: \mathbb{R} \rightarrow \mathbb{C}$ is called L-periodic, if $f(x+L)=f(x)$ for all $x \in \mathbb{R}$. By substitution we see that the Fourier series of an L-periodic function f reads as follows:

$$
\begin{equation*}
f=\sum_{k \in \mathbb{Z}} c_{k}^{(L)}(f) \mathrm{e}^{2 \pi \mathrm{i} k \cdot / L}, \quad c_{k}^{(L)}(f):=\frac{1}{L} \int_{-L / 2}^{L / 2} f(x) \mathrm{e}^{-2 \pi \mathrm{i} k x / L} \mathrm{~d} x \tag{1.17}
\end{equation*}
$$

In polar coordinates we can represent the Fourier coefficients in the form

$$
\begin{equation*}
c_{k}(f)=\left|c_{k}(f)\right| \mathrm{e}^{\mathrm{i} \varphi_{k}}, \quad \varphi_{k}:=\operatorname{atan} 2\left(\operatorname{Im} c_{k}(f), \operatorname{Re} c_{k}(f)\right), \tag{1.18}
\end{equation*}
$$

Fig. 1.2 Two 2π-periodic functions $\sin x+\frac{1}{2} \cos (2 x)$ (left) and $\sin x-\frac{1}{10} \sin (4 x)$ as superpositions of sine and cosine functions
where

$$
\operatorname{atan} 2(y, x):= \begin{cases}\arctan \frac{y}{x} & x>0, \\ \arctan \frac{y}{x}+\pi & x<0, y \geq 0 \\ \arctan \frac{y}{x}-\pi & x<0, y<0 \\ \frac{\pi}{2} & x=0, y>0 \\ -\frac{\pi}{2} & x=0, y<0 \\ 0 & x=y=0\end{cases}
$$

Note that atan2 is a modified inverse tangent. Thus for $(x, y) \in \mathbb{R}^{2} \backslash\{(0,0)\}$, $\operatorname{atan} 2(y, x) \in(-\pi, \pi]$ is defined as the angle between the vectors $(1,0)^{\top}$ and $(x, y)^{\top}$. The sequence $\left(\left|c_{k}(f)\right|\right)_{k \in \mathbb{Z}}$ is called the spectrum or modulus of f and $\left(\varphi_{k}\right)_{k \in \mathbb{Z}}$ the phase of f.

For fixed $a \in \mathbb{R}$, the 2π-periodic extension of a function $f:[-\pi+a, \pi+a) \rightarrow$ \mathbb{C} to the whole line \mathbb{R} is given by $f(x+2 \pi n):=f(x)$ for all $x \in[-\pi+a, \pi+a)$ and all $n \in \mathbb{Z}$. Often we have $a=0$ or $a=\pi$.

Example 1.5 Consider the 2π-periodic extension of the real-valued function $f(x)=\mathrm{e}^{-x}, x \in(-\pi, \pi)$ with $f(\pm \pi)=\cosh \pi=\frac{1}{2}\left(\mathrm{e}^{-\pi}+\mathrm{e}^{\pi}\right)$. Then the Fourier coefficients $c_{k}(f)$ are given by

$$
\begin{aligned}
c_{k}(f) & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} \mathrm{e}^{-(1+\mathrm{i} k) x} \mathrm{~d} x \\
& =-\frac{1}{2 \pi(1+\mathrm{i} k)}\left(\mathrm{e}^{-(1+\mathrm{i} k) \pi}-\mathrm{e}^{(1+\mathrm{i} k) \pi}\right)=\frac{(-1)^{k} \sinh \pi}{(1+\mathrm{i} k) \pi} .
\end{aligned}
$$

Figure 1.3 shows both the 8th and 16th Fourier partial sums $S_{8} f$ and $S_{16} f$.

Fig. 1.3 The 2π-periodic function f given by $f(x):=\mathrm{e}^{-x}, x \in(-\pi, \pi)$, with $f(\pm \pi)=$ $\cosh (\pi)$ and its Fourier partial sums $S_{8} f$ (left) and $S_{16} f$ (right)

For $f \in L_{2}(\mathbb{T})$ it holds the Parseval equality (1.16). Thus the Fourier coefficients $c_{k}(f)$ converge to zero as $|k| \rightarrow \infty$. Since

$$
\left|c_{k}(f)\right| \leq \frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(x)| \mathrm{d} x=\|f\|_{L_{1}(\mathbb{T})}
$$

the integrals

$$
c_{k}(f)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) \mathrm{e}^{-\mathrm{i} k x} \mathrm{~d} x, \quad k \in \mathbb{Z}
$$

also exist for all functions $f \in L_{1}(\mathbb{T})$, i.e., the Fourier coefficients are well-defined for any function of $L_{1}(\mathbb{T})$. The next lemma contains simple properties of Fourier coefficients.

Lemma 1.6 The Fourier coefficients of $f, g \in L_{1}(\mathbb{T})$ have the following properties for all $k \in \mathbb{Z}$:

1. Linearity: For all $\alpha, \beta \in \mathbb{C}$,

$$
c_{k}(\alpha f+\beta g)=\alpha c_{k}(f)+\beta c_{k}(g)
$$

2. Translation-Modulation: For all $x_{0} \in[0,2 \pi)$ and $k_{0} \in \mathbb{Z}$,

$$
\begin{aligned}
c_{k}\left(f\left(\cdot-x_{0}\right)\right) & =\mathrm{e}^{-\mathrm{i} k x_{0}} c_{k}(f), \\
c_{k}\left(\mathrm{e}^{-\mathrm{i} k_{0} \cdot} f\right) & =c_{k+k_{0}}(f)
\end{aligned}
$$

In particular $\left|c_{k}\left(f\left(\cdot-x_{0}\right)\right)\right|=\left|c_{k}(f)\right|$, i.e., translation does not change the spectrum of f.
3. Differentiation-Multiplication: For absolute continuous functions $f \in L_{1}(\mathbb{T})$ with $f^{\prime} \in L_{1}(\mathbb{T})$ we have

$$
c_{k}\left(f^{\prime}\right)=\mathrm{i} k c_{k}(f)
$$

Proof The first property follows directly from the linearity of the integral. The translation-modulation property can be seen as

$$
\begin{aligned}
c_{k}\left(f\left(\cdot-x_{0}\right)\right) & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} f\left(x-x_{0}\right) \mathrm{e}^{-\mathrm{i} k x} \mathrm{~d} x \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(y) \mathrm{e}^{-\mathrm{i} k\left(y+x_{0}\right)} \mathrm{d} y=\mathrm{e}^{-\mathrm{i} k x_{0}} c_{k}(f)
\end{aligned}
$$

and similarly for the modulation-translation property.

For the differentiation property recall that an absolute continuous function has a derivative almost everywhere. Then we obtain by integration by parts

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi} \mathrm{i} k f(x) \mathrm{e}^{-\mathrm{i} k x} \mathrm{~d} x=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f^{\prime}(x) \mathrm{e}^{-\mathrm{i} k x} \mathrm{~d} x=c_{k}\left(f^{\prime}\right) .
$$

The complex Fourier series

$$
f=\sum_{k \in \mathbb{Z}} c_{k}(f) \mathrm{e}^{\mathrm{i} k .}
$$

can be rewritten using Euler's formula $\mathrm{e}^{\mathrm{i} k \cdot}=\cos (k \cdot)+\mathrm{i} \sin (k \cdot)$ as

$$
\begin{equation*}
f=\frac{1}{2} a_{0}(f)+\sum_{k=1}^{\infty}\left(a_{k}(f) \cos (k \cdot)+b_{k}(f) \sin (k \cdot)\right), \tag{1.19}
\end{equation*}
$$

where

$$
\begin{aligned}
& a_{k}(f)=c_{k}(f)+c_{-k}(f)=2\langle f, \cos (k \cdot)\rangle, \quad k \in \mathbb{N}_{0}, \\
& b_{k}(f)=\mathrm{i}\left(c_{k}(f)-c_{-k}(f)\right)=2\langle f, \sin (k \cdot)\rangle, \quad k \in \mathbb{N} .
\end{aligned}
$$

Consequently $\{1, \sqrt{2} \cos (k \cdot): k \in \mathbb{N}\} \cup\{\sqrt{2} \sin (k \cdot): k \in \mathbb{N}\}$ form also an orthonormal basis of $L_{2}(\mathbb{T})$. If $f: \mathbb{T} \rightarrow \mathbb{R}$ is a real-valued function, then $c_{k}(f)=\overline{c_{-k}(f)}$ and (1.19) is the real Fourier series of f. Using polar coordinates (1.18), the Fourier series of a real-valued function $f \in L_{2}(\mathbb{T})$ can be written in the form

$$
f=\frac{1}{2} a_{0}(f)+\sum_{k=1}^{\infty} r_{k} \sin \left(k \cdot+\frac{\pi}{2}+\varphi_{k}\right) .
$$

with sine oscillations of amplitudes $r_{k}=2\left|c_{k}(f)\right|$, angular frequencies k, and phase shifts $\frac{\pi}{2}+\varphi_{k}$. For even/odd functions the Fourier series simplify to pure cosine/sine series.

Lemma 1.7 If $f \in L_{2}(\mathbb{T})$ is even, i.e., $f(x)=f(-x)$ for all $x \in \mathbb{T}$, then $c_{k}(f)=$ $c_{-k}(f)$ for all $k \in \mathbb{Z}$ and f can be represented as a Fourier cosine series

$$
f=c_{0}(f)+2 \sum_{k=1}^{\infty} c_{k}(f) \cos (k \cdot)=\frac{1}{2} a_{0}(f)+\sum_{k=1}^{\infty} a_{k}(f) \cos (k \cdot) .
$$

If $f \in L_{2}(\mathbb{T})$ is odd, i.e., $f(x)=-f(-x)$ for all $x \in \mathbb{T}$, then $c_{k}(f)=-c_{-k}(f)$ for all $k \in \mathbb{Z}$ and f can be represented as a Fourier sine series

$$
f=2 \mathrm{i} \sum_{k=1}^{\infty} c_{k}(f) \sin (k \cdot)=\sum_{k=1}^{\infty} b_{k}(f) \sin (k \cdot) .
$$

The simple proof of Lemma 1.7 is left as an exercise.
Example 1.8 The 2π-periodic extension of the function $f(x)=x^{2}, x \in[-\pi, \pi)$ is even and has the Fourier cosine series

$$
\frac{\pi^{2}}{3}+4 \sum_{k=1}^{\infty} \frac{(-1)^{k}}{k^{2}} \cos (k \cdot)
$$

Example 1.9 The 2π-periodic extension of the function $s(x)=\frac{\pi-x}{2 \pi}, x \in(0,2 \pi)$, with $s(0)=0$ is odd and has jump discontinuities at $2 \pi k, k \in \mathbb{Z}$, of unit height. This so-called sawtooth function has the Fourier sine series

$$
\sum_{k=1}^{\infty} \frac{1}{\pi k} \sin (k \cdot) .
$$

Figure 1.4 illustrates the corresponding Fourier partial sum $S_{8} f$. Applying the Parseval equality (1.16) we obtain

$$
\sum_{k=1}^{\infty} \frac{1}{2 \pi^{2} k^{2}}=\|s\|^{2}=\frac{1}{12}
$$

This implies

$$
\sum_{k=1}^{\infty} \frac{1}{k^{2}}=\frac{\pi^{2}}{6}
$$

Fig. 1.4 The Fourier partial sums $S_{8} f$ of the even 2π-periodic function f given by $f(x):=x^{2}$, $x \in[-\pi, \pi)$ (left) and of the odd 2π-periodic function f given by $f(x)=\frac{1}{2}-\frac{x}{2 \pi}, x \in(0,2 \pi)$, with $f(0)=f(2 \pi)=0$ (right)

The last equation can be also obtained from the Fourier series in Example 1.8 by setting $x:=\pi$ and assuming that the series converges in this point.

Example 1.10 We consider the 2π-periodic extension of the rectangular pulse function $f:[-\pi, \pi) \rightarrow \mathbb{R}$ given by

$$
f(x)= \begin{cases}0 & x \in(-\pi, 0) \\ 1 & x \in(0, \pi)\end{cases}
$$

and $f(-\pi)=f(0)=\frac{1}{2}$. The function $f-\frac{1}{2}$ is odd and the Fourier series of f reads

$$
\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2}{(2 n-1) \pi} \sin ((2 n-1) \cdot)
$$

1.3 Convolution of Periodic Functions

The convolution of two 2π-periodic functions $f, g \in L_{1}(\mathbb{T})$ is the function $h=$ $f * g$ given by

$$
h(x):=(f * g)(x)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(y) g(x-y) \mathrm{d} y .
$$

Using the substitution $y=x-t$, we see

$$
(f * g)(x)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x-t) g(t) \mathrm{d} t=(g * f)(x)
$$

so that the convolution is commutative. It is easy to check that it is also associative and distributive. Furthermore, the convolution is translation invariant

$$
(f(\cdot-t) * g)(x)=(f * g)(x-t) .
$$

If g is an even function, i.e., $g(x)=g(-x)$ for all $x \in \mathbb{R}$, then

$$
(f * g)(x)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(y) g(y-x) \mathrm{d} y .
$$

Figure 1.5 shows the convolution of two 2π-periodic functions. The following theorem shows that the convolution is well defined for certain functions.

Fig. 1.5 Two 2π-periodic functions f (red) and g (green). Right: The corresponding convolution $f * g$ (blue)

Theorem 1.11

1. Let $f \in L_{p}(\mathbb{T}), 1 \leq p \leq \infty$ and $g \in L_{1}(\mathbb{T})$ be given. Then $f * g$ exists almost everywhere and $f * g \in L_{p}(\mathbb{T})$. Further we have the Young inequality

$$
\|f * g\|_{L_{p}(\mathbb{T})} \leq\|f\|_{L_{p}(\mathbb{T})}\|g\|_{L_{1}(\mathbb{T})}
$$

2. Let $f \in L_{p}(\mathbb{T})$ and $g \in L_{q}(\mathbb{T})$, where $1 \leq p, q \leq \infty$ and $\frac{1}{p}+\frac{1}{q}=1$. Then $(f * g)(x)$ exists for every $x \in \mathbb{T}$ and $f * g \in C(\mathbb{T})$. It holds

$$
\|f * g\|_{C(\mathbb{T})} \leq\|f\|_{L_{p}(\mathbb{T})}\|g\|_{L_{q}(\mathbb{T})}
$$

3. Let $f \in L_{p}(\mathbb{T})$ and $g \in L_{q}(\mathbb{T})$, where $\frac{1}{p}+\frac{1}{q}=\frac{1}{r}+1,1 \leq p, q, r \leq \infty$. Then $f * g$ exists almost everywhere and $f * g \in L_{r}(\mathbb{T})$. Further we have the generalized Young inequality

$$
\|f * g\|_{L_{r}(\mathbb{T})} \leq\|f\|_{L_{p}(\mathbb{T})}\|g\|_{L_{q}(\mathbb{T})}
$$

Proof

1. Let $p \in(1, \infty)$ and $\frac{1}{p}+\frac{1}{q}=1$. Then we obtain by Hölder's inequality

$$
\begin{aligned}
|(f * g)(x)| & \leq \frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(y)| \underbrace{|g(x-y)|}_{=|g|^{1 / p}|g|^{1 / q}} \mathrm{~d} y \\
& \leq\left(\frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(y)|^{p}|g(x-y)| \mathrm{d} y\right)^{1 / p}\left(\frac{1}{2 \pi} \int_{-\pi}^{\pi}|g(x-y)| \mathrm{d} x\right)^{1 / q} \\
& =\|g\|_{L_{1}(\mathbb{T})}^{1 / q}\left(\frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(y)|^{p}|g(x-y)| \mathrm{d} y\right)^{1 / p} .
\end{aligned}
$$

Note that both sides of the inequality may be infinite. Using this estimate and Fubini's theorem, we get

$$
\begin{aligned}
\|f * g\|_{L_{p}(\mathbb{T})}^{p} & \leq\|g\|_{L_{1}(\mathbb{T})}^{p / q}\left(\frac{1}{2 \pi}\right)^{2} \int_{-\pi}^{\pi} \int_{-\pi}^{\pi}|f(y)|^{p}|g(x-y)| \mathrm{d} y \mathrm{~d} x \\
& =\|g\|_{L_{1}(\mathbb{T})}^{p / q}\left(\frac{1}{2 \pi}\right)^{2} \int_{-\pi}^{\pi}|f(y)|^{p} \int_{-\pi}^{\pi}|g(x-y)| \mathrm{d} x \mathrm{~d} y \\
& =\|g\|_{L_{1}(\mathbb{T})}^{1+p / q}\|f\|_{L_{p}(\mathbb{T})}^{p}=\|g\|_{L_{1}(\mathbb{T})}^{p}\|f\|_{L_{p}(\mathbb{T}) .}^{p} .
\end{aligned}
$$

The cases $p=1$ and $p=\infty$ are straightforward and left as an exercise.
2. Let $f \in L_{p}(\mathbb{T})$ and $g \in L_{q}(\mathbb{T})$ with $\frac{1}{p}+\frac{1}{q}=1$ and $p>1$ be given. By Hölder's inequality it follows

$$
\begin{aligned}
|(f * g)(x)| & \leq\left(\frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(x-y)|^{p} \mathrm{~d} y\right)^{1 / p}\left(\frac{1}{2 \pi} \int_{-\pi}^{\pi}|g(y)|^{q} \mathrm{~d} y\right)^{1 / q} \\
& \leq\|f\|_{L_{p}(\mathbb{T})}\|g\|_{L_{q}(\mathbb{T})}
\end{aligned}
$$

and consequently

$$
|(f * g)(x+t)-(f * g)(x)| \leq\|f(\cdot+t)-f\|_{L_{p}(\mathbb{T})}\|g\|_{L_{q}(\mathbb{T})} .
$$

Now the second assertion follows, since the translation is continuous in the $L_{p}(\mathbb{T})$ norm (see [114, Proposition 8.5]), i.e. $\|f(\cdot+t)-f\|_{L_{p}(\mathbb{T})} \rightarrow 0$ as $t \rightarrow 0$. The case $p=1$ is straightforward.
3. Finally, let $f \in L_{p}(\mathbb{T})$ and $g \in L_{q}(\mathbb{T})$ with $\frac{1}{p}+\frac{1}{q}=\frac{1}{r}+1$ for $1 \leq p, q, r \leq \infty$ be given. The case $r=\infty$ is described in Part 2 so that it remains to consider $1 \leq$ $r<\infty$. Then $p \leq r$ and $q \leq r$, since otherwise we would get the contradiction $q<1$ or $p<1$. Set $s:=\bar{p}\left(1-\frac{1}{q}\right)=1-\frac{p}{r} \in[0,1)$ and $t:=\frac{r}{q} \in[1, \infty)$. Define q^{\prime} by $\frac{1}{q}+\frac{1}{q^{\prime}}=1$. Then we obtain by Hölder's inequality

$$
\begin{aligned}
h(x) & :=\frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(x-y) g(y)| \mathrm{d} y=\frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(x-y)|^{1-s}|g(y)||f(x-y)|^{s} \mathrm{~d} y \\
& \leq\left(\frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(x-y)|^{(1-s) q}|g(y)|^{q} \mathrm{~d} y\right)^{1 / q}\left(\frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(x-y)|^{s q^{\prime}} \mathrm{d} y\right)^{1 / q^{\prime}}
\end{aligned}
$$

Using that by definition $s q^{\prime}=p$ and $q / q^{\prime}=(s q) / p$, this implies

$$
\begin{aligned}
h^{q}(x) & \leq \frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(x-y)|^{(1-s) q}|g(y)|^{q} \mathrm{~d} y\left(\frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(x-y)|^{p} \mathrm{~d} y\right)^{q / q^{\prime}} \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(x-y)|^{(1-s) q}|g(y)|^{q} \mathrm{~d} y\left(\frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(x-y)|^{p} \mathrm{~d} y\right)^{(s q) / p} \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(x-y)|^{(1-s) q}|g(y)|^{q} \mathrm{~d} y\|f\|_{L_{p}(\mathbb{T})}^{s q}
\end{aligned}
$$

such that

$$
\begin{aligned}
\|h\|_{L_{r}(\mathbb{T})}^{q} & =\left(\frac{1}{2 \pi} \int_{-\pi}^{\pi}|h(x)|^{q t} \mathrm{~d} x\right)^{q /(q t)}=\left(\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|h^{q}(x)\right|^{t} \mathrm{~d} x\right)^{1 / t}=\left\|h^{q}\right\|_{L_{t}(\mathbb{T})} \\
& \leq\|f\|_{L_{p}(\mathbb{T})}^{s q}\left(\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left(\frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(x-y)|^{(1-s) q}|g(y)|^{q} \mathrm{~d} y\right)^{t} \mathrm{~d} x\right)^{1 / t}
\end{aligned}
$$

and further by $(1-s) q t=p$ and generalized Minkowski’s inequality

$$
\begin{aligned}
\|h\|_{L_{r}(\mathbb{T})}^{q} & \leq\|f\|_{L_{p}(\mathbb{T})}^{s q} \frac{1}{2 \pi} \int_{-\pi}^{\pi}\left(\frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(x-y)|^{(1-s) q t}|g(y)|^{q t} \mathrm{~d} x\right)^{1 / t} \mathrm{~d} y \\
& =\|f\|_{L_{p}(\mathbb{T})}^{s q} \frac{1}{2 \pi} \int_{-\pi}^{\pi}|g(y)|^{q}\left(\frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(x-y)|^{(1-s) q t} \mathrm{~d} x\right)^{1 / t} \mathrm{~d} y \\
& =\|f\|_{L_{p}(\mathbb{T})}^{s q}\|f\|_{L_{(1-s) q t}}^{(1-s) q}(\mathbb{T}) \frac{1}{2 \pi} \int_{-\pi}^{\pi}|g(y)|^{q} \mathrm{~d} y=\|f\|_{L_{p}(\mathbb{T})}^{q}\|g\|_{L_{q}(\mathbb{T})}^{q} .
\end{aligned}
$$

Taking the q th root finishes the proof. Alternatively, the third step can be proved using the Riesz-Thorin theorem.

The convolution of an $L_{1}(\mathbb{T})$ function and an $L_{p}(\mathbb{T})$ function with $1 \leq p<\infty$ is in general not defined pointwise as the following example shows.

Example 1.12 We consider the 2π-periodic extension of $f:[-\pi, \pi) \rightarrow \mathbb{R}$ given by

$$
f(y):= \begin{cases}|y|^{-3 / 4} & y \in[-\pi, \pi) \backslash\{0\} \tag{1.20}\\ 0 & y=0\end{cases}
$$

The extension denoted by f is even and belongs to $L_{1}(\mathbb{T})$. The convolution $(f * f)(x)$ is finite for all $x \in[-\pi, \pi) \backslash\{0\}$. However, for $x=0$, this does not hold true, since

$$
\int_{-\pi}^{\pi} f(y) f(-y) \mathrm{d} y=\int_{-\pi}^{\pi}|y|^{-3 / 2} \mathrm{~d} y=\infty
$$

The following lemma describes the convolution property of Fourier series.
Lemma 1.13 For $f, g \in L_{1}(\mathbb{T})$ it holds

$$
c_{k}(f * g)=c_{k}(f) c_{k}(g), \quad k \in \mathbb{Z}
$$

Proof Using Fubini's theorem, we obtain by the 2π-periodicity of $g \mathrm{e}^{-\mathrm{i} k}$. that

$$
\begin{aligned}
c_{k}(f * g) & =\frac{1}{(2 \pi)^{2}} \int_{-\pi}^{\pi}\left(\int_{-\pi}^{\pi} f(y) g(x-y) \mathrm{d} y\right) \mathrm{e}^{-\mathrm{i} k x} \mathrm{~d} x \\
& =\frac{1}{(2 \pi)^{2}} \int_{-\pi}^{\pi} f(y) \mathrm{e}^{-\mathrm{i} k y}\left(\int_{-\pi}^{\pi} g(x-y) \mathrm{e}^{-\mathrm{i} k(x-y)} \mathrm{d} x\right) \mathrm{d} y \\
& =\frac{1}{(2 \pi)^{2}} \int_{-\pi}^{\pi} f(y) \mathrm{e}^{-\mathrm{i} k y}\left(\int_{-\pi}^{\pi} g(t) \mathrm{e}^{-\mathrm{i} k t} \mathrm{~d} t\right) \mathrm{d} y=c_{k}(f) c_{k}(g) .
\end{aligned}
$$

The convolution of functions with certain functions, so-called kernels, is of particular interest.

Example 1.14 The nth Dirichlet kernel for $n \in \mathbb{N}_{0}$ is defined by

$$
\begin{equation*}
D_{n}(x):=\sum_{k=-n}^{n} \mathrm{e}^{\mathrm{i} k x}, \quad x \in \mathbb{R} \tag{1.21}
\end{equation*}
$$

By Euler's formula it follows

$$
D_{n}(x)=1+2 \sum_{k=1}^{n} \cos (k x) .
$$

Obviously, $D_{n} \in \mathscr{T}_{n}$ is real-valued and even. For $x \in(0, \pi]$ and $n \in \mathbb{N}$, we can express $\left(\sin \frac{x}{2}\right) D_{n}(x)$ as telescope sum

$$
\begin{aligned}
\left(\sin \frac{x}{2}\right) D_{n}(x) & =\sin \frac{x}{2}+\sum_{k=1}^{n} 2 \cos (k x) \sin \frac{x}{2} \\
& =\sin \frac{x}{2}+\sum_{k=1}^{n}\left(\sin \frac{(2 k+1) x}{2}-\sin \frac{(2 k-1) x}{2}\right)=\sin \frac{(2 n+1) x}{2} .
\end{aligned}
$$

Thus, the nth Dirichlet kernel can be represented as a fraction

$$
\begin{equation*}
D_{n}(x)=\frac{\sin \frac{(2 n+1) x}{2}}{\sin \frac{x}{2}}, \quad x \in[-\pi, \pi) \backslash\{0\}, \tag{1.22}
\end{equation*}
$$

Fig. 1.6 The Dirichlet kernel D_{8} (left) and its Fourier coefficients $c_{k}\left(D_{8}\right)$ (right)
with $D_{n}(0)=2 n+1$. Figure 1.6 depicts the Dirichlet kernel D_{8}. The Fourier coefficients of D_{n} are

$$
c_{k}\left(D_{n}\right)= \begin{cases}1 & k=-n, \ldots, n \\ 0 & |k|>n\end{cases}
$$

For $f \in L_{1}(\mathbb{T})$ with Fourier coefficients $c_{k}(f), k \in \mathbb{Z}$, we obtain by Lemma 1.13 that

$$
\begin{equation*}
f * D_{n}=\sum_{k=-n}^{n} c_{k}(f) \mathrm{e}^{\mathrm{i} k \cdot}=S_{n} f, \tag{1.23}
\end{equation*}
$$

which is just the nth Fourier partial sum of f. By the following calculations, the Dirichlet kernel fulfills

$$
\begin{equation*}
\left\|D_{n}\right\|_{L_{1}(\mathbb{T})}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|D_{n}(x)\right| \mathrm{d} x \geq \frac{4}{\pi^{2}} \ln n \tag{1.24}
\end{equation*}
$$

Note that $\left\|D_{n}\right\|_{L_{1}(\mathbb{T})}$ are called Lebesgue constants. Since $\sin x \leq x$ for $x \in\left[0, \frac{\pi}{2}\right)$ we get by (1.22) that

$$
\left\|D_{n}\right\|_{L_{1}(\mathbb{T})}=\frac{1}{\pi} \int_{0}^{\pi} \frac{|\sin ((2 n+1) x / 2)|}{\sin (x / 2)} \mathrm{d} x \geq \frac{2}{\pi} \int_{0}^{\pi} \frac{|\sin ((2 n+1) x / 2)|}{x} \mathrm{~d} x
$$

Substituting $y=\frac{2 n+1}{2} x$ results in

$$
\begin{aligned}
\left\|D_{n}\right\|_{L_{1}(\mathbb{T})} & \geq \frac{2}{\pi} \int_{0}^{\left(n+\frac{1}{2}\right) \pi} \frac{|\sin y|}{y} \mathrm{~d} y \\
& \geq \frac{2}{\pi} \sum_{k=1}^{n} \int_{(k-1) \pi}^{k \pi} \frac{|\sin y|}{y} \mathrm{~d} y \geq \frac{2}{\pi} \sum_{k=1}^{n} \int_{(k-1) \pi}^{k \pi} \frac{|\sin y|}{k \pi} \mathrm{~d} y \\
& =\frac{4}{\pi^{2}} \sum_{k=1}^{n} \frac{1}{k} \geq \frac{4}{\pi^{2}} \int_{1}^{n+1} \frac{\mathrm{~d} x}{x} \geq \frac{4}{\pi^{2}} \ln n .
\end{aligned}
$$

The Lebesgue constants fulfill

$$
\left\|D_{n}\right\|_{L_{1}(\mathbb{T})}=\frac{4}{\pi^{2}} \ln n+\mathscr{O}(1), \quad n \rightarrow \infty
$$

Example 1.15 The nth Fejér kernel for $n \in \mathbb{N}_{0}$ is defined by

$$
\begin{equation*}
F_{n}:=\frac{1}{n+1} \sum_{j=0}^{n} D_{j} \in \mathscr{T}_{n} . \tag{1.25}
\end{equation*}
$$

By (1.22) and (1.25) we obtain $F_{n}(0)=n+1$ and for $x \in[-\pi, \pi) \backslash\{0\}$

$$
F_{n}(x)=\frac{1}{n+1} \sum_{j=0}^{n} \frac{\sin \left(\left(j+\frac{1}{2}\right) x\right)}{\sin \frac{x}{2}} .
$$

Multiplying the numerator and denominator of each right-hand fraction by $2 \sin \frac{x}{2}$ and replacing the product of sines in the numerator by the differences $\cos (j x)-$ $\cos ((j+1) x)$, we find by cascade summation that F_{n} can be represented in the form

$$
\begin{equation*}
F_{n}(x)=\frac{1}{2(n+1)} \frac{1-\cos ((n+1) x)}{\left(\sin \frac{x}{2}\right)^{2}}=\frac{1}{n+1}\left(\frac{\sin \frac{(n+1) x}{2}}{\sin \frac{x}{2}}\right)^{2} . \tag{1.26}
\end{equation*}
$$

In contrast to the Dirichlet kernel the Fejér kernel is nonnegative. Figure 1.7 shows the Fejér kernel F_{8}. The Fourier coefficients of F_{n} are

$$
c_{k}\left(F_{n}\right)= \begin{cases}1-\frac{|k|}{n+1} & k=-n, \ldots, n, \\ 0 & |k|>n .\end{cases}
$$

Fig. 1.7 The Fejér kernel F_{8} (left) and its Fourier coefficients $c_{k}\left(F_{8}\right)$ (right)

Using the convolution property, the convolution $f * F_{n}$ for arbitrary $f \in L_{1}(\mathbb{T})$ is given by

$$
\begin{equation*}
\sigma_{n} f:=f * F_{n}=\sum_{k=-n}^{n}\left(1-\frac{|k|}{n+1}\right) c_{k}(f) \mathrm{e}^{\mathrm{i} k \cdot} \tag{1.27}
\end{equation*}
$$

Then $\sigma_{n} f$ is called the nth Fejér sum or nth Cesàro sum of f. Further, we have

$$
\left\|F_{n}\right\|_{L_{1}(\mathbb{T})}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} F_{n}(x) \mathrm{d} x=1
$$

Figure 1.8 illustrates the convolutions $f * D_{32}$ and $f * F_{32}$ of the 2π-periodic sawtooth function f.

Example 1.16 The nth de la Vallée Poussin kernel $V_{2 n}$ for $n \in \mathbb{N}$ is defined by

$$
V_{2 n}=\frac{1}{n} \sum_{j=n}^{2 n-1} D_{j}=2 F_{2 n-1}-F_{n-1}=\sum_{k=-2 n}^{2 n} c_{k}\left(V_{2 n}\right) \mathrm{e}^{\mathrm{i} k .}
$$

with the Fourier coefficients

$$
c_{k}\left(V_{2 n}\right)= \begin{cases}2-\frac{|k|}{n} & k=-2 n, \ldots,-(n+1), n+1, \ldots, 2 n \\ 1 & k=-n, \ldots, n \\ 0 & |k|>2 n\end{cases}
$$

By Theorem 1.11 the convolution of two $L_{1}(\mathbb{T})$ functions is again a function in $L_{1}(\mathbb{T})$. The space $L_{1}(\mathbb{T})$ forms together with the addition and the convolution a so-called Banach algebra. Unfortunately, there does not exist an identity element with respect to $*$, i.e., there is no function $g \in L_{1}(\mathbb{T})$ such that $f * g=f$ for all $f \in L_{1}(\mathbb{T})$. As a remedy we can define approximate identities.

Fig. 1.8 The convolution $f * D_{32}$ of the 2π-periodic sawtooth function f and the Dirichlet kernel D_{32} approximates f quite good except at the jump discontinuities (left). The convolution $f * F_{32}$ of f and the Fejér kernel F_{32} approximates f not as good as $f * D_{32}$, but it does not oscillate near the jump discontinuities (right)

A sequence $\left(K_{n}\right)_{n \in \mathbb{N}}$ of functions $K_{n} \in L_{1}(\mathbb{T})$ is called an approximate identity or a summation kernel, if it satisfies the following properties:

1. $\frac{1}{2 \pi} \int_{-\pi}^{\pi} K_{n}(x) \mathrm{d} x=1$ for all $n \in \mathbb{N}$,
2. $\left\|K_{n}\right\|_{L_{1}(\mathbb{T})}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|K_{n}(x)\right| \mathrm{d} x \leq C<\infty$ for all $n \in \mathbb{N}$,
3. $\lim _{n \rightarrow \infty}\left(\int_{-\pi}^{-\delta}+\int_{\delta}^{\pi}\right)\left|K_{n}(x)\right| \mathrm{d} x=0$ for each $0<\delta<\pi$.

Theorem 1.17 For an approximate identity $\left(K_{n}\right)_{n \in \mathbb{N}}$ it holds

$$
\lim _{n \rightarrow \infty}\left\|K_{n} * f-f\right\|_{C(\mathbb{T})}=0
$$

for all $f \in C(\mathbb{T})$.
Proof Since a continuous function is uniformly continuous on a compact interval, for all $\varepsilon>0$ there exists a number $\delta>0$ so that for all $|u|<\delta$

$$
\begin{equation*}
\|f(\cdot-u)-f\|_{C(\mathbb{T})}<\varepsilon \tag{1.28}
\end{equation*}
$$

Using the first property of an approximate identity, we obtain

$$
\begin{aligned}
\left\|K_{n} * f-f\right\|_{C(\mathbb{T})} & =\sup _{x \in \mathbb{T}}\left|\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x-u) K_{n}(u) \mathrm{d} u-f(x)\right| \\
& =\sup _{x \in \mathbb{T}}\left|\frac{1}{2 \pi} \int_{-\pi}^{\pi}(f(x-u)-f(x)) K_{n}(u) \mathrm{d} u\right| \\
& \leq \frac{1}{2 \pi} \sup _{x \in \mathbb{T}} \int_{-\pi}^{\pi}|f(x-u)-f(x)|\left|K_{n}(u)\right| \mathrm{d} u \\
& =\frac{1}{2 \pi} \sup _{x \in \mathbb{T}}\left(\int_{-\pi}^{-\delta}+\int_{-\delta}^{\delta}+\int_{\delta}^{\pi}\right)|f(x-u)-f(x)|\left|K_{n}(u)\right| \mathrm{d} u .
\end{aligned}
$$

By (1.28) the right-hand side can be estimated as

$$
\frac{\varepsilon}{2 \pi} \int_{-\delta}^{\delta}\left|K_{n}(u)\right| \mathrm{d} u+\frac{1}{2 \pi} \sup _{x \in \mathbb{T}}\left(\int_{-\pi}^{-\delta}+\int_{\delta}^{\pi}\right)|f(x-u)-f(x)|\left|K_{n}(u)\right| \mathrm{d} u
$$

By the properties 2 and 3 of the reproducing kernel K_{n}, we obtain for sufficiently large $n \in \mathbb{N}$ that

$$
\left\|K_{n} * f-f\right\|_{C(\mathbb{T})} \leq \varepsilon C+\frac{1}{\pi}\|f\|_{C(\mathbb{T})} \varepsilon
$$

Since $\varepsilon>0$ can be chosen arbitrarily small, this yields the assertion.
Example 1.18 The sequence $\left(D_{n}\right)_{n \in \mathbb{N}}$ of Dirichlet kernels defined in Example 1.14 is not an approximate identity, since $\left\|D_{n}\right\|_{L_{1}(\mathbb{T})}$ is not uniformly bounded for all $n \in \mathbb{N}$ by (1.24). Indeed we will see in the next section that $S_{n} f=D_{n} * f$ does in general not converge uniformly to $f \in C(\mathbb{T})$ for $n \rightarrow \infty$. A general remedy in such cases consists in considering the Cesàro mean as shown in the next example.

Example 1.19 The sequence $\left(F_{n}\right)_{n \in \mathbb{N}}$ of Fejér kernels defined in Example 1.15 possesses by definition the first two properties of an approximate identity and also fulfills the third one by (1.26) and

$$
\begin{aligned}
\left(\int_{-\pi}^{-\delta}+\int_{\delta}^{\pi}\right) F_{n}(x) \mathrm{d} x & =2 \int_{\delta}^{\pi} F_{n}(x) \mathrm{d} x \\
& =\frac{2}{n+1} \int_{\delta}^{\pi}\left(\frac{\sin ((n+1) x / 2)}{\sin (x / 2)}\right)^{2} \mathrm{~d} x \\
& \leq \frac{2}{n+1} \int_{\delta}^{\pi} \frac{\pi^{2}}{x^{2}} \mathrm{~d} x=\frac{2 \pi}{n+1}\left(\frac{\pi}{\delta}-1\right) .
\end{aligned}
$$

The right-hand side tends to zero as $n \rightarrow \infty$ so that $\left(F_{n}\right)_{n \in \mathbb{N}}$ is an approximate identity.

It is not hard to verify that the sequence $\left(V_{2 n}\right)_{n \in \mathbb{N}}$ of de la Vallée Poussin kernels defined in Example 1.16 is also an approximate identity.

From Theorem 1.17 and Example 1.19 it follows immediately
Theorem 1.20 (Approximation Theorem of Fejér) If $f \in C(\mathbb{T})$, then the Fejér sums $\sigma_{n} f$ converge uniformly to f as $n \rightarrow \infty$. If $m \leq f(x) \leq M$ for all $x \in \mathbb{T}$ with $m, M \in \mathbb{R}$, then $m \leq\left(\sigma_{n} f\right)(x) \leq M$ for all $n \in \mathbb{N}$.

Proof Since $\left(F_{n}\right)_{n \in \mathbb{N}}$ is an approximate identity, the Fejér sums $\sigma_{n} f$ converge uniformly to f as $n \rightarrow \infty$. If a real-valued function $f: \mathbb{T} \rightarrow \mathbb{R}$ fulfills the estimate $m \leq f(x) \leq M$ for all $x \in \mathbb{T}$ with certain constants $m, M \in \mathbb{R}$, then

$$
\left(\sigma_{n} f\right)(x)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} F_{n}(y) f(x-y) \mathrm{d} y
$$

fulfills also $m \leq\left(\sigma_{n} f\right)(x) \leq M$ for all $x \in \mathbb{T}$, since $F_{n}(y) \geq 0$ and $\frac{1}{2 \pi} \int_{-\pi}^{\pi} F_{n}(y) \mathrm{d} y=c_{0}\left(F_{n}\right)=1$.

Theorem 1.20 of Fejér has many important consequences such as
Theorem 1.21 (Approximation Theorem of Weierstrass) If $f \in C(\mathbb{T})$, then for each $\varepsilon>0$ there exists a trigonometric polynomial $p=\sigma_{n} f \in \mathscr{T}_{n}$ of sufficiently large degree n such that $\|f-p\|_{C(\mathbb{T})}<\varepsilon$. Further this trigonometric polynomial p is a weighted Fourier partial sum given by (1.27).

Finally we present two important inequalities for any trigonometric polynomial $p \in \mathscr{T}_{n}$ with fixed $n \in \mathbb{N}$. The inequality of S.M. Nikolsky compares different norms of any trigonometric polynomial $p \in \mathscr{T}_{n}$. The inequality of S.N. Bernstein estimates the norm of the derivative p^{\prime} by the norm of a trigonometric polynomial $p \in \mathscr{T}_{n}$.

Theorem 1.22 Assume that $1 \leq q \leq r \leq \infty$, where q is finite and $s:=\lceil q / 2\rceil$. Then for all $p \in \mathscr{T}_{n}$, it holds the Nikolsky inequality

$$
\begin{equation*}
\|p\|_{L_{r}(\mathbb{T})} \leq(2 n s+1)^{1 / q-1 / r}\|p\|_{L_{q}(\mathbb{T})} \tag{1.29}
\end{equation*}
$$

and the Bernstein inequality

$$
\begin{equation*}
\left\|p^{\prime}\right\|_{L_{r}(\mathbb{T})} \leq n\|p\|_{L_{r}(\mathbb{T})} \tag{1.30}
\end{equation*}
$$

Proof

1. Setting $m:=n s$, we have $p^{s} \in \mathscr{T}_{m}$ and hence $p^{s} * D_{m}=p^{s}$ by (1.23). Using the Cauchy-Schwarz inequality, we can estimate

$$
\begin{aligned}
\left|p(x)^{s}\right| & \leq \frac{1}{2 \pi} \int_{-\pi}^{\pi}|p(t)|^{s}\left|D_{m}(x-t)\right| \mathrm{d} t \\
& \leq\|p\|_{C(\mathbb{T})}^{s-q / 2} \frac{1}{2 \pi} \int_{-\pi}^{\pi}|p(t)|^{q / 2}\left|D_{m}(x-t)\right| \mathrm{d} t \\
& \leq\|p\|_{C(\mathbb{T})}^{s-q / 2}\left\||p|^{q / 2}\right\|_{L_{2}(\mathbb{T})}\left\|D_{m}\right\|_{L_{2}(\mathbb{T})} .
\end{aligned}
$$

Since

$$
\left\||p|^{q / 2}\right\|_{L_{2}(\mathbb{T})}=\|p\|_{L_{q}(\mathbb{T})}^{q / 2}, \quad\left\|D_{m}\right\|_{L_{2}(\mathbb{T})}=(2 m+1)^{1 / 2}
$$

we obtain

$$
\|p\|_{C(\mathbb{T})}^{s} \leq(2 m+1)^{1 / 2}\|p\|_{C(\mathbb{T})}^{s-q / 2}\|p\|_{L_{q}(\mathbb{T})}^{q / 2}
$$

and hence the Nikolsky inequality (1.29) for $r=\infty$, i.e.,

$$
\begin{equation*}
\|p\|_{L_{\infty}(\mathbb{T})}=\|p\|_{C(\mathbb{T})} \leq(2 m+1)^{1 / q}\|p\|_{L_{q}(\mathbb{T})} \tag{1.31}
\end{equation*}
$$

For finite $r>q$, we use the inequality

$$
\begin{aligned}
\|p\|_{L_{r}(\mathbb{T})} & =\left(\frac{1}{2 \pi} \int_{-\pi}^{\pi}|p(t)|^{r-q}|p(t)|^{q} \mathrm{~d} t\right)^{1 / r} \\
& \leq\|p\|_{C(\mathbb{T})}^{1-q / r}\left(\frac{1}{2 \pi} \int_{-\pi}^{\pi}|p(t)|^{q} \mathrm{~d} t\right)^{1 / r}=\|p\|_{C(\mathbb{T})}^{1-q / r}\|p\|_{L_{q}(\mathbb{T})}^{q / r}
\end{aligned}
$$

Then from (1.31) it follows the Nikolsky inequality (1.29).
2. For simplicity, we show the Bernstein inequality (1.30) only for $r=2$. An arbitrary trigonometric polynomial $p \in \mathscr{T}_{n}$ has the form

$$
p(x)=\sum_{k=-n}^{n} c_{k} \mathrm{e}^{\mathrm{i} k x}
$$

with certain coefficients $c_{k}=c_{k}(p) \in \mathbb{C}$ such that

$$
p^{\prime}(x)=\sum_{k=-n}^{n} \mathrm{i} k c_{k} \mathrm{e}^{\mathrm{i} k x}
$$

Thus by the Parseval equality (1.16) we obtain

$$
\|p\|_{L_{2}(\mathbb{T})}^{2}=\sum_{k=-n}^{n}\left|c_{k}\right|^{2}, \quad\left\|p^{\prime}\right\|_{L_{2}(\mathbb{T})}^{2}=\sum_{k=-n}^{n} k^{2}\left|c_{k}\right|^{2} \leq n^{2}\|p\|_{L_{2}(\mathbb{T})}^{2}
$$

For a proof in the general case $1 \leq r \leq \infty$ we refer to [85, pp. 97-102]. The Bernstein inequality is best possible, since we have equality in (1.30) for $p(x)=$ $\mathrm{e}^{\mathrm{i} n x}$.

1.4 Pointwise and Uniform Convergence of Fourier Series

In Sect. 1.3, it was shown that a Fourier series of an arbitrary function $f \in L_{2}(\mathbb{T})$ converges in the norm of $L_{2}(\mathbb{T})$, i.e.,

$$
\lim _{n \rightarrow \infty}\left\|S_{n} f-f\right\|_{L_{2}(\mathbb{T})}=\lim _{n \rightarrow \infty}\left\|f * D_{n}-f\right\|_{L_{2}(\mathbb{T})}=0
$$

In general, the pointwise or almost everywhere convergence of a sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$ of functions $f_{n} \in L_{2}(\mathbb{T})$ does not result the convergence in $L_{2}(\mathbb{T})$.

Example 1.23 Let $f_{n}: \mathbb{T} \rightarrow \mathbb{R}$ be the 2π-extension of

$$
f_{n}(x):= \begin{cases}n & x \in(0,1 / n), \\ 0 & x \in\{0\} \cup[1 / n, 2 \pi) .\end{cases}
$$

Obviously, we have $\lim _{n \rightarrow \infty} f_{n}(x)=0$ for all $x \in[0,2 \pi]$. But it holds for $n \rightarrow \infty$,

$$
\left\|f_{n}\right\|_{L_{2}(\mathbb{T})}^{2}=\frac{1}{2 \pi} \int_{0}^{1 / n} n^{2} \mathrm{~d} x=\frac{n}{2 \pi} \rightarrow \infty .
$$

As known (see, e.g., [229, pp. 52-53]), if a sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$, where $f_{n} \in L_{p}(\mathbb{T})$ with $1 \leq p \leq \infty$, converges to $f \in L_{p}(\mathbb{T})$ in the norm of $L_{p}(\mathbb{T})$, then there exists a subsequence $\left(f_{n_{k}}\right)_{k \in \mathbb{N}}$ such that for almost all $x \in[0,2 \pi]$,

$$
\lim _{k \rightarrow \infty} f_{n_{k}}(x)=f(x)
$$

In 1966, L. Carleson proved the fundamental result that the Fourier series of an arbitrary function $f \in L_{p}(\mathbb{T}), 1<p<\infty$, converges almost everywhere. For a proof, see, e.g., [146, pp. 232-233]. Kolmogoroff [203] showed that an analog result for $f \in L_{1}(\mathbb{T})$ is false.

A natural question is whether the Fourier series of every function $f \in C(\mathbb{T})$ converges uniformly or at least pointwise to f. From Carleson's result it follows that the Fourier series of $f \in C(\mathbb{T})$ converges almost everywhere, i.e., in all points of $[0,2 \pi]$ except for a set of Lebesgue measure zero. In fact, many mathematicians like Riemann, Weierstrass, and Dedekind conjectured over long time that the Fourier series of a function $f \in C(\mathbb{T})$ converges pointwise to f. But one has neither pointwise nor uniform convergence of the Fourier series of a function $f \in C(\mathbb{T})$ in general. A concrete counterexample was constructed by Du Bois-Reymond in 1876 and was a quite remarkable surprise. It was shown that there exists a real-valued function $f \in C(\mathbb{T})$ such that

$$
\lim _{n \rightarrow \infty} \sup \left|S_{n} f(0)\right|=\infty
$$

To see that pointwise convergence fails in general we need the following principle of uniform boundedness of sequences of linear bounded operators, see, e.g., [374, Korollar 2.4].

Theorem 1.24 (Theorem of Banach-Steinhaus) Let X be a Banach space with a dense subset $D \subset X$ and let Y be a normed space. Further let $T_{n}: X \rightarrow Y$ for $n \in \mathbb{N}$, and $T: X \rightarrow Y$ be linear bounded operators. Then it holds

$$
\begin{equation*}
T f=\lim _{n \rightarrow \infty} T_{n} f \tag{1.32}
\end{equation*}
$$

for all $f \in X$ if and only if

1. $\left\|T_{n}\right\|_{X \rightarrow Y} \leq$ const $<\infty$ for all $n \in \mathbb{N}$, and
2. $\lim _{n \rightarrow \infty} T_{n} p=T p$ for all $p \in D$.

Theorem 1.25 There exists a function $f \in C(\mathbb{T})$ whose Fourier series does not converge pointwise.

Proof Applying Theorem 1.24 of Banach-Steinhaus, we choose $X=C(\mathbb{T}), Y=$ \mathbb{C}, and $D=\bigcup_{n=0}^{\infty} \mathscr{T}_{n}$. By the approximation Theorem 1.21 of Weierstrass, the set D of all trigonometric polynomials is dense in $C(\mathbb{T})$. Then we consider the linear bounded functionals $T_{n} f:=\left(S_{n} f\right)(0)$ for $n \in \mathbb{N}$ and $T f:=f(0)$ for $f \in C(\mathbb{T})$. Note that instead of 0 we can choose any fixed $x_{0} \in \mathbb{T}$.

We want to show that the norms $\left\|T_{n}\right\|_{C(\mathbb{T}) \rightarrow \mathbb{C}}$ are not uniformly bounded with respect to n. More precisely, we will deduce $\left\|T_{n}\right\|_{C(\mathbb{T}) \rightarrow \mathbb{C}}=\left\|D_{n}\right\|_{L_{1}(\mathbb{T})}$ which are not uniformly bounded by (1.24). Then by the Banach-Steinhaus Theorem 1.24 there exists a function $f \in C(\mathbb{T})$ whose Fourier series does not converge in the point 0 .

Let us determine the norm $\left\|T_{n}\right\|_{C(\mathbb{T}) \rightarrow \mathbb{C}}$. From

$$
\left|T_{n} f\right|=\left|\left(S_{n} f\right)(0)\right|=\left|\left(D_{n} * f\right)(0)\right|=\left|\frac{1}{2 \pi} \int_{-\pi}^{\pi} D_{n}(x) f(x) \mathrm{d} x\right| \leq\|f\|_{C(\mathbb{T})}\left\|D_{n}\right\|_{L_{1}(\mathbb{T})}
$$

for arbitrary $f \in C(\mathbb{T})$ it follows $\left\|T_{n}\right\|_{C(\mathbb{T}) \rightarrow \mathbb{C}} \leq\left\|D_{n}\right\|_{L_{1}(\mathbb{T})}$. To verify the opposite direction consider for an arbitrary $\varepsilon>0$ the function

$$
f_{\varepsilon}:=\frac{\overline{D_{n}}}{\left|D_{n}\right|+\varepsilon} \in C(\mathbb{T}),
$$

which has $C(\mathbb{T})$ norm smaller than 1 . Then

$$
\begin{aligned}
\left|T_{n} f_{\varepsilon}\right|=\left(D_{n} * f_{\varepsilon}\right)(0) & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{\left|D_{n}(x)\right|^{2}}{\left|D_{n}(x)\right|+\varepsilon} \mathrm{d} x \\
& \geq \frac{1}{2 \pi} \int_{-\pi}^{\pi} \frac{\left|D_{n}(x)\right|^{2}-\varepsilon^{2}}{\left|D_{n}(x)\right|+\varepsilon} \mathrm{d} x \\
& \geq\left(\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|D_{n}(x)\right| \mathrm{d} x-\varepsilon\right)\left\|f_{\varepsilon}\right\|_{C(\mathbb{T})}
\end{aligned}
$$

implies $\left\|T_{n}\right\|_{C(\mathbb{T}) \rightarrow \mathbb{C}} \geq\left\|D_{n}\right\|_{L_{1}(\mathbb{T})}-\varepsilon$. For $\varepsilon \rightarrow 0$ we obtain the assertion.
Remark 1.26 Theorem 1.25 indicates that there exists a function $f \in C(\mathbb{T})$ such that $\left(S_{n} f\right)_{n \in \mathbb{N}_{0}}$ is not convergent in $C(\mathbb{T})$. Analogously, one can show by Theorem 1.24 of Banach-Steinhaus that there exists a function $f \in L_{1}(\mathbb{T})$ such that $\left(S_{n} f\right)_{n \in \mathbb{N}_{0}}$ is not convergent in $L_{1}(\mathbb{T})$ (cf. [221, p. 52]). Later we will see that the Fourier series of any $f \in L_{1}(\mathbb{T})$ converges to f in the weak sense of distribution theory (see Lemma 4.56 or [125, pp. 336-337]).

1.4.1 Pointwise Convergence

In the following we will see that for frequently appearing classes of functions stronger convergence results can be proved. A function $f: \mathbb{T} \rightarrow \mathbb{C}$ is called piecewise continuously differentiable, if there exist finitely many points $0 \leq x_{0}<$ $x_{1}<\ldots<x_{n-1}<2 \pi$ such that f is continuously differentiable on each subinterval $\left(x_{j}, x_{j+1}\right), j=0, \ldots, n-1$ with $x_{n}=x_{0}+2 \pi$, and the left and right limits $f\left(x_{j} \pm 0\right), f^{\prime}\left(x_{j} \pm 0\right)$ for $j=0, \ldots, n$ exist and are finite. In the case $f\left(x_{j}-0\right) \neq f\left(x_{j}+0\right)$, the piecewise continuously differentiable function $f: \mathbb{T} \rightarrow \mathbb{C}$ has a jump discontinuity at x_{j} with jump height $\left|f\left(x_{j}+0\right)-f\left(x_{j}-0\right)\right|$. Simple examples of piecewise continuously differentiable functions $f: \mathbb{T} \rightarrow \mathbb{C}$ are the sawtooth function and the rectangular pulse function (see Examples 1.9 and 1.10). This definition is illustrated in Fig. 1.9.

The next convergence statements will use the following result of RiemannLebesgue.

Lemma 1.27 (Lemma of Riemann-Lebesgue) Let $f \in L_{1}(\overline{(a, b)})$ with $-\infty \leq$ $a<b \leq \infty$ be given. Then the following relations hold:

$$
\lim _{|v| \rightarrow \infty} \int_{a}^{b} f(x) \mathrm{e}^{-\mathrm{i} x v} \mathrm{~d} x=0
$$

$$
\lim _{|v| \rightarrow \infty} \int_{a}^{b} f(x) \sin (x v) \mathrm{d} x=0, \quad \lim _{|v| \rightarrow \infty} \int_{a}^{b} f(x) \cos (x v) \mathrm{d} x=0
$$

Fig. 1.9 A piecewise continuously differentiable function (left) and a function that is not piecewise continuously differentiable (right)

Especially, for $f \in L_{1}(\mathbb{T})$ we have

$$
\lim _{|k| \rightarrow \infty} c_{k}(f)=\frac{1}{2 \pi} \lim _{|k| \rightarrow \infty} \int_{-\pi}^{\pi} f(x) \mathrm{e}^{-\mathrm{i} x k} \mathrm{~d} x=0
$$

Proof We prove only

$$
\begin{equation*}
\lim _{|v| \rightarrow \infty} \int_{a}^{b} f(x) p(v x) \mathrm{d} x=0 \tag{1.33}
\end{equation*}
$$

for $p(t)=\mathrm{e}^{-\mathrm{i} t}$. The other cases $p(t)=\sin t$ and $p(t)=\cos t$ can be shown analogously.

For the characteristic function $\chi_{[\alpha, \beta]}$ of a finite interval $[\alpha, \beta] \subseteq \overline{(a, b)}$ it follows for $v \neq 0$ that

$$
\left|\int_{a}^{b} \chi_{[\alpha, \beta]}(x) \mathrm{e}^{-\mathrm{i} x v} \mathrm{~d} x\right|=\left|-\frac{1}{\mathrm{i} v}\left(\mathrm{e}^{-\mathrm{i} v \beta}-\mathrm{e}^{-\mathrm{i} v \alpha}\right)\right| \leq \frac{2}{|v|} .
$$

This becomes arbitrarily small as $|v| \rightarrow \infty$ so that characteristic functions and also all linear combinations of characteristic functions (i.e., step functions) fulfill the assertion.

The set of all step functions is dense in $L_{1}(\overline{(a, b)})$, i.e., for any $\varepsilon>0$ and $f \in$ $L_{1}(\overline{(a, b)})$ there exists a step function φ such that

$$
\|f-\varphi\|_{L_{1}(\overline{(a, b))}}=\int_{a}^{b}|f(x)-\varphi(x)| \mathrm{d} x<\varepsilon .
$$

By

$$
\begin{aligned}
\left|\int_{a}^{b} f(x) \mathrm{e}^{-\mathrm{i} x v} \mathrm{~d} x\right| & \leq\left|\int_{a}^{b}(f(x)-\varphi(x)) \mathrm{e}^{-\mathrm{i} x v} \mathrm{~d} x\right|+\left|\int_{a}^{b} \varphi(x) \mathrm{e}^{-\mathrm{i} x v} \mathrm{~d} x\right| \\
& \leq \varepsilon+\left|\int_{a}^{b} \varphi(x) \mathrm{e}^{-\mathrm{i} x v} \mathrm{~d} x\right|
\end{aligned}
$$

we obtain the assertion.
Next we formulate a localization principle, which states that the convergence behavior of a Fourier series of a function $f \in L_{1}(\mathbb{T})$ at a point x_{0} depends merely on the values of f in some arbitrarily small neighborhood-despite the fact that the Fourier coefficients are determined by all function values on \mathbb{T}.

Theorem 1.28 (Riemann's Localization Principle) Let $f \in L_{1}(\mathbb{T})$ and $x_{0} \in \mathbb{R}$ be given. Then we have

$$
\lim _{n \rightarrow \infty}\left(S_{n} f\right)\left(x_{0}\right)=c
$$

for some $c \in \mathbb{R}$ if and only if for some $\delta \in(0, \pi)$

$$
\lim _{n \rightarrow \infty} \int_{0}^{\delta}\left(f\left(x_{0}-t\right)+f\left(x_{0}+t\right)-2 c\right) D_{n}(t) \mathrm{d} t=0
$$

Proof Since $D_{n} \in C(\mathbb{T})$ is even, we get

$$
\begin{aligned}
\left(S_{n} f\right)\left(x_{0}\right) & =\frac{1}{2 \pi}\left(\int_{-\pi}^{0}+\int_{0}^{\pi}\right) f\left(x_{0}-t\right) D_{n}(t) \mathrm{d} t \\
& =\frac{1}{2 \pi} \int_{0}^{\pi}\left(f\left(x_{0}-t\right)+f\left(x_{0}+t\right)\right) D_{n}(t) \mathrm{d} t .
\end{aligned}
$$

Using $\pi=\int_{0}^{\pi} D_{n}(t) \mathrm{d} t$, we conclude further

$$
\left(S_{n} f\right)\left(x_{0}\right)-c=\frac{1}{2 \pi} \int_{0}^{\pi}\left(f\left(x_{0}-t\right)+f\left(x_{0}+t\right)-2 c\right) D_{n}(t) \mathrm{d} t
$$

By Example 1.14, we have $D_{n}(t)=\sin \left(\left(n+\frac{1}{2}\right) t\right) / \sin \frac{t}{2}$ for $t \in(0, \pi]$. By Lemma 1.27 of Riemann-Lebesgue we obtain

$$
\lim _{n \rightarrow \infty} \int_{\delta}^{\pi} \frac{f\left(x_{0}-t\right)+f\left(x_{0}+t\right)-2 c}{\sin \frac{t}{2}} \sin \left(\left(n+\frac{1}{2}\right) t\right) \mathrm{d} t=0
$$

and hence

$$
\lim _{n \rightarrow \infty}\left(S_{n} f\right)\left(x_{0}\right)-c=\lim _{n \rightarrow \infty} \frac{1}{2 \pi} \int_{0}^{\delta}\left(f\left(x_{0}-t\right)+f\left(x_{0}+t\right)-2 c\right) D_{n}(t) \mathrm{d} t
$$

if one of the limits exists.
For a complete proof of the main result on the convergence of Fourier series, we need some additional preliminaries. Here we follow mainly the ideas of [167, p. 137 and pp. 144-148].

Let a compact interval $[a, b] \subset \mathbb{R}$ with $-\infty<a<b<\infty$ be given. Then a function $\varphi:[a, b] \rightarrow \mathbb{C}$ is called a function of bounded variation, if

$$
\begin{equation*}
V_{a}^{b}(\varphi):=\sup \sum_{j=1}^{n}\left|\varphi\left(x_{j}\right)-\varphi\left(x_{j-1}\right)\right|<\infty, \tag{1.34}
\end{equation*}
$$

where the supremum is taken over all partitions $a=x_{0}<x_{1}<\ldots<x_{n}=b$ of $[a, b]$. The nonnegative number $V_{a}^{b}(\varphi)$ is the total variation of φ on $[a, b]$. We set $V_{a}^{a}(\varphi):=0$. For instance, each monotone function $\varphi:[a, b] \rightarrow \mathbb{R}$ is a function of
bounded variation with $V_{a}^{b}(\varphi)=|\varphi(b)-\varphi(a)|$. Because

$$
|\varphi(x)| \leq|\varphi(a)|+|\varphi(x)-\varphi(a)| \leq|\varphi(a)|+V_{a}^{x}(\varphi) \leq|\varphi(a)|+V_{a}^{b}(\varphi)<\infty
$$

for all $x \in[a, b]$, each function of bounded variation is bounded on $[a, b]$.
Lemma 1.29 Let $\varphi:[a, b] \rightarrow \mathbb{C}$ and $\psi:[a, b] \rightarrow \mathbb{C}$ be functions of bounded variation. Then for arbitrary $\alpha \in \mathbb{C}$ and $c \in[a, b]$ it holds

$$
\begin{align*}
V_{a}^{b}(\alpha \varphi) & =|\alpha| V_{a}^{b}(\varphi) \\
V_{a}^{b}(\varphi+\psi) & \leq V_{a}^{b}(\varphi)+V_{a}^{b}(\psi), \\
V_{a}^{b}(\varphi) & =V_{a}^{c}(\varphi)+V_{c}^{b}(\varphi), \tag{1.35}\\
\max \left\{V_{a}^{b}(\operatorname{Re} \varphi), V_{a}^{b}(\operatorname{Im} \varphi)\right\} & \leq V_{a}^{b}(\varphi) \leq V_{a}^{b}(\operatorname{Re} \varphi)+V_{a}^{b}(\operatorname{Im} \varphi) . \tag{1.36}
\end{align*}
$$

The simple proof is omitted here. For details, see, e.g., [344, pp. 159-162].
Theorem 1.30 (Jordan's Decomposition Theorem) Let $\varphi:[a, b] \rightarrow \mathbb{C}$ be a given function of bounded variation. Then there exist four nondecreasing functions $\varphi_{j}:[a, b] \rightarrow \mathbb{R}, j=1, \ldots, 4$, such that φ possesses the Jordan decomposition

$$
\varphi=\left(\varphi_{1}-\varphi_{2}\right)+\mathrm{i}\left(\varphi_{3}-\varphi_{4}\right)
$$

where $\operatorname{Re} \varphi=\varphi_{1}-\varphi_{2}$ and $\operatorname{Im} \varphi=\varphi_{3}-\varphi_{4}$ are functions of bounded variation. If φ is continuous, then $\varphi_{j}, j=1, \ldots, 4$, are continuous too.

Proof From (1.36) it follows that $\operatorname{Re} \varphi$ and $\operatorname{Im} \varphi$ are functions of bounded variation. We decompose $\operatorname{Re} \varphi$. Obviously,

$$
\varphi_{1}(x):=V_{a}^{x}(\operatorname{Re} \varphi), \quad x \in[a, b],
$$

is nondecreasing by (1.35). Then

$$
\varphi_{2}(x):=\varphi_{1}(x)-\operatorname{Re} \varphi(x), \quad x \in[a, b],
$$

is nondecreasing too, since for $a \leq x<y \leq b$ it holds

$$
|\operatorname{Re} \varphi(y)-\operatorname{Re} \varphi(x)| \leq V_{x}^{y}(\operatorname{Re} \varphi)=\varphi_{1}(y)-\varphi_{1}(x)
$$

and hence

$$
\varphi_{2}(y)-\varphi_{2}(x)=\left(\varphi_{1}(y)-\varphi_{1}(x)\right)-(\operatorname{Re} \varphi(y)-\operatorname{Re} \varphi(x)) \geq 0 .
$$

Thus we obtain $\operatorname{Re} \varphi=\varphi_{1}-\varphi_{2}$. Analogously, we can decompose $\operatorname{Im} \varphi=\varphi_{3}-\varphi_{4}$. Using $\varphi=\operatorname{Re} \varphi+\mathrm{i} \operatorname{Im} \varphi$, we receive the above Jordan decomposition of φ. If φ is continuous at $x \in[a, b]$, then, by definition, each φ_{j} is continuous at x.

A 2π-periodic function $f: \mathbb{T} \rightarrow \mathbb{C}$ with $V_{0}^{2 \pi}(f)<\infty$ is called a 2π periodic function of bounded variation. By (1.35) a 2π-periodic function of bounded variation has the property $V_{a}^{b}(f)<\infty$ for each compact interval $[a, b] \subset \mathbb{R}$.

Example 1.31 Let $f: \mathbb{T} \rightarrow \mathbb{C}$ be a piecewise continuously differentiable function with jump discontinuities at distinct points $x_{j} \in[0,2 \pi), j=1, \ldots, n$. Assume that it holds $f(x)=\frac{1}{2}(f(x+0)+f(x-0))$ for all $x \in[0,2 \pi)$. Then f is a 2π-periodic function of bounded variation, since

$$
V_{0}^{2 \pi}(f)=\sum_{j=1}^{n}\left|f\left(x_{j}+0\right)-f\left(x_{j}-0\right)\right|+\int_{0}^{2 \pi}\left|f^{\prime}(t)\right| \mathrm{d} t<\infty .
$$

The functions given in Examples 1.5, 1.8, 1.9, and 1.10 are 2π-periodic functions of bounded variation.

Lemma 1.32 There exists a constant $c_{0}>0$ such that for all $\alpha, \beta \in[0, \pi]$ and all $n \in \mathbb{N}$ it holds

$$
\begin{equation*}
\left|\int_{\alpha}^{\beta} D_{n}(t) \mathrm{d} t\right| \leq c_{0} \tag{1.37}
\end{equation*}
$$

Proof We introduce the function $h \in C[0, \pi]$ by

$$
h(t):=\frac{1}{\sin \frac{t}{2}}-\frac{2}{t}, \quad t \in(0, \pi]
$$

and $h(0):=0$. This continuous function h is increasing and we have $0 \leq h(t) \leq$ $h(\pi)<\frac{1}{2}$ for all $t \in[0, \pi]$. Using (1.22), for arbitrary $\alpha, \beta \in[0, \pi]$ we estimate

$$
\begin{aligned}
\left|\int_{\alpha}^{\beta} D_{n}(t) \mathrm{d} t\right| & \leq\left|\int_{\alpha}^{\beta} h(t) \sin \left(n+\frac{1}{2}\right) t \mathrm{~d} t\right|+2\left|\int_{\alpha}^{\beta} \frac{\sin \left(n+\frac{1}{2}\right) t}{t} \mathrm{~d} t\right| \\
& \leq \frac{\pi}{2}+2\left|\int_{\alpha}^{\beta} \frac{\sin \left(n+\frac{1}{2}\right) t}{t} \mathrm{~d} t\right|
\end{aligned}
$$

By the sine integral

$$
\operatorname{Si}(x):=\int_{0}^{x} \frac{\sin t}{t} \mathrm{~d} t, \quad x \in \mathbb{R}
$$

it holds for all $\gamma \geq 0$ (see Lemma 1.41)

$$
\left|\int_{0}^{\gamma} \frac{\sin x}{x} \mathrm{~d} x\right| \leq \operatorname{Si}(\pi)<2
$$

From

$$
\int_{\alpha}^{\beta} \frac{\sin \left(n+\frac{1}{2}\right) t}{t} \mathrm{~d} t=\int_{0}^{\left(n+\frac{1}{2}\right) \beta} \frac{\sin x}{x} \mathrm{~d} x-\int_{0}^{\left(n+\frac{1}{2}\right) \alpha} \frac{\sin x}{x} \mathrm{~d} x
$$

it follows that

$$
\left|\int_{\alpha}^{\beta} \frac{\sin \left(n+\frac{1}{2}\right) t}{t} \mathrm{~d} t\right| \leq 4
$$

i.e., (1.37) is fulfilled for the constant $c_{0}=\frac{\pi}{2}+8$.

Lemma 1.33 Assume that $0<a<b<2 \pi, \delta>0$ and $b-a+2 \delta<2 \pi$ be given. Let $\varphi:[a-\delta-\pi, b+\delta+\pi] \rightarrow \mathbb{R}$ be nondecreasing, piecewise continuous function which is continuous on $[a-\delta, b+\delta]$.

Then for each $\varepsilon>0$ there exists an index $n_{0}(\varepsilon)$ such that for all $n>n_{0}(\varepsilon)$ and all $x \in[a, b]$

$$
\left|\int_{0}^{\pi}(\varphi(x+t)+\varphi(x-t)-2 \varphi(x)) D_{n}(t) \mathrm{d} t\right|<\varepsilon
$$

Proof

1. For $(x, t) \in[a-\delta, b+\delta] \times[0, \pi]$ we introduce the functions

$$
\begin{aligned}
g(x, t) & :=\varphi(x+t)+\varphi(x-t)-2 \varphi(x), \\
h_{1}(x, t) & :=\varphi(x+t)-\varphi(x) \geq 0, \\
h_{2}(x, t) & :=\varphi(x)-\varphi(x-t) \geq 0
\end{aligned}
$$

such that $g=h_{1}-h_{2}$. For fixed $x \in[a, b]$, both functions $h_{j}(x, \cdot), j=1,2$, are nondecreasing on $[0, \pi]$. Since $h_{j}(\cdot, \pi), j=1,2$, are continuous on $[a, b]$, there exists a constant $c_{1}>0$ such that for all $(x, t) \in[a, b] \times[0, \pi]$

$$
\begin{equation*}
\left|h_{j}(x, t)\right| \leq c_{1} . \tag{1.38}
\end{equation*}
$$

Since φ is continuous on the compact interval $[a-\delta, b+\delta]$, the function φ is uniformly continuous on $[a-\delta, b+\delta]$, i.e., for each $\varepsilon>0$ there exists $\beta \in(0, \delta)$ such that for all $y, z \in[a-\delta, b+\delta]$ with $|y-z| \leq \beta$ we have

$$
|\varphi(y)-\varphi(z)|<\frac{\varepsilon}{4 c_{0}}
$$

By the proof of Lemma 1.32 we can choose $c_{0}=\frac{\pi}{2}+8$. Hence we obtain for all $(x, t) \in[a, b] \times[0, \beta]$ and $j=1,2$

$$
\begin{equation*}
0 \leq h_{j}(x, t)<\frac{\varepsilon}{4 c_{0}} . \tag{1.39}
\end{equation*}
$$

2. Now we split the integral

$$
\begin{equation*}
\int_{0}^{\pi} g(x, t) D_{n}(t) \mathrm{d} t=\int_{0}^{\beta} g(x, t) D_{n}(t) \mathrm{d} t+\int_{\beta}^{\pi} g(x, t) D_{n}(t) \mathrm{d} t \tag{1.40}
\end{equation*}
$$

into a sum of two integrals, where the first integral can be written in the form

$$
\begin{equation*}
\int_{0}^{\beta} g(x, t) D_{n}(t) \mathrm{d} t=\int_{0}^{\beta} h_{1}(x, t) D_{n}(t) \mathrm{d} t-\int_{0}^{\beta} h_{2}(x, t) D_{n}(t) \mathrm{d} t \tag{1.41}
\end{equation*}
$$

Observing that $h_{j}(x, \cdot), j=1,2$, are nondecreasing for fixed $x \in[a, b]$, we obtain by the second mean value theorem for integrals, see, e.g., [344, pp. 328329], that for certain $\alpha_{j}(x) \in[0, \beta]$

$$
\begin{aligned}
\int_{0}^{\beta} h_{j}(x, t) D_{n}(t) \mathrm{d} t & =h_{j}(x, 0) \int_{0}^{\alpha_{j}(x)} D_{n}(t) \mathrm{d} t+h_{j}(x, \beta) \int_{\alpha_{j}(x)}^{\beta} D_{n}(t) \mathrm{d} t \\
& =0+h_{j}(x, \beta) \int_{\alpha_{j}(x)}^{\beta} D_{n}(t) \mathrm{d} t, \quad j=1,2 .
\end{aligned}
$$

By (1.37) and (1.39) this integral can be estimated for all $x \in[a, b]$ by

$$
\left|\int_{0}^{\beta} h_{j}(x, t) D_{n}(t) \mathrm{d} t\right| \leq \frac{\varepsilon}{4 c_{0}} c_{0}=\frac{\varepsilon}{4}
$$

such that by (1.41) for all $x \in[a, b]$

$$
\begin{equation*}
\left|\int_{0}^{\beta} g(x, t) D_{n}(t) \mathrm{d} t\right| \leq \frac{\varepsilon}{4}+\frac{\varepsilon}{4}=\frac{\varepsilon}{2} . \tag{1.42}
\end{equation*}
$$

3. Next we consider the second integral in (1.40) which can be written as

$$
\begin{equation*}
\int_{\beta}^{\pi} g(x, t) D_{n}(t) \mathrm{d} t=\int_{\beta}^{\pi} h_{1}(x, t) D_{n}(t) \mathrm{d} t-\int_{\beta}^{\pi} h_{2}(x, t) D_{n}(t) \mathrm{d} t . \tag{1.43}
\end{equation*}
$$

Since $h_{j}(x, \cdot), j=1,2$, are nondecreasing for fixed $x \in[a, b]$, the second mean value theorem for integrals provides the existence of certain $\gamma_{j}(x) \in[\beta, \pi]$ such that

$$
\begin{equation*}
\int_{\beta}^{\pi} h_{j}(x, t) D_{n}(t) \mathrm{d} t=h_{j}(x, \beta) \int_{\beta}^{\gamma_{j}(x)} D_{n}(t) \mathrm{d} t+h_{j}(x, \pi) \int_{\gamma_{j}(x)}^{\pi} D_{n}(t) \mathrm{d} t \tag{1.44}
\end{equation*}
$$

From (1.22) it follows

$$
\int_{\beta}^{\gamma_{j}(x)} D_{n}(t) \mathrm{d} t=\int_{\beta}^{\gamma_{j}(x)} \frac{1}{\sin \frac{t}{2}} \sin \left(n+\frac{1}{2}\right) t \mathrm{~d} t
$$

Since $\left(\sin \frac{t}{2}\right)^{-1}$ is monotone on $\left[\beta, \gamma_{j}(x)\right]$, again by the second mean value theorem for integrals there exist $\eta_{j}(x) \in\left[\beta, \gamma_{j}(x)\right]$ with

$$
\begin{align*}
\int_{\beta}^{\gamma_{j}(x)} D_{n}(t) \mathrm{d} t= & \frac{1}{\sin \frac{\beta}{2}} \int_{\beta}^{\eta_{j}(x)} \sin \left(n+\frac{1}{2}\right) t \mathrm{~d} t \\
& +\frac{1}{\sin \frac{\gamma_{j}(x)}{2}} \int_{\eta_{j}(x)}^{\gamma_{j}(x)} \sin \left(n+\frac{1}{2}\right) t \mathrm{~d} t \tag{1.45}
\end{align*}
$$

Now we estimate both integrals in (1.45) such that

$$
\begin{aligned}
& \left|\int_{\beta}^{\eta_{j}(x)} \sin \left(n+\frac{1}{2}\right) t \mathrm{~d} t\right| \leq \frac{4}{2 n+1} \\
& \left|\int_{\eta_{j}(x)}^{\gamma_{j}(x)} \sin \left(n+\frac{1}{2}\right) t \mathrm{~d} t\right| \leq \frac{4}{2 n+1}
\end{aligned}
$$

Applying the above inequalities, we see by (1.45) for all $x \in[a, b]$ and $j=1,2$ that

$$
\begin{equation*}
\left|\int_{\beta}^{\gamma_{j}(x)} D_{n}(t) \mathrm{d} t\right| \leq \frac{8}{(2 n+1) \sin \frac{\beta}{2}} . \tag{1.46}
\end{equation*}
$$

Analogously, one can show for all $x \in[a, b]$ and $j=1,2$ that

$$
\begin{equation*}
\left|\int_{\gamma_{j}(x)}^{\pi} D_{n}(t) \mathrm{d} t\right| \leq \frac{8}{(2 n+1) \sin \frac{\beta}{2}} . \tag{1.47}
\end{equation*}
$$

Using (1.38) and (1.44), the inequalities (1.46) and (1.47) yield for all $x \in[a, b]$ and $j=1,2$,

$$
\left|\int_{\beta}^{\pi} h_{j}(x, t) D_{n}(t) \mathrm{d} t\right| \leq \frac{16 c_{1}}{(2 n+1) \sin \frac{\beta}{2}}
$$

and hence by (1.43)

$$
\left|\int_{\beta}^{\pi} g(x, t) D_{n}(t) \mathrm{d} t\right| \leq \frac{32 c_{1}}{(2 n+1) \sin \frac{\beta}{2}} .
$$

Therefore for the chosen $\varepsilon>0$ there exists an index $n_{0}(\varepsilon) \in \mathbb{N}$ such that for all $n>n_{0}(\varepsilon)$ and all $x \in[a, b]$,

$$
\begin{equation*}
\left|\int_{\beta}^{\pi} g(x, t) D_{n}(t) \mathrm{d} t\right|<\frac{\varepsilon}{2} . \tag{1.48}
\end{equation*}
$$

Together with (1.40), (1.42), and (1.48) it follows for all $n>n_{0}(\varepsilon)$ and all $x \in$ [$a, b]$,

$$
\left|\int_{0}^{\pi} g(x, t) D_{n}(t) \mathrm{d} t\right|<\varepsilon .
$$

This completes the proof.
Based on Riemann's localization principle and these preliminaries, we can prove the following important theorem concerning pointwise convergence of the Fourier series of a piecewise continuously differentiable function $f: \mathbb{T} \rightarrow \mathbb{C}$.

Theorem 1.34 (Convergence Theorem of Dirichlet-Jordan) Let $f: \mathbb{T} \rightarrow \mathbb{C}$ be a piecewise continuously differentiable function. Then at every point $x_{0} \in \mathbb{R}$, the Fourier series of f converges as

$$
\lim _{n \rightarrow \infty}\left(S_{n} f\right)\left(x_{0}\right)=\frac{1}{2}\left(f\left(x_{0}+0\right)+f\left(x_{0}-0\right)\right)
$$

In particular, if f is continuous at x_{0}, then

$$
\lim _{n \rightarrow \infty}\left(S_{n} f\right)\left(x_{0}\right)=f\left(x_{0}\right)
$$

Further the Fourier series of f converges uniformly on any closed interval $[a, b] \subset$ $(0,2 \pi)$, if f is continuous on $[a-\delta, b+\delta]$ with certain $\delta>0$. Especially, if $f \in C(\mathbb{T})$ is piecewise continuously differentiable, then the Fourier series of f converges uniformly to f on \mathbb{R}.

Proof

1. By assumption there exists $\delta \in(0, \pi)$, such that f is continuously differentiable in $\left[x_{0}-\delta, x_{0}+\delta\right] \backslash\left\{x_{0}\right\}$. Let

$$
M:=\max _{t \in[-\pi, \pi]}\left\{\left|f^{\prime}(t+0)\right|,\left|f^{\prime}(t-0)\right|\right\}
$$

By the mean value theorem we conclude

$$
\left|f\left(x_{0}+t\right)-f\left(x_{0}+0\right)\right| \leq t M, \quad\left|f\left(x_{0}-t\right)-f\left(x_{0}-0\right)\right| \leq t M
$$

for all $t \in(0, \delta]$. This implies

$$
\int_{0}^{\delta} \frac{\left|f\left(x_{0}-t\right)+f\left(x_{0}+t\right)-f\left(x_{0}+0\right)-f\left(x_{0}-0\right)\right|}{t} \mathrm{~d} t \leq 2 M \delta<\infty .
$$

By $\frac{t}{\pi} \leq \sin \frac{t}{2}$ for $t \in[0, \pi]$ the function

$$
h(t):=\frac{f\left(x_{0}-t\right)+f\left(x_{0}+t\right)-f\left(x_{0}+0\right)-f\left(x_{0}-0\right)}{t} \frac{t}{\sin \frac{t}{2}}, \quad t \in(0, \delta],
$$

is absolutely integrable on $[0, \delta]$. By Lemma 1.27 of Riemann-Lebesgue we get

$$
\lim _{n \rightarrow \infty} \int_{0}^{\delta} h(t) \sin \left(\left(n+\frac{1}{2}\right) t\right) \mathrm{d} t=0
$$

Using Riemann's localization principle, cf. Theorem 1.28, we obtain the assertion with $2 c=f\left(x_{0}+0\right)+f\left(x_{0}-0\right)$.
2. By assumption and Example 1.31, the given function f is a 2π-periodic function of bounded variation. Then it follows that $V_{a-\delta-\pi}^{b+\delta+\pi}(f)<\infty$. By the Jordan decomposition Theorem 1.30 the function f restricted on $[a-\delta-\pi, b+\delta+\pi]$ can be represented in the form

$$
f=\left(\varphi_{1}-\varphi_{2}\right)+\mathrm{i}\left(\varphi_{3}-\varphi_{4}\right),
$$

where $\varphi_{j}:[a-\delta-\pi, b+\delta+\pi] \rightarrow \mathbb{R}, j=1, \ldots, 4$, are nondecreasing and piecewise continuous. Since f is continuous on $[a, b]$, each $\varphi_{j}, j=1, \ldots, 4$, is continuous on $[a, b]$ too. Applying Lemma 1.33, we obtain that for each $\varepsilon>0$ there exists an index $N(\varepsilon) \in \mathbb{N}$ such that for $n>N(\varepsilon)$ and all $x \in[a, b]$,

$$
\left|\left(S_{n} f\right)(x)-f(x)\right|=\frac{1}{2 \pi}\left|\int_{0}^{\pi}(f(x+t)+f(x-t)-2 f(x)) D_{n}(t) \mathrm{d} t\right|<\varepsilon .
$$

This completes the proof.
Example 1.35 The functions $f: \mathbb{T} \rightarrow \mathbb{C}$ given in Examples 1.5, 1.8, 1.9, and 1.10 are piecewise continuously differentiable. If $x_{0} \in \mathbb{R}$ is a jump discontinuity of f, then the value $f\left(x_{0}\right)$ is equal to the mean $\frac{1}{2}\left(f\left(x_{0}+0\right)+f\left(x_{0}-0\right)\right)$ of right and left limits. By the convergence Theorem 1.34 of Dirichlet-Jordan, the Fourier series of f converges to f in each point of \mathbb{R}. On each closed interval, which does not contain any discontinuity of f, the Fourier series converges uniformly. Since the piecewise continuously differentiable function of Example 1.8 is contained in $C(\mathbb{T})$, its Fourier series converges uniformly on \mathbb{R}.

Remark 1.36 The convergence Theorem 1.34 of Dirichlet-Jordan is also valid for each 2π-periodic function $f: \mathbb{T} \rightarrow \mathbb{C}$ of bounded variation (see, e.g., [344, pp. 546-547]).

1.4.2 Uniform Convergence

A useful criterion for uniform convergence of the Fourier series of a function $f \in$ $C(\mathbb{T})$ is the following:

Theorem 1.37 If $f \in C(\mathbb{T})$ fulfills the condition

$$
\begin{equation*}
\sum_{k \in \mathbb{Z}}\left|c_{k}(f)\right|<\infty \tag{1.49}
\end{equation*}
$$

then the Fourier series of f converges uniformly to f. Each function $f \in C^{1}(\mathbb{T})$ has the property (1.49).

Proof By the assumption (1.49) and

$$
\left|c_{k}(f) \mathrm{e}^{\mathrm{i} k \cdot}\right|=\left|c_{k}(f)\right|
$$

the uniform convergence of the Fourier series follows from the Weierstrass criterion of uniform convergence. If $g \in C(\mathbb{T})$ is the sum of the Fourier series of f, then we obtain for all $k \in \mathbb{Z}$

$$
c_{k}(g)=\left\langle g, \mathrm{e}^{\mathrm{i} k \cdot}\right\rangle=\sum_{n \in \mathbb{Z}} c_{n}(f)\left\langle\mathrm{e}^{\mathrm{i} n \cdot}, \mathrm{e}^{\mathrm{i} k \cdot}\right\rangle=c_{k}(f)
$$

such that $g=f$ by Theorem 1.1.
Assume that $f \in C^{1}(\mathbb{T})$. By the convergence Theorem 1.34 of Dirichlet-Jordan we know already that the Fourier series of f converges uniformly to f. This could be also seen as follows: By the differentiation property of the Fourier coefficients in Lemma 1.6, we have $c_{k}(f)=(\mathrm{i} k)^{-1} c_{k}\left(f^{\prime}\right)$ for all $k \neq 0$ and $c_{0}\left(f^{\prime}\right)=0$. By Parseval equality of $f^{\prime} \in L_{2}(\mathbb{T})$ it follows

$$
\left\|f^{\prime}\right\|^{2}=\sum_{k \in \mathbb{Z}}\left|c_{k}\left(f^{\prime}\right)\right|^{2}<\infty
$$

Using Cauchy-Schwarz inequality, we get finally

$$
\begin{aligned}
\sum_{k \in \mathbb{Z}}\left|c_{k}(f)\right| & =\left|c_{0}(f)\right|+\sum_{k \neq 0} \frac{1}{|k|}\left|c_{k}\left(f^{\prime}\right)\right| \\
& \leq\left|c_{0}(f)\right|+\left(\sum_{k \neq 0} \frac{1}{k^{2}}\right)^{1 / 2}\left(\sum_{k \neq 0}\left|c_{k}\left(f^{\prime}\right)\right|^{2}\right)^{1 / 2}<\infty
\end{aligned}
$$

This completes the proof.

Remark 1.38 If $f \in C^{1}(\mathbb{T})$, then by the mean value theorem it follows that

$$
|f(x+h)-f(x)| \leq|h| \max _{t \in \mathbb{T}}\left|f^{\prime}(t)\right|
$$

for all $x, x+h \in \mathbb{T}$, that means f is Lipschitz continuous on \mathbb{T}. More generally, a function $f \in C(\mathbb{T})$ is called Hölder continuous of order $\alpha \in(0,1]$ on \mathbb{T}, if

$$
|f(x+h)-f(x)| \leq c|h|^{\alpha}
$$

for all $x, x+h \in \mathbb{T}$ with certain constant $c \geq 0$ which depends on f. One can show that the Fourier series of a function $f \in C(\mathbb{T})$ which is Hölder continuous of order $\alpha \in(0,1]$ converges uniformly to f and it holds

$$
\left\|S_{n} f-f\right\|_{C(\mathbb{T})}=\mathscr{O}\left(n^{-\alpha} \log n\right), \quad n \rightarrow \infty
$$

(see [392, Vol. I, p. 64]).
In practice, the following convergence result of Fourier series for a sufficiently smooth, 2π-periodic function is very useful.

Theorem 1.39 (Bernstein) Let $f \in C^{r}(\mathbb{T})$ with fixed $r \in \mathbb{N}$ be given. Then the Fourier coefficients $c_{k}(f)$ have the form

$$
\begin{equation*}
c_{k}(f)=\frac{1}{(\mathrm{i} k)^{r}} c_{k}\left(f^{(r)}\right), \quad k \in \mathbb{Z} \backslash\{0\} . \tag{1.50}
\end{equation*}
$$

Further the approximation error $f-S_{n} f$ can be estimated for all $n \in \mathbb{N} \backslash\{1\}$ by

$$
\begin{equation*}
\left\|f-S_{n} f\right\|_{C(\mathbb{T})} \leq c\left\|f^{(r)}\right\|_{C(\mathbb{T})} \frac{\ln n}{n^{r}} \tag{1.51}
\end{equation*}
$$

where the constant $c>0$ is independent of f and n.
Proof

1. Repeated integration by parts provides (1.50). By Lemma 1.27 of RiemannLebesgue we know

$$
\lim _{|k| \rightarrow \infty} c_{k}\left(f^{(r)}\right)=0
$$

such that

$$
\lim _{|k| \rightarrow \infty} k^{r} c_{k}(f)=0
$$

2. The nth partial sum of the Fourier series of $f^{(r)} \in C(\mathbb{T})$ can be written in the form

$$
\left(S_{n} f^{(r)}\right)(x)=\frac{1}{\pi} \int_{0}^{\pi}\left(f^{(r)}(x+y)+f^{(r)}(x-y)\right) \frac{\sin \left(n+\frac{1}{2}\right) y}{2 \sin \frac{y}{2}} \mathrm{~d} y .
$$

Then we estimate

$$
\begin{aligned}
\left|\left(S_{n} f^{(r)}\right)(x)\right| & \leq \frac{2}{\pi}\left\|f^{(r)}\right\|_{C(\mathbb{T})} \int_{0}^{\pi} \frac{\left|\sin \left(n+\frac{1}{2}\right) y\right|}{2 \sin \frac{y}{2}} \mathrm{~d} y \\
& <\left\|f^{(r)}\right\|_{C(\mathbb{T})} \int_{0}^{\pi} \frac{\left|\sin \left(n+\frac{1}{2}\right) y\right|}{y} \mathrm{~d} y=\left\|f^{(r)}\right\|_{C(\mathbb{T})} \int_{0}^{\left(n+\frac{1}{2}\right) \pi} \frac{|\sin u|}{u} \mathrm{~d} u \\
& <\left\|f^{(r)}\right\|_{C(\mathbb{T})}\left(1+\int_{1}^{\left(n+\frac{1}{2}\right) \pi} \frac{1}{u} \mathrm{~d} u\right)=\left\|f^{(r)}\right\|_{C(\mathbb{T})}\left(1+\ln \left(n+\frac{1}{2}\right) \pi\right) .
\end{aligned}
$$

For a convenient constant $c>0$, we obtain for all $n \in \mathbb{N} \backslash\{1\}$ that

$$
\begin{equation*}
\left\|S_{n} f^{(r)}\right\|_{C(\mathbb{T})} \leq c\left\|f^{(r)}\right\|_{C(\mathbb{T})} \ln n \tag{1.52}
\end{equation*}
$$

By Theorem 1.37 the Fourier series of f converges uniformly to f such that by (1.50)

$$
\begin{align*}
f-S_{n} f & =\sum_{k=n+1}^{\infty}\left(c_{k}(f) \mathrm{e}^{\mathrm{i} k \cdot}+c_{-k}(f) \mathrm{e}^{-\mathrm{i} k \cdot}\right) \\
& =\sum_{k=n+1}^{\infty} \frac{1}{(\mathrm{i} k)^{r}}\left(c_{k}\left(f^{(r)}\right) \mathrm{e}^{\mathrm{i} k \cdot}+(-1)^{r} c_{-k}\left(f^{(r)}\right) \mathrm{e}^{-\mathrm{i} k \cdot}\right) . \tag{1.53}
\end{align*}
$$

3. For even smoothness $r=2 s, s \in \mathbb{N}$, we obtain by (1.53) that

$$
\begin{aligned}
f-S_{n} f & =(-1)^{s} \sum_{k=n+1}^{\infty} \frac{1}{k^{r}}\left(c_{k}\left(f^{(r)}\right) \mathrm{e}^{\mathrm{i} k \cdot}+c_{-k}\left(f^{(r)}\right) \mathrm{e}^{-\mathrm{i} k \cdot}\right) \\
& =(-1)^{s} \sum_{k=n+1}^{\infty} \frac{1}{k^{r}}\left(S_{k} f^{(r)}-S_{k-1} f^{(r)}\right)
\end{aligned}
$$

Obviously, for $N>n$ it holds the identity

$$
\begin{equation*}
\sum_{k=n+1}^{N} a_{k}\left(b_{k}-b_{k-1}\right)=a_{N} b_{N}-a_{n+1} b_{n}+\sum_{k=n+1}^{N-1}\left(a_{k}-a_{k+1}\right) b_{k} \tag{1.54}
\end{equation*}
$$

for arbitrary complex numbers a_{k} and b_{k}. We apply (1.54) to $a_{k}=k^{-r}$ and $b_{k}=S_{k} f^{(r)}$. Then for $N \rightarrow \infty$ we receive

$$
\begin{equation*}
f-S_{n} f=(-1)^{s+1} \frac{1}{(n+1)^{r}} S_{n} f^{(r)}+(-1)^{s} \sum_{k=n+1}^{\infty}\left(\frac{1}{k^{r}}-\frac{1}{(k+1)^{r}}\right) S_{k} f^{(r)} \tag{1.55}
\end{equation*}
$$

since by (1.52)

$$
\frac{1}{N^{r}}\left\|S_{N} f^{(r)}\right\|_{C(\mathbb{T})} \leq c\left\|f^{(r)}\right\|_{C(\mathbb{T})} \frac{\ln N}{N^{r}} \rightarrow 0 \quad \text { as } N \rightarrow \infty
$$

Thus we can estimate the approximation error (1.55) by

$$
\left\|f-S_{n} f\right\|_{C(\mathbb{T})} \leq c\left\|f^{(r)}\right\|_{C(\mathbb{T})}\left(\frac{\ln n}{(n+1)^{r}}+\sum_{k=n+1}^{\infty}\left(\frac{1}{k^{r}}-\frac{1}{(k+1)^{r}}\right) \ln k\right) .
$$

Using the identity (1.54) for $a_{k}=\ln k$ and $b_{k}=-(k+1)^{-r}$, we see that

$$
\sum_{k=n+1}^{\infty}\left(\frac{1}{k^{r}}-\frac{1}{(k+1)^{r}}\right) \ln k=\frac{\ln (n+1)}{(n+1)^{r}}+\sum_{k=n+1}^{\infty} \frac{1}{(k+1)^{r}} \ln \left(1+\frac{1}{k}\right)
$$

since $(N+1)^{-k} \ln N \rightarrow 0$ as $N \rightarrow \infty$. From $\ln \left(1+\frac{1}{k}\right)<\frac{1}{k}$ it follows that

$$
\begin{aligned}
\sum_{k=n+1}^{\infty} \frac{1}{(k+1)^{r}} \ln \left(1+\frac{1}{k}\right) & <\sum_{k=n+1}^{\infty} \frac{1}{k(k+1)^{r}}<\sum_{k=n+1}^{\infty} \frac{1}{k^{r+1}} \\
& <\int_{n}^{\infty} \frac{1}{x^{r+1}} \mathrm{~d} x=\frac{1}{r n^{r}}
\end{aligned}
$$

Hence for convenient constant $c_{1}>0$ we have

$$
\left\|f-S_{n} f\right\|_{C(\mathbb{T})} \leq c_{1}\left\|f^{(r)}\right\|_{C(\mathbb{T})} \frac{1}{n^{r}}(1+\ln n)
$$

This inequality implies (1.51) for even r.
4. The case of odd smoothness $r=2 s+1, s \in \mathbb{N}_{0}$, can be handled similarly as the case of even r. By (1.53) we obtain

$$
\begin{align*}
f-S_{n} f & =(-1)^{s} \mathrm{i} \sum_{k=n+1}^{\infty} \frac{1}{k^{r}}\left(c_{-k}\left(f^{(r)}\right) \mathrm{e}^{-\mathrm{i} k \cdot}-c_{k}\left(f^{(r)}\right) \mathrm{e}^{\mathrm{i} k \cdot}\right) \\
& =(-1)^{s} \sum_{k=n+1}^{\infty} \frac{1}{k^{r}}\left(\tilde{S}_{k} f^{(r)}-\tilde{S}_{k-1} f^{(r)}\right) \tag{1.56}
\end{align*}
$$

with the nth partial sum of the conjugate Fourier series of $f^{(r)}$

$$
\tilde{S}_{n} f^{(r)}:=\mathrm{i} \sum_{j=1}^{n}\left(c_{-j}\left(f^{(r)}\right) \mathrm{e}^{-\mathrm{i} j \cdot}-c_{j}\left(f^{(r)}\right) \mathrm{e}^{\mathrm{i} j \cdot}\right)
$$

From

$$
\begin{aligned}
\mathrm{i}\left(c_{-j}\left(f^{(r)}\right) \mathrm{e}^{-\mathrm{i} j x}-c_{j}\left(f^{(r)}\right) \mathrm{e}^{\mathrm{i} j x}\right) & =-\frac{1}{\pi} \int_{-\pi}^{\pi} f^{(r)}(y) \sin j(y-x) \mathrm{d} y \\
& =-\frac{1}{\pi} \int_{-\pi}^{\pi} f^{(r)}(x+y) \sin (j y) \mathrm{d} y \\
& =-\frac{1}{\pi} \int_{0}^{\pi}\left(f^{(r)}(x+y)-f^{(r)}(x-y)\right) \sin (j y) \mathrm{d} y
\end{aligned}
$$

and

$$
\sum_{j=1}^{n} \sin (j y)=\frac{\cos \frac{y}{2}-\cos \left(n+\frac{1}{2}\right) y}{2 \sin \frac{y}{2}}, \quad y \in \mathbb{R} \backslash 2 \pi \mathbb{Z}
$$

it follows that

$$
\left(\tilde{S}_{n} f^{(r)}\right)(x)=-\frac{1}{\pi} \int_{0}^{\pi}\left(f^{(r)}(x+y)-f^{(r)}(x-y)\right) \frac{\cos \frac{y}{2}-\cos \left(n+\frac{1}{2}\right) y}{2 \sin \frac{y}{2}} \mathrm{~d} y
$$

and hence

$$
\begin{aligned}
\left|\left(\tilde{S}_{n} f^{(r)}\right)(x)\right| & \leq \frac{2}{\pi}\left\|f^{(r)}\right\|_{C(\mathbb{T})} \int_{0}^{\pi} \frac{\left|\cos \frac{y}{2}-\cos \left(n+\frac{1}{2}\right) y\right|}{2 \sin \frac{y}{2}} \mathrm{~d} y \\
& =\frac{4}{\pi}\left\|f^{(r)}\right\|_{C(\mathbb{T})} \int_{0}^{\pi} \frac{\left|\sin \frac{n y}{2} \sin \frac{(n+1) y}{2}\right|}{2 \sin \frac{y}{2}} \mathrm{~d} y \\
& <\frac{4}{\pi}\left\|f^{(r)}\right\|_{C(\mathbb{T})} \int_{0}^{\pi} \frac{\left|\sin \frac{(n+1) y}{2}\right|}{2 \sin \frac{y}{2}} \mathrm{~d} y .
\end{aligned}
$$

Similarly as in step 2 , we obtain for any $n \in \mathbb{N} \backslash\{1\}$

$$
\left\|\tilde{S}_{n} f^{(r)}\right\|_{C(\mathbb{T})} \leq c\left\|f^{(r)}\right\|_{C(\mathbb{T})} \ln n
$$

with some constant $c>0$.

Now we apply the identity (1.54) to $a_{k}=k^{-r}$ and $b_{k}=\tilde{S}_{k} f^{(r)}$. For $N \rightarrow \infty$ it follows from (1.56) that

$$
f-S_{n} f=(-1)^{s+1} \frac{1}{(n+1)^{r}} \tilde{S}_{n} f^{(r)}+(-1)^{s} \sum_{k=n+1}^{\infty}\left(\frac{1}{k^{r}}-\frac{1}{(k+1)^{r}}\right) \tilde{S}_{k} f^{(r)}
$$

Thus we obtain the estimate

$$
\left\|f-S_{n} f\right\|_{C(\mathbb{T})} \leq c\|f\|_{C(\mathbb{T})}\left(\frac{\ln n}{(n+1)^{r}}+\sum_{k=n+1}^{\infty}\left(\frac{1}{k^{r}}-\frac{1}{(k+1)^{r}}\right) \ln k\right)
$$

We proceed as in step 3 and show the estimate (1.51) for odd r.
Roughly speaking we can say by Theorem 1.39 of Bernstein:
The smoother a function $f: \mathbb{T} \rightarrow \mathbb{C}$ is, the faster its Fourier coefficients $c_{k}(f)$ tend to zero as $|k| \rightarrow \infty$ and the faster its Fourier series converges uniformly to f.

Remark 1.40 Let $f \in C^{r-1}(\mathbb{T})$ with fixed $r \in \mathbb{N}$ be given. Assume that $f^{(r)}$ exists in $[0,2 \pi)$ without finitely many points $x_{j} \in[0,2 \pi)$. Suppose that both onesided derivatives $f^{(r)}\left(x_{j} \pm 0\right)$ exist and are finite for each x_{j} and that $f^{(r)}\left(x_{j}\right):=$ $\frac{1}{2}\left(f^{(r)}\left(x_{j}+0\right)+f^{(r)}\left(x_{j}-0\right)\right)$. If $f^{(r)}$ is of bounded variation $V_{0}^{2 \pi}\left(f^{(r)}\right)$, c.f. (1.34), then for all $k \in \mathbb{Z} \backslash\{0\}$ we have

$$
\left|c_{k}(f)\right| \leq \frac{V_{0}^{2 \pi}\left(f^{(r)}\right)}{2 \pi|k|^{r+1}}
$$

This upper bound can be derived by integrating $c_{k}(f)$ by parts r-times, followed by partial integration of a Stieltjes integral,

$$
\int_{0}^{2 \pi} f^{(r)}(x) \mathrm{e}^{-\mathrm{i} k x} \mathrm{~d} x=\int_{0}^{2 \pi} f^{(r)}(x) \mathrm{d} g(x)=\left.f^{(r)}(x) g(x)\right|_{0} ^{2 \pi}-\int_{0}^{2 \pi} g(x) \mathrm{d} f^{(r)}(x)
$$

with $g(x)=\frac{1}{-\mathrm{i} k} \mathrm{e}^{-\mathrm{i} k x}$, see, e.g., [46, pp. 186-188], [380, Theorem 4.3].

1.4.3 Gibbs Phenomenon

Let $f: \mathbb{T} \rightarrow \mathbb{C}$ be a piecewise continuously differentiable function with a jump discontinuity at $x_{0} \in \mathbb{R}$. Then Theorem 1.34 of Dirichlet-Jordan implies

$$
\lim _{n \rightarrow \infty}\left(S_{n} f\right)\left(x_{0}\right)=\frac{f\left(x_{0}-0\right)+f\left(x_{0}+0\right)}{2}
$$

Clearly, the Fourier series of f cannot converge uniformly in any small neighborhood of x_{0}, because the uniform limit of the continuous functions $S_{n} f$ would be continuous. The Gibbs phenomenon describes the bad convergence behavior of the Fourier partial sums $S_{n} f$ in a small neighborhood of x_{0}. If $n \rightarrow \infty$, then $S_{n} f$ overshoots and undershoots f near the jump discontinuity at x_{0}, see the right in Fig. 1.4.

First we analyze the convergence of the Fourier partial sums $S_{n} s$ of the sawtooth function s from Example 1.9 which is piecewise linear with $s(0)=0$ and therefore piecewise continuously differentiable. The nth Fourier partial sum $S_{n} s$ reads as

$$
\left(S_{n} s\right)(x)=\sum_{k=1}^{n} \frac{1}{\pi k} \sin (k x)
$$

By the Theorem 1.34 of Dirichlet-Jordan, $\left(S_{n} s\right)(x)$ converges to $s(x)$ as $n \rightarrow \infty$ at each point $x \in \mathbb{R} \backslash 2 \pi \mathbb{Z}$ such that

$$
s(x)=\sum_{k=1}^{\infty} \frac{1}{\pi k} \sin (k x)
$$

Now we compute $S_{n} s$ in a neighborhood of the jump discontinuity at $x_{0}=0$. By Example 1.14 we have

$$
\frac{1}{2}+\sum_{k=1}^{n} \cos (k t)=\frac{1}{2} D_{n}(t), \quad t \in \mathbb{R}
$$

and hence by integration

$$
\begin{align*}
\frac{x}{2 \pi}+\left(S_{n} s\right)(x)= & \frac{1}{2 \pi} \int_{0}^{x} D_{n}(t) \mathrm{d} t=\frac{1}{\pi} \int_{0}^{x / 2} \frac{\sin ((2 n+1) t)}{t} \mathrm{~d} t \\
& +\frac{1}{\pi} \int_{0}^{x / 2} h(t) \sin ((2 n+1) t) \mathrm{d} t \tag{1.57}
\end{align*}
$$

where the function

$$
h(t):= \begin{cases}(\sin t)^{-1}-t^{-1} & t \in[-\pi, \pi] \backslash\{0\}, \\ 0 & t=0\end{cases}
$$

is continuously differentiable in $[-\pi, \pi]$. Integration by parts yields

$$
\frac{1}{\pi} \int_{0}^{x / 2} h(t) \sin ((2 n+1) t) \mathrm{d} t=\mathscr{O}\left(n^{-1}\right), \quad n \rightarrow \infty
$$

Using the sine integral

$$
\operatorname{Si}(y):=\int_{0}^{y} \frac{\sin t}{t} \mathrm{~d} t, \quad y \in \mathbb{R}
$$

we obtain

$$
\begin{equation*}
\left(S_{n} s\right)(x)=\frac{1}{\pi} \operatorname{Si}\left(\left(n+\frac{1}{2}\right) x\right)-\frac{x}{2 \pi}+\mathscr{O}\left(n^{-1}\right), \quad n \rightarrow \infty . \tag{1.58}
\end{equation*}
$$

Lemma 1.41 The sine integral has the property

$$
\lim _{y \rightarrow \infty} \operatorname{Si}(y)=\int_{0}^{\infty} \frac{\sin t}{t} \mathrm{~d} t=\frac{\pi}{2}
$$

Further $\operatorname{Si}(\pi)$ is the maximum value of the sine integral.
Proof Introducing

$$
a_{k}:=\int_{k \pi}^{(k+1) \pi} \frac{\sin t}{t} \mathrm{~d} t, \quad k \in \mathbb{N}_{0}
$$

we see that $\operatorname{sgn} a_{k}=(-1)^{k},\left|a_{k}\right|>\left|a_{k+1}\right|$ and $\lim _{k \rightarrow \infty}\left|a_{k}\right|=0$. By the Leibniz criterion for alternating series we obtain that

$$
\int_{0}^{\infty} \frac{\sin t}{t} \mathrm{~d} t=\sum_{k=0}^{\infty} a_{k}<\infty
$$

i.e., $\lim _{y \rightarrow \infty} \operatorname{Si}(y)$ exists. From Eq. (1.57) with $x=\pi$ it follows that

$$
\frac{\pi}{2}=\int_{0}^{\pi / 2} \frac{\sin ((2 n+1) t)}{t} \mathrm{~d} t+\int_{0}^{\pi / 2} h(t) \sin ((2 n+1) t) \mathrm{d} t
$$

By Lemma 1.27 of Riemann-Lebesgue we conclude for $k \rightarrow \infty$ that

$$
\frac{\pi}{2}=\lim _{k \rightarrow \infty} \int_{0}^{\pi / 2} \frac{\sin ((2 n+1) t)}{t} \mathrm{~d} t=\lim _{k \rightarrow \infty} \int_{0}^{\left(k+\frac{1}{2}\right) \pi} \frac{\sin x}{x} \mathrm{~d} x
$$

Consequently,

$$
\sum_{k=0}^{\infty} a_{k}=\frac{\pi}{2}, \quad \operatorname{Si}(n \pi)=\sum_{k=0}^{n-1} a_{k}, \quad n \in \mathbb{N}
$$

The function Si defined on $[0, \infty)$ is continuous, bounded, and nonnegative. Further Si increases monotonously on $[2 k \pi,(2 k+1) \pi]$ and decreases monotonously on $[(2 k+1) \pi,(2 k+2) \pi]$ for all $k \in \mathbb{N}_{0}$. Thus we have

$$
\max \{\operatorname{Si}(y): y \in[0, \infty)\}=\operatorname{Si}(\pi) \approx 1.8519
$$

For $x=\frac{2 \pi}{2 n+1}$, we obtain by (1.58) and Lemma 1.41 that

$$
\left(S_{n} s\right)\left(\frac{2 \pi}{2 n+1}\right)=\frac{1}{\pi} \operatorname{Si}(\pi)-\frac{1}{2 n+1}+\mathscr{O}\left(n^{-1}\right), \quad n \rightarrow \infty,
$$

where $\frac{1}{\pi} \operatorname{Si}(\pi)$ is the maximum value of $\frac{1}{\pi} \operatorname{Si}\left(\left(n+\frac{1}{2}\right) x\right)$ for all $x>0$.
Ignoring the term $-\frac{1}{2 n+1}+\mathscr{O}\left(n^{-1}\right)$ for large n, we conclude that
$\lim _{n \rightarrow \infty}\left(S_{n} s\right)\left(\frac{2 \pi}{2 n+1}\right)=\frac{1}{\pi} \operatorname{Si}(\pi)=s(0+0)+\left(\frac{1}{\pi} \operatorname{Si}(\pi)-\frac{1}{2}\right)(s(0+0)-s(0-0))$,
where $\frac{1}{\pi} \operatorname{Si}(\pi)-\frac{1}{2} \approx 0.08949$. Since the sawtooth function $s: \mathbb{T} \rightarrow \mathbb{C}$ is odd, we obtain that
$\lim _{n \rightarrow \infty}\left(S_{n} s\right)\left(-\frac{2 \pi}{2 n+1}\right)=-\frac{1}{\pi} \operatorname{Si}(\pi)=s(0-0)-\left(\frac{1}{\pi} \operatorname{Si}(\pi)-\frac{1}{2}\right)(s(0+0)-s(0-0))$.
Thus for large n, we observe an overshooting and undershooting of $S_{n} s$ at both sides of the jump discontinuity of approximately 9% of the jump height. This behavior does not change with growing n and is typical for the convergence of $S_{n} s$ near a jump discontinuity. Figure 1.10 illustrates this behavior.

Fig. 1.10 Gibbs phenomenon for the Fourier partial sums $S_{8} s$ (blue, left) and $S_{16} s$ (blue, right), where s is the 2π-periodic sawtooth function (red)

A general description of the Gibbs phenomenon is given by the following:
Theorem 1.42 (Gibbs Phenomenon) Let $f: \mathbb{T} \rightarrow \mathbb{C}$ be a piecewise continuously differentiable function with a jump discontinuity at $x_{0} \in \mathbb{R}$. Assume that $f\left(x_{0}\right)=\frac{1}{2}\left(f\left(x_{0}-0\right)+f\left(x_{0}+0\right)\right)$. Then it holds

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left(S_{n} f\right)\left(x_{0}+\frac{2 \pi}{2 n+1}\right)=f\left(x_{0}+0\right)+\left(\frac{1}{\pi} \operatorname{Si}(\pi)-\frac{1}{2}\right)\left(f\left(x_{0}+0\right)-f\left(x_{0}-0\right)\right) \\
& \lim _{n \rightarrow \infty}\left(S_{n} f\right)\left(x_{0}-\frac{2 \pi}{2 n+1}\right)=f\left(x_{0}-0\right)-\left(\frac{1}{\pi} \operatorname{Si}(\pi)-\frac{1}{2}\right)\left(f\left(x_{0}+0\right)-f\left(x_{0}-0\right)\right) .
\end{aligned}
$$

Proof Let $s: \mathbb{T} \rightarrow \mathbb{C}$ denote the sawtooth function of Example 1.9. We consider the function

$$
g:=f-\left(f\left(x_{0}+0\right)-f\left(x_{0}-0\right)\right) s\left(\cdot-x_{0}\right)
$$

Then $g: \mathbb{T} \rightarrow \mathbb{C}$ is also piecewise continuously differentiable and continuous in an interval $\left[x_{0}-\delta, x_{0}+\delta\right]$ with $\delta>0$. Further we have $g\left(x_{0}\right)=f\left(x_{0}\right)=$ $\frac{1}{2}\left(f\left(x_{0}-0\right)+f\left(x_{0}+0\right)\right)$. By Theorem 1.34 of Dirichlet-Jordan, the Fourier series of g converges uniformly to g in $\left[x_{0}-\delta, x_{0}+\delta\right]$. By

$$
\left(S_{n} f\right)(x)=\left(S_{n} g\right)(x)+\left(f\left(x_{0}+0\right)-f\left(x_{0}-0\right)\right) \sum_{k=1}^{n} \frac{1}{\pi k} \sin \left(k\left(x-x_{0}\right)\right)
$$

it follows for $x=x_{0} \pm \frac{2 \pi}{2 n+1}$ and $n \rightarrow \infty$ that

$$
\begin{aligned}
& \lim _{n \rightarrow \infty}\left(S_{n} f\right)\left(x_{0}+\frac{2 \pi}{2 n+1}\right)=g\left(x_{0}\right)+\frac{1}{\pi} \operatorname{Si}(\pi)\left(f\left(x_{0}+0\right)-f\left(x_{0}-0\right)\right) \\
& \lim _{n \rightarrow \infty}\left(S_{n} f\right)\left(x_{0}-\frac{2 \pi}{2 n+1}\right)=g\left(x_{0}\right)-\frac{1}{\pi} \operatorname{Si}(\pi)\left(f\left(x_{0}+0\right)-f\left(x_{0}-0\right)\right) .
\end{aligned}
$$

This completes the proof.
For large n, the Fourier partial sum $S_{n} f$ of a piecewise continuously differentiable function $f: \mathbb{T} \rightarrow \mathbb{C}$ exhibits the overshoot and undershoot at each point of jump discontinuity. If f is continuous at x_{0}, then $S_{n} f$ converges uniformly to f as $n \rightarrow \infty$ in a certain neighborhood of x_{0} and the Gibbs phenomenon is absent.

Remark 1.43 Assume that $f: \mathbb{T} \rightarrow \mathbb{C}$ is a piecewise continuously differentiable function. By the Gibbs phenomenon, the truncation of Fourier series to $S_{n} f$ causes ripples in a neighborhood of each point of jump discontinuity. These ripples can be removed by the use of properly weighted Fourier coefficients such as by Fejér summation or Lanczos smoothing.

By the Fejér summation, we take the arithmetic mean $\sigma_{n} f$ of all Fourier partial sums $S_{k} f, k=0, \ldots, n$, i.e.,

$$
\sigma_{n} f=\frac{1}{n+1} \sum_{k=0}^{n} S_{k} f \in \mathscr{T}_{n} .
$$

Then $\sigma_{n} f$ is the nth Fejér sum of f. With the Fejér kernel

$$
F_{n}=\frac{1}{n+1} \sum_{k=0}^{n} D_{k} \in \mathscr{T}_{n}
$$

of Example 1.15 and by $S_{k} f=f * D_{k}, k=0, \ldots, n$, we obtain the representation $\sigma_{n} f=f * F_{n}$. Since

$$
S_{k} f=\sum_{j=-k}^{k} c_{j}(f) \mathrm{e}^{\mathrm{i} j}
$$

then it follows that

$$
\sigma_{n} f=\frac{1}{n+1} \sum_{k=0}^{n} \sum_{j=-k}^{k} c_{j}(f) \mathrm{e}^{\mathrm{i} j \cdot}=\sum_{\ell=-n}^{n}\left(1-\frac{|\ell|}{n+1}\right) c_{\ell}(f) \mathrm{e}^{\mathrm{i} \ell .}
$$

Note that the positive weights

$$
\omega_{\ell}:=1-\frac{|\ell|}{n+1}, \quad \ell=-n, \ldots, n
$$

decay linearly from $\omega_{0}=1$ to $\omega_{n}=\omega_{-n}=(n+1)^{-1}$ as $|\ell|$ increases from 0 to n.
In contrast to the Fejér summation, the Lanczos smoothing uses the means of the function $S_{n} f$ over the intervals $\left[x-\frac{\pi}{n}, x-\frac{\pi}{n}\right]$ for each $x \in \mathbb{T}$, i.e., we form

$$
\left(\Lambda_{n} f\right)(x):=\frac{n}{2 \pi} \int_{x-\pi / n}^{x+\pi / n}\left(S_{n} f\right)(u) \mathrm{d} u .
$$

By

$$
S_{n} f=\sum_{k=-n}^{n} c_{k}(f) \mathrm{e}^{\mathrm{i} k .}
$$

we obtain the weighted Fourier partial sum

$$
\begin{aligned}
\left(\Lambda_{n} f\right)(x) & =\frac{n}{2 \pi} \sum_{k=-n}^{n} c_{k}(f) \int_{x-\pi / n}^{x+\pi / n} \mathrm{e}^{\mathrm{i} k u} \mathrm{~d} u \\
& =\sum_{k=-n}^{n}\left(\operatorname{sinc} \frac{k \pi}{n}\right) c_{k}(f) \mathrm{e}^{\mathrm{i} k x}
\end{aligned}
$$

where the nonnegative weights $\omega_{k}:=\operatorname{sinc} \frac{k \pi}{n}, k=-n, \ldots, n$, decay from $\omega_{0}=1$ to $\omega_{n}=\omega_{-n}=0$ as $|\ell|$ increases from 0 to n. If we arrange that $\omega_{k}:=0$ for all $k \in \mathbb{Z}$ with $|k|>n$, then we obtain a so-called window sequence which will be considered in the next section.

1.5 Discrete Signals and Linear Filters

In this section we apply Fourier series in the digital signal processing. The set of all bounded complex sequences $x=\left(x_{k}\right)_{k \in \mathbb{Z}}$ is denoted by $\ell_{\infty}(\mathbb{Z})$. It turns out that $\ell_{\infty}(\mathbb{Z})$ is a Banach space under the norm

$$
\|x\|_{\infty}:=\sup \left\{\left|x_{k}\right|: k \in \mathbb{Z}\right\}
$$

For $1 \leq p<\infty$, we denote by $\ell_{p}(\mathbb{Z})$ the set of all complex sequences $x=\left(x_{k}\right)_{k \in \mathbb{Z}}$ such that

$$
\|x\|_{p}:=\left(\sum_{k \in \mathbb{Z}}\left|x_{k}\right|^{p}\right)^{1 / p}<\infty
$$

Then $\ell_{p}(\mathbb{Z})$ is a Banach space. For $p=2$, we obtain the Hilbert space $\ell_{2}(\mathbb{Z})$ with the inner product and the norm

$$
\langle x, y\rangle:=\sum_{k \in \mathbb{Z}} x_{k} \bar{y}_{k}, \quad\|x\|_{2}:=\left(\sum_{k \in \mathbb{Z}}\left|x_{k}\right|^{2}\right)^{1 / 2}
$$

for $x=\left(x_{k}\right)_{k \in \mathbb{Z}}$ and $y=\left(y_{k}\right)_{k \in \mathbb{Z}} \in \ell_{2}(\mathbb{Z})$. Note that

$$
\|x\|_{2}^{2}=\sum_{k \in \mathbb{Z}}\left|x_{k}\right|^{2}
$$

is the so-called energy of x. The Cauchy-Schwarz inequality reads for all $x, y \in$ $\ell_{2}(\mathbb{Z})$ as follows:

$$
|\langle x, y\rangle| \leq\|x\|_{2}\|y\|_{2} .
$$

A discrete signal is defined as a bounded complex sequence $x=\left(x_{k}\right)_{k \in \mathbb{Z}} \in \ell_{\infty}(\mathbb{Z})$. If $f: \mathbb{R} \rightarrow \mathbb{C}$ is a bounded function, then we obtain a discrete signal $x=\left(x_{k}\right)_{k \in \mathbb{Z}} \in$ $\ell_{\infty}(\mathbb{Z})$ by equidistant sampling $x_{k}:=f\left(k t_{0}\right)$ for all $k \in \mathbb{Z}$ and fixed $t_{0}>0$.

A discrete signal $x=\left(x_{k}\right)_{k \in \mathbb{Z}}$ is called N-periodic with $N \in \mathbb{N}$, if $x_{k}=x_{k+N}$ for all $k \in \mathbb{Z}$. Obviously, one can identify an N-periodic discrete signal $x=\left(x_{k}\right)_{k \in \mathbb{Z}}$ and the vector $\left(x_{k}\right)_{k=0}^{N-1} \in \mathbb{C}^{N}$. The Fourier analysis in \mathbb{C}^{N} will be handled in Chap. 3.
Example 1.44 Special discrete signals are the pulse sequence $\delta:=\left(\delta_{k}\right)_{k \in \mathbb{Z}}$ with the Kronecker symbol δ_{k}, the jump sequence $\left(u_{k}\right)_{k \in \mathbb{Z}}$ with $u_{k}:=1$ for $k \geq 0$ and $u_{k}:=0$ for $k<0$, and the exponential sequence $\left(\mathrm{e}^{\mathrm{i} \omega_{0} k}\right)_{k \in \mathbb{Z}}$ with certain $\omega_{0} \in \mathbb{R}$. If $\omega_{0} N \in 2 \pi \mathbb{Z}$ with $N \in \mathbb{N}$, the exponential sequence is N-periodic.

A digital filter H is an operator from dom $H \subseteq \ell_{\infty}(\mathbb{Z})$ into $\ell_{\infty}(\mathbb{Z})$ that converts input signals of dom H into output signals in $\ell_{\infty}(\mathbb{Z})$ by applying a specific rule. In the following linear filters are of special interest. A linear filter is a linear operator $H: \operatorname{dom} H \rightarrow \ell_{\infty}(\mathbb{Z})$ such that for all $x, y \in \operatorname{dom} H$ and each $\alpha \in \mathbb{C}$

$$
H(x+y)=H x+H y, \quad H(\alpha x)=\alpha H x .
$$

A digital filter $H: \operatorname{dom} H \rightarrow \ell_{\infty}(\mathbb{Z})$ is called shift-invariant or time-invariant, if $z=H x=\left(z_{k}\right)_{k \in \mathbb{Z}}$ with arbitrary input signal $x=\left(x_{k}\right)_{k \in \mathbb{Z}} \in$ dom H implies that for each $\ell \in \mathbb{Z}$

$$
\left(z_{k-\ell}\right)_{k \in \mathbb{Z}}=H\left(x_{k-\ell}\right)_{k \in \mathbb{Z}}
$$

In other words, a shift-invariant digital filter transforms each shifted input signal to a shifted output signal.

A digital filter $H: \operatorname{dom} H \rightarrow \ell_{\infty}(\mathbb{Z})$ is called bounded on $\ell_{p}(\mathbb{Z})$ with $1 \leq p<$ ∞, if $H x \in \ell_{p}(\mathbb{Z})$ for any input signal $x \in \ell_{p}(\mathbb{Z})$.
Example 1.45 A simple digital filter is the forward shift $V x:=\left(x_{k-1}\right)_{k \in \mathbb{Z}}$ for any $x=\left(x_{k}\right)_{k \in \mathbb{Z}} \in \ell_{\infty}(\mathbb{Z})$. Then we obtain that $V^{n} x=\left(x_{k-n}\right)_{k \in \mathbb{Z}}$ for $n \in \mathbb{Z}$. In particular for $n=-1$, we have the backward shift $V^{-1} x=\left(x_{k+1}\right)_{k \in \mathbb{Z}}$. These filters are linear, shift-invariant, and bounded on $\ell_{p}(\mathbb{Z}), 1 \leq p \leq \infty$.

Another digital filter is the moving average $A x:=\left(z_{k}\right)_{k \in \mathbb{Z}}$ which is defined by

$$
z_{k}:=\frac{1}{M_{1}+M_{2}+1} \sum_{\ell=-M_{1}}^{M_{2}} x_{k-\ell}, \quad k \in \mathbb{Z}
$$

where M_{1} and M_{2} are fixed nonnegative integers. This filter is linear, shift-invariant, and bounded on $\ell_{p}(\mathbb{Z}), 1 \leq p \leq \infty$ too.

The modulation filter $M x:=\left(z_{k}\right)_{k \in \mathbb{Z}}$ is defined by

$$
z_{k}:=\mathrm{e}^{\mathrm{i}\left(k \omega_{0}+\varphi_{0}\right)} x_{k}, \quad k \in \mathbb{Z},
$$

for any $x=\left(x_{k}\right)_{k \in \mathbb{Z}} \in \ell_{\infty}(\mathbb{Z})$ and fixed $\omega_{0}, \varphi_{0} \in \mathbb{R}$. Obviously, this filter is linear and bounded on $\ell_{p}(\mathbb{Z}), 1 \leq p \leq \infty$. In the case $\omega_{0} \in 2 \pi \mathbb{Z}$, the modulation filter is shift-invariant, since then $z_{k}=\mathrm{e}^{\mathrm{i} \varphi_{0}} x_{k}$.

Finally, the accumulator $S x:=\left(z_{k}\right)_{k \in \mathbb{Z}}$ is defined on $\ell_{1}(\mathbb{Z})$ by

$$
z_{k}:=\sum_{\ell=-\infty}^{k} x_{\ell}, \quad k \in \mathbb{Z}
$$

This filter is linear and shift-invariant, but not bounded.
A linear, shift-invariant filter or linear time-invariant filter is abbreviated as LTI filter. If a digital filter H has the output signal $h:=H \delta$ of the pulse sequence $\delta=$ $\left(\delta_{k}\right)_{k \in \mathbb{Z}}$ (see Example 1.44) as input signal, then h is called impulse response. The components h_{k} of the impulse response $h=\left(h_{k}\right)_{k \in \mathbb{Z}}$ are called filter coefficients.

Theorem 1.46 Let H be an LTI filter with the impulse response $h=\left(h_{k}\right)_{k \in \mathbb{Z}} \in$ $\ell_{1}(\mathbb{Z})$.

Then for each input signal $x=\left(x_{k}\right)_{k \in \mathbb{Z}} \in \ell_{p}(\mathbb{Z})$ with $1 \leq p<\infty$ the output signal $z=H x=\left(z_{k}\right)_{k \in \mathbb{Z}}$ can be represented as discrete convolution $z=h * x$ with

$$
z_{k}:=\sum_{j \in \mathbb{Z}} h_{j} x_{k-j} .
$$

Proof For the impulse response $h \in \ell_{1}(\mathbb{Z})$ and arbitrary input signal $x \in \ell_{p}(\mathbb{Z})$, the discrete convolution $h * x$ is contained in $\ell_{p}(\mathbb{Z})$, since by Hölder inequality we have

$$
\|h * x\|_{p} \leq\|h\|_{1}\|x\|_{p} .
$$

Each input signal $x=\left(x_{k}\right)_{k \in \mathbb{Z}} \in \ell_{p}(\mathbb{Z})$ can be represented in the form

$$
x=\sum_{j \in \mathbb{Z}} x_{j} V^{j} \delta
$$

because the shifted pulse sequences $V^{j} \delta, j \in \mathbb{Z}$, form a basis of $\ell_{p}(\mathbb{Z})$. Obviously, the shift-invariant filter H has the property $H V^{j} \delta=V^{j} H \delta=V^{j} h$ for each $j \in \mathbb{Z}$.

Since the LTI filter H is linear and shift-invariant, we obtain following representation of the output signal

$$
\begin{aligned}
z & =H x=H\left(\sum_{j \in \mathbb{Z}} x_{j} V^{j} \delta\right)=\sum_{j \in \mathbb{Z}} x_{j} H V^{j} \delta \\
& =\sum_{j \in \mathbb{Z}} x_{j} V^{j} H \delta=\sum_{j \in \mathbb{Z}} x_{j} V^{j} h
\end{aligned}
$$

that means

$$
z_{k}=\sum_{j \in \mathbb{Z}} x_{j} h_{k-j}=\sum_{n \in \mathbb{Z}} h_{n} x_{k-n}, \quad k \in \mathbb{Z} .
$$

In particular, the operator $H: \ell_{p}(\mathbb{Z}) \rightarrow \ell_{p}(\mathbb{Z})$ is bounded with the operator norm $\|h\|_{1}$.

Remark 1.47 In $\ell_{1}(\mathbb{Z})$ the discrete convolution is a commutative, associative, and distributive multiplication which has the pulse sequence δ as unit. Further we have $\|x * y\|_{1} \leq\|x\|_{1}\|y\|_{1}$ for all $x, y \in \ell_{1}(\mathbb{Z})$.

Using Fourier series, we discuss some properties of LTI filters. Applying the exponential sequence $x=\left(\mathrm{e}^{\mathrm{i} \omega k}\right)_{k \in \mathbb{Z}}$ for $\omega \in \mathbb{R}$ as input signal of the LTI filter H with the impulse response $h \in \ell_{1}(\mathbb{Z})$, by Theorem 1.46 we obtain the output signal $z=\left(z_{k}\right)_{k \in \mathbb{Z}}=h * x$ with

$$
z_{k}=\sum_{j \in \mathbb{Z}} h_{j} \mathrm{e}^{\mathrm{i} \omega(k-j)}=\mathrm{e}^{\mathrm{i} \omega k} \sum_{j \in \mathbb{Z}} h_{j} \mathrm{e}^{-\mathrm{i} \omega j}=\mathrm{e}^{\mathrm{i} \omega k} H(\omega)
$$

with the so-called transfer function of the LTI filter H defined by

$$
\begin{equation*}
H(\omega):=\sum_{j \in \mathbb{Z}} h_{j} \mathrm{e}^{-\mathrm{i} \omega j} \tag{1.59}
\end{equation*}
$$

By Theorem 1.37 the Fourier series in (1.59) is uniformly convergent and has the variable $-\omega$ instead of ω. Thus the exponential sequence $x=\left(\mathrm{e}^{\mathrm{i} \omega k}\right)_{k \in \mathbb{Z}}$ for $\omega \in \mathbb{R}$ has the property

$$
H x=H(\omega) x,
$$

i.e., $H(\omega) \in \mathbb{C}$ is an eigenvalue of the LTI filter H with the corresponding eigensequence x.

Example 1.48 Let $a \in \mathbb{C}$ with $|a|<1$ be given. We consider the LTI filter H with the impulse response $h=\left(h_{k}\right)_{k \in \mathbb{Z}}$, where $h_{k}=a^{k}$ for $k \geq 0$ and $h_{k}=0$ for $k<0$
such that $h \in \ell_{1}(\mathbb{Z})$. Then the transfer function of H reads as follows:

$$
H(\omega)=\sum_{k=0}^{\infty}\left(a \mathrm{e}^{-\mathrm{i} \omega}\right)^{k}=\frac{1}{1-a \mathrm{e}^{-\mathrm{i} \omega}}=\frac{1-a \cos \omega+\mathrm{i} a \sin \omega}{1+a^{2}-2 a \cos \omega}
$$

With the corresponding magnitude response

$$
|H(\omega)|=\left(1+a^{2}-2 a \cos \omega\right)^{-1 / 2}
$$

and phase response

$$
\arg H(\omega)=\arctan \frac{a \sin \omega}{1-a \cos \omega}
$$

we obtain the following representation of the transfer function

$$
H(\omega)=|H(\omega)| \mathrm{e}^{\mathrm{i} \arg H(\omega)}
$$

An LTI filter H with finitely many nonzero filter coefficients is called FIR filter, where FIR means finite impulse response. Then the transfer function of an FIR filter H has the form

$$
H(\omega)=\mathrm{e}^{\mathrm{i} \omega N_{0}} \sum_{k=0}^{m} h_{k} \mathrm{e}^{-\mathrm{i} \omega k}
$$

with certain $m \in \mathbb{N}$ and $N_{0} \in \mathbb{Z}$, where $h_{0} h_{m} \neq 0$. The filter coefficients h_{k} of an FIR filter can be chosen in a way such that the transfer function $H(\omega)$ possesses special properties with respect to the magnitude response $|H(\omega)|$ and the phase response $\arg H(\omega)$.

Example 1.49 We consider the so-called comb filter H with the filter coefficients $h_{0}=h_{m}=1$ for certain $m \in \mathbb{N}$ and $h_{k}=0$ for $k \in \mathbb{Z} \backslash\{0, m\}$. Then the transfer function of H is given by $H(\omega)=1+\mathrm{e}^{\mathrm{i} m \omega}$ so that the corresponding magnitude response is equal to

$$
\begin{aligned}
|H(\omega)| & =\left((1+\cos (m \omega))^{2}+(\sin (m \omega))^{2}\right)^{1 / 2} \\
& =\sqrt{2}(1+\cos (m \omega))^{1 / 2}=2\left|\cos \frac{m \omega}{2}\right| .
\end{aligned}
$$

For the phase response we find

$$
\tan (\arg H(\omega))=-\frac{\sin (m \omega)}{1+\cos (m \omega)}=-\tan \arg H(\omega)
$$

so that

$$
\arg H(\omega)=\arctan (-\tan \arg H(\omega))
$$

and hence

$$
\arg H(\omega)=-\frac{m \omega-2 \pi k}{2}
$$

for $\frac{(2 k-1) \pi}{m}<\omega<\frac{(2 k+1) \pi}{m}$ and $k \in \mathbb{Z}$. Thus the phase response $\arg H(\omega)$ is piecewise linearly with respect to ω.

An FIR filter H possesses a linear phase, if its phase response is a linear function $\arg H(\omega)=\gamma+c \omega$ with parameters $\gamma \in[0,2 \pi)$ and $c \in \mathbb{R}$.

An ideal low-pass filter $H_{L P}$ with the cutoff frequency $\omega_{0} \in(0, \pi)$ is defined by its transfer function

$$
H_{L P}(\omega):=\left\{\begin{array}{l}
1|\omega| \leq \omega_{0} \\
0 \omega_{0}<|\omega| \leq \pi
\end{array}\right.
$$

The interval $\left(-\omega_{0}, \omega_{0}\right)$ is called transmission band and the set $\left[-\pi,-\omega_{0}\right) \cup\left(\omega_{0}, \pi\right]$ is the so-called stop band of the ideal low-pass filter $H_{L P}$. The corresponding filter coefficients h_{k} of the ideal low-pass filter $H_{L P}$ coincide with the Fourier coefficients of $H_{L P}(\omega)$ and read as follows:

$$
\begin{aligned}
h_{k} & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} H_{L P}(\omega) \mathrm{e}^{\mathrm{i} \omega k} \mathrm{~d} \omega=\frac{1}{2 \pi} \int_{-\omega_{0}}^{\omega_{0}} \mathrm{e}^{\mathrm{i} \omega k} \mathrm{~d} \omega \\
& =\frac{\omega_{0}}{\pi} \operatorname{sinc}\left(\omega_{0} k\right)
\end{aligned}
$$

with

$$
\operatorname{sinc} x:=\left\{\begin{array}{cc}
\frac{\sin x}{x} & x \neq 0, \\
1 & x=0 .
\end{array}\right.
$$

Thus we obtain the Fourier expansion

$$
\begin{equation*}
H_{L P}(\omega)=\sum_{k \in \mathbb{Z}} \frac{\omega_{0}}{\pi} \operatorname{sinc}\left(\omega_{0} k\right) \mathrm{e}^{-\mathrm{i} k \omega} \tag{1.60}
\end{equation*}
$$

i.e., the ideal low-pass filter $H_{L P}$ is not an FIR filter and $h_{k}=\mathscr{O}\left(|k|^{-1}\right)$ for $|k| \rightarrow$ ∞.

An ideal high-pass filter $H_{H P}$ with the cutoff frequency $\omega_{0} \in(0, \pi)$ is defined by its transfer function

$$
H_{H P}(\omega):=\left\{\begin{array}{l}
0|\omega| \leq \pi-\omega_{0} \\
1 \pi-\omega_{0}<|\omega| \leq \pi
\end{array}\right.
$$

We see immediately that $H_{H P}(\omega)=H_{L P}(\omega+\pi)$ and hence by (1.60)

$$
H_{H P}(\omega)=\sum_{k \in \mathbb{Z}}(-1)^{k} \frac{\omega_{0}}{\pi} \operatorname{sinc}\left(\omega_{0} k\right) \mathrm{e}^{-\mathrm{i} k \omega},
$$

i.e., the ideal high-pass filter is not an FIR filter too.

In the following we consider the construction of low-pass FIR filters. A simple construction of a low-pass FIR filter can be realized by the nth Fourier partial sum of (1.60)

$$
\begin{equation*}
H_{L P, n}(\omega):=\sum_{k=-n}^{n} \frac{\omega_{0}}{\pi} \operatorname{sinc}\left(\omega_{0} k\right) \mathrm{e}^{-\mathrm{i} k \omega} \tag{1.61}
\end{equation*}
$$

with certain $n \in \mathbb{N}$. Then $H_{L P, n}(\omega)$ oscillates inside the transmission band or rather the stop band. Further, $H_{L P, n}(\omega)$ has the Gibbs phenomenon at $\omega= \pm \omega_{0}$. In order to reduce these oscillations of $H_{L P, n}(\omega)$, we apply so-called window sequences. The simplest example is the rectangular window sequence

$$
f_{k, n}^{R}:= \begin{cases}1 & k=-n, \ldots, n \\ 0 & |k|>n\end{cases}
$$

such that the related spectral function is the nth Dirichlet function

$$
F_{n}^{R}(\omega)=\sum_{k=-n}^{n} 1 \cdot \mathrm{e}^{-\mathrm{i} k \omega}=D_{n}(\omega)
$$

and hence

$$
H_{L P, n}(\omega)=H_{L P}(\omega) * F_{n}^{R}(\omega)=H_{L P}(\omega) * D_{n}(\omega)
$$

The Hann window sequence is defined by

$$
f_{k, n}^{H n}:= \begin{cases}\frac{1}{2}\left(1+\cos \frac{\pi k}{n}\right) k=-n, \ldots, n, \\ 0 & |k|>n\end{cases}
$$

and has the related spectral function

$$
\begin{aligned}
F_{n}^{H n}(\omega) & =\sum_{k=-n}^{n} \frac{1}{2}\left(1+\cos \frac{\pi k}{n}\right) \mathrm{e}^{-\mathrm{i} k \omega} \\
& =\frac{1}{2} \sum_{k=-n}^{n} \mathrm{e}^{-\mathrm{i} k \omega}+\frac{1}{4} \sum_{k=-n}^{n} \mathrm{e}^{-\mathrm{i} k(\omega+\pi / n)}+\frac{1}{4} \sum_{k=-n}^{n} \mathrm{e}^{-\mathrm{i} k(\omega-\pi / n)} \\
& =\frac{1}{4}\left(2 F_{n}^{R}(\omega)+F_{n}^{R}\left(\omega+\frac{\pi}{n}\right)+F_{n}^{R}\left(\omega-\frac{\pi}{n}\right)\right)
\end{aligned}
$$

Thus $F_{n}^{H n}(\omega)$ is the weighted mean of $F_{n}^{R}(\omega)$ and the corresponding shifts $F_{n}^{R}(\omega \pm$ $\frac{\pi}{n}$).

The Hamming window sequence generalizes the Hann window sequence and is defined by

$$
f_{k, n}^{H m}:= \begin{cases}0.54+0.46 \cos \frac{\pi k}{n} & k=-n, \ldots, n, \\ 0 & |k|>n\end{cases}
$$

The filter coefficients $f_{k, n}^{H m}$ are chosen in a way such that the first overshoot of the spectral function $F_{n}^{R}(\omega)$ is annihilated as well as possible. Let the spectral function $F_{n}^{H m}(\omega)$ be of the form

$$
F_{n}^{H m}(\omega)=(1-\alpha) F_{n}^{R}(\omega)+\frac{\alpha}{2} F_{n}^{R}\left(\omega+\frac{\pi}{n}\right)+\frac{\alpha}{2} F_{n}^{R}\left(\omega-\frac{\pi}{n}\right)
$$

with certain $\alpha \in(0,1)$. We calculate the first side lobe of $F_{n}^{R}(\omega)=D_{n}(\omega)$ by considering the zeros of $D_{n}^{\prime}(\omega)$. By considering

$$
D_{n}^{\prime}(\omega)=\left(\frac{\sin \frac{(2 n+1) \omega}{2}}{\sin \frac{\omega}{2}}\right)^{\prime}=0
$$

we obtain the approximate value $\omega=\frac{5 \pi}{2 n+1}$ as first side lobe. From $F_{n}^{H m}\left(\frac{5 \pi}{2 n+1}\right)=(1-\alpha) F_{n}^{R}\left(\frac{5 \pi}{2 n+1}\right)+\frac{\alpha}{2} F_{n}^{R}\left(\frac{5 \pi}{2 n+1}+\frac{\pi}{n}\right)+\frac{\alpha}{2} F_{n}^{R}\left(\frac{5 \pi}{2 n+1}-\frac{\pi}{n}\right)=0$
it follows that $\alpha=\frac{21}{46} \approx 0.46$.
A further generalization of the Hann window sequence is the Blackman window sequence which is defined by

$$
f_{k, n}^{B l}:= \begin{cases}0.42+0.5 \cos \frac{\pi k}{n}+0.08 \cos \frac{2 \pi k}{n} & k=-n, \ldots, n, \\ 0 & |k|>n .\end{cases}
$$

The corresponding spectral function reads as follows:

$$
F_{n}^{B l}(\omega)=\sum_{k=-n}^{n} f_{k, n}^{B l} \mathrm{e}^{-\mathrm{i} k \omega}
$$

Chapter 2
 Fourier Transforms

Fourier transforms of integrable functions defined on the whole real line \mathbb{R} are studied in Chap. 2. First, in Sect. 2.1, the Fourier transform is defined on the Banach space $L_{1}(\mathbb{R})$. The main properties of the Fourier transform are handled, such as the Fourier inversion formula and the convolution property. Then, in Sect. 2.2, the Fourier transform is introduced as a bijective mapping of the Hilbert space $L_{2}(\mathbb{R})$ onto itself by the theorem of Plancherel. The Hermite functions, which form an orthogonal basis of $L_{2}(\mathbb{R})$, are eigenfunctions of the Fourier transform. In Sect. 2.3, we present the Poisson summation formula and Shannon's sampling theorem. Finally, two generalizations of the Fourier transform are sketched in Sect. 2.5, namely the windowed Fourier transform and the fractional Fourier transform.

2.1 Fourier Transforms on $L_{1}(\mathbb{R})$

Let $C_{0}(\mathbb{R})$ denote the Banach space of continuous functions $f: \mathbb{R} \rightarrow \mathbb{C}$ vanishing as $|x| \rightarrow \infty$ with norm

$$
\|f\|_{C_{0}(\mathbb{R})}:=\max _{x \in \mathbb{R}}|f(x)|
$$

and let $C_{c}(\mathbb{R})$ be the set of continuous, compactly supported functions. By $C^{r}(\mathbb{R})$, $r \in \mathbb{N}$, we denote the set of r-times continuously differentiable functions on \mathbb{R}. Accordingly $C_{0}^{r}(\mathbb{R})$ and $C_{c}^{r}(\mathbb{R})$ are defined.

For $1 \leq p \leq \infty$, let $L_{p}(\mathbb{R})$ denote the Banach space of all measurable functions $f: \mathbb{R} \rightarrow \mathbb{C}$ with finite norm

$$
\|f\|_{L_{p}(\mathbb{R})}:= \begin{cases}\left(\int_{\mathbb{R}}|f(x)|^{p} \mathrm{~d} x\right)^{1 / p} & 1 \leq p<\infty \\ \operatorname{ess} \sup \{|f(x)|: x \in \mathbb{R}\} & p=\infty\end{cases}
$$

where we identify almost equal functions. In particular, we are interested in the Hilbert space $L_{2}(\mathbb{R})$ with inner product and norm

$$
\langle f, g\rangle_{L_{2}(\mathbb{R})}:=\int_{\mathbb{R}} f(x) \overline{g(x)} \mathrm{d} x, \quad\|f\|_{L_{2}(\mathbb{R})}:=\left(\int_{\mathbb{R}}|f(x)|^{2} \mathrm{~d} x\right)^{1 / 2}
$$

If it is clear from the context which inner product or norm is addressed, we abbreviate $\langle f, g\rangle:=\langle f, g\rangle_{L_{2}(\mathbb{R})}$ and $\|f\|:=\|f\|_{L_{2}(\mathbb{R})}$.

Note that in contrast to the periodic setting there is no continuous embedding of the spaces $L_{p}(\mathbb{R})$. We have neither $L_{1}(\mathbb{R}) \subset L_{2}(\mathbb{R})$ nor $L_{1}(\mathbb{R}) \supset L_{2}(\mathbb{R})$. For example, $f(x):=\frac{1}{x} \chi_{[1, \infty)}(x)$, where $\chi_{[1, \infty)}$ denotes the characteristic function of the interval $[1, \infty)$, is in $L_{2}(\mathbb{R})$, but not in $L_{1}(\mathbb{R})$. On the other hand, $f(x):=$ $\frac{1}{\sqrt{x}} \chi_{(0,1]}(x)$ is in $L_{1}(\mathbb{R})$, but not in $L_{2}(\mathbb{R})$.

Remark 2.1 Note that each function $f \in C_{0}(\mathbb{R})$ is uniformly continuous on \mathbb{R} by the following reason: For arbitrary $\varepsilon>0$ there exists $L=L(\varepsilon)>0$ such that $|f(x)| \leq \varepsilon / 3$ for all $|x| \geq L$. If $x, y \in[-L, L]$, then there exists $\delta>0$ such that $|f(x)-f(y)| \leq \varepsilon / 3$ whenever $|x-y| \leq \delta$. If $x, y \in \mathbb{R} \backslash[-L, L]$, then $|f(x)-f(y)| \leq|f(x)|+|f(y)| \leq 2 \varepsilon / 3$. If $x \in[-L, L]$ and $y \in \mathbb{R} \backslash[-L, L]$, say $y>L$ with $|x-y| \leq \delta$, then $|f(x)-f(y)| \leq|f(x)-f(L)|+|f(L)-f(y)| \leq \varepsilon$. In summary we have then $|f(x)-f(y)| \leq \varepsilon$ whenever $|x-y| \leq \delta$.

The (continuous) Fourier transform $\hat{f}=\mathscr{F} f$ of a function $f \in L_{1}(\mathbb{R})$ is defined by

$$
\begin{equation*}
\hat{f}(\omega)=(\mathscr{F} f)(\omega):=\int_{\mathbb{R}} f(x) \mathrm{e}^{-\mathrm{i} x \omega} \mathrm{~d} x, \quad \omega \in \mathbb{R} \tag{2.1}
\end{equation*}
$$

Since $\left|f(x) \mathrm{e}^{-\mathrm{i} x \omega}\right|=|f(x)|$ and $f \in L_{1}(\mathbb{R})$, the integral (2.1) is well defined. In practice, the variable x denotes mostly the time or the space and the variable ω is the frequency. Therefore the domain of the Fourier transform is called time domain or space domain. The range of the Fourier transform is called frequency domain. Roughly spoken, the Fourier transform (2.1) measures how much oscillations around the frequency ω are contained in $f \in L_{1}(\mathbb{R})$. The function $\hat{f}=|\hat{f}| \mathrm{e}^{\mathrm{i} \arg } \hat{f}$ is also called spectrum of f with modulus $|\hat{f}|$ and phase $\arg \hat{f}$.

Remark 2.2 In the literature, the Fourier transform is not consistently defined. For instance, other frequently applied definitions are

$$
\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} f(x) \mathrm{e}^{-\mathrm{i} \omega x} \mathrm{~d} x, \quad \int_{\mathbb{R}} f(x) \mathrm{e}^{-2 \pi \mathrm{i} \omega x} \mathrm{~d} x
$$

Example 2.3 Let $L>0$. The rectangle function

$$
f(x):= \begin{cases}1 & x \in(-L, L) \\ \frac{1}{2} & x \in\{-L, L\} \\ 0 & \text { otherwise }\end{cases}
$$

has the Fourier transform

$$
\begin{aligned}
\hat{f}(\omega) & =\int_{-L}^{L} \mathrm{e}^{-\mathrm{i} \omega x} \mathrm{~d} x=\frac{-\mathrm{e}^{-\mathrm{i} \omega L}+\mathrm{e}^{\mathrm{i} L \omega}}{\mathrm{i} \omega}=\frac{2 \mathrm{i} L \sin (\omega L)}{\mathrm{i} L \omega} \\
& =\frac{2 L \sin (L \omega)}{L \omega}=2 L \operatorname{sinc}(L \omega)
\end{aligned}
$$

with the cardinal sine function or sinc function

$$
\operatorname{sinc}(x)= \begin{cases}\frac{\sin x}{x} & x \in \mathbb{R} \backslash\{0\} \\ 1 & x=0\end{cases}
$$

Figure 2.1 shows the cardinal sine function.
While supp $f=[-L, L]$ is bounded, this is not the case for \hat{f}. Even worse, $\hat{f} \notin L_{1}(\mathbb{R})$, since for $n \in \mathbb{N} \backslash\{1\}$
$\int_{0}^{n \pi}|\operatorname{sinc}(x)| \mathrm{d} x=\sum_{k=1}^{n} \int_{(k-1) \pi}^{k \pi}|\operatorname{sinc}(x)| \mathrm{d} x \geq \sum_{k=1}^{n} \frac{1}{k \pi} \int_{(k-1) \pi}^{k \pi}|\sin x| \mathrm{d} x=\frac{2}{\pi} \sum_{k=1}^{n} \frac{1}{k}$
and the last sum becomes infinitely large as $n \rightarrow \infty$. Thus the Fourier transform does not map $L_{1}(\mathbb{R})$ into itself.

Fig. 2.1 The sinc function on $[-20,20$]

Example 2.4 For given $L>0$, the hat function

$$
f(x):= \begin{cases}1-\frac{|x|}{L} & x \in[-L, L] \\ 0 & \text { otherwise }\end{cases}
$$

has the Fourier transform

$$
\begin{aligned}
\hat{f}(\omega) & =2 \int_{0}^{L}\left(1-\frac{x}{L}\right) \cos (\omega x) \mathrm{d} x=\frac{2}{L \omega} \int_{0}^{L} \sin (\omega x) \mathrm{d} x \\
& =\frac{2}{L \omega^{2}}(1-\cos (L \omega))=L\left(\operatorname{sinc} \frac{L \omega}{2}\right)^{2}
\end{aligned}
$$

for $\omega \in \mathbb{R} \backslash\{0\}$. In the case $\omega=0$, we obtain

$$
\hat{f}(0)=2 \int_{0}^{L}\left(1-\frac{x}{L}\right) \mathrm{d} x=L
$$

The following theorem collects basic properties of the Fourier transform which can easily be proved.

Theorem 2.5 (Properties of the Fourier Transform) Let $f, g \in L_{1}(\mathbb{R})$. Then the Fourier transform possesses the following properties:

1. Linearity: For all $\alpha, \beta \in \mathbb{C}$,

$$
(\alpha f+\beta g)^{\wedge}=\alpha \hat{f}+\beta \hat{g}
$$

2. Translation and modulation: For each $x_{0}, \omega_{0} \in \mathbb{R}$,

$$
\begin{aligned}
\left(f\left(\cdot-x_{0}\right)\right)^{\wedge}(\omega) & =\mathrm{e}^{-\mathrm{i} x_{0} \omega} \hat{f}(\omega) \\
\left(\mathrm{e}^{-\mathrm{i} \omega_{0} \cdot} f\right)^{\wedge}(\omega) & =\hat{f}\left(\omega_{0}+\omega\right) .
\end{aligned}
$$

3. Differentiation and multiplication: For an absolutely continuous function $f \in$ $L_{1}(\mathbb{R})$ with $f^{\prime} \in L_{1}(\mathbb{R})$,

$$
\left(f^{\prime}\right)^{\wedge}(\omega)=\mathrm{i} \omega \hat{f}(\omega)
$$

If $h(x):=x f(x), x \in \mathbb{R}$, is absolutely integrable, then

$$
\hat{h}(\omega)=\mathrm{i}(\hat{f})^{\prime}(\omega) .
$$

4. Scaling. For $c \in \mathbb{R} \backslash\{0\}$,

$$
(f(c \cdot))^{\wedge}(\omega)=\frac{1}{|c|} \hat{f}\left(c^{-1} \omega\right) .
$$

Applying these properties we can calculate the Fourier transforms of some special functions.

Example 2.6 We consider the normalized Gaussian function

$$
\begin{equation*}
f(x):=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \mathrm{e}^{-x^{2} /\left(2 \sigma^{2}\right)}, \quad x \in \mathbb{R} \tag{2.2}
\end{equation*}
$$

with standard deviation $\sigma>0$. Note that $\int_{\mathbb{R}} f(x) \mathrm{d} x=1$, since for $a>0$ we obtain using polar coordinates r and φ that

$$
\begin{aligned}
\left(\int_{\mathbb{R}} \mathrm{e}^{-a x^{2}} \mathrm{~d} x\right)^{2} & =\left(\int_{\mathbb{R}} \mathrm{e}^{-a x^{2}} \mathrm{~d} x\right)\left(\int_{\mathbb{R}} \mathrm{e}^{-a y^{2}} \mathrm{~d} y\right)=\int_{\mathbb{R}} \int_{\mathbb{R}} \mathrm{e}^{-a\left(x^{2}+y^{2}\right)} \mathrm{d} x \mathrm{~d} y \\
& =\int_{0}^{2 \pi}\left(\int_{0}^{\infty} r \mathrm{e}^{-a r^{2}} \mathrm{~d} r\right) \mathrm{d} \varphi=\frac{\pi}{a}
\end{aligned}
$$

Now we compute the Fourier transform

$$
\begin{equation*}
\hat{f}(\omega)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \int_{\mathbb{R}} \mathrm{e}^{-x^{2} /\left(2 \sigma^{2}\right)} \mathrm{e}^{-\mathrm{i} \omega x} \mathrm{~d} x \tag{2.3}
\end{equation*}
$$

This integral can be calculated by Cauchy's integral theorem of complex function theory. Here we use another technique. Obviously, the Gaussian function (2.2) satisfies the differential equation

$$
f^{\prime}(x)+\frac{x}{\sigma^{2}} f(x)=0
$$

Applying Fourier transform to this differential equation, we obtain by the differen-tiation-multiplication property of Theorem 2.5

$$
\mathrm{i} \omega \hat{f}(\omega)+\frac{\mathrm{i}}{\sigma^{2}}(\hat{f})^{\prime}(\omega)=0
$$

This linear differential equation has the general solution

$$
\hat{f}(\omega)=C \mathrm{e}^{-\sigma^{2} \omega^{2} / 2},
$$

with an arbitrary constant C. From (2.3) it follows that

$$
\hat{f}(0)=C=\int_{\mathbb{R}} f(x) \mathrm{d} x=1
$$

and hence

$$
\begin{equation*}
\hat{f}(\omega)=\mathrm{e}^{-\sigma^{2} \omega^{2} / 2} \tag{2.4}
\end{equation*}
$$

is a non-normalized Gaussian function with standard deviation $1 / \sigma$. The smaller the standard deviation is in the space domain, the larger it is in the frequency domain. In particular for $\sigma=1$, the Gaussian function (2.2) coincides with its Fourier transform \hat{f} up to the factor $1 / \sqrt{2 \pi}$. Note that the Gaussian function is the only function with this behavior.

Example 2.7 Let $a>0$ and $b \in \mathbb{R} \backslash\{0\}$ be given. We consider the Gaussian chirp

$$
\begin{equation*}
f(x):=\mathrm{e}^{-(a-\mathrm{i} b) x^{2}} \tag{2.5}
\end{equation*}
$$

The Fourier transform of (2.5) reads as follows:

$$
\hat{f}(\omega)=C \exp \frac{-(a+\mathrm{i} b) \omega^{2}}{4\left(a^{2}+b^{2}\right)}
$$

which can be calculated by a similar differential equation as in Example 2.6. The constant C reads as follows:

$$
C=\hat{f}(0)=\int_{\mathbb{R}} \mathrm{e}^{-a x^{2}} \cos \left(b x^{2}\right) \mathrm{d} x+\mathrm{i} \int_{\mathbb{R}} \mathrm{e}^{-a x^{2}} \sin \left(b x^{2}\right) \mathrm{d} x
$$

such that

$$
C= \begin{cases}\sqrt{\frac{\pi}{2}}\left(\sqrt{\frac{\sqrt{a^{2}+b^{2}}+a}{a^{2}+b^{2}}}+\mathrm{i} \sqrt{\frac{\sqrt{a^{2}+b^{2}}-a}{a^{2}+b^{2}}}\right) & b>0, \\ \sqrt{\frac{\pi}{2}}\left(\sqrt{\frac{\sqrt{a^{2}+b^{2}}+a}{a^{2}+b^{2}}}-\mathrm{i} \sqrt{\frac{\sqrt{a^{2}+b^{2}}-a}{a^{2}+b^{2}}}\right) & b<0 .\end{cases}
$$

In Example 2.3 we have seen that the Fourier transform of a function $f \in L_{1}(\mathbb{R})$ is not necessarily in $L_{1}(\mathbb{R})$. By the following theorem, the Fourier transform of $f \in L_{1}(\mathbb{R})$ is a continuous function, which vanishes at $\pm \infty$.

Theorem 2.8 The Fourier transform \mathscr{F} defined by (2.1) is a linear, continuous operator from $L_{1}(\mathbb{R})$ into $C_{0}(\mathbb{R})$ with operator norm $\|\mathscr{F}\|_{L_{1}(\mathbb{R}) \rightarrow C_{0}(\mathbb{R})}=1$.

More precisely \mathscr{F} maps onto a dense subspace of $C_{0}(\mathbb{R})$.
Proof The linearity of \mathscr{F} follows from those of the integral operator. Let $f \in$ $L_{1}(\mathbb{R})$. For any $\omega, h \in \mathbb{R}$ we can estimate

$$
|\hat{f}(\omega+h)-\hat{f}(\omega)|=\left|\int_{\mathbb{R}} f(x) \mathrm{e}^{-\mathrm{i} \omega x}\left(\mathrm{e}^{-\mathrm{i} h x}-1\right) \mathrm{d} x\right| \leq \int_{\mathbb{R}}|f(x)|\left|\mathrm{e}^{-\mathrm{i} h x}-1\right| \mathrm{d} x
$$

Since $|f(x)|\left|\mathrm{e}^{-\mathrm{i} h x}-1\right| \leq 2|f(x)| \in L_{1}(\mathbb{R})$ and

$$
\left|\mathrm{e}^{-\mathrm{i} h x}-1\right|=\left((\cos (h x)-1)^{2}+(\sin (h x))^{2}\right)^{1 / 2}=(2-2 \cos (h x))^{1 / 2} \rightarrow 0
$$

as $h \rightarrow 0$, we obtain by the dominated convergence theorem of Lebesgue

$$
\begin{aligned}
\lim _{h \rightarrow 0}|\hat{f}(\omega+h)-\hat{f}(\omega)| & \leq \lim _{h \rightarrow 0} \int_{\mathbb{R}}|f(x)|\left|\mathrm{e}^{-\mathrm{i} h x}-1\right| \mathrm{d} x \\
& =\int_{\mathbb{R}}|f(x)|\left(\lim _{h \rightarrow 0}\left|\mathrm{e}^{-\mathrm{i} h x}-1\right|\right) \mathrm{d} x=0 .
\end{aligned}
$$

Hence \hat{f} is continuous. Further, we know by Lemma 1.27 of Riemann-Lebesgue that $\lim _{|\omega| \rightarrow \infty} \hat{f}(\omega)=0$. Thus $\hat{f}=\mathscr{F} f \in C_{0}(\mathbb{R})$.

For $f \in L_{1}(\mathbb{R})$ we have

$$
|\hat{f}(\omega)| \leq \int_{\mathbb{R}}|f(x)| \mathrm{d} x=\|f\|_{L_{1}(\mathbb{R})},
$$

so that

$$
\|\mathscr{F} f\|_{C_{0}(\mathbb{R})}=\|\hat{f}\|_{C_{0}(\mathbb{R})} \leq\|f\|_{L_{1}(\mathbb{R})}
$$

and consequently $\|\mathscr{F}\|_{L_{1}(\mathbb{R}) \rightarrow C_{0}(\mathbb{R})} \leq 1$. In particular we obtain for $g(x):=$ $\frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-x^{2} / 2}$ that $\|g\|_{L_{1}(\mathbb{R})}=1$ and $\hat{g}(\omega)=\mathrm{e}^{-\omega^{2} / 2}$, see Example 2.6. Hence we have $\|\hat{g}\|_{C_{0}(\mathbb{R})}=1$ and $\|\mathscr{F}\|_{L_{1}(\mathbb{R}) \rightarrow C_{0}(\mathbb{R})}=1$.

Using Theorem 2.8, we obtain the following result:
Lemma 2.9 Let $f, g \in L_{1}(\mathbb{R})$. Then we have $\hat{f} g$, $\hat{g} f \in L_{1}(\mathbb{R})$ and

$$
\begin{equation*}
\int_{\mathbb{R}} \hat{f}(x) g(x) \mathrm{d} x=\int_{\mathbb{R}} f(\omega) \hat{g}(\omega) \mathrm{d} \omega . \tag{2.6}
\end{equation*}
$$

Proof By Theorem 2.8 we know that $\hat{f}, \hat{g} \in C_{0}(\mathbb{R})$ are bounded so that $\hat{f} g, f \hat{g} \in$ $L_{1}(\mathbb{R})$. Taking into account that $f(x) g(y) \mathrm{e}^{-\mathrm{i} x y} \in L_{1}\left(\mathbb{R}^{2}\right)$, equality (2.6) follows by Fubini's theorem

$$
\begin{aligned}
\int_{\mathbb{R}} \hat{f}(x) g(x) \mathrm{d} x & =\int_{\mathbb{R}} \int_{\mathbb{R}} f(\omega) g(x) \mathrm{e}^{-\mathrm{i} x \omega} \mathrm{~d} \omega \mathrm{~d} x \\
& =\int_{\mathbb{R}} f(\omega) \int_{\mathbb{R}} g(x) \mathrm{e}^{-\mathrm{i} x \omega} \mathrm{~d} x \mathrm{~d} \omega=\int_{\mathbb{R}} f(\omega) \hat{g}(\omega) \mathrm{d} \omega
\end{aligned}
$$

Next we examine under which assumptions on $f \in L_{1}(\mathbb{R})$ the Fourier inversion formula

$$
\begin{equation*}
f(x)=(\hat{f})^{\check{ }}(x):=\frac{1}{2 \pi} \int_{\mathbb{R}} \hat{f}(\omega) \mathrm{e}^{\mathrm{i} \omega x} \mathrm{~d} \omega \tag{2.7}
\end{equation*}
$$

holds true. Note that (2.7) is almost the same formula as (2.1), except for the plus sign in the exponential and the factor $\frac{1}{2 \pi}$.
Theorem 2.10 (Fourier Inversion Formula for $L_{1}(\mathbb{R})$ Functions) Let $f \in$ $L_{1}(\mathbb{R})$ with $\hat{f} \in L_{1}(\mathbb{R})$ be given.

Then the Fourier inversion formula (2.7) holds true for almost every $x \in \mathbb{R}$. For $f \in L_{1}(\mathbb{R}) \cap C_{0}(\mathbb{R})$ with $\hat{f} \in L_{1}(\mathbb{R})$, the Fourier inversion formula holds for all $x \in \mathbb{R}$.
In the following we give a proof for a function $f \in L_{1}(\mathbb{R}) \cap C_{0}(\mathbb{R})$ with $\hat{f} \in L_{1}(\mathbb{R})$. For the general setting, we refer, e.g., to [63, pp. 38-44].

Proof

1. For any $n \in \mathbb{N}$ we use the function $g_{n}(x):=\frac{1}{2 \pi} \mathrm{e}^{-|x| / n}$ which has by straightforward computation the Fourier transform

$$
\hat{g}_{n}(\omega)=\frac{n}{\pi\left(1+n^{2} \omega^{2}\right)} .
$$

Both functions g_{n} and \hat{g}_{n} are in $L_{1}(\mathbb{R})$. By (2.6) and Theorem 2.5 we deduce the relation for the functions $f(x)$ and $g_{n}(x) \mathrm{e}^{\mathrm{i} x y}$

$$
\int_{\mathbb{R}} \hat{f}(x) g_{n}(x) \mathrm{e}^{\mathrm{i} x y} \mathrm{~d} x=\int_{\mathbb{R}} f(\omega) \hat{g}_{n}(\omega-y) \mathrm{d} \omega,
$$

where $y \in \mathbb{R}$ is arbitrary fixed. We examine this equation as $n \rightarrow \infty$. We have $\lim _{n \rightarrow \infty} g_{n}(x)=\frac{1}{2 \pi}$. For the left-hand side, since $\left|\hat{f}(x) g_{n}(x) \mathrm{e}^{\mathrm{i} x y}\right| \leq \frac{1}{2 \pi}|\hat{f}(x)|$ and $\hat{f} \in L_{1}(\mathbb{R})$, we can pass to the limit under the integral by the dominated convergence theorem of Lebesgue

$$
\lim _{n \rightarrow \infty} \int_{\mathbb{R}} \hat{f}(x) g_{n}(x) \mathrm{e}^{\mathrm{i} x y} \mathrm{~d} x=\frac{1}{2 \pi} \int_{\mathbb{R}} \hat{f}(x) \mathrm{e}^{\mathrm{i} x y} \mathrm{~d} x=(\hat{f})^{\llcorner }(y) .
$$

2. It remains to show that the limit on the right-hand side is equal to

$$
\lim _{n \rightarrow \infty} \int_{\mathbb{R}} f(\omega) \hat{g}_{n}(\omega-y) \mathrm{d} \omega=f(y)
$$

By assumption, $f \in L_{1}(\mathbb{R}) \cap C_{0}(\mathbb{R})$. Then $f \in C_{0}(\mathbb{R})$ and hence f is uniformly continuous on \mathbb{R} by Remark 2.1, i.e., for every $\varepsilon>0$, there exists $\delta=\delta(\varepsilon)>0$ such that $|f(x)-f(y)|<\varepsilon$ if $|x-y| \leq \delta$.

Note that $\hat{g}_{n} \in L_{1}(\mathbb{R})$ fulfills the relation

$$
\int_{\mathbb{R}} \hat{g}_{n}(\omega) \mathrm{d} \omega=\lim _{L \rightarrow \infty} \int_{-L}^{L} \hat{g}_{n}(\omega) \mathrm{d} \omega=\frac{2}{\pi} \lim _{L \rightarrow \infty} \arctan (n L)=1
$$

Then we get

$$
\begin{aligned}
& \int_{\mathbb{R}} f(\omega) \hat{g}_{n}(\omega-y) \mathrm{d} \omega-f(y)=\int_{\mathbb{R}}(f(\omega+y)-f(y)) \hat{g}_{n}(\omega) \mathrm{d} \omega \\
& =\int_{-\delta}^{\delta}(f(\omega+y)-f(y)) \hat{g}_{n}(\omega) \mathrm{d} \omega+\int_{|\omega| \geq \delta}(f(\omega+y)-f(y)) \hat{g}_{n}(\omega) \mathrm{d} \omega .
\end{aligned}
$$

3. For all $n \in \mathbb{N}$, we obtain

$$
\begin{aligned}
\left|\int_{-\delta}^{\delta}(f(\omega+y)-f(y)) \hat{g}_{n}(\omega) \mathrm{d} \omega\right| & \leq \int_{-\delta}^{\delta}|f(\omega+y)-f(y)| \hat{g}_{n}(\omega) \mathrm{d} \omega \\
& \leq \varepsilon \int_{-\delta}^{\delta} \hat{g}_{n}(\omega) \mathrm{d} \omega \leq \varepsilon
\end{aligned}
$$

Next we see

$$
\begin{equation*}
\left|\int_{|\omega| \geq \delta} f(y) \hat{g}_{n}(\omega) \mathrm{d} \omega\right| \leq|f(y)|\left(1-\frac{2}{\pi} \arctan (n \delta)\right) \tag{2.8}
\end{equation*}
$$

Since the even function \hat{g}_{n} is decreasing on $[0, \infty)$, we receive

$$
\begin{equation*}
\left|\int_{|\omega| \geq \delta} f(\omega+y) \hat{g}_{n}(\omega) \mathrm{d} \omega\right| \leq \hat{g}_{n}(\delta)\|f\|_{L_{1}(\mathbb{R})} \tag{2.9}
\end{equation*}
$$

As $n \rightarrow \infty$ the right-hand sides in (2.8) and (2.9) go to zero. This completes the proof.

As a corollary we obtain that the Fourier transform is one-to-one.
Corollary 2.11 If $f \in L_{1}(\mathbb{R})$ fulfills $\hat{f}=0$, then $f=0$ almost everywhere on \mathbb{R}.
We have seen that a 2π-periodic function can be reconstructed from its Fourier coefficients by the Fourier series in the $L_{2}(\mathbb{T})$ sense and that pointwise/uniform convergence of the Fourier series requires additional assumptions on the function.

Now we consider a corresponding problem in $L_{1}(\mathbb{R})$ and ask for the convergence of Cauchy principal value (of an improper integral)

$$
\lim _{L \rightarrow \infty} \frac{1}{2 \pi} \int_{-L}^{L} \hat{f}(\omega) \mathrm{e}^{\mathrm{i} \omega x} \mathrm{~d} \omega
$$

Note that for a Lebesgue integrable function on \mathbb{R}, the Cauchy principal value coincides with the integral over \mathbb{R}.

Similar to Riemann's localization principle in Theorem 1.28 in the 2π-periodic setting, we have the following result:

Theorem 2.12 (Riemann's Localization Principle) Let $f \in L_{1}(\mathbb{R})$ and $x_{0} \in \mathbb{R}$. Further let $\varphi(t):=f\left(x_{0}+t\right)+f\left(x_{0}-t\right)-2 f\left(x_{0}\right), t \in \mathbb{R}$. Assume that for some $\delta>0$

$$
\int_{0}^{\delta} \frac{|\varphi(t)|}{t} \mathrm{~d} t<\infty
$$

Then it holds

$$
f\left(x_{0}\right)=\lim _{L \rightarrow \infty} \frac{1}{2 \pi} \int_{-L}^{L} \hat{f}(\omega) \mathrm{e}^{\mathrm{i} \omega x_{0}} \mathrm{~d} \omega .
$$

Proof It follows

$$
\begin{aligned}
I_{L}\left(x_{0}\right) & :=\frac{1}{2 \pi} \int_{-L}^{L} \hat{f}(\omega) \mathrm{e}^{\mathrm{i} \omega x_{0}} \mathrm{~d} \omega=\frac{1}{2 \pi} \int_{-L}^{L} \int_{\mathbb{R}} f(u) \mathrm{e}^{-\mathrm{i} \omega u} \mathrm{~d} u \mathrm{e}^{\mathrm{i} \omega x_{0}} \mathrm{~d} \omega \\
& =\frac{1}{2 \pi} \int_{-L}^{L} \int_{\mathbb{R}} f(u) \mathrm{e}^{\mathrm{i} \omega\left(x_{0}-u\right)} \mathrm{d} u \mathrm{~d} \omega .
\end{aligned}
$$

Since $\left|f(u) \mathrm{e}^{\mathrm{i} \omega\left(x_{0}-u\right)}\right|=|f(u)|$ and $f \in L_{1}(\mathbb{R})$, we can change the order of integration in $I_{L}\left(x_{0}\right)$ by Fubini's theorem which results in

$$
\begin{aligned}
I_{L}\left(x_{0}\right) & =\frac{1}{2 \pi} \int_{\mathbb{R}} f(u) \int_{-L}^{L} \mathrm{e}^{\mathrm{i} \omega\left(x_{0}-u\right)} \mathrm{d} \omega \mathrm{~d} u=\frac{1}{\pi} \int_{\mathbb{R}} f(u) \frac{\sin \left(L\left(x_{0}-u\right)\right)}{x_{0}-u} \mathrm{~d} u \\
& =\frac{1}{\pi} \int_{0}^{\infty}\left(f\left(x_{0}+t\right)+f\left(x_{0}-t\right)\right) \frac{\sin (L t)}{t} \mathrm{~d} t .
\end{aligned}
$$

Since we have by Lemma 1.41 that

$$
\begin{equation*}
\int_{0}^{\infty} \frac{\sin (L t)}{t} \mathrm{~d} t=\int_{0}^{\infty} \frac{\sin t}{t} \mathrm{~d} t=\frac{\pi}{2} \tag{2.10}
\end{equation*}
$$

we conclude

$$
\begin{aligned}
I_{L}\left(x_{0}\right)-f\left(x_{0}\right) & =\frac{1}{\pi} \int_{0}^{\infty} \frac{\varphi(t)}{t} \sin (L t) \mathrm{d} t \\
& =\frac{1}{\pi} \int_{0}^{\delta} \frac{\varphi(t)}{t} \sin (L t) \mathrm{d} t+\frac{1}{\pi} \int_{\delta}^{\infty} \frac{f\left(x_{0}+t\right)+f\left(x_{0}-t\right)}{t} \sin (L t) \mathrm{d} t \\
& -\frac{2}{\pi} f\left(x_{0}\right) \int_{\delta}^{\infty} \frac{\sin (L t)}{t} \mathrm{~d} t
\end{aligned}
$$

Since $\varphi(t) / t \in L_{1}([0, \delta])$ by assumption, the first integral converges to zero as $L \rightarrow \infty$ by Lemma 1.27 of Riemann-Lebesgue. The same holds true for the second integral. Concerning the third integral we use

$$
\begin{aligned}
\frac{\pi}{2}=\int_{0}^{\infty} \frac{\sin (L t)}{t} \mathrm{~d} t & =\int_{0}^{\delta} \frac{\sin (L t)}{t} \mathrm{~d} t+\int_{\delta}^{\infty} \frac{\sin (L t)}{t} \mathrm{~d} t \\
& =\int_{0}^{L \delta} \frac{\sin t}{t} \mathrm{~d} t+\int_{\delta}^{\infty} \frac{\sin (L t)}{t} \mathrm{~d} t
\end{aligned}
$$

Since the first summand converges to $\frac{\pi}{2}$ as $L \rightarrow \infty$, the integral $\int_{\delta}^{\infty} \frac{\sin (L t)}{t} \mathrm{~d} t$ converges to zero as $L \rightarrow \infty$. This finishes the proof.

A function $f: \mathbb{R} \rightarrow \mathbb{C}$ is called piecewise continuously differentiable on \mathbb{R}, if there exists a finite partition of \mathbb{R} determined by $-\infty<x_{0}<x_{1}<\ldots<$ $x_{n}<\infty$ of \mathbb{R} such that f is continuously differentiable on each interval $\left(-\infty, x_{0}\right)$, $\left(x_{0}, x_{1}\right), \ldots,\left(x_{n-1}, x_{n}\right),\left(x_{n}, \infty\right)$ and the one-sided limits $\lim _{x \rightarrow x_{j} \pm 0} f(x)$ and $\lim _{x \rightarrow x_{j} \pm 0} f^{\prime}(x), j=0, \ldots, n$ exist. Similarly as in the proof of Theorem 1.34 of Dirichlet-Jordan, the previous theorem can be used to prove that for a piecewise continuously differentiable function $f \in L_{1}(\mathbb{R})$ it holds

$$
\frac{1}{2}(f(x+0)+f(x-0))=\lim _{L \rightarrow \infty} \frac{1}{2 \pi} \int_{-L}^{L} \hat{f}(\omega) \mathrm{e}^{\mathrm{i} \omega x} \mathrm{~d} \omega
$$

for all $x \in \mathbb{R}$.
The Fourier transform is again closely related to the convolution of functions. If $f: \mathbb{R} \rightarrow \mathbb{C}$ and $g: \mathbb{R} \rightarrow \mathbb{C}$ are given functions, then their convolution $f * g$ is defined by

$$
\begin{equation*}
(f * g)(x):=\int_{\mathbb{R}} f(y) g(x-y) \mathrm{d} y, \quad x \in \mathbb{R}, \tag{2.11}
\end{equation*}
$$

provided that this integral (2.11) exists. Note that the convolution is a commutative, associative, and distributive operation. Various conditions can be imposed on f and g to ensure that (2.11) exists. For instance, if f and g are both in $L_{1}(\mathbb{R})$, then $(f * g)(x)$ exists for almost every $x \in \mathbb{R}$ and further $f * g \in L_{1}(\mathbb{R})$. In the same way as for 2π-periodic functions we can prove the following result:

Theorem 2.13

1. Let $f \in L_{p}(\mathbb{R})$ with $1 \leq p \leq \infty$ and $g \in L_{1}(\mathbb{R})$ be given. Then $f * g$ exists almost everywhere and $f * g \in L_{p}(\mathbb{R})$. Further we have the Young inequality

$$
\|f * g\|_{L_{p}(\mathbb{R})} \leq\|f\|_{L_{p}(\mathbb{R})}\|g\|_{L_{1}(\mathbb{R})} .
$$

2. Let $f \in L_{p}(\mathbb{R})$ and $g \in L_{q}(\mathbb{R})$, where $1<p<\infty$ and $\frac{1}{p}+\frac{1}{q}=1$. Then $f * g \in C_{0}(\mathbb{R})$ fulfills

$$
\|f * g\|_{C_{0}(\mathbb{R})} \leq\|f\|_{L_{p}(\mathbb{R})}\|g\|_{L_{q}(\mathbb{R})} .
$$

3. Let $f \in L_{p}(\mathbb{R})$ and $g \in L_{q}(\mathbb{R})$, where $1 \leq p, q, r \leq \infty$ and $\frac{1}{p}+\frac{1}{q}=\frac{1}{r}+1$. Then $f * g \in L_{r}(\mathbb{R})$ and we have the generalized Young inequality

$$
\|f * g\|_{L_{r}(\mathbb{R})} \leq\|f\|_{L_{p}(\mathbb{R})}\|g\|_{L_{q}(\mathbb{R})}
$$

Differentiation and convolution are related by the following
Lemma 2.14 Let $f \in L_{1}(\mathbb{R})$ and $g \in C^{r}(\mathbb{R})$, where $g^{(k)}$ for $k=0, \ldots$,r are bounded on \mathbb{R}. Then $f * g \in C^{r}(\mathbb{R})$ and

$$
(f * g)^{(k)}=f * g^{(k)}, \quad k=1, \ldots, r .
$$

Proof Since $g^{(k)} \in L_{\infty}(\mathbb{R})$, the first assertion follows by the first part of Theorem 2.13. The function $x \mapsto f(y) g(x-y)$ is r-times differentiable, and for $k=0, \ldots, r$ we have

$$
\left|f(y) g^{(k)}(x-y)\right| \leq|f(y)| \sup _{t \in \mathbb{R}}\left|g^{(k)}(t)\right| .
$$

Since $f \in L_{1}(\mathbb{R})$, we can differentiate under the integral sign, see [125, Proposition 14.2.2], which results in

$$
(f * g)^{(k)}(x)=\int_{\mathbb{R}} f(y) g^{(k)}(x-y) \mathrm{d} x=\left(f * g^{(k)}\right)(x) .
$$

The following theorem presents the most important property of the Fourier transform.

Theorem 2.15 (Convolution Property of Fourier Transform) Let $f, g \in$ $L_{1}(\mathbb{R})$. Then we have

$$
(f * g)^{\wedge}=\hat{f} \hat{g}
$$

Proof For $f, g \in L_{1}(\mathbb{R})$ we have $f * g \in L_{1}(\mathbb{R})$ by Theorem 2.13. Using Fubini's theorem, we obtain for all $\omega \in \mathbb{R}$

$$
\begin{aligned}
(f * g)^{\wedge}(\omega) & =\int_{\mathbb{R}}(f * g)(x) \mathrm{e}^{-\mathrm{i} \omega x} \mathrm{~d} x=\int_{\mathbb{R}}\left(\int_{\mathbb{R}} f(y) g(x-y) \mathrm{d} y\right) \mathrm{e}^{-\mathrm{i} \omega x} \mathrm{~d} x \\
& =\int_{\mathbb{R}} f(y)\left(\int_{\mathbb{R}} g(x-y) \mathrm{e}^{-\mathrm{i} \omega(x-y)} \mathrm{d} x\right) \mathrm{e}^{-\mathrm{i} \omega y} \mathrm{~d} y \\
& =\int_{\mathbb{R}} f(y)\left(\int_{\mathbb{R}} g(t) \mathrm{e}^{-\mathrm{i} \omega t} \mathrm{~d} t\right) \mathrm{e}^{-\mathrm{i} \omega y} \mathrm{~d} y=\hat{f}(\omega) \hat{g}(\omega) .
\end{aligned}
$$

Applying these properties of the Fourier transform, we can calculate the Fourier transforms of some special functions.

Example 2.16 Let $N_{1}: \mathbb{R} \rightarrow \mathbb{R}$ denote the cardinal B-spline of order one defined by

$$
N_{1}(x):= \begin{cases}1 & x \in(0,1) \\ 1 / 2 & x \in\{0,1\} \\ 0 & \text { otherwise }\end{cases}
$$

For $m \in \mathbb{N}$, the convolution

$$
N_{m+1}(x):=\left(N_{m} * N_{1}\right)(x)=\int_{0}^{1} N_{m}(x-t) \mathrm{d} t
$$

is the cardinal B-spline of order $m+1$. Especially, for $m=1$ we obtain the linear cardinal B-spline

$$
N_{2}(x):= \begin{cases}x & x \in[0,1) \\ 2-x & x \in[1,2) \\ 0 & \text { otherwise }\end{cases}
$$

Note that the support of N_{m} is the interval [0, m]. By

$$
\hat{N}_{1}(\omega)=\int_{0}^{1} \mathrm{e}^{-\mathrm{i} x \omega} \mathrm{~d} x=\frac{1-\mathrm{e}^{-\mathrm{i} \omega}}{\mathrm{i} \omega}, \quad \omega \in \mathbb{R} \backslash\{0\}
$$

and $\hat{N}_{1}(0)=1$, we obtain

$$
\hat{N}_{1}(\omega)=\mathrm{e}^{-\mathrm{i} \omega / 2} \operatorname{sinc} \frac{\omega}{2}, \quad \omega \in \mathbb{R} .
$$

By the convolution property of Theorem 2.15, we obtain

$$
\hat{N}_{m+1}(\omega)=\hat{N}_{m}(\omega) \hat{N}_{1}(\omega)=\left(\hat{N}_{1}(\omega)\right)^{m+1}
$$

Hence the Fourier transform of the cardinal B-spline N_{m} reads as follows:

$$
\hat{N}_{m}(\omega)=\mathrm{e}^{-\mathrm{i} m \omega / 2}\left(\operatorname{sinc} \frac{\omega}{2}\right)^{m} .
$$

For the centered cardinal B-spline of order $m \in \mathbb{N}$ defined by

$$
M_{m}(x):=N_{m}\left(x+\frac{m}{2}\right),
$$

we obtain by the translation property of Theorem 2.5 that

$$
\hat{M}_{m}(\omega)=\left(\operatorname{sinc} \frac{\omega}{2}\right)^{m}
$$

The Banach space $L_{1}(\mathbb{R})$ with the addition and convolution of functions is a Banach algebra. As for periodic functions there is no identity element with respect to the convolution. A remedy is again to work with an approximate identity. We start with the following observation:

Lemma 2.17

1. If $f \in L_{p}(\mathbb{R})$ with $1 \leq p \leq \infty$, then

$$
\lim _{y \rightarrow 0}\|f(\cdot-y)-f\|_{L_{p}(\mathbb{R})}=0
$$

2. If $f \in C_{0}(\mathbb{R})$, then

$$
\lim _{y \rightarrow 0}\|f(\cdot-y)-f\|_{C_{0}(\mathbb{R})}=0
$$

Proof

1. Let $f \in L_{p}(\mathbb{R})$ be given. Then for arbitrary $\varepsilon>0$ there exists a step function

$$
s(x):=\sum_{j=1}^{n} a_{j} \chi_{I_{j}}(x)
$$

with constants $a_{j} \in \mathbb{C}$ and pairwise disjoint intervals $I_{j} \subset \mathbb{R}$ such that $\|f-s\|_{L_{p}(\mathbb{R})}<\varepsilon / 3$. Corresponding to ε, we choose $\delta>0$ so that $\| s(\cdot-$ $y)-s \|_{L_{p}(\mathbb{R})}<\varepsilon / 3$ for all $|y|<\delta$. Thus we obtain

$$
\begin{aligned}
\|f(\cdot-y)-f\|_{L_{p}(\mathbb{R})} & \leq\|f(\cdot-y)-s(\cdot-y)\|_{L_{p}(\mathbb{R})}+\|s(\cdot-y)-s\|_{L_{p}(\mathbb{R})}+\|s-f\|_{L_{p}(\mathbb{R})} \\
& \leq \frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3}=\varepsilon .
\end{aligned}
$$

2. Now let $f \in C_{0}(\mathbb{R})$ be given. Then by Remark $2.1, f$ is uniformly continuous on \mathbb{R}. Thus for each $\varepsilon>0$ there exists $\delta>0$ such that $|f(x-y)-f(x)|<\varepsilon$ for all $|y|<\delta$ and all $x \in \mathbb{R}$, i.e., $\|f(\cdot-y)-f\|_{C_{0}(\mathbb{R})}<\varepsilon$.

Theorem 2.18 Let $\varphi \in L_{1}(\mathbb{R})$ with $\int_{\mathbb{R}} \varphi(x) \mathrm{d} x=1$ be given and let

$$
\varphi_{\sigma}(x):=\frac{1}{\sigma} \varphi\left(\frac{x}{\sigma}\right), \quad \sigma>0,
$$

be a so-called approximate identity. Then the following relations hold true:

1. For $f \in L_{p}(\mathbb{R})$ with $1 \leq p<\infty$, we have

$$
\lim _{\sigma \rightarrow 0}\left\|f * \varphi_{\sigma}-f\right\|_{L_{p}(\mathbb{R})}=0
$$

2. For $f \in C_{0}(\mathbb{R})$ we have

$$
\lim _{\sigma \rightarrow 0}\left\|f * \varphi_{\sigma}-f\right\|_{C_{0}(\mathbb{R})}=0
$$

Proof

1. Let $f \in L_{p}(\mathbb{R}), 1 \leq p<\infty$, be given. Since $\int_{\mathbb{R}} \varphi_{\sigma}(y) \mathrm{d} y=1$ for all $\sigma>0$, we obtain

$$
\left(f * \varphi_{\sigma}\right)(x)-f(x)=\int_{\mathbb{R}}(f(x-y)-f(x)) \varphi_{\sigma}(y) \mathrm{d} y
$$

and hence

$$
\begin{aligned}
\left|\left(f * \varphi_{\sigma}\right)(x)-f(x)\right| & \leq \int_{\mathbb{R}}|f(x-y)-f(x)|\left|\varphi_{\sigma}(y)\right| \mathrm{d} y \\
& =\int_{\mathbb{R}}\left(|f(x-y)-f(x)|\left|\varphi_{\sigma}(y)\right|^{1 / p}\right)\left|\varphi_{\sigma}(y)\right|^{1 / q} \mathrm{~d} y
\end{aligned}
$$

where $\frac{1}{p}+\frac{1}{q}=1$. Using Hölder's inequality, the above integral can be estimated by

$$
\left(\int_{\mathbb{R}}|f(x-y)-f(x)|^{p}\left|\varphi_{\sigma}(y)\right| \mathrm{d} y\right)^{1 / p}\left(\int_{\mathbb{R}}\left|\varphi_{\sigma}(y)\right| \mathrm{d} y\right)^{1 / q} .
$$

Thus we obtain

$$
\begin{aligned}
& \int_{\mathbb{R}}\left|\left(f * \varphi_{\sigma}\right)(x)-f(x)\right|^{p} \mathrm{~d} x \\
& \leq\left(\int_{\mathbb{R}} \int_{\mathbb{R}}|f(x-y)-f(x)|^{p}\left|\varphi_{\sigma}(y)\right| \mathrm{d} y \mathrm{~d} x\right)\left(\int_{\mathbb{R}}\left|\varphi_{\sigma}(y)\right| \mathrm{d} y\right)^{p / q} .
\end{aligned}
$$

For arbitrary $\varepsilon>0$ we choose $\delta>0$ by Lemma 2.17 so that $\| f(\cdot-y)-$ $f \|_{L_{p}(\mathbb{R})}<\varepsilon$ for $|y|<\delta$. Changing the order of integration, we see that the last integral term is bounded by

$$
\begin{aligned}
& \left\|\varphi_{\sigma}\right\|_{L_{1}(\mathbb{R})}^{p / q}\left(\int_{\mathbb{R}}\left|\varphi_{\sigma}(y)\right| \int_{\mathbb{R}}|f(x-y)-f(x)|^{p} \mathrm{~d} x \mathrm{~d} y\right) \\
& \leq\left\|\varphi_{\sigma}\right\|_{L_{1}(\mathbb{R})}^{p / q}\left(\int_{-\delta}^{\delta}+\int_{|y|>\delta}\right)\left|\varphi_{\sigma}(y)\right|\|f(\cdot-y)-f\|_{L_{p}(\mathbb{R})}^{p} \mathrm{~d} y .
\end{aligned}
$$

Then we receive

$$
\int_{-\delta}^{\delta}\left|\varphi_{\sigma}(y)\right|\|f(\cdot-y)-f\|_{L_{p}(\mathbb{R})}^{p} \mathrm{~d} y \leq \varepsilon \int_{-\delta}^{\delta}\left|\varphi_{\sigma}(y)\right| \mathrm{d} y \leq \varepsilon\|\varphi\|_{L_{1}(\mathbb{R})}
$$

Since $\|f(\cdot-y)-f\|_{L_{p}(\mathbb{R})} \leq\|f(\cdot-y)\|_{L_{p}(\mathbb{R})}+\|f\|_{L_{p}(\mathbb{R})}=2\|f\|_{L_{p}(\mathbb{R})}$, we conclude that

$$
\begin{aligned}
\int_{|y|>\delta}\left|\varphi_{\sigma}(y)\right|\|f(\cdot-y)-f\|_{L_{p}(\mathbb{R})}^{p} \mathrm{~d} y & \leq 2^{p}\|f\|_{L_{p}(\mathbb{R})}^{p} \int_{|y|>\delta}\left|\varphi_{\sigma}(y)\right| \mathrm{d} y \\
& =2^{p}\|f\|_{L_{p}(\mathbb{R})}^{p} \int_{|x|>\delta / \sigma}|\varphi(x)| \mathrm{d} x .
\end{aligned}
$$

Observing

$$
\lim _{\sigma \rightarrow 0} \int_{|x|>\delta / \sigma}|\varphi(x)| \mathrm{d} x=0
$$

by $\varphi \in L_{1}(\mathbb{R})$, we obtain

$$
\lim \sup _{\sigma \rightarrow 0}\left\|f * \varphi_{\sigma}-f\right\|_{L_{p}(\mathbb{R})}^{p} \leq \varepsilon\|\varphi\|_{L_{1}(\mathbb{R})}^{p}
$$

2. Now we consider $f \in C_{0}(\mathbb{R})$. For arbitrary $\varepsilon>0$ we choose $\delta>0$ by Lemma 2.17 so that $\|f(\cdot-y)-f\|_{C_{0}(\mathbb{R})}<\varepsilon$ for $|y|<\delta$. As in the first step, we preserve

$$
\begin{aligned}
\left|\left(f * \varphi_{\sigma}\right)(x)-f(x)\right| & \leq \int_{\mathbb{R}}|f(x-y)-f(x)|\left|\varphi_{\sigma}(y)\right| \mathrm{d} y \\
& \leq\left(\int_{-\delta}^{\delta}+\int_{|y|>\delta}\right)\left|\varphi_{\sigma}(y)\right||f(x-y)-f(x)| \mathrm{d} y .
\end{aligned}
$$

Now we estimate both integrals

$$
\begin{aligned}
\int_{-\delta}^{\delta}\left|\varphi_{\sigma}(y)\right||f(x-y)-f(x)| \mathrm{d} y & \leq \varepsilon \int_{-\delta}^{\delta}\left|\varphi_{\sigma}(y)\right| \mathrm{d} y \leq \varepsilon\|\varphi\|_{L_{1}(\mathbb{R})} \\
\int_{|y|>\delta}\left|\varphi_{\sigma}(y)\right||f(x-y)-f(x)| \mathrm{d} y & \leq 2\|f\|_{C_{0}(\mathbb{R})} \int_{|y|>\delta}\left|\varphi_{\sigma}(y)\right| \mathrm{d} y \\
& =2\|f\|_{C_{0}(\mathbb{R})} \int_{|y|>\delta / \sigma}|\varphi(x)| \mathrm{d} x
\end{aligned}
$$

and obtain

$$
\lim \sup _{\sigma \rightarrow 0}\left\|f * \varphi_{\sigma}-f\right\|_{C_{0}(\mathbb{R})} \leq \varepsilon\|\varphi\|_{L_{1}(\mathbb{R})}
$$

Example 2.19 Let $f \in L_{1}(\mathbb{R})$ be given. We choose

$$
\varphi(x):=\frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-x^{2} / 2}, \quad x \in \mathbb{R} .
$$

Then by Example 2.6, the approximate identity φ_{σ} coincides with the normalized Gaussian function (2.2) with standard deviation $\sigma>0$. Then for each continuity point $x_{0} \in \mathbb{R}$ of f, it holds

$$
\lim _{\sigma \rightarrow 0}\left(f * \varphi_{\sigma}\right)\left(x_{0}\right)=f\left(x_{0}\right) .
$$

This can be seen as follows: For any $\varepsilon>0$, there exists $\delta>0$ such that $\mid f\left(x_{0}-\right.$ $y)-f\left(x_{0}\right) \mid \leq \varepsilon$ for all $|y| \leq \delta$. Since $\int_{\mathbb{R}} \varphi_{\sigma}(y) \mathrm{d} y=1$ by Example 2.6, we get

$$
\left(f * \varphi_{\sigma}\right)\left(x_{0}\right)-f\left(x_{0}\right)=\int_{\mathbb{R}}\left(f\left(x_{0}-y\right)-f\left(x_{0}\right)\right) \varphi_{\sigma}(y) \mathrm{d} y
$$

and consequently

$$
\begin{aligned}
& \left|\left(f * g_{\sigma}\right)\left(x_{0}\right)-f\left(x_{0}\right)\right| \leq\left(\int_{-\delta}^{\delta}+\int_{|y|>\delta}\right) \varphi_{\sigma}(y)\left|f\left(x_{0}-y\right)-f\left(x_{0}\right)\right| \mathrm{d} y \\
& \leq \varepsilon \int_{-\delta}^{\delta} \varphi_{\sigma}(y) \mathrm{d} y+\int_{|y|>\delta}\left|f\left(x_{0}-y\right)\right| \varphi_{\sigma}(y) \mathrm{d} y+\left|f\left(x_{0}\right)\right| \int_{|y|>\delta} \varphi_{\sigma}(y) \mathrm{d} y \\
& \leq \varepsilon+\|f\|_{L_{1}(\mathbb{R})} \varphi_{\sigma}(\delta)+\frac{1}{\sqrt{2 \pi}}\left|f\left(x_{0}\right)\right| \int_{|x|>\delta / \sigma} \mathrm{e}^{-x^{2} / 2} \mathrm{~d} x .
\end{aligned}
$$

Thus we obtain

$$
\limsup _{\sigma \rightarrow 0}\left|\left(f * \varphi_{\sigma}\right)\left(x_{0}\right)-f\left(x_{0}\right)\right| \leq \varepsilon .
$$

An important consequence of Theorem 2.18 is the following result:
Theorem 2.20 The set $C_{c}^{\infty}(\mathbb{R})$ of all compactly supported, infinitely differentiable functions is dense in $L_{p}(\mathbb{R})$ for $1 \leq p<\infty$ and in $C_{0}(\mathbb{R})$.

Proof Let

$$
\varphi(x):= \begin{cases}c \exp \left(-\frac{1}{1-x^{2}}\right) & x \in(-1,1), \\ 0 & x \in \mathbb{R} \backslash(-1,1),\end{cases}
$$

where the constant $c>0$ is determined by the condition $\int_{\mathbb{R}} \varphi(x) \mathrm{d} x=1$. Then φ is infinitely differentiable and has compact support $[-1,1]$, i.e., $\varphi \in C_{c}^{\infty}(\mathbb{R})$. We choose φ_{σ} with $\sigma>0$ as approximate identity.

Let $f \in L_{p}(\mathbb{R})$. For arbitrary $\varepsilon>0$, there exists $N \in \mathbb{N}$ such that

$$
\left\|f-f_{N}\right\|_{L_{p}(\mathbb{R})}<\frac{\varepsilon}{2}
$$

where f_{N} is the restricted function

$$
f_{N}(x):= \begin{cases}f(x) & x \in[-N, N], \\ 0 & x \in \mathbb{R} \backslash[-N, N]\end{cases}
$$

By the first part of Theorem 2.18 we know that

$$
\left\|f_{N} * \varphi_{\sigma}-f_{N}\right\|_{L_{p}(\mathbb{R})}<\frac{\varepsilon}{2}
$$

for sufficiently small $\sigma>0$. Thus $f_{N} * \varphi_{\sigma}$ is a good approximation of f, because

$$
\left\|f_{N} * \varphi_{\sigma}-f\right\|_{L_{p}(\mathbb{R})} \leq\left\|f_{N} * \varphi_{\sigma}-f_{N}\right\|_{L_{p}(\mathbb{R})}+\left\|f_{N}-f\right\|_{L_{p}(\mathbb{R})}<\varepsilon
$$

By Lemma 2.14 , the function $f_{N} * \varphi_{\sigma}$ is infinitely differentiable. Further this convolution product has compact support supp $f_{N} * \varphi_{\sigma} \subseteq[-N-\sigma, N+\sigma]$. Consequently, $C_{c}^{\infty}(\mathbb{R})$ is a dense subset of $L_{p}(\mathbb{R})$.

Using the second part of Theorem 2.18, one can analogously prove the assertion for $f \in C_{0}(\mathbb{R})$.

2.2 Fourier Transforms on $L_{2}(\mathbb{R})$

Up to now we have considered the Fourier transforms of $L_{1}(\mathbb{R})$ functions. Next we want to establish a Fourier transform on the Hilbert space $L_{2}(\mathbb{R})$, where the Fourier integral

$$
\int_{\mathbb{R}} f(x) \mathrm{e}^{-\mathrm{i} x \omega} \mathrm{~d} x
$$

may not exist, i.e., it does not take a finite value for some $\omega \in \mathbb{R}$. Therefore we define the Fourier transform of an $L_{2}(\mathbb{R})$ function in a different way based on the following result:
Lemma 2.21 Let $f, g \in L_{1}(\mathbb{R})$, such that $\hat{f}, \hat{g} \in L_{1}(\mathbb{R})$. Then the following Parseval equality is valid

$$
\begin{equation*}
2 \pi\langle f, g\rangle_{L_{2}(\mathbb{R})}=\langle\hat{f}, \hat{g}\rangle_{L_{2}(\mathbb{R})} \tag{2.12}
\end{equation*}
$$

Note that $f, \hat{f} \in L_{1}(\mathbb{R})$ implies that $(\hat{f})^{\imath}=f$ almost everywhere by Theorem 2.10 and $(\hat{f})^{\imath} \in C_{0}(\mathbb{R})$ by Theorem 2.8. Thus we have $f \in L_{2}(\mathbb{R})$, since

Proof Using Fubini's theorem and Fourier inversion formula (2.7), we obtain

$$
\begin{aligned}
\int_{\mathbb{R}} \hat{f}(\omega) \overline{\hat{g}(\omega)} \mathrm{d} \omega & =\int_{\mathbb{R}} \hat{f}(\omega) \overline{\int_{\mathbb{R}} g(x) \mathrm{e}^{-\mathrm{i} x \omega} \mathrm{~d} x} \mathrm{~d} \omega \\
& =\int_{\mathbb{R}} \overline{g(x)} \int_{\mathbb{R}} \hat{f}(\omega) \mathrm{e}^{\mathrm{i} x \omega} \mathrm{~d} \omega \mathrm{~d} x=2 \pi \int_{\mathbb{R}} \overline{g(x)} f(x) \mathrm{d} x
\end{aligned}
$$

Applying Theorem 2.20, for any function $f \in L_{2}(\mathbb{R})$ there exists a sequence $\left(f_{j}\right)_{j \in \mathbb{N}}$ of functions $f_{j} \in C_{c}^{\infty}(\mathbb{R})$ such that

$$
\lim _{j \rightarrow \infty}\left\|f-f_{j}\right\|_{L_{2}(\mathbb{R})}=0
$$

Thus $\left(f_{j}\right)_{j \in \mathbb{N}}$ is a Cauchy sequence in $L_{2}(\mathbb{R})$, i.e., for every $\varepsilon>0$ there exists an index $N(\varepsilon) \in \mathbb{N}$ so that for all $j, k \geq N(\varepsilon)$

$$
\left\|f_{k}-f_{j}\right\|_{L_{2}(\mathbb{R})} \leq \varepsilon
$$

Clearly, $f_{j}, \hat{f_{j}} \in L_{1}(\mathbb{R})$. By Parseval equality (2.21) we obtain for all $j, k \geq N(\varepsilon)$

$$
\left\|f_{k}-f_{j}\right\|_{L_{2}(\mathbb{R})}=\frac{1}{\sqrt{2 \pi}}\left\|\hat{f}_{k}-\hat{f}_{j}\right\|_{L_{2}(\mathbb{R})} \leq \varepsilon
$$

so that $\left(\hat{f}_{j}\right)_{j \in \mathbb{N}}$ is also a Cauchy sequence in $L_{2}(\mathbb{R})$. Since $L_{2}(\mathbb{R})$ is complete, this Cauchy sequence converges to some function in $L_{2}(\mathbb{R})$. We define the Fourier transform $\hat{f}=\mathscr{F} f \in L_{2}(\mathbb{R})$ of $f \in L_{2}(\mathbb{R})$ as

$$
\hat{f}=\mathscr{F} f:=\lim _{j \rightarrow \infty} \hat{f_{j}} .
$$

In this way the domain of the Fourier transform is extended to $L_{2}(\mathbb{R})$. Note that the set $L_{1}(\mathbb{R}) \cap L_{2}(\mathbb{R})$ is dense in $L_{2}(\mathbb{R})$, since $C_{c}^{\infty}(\mathbb{R})$ is contained in $L_{1}(\mathbb{R}) \cap L_{2}(\mathbb{R})$ and $C_{c}^{\infty}(\mathbb{R})$ is dense in $L_{2}(\mathbb{R})$ by Theorem 2.20.

By the continuity of the inner product we obtain also the Parseval equality in $L_{2}(\mathbb{R})$. We summarize:

Theorem 2.22 (Plancherel) The Fourier transform truncated on $L_{1}(\mathbb{R}) \cap L_{2}(\mathbb{R})$ can be uniquely extended to a bounded linear operator of $L_{2}(\mathbb{R})$ onto itself which satisfies the Parseval equalities

$$
\begin{equation*}
2 \pi\langle f, g\rangle_{L_{2}(\mathbb{R})}=\langle\hat{f}, \hat{g}\rangle_{L_{2}(\mathbb{R})}, \quad \sqrt{2 \pi}\|f\|_{L_{2}(\mathbb{R})}=\|\hat{f}\|_{L_{2}(\mathbb{R})} \tag{2.13}
\end{equation*}
$$

for all $f, g \in L_{2}(\mathbb{R})$.
Note that Theorem 2.5 is also true for $L_{2}(\mathbb{R})$ functions. Moreover, we have the following Fourier inversion formula.

Theorem 2.23 (Fourier Inversion Formula for $L_{2}(\mathbb{R})$ Functions) Let $f \in$ $L_{2}(\mathbb{R})$ with $\hat{f} \in L_{1}(\mathbb{R})$ be given. Then the Fourier inversion formula

$$
\begin{equation*}
f(x)=\frac{1}{2 \pi} \int_{\mathbb{R}} \hat{f}(\omega) \mathrm{e}^{\mathrm{i} \omega x} \mathrm{~d} \omega \tag{2.14}
\end{equation*}
$$

holds true for almost every $x \in \mathbb{R}$. If f is in addition continuous, then the Fourier inversion formula (2.14) holds pointwise for all $x \in \mathbb{R}$.

Remark 2.24 Often the integral notation

$$
\hat{f}(\omega)=\int_{\mathbb{R}} f(x) \mathrm{e}^{-\mathrm{i} x \omega} \mathrm{~d} x
$$

is also used for the Fourier transform of $L_{2}(\mathbb{R})$ functions, although the integral may not converge pointwise. But it may be interpreted by a limiting process. For $\varepsilon>0$ and $f \in L_{2}(\mathbb{R})$, the function $g_{\varepsilon}: \mathbb{R} \rightarrow \mathbb{C}$ is defined by

$$
g_{\varepsilon}(\omega):=\int_{\mathbb{R}} \mathrm{e}^{-\varepsilon^{2} x^{2}} f(x) \mathrm{e}^{-\mathrm{i} x \omega} \mathrm{~d} x
$$

Then g_{ε} converges in the $L_{2}(\mathbb{R})$ norm and pointwise almost everywhere to \hat{f} for $\varepsilon \rightarrow 0$.

Finally we introduce an orthogonal basis of $L_{2}(\mathbb{R})$, whose elements are eigenfunctions of the Fourier transform. For $n \in \mathbb{N}_{0}$, the nth Hermite polynomial H_{n} is defined by

$$
H_{n}(x):=(-1)^{n} \mathrm{e}^{x^{2}} \frac{\mathrm{~d}^{n}}{\mathrm{~d} x^{n}} \mathrm{e}^{-x^{2}}, \quad x \in \mathbb{R} .
$$

In particular we have

$$
H_{0}(x)=1, \quad H_{1}(x)=2 x, \quad H_{2}(x)=4 x^{2}-2, \quad H_{3}(x)=8 x^{3}-12 x
$$

The Hermite polynomials fulfill the three-term relation

$$
\begin{equation*}
H_{n+1}(x)=2 x H_{n}(x)-2 n H_{n-1}(x), \tag{2.15}
\end{equation*}
$$

and the recursion

$$
\begin{equation*}
H_{n}^{\prime}(x)=2 n H_{n-1}(x) \tag{2.16}
\end{equation*}
$$

For $n \in \mathbb{N}_{0}$, the nth Hermite function h_{n} is given by

$$
h_{n}(x):=H_{n}(x) \mathrm{e}^{-x^{2} / 2}=(-1)^{n} \mathrm{e}^{x^{2} / 2} \frac{\mathrm{~d}^{n}}{\mathrm{~d} x^{n}} \mathrm{e}^{-x^{2}}, \quad x \in \mathbb{R}
$$

In particular, we have $h_{0}(x)=\mathrm{e}^{-x^{2} / 2}$ which has the Fourier transform $\hat{h}_{0}(\omega)=$ $\frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-\omega^{2} / 2}$ by Example 2.6. The Hermite functions fulfill the differential equation

$$
\begin{equation*}
h_{n}^{\prime \prime}(x)-\left(x^{2}-2 n-1\right) h_{n}(x)=0 \tag{2.17}
\end{equation*}
$$

and can be computed recursively by

$$
h_{n+1}(x)=x h_{n}(x)-h_{n}^{\prime}(x) .
$$

Theorem 2.25 The Hermite functions $h_{n}, n \in \mathbb{N}_{0}$, with

$$
\left\langle h_{n}, h_{n}\right\rangle_{L_{2}(\mathbb{R})}=\sqrt{\pi} 2^{n} n!
$$

form a complete orthogonal system in $L_{2}(\mathbb{R})$. The Fourier transforms of the Hermite functions are given by

$$
\begin{equation*}
\hat{h}_{n}(\omega)=\sqrt{2 \pi}(-\mathrm{i})^{n} h_{n}(\omega) . \tag{2.18}
\end{equation*}
$$

In other words, the functions h_{n} are the eigenfunctions of the Fourier transform $\mathscr{F}: L_{2}(\mathbb{R}) \rightarrow L_{2}(\mathbb{R})$ with eigenvalues $\sqrt{2 \pi}(-\mathrm{i})^{n}$ for all $n \in \mathbb{N}_{0}$.

By Theorem 2.25 we see that the Hermite polynomials are orthogonal polynomials in the weighted Hilbert space $L_{2, w}(\mathbb{R})$ with $w(x):=\mathrm{e}^{-x^{2}}, x \in \mathbb{R}$, i.e., they are orthogonal with respect to the weighted Lebesgue measure $\mathrm{e}^{-x^{2}} \mathrm{~d} x$.

Proof

1. We show that $\left\langle h_{m}, h_{n}\right\rangle_{L_{2}(\mathbb{R})}=0$ for $m \neq n$. By the differential equation (2.17) we obtain

$$
\begin{aligned}
\left(h_{m}^{\prime \prime}-x^{2} h_{m}\right) h_{n} & =-(2 m+1) h_{m} h_{n} \\
\left(h_{n}^{\prime \prime}-x^{2} h_{n}\right) h_{m} & =-(2 n+1) h_{m} h_{n} .
\end{aligned}
$$

Subtraction yields

$$
h_{m}^{\prime \prime} h_{n}-h_{n}^{\prime \prime} h_{m}=\left(h_{m}^{\prime} h_{n}-h_{n}^{\prime} h_{m}\right)^{\prime}=2(n-m) h_{m} h_{n},
$$

which results after integration in

$$
\begin{aligned}
2(n-m)\left\langle h_{m}, h_{n}\right\rangle_{L_{2}(\mathbb{R})} & =2(m-n) \int_{\mathbb{R}} h_{m}(x) h_{n}(x) \mathrm{d} x \\
& =\left.\left(h_{m}^{\prime}(x) h_{n}(x)-h_{n}^{\prime}(x) h_{m}(x)\right)\right|_{-\infty} ^{\infty}=0 .
\end{aligned}
$$

2. Next we prove for $n \in \mathbb{N}_{0}$ that

$$
\begin{equation*}
\left\langle h_{n}, h_{n}\right\rangle_{L_{2}(\mathbb{R})}=\sqrt{\pi} 2^{n} n! \tag{2.19}
\end{equation*}
$$

For $n=0$ the relation holds true by Example 2.6. We show the recursion

$$
\begin{equation*}
\left\langle h_{n+1}, h_{n+1}\right\rangle_{L_{2}(\mathbb{R})}=2(n+1)\left\langle h_{n}, h_{n}\right\rangle_{L_{2}(\mathbb{R})} \tag{2.20}
\end{equation*}
$$

which implies (2.19). Using (2.16), integration by parts, and step 1 of this proof, we obtain

$$
\begin{aligned}
\left\langle h_{n+1}, h_{n+1}\right\rangle_{L_{2}(\mathbb{R})} & =\int_{\mathbb{R}} \mathrm{e}^{-x^{2}}\left(H_{n+1}(x)\right)^{2} \mathrm{~d} x=\int_{\mathbb{R}}\left(2 x \mathrm{e}^{-x^{2}}\right)\left(H_{n}(x) H_{n+1}(x)\right) \mathrm{d} x \\
& =\int_{\mathbb{R}} \mathrm{e}^{-x^{2}}\left(H_{n}^{\prime}(x) H_{n+1}(x)+H_{n}(x) H_{n+1}^{\prime}(x)\right) \mathrm{d} x \\
& =2(n+1) \int_{\mathbb{R}} \mathrm{e}^{-x^{2}}\left(H_{n}(x)\right)^{2} \mathrm{~d} x=2(n+1)\left\langle h_{n}, h_{n}\right\rangle_{L_{2}(\mathbb{R})} .
\end{aligned}
$$

3. To verify the completeness of the orthogonal system $\left\{h_{n}: n \in \mathbb{N}_{0}\right\}$, we prove that $f \in L_{2}(\mathbb{R})$ with $\left\langle f, h_{n}\right\rangle_{L_{2}(\mathbb{R})}=0$ for all $n \in \mathbb{N}_{0}$ implies $f=0$ almost everywhere. To this end, we consider the complex function $g: \mathbb{C} \rightarrow \mathbb{C}$ defined by

$$
g(z):=\int_{\mathbb{R}} h_{0}(x) f(x) \mathrm{e}^{-\mathrm{i} x z} \mathrm{~d} x, \quad z \in \mathbb{C} .
$$

This is the holomorphic continuation of the Fourier transform of $h_{0} f$ onto whole \mathbb{C}. For every $m \in \mathbb{N}_{0}$ it holds

$$
g^{(m)}(z)=(-\mathrm{i})^{m} \int_{\mathbb{R}} x^{m} h_{0}(x) f(x) \mathrm{e}^{-\mathrm{i} x z} \mathrm{~d} x, \quad z \in \mathbb{C} .
$$

Since $g^{(m)}(0)$ is a certain linear combination of $\left\langle f, h_{n}\right\rangle_{L_{2}(\mathbb{R})}, n=0, \ldots, m$, we conclude that $g^{(m)}(0)=0$ for all $m \in \mathbb{N}_{0}$. Thus we get $g=0$ and $\left(h_{0} f\right)^{\llcorner }=0$.

By Corollary 2.11 we have $h_{0} f=0$ almost everywhere and consequently $f=0$ almost everywhere.
4. By Example 2.6 we know that

$$
\hat{h}_{0}(\omega)=\int_{\mathbb{R}} \mathrm{e}^{-\mathrm{i} x \omega-x^{2} / 2} \mathrm{~d} x=\sqrt{2 \pi} \mathrm{e}^{-\omega^{2} / 2}, \quad \omega \in \mathbb{R}
$$

We compute the Fourier transform of h_{n} and obtain after n times integration by parts

$$
\begin{aligned}
\hat{h}_{n}(\omega) & =\int_{\mathbb{R}} h_{n}(x) \mathrm{e}^{-\mathrm{i} \omega x} \mathrm{~d} x=(-1)^{n} \int_{\mathbb{R}} \mathrm{e}^{-\mathrm{i} \omega x+x^{2} / 2}\left(\frac{\mathrm{~d}^{n}}{\mathrm{~d} x^{n}} \mathrm{e}^{-x^{2}}\right) \mathrm{d} x \\
& =\int_{\mathbb{R}} \mathrm{e}^{-x^{2}}\left(\frac{\mathrm{~d}^{n}}{\mathrm{~d} x^{n}} \mathrm{e}^{-\mathrm{i} \omega x+x^{2} / 2}\right) \mathrm{d} x=\mathrm{e}^{\omega^{2} / 2} \int_{\mathbb{R}} \mathrm{e}^{-x^{2}}\left(\frac{\mathrm{~d}^{n}}{\mathrm{~d} x^{n}} \mathrm{e}^{(x-\mathrm{i} \omega)^{2} / 2}\right) \mathrm{d} x .
\end{aligned}
$$

By symmetry reasons we have

$$
\frac{\mathrm{d}^{n}}{\mathrm{~d} x^{n}} \mathrm{e}^{(x-\mathrm{i} \omega)^{2} / 2}=\mathrm{i}^{n} \frac{\mathrm{~d}^{n}}{\mathrm{~d} \omega^{n}} \mathrm{e}^{(x-\mathrm{i} \omega)^{2} / 2},
$$

so that

$$
\begin{aligned}
\hat{h}_{n}(\omega) & =\mathrm{i}^{n} \mathrm{e}^{\omega^{2} / 2} \int_{\mathbb{R}} \mathrm{e}^{-x^{2}}\left(\frac{\mathrm{~d}^{n}}{\mathrm{~d} \omega^{n}} \mathrm{e}^{(x-\mathrm{i} \omega)^{2} / 2}\right) \mathrm{d} x \\
& =\mathrm{i}^{n} \mathrm{e}^{\omega^{2} / 2} \frac{\mathrm{~d}^{n}}{\mathrm{~d} \omega^{n}}\left(\mathrm{e}^{-\omega^{2} / 2} \int_{\mathbb{R}} \mathrm{e}^{-\mathrm{i} x \omega-x^{2} / 2} \mathrm{~d} x\right) \\
& =\sqrt{2 \pi} \mathrm{i}^{n} \mathrm{e}^{\omega^{2} / 2} \frac{\mathrm{~d}^{n}}{\mathrm{~d} \omega^{n}} \mathrm{e}^{-\omega^{2}}=\sqrt{2 \pi}(-\mathrm{i})^{n} h_{n}(\omega) .
\end{aligned}
$$

2.3 Poisson Summation Formula and Shannon's Sampling Theorem

Poisson summation formula establishes an interesting relation between Fourier series and Fourier transforms. For $n \in \mathbb{N}$ and $f \in L_{1}(\mathbb{R})$ we consider the functions

$$
\varphi_{n}(x):=\sum_{k=-n}^{n}|f(x+2 k \pi)|
$$

which fulfill

$$
\begin{aligned}
\int_{-\pi}^{\pi} \varphi_{n}(x) \mathrm{d} x & =\int_{-\pi}^{\pi} \sum_{k=-n}^{n}|f(x+2 k \pi)| \mathrm{d} x=\sum_{k=-n}^{n} \int_{-\pi}^{\pi}|f(x+2 k \pi)| \mathrm{d} x \\
& =\sum_{k=-n}^{n} \int_{2 k \pi-\pi}^{2 k \pi+\pi}|f(x)| \mathrm{d} x=\int_{-2 n \pi-\pi}^{2 n \pi+\pi}|f(x)| \mathrm{d} x \leq\|f\|_{L_{1}(\mathbb{R})}<\infty .
\end{aligned}
$$

Since $\left(\varphi_{n}\right)_{n \in \mathbb{N}}$ is a monotone increasing sequence of nonnegative functions, we obtain by the monotone convergence theorem of B . Levi that the function $\varphi(x):=$ $\lim _{n \rightarrow \infty} \varphi_{n}(x)$ for almost all $x \in \mathbb{R}$ is measurable and fulfills

$$
\int_{-\pi}^{\pi} \varphi(x) \mathrm{d} x=\lim _{n \rightarrow \infty} \int_{-\pi}^{\pi} \varphi_{n}(x) \mathrm{d} x=\|f\|_{L_{1}(\mathbb{R})}<\infty
$$

We introduce the 2π-periodic function

$$
\begin{equation*}
\tilde{f}(x):=\sum_{k \in \mathbb{Z}} f(x+2 k \pi) . \tag{2.21}
\end{equation*}
$$

The 2π-periodic function $\tilde{f} \in L_{1}(\mathbb{T})$ is called 2π-periodization of $f \in L_{1}(\mathbb{R})$. Since

$$
|\tilde{f}(x)|=\left|\sum_{k \in \mathbb{Z}} f(x+2 k \pi)\right| \leq \sum_{k \in \mathbb{Z}}|f(x+2 k \pi)|=\varphi(x)
$$

we obtain

$$
\int_{-\pi}^{\pi}|\tilde{f}(x)| \mathrm{d} x \leq \int_{-\pi}^{\pi}|\varphi(x)| \mathrm{d} x=\|f\|_{L_{1}(\mathbb{R})}<\infty
$$

so that $\tilde{f} \in L_{1}(\mathbb{T})$. After these preparations we can formulate the Poisson summation formula.

Theorem 2.26 (Poisson Summation Formula) Assume that $f \in L_{1}(\mathbb{R}) \cap C_{0}(\mathbb{R})$ fulfills the conditions

1. $\sum_{k \in \mathbb{Z}} \max _{x \in[-\pi, \pi]}|f(x+2 k \pi)|<\infty$,
2. $\sum_{k \in \mathbb{Z}}|\hat{f}(k)|<\infty$.

Then for all $x \in \mathbb{R}$, the following relation is fulfilled:

$$
\begin{equation*}
2 \pi \tilde{f}(x)=2 \pi \sum_{k \in \mathbb{Z}} f(x+2 k \pi)=\sum_{k \in \mathbb{Z}} \hat{f}(k) \mathrm{e}^{\mathrm{i} k x} \tag{2.22}
\end{equation*}
$$

Both series in (2.22) converge absolutely and uniformly on \mathbb{R}.
For $x=0$ this implies the Poisson summation formula

$$
\begin{equation*}
2 \pi \sum_{k \in \mathbb{Z}} f(2 k \pi)=\sum_{k \in \mathbb{Z}} \hat{f}(k) . \tag{2.23}
\end{equation*}
$$

Proof By the first assumption, we have absolute and uniform convergence of the series (2.21) by the known criterion of Weierstrass. Since $f \in C_{0}(\mathbb{R})$, we see that
$\tilde{f} \in C(\mathbb{T})$. Because the uniformly convergent series (2.21) can be integrated term by term, we obtain for the Fourier coefficients of \tilde{f}

$$
\begin{aligned}
2 \pi c_{k}(\tilde{f}) & =\int_{-\pi}^{\pi} \sum_{\ell \in \mathbb{Z}} f(x+2 \ell \pi) \mathrm{e}^{-\mathrm{i} k x} \mathrm{~d} x=\sum_{\ell \in \mathbb{Z}} \int_{-\pi}^{\pi} f(x+2 \ell \pi) \mathrm{e}^{-\mathrm{i} k x} \mathrm{~d} x \\
& =\int_{\mathbb{R}} f(x) \mathrm{e}^{-\mathrm{i} k x} \mathrm{~d} x=\hat{f}(k)
\end{aligned}
$$

Thus,

$$
\tilde{f}(x)=\sum_{k \in \mathbb{Z}} c_{k}(\tilde{f}) \mathrm{e}^{\mathrm{i} k x}=\frac{1}{2 \pi} \sum_{k \in \mathbb{Z}} \hat{f}(k) \mathrm{e}^{\mathrm{i} k x}
$$

where by the second assumption and Theorem 1.37 the Fourier series of \tilde{f} converges uniformly to \tilde{f} on \mathbb{R}. By the second assumption the Fourier series of \tilde{f} is absolutely convergent.

Remark 2.27 The general Poisson summation formula (2.22) is fulfilled, if $f \in$ $L_{1}(\mathbb{R}) \cap C_{0}(\mathbb{R})$ fulfills the conditions

$$
|f(x)| \leq C(1+|x|)^{-1-\varepsilon}, \quad|\hat{f}(\omega)| \leq C(1+|\omega|)^{-1-\varepsilon}
$$

for some $C>0$ and $\varepsilon>0$. For further details, see [341, pp. 250-253] or [146, pp. 171-173]. The Poisson summation formula was generalized for slowly growing functions in [254].

We illustrate the performance of Poisson summation formula (2.23) by an example.
Example 2.28 For fixed $\alpha>0$, we consider the function $f(x):=\mathrm{e}^{-\alpha|x|}, x \in \mathbb{R}$. Simple calculation shows that its Fourier transform reads

$$
\hat{f}(\omega)=\int_{0}^{\infty}\left(\mathrm{e}^{(\alpha-\mathrm{i} \omega) x}+\mathrm{e}^{(\alpha+\mathrm{i} \omega) x}\right) \mathrm{d} x=\frac{2 \alpha}{\alpha^{2}+\omega^{2}}
$$

Note that by Fourier inversion formula (2.14), the function $g(x):=\left(x^{2}+\alpha^{2}\right)^{-1}$ has the Fourier transform $\hat{g}(\omega)=\frac{\pi}{\alpha} \mathrm{e}^{-\alpha|\omega|}$.

The function f is contained in $L_{1}(\mathbb{R}) \cap C_{0}(\mathbb{R})$ and fulfills both conditions of Theorem 2.26. Since

$$
\sum_{k \in \mathbb{Z}} f(2 \pi k)=1+2 \sum_{k=1}^{\infty}\left(\mathrm{e}^{-2 \pi \alpha}\right)^{k}=\frac{1+\mathrm{e}^{-2 \pi \alpha}}{1-\mathrm{e}^{-2 \pi \alpha}}
$$

we obtain by the Poisson summation formula (2.23) that

$$
\sum_{k \in \mathbb{Z}} \frac{1}{\alpha^{2}+k^{2}}=\frac{\pi}{\alpha} \frac{1+\mathrm{e}^{-2 \pi \alpha}}{1-\mathrm{e}^{-2 \pi \alpha}}
$$

The following sampling theorem was discovered independently by the mathematician Whittaker [375] as well as the electrical engineers Kotelnikov [208] and Shannon [328], see also [124, 360]. Shannon first recognized the significance of the sampling theorem in digital signal processing. The sampling theorem answers the question how to sample a function f by its values $f(n T), n \in \mathbb{Z}$, for an appropriate $T>0$ while keeping the whole information contained in f. The distance T between two successive sample points is called sampling period. In other words, we want to find a convenient sampling period T such that f can be recovered from its samples $f(n T), n \in \mathbb{Z}$. The sampling rate is defined as the reciprocal value $\frac{1}{T}$ of the sampling period T. Indeed this question can be only answered for a certain class of functions.

A function $f \in L_{2}(\mathbb{R})$ is called bandlimited on $[-L, L]$ with some $L>0$, if $\operatorname{supp} \hat{f} \subseteq[-L, L]$, i.e., if $\hat{f}(\omega)=0$ for all $|\omega|>L$. The positive number L is the bandwidth of f. A typical bandlimited function on $[-L, L]$ is

$$
h(x)=\frac{L}{\pi} \operatorname{sinc}(L x), \quad x \in \mathbb{R} .
$$

Note that $h \in L_{2}(\mathbb{R}) \backslash L_{1}(\mathbb{R})$. By Example 2.3 and Theorem 2.22 of Plancherel, the Fourier transform \hat{h} is equal to

$$
\hat{h}(\omega)= \begin{cases}1 & \omega \in(-L, L), \tag{2.24}\\ \frac{1}{2} & \omega \in\{-L, L\}, \\ 0 & \omega \in \mathbb{R} \backslash[-L, L] .\end{cases}
$$

Theorem 2.29 (Sampling Theorem of Shannon-Whittaker-Kotelnikov) Let $f \in L_{1}(\mathbb{R}) \cap C_{0}(\mathbb{R})$ be bandlimited on $[-L, L]$. Let $M \geq L>0$.

Then f is completely determined by its values $f\left(\frac{k \pi}{M}\right), k \in \mathbb{Z}$, and further f can be represented in the form

$$
\begin{equation*}
f(x)=\sum_{k \in \mathbb{Z}} f\left(\frac{k \pi}{M}\right) \operatorname{sinc}(M x-k \pi), \tag{2.25}
\end{equation*}
$$

where the series (2.25) converges absolutely and uniformly on \mathbb{R}.
Proof

1. From $f \in L_{1}(\mathbb{R}) \cap C_{0}(\mathbb{R})$ it follows that $f \in L_{2}(\mathbb{R})$, since

$$
\|f\|_{L_{2}(\mathbb{R})}^{2}=\int_{\mathbb{R}}|f(x)||f(x)| \mathrm{d} x \leq\|f\|_{C_{0}(\mathbb{R})}\|f\|_{L_{1}(\mathbb{R})}<\infty .
$$

Let $x \in \mathbb{R}$ be an arbitrary point. Since $f \in L_{2}(\mathbb{R})$ is bandlimited on $[-L, L]$ and $M \geq L$, by Theorem 2.10 we obtain

$$
\begin{equation*}
f(x)=\frac{1}{2 \pi} \int_{-M}^{M} \hat{f}(\omega) \mathrm{e}^{\mathrm{i} \omega x} \mathrm{~d} \omega \tag{2.26}
\end{equation*}
$$

Let $\varphi, \psi \in L_{2}(\mathbb{T})$ be the 2π-periodic extensions of

$$
\varphi(\omega):=\hat{f}\left(\frac{M \omega}{\pi}\right), \quad \psi(\omega):=\mathrm{e}^{-\mathrm{i} x M \omega / \pi}, \quad \omega \in[-\pi, \pi)
$$

By (2.26) these functions possess the Fourier coefficients

$$
\begin{aligned}
& c_{k}(\varphi)=\left\langle\varphi, \mathrm{e}^{\mathrm{i} k \cdot}\right\rangle_{L_{2}(\mathbb{T})}=\frac{1}{2 M} \int_{-M}^{M} \hat{f}(\omega) \mathrm{e}^{-\mathrm{i} k \pi \omega / M} \mathrm{~d} \omega=\frac{\pi}{M} f\left(-\frac{k \pi}{M}\right), \\
& c_{k}(\psi)=\left\langle\psi, \mathrm{e}^{\mathrm{i} k \cdot}\right\rangle_{L_{2}(\mathbb{T})}=\frac{1}{2 M} \int_{-M}^{M} \mathrm{e}^{-\mathrm{i}\left(x+\frac{k \pi}{M}\right) \omega} \mathrm{d} \omega=\operatorname{sinc}(M x+k \pi) .
\end{aligned}
$$

From (2.26) it follows that

$$
f(x)=\frac{M}{2 \pi^{2}} \int_{-\pi}^{\pi} \hat{f}\left(\frac{M \omega}{\pi}\right) \mathrm{e}^{\mathrm{i} x M \omega / \pi} \mathrm{d} \omega=\frac{M}{\pi}\langle\varphi, \psi\rangle_{L_{2}(\mathbb{T})}
$$

and hence by the Parseval equality (1.16)

$$
\begin{aligned}
f(x) & =\frac{M}{\pi} \sum_{k \in \mathbb{Z}} c_{k}(\varphi) \overline{c_{k}(\psi)}=\sum_{k \in \mathbb{Z}} f\left(-\frac{k \pi}{M}\right) \operatorname{sinc}(M x+k \pi) \\
& =\sum_{k \in \mathbb{Z}} f\left(\frac{k \pi}{M}\right) \operatorname{sinc}(M x-k \pi) .
\end{aligned}
$$

2. As shown in the first step, it holds for arbitrary $n \in \mathbb{N}$

$$
\begin{aligned}
f(x)- & \sum_{k=-n}^{n} f\left(\frac{k \pi}{M}\right) \operatorname{sinc}(M x-k \pi)=\frac{1}{2 \pi} \int_{-M}^{M}\left(\hat{f}(\omega)-\sum_{k=-n}^{n} c_{k}(\varphi) \mathrm{e}^{\mathrm{i} k \pi \omega / M}\right) \mathrm{e}^{\mathrm{i} x \omega} \mathrm{~d} \omega \\
& =\frac{M}{2 \pi^{2}} \int_{-\pi}^{\pi}\left(\varphi(\omega)-\left(S_{n} \varphi\right)(\omega)\right) \mathrm{e}^{\mathrm{i} x M \omega / \pi} \mathrm{d} \omega .
\end{aligned}
$$

Using the Cauchy-Schwarz inequality in $L_{2}(\mathbb{T})$, we obtain for all $x \in \mathbb{R}$

$$
\begin{aligned}
\left|f(x)-\sum_{k=-n}^{n} f\left(\frac{k \pi}{M}\right) \operatorname{sinc}(M x-k \pi)\right| & =\frac{M}{2 \pi^{2}}\left|\int_{-\pi}^{\pi}\left(\varphi(\omega)-\left(S_{n} \varphi\right)(\omega)\right) \mathrm{e}^{\mathrm{i} x M \omega / \pi} \mathrm{d} \omega\right| \\
& \leq \frac{M}{\pi}\left\|\varphi-S_{n} \varphi\right\|_{L_{2}(\mathbb{T})}
\end{aligned}
$$

and thus by Theorem 1.3

$$
\left\|f-\sum_{k=-n}^{n} f\left(\frac{k \pi}{M}\right) \operatorname{sinc}(M \cdot-k \pi)\right\|_{C_{0}(\mathbb{R})} \leq \frac{M}{\pi}\left\|\varphi-S_{n} \varphi\right\|_{L_{2}(\mathbb{T})} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

Consequently, the series (2.25) converges uniformly on \mathbb{R}. Note that each summand of the series (2.25) has the following interpolation property:

$$
f\left(\frac{k \pi}{M}\right) \operatorname{sinc}(M x-k \pi)= \begin{cases}f\left(\frac{k \pi}{M}\right) & x=\frac{k \pi}{M} \\ 0 & x \in \frac{\pi}{M}(\mathbb{Z} \backslash\{k\})\end{cases}
$$

3. The absolute convergence of the series (2.25) is an immediate consequence of the Cauchy-Schwarz inequality in $\ell_{2}(\mathbb{Z})$ as well as the Parseval equalities of φ and ψ :

$$
\begin{aligned}
& \sum_{k=-\infty}^{\infty}\left|f\left(\frac{k \pi}{M}\right)\right\rangle|\operatorname{sinc}(M \cdot-k \pi)|=\frac{M}{\pi} \sum_{k=-\infty}^{\infty}\left|c_{k}(\varphi)\right|\left|c_{k}(\psi)\right| \\
& \leq \frac{M}{\pi}\left(\sum_{k=-\infty}^{\infty}\left|c_{k}(\varphi)\right|^{2}\right)^{1 / 2}\left(\sum_{k=-\infty}^{\infty}\left|c_{k}(\psi)\right|^{2}\right)^{1 / 2}=\frac{M}{\pi}\|\varphi\|_{L_{2}(\mathbb{T})}<\infty
\end{aligned}
$$

By the sampling Theorem 2.29, a bandlimited function f with supp $\hat{f} \subseteq$ $[-L, L]$ can be reconstructed from its equispaced samples $f\left(\frac{k \pi}{M}\right), k \in \mathbb{Z}$, with $M \geq L>0$. Hence the sampling period $T=\frac{\pi}{L}$ is the largest and the sampling rate $\frac{L}{\pi}$ is the smallest possible one. Then $\frac{\pi}{L}$ is called Nyquist rate, see [258].
Remark 2.30 The sinc function decreases to zero only slightly as $|x| \rightarrow \infty$ so that we have to incorporate many summands in a truncated series (2.25) to get a good approximation of f. One can obtain a better approximation of f by the so-called oversampling, i.e., by the choice of a higher sampling rate $\frac{L(1+\lambda)}{\pi}$ with some $\lambda>0$ and corresponding sample values $f\left(\frac{k \pi}{L(1+\lambda)}\right), k \in \mathbb{Z}$.

The choice of a lower sampling rate $\frac{L(1-\lambda)}{\pi}$ with some $\lambda \in(0,1)$ is called undersampling, which results in a reconstruction of a function f° where higher frequency parts of f appear in lower frequency parts of f°. This effect is called aliasing in signal processing or Moiré effect in imaging.

2.4 Heisenberg's Uncertainty Principle

In this section, we consider a nonzero function $f \in L_{2}(\mathbb{R})$ with squared $L_{2}(\mathbb{R})$ norm

$$
\|f\|^{2}:=\|f\|_{L_{2}(\mathbb{R})}^{2}=\int_{\mathbb{R}}|f(x)|^{2} \mathrm{~d} x>0
$$

which is called the energy of f in some applications. A signal f is often measured in time. We keep the spatial variable x instead of t also when speaking about a timedependent signal. In the following, we investigate the time-frequency locality of f and \hat{f}.

It is impossible to construct a nonzero compactly supported function $f \in L_{2}(\mathbb{R})$ whose Fourier transform \hat{f} has a compact support too. More generally, we show the following result:
Lemma 2.31 If the Fourier transform \hat{f} of a nonzero function $f \in L_{2}(\mathbb{R})$ has compact support, then f cannot be zero on a whole interval. If a nonzero function $f \in L_{2}(\mathbb{R})$ has compact support, then \hat{f} cannot be zero on a whole interval.
Proof We consider $f \in L_{2}(\mathbb{R})$ with supp $\hat{f} \subseteq[-L, L]$ with some $L>0$. By the Fourier inversion formula (2.14) we have almost everywhere

$$
f(x)=\frac{1}{2 \pi} \int_{-L}^{L} \hat{f}(\omega) \mathrm{e}^{\mathrm{i} \omega x} \mathrm{~d} \omega,
$$

where the function on the right-hand side is infinitely differentiable. Since we identify almost everywhere equal functions in $L_{2}(\mathbb{R})$, we can assume that $f \in$ $C^{\infty}(\mathbb{R})$.

Assume that $f(x)=0$ for all $x \in[a, b]$ with $a<b$. For $x_{0}=\frac{a+b}{2}$ we obtain by repeated differentiation with respect to x that

$$
f^{(n)}\left(x_{0}\right)=\frac{1}{2 \pi} \int_{-L}^{L} \hat{f}(\omega)(\mathrm{i} \omega)^{n} \mathrm{e}^{\mathrm{i} \omega x_{0}} \mathrm{~d} \omega=0, \quad n \in \mathbb{N}_{0} .
$$

Expressing the exponential $\mathrm{e}^{\mathrm{i} \omega\left(x-x_{0}\right)}$ as power series, we see that for all $x \in \mathbb{R}$,

$$
\begin{aligned}
f(x) & =\frac{1}{2 \pi} \int_{-L}^{L} \hat{f}(\omega) \mathrm{e}^{\mathrm{i} \omega\left(x-x_{0}\right)} \mathrm{e}^{\mathrm{i} \omega x_{0}} \mathrm{~d} \omega \\
& =\frac{1}{2 \pi} \sum_{n=0}^{\infty} \frac{\left(x-x_{0}\right)^{n}}{n!} \int_{-L}^{L} \hat{f}(\omega)(\mathrm{i} \omega)^{n} \mathrm{e}^{\mathrm{i} \omega x_{0}} \mathrm{~d} \omega=0 .
\end{aligned}
$$

This contradicts the assumption that $f \neq 0$. Analogously, we can show the second assertion.

Lemma 2.31 describes a special aspect of a general principle that says that both f and \hat{f} cannot be highly localized, i.e., if $|f|^{2}$ vanishes or is very small outside some small interval, then $|\hat{f}|^{2}$ spreads out, and conversely. We measure the dispersion of f about the time $x_{0} \in \mathbb{R}$ by

$$
\Delta_{x_{0}} f:=\frac{1}{\|f\|^{2}} \int_{\mathbb{R}}\left(x-x_{0}\right)^{2}|f(x)|^{2} \mathrm{~d} x>0
$$

Note that if $x f(x), x \in \mathbb{R}$, is not in $L_{2}(\mathbb{R})$, then $\Delta_{x_{0}} f=\infty$ for any $x_{0} \in \mathbb{R}$. The dispersion $\Delta_{x_{0}} f$ measures how much $|f(x)|^{2}$ spreads out in a neighborhood of x_{0}. If $|f(x)|^{2}$ is very small outside a small neighborhood of x_{0}, then the factor $\left(x-x_{0}\right)^{2}$ makes the numerator of $\Delta_{x_{0}} f$ small in comparison with the denominator $\|f\|^{2}$. Otherwise, if $|f(x)|^{2}$ is large far away from x_{0}, then the factor $\left(x-x_{0}\right)^{2}$ makes the numerator of $\Delta_{x_{0}} f$ large in comparison with the denominator $\|f\|^{2}$.

Analogously, we measure the dispersion of \hat{f} about the frequency $\omega_{0} \in \mathbb{R}$ by

$$
\Delta_{\omega_{0}} \hat{f}:=\frac{1}{\|\hat{f}\|^{2}} \int_{\mathbb{R}}\left(\omega-\omega_{0}\right)^{2}|\hat{f}(\omega)|^{2} \mathrm{~d} \omega>0
$$

By the Parseval equality $\|\hat{f}\|^{2}=2 \pi\|f\|^{2}>0$ we obtain

$$
\Delta_{\omega_{0}} \hat{f}=\frac{1}{2 \pi\|f\|^{2}} \int_{\mathbb{R}}\left(\omega-\omega_{0}\right)^{2}|\hat{f}(\omega)|^{2} \mathrm{~d} \omega
$$

If $\omega f(\omega), \omega \in \mathbb{R}$, is not in $L_{2}(\mathbb{R})$, then $\Delta_{\omega_{0}} f=\infty$ for any $\omega_{0} \in \mathbb{R}$.
Example 2.32 As in Example 2.6 we consider the normalized Gaussian function

$$
f(x):=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \mathrm{e}^{-x^{2} /\left(2 \sigma^{2}\right)}
$$

with standard deviation $\sigma>0$. Then f has $L_{1}(\mathbb{R})$ norm one, but the energy

$$
\|f\|^{2}=\frac{1}{2 \pi \sigma^{2}} \int_{\mathbb{R}} \mathrm{e}^{-x^{2} / \sigma^{2}} \mathrm{~d} x=\frac{1}{2 \sigma \sqrt{\pi}} .
$$

Further f has the Fourier transform

$$
\hat{f}(\omega)=\mathrm{e}^{-\sigma^{2} \omega^{2} / 2}
$$

with the energy

$$
\|\hat{f}\|^{2}=\int_{\mathbb{R}} \mathrm{e}^{-\sigma^{2} \omega^{2}} \mathrm{~d} \omega=\frac{\sqrt{\pi}}{\sigma}
$$

For small deviation σ we observe that f is highly localized near zero, but its Fourier transform \hat{f} has the large deviation $\frac{1}{\sigma}$ and is not concentrated near zero. Now we measure the dispersion of f around the time $x_{0} \in \mathbb{R}$ by

$$
\begin{aligned}
\Delta_{x_{0}} f & =\frac{1}{2 \pi \sigma^{2}\|f\|^{2}} \int_{\mathbb{R}}\left(x-x_{0}\right)^{2} \mathrm{e}^{-x^{2} / \sigma^{2}} \mathrm{~d} x \\
& =\frac{1}{2 \pi \sigma^{2}\|f\|^{2}} \int_{\mathbb{R}} x^{2} \mathrm{e}^{-x^{2} / \sigma^{2}} \mathrm{~d} x+x_{0}^{2}=\frac{\sigma^{2}}{2}+x_{0}^{2}
\end{aligned}
$$

For the dispersion of \hat{f} about the frequency $\omega_{0} \in \mathbb{R}$, we obtain

$$
\begin{aligned}
\Delta_{\omega_{0}} \hat{f} & =\frac{1}{\|\hat{f}\|^{2}} \int_{\mathbb{R}}\left(\omega-\omega_{0}\right)^{2} \mathrm{e}^{-\sigma^{2} \omega^{2}} \mathrm{~d} \omega \\
& =\frac{1}{\|\hat{f}\|^{2}} \int_{\mathbb{R}} \omega^{2} \mathrm{e}^{-\sigma^{2} \omega^{2}} \mathrm{~d} \omega+\omega_{0}^{2}=\frac{1}{2 \sigma^{2}}+\omega_{0}^{2}
\end{aligned}
$$

Thus for each $\sigma>0$ we get the inequality

$$
\left(\Delta_{x_{0}} f\right)\left(\Delta_{\omega_{0}} \hat{f}\right)=\left(\frac{\sigma^{2}}{2}+x_{0}^{2}\right)\left(\frac{1}{2 \sigma^{2}}+\omega_{0}^{2}\right) \geq \frac{1}{4}
$$

with equality for $x_{0}=\omega_{0}=0$.
Heisenberg's uncertainty principle says that for any $x_{0}, \omega_{0} \in \mathbb{R}$, both functions f and \hat{f} cannot be simultaneously localized around time $x_{0} \in \mathbb{R}$ and frequency $\omega_{0} \in \mathbb{R}$.

Theorem 2.33 (Heisenberg's Uncertainty Principle) For any nonzero function $f \in L_{2}(\mathbb{R})$, the inequality

$$
\begin{equation*}
\left(\Delta_{x_{0}} f\right)\left(\Delta_{\omega_{0}} \hat{f}\right) \geq \frac{1}{4} \tag{2.27}
\end{equation*}
$$

is fulfilled for each $x_{0}, \omega_{0} \in \mathbb{R}$. The equality in (2.27) holds if and only if

$$
\begin{equation*}
f(x)=C \mathrm{e}^{\mathrm{i} \omega_{0} x} \mathrm{e}^{-a\left(x-x_{0}\right)^{2} / 2}, \quad x \in \mathbb{R}, \tag{2.28}
\end{equation*}
$$

with some $a>0$ and complex constant $C \neq 0$.
Proof

1. Without loss of generality, we can assume that both functions $x f(x), x \in \mathbb{R}$, and $\omega \hat{f}(\omega), \omega \in \mathbb{R}$ are contained in $L_{2}(\mathbb{R})$ too, since otherwise we have $\left(\Delta_{x_{0}} f\right)\left(\Delta_{\omega_{0}} \hat{f}\right)=\infty$ and the inequality (2.27) is true.
2. In the special case $x_{0}=\omega_{0}=0$, we obtain by the definitions that

$$
\left(\Delta_{0} f\right)\left(\Delta_{0} \hat{f}\right)=\frac{1}{2 \pi\|f\|^{4}}\left(\int_{\mathbb{R}}|x f(x)|^{2} \mathrm{~d} x\right)\left(\int_{\mathbb{R}}|\omega \hat{f}(\omega)|^{2} \mathrm{~d} \omega\right)
$$

For simplicity we additionally assume the differentiability of f. From $\omega \hat{f}(\omega) \in$ $L_{2}(\mathbb{R})$ it follows by Theorems 2.5 and 2.22 that $f^{\prime} \in L_{2}(\mathbb{R})$. Thus we get by $\left(\mathscr{F} f^{\prime}\right)(\omega)=\mathrm{i} \omega \hat{f}(\omega)$ and the Parseval equality (2.13) that

$$
\begin{align*}
\left(\Delta_{0} f\right)\left(\Delta_{0} \hat{f}\right) & =\frac{1}{2 \pi\|f\|^{4}}\left(\int_{\mathbb{R}}|x f(x)|^{2} \mathrm{~d} x\right)\left(\int_{\mathbb{R}}\left|\left(\mathscr{F} f^{\prime}\right)(\omega)\right|^{2} \mathrm{~d} \omega\right) \\
& =\frac{1}{\|f\|^{4}}\left(\int_{\mathbb{R}}|x f(x)|^{2} \mathrm{~d} x\right)\left(\int_{\mathbb{R}}\left|f^{\prime}(x)\right|^{2} \mathrm{~d} x\right) . \tag{2.29}
\end{align*}
$$

By integration by parts we obtain

$$
\int_{\mathbb{R}}(x \overline{f(x)}) f^{\prime}(x) \mathrm{d} x=\underbrace{\left.x|f(x)|^{2}\right|_{-\infty} ^{\infty}}_{=0}-\int_{\mathbb{R}}\left(|f(x)|^{2}+x f(x) \overline{f^{\prime}(x)}\right) \mathrm{d} x
$$

and hence

$$
\|f\|^{2}=-2 \operatorname{Re} \int_{\mathbb{R}} \overline{x f(x)} f^{\prime}(x) \mathrm{d} x
$$

By the Cauchy-Schwarz inequality in $L_{2}(\mathbb{R})$ it follows that

$$
\begin{align*}
\|f\|^{4} & =4\left(\operatorname{Re} \int_{\mathbb{R}} \overline{x f(x)} f^{\prime}(x) \mathrm{d} x\right)^{2} \\
& \leq 4\left|\int_{\mathbb{R}} \overline{x f(x)} f^{\prime}(x) \mathrm{d} x\right|^{2} \\
& \leq 4\left(\int_{\mathbb{R}} x^{2}|f(x)|^{2} \mathrm{~d} x\right)\left(\int_{\mathbb{R}}\left|f^{\prime}(x)\right|^{2} \mathrm{~d} x\right) \tag{2.30}
\end{align*}
$$

Then by (2.29) and (2.30) we obtain the inequality (2.27) for $x_{0}=\omega_{0}=0$.
3. Going through the previous step of the proof we see that we have equality in (2.27) if and only if

$$
\begin{equation*}
\int_{\mathbb{R}} \overline{x f(x)} f^{\prime}(x) \mathrm{d} x \in \mathbb{R} \tag{2.31}
\end{equation*}
$$

and equality holds true in the Cauchy-Schwarz estimate

$$
\left|\int_{\mathbb{R}} \overline{x f(x)} f^{\prime}(x) \mathrm{d} x\right|^{2}=\left(\int_{\mathbb{R}} x^{2}|f(x)|^{2} \mathrm{~d} x\right)\left(\int_{\mathbb{R}}\left|f^{\prime}(x)\right|^{2} \mathrm{~d} x\right)
$$

The latter is the case if and only if $x f(x)$ and $f^{\prime}(x)$ are linearly dependent, i.e.,

$$
f^{\prime}(x)+a x f(x)=0, \quad a \in \mathbb{C} .
$$

Plugging this into (2.31), we see that the integral can become only real if $a \in \mathbb{R}$. The above ordinary differential equation has the solution $f(x)=C \mathrm{e}^{-a x^{2} / 2}$ which belongs to $L_{2}(\mathbb{R})$ only for $a>0$.
4. In the general case with any $x_{0}, \omega_{0} \in \mathbb{R}$, we introduce the function

$$
\begin{equation*}
g(x):=\mathrm{e}^{-\mathrm{i} \omega_{0} x} f\left(x+x_{0}\right), \quad x \in \mathbb{R} \tag{2.32}
\end{equation*}
$$

Obviously, $g \in L_{2}(\mathbb{R})$ is nonzero. By Theorem 2.5, this function g has the Fourier transform

$$
\hat{g}(\omega)=\mathrm{e}^{\mathrm{i}\left(\omega+\omega_{0}\right) x_{0}} \hat{f}\left(\omega+\omega_{0}\right), \quad \omega \in \mathbb{R}
$$

such that

$$
\begin{aligned}
& \Delta_{0} g=\int_{\mathbb{R}} x^{2}\left|f\left(x+x_{0}\right)\right|^{2} \mathrm{~d} x=\Delta_{x_{0}} f, \\
& \Delta_{0} \hat{g}=\int_{\mathbb{R}} \omega^{2}\left|\hat{f}\left(\omega+\omega_{0}\right)\right|^{2} \mathrm{~d} \omega=\Delta_{\omega_{0}} \hat{f}
\end{aligned}
$$

Thus we obtain by step 2 that

$$
\left(\Delta_{x_{0}} f\right)\left(\Delta_{\omega_{0}} \hat{f}\right)=\left(\Delta_{0} g\right)\left(\Delta_{0} \hat{g}\right) \geq \frac{1}{4}
$$

5. From the equality $\left(\Delta_{0} g\right)\left(\Delta_{0} \hat{g}\right)=\frac{1}{4}$ it follows by step 3 that $g(x)=C \mathrm{e}^{-a x^{2} / 2}$ with $C \in \mathbb{C}$ and $a>0$. By the substitution (2.32) we see that the equality in (2.27) means that f has the form (2.28).

Remark 2.34 In the above proof, the additional assumption that f is differentiable is motivated by the following example. The hat function $f(x)=\max _{x \in \mathbb{R}}\{1-|x|, 0\}$ possesses the Fourier transform $\hat{f}(\omega)=\left(\operatorname{sinc} \frac{\omega}{2}\right)^{2}$ (cf. Example 2.4). Hence $x f(x)$ and $\omega \hat{f}(\omega)$ are in $L_{2}(\mathbb{R})$, but f is not differentiable. In Sect.4.3.1 we will see that we have to deal indeed with functions which are differentiable in the distributional sense. The distributional derivative of the hat function f is equal to $\chi_{[-1,0]}-\chi_{[0,1]}$ (cf. Remark 4.43).

The average time of a nonzero function $f \in L_{2}(\mathbb{R})$ is defined by

$$
x^{*}:=\frac{1}{\|f\|^{2}} \int_{\mathbb{R}} x|f(x)|^{2} \mathrm{~d} x .
$$

This value exists and is a real number, if $\int_{\mathbb{R}}|x||f(x)|^{2} \mathrm{~d} x<\infty$. For a nonzero function $f \in L_{2}(\mathbb{R})$ with $x^{*} \in \mathbb{R}$, the quantity $\Delta_{x^{*}} f$ is the so-called temporal variance of f. Analogously, the average frequency of the Fourier transform $\hat{f} \in$ $L_{2}(\mathbb{R})$ is defined by

$$
\omega^{*}:=\frac{1}{\|\hat{f}\|^{2}} \int_{\mathbb{R}} \omega|\hat{f}(\omega)|^{2} \mathrm{~d} \omega
$$

For a Fourier transform \hat{f} with $\omega^{*} \in \mathbb{R}$, the quantity $\Delta_{\omega^{*}} \hat{f}$ is the so-called frequency variance of \hat{f}.

Example 2.35 The normalized Gaussian function in Example 2.32 has the average time zero and the temporal variance $\Delta_{0} f=\frac{\sigma^{2}}{2}$, where $\sigma>0$ denotes the standard deviation of the normalized Gaussian function (2.2). Its Fourier transform has the average frequency zero and the frequency variance $\Delta_{0} \hat{f}=\frac{1}{2 \sigma^{2}}$.
Lemma 2.36 For each nonzero function $f \in L_{2}(\mathbb{R})$ with finite average time x^{*}, it holds the estimate

$$
\Delta_{x_{0}} f=\Delta_{x^{*}} f+\left(x^{*}-x_{0}\right)^{2} \geq \Delta_{x^{*}} f
$$

for any $x_{0} \in \mathbb{R}$.
Similarly, for each nonzero function $f \in L_{2}(\mathbb{R})$ with finite average frequency ω^{*} of \hat{f} it holds the estimate

$$
\Delta_{\omega_{0}} \hat{f}=\Delta_{\omega^{*}} \hat{f}+\left(\omega^{*}-\omega_{0}\right)^{2} \geq \Delta_{\omega^{*}} \hat{f}
$$

for any $\omega_{0} \in \mathbb{R}$.
Proof From

$$
\left(x-x_{0}\right)^{2}=\left(x-x^{*}\right)^{2}+2\left(x-x^{*}\right)\left(x^{*}-x_{0}\right)+\left(x^{*}-x_{0}\right)^{2}
$$

it follows immediately that

$$
\int_{\mathbb{R}}\left(x-x_{0}\right)^{2}|f(x)|^{2} \mathrm{~d} x=\int_{\mathbb{R}}\left(x-x^{*}\right)^{2}|f(x)|^{2} \mathrm{~d} x+0+\left(x^{*}-x_{0}\right)^{2}\|f\|^{2}
$$

and hence

$$
\Delta_{x_{0}} f=\Delta_{x^{*}} f+\left(x^{*}-x_{0}\right)^{2} \geq \Delta_{x^{*}} f
$$

Analogously, one can show the second inequality.
Applying Theorem 2.33 in the special case $x_{0}=x^{*}$ and $\omega_{0}=\omega^{*}$, we obtain the following result:

Corollary 2.37 For any nonzero function $f \in L_{2}(\mathbb{R})$ with finite average time x^{*} and finite average frequency ω^{*}, the inequality

$$
\left(\Delta_{x^{*}} f\right)\left(\Delta_{\omega^{*}} \hat{f}\right) \geq \frac{1}{4}
$$

is fulfilled. The equality in above inequality holds if and only if

$$
f(x)=C \mathrm{e}^{\mathrm{i} \omega^{*} x} \mathrm{e}^{-a\left(x-x^{*}\right)^{2} / 2}, \quad x \in \mathbb{R}
$$

with some $a>0$ and complex constant $C \neq 0$.

2.5 Fourier-Related Transforms in Time-Frequency Analysis

In time-frequency analysis time-dependent functions with changing frequency characteristics appearing e.g., in music, speech, or radar signal, are studied in time and frequency simultaneously. By the uncertainty principle, the Fourier transform does not yield a good description of the local spatial behavior of the frequency content. A standard tool in time-frequency analysis is the windowed Fourier transform which is discussed in the first subsection. In order to obtain information about local properties of $f \in L_{2}(\mathbb{R})$, we restrict f to small intervals and examine the resulting Fourier transforms. Another popular tool in time-frequency analysis is the fractional Fourier transform which is handled in the second subsection. Note that wavelet theory also belongs to time-frequency analysis, but is out of the scope of this book.

2.5.1 Windowed Fourier Transform

The Fourier transform \hat{f} contains frequency information of the whole function $f \in L_{2}(\mathbb{R})$. Now we are interested in simultaneous information about time and frequency of a given function $f \in L_{2}(\mathbb{R})$. In time-frequency analysis we ask for frequency information of f near certain time. Analogously, we are interested in the time information of the Fourier transform \hat{f} near certain frequency. Therefore we localize the function f and its Fourier transform \hat{f} by using windows.

A real, even nonzero function $\psi \in L_{2}(\mathbb{R})$, where ψ and $\hat{\psi}$ are localized near zero, is called a window function or simply window. Thus $\hat{\psi}$ is a window too.

Example 2.38 Let $L>0$ be fixed. Frequently applied window functions are the rectangular window

$$
\psi(x)=\chi_{[-L, L]}(x),
$$

the triangular window

$$
\psi(x)=\left(1-\frac{|x|}{L}\right) \chi_{[-1,1]}(x),
$$

the Gaussian window with deviation $\sigma>0$

$$
\psi(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \mathrm{e}^{-x^{2} /\left(2 \sigma^{2}\right)}
$$

the Hanning window

$$
\psi(x)=\frac{1}{2}\left(1+\cos \frac{\pi x}{L}\right) \chi_{[-L, L]}(x),
$$

Fig. 2.2 Hanning window (red) and Hamming window (blue) for $L=2$

and the Hamming window

$$
\psi(x)=\left(0.54+0.46 \cos \frac{\pi x}{L}\right) \chi_{[-L, L]}(x),
$$

where $\chi_{[-L, L]}$ denotes the characteristic function of the interval $[-L, L]$. Figures 2.2 shows the Hanning window and the Hamming window for $L=2$.

Using the shifted window $\psi(\cdot-b)$, we consider the product $f \psi(\cdot-b)$ which is localized in some neighborhood of $b \in \mathbb{R}$. Then we form the Fourier transform of the localized function $f \psi(\cdot-b)$. The mapping $\mathscr{F}_{\psi}: L_{2}(\mathbb{R}) \rightarrow L_{2}\left(\mathbb{R}^{2}\right)$ defined by

$$
\begin{equation*}
\left(\mathscr{F}_{\psi} f\right)(b, \omega):=\int_{\mathbb{R}} f(x) \psi(x-b) \mathrm{e}^{-\mathrm{i} \omega x} \mathrm{~d} x=\left\langle f, \Psi_{b, \omega}\right\rangle_{L_{2}(\mathbb{R})} \tag{2.33}
\end{equation*}
$$

with the time-frequency atom

$$
\Psi_{b, \omega}(x):=\psi(x-b) \mathrm{e}^{\mathrm{i} \omega x}, \quad x \in \mathbb{R}
$$

is called windowed Fourier transform or short-time Fourier transform (STFT), see [152, pp. 37-58]. Note that the time-frequency atom $\Psi_{b, \omega}$ is concentrated in time b and in frequency ω. A special case of the windowed Fourier transform is the Gabor transform [124] which uses a Gaussian window. The squared magnitude $\left|\left(\mathscr{F}_{\psi} f\right)(b, \omega)\right|^{2}$ of the windowed Fourier transform is called spectrogram of f with respect to ψ.

The windowed Fourier transform $\mathscr{F}_{\psi} f$ can be interpreted as a joint timefrequency information of f. Thus $\left(\mathscr{F}_{\psi} f\right)(b, \omega)$ can be considered as a measure for the amplitude of a frequency band near ω at time b.

Example 2.39 We choose the Gaussian window ψ with deviation $\sigma=1$, i.e.,

$$
\psi(x):=\frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-x^{2} / 2}, \quad x \in \mathbb{R}
$$

and consider the $L_{2}(\mathbb{R})$ function $f(x):=\psi(x) \mathrm{e}^{\mathrm{i} \omega_{0} x}$ with fixed frequency $\omega_{0} \in \mathbb{R}$. We show that the frequency ω_{0} can be detected by windowed Fourier transform $\mathscr{F}_{\psi} f$ which reads as follows:

$$
\left(\mathscr{F}_{\psi} f\right)(b, \omega)=\frac{1}{2 \pi} \mathrm{e}^{-b^{2} / 2} \int_{\mathbb{R}} \mathrm{e}^{-x^{2}} \mathrm{e}^{b x+\mathrm{i}\left(\omega_{0}-\omega\right) x} \mathrm{~d} x .
$$

From Example 2.6 we know that

$$
\int_{\mathbb{R}} \mathrm{e}^{-x^{2}} \mathrm{e}^{\mathrm{i} \omega x} \mathrm{~d} x=\sqrt{\pi} \mathrm{e}^{-\omega^{2} / 4}
$$

and hence we obtain by substitution that

$$
\left(\mathscr{F}_{\psi} f\right)(b, \omega)=\frac{1}{2 \sqrt{\pi}} \mathrm{e}^{-b^{2} / 4} \mathrm{e}^{\left(\omega_{0}-\omega\right)^{2} / 4} \mathrm{e}^{\mathrm{i} b\left(\omega_{0}-\omega\right) / 2}
$$

Thus the spectrogram is given by

$$
\left|\left(\mathscr{F}_{\psi} f\right)(b, \omega)\right|^{2}=\frac{1}{4 \pi} \mathrm{e}^{-b^{2} / 2} \mathrm{e}^{\left(\omega_{0}-\omega\right)^{2} / 2} .
$$

For each time $b \in \mathbb{R}$, the spectrogram has its maximum at the frequency $\omega=\omega_{0}$. In practice, one can detect ω_{0} only, if $|b|$ is not too large.

The following identity combines f and \hat{f} in a joint time-frequency representation.

Lemma 2.40 Let ψ be a window. Then for all time-frequency locations $(b, \omega) \in$ \mathbb{R}^{2} we have

$$
2 \pi\left(\mathscr{F}_{\psi} f\right)(b, \omega)=\mathrm{e}^{-\mathrm{i} b \omega}\left(\mathscr{F}_{\hat{\psi}} \hat{f}\right)(\omega,-b) .
$$

Proof Since ψ is real and even by definition, its Fourier transform $\hat{\psi}$ is real and even too. Thus $\hat{\psi}$ is a window too. By Theorem 2.5 and Parseval equality (2.13) we obtain

$$
2 \pi\left\langle f, \psi(\cdot-b) \mathrm{e}^{\mathrm{i} \omega \cdot}\right\rangle_{L_{2}(\mathbb{R})}=\left\langle\hat{f}, \hat{\psi}(\cdot-\omega) \mathrm{e}^{-\mathrm{i} b(\cdot-\omega)}\right\rangle_{L_{2}(\mathbb{R})}
$$

and hence

$$
\begin{aligned}
2 \pi \int_{\mathbb{R}} f(x) \psi(x-b) \mathrm{e}^{-\mathrm{i} \omega x} \mathrm{~d} x & =\int_{\mathbb{R}} \hat{f}(u) \hat{\psi}(u-\omega) \mathrm{e}^{\mathrm{i} b(u-\omega)} \mathrm{d} u \\
& =\mathrm{e}^{-\mathrm{i} b \omega} \int_{\mathbb{R}} \hat{f}(u) \hat{\psi}(u-\omega) \mathrm{e}^{\mathrm{i} b u} \mathrm{~d} u
\end{aligned}
$$

Remark 2.41 Let ψ be a window function, where the functions $x \psi(x)$ and $\omega \hat{\psi}(\omega)$ are in $L_{2}(\mathbb{R})$ too. For all time-frequency locations $(b, \omega) \in \mathbb{R}^{2}$, the time-frequency atoms $\Psi_{b, \omega}=\psi(\cdot-b) \mathrm{e}^{\mathrm{i} \omega \cdot}$ and their Fourier transforms $\hat{\Psi}_{b, \omega}=\hat{\psi}(\cdot-\omega) \mathrm{e}^{-\mathrm{i} b(\cdot-\omega)}$ have constant energies $\left\|\Psi_{b, \omega}\right\|^{2}=\|\psi\|^{2}$ and $\left\|\hat{\Psi}_{b, \omega}\right\|^{2}=\|\hat{\psi}\|^{2}=2 \pi\|\psi\|^{2}$. Then
the atom $\Psi_{b, \omega}$ has the average time $x^{*}=b$ and $\hat{\Psi}_{b, \omega}$ has the average frequency $\omega^{*}=\omega$, since

$$
\begin{aligned}
& x^{*}=\frac{1}{\|\psi\|^{2}} \int_{\mathbb{R}} x\left|\Psi_{b, \omega}(x)\right|^{2} \mathrm{~d} x=\frac{1}{\|\psi\|^{2}} \int_{\mathbb{R}}(x+b)|\psi(x)|^{2} \mathrm{~d} x=b \\
& \omega^{*}=\frac{1}{\|\hat{\psi}\|^{2}} \int_{\mathbb{R}} u\left|\hat{\Psi}_{b, \omega}(u)\right|^{2} \mathrm{~d} u=\frac{1}{\|\hat{\psi}\|^{2}} \int_{\mathbb{R}}(u+\omega)|\hat{\psi}(u)|^{2} \mathrm{~d} u=\omega
\end{aligned}
$$

Further, the temporal variance of the time-frequency atom $\Psi_{b, \omega}$ is invariant for all time-frequency locations $(b, \omega) \in \mathbb{R}^{2}$, because

$$
\Delta_{b} \Psi_{b, \omega}=\frac{1}{\|\psi\|^{2}} \int_{\mathbb{R}}(x-b)^{2}\left|\Psi_{b, \omega}(x)\right|^{2} \mathrm{~d} x=\frac{1}{\|\psi\|^{2}} \int_{\mathbb{R}} x^{2}|\psi(x)|^{2} \mathrm{~d} x=\Delta_{0} \psi .
$$

Analogously, the frequency variance of $\hat{\Psi}_{b, \omega}$ is constant for all time-frequency locations $(b, \omega) \in \mathbb{R}^{2}$, because

$$
\Delta_{\omega} \hat{\Psi}_{b, \omega}=\frac{1}{\|\hat{\psi}\|^{2}} \int_{\mathbb{R}}(u-\omega)^{2}\left|\hat{\Psi}_{b, \omega}(u)\right|^{2} \mathrm{~d} u=\frac{1}{\|\hat{\psi}\|^{2}} \int_{\mathbb{R}} u^{2}|\hat{\psi}(u)|^{2} \mathrm{~d} u=\Delta_{0} \hat{\psi} .
$$

For arbitrary $f \in L_{2}(\mathbb{R})$, we obtain by Parseval equality (2.13)

$$
2 \pi\left(\mathscr{F}_{\psi}\right)(b, \omega)=2 \pi\left\langle f, \Psi_{b, \omega}\right\rangle_{L_{2}(\mathbb{R})}=\left\langle\hat{f}, \hat{\Psi}_{b, \omega}\right\rangle_{L_{2}(\mathbb{R})}
$$

Hence the value $\left(\mathscr{F}_{\psi}\right)(b, \omega)$ contains information on f in the time-frequency window or Heisenberg box

$$
\left[b-\sqrt{\Delta_{0} \psi}, b+\sqrt{\Delta_{0} \psi}\right] \times\left[\omega-\sqrt{\Delta_{0} \hat{\psi}}, \omega+\sqrt{\Delta_{0} \hat{\psi}}\right]
$$

since the deviation is the square root of the variance. Note that the area of the Heisenberg box cannot become arbitrary small, i.e., it holds by Heisenberg's uncertainty principle (see Corollary 2.37) that

$$
\left(2 \sqrt{\Delta_{0} \psi}\right)\left(2 \sqrt{\Delta_{0} \hat{\psi}}\right) \geq 2
$$

The size of the Heisenberg box is independent of the time-frequency location $(b, \omega) \in \mathbb{R}^{2}$. This means that a windowed Fourier transform has the same resolution across the whole time-frequency plane \mathbb{R}^{2}.

Theorem 2.42 Let ψ be a window function. Then for $f, g \in L_{2}(\mathbb{R})$ the following relation holds true:

$$
\left\langle\mathscr{F}_{\psi} f, \mathscr{F}_{\psi} g\right\rangle_{L_{2}\left(\mathbb{R}^{2}\right)}=2 \pi\|\psi\|_{L_{2}(\mathbb{R}}^{2}\langle f, g\rangle_{L_{2}(\mathbb{R})} .
$$

In particular, for $\|\psi\|_{L_{2}(\mathbb{R})}=1$ the energies of \mathscr{F}_{ψ} and f are equal up to the factor 2π,

$$
\left\|\mathscr{F}_{\psi} f\right\|_{\left.L_{2}(\mathbb{R})^{2}\right)}^{2}=2 \pi\|f\|_{L_{2}(\mathbb{R})}^{2}
$$

Proof

1. First, let $\psi \in L_{1}(\mathbb{R}) \cap L_{\infty}(\mathbb{R})$. Then we have

$$
\left\langle\mathscr{F}_{\psi} f, \mathscr{F}_{\psi} g\right\rangle_{L_{2}\left(\mathbb{R}^{2}\right)}=\int_{\mathbb{R}} \int_{\mathbb{R}}\left(\mathscr{F}_{\psi}\right) f(b, \omega) \overline{\left(\mathscr{F}_{\psi} g\right)(b, \omega)} \mathrm{d} \omega \mathrm{~d} b .
$$

We consider the inner integral

$$
\int_{\mathbb{R}}\left(\mathscr{F}_{\psi} f\right)(b, \omega) \overline{\left(\mathscr{F}_{\psi} g\right)(b, \omega)} \mathrm{d} \omega=\int_{\mathbb{R}}(f \bar{\psi}(\cdot-b))^{\wedge}(\omega) \overline{(g \bar{\psi}(\cdot-b))^{\wedge}(\omega)} \mathrm{d} \omega .
$$

By

$$
\int_{\mathbb{R}}|f(x) \psi(x-b)|^{2} \mathrm{~d} x \leq\|\psi\|_{L_{\infty}(\mathbb{R})}^{2}\|f\|_{L_{2}(\mathbb{R})}^{2}<\infty
$$

we see that $f \psi \in L_{2}(\mathbb{R})$ such that we can apply the Parseval equality (2.13)

$$
\int_{\mathbb{R}}\left(\mathscr{F}_{\psi} f\right)(b, \omega) \overline{\left(\mathscr{F}_{\psi} g\right)(b, \omega)} \mathrm{d} \omega=2 \pi \int_{\mathbb{R}} f(x) \overline{g(x)}|\psi(x-b)|^{2} \mathrm{~d} x .
$$

Using this in the above inner product results in

$$
\left\langle\mathscr{F}_{\psi} f, \mathscr{F}_{\psi} g\right\rangle_{L_{2}\left(\mathbb{R}^{2}\right)}=\int_{\mathbb{R}} \int_{\mathbb{R}} f(x) \overline{g(x)}|\psi(x-b)|^{2} \mathrm{~d} x \mathrm{~d} b
$$

Since $f, g \in L_{2}(\mathbb{R})$, we see as in the above argumentation that the absolute integral exists. Hence we can change the order of integration by Fubini's theorem which results in

$$
\begin{aligned}
\left\langle\mathscr{F}_{\psi} f, \mathscr{F}_{\psi} g\right\rangle_{L_{2}\left(\mathbb{R}^{2}\right)} & =2 \pi \int_{\mathbb{R}} f(x) \overline{g(x)} \int_{\mathbb{R}}|\psi(x-b)|^{2} \mathrm{~d} b \mathrm{~d} x \\
& =2 \pi\|\psi\|_{L_{2}(\mathbb{R})}^{2}\langle f, g\rangle_{L_{2}(\mathbb{R})} .
\end{aligned}
$$

2. Let $f, g \in L_{2}(\mathbb{R})$ be fixed. By $\psi \mapsto\left\langle\mathscr{F}_{\psi} f, \mathscr{F}_{\psi} g\right\rangle_{L_{2}\left(\mathbb{R}^{2}\right)}$ a continuous functional is defined on $L_{1}(\mathbb{R}) \cap L_{\infty}(\mathbb{R})$. Now $L_{1}(\mathbb{R}) \cap L_{\infty}(\mathbb{R})$ is a dense subspace of $L_{2}(\mathbb{R})$. Then this functional can be uniquely extended on $L_{2}(\mathbb{R})$, where $\langle f, g\rangle_{L_{2}(\mathbb{R})}$ is kept.

Remark 2.43 By Theorem 2.42 we know that

$$
\int_{\mathbb{R}}|f(x)|^{2} \mathrm{~d} x=\frac{1}{2 \pi} \int_{\mathbb{R}} \int_{\mathbb{R}}\left|\left(\mathscr{F}_{\psi} f\right)(b, \omega)\right|^{2} \mathrm{~d} b \mathrm{~d} \omega
$$

Hence the spectrogram $\left|\left(\mathscr{F}_{\psi} f\right)(b, \omega)\right|^{2}$ can be interpreted as an energy density, i.e., the time-frequency rectangle $[b, b+\Delta b] \times[\omega, \omega+\Delta \omega]$ corresponds to the energy

$$
\frac{1}{2 \pi}\left|\left(\mathscr{F}_{\psi} f\right)(b, \omega)\right|^{2} \Delta b \Delta \omega .
$$

By Theorem 2.42 the windowed Fourier transform represents a univariate signal $f \in$ $L_{2}(\mathbb{R})$ by a bivariate function $\mathscr{F}_{\psi} f \in L_{2}\left(\mathbb{R}^{2}\right)$. Conversely, from given windowed Fourier transform $\mathscr{F}_{\psi} f$ one can recover the function f :

Corollary 2.44 Let ψ be a window function with $\|\psi\|_{L_{2}(\mathbb{R})}=1$. Then for all $f \in$ $L_{2}(\mathbb{R})$ it holds the representation formula

$$
f(x)=\frac{1}{2 \pi} \int_{\mathbb{R}} \int_{\mathbb{R}}\left(\mathscr{F}_{\psi} f\right)(b, \omega) \psi(x-b) \mathrm{e}^{\mathrm{i} \omega x} \mathrm{~d} b \mathrm{~d} \omega
$$

where the integral is meant in the weak sense.
Proof Let

$$
\tilde{f}(x):=\int_{\mathbb{R}} \int_{\mathbb{R}}\left(\mathscr{F}_{\psi} f\right)(b, \omega) \psi(x-b) \mathrm{e}^{\mathrm{i} \omega x} \mathrm{~d} b \mathrm{~d} \omega, \quad x \in \mathbb{R} .
$$

By Theorem 2.42 we obtain

$$
\begin{aligned}
\langle\tilde{f}, h\rangle_{L_{2}(\mathbb{R})} & =\int_{\mathbb{R}} \int_{\mathbb{R}}\left(\mathscr{F}_{\psi} f\right)(b, \omega)\left\langle\psi(\cdot-b) \mathrm{e}^{\mathrm{i} \omega}, h\right\rangle_{L_{2}(\mathbb{R})} \mathrm{d} b \mathrm{~d} \omega \\
& =\left\langle\mathscr{F}_{\psi} f, \mathscr{F}_{\psi} h\right\rangle_{L_{2}\left(\mathbb{R}^{2}\right)}=2 \pi\langle f, h\rangle_{L_{2}(\mathbb{R})}
\end{aligned}
$$

for all $h \in L_{2}(\mathbb{R})$ so that $\tilde{f}=2 \pi f$ in $L_{2}(\mathbb{R})$.
A typical application of this time-frequency analysis consists in the following three steps:

1. For a given (noisy) signal $f \in L_{2}(\mathbb{R})$ compute the windowed Fourier transform $\mathscr{F}_{\psi} f$ with respect to a suitable window ψ.
2. Then $\left(\mathscr{F}_{\psi} f\right)(b, \omega)$ is transformed into a new function $g(b, \omega)$ by the so-called signal compression. Usually, $\left(\mathscr{F}_{\psi} f\right)(b, \omega)$ is truncated to a region of interest, where $\left|\left(\mathscr{F}_{\psi} f\right)(b, \omega)\right|$ is larger than a given threshold.
3. By the compressed function g compute an approximate signal \tilde{f} (of the given signal f) by a modified reconstruction formula of Corollary 2.44

$$
\tilde{f}(x)=\frac{1}{2 \pi} \int_{\mathbb{R}} \int_{\mathbb{R}} g(b, \omega) \varphi(x-b) \mathrm{e}^{\mathrm{i} \omega x} \mathrm{~d} b \mathrm{~d} \omega,
$$

where φ is a convenient window. Note that distinct windows ψ and φ may be used in steps 1 and 3.

For an application of the windowed Fourier transform in music analysis, we refer to [111].

2.5.2 Fractional Fourier Transforms

The fractional Fourier transform (FRFT) is another Fourier-related transform in time-frequency analysis. Some of its roots can be found in quantum mechanics and in optics, where the FRFT can be physically realized. For more details, see [52, 53, 260] and in particular for numerical algorithms to compute the FRFT [54]. The definition of FRFT is based on the spectral decomposition of the Fourier transform on $L_{2}(\mathbb{R})$. To this end, we consider the normalized Fourier transform

$$
\frac{1}{\sqrt{2 \pi}}(\mathscr{F} f)(u)=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} f(x) \mathrm{e}^{-\mathrm{i} x u} \mathrm{~d} x
$$

which is a unitary operator on $L_{2}(\mathbb{R})$ by Theorem 2.22 of Plancherel. By Theorem 2.25, the normalized Hermite functions

$$
\varphi_{n}(x):=\left(2^{n} n!\right)^{-1 / 2} \pi^{-1 / 4} H_{n}(x) \mathrm{e}^{-x^{2} / 2}, \quad n \in \mathbb{N}_{0}
$$

are eigenfunctions of $\frac{1}{\sqrt{2 \pi}} \mathscr{F}$ related to the eigenvalues $(-\mathrm{i})^{n}=\mathrm{e}^{-\mathrm{i} n \pi / 2}$, i.e.,

$$
\begin{equation*}
\frac{1}{\sqrt{2 \pi}} \mathscr{F} \varphi_{n}=\mathrm{e}^{-\mathrm{i} n \pi / 2} \varphi_{n}, \quad n \in \mathbb{N}_{0} \tag{2.34}
\end{equation*}
$$

Since $\left\{\varphi_{n}: n \in \mathbb{N}_{0}\right\}$ is an orthonormal basis of $L_{2}(\mathbb{R})$, every function $f \in L_{2}(\mathbb{R})$ can be represented in the form

$$
f=\sum_{n=0}^{\infty}\left\langle f, \varphi_{n}\right\rangle_{L_{2}(\mathbb{R})} \varphi_{n}
$$

Then, by Theorems 2.22 and 2.34, it follows the spectral decomposition

$$
\frac{1}{\sqrt{2 \pi}}(\mathscr{F} f)(u)=\sum_{n=0}^{\infty} \mathrm{e}^{-\mathrm{i} n \pi / 2}\left\langle f, \varphi_{n}\right\rangle_{L_{2}(\mathbb{R})} \varphi_{n}(u)=\int_{\mathbb{R}} K_{\pi / 2}(x, u) f(x) \mathrm{d} x
$$

with the kernel of the normalized Fourier transform

$$
K_{\pi / 2}(x, u):=\sum_{n=0}^{\infty} \mathrm{e}^{-\mathrm{i} n \pi / 2} \varphi_{n}(x) \varphi_{n}(u)=\frac{1}{\sqrt{2 \pi}} \mathrm{e}^{-\mathrm{i} x u} .
$$

We use the spectral decomposition of $\frac{1}{\sqrt{2 \pi}} \mathscr{F}$ to define the fractional Fourier transform \mathscr{F}_{α} of order $\alpha \in \mathbb{R}$ as the series

$$
\begin{equation*}
\left(\mathscr{F}_{\alpha} f\right)(u):=\sum_{n=0}^{\infty} \mathrm{e}^{-\mathrm{i} n \alpha}\left\langle f, \varphi_{n}\right\rangle_{L_{2}(\mathbb{R})} \varphi_{n}(u) \tag{2.35}
\end{equation*}
$$

for arbitrary $f \in L_{2}(\mathbb{R})$. Obviously, \mathscr{F}_{α} is a continuous linear operator of $L_{2}(\mathbb{R})$ into itself with the property

$$
\begin{equation*}
\mathscr{F}_{\alpha} \varphi_{n}=\mathrm{e}^{-\mathrm{i} n \alpha} \varphi_{n}, \quad n \in \mathbb{N}_{0} . \tag{2.36}
\end{equation*}
$$

Since the operator \mathscr{F} is 2π-periodic with respect to α, i.e., $\mathscr{F}_{\alpha+2 \pi} f=\mathscr{F}_{\alpha} f$ for all $f \in L_{2}(\mathbb{R})$, we can restrict ourselves to the case $\alpha \in[-\pi, \pi)$. Using (2.35) we see that $\mathscr{F}_{0} f=f, \mathscr{F}_{\pi / 2} f=\frac{1}{\sqrt{2 \pi}} \mathscr{F} f$, and $\mathscr{F}_{-\pi / 2} f=\frac{1}{\sqrt{2 \pi}} \mathscr{F}^{-1} f$ for all $f \in L_{2}(\mathbb{R})$. Applying $H_{n}(-x)=(-1)^{n} H_{n}(x)$, we obtain
$\left(\mathscr{F}_{-\pi} f\right)(u)=\sum_{n=0}^{\infty}(-1)^{n}\left\langle f, \varphi_{n}\right\rangle_{L_{2}(\mathbb{R})} \varphi_{n}=\sum_{n=0}^{\infty}\left\langle f(-\cdot), \varphi_{n}\right\rangle_{L_{2}(\mathbb{R})} \varphi_{n}(u)=f(-u)$.
Roughly speaking, the fractional Fourier transform can be interpreted by a rotation through an angle $\alpha \in[-\pi, \pi)$ in the time-frequency plane. Let u and v be the new rectangular coordinates in the time-frequency plane, i.e.,

$$
\binom{u}{v}=\left(\begin{array}{cc}
\cos \alpha & \sin \alpha \\
-\sin \alpha & \cos \alpha
\end{array}\right)\binom{x}{\omega} .
$$

Using (2.35) and setting

$$
\begin{equation*}
u=x \cos \alpha+\omega \sin \alpha \tag{2.37}
\end{equation*}
$$

we obtain the following connections:

α	$u=x \cos \alpha+\omega \sin \alpha$	$\left(\mathscr{F}_{\alpha} f\right)(u)$
$-\pi$	$u=-x$	$\left(\mathscr{F}_{-\pi} f\right)(-x)=f(x)$
$-\frac{\pi}{2}$	$u=-\omega$	$\left(\mathscr{F}_{-\pi / 2} f\right)(-\omega)=\frac{1}{\sqrt{2 \pi}}\left(\mathscr{F}^{-1} f\right)(-\omega)$
0	$u=x$	$\left(\mathscr{F}_{0} f\right)(x)=f(x)$
$\frac{\pi}{2}$	$u=\omega$	$\left(\mathscr{F}_{\pi / 2} f\right)(\omega)=\frac{1}{\sqrt{2 \pi}}(\mathscr{F} f)(\omega)$
π	$u=-x$	$\left(\mathscr{F}_{\pi} f\right)(-x)=\left(\mathscr{F}_{-\pi} f\right)(-x)=f(x)$

As seen in the table, the FRFT is essentially a rotation in the time-frequency plane. By (2.37) the u-axis rotates around the origin such that, e.g., for increasing $\alpha \in\left[0, \frac{\pi}{2}\right]$, the FRFT $\left(\mathscr{F}_{\alpha} f\right)(u)$ describes the change of $f(x)$ towards the normalized Fourier transform $(2 \pi)^{-1 / 2} \hat{f}(\omega)$.

For $0<|\alpha|<\pi$, Mehler's formula [223, p. 61] implies for $x, u \in \mathbb{R}$ that

$$
\begin{aligned}
K_{\alpha}(x, u) & :=\sum_{n=0}^{\infty} \mathrm{e}^{-\mathrm{i} n \alpha} \varphi_{n}(x) \varphi_{n}(u) \\
& =\sqrt{\frac{1-\mathrm{i} \cot \alpha}{2 \pi}} \exp \left(\frac{\mathrm{i}}{2}\left(x^{2}+u^{2}\right) \cot \alpha-\frac{\mathrm{i} x u}{\sin \alpha}\right),
\end{aligned}
$$

where the argument of $\sqrt{1-\mathrm{i} \cot \alpha}$ lies in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$. For computational purposes, it is more practical to use the integral representation of the FRFT

$$
\begin{aligned}
\left(\mathscr{F}_{\alpha} f\right)(u) & =\int_{\mathbb{R}} f(x) K_{\alpha}(x, u) \mathrm{d} x \\
& =\sqrt{\frac{1-\mathrm{i} \cot \alpha}{2 \pi}} \int_{\mathbb{R}} f(x) \exp \left(\frac{\mathrm{i}}{2}\left(x^{2}+u^{2}\right) \cot \alpha-\frac{\mathrm{i} x u}{\sin \alpha}\right) \mathrm{d} x .
\end{aligned}
$$

Remark 2.45 The FRFT $\mathscr{F}_{\alpha} f$ exists if the Fourier transform $\mathscr{F} f$ exists, in particular for $f \in L_{2}(\mathbb{R})$ or $f \in L_{1}(\mathbb{R})$. Similarly to the Fourier transform of tempered distributions introduced in Sect.4.3, the FRFT can be extended to tempered distributions.

In the most interesting case $\alpha \in(-\pi, \pi) \backslash\left\{-\frac{\pi}{2}, 0, \frac{\pi}{2}\right\}$, the FRFT $\mathscr{F}_{\alpha} f$ can be formed in three steps:

1. multiplication of the given function $f(x)$ with the linear $\operatorname{chirp} \exp \left(\frac{\mathrm{i}}{2} x^{2} \cot \alpha\right)$,
2. Fourier transform of the product for the scaled argument $\frac{u}{\sin \alpha}$, and
3. multiplication of the intermediate result with the linear chirp

$$
\sqrt{\frac{1-\mathrm{i} \cot \alpha}{2 \pi}} \exp \left(\frac{\mathrm{i}}{2} u^{2} \cot \alpha\right) .
$$

Similarly as the complex exponentials are the basic functions for the Fourier transform, linear chirps are basic functions for the FRFT $\mathscr{F}_{\alpha} f$ for $\alpha \in(-\pi, \pi) \backslash$ $\left\{-\frac{\pi}{2}, 0, \frac{\pi}{2}\right\}$.

From the definition of FRFT we obtain the following properties of the FRFT.

Lemma 2.46 For all $\alpha, \beta \in \mathbb{R}$, the FRFT has the following properties:

1. \mathscr{F}_{0} is the identity operator and $\mathscr{F}_{\pi / 2}$ coincides with the normalized Fourier transform $\frac{1}{\sqrt{2 \pi}} \mathscr{F}$.
2. $\mathscr{F}_{\alpha} \mathscr{F}_{\beta}=\mathscr{F}_{\alpha+\beta}$.
3. $\mathscr{F}_{-\alpha}$ is the inverse of \mathscr{F}_{α}.
4. For all $f, g \in L_{2}(\mathbb{R})$ it holds the Parseval equality

$$
\langle f, g\rangle_{L_{2}(\mathbb{R})}=\int_{\mathbb{R}} f(x) \overline{g(x)} \mathrm{d} x=\left\langle\mathscr{F}_{\alpha} f, \mathscr{F}_{\alpha} g\right\rangle_{L_{2}(\mathbb{R})}
$$

Proof The first property follows immediately from the definition of the FRFT \mathscr{F}_{α} for $\alpha=0$ and $\alpha=\frac{\pi}{2}$. The second property can be seen as follows. For arbitrary $f \in L_{2}(\mathbb{R})$ we have

$$
\mathscr{F}_{\beta} f=\sum_{n=0}^{\infty} \mathrm{e}^{-\mathrm{i} n \beta}\left\langle f, \varphi_{n}\right\rangle_{L_{2}(\mathbb{R})} \varphi_{n}
$$

Since \mathscr{F}_{α} is a continuous linear operator with the property (2.36), we conclude

$$
\mathscr{F}_{\alpha}\left(\mathscr{F}_{\beta} f\right)=\sum_{n=0}^{\infty} \mathrm{e}^{-\mathrm{i} n(\alpha+\beta)}\left\langle f, \varphi_{n}\right\rangle_{L_{2}(\mathbb{R})} \varphi_{n}=\mathscr{F}_{\alpha+\beta} f
$$

The third property is a simple consequence of the first and second property.
Finally, the Parseval equality holds for all $f, g \in L_{2}(\mathbb{R})$, since

$$
\begin{aligned}
\left\langle\mathscr{F}_{\alpha} f, \mathscr{F}_{\alpha} g\right\rangle_{L_{2}(\mathbb{R})} & =\sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \mathrm{e}^{-\mathrm{i}(n-m) \alpha}\left\langle f, \varphi_{n}\right\rangle_{L_{2}(\mathbb{R})} \overline{\left\langle g, \varphi_{m}\right\rangle_{L_{2}(\mathbb{R})}} \delta_{n-m} \\
& =\sum_{n=0}^{\infty}\left\langle f, \varphi_{n}\right\rangle_{L_{2}(\mathbb{R})} \overline{\left\langle g, \varphi_{n}\right\rangle_{L_{2}(\mathbb{R})}}=\langle f, g\rangle_{L_{2}(\mathbb{R})} .
\end{aligned}
$$

This completes the proof.

The following theorem collects further basic properties of the FRFT which can easily be proved.

Theorem 2.47 Let $\alpha \in(-\pi, \pi) \backslash\left\{-\frac{\pi}{2}, 0, \frac{\pi}{2}\right\}$ be given. Then the FRFT of order α has the following properties:

1. Linearity: For all $c, d \in \mathbb{C}$ and $f, g \in L_{2}(\mathbb{R})$,

$$
\mathscr{F}_{\alpha}(c f+d g)=c \mathscr{F}_{\alpha} f+d \mathscr{F}_{\alpha} .
$$

2. Translation and modulation: For all $b \in \mathbb{R}$ and $f \in L_{2}(\mathbb{R})$,

$$
\begin{aligned}
\left(\mathscr{F}_{\alpha} f(\cdot-b)\right)(u) & =\exp \left(\frac{\mathrm{i}}{2} b^{2} \sin \alpha \cos \alpha-\mathrm{i} u b \sin \alpha\right)\left(\mathscr{F}_{\alpha} f\right)(u-b \cos \alpha), \\
\left(\mathscr{F}_{\alpha} \mathrm{e}^{-\mathrm{i} b} \cdot f\right)(u) & =\exp \left(-\frac{\mathrm{i}}{2} b^{2} \sin \alpha \cos \alpha-\mathrm{i} u b \cos \alpha\right)\left(\mathscr{F}_{\alpha} f\right)(u+b \sin \alpha) .
\end{aligned}
$$

3. Differentiation and multiplication: For $f \in L_{2}(\mathbb{R})$ with $f^{\prime} \in L_{2}(\mathbb{R})$,

$$
\left(\mathscr{F}_{\alpha} f^{\prime}\right)(u)=\cos \alpha \frac{\mathrm{d}}{\mathrm{~d} u}\left(\mathscr{F}_{\alpha} f\right)(u)+\mathrm{i} u \sin \alpha\left(\mathscr{F}_{\alpha} f\right)(u) .
$$

If f and $g(x):=x f(x), x \in \mathbb{R}$, are contained in $L_{2}(\mathbb{R})$, then

$$
\left(\mathscr{F}_{\alpha} g\right)(u)=u \cos \alpha\left(\mathscr{F}_{\alpha} f\right)(u)+\mathrm{i} \sin \alpha \frac{\mathrm{~d}}{\mathrm{~d} u}\left(\mathscr{F}_{\alpha} f\right)(u) .
$$

4. Scaling: For $b \in \mathbb{R} \backslash\{0\},\left(\mathscr{F}_{\alpha} f(b \cdot)\right)(u)$ reads as follows:

$$
\frac{1}{|b|} \sqrt{\frac{1-\mathrm{i} \cot \alpha}{1-\mathrm{i} \cot \beta}} \exp \left(\frac{\mathrm{i}}{2} u^{2} \cot \alpha\left(1-\frac{(\cos \beta)^{2}}{(\cos \alpha)^{2}}\right)\right)\left(\mathscr{F}_{\beta} f\right)\left(\frac{u \sin \beta}{b \sin \alpha}\right)
$$

with $\beta:=\arctan \left(b^{2} \tan \alpha\right)$.
Example 2.48 The function $f(x)=\left(4 x^{2}-10\right) \mathrm{e}^{-x^{2} / 2}=\left(H_{2}(x)-8\right) \mathrm{e}^{-x^{2} / 2}$ is contained in $L_{2}(\mathbb{R})$, where $H_{2}(x)=4 x^{2}-2$ is the second Hermite polynomial. Since the FRFT \mathscr{F}_{α} is a linear operator, we obtain the FRFT

$$
\left(\mathscr{F}_{\alpha} f\right)(u)=\left(\mathrm{e}^{-2 \mathrm{i} \alpha} H_{2}(u)-8\right) \mathrm{e}^{-u^{2} / 2}=\left(4 \mathrm{e}^{-2 \mathrm{i} \alpha} u^{2}-2 \mathrm{e}^{-2 \mathrm{i} \alpha}-8\right) \mathrm{e}^{-u^{2} / 2} .
$$

Using the scaling property of the FRFT in Theorem 2.47, the function $g(x)=$ $\mathrm{e}^{-b^{2} x^{2} / 2}, x \in \mathbb{R}$, with $b \in \mathbb{R} \backslash\{0\}$ possesses the FRFT

$$
\frac{1}{|b|} \sqrt{\frac{1-\mathrm{i} \cot \alpha}{1-\mathrm{i} \cot \beta}} \exp \left(\frac{\mathrm{i}}{2} u^{2} \cot \alpha\left(1-\frac{(\cos \beta)^{2}}{(\cos \alpha)^{2}}\right)\right) \exp \left(-\frac{u^{2}}{2} \frac{(\sin \beta)^{2}}{b^{2}(\sin \alpha)^{2}}\right)
$$

with $\beta:=\arctan \left(b^{2} \tan \alpha\right)$.

The linear canonical transform (see [162]) is a generalization of the FRFT. As shown, the FRFT of order α is related to the rotation matrix

$$
\mathbf{R}_{\alpha}:=\left(\begin{array}{cc}
\cos \alpha & \sin \alpha \\
-\sin \alpha & \cos \alpha
\end{array}\right) .
$$

If

$$
\mathbf{A}:=\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

is a real matrix with determinant 1 and $b>0$, then the linear canonical transform $\mathscr{L}_{\mathbf{A}}: L_{2}(\mathbb{R}) \rightarrow L_{2}(\mathbb{R})$ is defined by

$$
\left(\mathscr{L}_{\mathbf{A}} f\right)(u):=\int_{\mathbb{R}} k_{\mathbf{A}}(u, x) f(x) \mathrm{d} x, \quad f \in L_{2}(\mathbb{R})
$$

with the kernel

$$
k_{\mathbf{A}}(u, x):=\frac{1}{\sqrt{2 \pi b}} \exp \left(\mathrm{i}\left(\frac{a x^{2}}{2 b}+\frac{d u^{2}}{2 b}-\frac{u x}{b}-\frac{\pi}{4}\right)\right) .
$$

For $\mathbf{A}=\mathbf{R}_{0}$, the linear canonical transform $\mathscr{L}_{\mathbf{A}}$ is equal to the Fourier transform \mathscr{F} multiplied by $(2 \pi)^{-1 / 2} \mathrm{e}^{-\mathrm{i} \pi / 4}$. For $\mathbf{A}=\mathbf{R}_{\alpha}$ with $\sin \alpha>0$, the linear canonical transform $\mathscr{L}_{\mathbf{A}}$ coincides with a scaled FRFT \mathscr{F}_{α}.

Chapter 3
 Discrete Fourier Transforms

This chapter deals with the discrete Fourier transform (DFT). In Sect. 3.1, we show that numerical realizations of Fourier methods, such as the computation of Fourier coefficients, Fourier transforms, or trigonometric interpolation, lead to the DFT. We also present barycentric formulas for interpolating trigonometric polynomials. In Sect.3.2, we study the basic properties of the Fourier matrix and of the DFT. In particular, we consider the eigenvalues of the Fourier matrix with their multiplicities. Further, we present the intimate relations between cyclic convolutions and the DFT. In Sect.3.3, we show that cyclic convolutions and circulant matrices are closely related and that circulant matrices can be diagonalized by the Fourier matrix. Section 3.4 presents the properties of Kronecker products and stride permutations, which we will need later in Chap. 5 for the factorization of a Fourier matrix. We show that block circulant matrices can be diagonalized by Kronecker products of Fourier matrices. Finally, Sect. 3.5 addresses real versions of the DFT, such as the discrete cosine transform (DCT) and the discrete sine transform (DST). These linear transforms are generated by orthogonal matrices.

3.1 Motivations for Discrete Fourier Transforms

Discrete Fourier methods can be traced back to the eighteenth and nineteenth century, where they have been used already for determining the orbits of celestial bodies. The corresponding data contain periodic patterns that can be well interpolated by trigonometric polynomials. In order to calculate the coefficients of trigonometric polynomials we need to employ the so-called discrete Fourier transform (DFT). Clairaut, Lagrange, and later Gauss already considered the DFT to solve the problem of fitting astronomical data. In 1754, Clairaut published a first formula for a discrete Fourier transform. For historical remarks, see [46, pp. 2-6].

We start with introducing the discrete Fourier transform. For a given vector $\mathbf{a}=$ $\left(a_{j}\right)_{j=0}^{N-1} \in \mathbb{C}^{N}$ we call the vector $\hat{\mathbf{a}}=\left(\hat{a}_{k}\right)_{k=0}^{N-1} \in \mathbb{C}^{N}$ the discrete Fourier transform of \mathbf{a} with length N, if

$$
\begin{equation*}
\hat{a}_{k}=\sum_{j=0}^{N-1} a_{j} \mathrm{e}^{-2 \pi \mathrm{i} j k / N}=\sum_{j=0}^{N-1} a_{j} w_{N}^{j k}, \quad k=0, \ldots, N-1, \tag{3.1}
\end{equation*}
$$

where

$$
\begin{equation*}
w_{N}:=\mathrm{e}^{-2 \pi \mathrm{i} / N}=\cos \frac{2 \pi}{N}-\mathrm{i} \sin \frac{2 \pi}{N} . \tag{3.2}
\end{equation*}
$$

Obviously, $w_{N} \in \mathbb{C}$ is a primitive N th root of unity, because $w_{N}^{N}=1$ and $w_{N}^{k} \neq 1$ for $k=1, \ldots, N-1$. Since

$$
\left(w_{N}^{k}\right)^{N}=\left(\mathrm{e}^{-2 \pi \mathrm{i} k / N}\right)^{N}=\mathrm{e}^{-2 \pi \mathrm{i} k}=1,
$$

all numbers $w_{N}^{k}, k=0, \ldots, N-1$ are N th roots of unity and form the vertices of a regular N-gon inscribed in the complex unit circle.

In this section we will show that the discrete Fourier transform naturally comes into play for the numerical solution of the following fundamental problems:

- computation of Fourier coefficients of a function $f \in C(\mathbb{T})$,
- computation of the values of a trigonometric polynomial on a uniform grid of the interval $[0,2 \pi)$,
- calculation of the Fourier transform of a function $f \in L_{1}(\mathbb{R}) \cap C(\mathbb{R})$ on a uniform grid of an interval $[-n \pi, n \pi)$ with certain $n \in \mathbb{N}$,
- interpolation by trigonometric polynomials on a uniform grid of the interval $[0,2 \pi)$.

3.1.1 Approximation of Fourier Coefficients and Aliasing Formula

First we describe a numerical approach to compute the Fourier coefficients $c_{k}(f)$, $k \in \mathbb{Z}$, of a given function $f \in C(\mathbb{T})$, where f is given by its values sampled on the uniform grid $\left\{\frac{2 \pi j}{N}: j=0, \ldots, N-1\right\}$. Assume that $N \in \mathbb{N}$ is even. Using the trapezoidal rule for numerical integration, we can compute $c_{k}(f)$ for each $k \in \mathbb{Z}$ approximately. By $f(0)=f(2 \pi)$ we find that

$$
\begin{aligned}
c_{k}(f) & =\frac{1}{2 \pi} \int_{0}^{2 \pi} f(t) \mathrm{e}^{-\mathrm{i} k t} \mathrm{~d} t \\
& \approx \frac{1}{2 N} \sum_{j=0}^{N-1}\left[f\left(\frac{2 \pi j}{N}\right) \mathrm{e}^{-2 \pi \mathrm{i} j k / N}+f\left(\frac{2 \pi(j+1)}{N}\right) \mathrm{e}^{-2 \pi \mathrm{i}(j+1) k / N}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2 N} \sum_{j=0}^{N-1} f\left(\frac{2 \pi j}{N}\right) \mathrm{e}^{-2 \pi \mathrm{i} j k / N}+\frac{1}{2 N} \sum_{j=1}^{N} f\left(\frac{2 \pi j}{N}\right) \mathrm{e}^{-2 \pi \mathrm{i} j k / N} \\
& =\frac{1}{N} \sum_{j=0}^{N-1} f\left(\frac{2 \pi j}{N}\right) \mathrm{e}^{-2 \pi \mathrm{i} j k / N}, \quad k \in \mathbb{Z}
\end{aligned}
$$

Thus we obtain

$$
\begin{equation*}
\hat{f}_{k}:=\frac{1}{N} \sum_{j=0}^{N-1} f\left(\frac{2 \pi j}{N}\right) w_{N}^{j k} \tag{3.3}
\end{equation*}
$$

as approximate values of $c_{k}(f)$. If f is real-valued, then we observe the symmetry relation

$$
\hat{f}_{k}=\overline{\hat{f}}_{-k}, \quad k \in \mathbb{Z}
$$

Obviously, the values \hat{f}_{k} are N-periodic, i.e., $\hat{f_{k+N}}=\hat{f}_{k}$ for all $k \in \mathbb{Z}$, since $w_{N}^{N}=1$. However, by Lemma 1.27 of Riemann-Lebesgue we know that $c_{k}(f) \rightarrow 0$ as $|k| \rightarrow \infty$. Therefore, \hat{f}_{k} is only an acceptable approximation of $c_{k}(f)$ for small $|k|$, i.e.,

$$
\hat{f}_{k} \approx c_{k}(f), \quad k=-\frac{N}{2}, \ldots, \frac{N}{2}-1
$$

Example 3.1 Let f be the 2π-periodic extension of the pulse function

$$
f(x):= \begin{cases}1 & x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \\ \frac{1}{2} & x \in\left\{-\frac{\pi}{2}, \frac{\pi}{2}\right\} \\ 0 & x \in\left[-\pi,-\frac{\pi}{2}\right) \cup\left(\frac{\pi}{2}, \pi\right)\end{cases}
$$

Note that f is even. Then its Fourier coefficients read for $k \in \mathbb{Z} \backslash\{0\}$ as follows:

$$
c_{k}(f)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) \mathrm{e}^{-\mathrm{i} k x} \mathrm{~d} x=\frac{1}{\pi} \int_{0}^{\pi / 2} \cos (k x) \mathrm{d} x=\frac{1}{\pi k} \sin \frac{\pi k}{2}
$$

and $c_{0}(f)=\frac{1}{2}$. For fixed $N \in 4 \mathbb{N}$, we obtain the related approximate values

$$
\begin{aligned}
\hat{f}_{k} & =\frac{1}{N} \sum_{j=-N / 2}^{N / 2-1} f\left(\frac{2 \pi j}{N}\right) w_{N}^{j k} \\
& =\frac{1}{N}\left(\cos \frac{\pi k}{2}+1+2 \sum_{j=1}^{N / 4-1} \cos \frac{2 \pi j k}{N}\right) \quad k \in \mathbb{Z}
\end{aligned}
$$

Hence we have $\hat{f}_{k}=\frac{1}{2}$ for $k \in N \mathbb{Z}$. Using the Dirichlet kernel $D_{N / 4-1}$ with (1.22), it follows that for $k \in \mathbb{Z} \backslash(N \mathbb{Z})$

$$
\hat{f}_{k}=\frac{1}{N}\left(\cos \frac{\pi k}{2}+D_{N / 4-1}\left(\frac{2 \pi k}{N}\right)\right)=\frac{1}{N} \sin \frac{\pi k}{2} \cot \frac{\pi k}{N}
$$

This example illustrates the different asymptotic behavior of the Fourier coefficients $c_{k}(f)$ and its approximate values \hat{f}_{k} for $|k| \rightarrow \infty$.

To see this effect more clearly, we will derive a so-called aliasing formula for Fourier coefficients. To this end we use the following notations. As usual, $\delta_{j}, j \in \mathbb{Z}$, denotes the Kronecker symbol with

$$
\delta_{j}:= \begin{cases}1 & j=0 \\ 0 & j \neq 0\end{cases}
$$

For $j \in \mathbb{Z}$, we denote the nonnegative residue modulo $N \in \mathbb{N}$ by $j \bmod N$, where $j \bmod N \in\{0, \ldots, N-1\}$ and N is a divisor of $j-(j \bmod N)$. Note that we have for all $j, k \in \mathbb{Z}$

$$
\begin{equation*}
(j k) \bmod N=((j \bmod N) k) \bmod N . \tag{3.4}
\end{equation*}
$$

Lemma 3.2 Let $N \in \mathbb{N}$ be given. For each $j \in \mathbb{Z}$, the primitive N th root of unity w_{N} has the property

$$
\begin{equation*}
\sum_{k=0}^{N-1} w_{N}^{j k}=N \delta_{j \bmod N} \tag{3.5}
\end{equation*}
$$

where

$$
\delta_{j \bmod N}:= \begin{cases}1 & j \bmod N=0 \\ 0 & j \bmod N \neq 0\end{cases}
$$

denotes the N-periodic Kronecker symbol.
Proof In the case $j \bmod N=0$ we have $j=\ell N$ with certain $\ell \in \mathbb{Z}$ and hence $w_{N}^{j}=\left(w_{N}^{N}\right)^{\ell}=1$. This yields (3.5) for $j \bmod N=0$.

In the case $j \bmod N \neq 0$ we have $j=\ell N+m$ with certain $\ell \in \mathbb{Z}$ and $m \in$ $\{1, \ldots, N-1\}$ such that $w_{N}^{j}=\left(w_{N}^{N}\right)^{\ell} w_{N}^{m}=w_{N}^{m} \neq 1$. For arbitrary $x \neq 1$, it holds

$$
\sum_{k=0}^{N-1} x^{k}=\frac{x^{N}-1}{x-1}
$$

For $x=w_{N}^{j}$ we obtain (3.5) for $j \bmod N \neq 0$.

Lemma 3.2 can be used to prove the following aliasing formula, which describes the relation between the Fourier coefficients $c_{k}(f)$ and their approximate values $\hat{f_{k}}$.
Theorem 3.3 (Aliasing Formula for Fourier Coefficients) Let $f \in C(\mathbb{T})$ be given. Assume that the Fourier coefficients of f satisfy the condition $\sum_{k \in \mathbb{Z}}\left|c_{k}(f)\right|<$ ∞. Then the aliasing formula

$$
\begin{equation*}
\hat{f}_{k}=\sum_{\ell \in \mathbb{Z}} c_{k+\ell N}(f), \quad k \in \mathbb{Z} \tag{3.6}
\end{equation*}
$$

holds.
Proof Using Theorem 1.37, the Fourier series of f converges uniformly to f. Hence for each $x \in \mathbb{T}$,

$$
f(x)=\sum_{\ell \in \mathbb{Z}} c_{\ell}(f) \mathrm{e}^{\mathrm{i} \ell x}
$$

For $x=\frac{2 \pi j}{N}, j=0, \ldots, N-1$, we obtain that

$$
f\left(\frac{2 \pi j}{N}\right)=\sum_{\ell \in \mathbb{Z}} c_{\ell}(f) \mathrm{e}^{2 \pi \mathrm{i} j \ell / N}=\sum_{\ell \in \mathbb{Z}} c_{\ell}(f) w_{N}^{-\ell k}
$$

Hence due to (3.3) and the convergence of the Fourier series

$$
\hat{f}_{k}=\frac{1}{N} \sum_{j=0}^{N-1}\left(\sum_{\ell \in \mathbb{Z}} c_{\ell}(f) w_{N}^{-j \ell}\right) w_{N}^{j k}=\sum_{\ell \in \mathbb{Z}} c_{\ell}(f) \sum_{j=0}^{N-1} w_{N}^{j(\ell-k)}
$$

which yields by (3.5) the aliasing formula (3.6).
By Theorem 3.3 we have no aliasing effect, if f is a trigonometric polynomial of degree $<\frac{N}{2}$, i.e., for

$$
f=\sum_{k=-N / 2+1}^{N / 2-1} c_{k}(f) \mathrm{e}^{2 \pi \mathrm{i} k}
$$

we have $\hat{f_{k}}=c_{k}(f), k=-N / 2+1, \ldots, N / 2-1$.
Corollary 3.4 Under the assumptions of Theorem 3.3, the error estimate

$$
\begin{equation*}
\left|\hat{f}_{k}-c_{k}(f)\right| \leq \sum_{\ell \in \mathbb{Z} \backslash\{0\}}\left|c_{k+\ell N}(f)\right| \tag{3.7}
\end{equation*}
$$

holds for $k=-\frac{N}{2}, \ldots, \frac{N}{2}-1$. Especially for $f \in C^{r}(\mathbb{T}), r \in \mathbb{N}$, with the property

$$
\begin{equation*}
\left|c_{k}(f)\right| \leq \frac{c}{|k|^{r+1}}, \quad k \in \mathbb{Z} \backslash\{0\} \tag{3.8}
\end{equation*}
$$

where $c>0$ is a constant, we have the error estimate

$$
\begin{equation*}
\left|\hat{f}_{k}-c_{k}(f)\right| \leq \frac{c}{r N^{r+1}}\left(\left(\frac{1}{2}+\frac{k}{N}\right)^{-r}+\left(\frac{1}{2}-\frac{k}{N}\right)^{-r}\right) \tag{3.9}
\end{equation*}
$$

for $|k|<\frac{N}{2}$.
Proof The estimate (3.7) immediately follows from the aliasing formula (3.6) by triangle inequality. With the assumption (3.8), formula (3.7) implies that

$$
\begin{aligned}
\left|\hat{f_{k}}-c_{k}(f)\right| & \leq \sum_{\ell=1}^{\infty}\left(\left|c_{k+\ell N}(f)\right|+\left|c_{k-\ell N}(f)\right|\right) \\
& \leq \frac{c}{N^{r+1}} \sum_{\ell=1}^{\infty}\left(\left(\ell+\frac{k}{N}\right)^{-r-1}+\left(\ell+\frac{k}{N}\right)^{-r-1}\right) .
\end{aligned}
$$

For $|s|<\frac{1}{2}$ and $\ell \in \mathbb{N}$, it can be simply checked that

$$
(\ell+s)^{-r-1}<\int_{\ell-1 / 2}^{\ell+1 / 2}(x+s)^{-r-1} \mathrm{~d} x
$$

since the function $g(x)=(x+s)^{-r-1}$ is convex and monotonically decreasing. Hence

$$
\sum_{\ell=1}^{\infty}\left(\ell+\frac{k}{N}\right)^{-r-1}<\int_{1 / 2}^{\infty}(x+s)^{-r-1} \mathrm{~d} x=\frac{1}{r}\left(\frac{1}{2}+s\right)^{-r}
$$

since for $s= \pm \frac{k}{N}$ with $|k|<\frac{N}{2}$ we have $|s|<\frac{1}{2}$. This completes the proof of (3.9).

3.1.2 Computation of Fourier Series and Fourier Transforms

First we study the computation of a trigonometric polynomial $p \in \mathscr{T}_{n}, n \in \mathbb{N}$, on a uniform grid of $[0,2 \pi)$. Choosing $N \in \mathbb{N}$ with $N \geq 2 n+1$, we want to calculate the value of $p=\sum_{j=-n}^{n} c_{j} \mathrm{e}^{\mathrm{i} j \cdot}$ at all grid points $\frac{2 \pi k}{N}$ for $k=0, \ldots, N-1$, where
the coefficients $c_{j} \in \mathbb{C}$ are given. Using (3.2) we have

$$
\begin{align*}
p\left(\frac{2 \pi k}{N}\right) & =\sum_{j=-n}^{n} c_{j} \mathrm{e}^{2 \pi \mathrm{i} j k / N}=\sum_{j=-n}^{n} c_{j} w_{N}^{-j k}=\sum_{j=0}^{n} c_{-j} w_{N}^{j k}+\sum_{j=1}^{n} c_{j} w_{N}^{(N-j) k} \\
& =\sum_{j=0}^{n} c_{-j} w_{N}^{j k}+\sum_{j=N-n}^{N-1} c_{N-j} w_{N}^{j k} \tag{3.10}
\end{align*}
$$

Introducing the entries

$$
d_{j}:= \begin{cases}c_{-j} & j=0, \ldots, n \\ 0 & j=n+1, \ldots, N-n+1 \\ c_{N-j} & j=N-n, \ldots, N-1,\end{cases}
$$

we obtain

$$
\begin{equation*}
p\left(\frac{2 \pi k}{N}\right)=\sum_{j=0}^{N-1} d_{j} w_{N}^{j k}, \quad k=0, \ldots, N-1, \tag{3.11}
\end{equation*}
$$

which can be interpreted as a discrete Fourier transform of length N.
Now, in order to evaluate a Fourier series on a uniform grid of an interval of length 2π, we use their partial sum $p=S_{n} f$ as an approximation. For smooth functions, the Fourier series converges rapidly, see Theorem 1.39, such that we can approximate the Fourier series very accurately by proper choosing the polynomial degree n.

Next we sketch the computation of the Fourier transform \hat{f} of a given function $f \in L_{1}(\mathbb{R}) \cap C(\mathbb{R})$. Since $f(x) \rightarrow 0$ for $|x| \rightarrow \infty$, we obtain for sufficiently large $n \in \mathbb{N}$ that

$$
\hat{f}(\omega)=\int_{\mathbb{R}} f(x) \mathrm{e}^{-\mathrm{i} x \omega} \mathrm{~d} x \approx \int_{-n \pi}^{n \pi} f(x) \mathrm{e}^{-\mathrm{i} x \omega} \mathrm{~d} x, \quad \omega \in \mathbb{R} .
$$

Using the uniform grid $\left\{\frac{2 \pi j}{N}: j=-\frac{n N}{2}, \ldots, \frac{n N}{2}-1\right\}$ of the interval $[-n \pi, n \pi$) for even $n \in \mathbb{N}$, we approximate the integral by the rectangle rule,

$$
\int_{-n \pi}^{n \pi} f(x) \mathrm{e}^{-\mathrm{i} x \omega} \mathrm{~d} x \approx \frac{2 \pi}{N} \sum_{j=-n N / 2}^{n N / 2-1} f\left(\frac{2 \pi j}{N}\right) \mathrm{e}^{-2 \pi \mathrm{i} j \omega / N} .
$$

For $\omega=\frac{k}{n}$ with $k=-\frac{n N}{2}, \ldots, \frac{n N}{2}-1$ we find the following approximate value of $\hat{f}\left(\frac{k}{n}\right)$,

$$
\begin{equation*}
\hat{f}\left(\frac{k}{n}\right) \approx \frac{2 \pi}{N} \sum_{j=-n N / 2}^{n N / 2-1} f\left(\frac{2 \pi j}{N}\right) w_{n N}^{j k} . \tag{3.12}
\end{equation*}
$$

This is indeed a discrete Fourier transform of length $n N$, when we shift the summation index similarly as in (3.10). Here, as before when evaluating the Fourier coefficients, the approximation is only acceptable for the $|k| \leq \frac{n N}{2}$, since the approximate values of $\hat{f}\left(\frac{k}{n}\right)$ are $n N$-periodic, while the Fourier transform decays with $\lim _{|\omega| \rightarrow \infty}|\hat{f}(\omega)|=0$.
Remark 3.5 In Sects. 9.1 and 9.2 we will present more accurate methods for the computation of Fourier transforms and Fourier coefficients. The sampling of trigonometric polynomials on a nonuniform grid will be considered in Chap. 7.

3.1.3 Trigonometric Polynomial Interpolation

Finally we consider the interpolation by a trigonometric polynomial on a uniform grid of $[0,2 \pi)$. First we discuss the trigonometric interpolation with an odd number of equidistant nodes $x_{k}:=\frac{2 \pi k}{2 n+1} \in[0,2 \pi), k=0, \ldots, 2 n$.
Lemma 3.6 Let $n \in \mathbb{N}$ be given and $N=2 n+1$. For arbitrary $p_{k} \in \mathbb{C}$, $k=$ $0, \ldots, N-1$, there exists a unique trigonometric polynomial of degree n,

$$
\begin{equation*}
p=\sum_{\ell=-n}^{n} c_{\ell} \mathrm{e}^{\mathrm{i} \ell \cdot} \in \mathscr{T}_{n} \tag{3.13}
\end{equation*}
$$

satisfying the interpolation conditions

$$
\begin{equation*}
p\left(x_{k}\right)=p\left(\frac{2 \pi k}{2 n+1}\right)=p_{k}, \quad k=0, \ldots, 2 n \tag{3.14}
\end{equation*}
$$

The coefficients $c_{\ell} \in \mathbb{C}$ of (3.13) are given by

$$
\begin{equation*}
c_{\ell}=\frac{1}{2 n+1} \sum_{k=0}^{2 n} p_{k} w_{N}^{\ell k}, \quad \ell=-n, \ldots, n \tag{3.15}
\end{equation*}
$$

Using the Dirichlet kernel D_{n}, the interpolating trigonometric polynomial (3.13) can be written in the form

$$
\begin{equation*}
p=\frac{1}{2 n+1} \sum_{k=0}^{2 n} p_{k} D_{n}\left(\cdot-x_{k}\right) \tag{3.16}
\end{equation*}
$$

Proof

1. From the interpolation conditions (3.14) it follows by (3.2) that solving the trigonometric interpolation problem is equivalent to solving the system of linear
equations

$$
\begin{equation*}
p\left(x_{k}\right)=\sum_{\ell=-n}^{n} c_{\ell} w_{N}^{-\ell k}=p_{k}, \quad k=0, \ldots, 2 n . \tag{3.17}
\end{equation*}
$$

Assume that $c_{\ell} \in \mathbb{C}$ solve (3.17). Then by Lemma 3.2 we obtain

$$
\begin{aligned}
\sum_{k=0}^{2 n} p_{k} w_{N}^{j k} & =\sum_{k=0}^{2 n}\left(\sum_{\ell=-n}^{n} c_{\ell} w_{N}^{-k \ell}\right) w_{N}^{j k} \\
& =\sum_{\ell=-n}^{n} c_{\ell}\left(\sum_{k=0}^{2 n} w_{N}^{(j-\ell) k}\right)=(2 n+1) c_{j}
\end{aligned}
$$

Hence any solution of (3.17) has to be of the form (3.15).
On the other hand, for c_{ℓ} given by (3.15) we find by Lemma 3.2 that for $k=0, \ldots, 2 n$

$$
\begin{aligned}
p\left(\frac{2 \pi k}{2 n+1}\right) & =p\left(x_{k}\right)=\sum_{\ell=-n}^{n} c_{\ell} w_{N}^{-\ell k}=\frac{1}{2 n+1} \sum_{\ell=-n}^{n}\left(\sum_{j=0}^{2 n} p_{j} w_{N}^{j \ell}\right) w_{N}^{-\ell k} \\
& =\frac{1}{2 n+1} \sum_{j=0}^{2 n} p_{j}\left(\sum_{\ell=-n}^{n} w_{N}^{(j-k) \ell}\right)=p_{k}
\end{aligned}
$$

Thus the linear system (3.17) is uniquely solvable.
2. From (3.13) and (3.15) it follows by $c_{-\ell}=c_{N-\ell}, \ell=1, \ldots, n$, that

$$
\begin{aligned}
p(x) & =c_{0}+\sum_{\ell=1}^{n}\left(c_{\ell} \mathrm{e}^{\mathrm{i} \ell x}+c_{N-\ell} \mathrm{e}^{-\mathrm{i} \ell x}\right) \\
& =\frac{1}{2 n+1} \sum_{k=0}^{2 n} p_{k}\left(1+\sum_{\ell=1}^{n}\left(\mathrm{e}^{\mathrm{i} \ell\left(x-x_{k}\right)}+\mathrm{e}^{-\mathrm{i} \ell\left(x-x_{k}\right)}\right)\right)
\end{aligned}
$$

and we conclude (3.16) by the definition (1.21) of the Dirichlet kernel D_{n}.
Formula (3.16) particularly implies that the trigonometric Lagrange polynomials $\ell_{k} \in \mathscr{T}_{n}$ with respect to the uniform grid $\left\{x_{k}=\frac{2 \pi k}{2 n+1}: k=0, \ldots, 2 n\right\}$ are given by

$$
\ell_{k}:=\frac{1}{2 n+1} D_{n}\left(\cdot-x_{k}\right), \quad k=0, \ldots, 2 n .
$$

By Lemma 3.6 the trigonometric Lagrange polynomials $\ell_{k}, k=0, \ldots, N-1$, form a basis of \mathscr{T}_{n} and satisfy the interpolation conditions

$$
\ell_{k}\left(x_{j}\right)=\delta_{j-k}, \quad j, k=0, \ldots, 2 n
$$

Further, the trigonometric Lagrange polynomials generate a partition of unity, since (3.16) yields for $p=1$ that

$$
\begin{equation*}
1=\frac{1}{2 n+1} \sum_{k=0}^{2 n} p_{k} D_{n}\left(\cdot-x_{k}\right)=\sum_{k=0}^{2 n} \ell_{k} \tag{3.18}
\end{equation*}
$$

Now we consider the trigonometric interpolation for an even number of equidistant nodes $x_{k}^{*}:=\frac{\pi k}{n} \in[0,2 \pi), k=0, \ldots, 2 n-1$.

Lemma 3.7 Let $n \in \mathbb{N}$ be given and $N=2 n$. For arbitrary $p_{k}^{*} \in \mathbb{C}$, $k=$ $0, \ldots, 2 n-1$, there exists a unique trigonometric polynomial of the special form

$$
\begin{equation*}
p^{*}=\sum_{\ell=1-n}^{n-1} c_{\ell}^{*} \mathrm{e}^{\mathrm{i} \ell \cdot}+\frac{1}{2} c_{n}^{*}\left(\mathrm{e}^{\mathrm{i} n \cdot}+\mathrm{e}^{-\mathrm{i} n \cdot}\right) \in \mathscr{T}_{n} \tag{3.19}
\end{equation*}
$$

satisfying the interpolation conditions

$$
\begin{equation*}
p^{*}\left(\frac{2 \pi k}{2 n}\right)=p_{k}^{*}, \quad k=0, \ldots, 2 n-1 \tag{3.20}
\end{equation*}
$$

The coefficients $c_{\ell}^{*} \in \mathbb{C}$ of (3.19) are given by

$$
\begin{equation*}
c_{\ell}^{*}=\frac{1}{2 n} \sum_{k=0}^{2 n-1} p_{k}^{*} w_{N}^{\ell k}, \quad \ell=1-n, \ldots, n . \tag{3.21}
\end{equation*}
$$

The interpolating trigonometric polynomial (3.19) can be written in the form

$$
\begin{equation*}
p^{*}=\frac{1}{2 n} \sum_{k=0}^{2 n-1} p_{k}^{*} D_{n}^{*}\left(\cdot-x_{k}^{*}\right) \tag{3.22}
\end{equation*}
$$

where $D_{n}^{*}:=D_{n}-\cos (n \cdot)$ denotes the modified nth Dirichlet kernel.
A proof of Lemma 3.7 is omitted here, since this result can be similarly shown as Lemma 3.6.

Remark 3.8 By $\sin \left(n x_{k}^{*}\right)=\sin (\pi k)=0$ for $k=0, \ldots, 2 n-1$, each trigonometric polynomial $p^{*}+c \sin (n \cdot)$ with arbitrary $c \in \mathbb{C}$ is a solution of the trigonometric interpolation problem (3.20). Therefore the restriction to trigonometric polynomials of the special form (3.19) is essential for the unique solvability of the trigonometric interpolation problem (3.20).

Formula (3.22) implies that the trigonometric Lagrange polynomials $\ell_{k}^{*} \in \mathscr{T}_{n}$ with respect to the uniform grid $\left\{x_{k}^{*}=\frac{\pi k}{n}: k=0, \ldots, 2 n-1\right\}$ are given by

$$
\ell_{k}^{*}:=\frac{1}{2 n} D_{n}^{*}\left(\cdot-x_{k}^{*}\right), \quad k=0, \ldots, 2 n-1
$$

By Lemma 3.7 the $2 n$ trigonometric Lagrange polynomials ℓ_{k}^{*} are linearly independent, but they do not form a basis of \mathscr{T}_{n}, since $\operatorname{dim} \mathscr{T}_{n}=2 n+1$.

Finally, we study efficient and numerically stable representations of the interpolating trigonometric polynomials (3.16) and (3.22). For that purpose we employ the barycentric formulas for interpolating trigonometric polynomials introduced by Henrici [166]. For a survey on barycentric interpolation formulas, we refer to [31] and [356, pp. 33-41].

Theorem 3.9 (Barycentric Formulas for Trigonometric Interpolation) Let $n \in$ \mathbb{N} be given. For odd integer $N=2 n+1$ and $x_{k}=\frac{2 \pi k}{2 n+1}, k=0, \ldots, 2 n$, the interpolating trigonometric polynomial in (3.16) satisfies the barycentric formula

$$
p(x)= \begin{cases}\frac{\sum_{k=0}^{2 n}(-1)^{k} p_{k} \operatorname{cosec} \frac{x-x_{k}}{2}}{\sum_{k=0}^{2 n}(-1)^{k} \operatorname{cosec} \frac{x-x_{k}}{2}} & x \in \mathbb{R} \backslash \bigcup_{k=0}^{2 n}\left(\left\{x_{k}\right\}+2 \pi \mathbb{Z}\right), \\ p_{j} & x \in\left\{x_{j}\right\}+2 \pi \mathbb{Z}, j=0, \ldots, 2 n .\end{cases}
$$

For even integer $N=2 n$ and $x_{k}^{*}=\frac{\pi k}{n}, k=0, \ldots, 2 n-1$, the interpolating trigonometric polynomial (3.22) satisfies the barycentric formula

$$
p^{*}(x)= \begin{cases}\frac{\sum_{k=0}^{2 n-1}(-1)^{k} p_{k}^{*} \cot \frac{x-x_{k}^{*}}{2}}{\sum_{k=0}^{2 n-1}(-1)^{k} \cot \frac{x-x_{k}^{*}}{2}} & x \in \mathbb{R} \backslash \bigcup_{k=0}^{2 n-1}\left(\left\{x_{k}^{*}\right\}+2 \pi \mathbb{Z}\right), \\ p_{j}^{*} & x \in\left\{x_{j}^{*}\right\}+2 \pi \mathbb{Z}, j=0, \ldots, 2 n-1 .\end{cases}
$$

Proof

1. Let $N=2 n+1$ be odd. We consider $x \in \mathbb{R} \backslash \bigcup_{k=0}^{2 n}\left(\left\{x_{k}\right\}+2 \pi \mathbb{Z}\right)$. From (3.16) and (1.22) it follows for all $x_{k}, k=0, \ldots, 2 n$, that

$$
\begin{align*}
p(x) & =\frac{1}{2 n+1} \sum_{k=0}^{2 n} p_{k} \frac{\sin \frac{(2 n+1)\left(x-x_{k}\right)}{2}}{\sin \frac{x-x_{k}}{2}}=\frac{\sin \left(n+\frac{1}{2}\right) x}{2 n+1} \sum_{k=0}^{2 n}(-1)^{k} p_{k} \frac{1}{\sin \frac{x-x_{k}}{2}} \\
& =\frac{\sin \left(n+\frac{1}{2}\right) x}{2 n+1} \sum_{k=0}^{2 n}(-1)^{k} p_{k} \operatorname{cosec} \frac{x-x_{k}}{2} . \tag{3.23}
\end{align*}
$$

Especially for $p=1$ we obtain

$$
\begin{equation*}
1=\frac{\sin \left(n+\frac{1}{2}\right) x}{2 n+1} \sum_{k=0}^{2 n}(-1)^{k} \operatorname{cosec} \frac{x-x_{k}}{2} \tag{3.24}
\end{equation*}
$$

Dividing (3.23) by (3.24) and canceling the common factor, we find the first barycentric formula.
2. For even $N=2 n$, we consider $x \in \mathbb{R} \backslash \bigcup_{k=0}^{2 n-1}\left(\left\{x_{k}^{*}\right\}+2 \pi \mathbb{Z}\right)$. By (1.22) the modified nth Dirichlet kernel can be written in the form

$$
D_{n}^{*}(x)=D_{n}(x)-\cos (n x)=\frac{\sin \left(n+\frac{1}{2}\right) x}{\sin \frac{x}{2}}-\cos (n x)=\sin (n x) \cot \frac{x}{2}
$$

Then from (3.22) it follows that

$$
\begin{equation*}
p^{*}(x)=\frac{\sin (n x)}{2 n} \sum_{k=0}^{2 n-1}(-1)^{k} p_{k}^{*} \cot \frac{x-x_{k}^{*}}{2} \tag{3.25}
\end{equation*}
$$

Especially for $p^{*}=1$ we receive

$$
\begin{equation*}
1=\frac{\sin (n x)}{2 n} \sum_{k=0}^{2 n-1}(-1)^{k} \cot \frac{x-x_{k}^{*}}{2} \tag{3.26}
\end{equation*}
$$

Dividing (3.25) by (3.26) and canceling the common factor, we get the second barycentric formula.
For an efficient numerical realization of these barycentric formulas, one can apply the fast summation technique presented in Sect. 7.5.

The results of the four problems presented in (3.3), (3.11), (3.12), and (3.15) have almost the same structure and motivate the detailed study of the DFT in the next section. For fast algorithms for the DFT, we refer to Chap. 5.

3.2 Fourier Matrices and Discrete Fourier Transforms

In this section we present the main properties of Fourier matrices and discrete Fourier transforms.

3.2.1 Fourier Matrices

For fixed $N \in \mathbb{N}$, we consider the vectors $\mathbf{a}=\left(a_{j}\right)_{j=0}^{N-1}$ and $\mathbf{b}=\left(b_{j}\right)_{j=0}^{N-1}$ with components $a_{j}, b_{j} \in \mathbb{C}$. As usual, the inner product and the Euclidean norm in the
vector space \mathbb{C}^{N} are defined by

$$
\langle\mathbf{a}, \mathbf{b}\rangle:=\mathbf{a}^{\top} \overline{\mathbf{b}}=\sum_{j=0}^{N-1} a_{j} \bar{b}_{j}, \quad\|\mathbf{a}\|_{2}:=\sqrt{\sum_{j=0}^{N-1}\left|a_{j}\right|^{2}} .
$$

Lemma 3.10 Let $N \in \mathbb{N}$ be given and $w_{n}:=\mathrm{e}^{-2 \pi \mathrm{i} / N}$. Then the set of the exponential vectors $\mathbf{e}_{k}:=\left(w_{N}^{j k}\right)_{j=0}^{N-1}, k=0, \ldots, N-1$, forms an orthogonal basis of \mathbb{C}^{N}, where $\left\|\mathbf{e}_{k}\right\|_{2}=\sqrt{N}$ for each $k=0, \ldots, N-1$. Any $\mathbf{a} \in \mathbb{C}^{N}$ can be represented in the form

$$
\begin{equation*}
\mathbf{a}=\frac{1}{N} \sum_{k=0}^{N-1}\left\langle\mathbf{a}, \mathbf{e}_{k}\right\rangle \mathbf{e}_{k} \tag{3.27}
\end{equation*}
$$

The set of complex conjugate exponential vectors $\overline{\mathbf{e}}_{k}=\left(w_{N}^{-j k}\right)_{j=0}^{N-1}, k=0, \ldots, N-$ 1 , forms also an orthogonal basis of \mathbb{C}^{N}.

Proof For $k, \ell \in\{0, \ldots, N-1\}$, the inner product $\left\langle\mathbf{e}_{k}, \mathbf{e}_{\ell}\right\rangle$ can be calculated by Lemma 3.2 such that

$$
\left\langle\mathbf{e}_{k}, \mathbf{e}_{\ell}\right\rangle=\sum_{j=0}^{N-1} w_{N}^{(k-\ell) j}=N \delta_{(k-\ell) \bmod N} .
$$

Thus $\left\{\mathbf{e}_{k}: k=0, \ldots, N-1\right\}$ is an orthogonal basis of \mathbb{C}^{N}, because the N exponential vectors \mathbf{e}_{k} are linearly independent and $\operatorname{dim} \mathbb{C}^{N}=N$. Consequently, each vector $\mathbf{a} \in \mathbb{C}^{N}$ can be expressed in the form (3.27). Analogously, the vectors $\overline{\mathbf{e}}_{k}, k=0, \ldots, N-1$, form an orthogonal basis of \mathbb{C}^{N}.

The N-by- N Fourier matrix is defined by

$$
\mathbf{F}_{N}:=\left(w_{N}^{j k}\right)_{j, k=0}^{N-1}=\left(\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
1 & w_{N} & \ldots & w_{N}^{N-1} \\
\vdots & \vdots & & \vdots \\
1 & w_{N}^{N-1} & \ldots & w_{N}
\end{array}\right)
$$

Due to the properties of the primitive N th root of unity w_{N}, the Fourier matrix \mathbf{F}_{N} consists of only N distinct entries. Obviously, \mathbf{F}_{N} is symmetric, $\mathbf{F}_{N}=\mathbf{F}_{N}^{\top}$, but \mathbf{F}_{N} is not Hermitian for $N>2$. The columns of \mathbf{F}_{N} are the vectors \mathbf{e}_{k} of the orthogonal basis of \mathbb{C}^{N} such that by Lemma 3.10

$$
\begin{equation*}
\mathbf{F}_{N}^{\top} \overline{\mathbf{F}}_{N}=N \mathbf{I}_{N}, \tag{3.28}
\end{equation*}
$$

where \mathbf{I}_{N} denotes the N-by- N identity matrix. Hence the scaled Fourier matrix $\frac{1}{\sqrt{N}} \mathbf{F}_{N}$ is unitary.

The linear map from \mathbb{C}^{N} onto \mathbb{C}^{N}, which is represented as the matrix vector product

$$
\hat{\mathbf{a}}=\mathbf{F}_{N} \mathbf{a}=\left(\left\langle\mathbf{a}, \overline{\mathbf{e}}_{k}\right\rangle\right)_{k=0}^{N-1}, \quad \mathbf{a} \in \mathbb{C}^{N},
$$

is called discrete Fourier transform of length N and abbreviated by DFT(N). The transformed vector $\hat{\mathbf{a}}=\left(\hat{a}_{k}\right)_{k=0}^{N-1}$ is called the discrete Fourier transform (DFT) of $\mathbf{a}=\left(a_{j}\right)_{j=0}^{N-1}$ and we have

$$
\begin{equation*}
\hat{a}_{k}=\left\langle\mathbf{a}, \overline{\mathbf{e}}_{k}\right\rangle=\sum_{j=0}^{N-1} a_{j} w_{N}^{j k}, \quad k=0, \ldots, N-1 \tag{3.29}
\end{equation*}
$$

In practice, one says that the $\operatorname{DFT}(N)$ maps from time domain \mathbb{C}^{N} onto frequency domain \mathbb{C}^{N}.

The main importance of the DFT arises from the fact that there exist fast and numerically stable algorithms for its computation, see Chap. 5.

Example 3.11 For $N \in\{2,3,4\}$ we obtain the Fourier matrices

$$
\mathbf{F}_{2}=\left(\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right), \quad \mathbf{F}_{3}=\left(\begin{array}{rrr}
1 & 1 & 1 \\
1 & w_{3} & \bar{w}_{3} \\
1 & \bar{w}_{3} & w_{3}
\end{array}\right), \quad \mathbf{F}_{4}=\left(\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & -\mathrm{i} & -1 & \mathrm{i} \\
1 & -1 & 1 & -1 \\
1 & \mathrm{i} & -1 & -\mathrm{i}
\end{array}\right)
$$

with $w_{3}=-\frac{1}{2}-\frac{\sqrt{3}}{2}$ i. Figure 3.1 displays both real and imaginary part of the Fourier matrix \mathbf{F}_{16} and a plot of the second row of both below. In the grayscale images, white corresponds to the value 1 and black corresponds to -1 .

Remark 3.12 Let $N \in \mathbb{N}$ with $N>1$ be given. Obviously we can compute the values

$$
\begin{equation*}
\hat{a}_{k}=\sum_{j=0}^{N-1} a_{j} w_{N}^{j k} \tag{3.30}
\end{equation*}
$$

for all $k \in \mathbb{Z}$. From

$$
w_{N}^{j(k+N)}=w_{N}^{j k} \cdot 1=w_{N}^{j k}, \quad k \in \mathbb{Z},
$$

Fig. 3.1 Grayscale images of real and imaginary part of the Fourier matrix \mathbf{F}_{16} (top left and right) and the values of the corresponding second rows (bottom)
we observe that the resulting sequence $\left(\hat{a}_{k}\right)_{k \in \mathbb{Z}}$ is N-periodic. The same is true for the inverse $\operatorname{DFT}(N)$. For a given vector $\left(\hat{a}_{k}\right)_{k=0}^{N-1}$ the sequence $\left(a_{j}\right)_{j \in \mathbb{Z}}$ with

$$
a_{j}=\frac{1}{N} \sum_{k=0}^{N-1} \hat{a}_{k} w_{N}^{-j k}, \quad j \in \mathbb{Z}
$$

is an N-periodic sequence, since

$$
w_{N}^{-(j+N) k}=w_{N}^{-j k} \cdot 1=w_{N}^{-j k}, \quad j \in \mathbb{Z}
$$

Thus, the $\operatorname{DFT}(N)$ can be extended, mapping an N-periodic sequence $\left(a_{j}\right)_{j \in \mathbb{Z}}$ to an N-periodic sequence $\left(\hat{a}_{k}\right)_{k=0}^{N-1}$. A consequence of this property is the fact that the $\operatorname{DFT}(N)$ of even length N of a complex N-periodic sequence $\left(a_{j}\right)_{j \in \mathbb{Z}}$ can be formed
by any N-dimensional subvector of $\left(a_{j}\right)_{j \in \mathbb{Z}}$. For instance, if we choose $\left(a_{j}\right)_{j=-N / 2}^{N / 2-1}$, then we obtain the same transformed sequence, since

$$
\begin{aligned}
\sum_{j=-N / 2}^{N / 2-1} a_{j} w_{N}^{j k} & =\sum_{j=1}^{N / 2} a_{N-j} w_{N}^{(N-j) k}+\sum_{j=0}^{N / 2-1} a_{j} w_{N}^{j k} \\
& =\sum_{j=0}^{N-1} a_{j} w_{N}^{j k}, \quad k \in \mathbb{Z}
\end{aligned}
$$

Example 3.13 For given $N \in 2 \mathbb{N}$, we consider the vector $\mathbf{a}=\left(a_{j}\right)_{j=0}^{N-1}$ with

$$
a_{j}= \begin{cases}0 & j \in\left\{0, \frac{N}{2}\right\} \\ 1 & j=1, \ldots, \frac{N}{2}-1 \\ -1 & j=\frac{N}{2}+1, \ldots, N-1\end{cases}
$$

We determine the $\operatorname{DFT}(N)$ of a, i.e., $\hat{\mathbf{a}}=\left(\hat{a}_{k}\right)_{k=0}^{N-1}$. Obviously, we have $\hat{a}_{0}=0$. For $k \in\{1, \ldots, N-1\}$ we obtain

$$
\hat{a}_{k}=\sum_{j=1}^{N / 2-1} w_{N}^{j k}-\sum_{j=N / 2+1}^{N-1} w_{N}^{j k}=\left(1-(-1)^{k}\right) \sum_{j=1}^{N / 2-1} w_{N}^{j k}
$$

and hence $\hat{a}_{k}=0$ for even k. Using

$$
\sum_{j=1}^{N / 2-1} x^{j}=\frac{x-x^{N / 2}}{1-x}, \quad x \neq 1
$$

it follows for $x=w_{N}^{k}$ with odd k that

$$
\hat{a}_{k}=2 \frac{w_{N}^{k}-w_{N}^{k N / 2}}{1-w_{N}^{k}}=2 \frac{w_{N}^{k}+1}{1-w_{N}^{k}}=2 \frac{w_{2 N}^{k}+w_{2 N}^{-k}}{w_{2 N}^{-k}-w_{2 N}^{k}}=-2 \mathrm{i} \cot \frac{\pi k}{N} .
$$

Thus we receive

$$
\hat{a}_{k}= \begin{cases}0 & k=0,2, \ldots, N-2, \\ -2 \mathrm{i} \cot \frac{\pi k}{N} & k=1,3, \ldots, N-1\end{cases}
$$

Example 3.14 For given $N \in \mathbb{N} \backslash\{1\}$, we consider the vector $\mathbf{a}=\left(a_{j}\right)_{j=0}^{N-1}$ with

$$
a_{j}= \begin{cases}\frac{1}{2} & j=0, \\ \frac{j}{N} & j=1, \ldots, N-1\end{cases}
$$

Note that the related N-periodic sequence $\left(a_{j}\right)_{j \in \mathbb{Z}}$ with $a_{j}=a_{j \bmod N}, j \in \mathbb{Z}$, is a sawtooth sequence. Now we calculate the $\operatorname{DFT}(N)$ of \mathbf{a}, i.e., $\hat{\mathbf{a}}=\left(\hat{a}_{k}\right)_{k=0}^{N-1}$. Obviously, we have

$$
\hat{a}_{0}=\frac{1}{2}+\frac{1}{N} \sum_{j=1}^{N-1} j=\frac{1}{2}+\frac{N(N-1)}{2 N}=\frac{N}{2} .
$$

Using the sum formula

$$
\sum_{j=1}^{N-1} j x^{j}=-\frac{(N-1) x^{N}}{1-x}+\frac{x-x^{N}}{(1-x)^{2}}, \quad x \neq 1
$$

we obtain for $x=w_{N}^{k}$ with $k \in\{1, \ldots, N-1\}$ that

$$
\sum_{j=1}^{N-1} j w_{N}^{j k}=\frac{-(N-1)}{1-w_{N}^{k}}+\frac{w_{N}^{k}-1}{\left(1-w_{N}^{k}\right)^{2}}=-\frac{N}{1-w_{N}^{k}}
$$

and hence

$$
\hat{a}_{k}=\frac{1}{2}+\frac{1}{N} \sum_{j=1}^{N-1} j w_{N}^{j k}=\frac{1}{2}-\frac{1}{1-w_{N}^{k}}=-\frac{1+w_{N}^{k}}{2\left(1-w_{N}^{k}\right)}=\frac{\mathrm{i}}{2} \cot \frac{\pi k}{N} .
$$

Remark 3.15 In the literature, the Fourier matrix is not consistently defined. In particular, the normalization constants differ and one finds, for example, $\left(w_{N}^{-j k}\right)_{j, k=0}^{N-1}$, $\frac{1}{\sqrt{N}}\left(w_{N}^{j k}\right)_{j, k=0}^{N-1}, \frac{1}{N}\left(w_{N}^{j k}\right)_{j, k=0}^{N-1}$, and $\left(w_{N}^{j k}\right)_{j, k=1}^{N}$. Consequently, there exist different forms of the $\operatorname{DFT}(N)$. For the sake of clarity, we emphasize that the $\operatorname{DFT}(N)$ is differently defined in the respective package documentations. For instance, Mathematica uses the $\operatorname{DFT}(N)$ of the form

$$
\hat{a}_{k}=\frac{1}{\sqrt{N}} \sum_{j=1}^{N} a_{j} w_{N}^{-(j-1)(k-1)}, \quad k=1, \ldots, N
$$

In Matlab, the $\operatorname{DFT}(N)$ is defined by

$$
\hat{a}_{k+1}=\sum_{j=0}^{N-1} a_{j+1} w_{N}^{j k}, \quad k=0, \ldots, N-1
$$

In Maple, the definition of $\operatorname{DFT}(N)$ reads as follows:

$$
\hat{a}_{k}=\frac{1}{\sqrt{N}} \sum_{j=1}^{N} a_{j} w_{N}^{(j-1)(k-1)}, \quad k=1, \ldots, N
$$

3.2.2 Properties of Fourier Matrices

Now we describe the main properties of Fourier matrices.
Theorem 3.16 The Fourier matrix \mathbf{F}_{N} is invertible and its inverse reads as follows:

$$
\begin{equation*}
\mathbf{F}_{N}^{-1}=\frac{1}{N} \overline{\mathbf{F}}_{N}=\frac{1}{N}\left(w_{N}^{-j k}\right)_{j, k=0}^{N-1} . \tag{3.31}
\end{equation*}
$$

The corresponding DFT is a bijective map on \mathbb{C}^{N}. The inverse DFT of length N is given by the matrix-vector product

$$
\mathbf{a}=\mathbf{F}_{N}^{-1} \hat{\mathbf{a}}=\frac{1}{N}\left(\left\langle\hat{\mathbf{a}}, \mathbf{e}_{k}\right\rangle\right)_{k=0}^{N-1}, \quad \hat{\mathbf{a}} \in \mathbb{C}^{N}
$$

such that

$$
\begin{equation*}
a_{j}=\frac{1}{N}\left\langle\hat{\mathbf{a}}, \mathbf{e}_{k}\right\rangle=\frac{1}{N} \sum_{k=0}^{N-1} \hat{a}_{k} w_{N}^{-j k}, \quad j=0, \ldots, N-1 . \tag{3.32}
\end{equation*}
$$

Proof Relation (3.31) follows immediately from (3.28). Consequently, the DFT(N) is bijective on \mathbb{C}^{N}.

Lemma 3.17 The Fourier matrix \mathbf{F}_{N} satisfies

$$
\begin{equation*}
\mathbf{F}_{N}^{2}=N \mathbf{J}_{N}^{\prime}, \quad \mathbf{F}_{N}^{4}=N^{2} \mathbf{I}_{N}, \tag{3.33}
\end{equation*}
$$

with the flip matrix

$$
\mathbf{J}_{N}^{\prime}:=\left(\delta_{(j+k) \bmod N}\right)_{j, k=0}^{N-1}=\left(\begin{array}{lll}
1 & & \\
& & 1 \\
& & . \\
& . & \\
& 1 &
\end{array}\right)
$$

Further we have

$$
\begin{equation*}
\mathbf{F}_{N}^{-1}=\frac{1}{N} \mathbf{J}_{N}^{\prime} \mathbf{F}_{N}=\frac{1}{N} \mathbf{F}_{N} \mathbf{J}_{N}^{\prime} \tag{3.34}
\end{equation*}
$$

Proof Let $\mathbf{F}_{N}^{2}=\left(c_{j, \ell}\right)_{j, \ell=0}^{N-1}$. Using Lemma 3.2, we find

$$
c_{j, \ell}=\sum_{k=0}^{N-1} w_{N}^{j k} w_{N}^{k \ell}=\sum_{k=0}^{N-1} w_{N}^{(j+\ell) k}=N \delta_{(j+\ell) \bmod N}
$$

and hence $\mathbf{F}_{N}^{2}=N \mathbf{J}_{N}^{\prime}$. From $\left(\mathbf{J}_{N}^{\prime}\right)^{2}=\mathbf{I}_{N}$ it follows that

$$
\mathbf{F}_{N}^{4}=\mathbf{F}_{N}^{2} \mathbf{F}_{N}^{2}=\left(N \mathbf{J}_{N}^{\prime}\right)\left(N \mathbf{J}_{N}^{\prime}\right)=N^{2}\left(\mathbf{J}_{N}^{\prime}\right)^{2}=N^{2} \mathbf{I}_{N}
$$

By $N \mathbf{F}_{N} \mathbf{J}_{N}^{\prime}=N \mathbf{J}_{N}^{\prime} \mathbf{F}_{N}=\mathbf{F}_{N}^{3}$ and $\mathbf{F}_{N}^{4}=N^{2} \mathbf{I}_{N}$ we finally obtain

$$
\mathbf{F}_{N}^{-1}=\frac{1}{N^{2}} \mathbf{F}_{N}^{3}=\frac{1}{N} \mathbf{F}_{N} \mathbf{J}_{N}^{\prime}=\frac{1}{N} \mathbf{J}_{N}^{\prime} \mathbf{F}_{N}
$$

This completes the proof.
Using (3.34), the inverse $\operatorname{DFT}(N)$ can be computed by the same algorithm as the $\mathrm{DFT}(N)$ employing a reordering and a scaling.
Remark 3.18 The application of the flip matrix \mathbf{J}_{N}^{\prime} to a vector $\mathbf{a}=\left(a_{k}\right)_{k=0}^{N-1}$ provides the vector

$$
\mathbf{J}_{N}^{\prime} \mathbf{a}=\left(a_{(-j) \bmod N}\right)_{j=0}^{N-1}=\left(a_{0}, a_{N-1}, \ldots, a_{1}\right)^{\top}
$$

i.e., the components of a are "flipped".

Now we want to study the spectral properties of the Fourier matrix in a more detailed manner. For that purpose, let the counter-identity matrix \mathbf{J}_{N} be defined by

$$
\mathbf{J}_{N}:=\left(\delta_{(j+k+1) \bmod N}\right)_{j, k=0}^{N-1}=\left(\begin{array}{ll}
& \\
. & \\
1
\end{array}\right)
$$

having nonzero entries 1 only on the main counter-diagonal. Then $\mathbf{J}_{N} \mathbf{a}$ provides the reversed vector

$$
\mathbf{J}_{N} \mathbf{a}=\left(a_{(-j-1) \bmod N}\right)_{j=0}^{N-1}=\left(a_{N-1}, a_{N-2}, \ldots, a_{1}, a_{0}\right)^{\top}
$$

First we obtain the following result about the eigenvalues of \mathbf{F}_{N}.
Lemma 3.19 For $N \in \mathbb{N} \backslash\{1\}$, the Fourier matrix \mathbf{F}_{N} possesses at most the four distinct eigenvalues $\sqrt{N},-\sqrt{N},-\mathrm{i} \sqrt{N}$, or $\mathrm{i} \sqrt{N}$.

Proof Let $\lambda \in \mathbb{C}$ be an eigenvalue of \mathbf{F}_{N} with the corresponding eigenvector $\mathbf{a} \in$ \mathbb{C}^{N}, i.e., $\mathbf{F}_{N} \mathbf{a}=\lambda \mathbf{a}, \mathbf{a} \neq \mathbf{0}$. Hence by (3.33) we obtain $N^{2} \mathbf{a}=\mathbf{F}_{N}^{4} \mathbf{a}=\lambda^{4} \mathbf{a}$ such
that $\lambda^{4}-N^{2}=0$. Hence possible eigenvalues of \mathbf{F}_{N} are $\sqrt{N},-\sqrt{N},-\mathrm{i} \sqrt{N}$, or i \sqrt{N}.

Now, we want to determine the exact multiplicities of the distinct eigenvalues of the Fourier matrix \mathbf{F}_{N}. We start by considering the characteristic polynomial of the matrix \mathbf{F}_{N}^{2}.

Lemma 3.20 For $N \in \mathbb{N}$ with $N \geq 4$ we have

$$
\operatorname{det}\left(\lambda \mathbf{I}_{N}-\mathbf{F}_{N}^{2}\right)= \begin{cases}(\lambda-N)^{(N+2) / 2}(\lambda+N)^{(N-2) / 2} & N \text { even }, \\ (\lambda-N)^{(N+1) / 2}(\lambda+N)^{(N-1) / 2} & N \text { odd } .\end{cases}
$$

Proof

1. For $n \in \mathbb{N}$ we consider the matrix $\mathbf{T}_{n}(\lambda):=\lambda \mathbf{I}_{n}-N \mathbf{J}_{n}$. For even n, the matrix is of the form

$$
\mathbf{T}_{n}(\lambda)=\left(\begin{array}{cccccc}
\lambda & & & & & -N \\
& \ddots & & & . & \\
& & \lambda & -N & & \\
& & -N & \lambda & & \\
& . & & & \ddots & \\
-N & & & & & \lambda
\end{array}\right) .
$$

We show for even n by induction that

$$
\begin{equation*}
\operatorname{det} \mathbf{T}_{n}(\lambda)=(\lambda-N)^{n / 2}(\lambda+N)^{n / 2} \tag{3.35}
\end{equation*}
$$

Indeed, for $n=2$ we have

$$
\operatorname{det} \mathbf{T}_{2}(\lambda)=\operatorname{det}\left(\begin{array}{cc}
\lambda & -N \\
-N & \lambda
\end{array}\right)=(\lambda-N)(\lambda+N)
$$

Assume now that (3.35) is true for an even $n \in \mathbb{N}$. Expanding det $\mathbf{T}_{n+2}(\lambda)$ with respect to the 0 -th column, we obtain

$$
\left.\begin{array}{rl}
\operatorname{det} \mathbf{T}_{n+2}(\lambda) & =\lambda \operatorname{det}\left(\begin{array}{ll}
\mathbf{T}_{n}(\lambda) & \\
& \lambda
\end{array}\right)+N \operatorname{det}\left(\mathbf{T}_{n}(\lambda)\right.
\end{array}\right)
$$

2. By (3.33) we obtain

$$
\operatorname{det}\left(\lambda \mathbf{I}_{N}-\mathbf{F}_{N}^{2}\right)=\operatorname{det}\left(\lambda \mathbf{I}_{N}-N \mathbf{J}_{N}^{\prime}\right)=\operatorname{det}\left(\begin{array}{cc}
\lambda-N & \\
& T_{N-1}(\lambda)
\end{array}\right)
$$

For odd N, we find

$$
\operatorname{det}\left(\lambda \mathbf{I}_{N}-N \mathbf{J}_{N}^{\prime}\right)=(\lambda-N) \operatorname{det} T_{N-1}(\lambda)=(\lambda-N)^{(N+1) / 2}(\lambda+N)^{(N-1) / 2}
$$

For even N we expand $T_{N-1}(\lambda)$ with respect to the $\frac{(N-1)}{2}$-th column that contains only one nonzero value $\lambda-N$ in the center. We obtain

$$
\operatorname{det}\left(\lambda \mathbf{I}_{N}-N \mathbf{J}_{N}^{\prime}\right)=(\lambda-N)^{2} \operatorname{det} T_{N-2}(\lambda)=(\lambda-N)^{(N+2) / 2}(\lambda+N)^{(N-2) / 2}
$$

This completes the proof.
Since $\operatorname{det}\left(\lambda \mathbf{I}_{N}-\mathbf{F}_{N}^{2}\right)$ is the characteristic polynomial of \mathbf{F}_{N}^{2}, we can conclude already the multiplicities of the eigenvalues of \mathbf{F}_{N}^{2}. We denote the multiplicities of the eigenvalues $\sqrt{N},-\sqrt{N},-\mathrm{i} \sqrt{N}$, and $\mathrm{i} \sqrt{N}$ of \mathbf{F}_{N} by m_{1}, m_{2}, m_{3}, and m_{4}. Thus the eigenvalue N of \mathbf{F}_{N}^{2} possesses the multiplicity $m_{1}+m_{2}$ and the eigenvalue $-N$ has the multiplicity $m_{3}+m_{4}$. Lemma 3.20 implies

$$
\begin{align*}
m_{1}+m_{2} & = \begin{cases}(N+2) / 2 & N \text { even } \\
(N+1) / 2 & N \text { odd },\end{cases} \tag{3.36}\\
m_{3}+m_{4} & = \begin{cases}(N-2) / 2 & N \text { even }, \\
(N-1) / 2 & N \text { odd }\end{cases} \tag{3.37}
\end{align*}
$$

In order to deduce m_{1}, m_{2}, m_{3}, and m_{4}, we also consider the trace and the determinant of \mathbf{F}_{N}. We recall that the trace of a square matrix $\mathbf{A}_{N}=\left(a_{j, k}\right)_{j, k=0}^{N-1} \in$ $\mathbb{C}^{N \times N}$ is equal to the sum of its eigenvalues and that the determinant $\operatorname{det} \mathbf{A}_{N}$ is the product of its eigenvalues, i.e.,

$$
\begin{equation*}
\operatorname{tr} \mathbf{A}_{N}=\sum_{j=0}^{N-1} a_{j, j}=\sum_{j=0}^{N-1} \lambda_{j}, \quad \operatorname{det} \mathbf{A}_{N}=\prod_{j=0}^{N-1} \lambda_{j} \tag{3.38}
\end{equation*}
$$

For the Fourier matrix \mathbf{F}_{N} we obtain

$$
\begin{equation*}
\operatorname{tr} \mathbf{F}_{N}=\sqrt{N}\left(m_{1}-m_{2}\right)+\mathrm{i} \sqrt{N}\left(m_{4}-m_{3}\right) . \tag{3.39}
\end{equation*}
$$

Now we calculate the trace of \mathbf{F}_{N},

$$
\operatorname{tr} \mathbf{F}_{N}=\sum_{j=0}^{N-1} \mathrm{e}^{-2 \pi \mathrm{i} j^{2} / N}
$$

The above sum is called quadratic Gauss sum. The following computation of the quadratic Gauss sum is based on the ideas of Dirichlet and is a nice application of 1-periodic Fourier series.

Lemma 3.21 For $N \in \mathbb{N} \backslash\{1\}$, we have

$$
\begin{equation*}
\operatorname{tr} \mathbf{F}_{N}=\sqrt{N}\left(1+\mathrm{i}^{N}\right)(1-\mathrm{i}) . \tag{3.40}
\end{equation*}
$$

Proof

1. We consider the 1 -periodic function h, which is given on $[0,1)$ by

$$
h(x):=\sum_{j=0}^{N-1} \mathrm{e}^{-2 \pi \mathrm{i}(x+j)^{2} / N}, \quad x \in[0,1)
$$

Then we obtain

$$
\begin{aligned}
\frac{1}{2}(h(0+0)+h(0-0)) & =\frac{1}{2}(h(0+0)+h(1-0)) \\
& =\frac{1}{2} \sum_{j=0}^{N-1}\left(\mathrm{e}^{-2 \pi \mathrm{i} j^{2} / N}+\mathrm{e}^{-2 \pi \mathrm{i}(j+1)^{2} / N}\right) \\
& =\frac{1}{2}+\sum_{j=1}^{N-1} \mathrm{e}^{-2 \pi \mathrm{i} j^{2} / N}+\frac{1}{2}=\operatorname{tr} \mathbf{F}_{N}
\end{aligned}
$$

The function h is piecewise continuously differentiable and can be represented by its 1-periodic Fourier series

$$
h(x)=\sum_{k \in \mathbb{Z}} c_{k}^{(1)}(h) \mathrm{e}^{2 \pi \mathrm{i} k x}
$$

By Theorem 1.34 of Dirichlet-Jordan, this Fourier series converges at the point $x=0$ to

$$
\sum_{k \in \mathbb{Z}} c_{k}^{(1)}(h)=\frac{1}{2}(h(0+0)+h(0-0))=\operatorname{tr} \mathbf{F}_{N}
$$

2. Now we calculate the Fourier coefficients

$$
\begin{aligned}
c_{k}^{(1)}(h) & =\sum_{j=0}^{N-1} \int_{0}^{1} \mathrm{e}^{-2 \pi \mathrm{i}(u+j)^{2} / N} \mathrm{e}^{-2 \pi \mathrm{i} k u} \mathrm{~d} u=\int_{0}^{N} \mathrm{e}^{-2 \pi \mathrm{i} y^{2} / N} \mathrm{e}^{-2 \pi \mathrm{i} k y} \mathrm{~d} y \\
& =\mathrm{e}^{\pi \mathrm{i} N k^{2} / 2} \int_{0}^{N} \mathrm{e}^{-2 \pi \mathrm{i}(y+k N / 2)^{2} / N} \mathrm{~d} y
\end{aligned}
$$

Thus we obtain for even $k=2 r, r \in \mathbb{Z}$,

$$
c_{2 r}^{(1)}(h)=\int_{0}^{N} \mathrm{e}^{-2 \pi \mathrm{i}(y+r N)^{2} / N} \mathrm{~d} y,
$$

and for odd $k=2 r+1, r \in \mathbb{Z}$,

$$
c_{2 r+1}^{(1)}(h)=\mathrm{e}^{\pi \mathrm{i} N / 2} \int_{0}^{N} \mathrm{e}^{-2 \pi \mathrm{i}(y+r N+N / 2)^{2} / N} \mathrm{~d} y=\mathrm{i}^{N} \int_{N / 2}^{3 N / 2} \mathrm{e}^{-2 \pi \mathrm{i}(y+r N)^{2} / N} \mathrm{~d} y .
$$

Consequently,

$$
\begin{aligned}
\operatorname{tr} \mathbf{F}_{N} & =\sum_{r \in \mathbb{Z}} c_{2 r}^{(1)}(h)+\sum_{r \in \mathbb{Z}} c_{2 r+1}^{(1)}(h) \\
& =\left(1+\mathrm{i}^{N}\right) \int_{\mathbb{R}} \mathrm{e}^{-2 \pi \mathrm{i} y^{2} / N} \mathrm{~d} y=2\left(1+\mathrm{i}^{N}\right) \int_{0}^{\infty} \mathrm{e}^{-2 \pi \mathrm{i} y^{2} / N} \mathrm{~d} y \\
& =\left(1+\mathrm{i}^{N}\right) \sqrt{\frac{2 N}{\pi}} \int_{0}^{\infty} \mathrm{e}^{-\mathrm{i} v^{2}} \mathrm{~d} v \\
& =\left(1+\mathrm{i}^{N}\right) \sqrt{\frac{2 N}{\pi}}\left(\int_{0}^{\infty} \cos v^{2} \mathrm{~d} v-\mathrm{i} \int_{0}^{\infty} \sin v^{2} \mathrm{~d} v\right)
\end{aligned}
$$

3. The two integrals

$$
\int_{0}^{\infty} \cos v^{2} \mathrm{~d} v, \quad \int_{0}^{\infty} \sin v^{2} \mathrm{~d} v
$$

can be computed by Cauchy's integral theorem. One obtains

$$
\int_{0}^{\infty} \cos v^{2} \mathrm{~d} v=\int_{0}^{\infty} \sin v^{2} \mathrm{~d} v=\frac{1}{2} \sqrt{\frac{\pi}{2}}
$$

Hence it follows that

$$
\operatorname{tr} \mathbf{F}_{N}=\left(1+\mathrm{i}^{N}\right) \sqrt{\frac{2 N}{\pi}} \frac{1}{2}(1-\mathrm{i}) \sqrt{\frac{\pi}{2}}=\sqrt{N}\left(1+\mathrm{i}^{N}\right)(1-\mathrm{i}) .
$$

This completes the proof.
Theorem 3.22 For $N \in \mathbb{N}$ with $N>4$, the Fourier matrix \mathbf{F}_{N} has four distinct eigenvalues $\sqrt{N},-\sqrt{N},-\mathrm{i} \sqrt{N}$, and $\mathrm{i} \sqrt{N}$ with corresponding multiplicities m_{1}, m_{2}, m_{3}, and m_{4} given in the table:

N	m_{1}	m_{2}	m_{3}	m_{4}	$\operatorname{det} \mathbf{F}_{N}$
$4 n$	$n+1$	n	n	$n-1$	$\mathrm{i}(-1)^{n+1} N^{N / 2}$
$4 n+1$	$n+1$	n	n	n	$(-1)^{n} N^{N / 2}$
$4 n+2$	$n+1$	$n+1$	n	n	$(-1)^{n+1} N^{N / 2}$
$4 n+3$	$n+1$	$n+1$	$n+1$	n	$\mathrm{i}(-1)^{n} N^{N / 2}$

Proof Each integer $N>4$ can be represented in the form $N=4 n+k$ with $n \in \mathbb{N}$ and $k \in\{0,1,2,3\}$. From (3.39) and (3.40),

$$
\begin{aligned}
\operatorname{tr} \mathbf{F}_{N} & =\sqrt{N}\left(1+\mathrm{i}^{N}\right)(1-\mathrm{i})=\frac{\sqrt{N}}{2}\left(1-\mathrm{i}+\mathrm{i}^{N}-\mathrm{i}^{N+1}\right) \\
& =\sqrt{N}\left(m_{1}-m_{2}\right)+\mathrm{i} \sqrt{N}\left(m_{4}-m_{3}\right)
\end{aligned}
$$

it follows that

$$
\begin{align*}
& m_{1}-m_{2}= \begin{cases}1 & N=4 n \\
1 & N=4 n+1 \\
0 & N=4 n+2 \\
0 & N=4 n+3\end{cases} \tag{3.41}\\
& m_{4}-m_{3}=\left\{\begin{array}{cl}
-1 & N=4 n \\
0 & N=4 n+1 \\
0 & N=4 n+2 \\
-1 & N=4 n+3
\end{array}\right. \tag{3.42}
\end{align*}
$$

Using the linear equations (3.36) and (3.41) we compute m_{1} and m_{2}. Analogously we determine m_{3} and m_{4} by solving the linear equations (3.37) and (3.42). Finally, we conclude

$$
\operatorname{det} \mathbf{F}_{N}=(-1)^{m_{2}+m_{3}} \mathrm{i}^{m_{3}+m_{4}} N^{N / 2}
$$

as the product of all N eigenvalues of \mathbf{F}_{N}.
Remark 3.23 For the computation of the eigenvectors of the Fourier matrix \mathbf{F}_{N}, we refer to [239, 247].

3.2.3 DFT and Cyclic Convolutions

The cyclic convolution of the vectors $\mathbf{a}=\left(a_{k}\right)_{k=0}^{N-1}, \mathbf{b}=\left(b_{k}\right)_{k=0}^{N-1} \in \mathbb{C}^{N}$ is defined as the vector $\mathbf{c}=\left(c_{n}\right)_{n=0}^{N-1}:=\mathbf{a} * \mathbf{b} \in \mathbb{C}^{N}$ with the components
$c_{n}=\sum_{k=0}^{N-1} a_{k} b_{(n-k) \bmod N}=\sum_{k=0}^{n} a_{k} b_{n-k}+\sum_{k=n+1}^{N-1} a_{k} b_{N+n-k}, \quad n=0, \ldots, N-1$.

The cyclic convolution in \mathbb{C}^{N} is a commutative, associative, and distributive operation with the unity $\mathbf{b}_{0}=\left(\delta_{j \bmod N}\right)_{j=0}^{N-1}=(1,0, \ldots, 0)^{\top}$ which is the socalled pulse vector.

The forward-shift matrix \mathbf{V}_{N} is defined by

$$
\mathbf{V}_{N}:=\left(\delta_{(j-k-1) \bmod N}\right)_{j, k=0}^{N-1}=\left(\begin{array}{cccc}
1 & & & 1 \\
& \ddots & \\
& & 1
\end{array}\right)
$$

The application of \mathbf{V}_{N} to a vector $\mathbf{a}=\left(a_{k}\right)_{k=0}^{N-1}$ provides the forward-shifted vector

$$
\mathbf{V}_{N} \mathbf{a}=\left(a_{(j-1) \bmod N}\right)_{j=0}^{N-1}=\left(a_{N-1}, a_{0}, a_{1}, \ldots, a_{N-2}\right)^{\top}
$$

Hence we obtain

$$
\mathbf{V}_{N}^{2}:=\left(\delta_{(j-k-2) \bmod N}\right)_{j, k=0}^{N-1}=\left(\begin{array}{cccc}
& & & 1 \\
& & & 1 \\
1 & & & \\
& \ddots & & \\
& & 1
\end{array}\right)
$$

and

$$
\mathbf{V}_{N}^{2} \mathbf{a}=\left(a_{(j-2) \bmod N}\right)_{j=0}^{N-1}=\left(a_{N-2}, a_{N-1}, a_{0}, \ldots, a_{N-3}\right)^{\top}
$$

Further we have $\mathbf{V}_{N}^{N}=\mathbf{I}_{N}$ and

$$
\mathbf{V}_{N}^{\top}=\mathbf{V}_{N}^{-1}=\mathbf{V}_{N}^{N-1}=\left(\begin{array}{ccc}
1 & & \\
& \ddots & \\
& & 1 \\
1 & &
\end{array}\right)
$$

which is called backward-shift matrix, since

$$
\mathbf{V}_{N}^{-1} \mathbf{a}=\left(a_{(j+1) \bmod N}\right)_{j=0}^{N-1}=\left(a_{1}, a_{2}, \ldots, a_{N-1}, a_{0}\right)^{\top}
$$

is the backward-shifted vector of \mathbf{a}.
The matrix $\mathbf{I}_{N}-\mathbf{V}_{N}$ is the cyclic difference matrix, since

$$
\left(\mathbf{I}_{N}-\mathbf{V}_{N}\right) \mathbf{a}=\left(a_{j}-a_{(j-1) \bmod N}\right)_{j=0}^{N-1}=\left(a_{0}-a_{N-1}, a_{1}-a_{0}, \ldots, a_{N-1}-a_{N-2}\right)^{\top}
$$

We observe that

$$
\mathbf{I}_{N}+\mathbf{V}_{N}+\mathbf{V}_{N}^{2}+\ldots+\mathbf{V}_{N}^{N-1}=(1)_{j, k=0}^{N-1}
$$

We want to characterize all linear maps \mathbf{H}_{N} from \mathbb{C}^{N} to \mathbb{C}^{N} which are shiftinvariant, i.e., satisfy

$$
\mathbf{H}_{N}\left(\mathbf{V}_{N} \mathbf{a}\right)=\mathbf{V}_{N}\left(\mathbf{H}_{N} \mathbf{a}\right)
$$

for all $\mathbf{a} \in \mathbf{C}^{N}$. Thus we have $\mathbf{H}_{N} \mathbf{V}_{N}^{k}=\mathbf{V}_{N}^{k} \mathbf{H}_{N}, k=0, \ldots, N-1$. Shift-invariant maps play an important role for signal filtering. We show that a shift-invariant map \mathbf{H}_{N} can be represented by the cyclic convolution.
Lemma 3.24 Each shift-invariant, linear map \mathbf{H}_{N} from \mathbb{C}^{N} to \mathbb{C}^{N} can be represented in the form

$$
\mathbf{H}_{N} \mathbf{a}=\mathbf{a} * \mathbf{h}, \quad \mathbf{a} \in \mathbb{C}^{N}
$$

where $\mathbf{h}:=\mathbf{H}_{N} \mathbf{b}_{0}$ is the impulse response vector of the pulse vector \mathbf{b}_{0}.
Proof Let $\mathbf{b}_{k}:=\left(\delta_{(j-k) \bmod N}\right)_{j=0}^{N-1}, k=0, \ldots, N-1$, be the standard basis vectors of \mathbb{C}^{N}. Then $\mathbf{b}_{k}=\mathbf{V}_{N}^{k} \mathbf{b}_{0}, k=0, \ldots, N-1$. An arbitrary vector $\mathbf{a}=\left(a_{k}\right)_{k=0}^{N-1} \in \mathbb{C}^{N}$ can be represented in the standard basis as

$$
\mathbf{a}=\sum_{k=0}^{N-1} a_{k} \mathbf{b}_{k}=\sum_{k=0}^{N-1} a_{k} \mathbf{V}_{N}^{k} \mathbf{b}_{0}
$$

Applying the linear, shift-invariant $\operatorname{map} \mathbf{H}_{N}$ to this vector a, we get

$$
\begin{aligned}
\mathbf{H}_{N} \mathbf{a} & =\sum_{k=0}^{N-1} a_{k} \mathbf{H}_{N}\left(\mathbf{V}_{N}^{k} \mathbf{b}_{0}\right)=\sum_{k=0}^{N-1} a_{k} \mathbf{V}_{N}^{k}\left(\mathbf{H}_{N} \mathbf{b}_{0}\right)=\sum_{k=0}^{N-1} a_{k} \mathbf{V}_{N}^{k} \mathbf{h} \\
& =\left(\mathbf{h}\left|\mathbf{V}_{N} \mathbf{h}\right| \ldots \mid \mathbf{V}_{N}^{N-1} \mathbf{h}\right) \mathbf{a}
\end{aligned}
$$

that means

$$
\begin{aligned}
\mathbf{H}_{N} \mathbf{a} & =\left(\begin{array}{ccccc}
h_{0} & h_{N-1} & \ldots & h_{2} & h_{1} \\
h_{1} & h_{0} & \ldots & h_{3} & h_{2} \\
\vdots & \vdots & & \vdots & \vdots \\
h_{N-1} & h_{N-2} & \ldots & h_{1} & h_{0}
\end{array}\right)\left(\begin{array}{c}
a_{0} \\
a_{1} \\
\vdots \\
a_{N-1}
\end{array}\right) \\
& =\left(\sum_{k=0}^{N-1} a_{k} h_{(n-k) \bmod N}\right)_{n=0}^{N-1}=\mathbf{a} * \mathbf{h} .
\end{aligned}
$$

This completes the proof.

Now we present the basic properties of $\mathrm{DFT}(N)$ and start with an example.
Example 3.25 Let $\mathbf{b}_{k}=\left(\delta_{(j-k) \bmod N}\right)_{j=0}^{N-1}, k=0, \ldots, N-1$, be the standard basis vectors of \mathbb{C}^{N} and let $\mathbf{e}_{k}=\left(w_{N}^{j k}\right)_{j=0}^{N-1}, k=0, \ldots, N-1$, be the exponential vectors in Lemma 3.10 that form the columns of \mathbf{F}_{N}. Then we obtain for $k=0, \ldots, N-1$ that

$$
\mathbf{F}_{N} \mathbf{b}_{k}=\mathbf{e}_{k}, \quad \mathbf{F}_{N} \mathbf{e}_{k}=\mathbf{F}_{N}^{2} \mathbf{b}_{k}=N \mathbf{J}_{N}^{\prime} \mathbf{b}_{k}=N \mathbf{b}_{(-k) \bmod N}
$$

In particular, we observe that the sparse vectors \mathbf{b}_{k} are transformed into non-sparse vectors \mathbf{e}_{k}, since all components of \mathbf{e}_{k} are non-zero. Further we obtain that for all $k=0, \ldots, N-1$

$$
\mathbf{F}_{N} \mathbf{V}_{N} \mathbf{b}_{k}=\mathbf{F}_{N} \mathbf{b}_{(k+1) \bmod N}=\mathbf{e}_{(k+1) \bmod N}=\mathbf{M}_{N} \mathbf{F}_{N} \mathbf{b}_{k}
$$

where $\mathbf{M}_{N}:=\operatorname{diag} \mathbf{e}_{1}$ is the so-called modulation matrix which generates a modulation or frequency shift by the property $\mathbf{M}_{N} \mathbf{e}_{k}=\mathbf{e}_{(k+1) \bmod { }_{N} \text {. Consequently, }}^{\text {. }}$ we have

$$
\begin{equation*}
\mathbf{F}_{N} \mathbf{V}_{N}=\mathbf{M}_{N} \mathbf{F}_{N} \tag{3.43}
\end{equation*}
$$

and more generally $\mathbf{F}_{N} \mathbf{V}_{N}^{k}=\mathbf{M}_{N}^{k} \mathbf{F}_{N}, k=1, \ldots, N-1$. Transposing the last equation for $k=N-1$, we obtain

$$
\begin{equation*}
\mathbf{V}_{N}^{\top} \mathbf{F}_{N}=\mathbf{V}_{N}^{-1} \mathbf{F}_{N}=\mathbf{F}_{N} \mathbf{M}_{N}, \quad \mathbf{V}_{N} \mathbf{F}_{N}=\mathbf{F}_{N} \mathbf{M}_{N}^{-1} \tag{3.44}
\end{equation*}
$$

Theorem 3.26 (Properties of DFT(N)) The DFT(N) possesses the following properties:

1. Linearity: For all $\mathbf{a}, \mathbf{b} \in \mathbb{C}^{N}$ and $\alpha \in \mathbb{C}$ we have

$$
(\mathbf{a}+\mathbf{b})^{\wedge}=\hat{\mathbf{a}}+\hat{\mathbf{b}}, \quad(\alpha \mathbf{a})^{\wedge}=\alpha \hat{\mathbf{a}}
$$

2. Inversion: For all $\mathbf{a} \in \mathbb{C}^{N}$ we have

$$
\mathbf{a}=\mathbf{F}_{N}^{-1} \hat{\mathbf{a}}=\frac{1}{N} \overline{\mathbf{F}}_{N} \hat{\mathbf{a}}=\frac{1}{N} \mathbf{J}_{N}^{\prime} \mathbf{F}_{N} \hat{\mathbf{a}} .
$$

3. Flipping property: For all $\mathbf{a} \in \mathbb{C}^{N}$ we have

$$
\left(\mathbf{J}_{N}^{\prime} \mathbf{a}\right)^{\wedge}=\mathbf{J}_{N}^{\prime} \hat{\mathbf{a}}, \quad(\overline{\mathbf{a}})^{\wedge}=\mathbf{J}_{N}^{\prime} \overline{\hat{\mathbf{a}}} .
$$

4. Shifting in time and frequency domain: For all $\mathbf{a} \in \mathbb{C}^{N}$ we have

$$
\left(\mathbf{V}_{N} \mathbf{a}\right)^{\wedge}=\mathbf{M}_{N} \hat{\mathbf{a}}, \quad\left(\mathbf{M}_{N}^{-1} \mathbf{a}\right)^{\wedge}=\mathbf{V}_{N} \hat{\mathbf{a}}
$$

5. Cyclic convolution in time and frequency domain: For all $\mathbf{a}, \mathbf{b} \in \mathbb{C}^{N}$ we have

$$
(\mathbf{a} * \mathbf{b})^{\wedge}=\hat{\mathbf{a}} \circ \hat{\mathbf{b}}, \quad N(\mathbf{a} \circ \mathbf{b})^{\wedge}=\hat{\mathbf{a}} * \hat{\mathbf{b}},
$$

where $\mathbf{a} \circ \mathbf{b}:=\left(a_{k} b_{k}\right)_{k=0}^{N-1}$ denotes the componentwise product of the vectors $\mathbf{a}=\left(a_{k}\right)_{k=0}^{N-1}$ and $\mathbf{b}=\left(b_{k}\right)_{k=0}^{N-1}$.
6. Parseval equality: For all $\mathbf{a}, \mathbf{b} \in \mathbb{C}^{N}$ we have

$$
\frac{1}{N}\langle\hat{\mathbf{a}}, \hat{\mathbf{b}}\rangle=\langle\mathbf{a}, \mathbf{b}\rangle, \quad \frac{1}{N}\|\hat{\mathbf{a}}\|_{2}^{2}=\|\mathbf{a}\|_{2}^{2}
$$

7. Difference property in time and frequency domain: For all $\mathbf{a} \in \mathbb{C}^{N}$ we have

$$
\left(\left(\mathbf{I}_{N}-\mathbf{V}_{N}\right) \mathbf{a}\right)^{\wedge}=\left(\mathbf{I}_{N}-\mathbf{M}_{N}\right) \hat{\mathbf{a}}, \quad\left(\left(\mathbf{I}_{N}-\mathbf{M}_{N}^{-1}\right) \mathbf{a}\right)^{\wedge}=\left(\mathbf{I}_{N}-\mathbf{V}_{N}\right) \hat{\mathbf{a}}
$$

8. Permutation property: Let $p \in \mathbb{Z}$ and N be relatively prime. Assume that $q \in \mathbb{Z}$ satisfies the condition $(p q) \bmod N=1$ and that the $\operatorname{DFT}(N)$ of $\left(a_{j}\right)_{j=0}^{N-1} \in \mathbb{C}^{N}$ is equal to $\left(\hat{a}_{k}\right)_{k=0}^{N-1}$. Then the $\operatorname{DFT}(N)$ of the permuted vector $\left(a_{(p j) \bmod N}\right)_{j=0}^{N-1}$ is equal to the permuted vector $\left(\hat{a}_{(q k) \bmod N}\right)_{k=0}^{N-1}$.

Proof

1. The linearity follows from the definition of the $\mathrm{DFT}(N)$.
2. The second property is obtained from (3.31) and (3.34).
3. By (3.31) and (3.34) we have $\mathbf{F}_{N} \mathbf{J}_{N}^{\prime}=\mathbf{J}_{N}^{\prime} \mathbf{F}_{N}=\overline{\mathbf{F}}_{N}$ and hence

$$
\begin{aligned}
\left(\mathbf{J}_{N}^{\prime} \mathbf{a}\right)^{\wedge} & =\mathbf{F}_{N} \mathbf{J}_{N}^{\prime} \mathbf{a}=\mathbf{J}_{N}^{\prime} \mathbf{F}_{N} \mathbf{a}=\mathbf{J}_{N}^{\prime} \hat{\mathbf{a}} \\
(\overline{\mathbf{a}})^{\wedge} & =\mathbf{F}_{N} \overline{\mathbf{a}}=\overline{\overline{\mathbf{F}}_{N} \mathbf{a}}=\overline{\mathbf{J}_{N}^{\prime} \mathbf{F}_{N} \mathbf{a}}=\mathbf{J}_{N}^{\prime} \overline{\hat{\mathbf{a}}}
\end{aligned}
$$

4. From (3.43) and (3.44) it follows that

$$
\begin{aligned}
\left(\mathbf{V}_{N} \mathbf{a}\right)^{\wedge} & =\mathbf{F}_{N} \mathbf{V}_{N} \mathbf{a}=\mathbf{M}_{N} \mathbf{F}_{N} \mathbf{a}=\mathbf{M}_{N} \hat{\mathbf{a}} \\
\left(\mathbf{M}_{N}^{-1} \mathbf{a}\right)^{\wedge} & =\mathbf{F}_{N} \mathbf{M}_{N}^{-1} \mathbf{a}=\mathbf{V}_{N} \mathbf{F}_{N} \mathbf{a}=\mathbf{V}_{N} \hat{\mathbf{a}}
\end{aligned}
$$

5. Let $\mathbf{c}=\mathbf{a} * \mathbf{b}$ be the cyclic convolution of \mathbf{a} and \mathbf{b} with the components

$$
c_{j}=\sum_{n=0}^{N-1} a_{n} b_{(j-n) \bmod N}, \quad j=0, \ldots, N-1
$$

We calculate the components of $\hat{\mathbf{c}}=\left(\hat{c}_{k}\right)_{k=0}^{N-1}$ and obtain for $k=0, \ldots, N-1$

$$
\begin{aligned}
\hat{c}_{k} & =\sum_{j=0}^{N-1}\left(\sum_{n=0}^{N-1} a_{n} b_{(j-n) \bmod N}\right) w_{N}^{j k} \\
& =\sum_{n=0}^{N-1} a_{n} w_{N}^{n k}\left(\sum_{j=0}^{N-1} b_{(j-n) \bmod N} w_{N}^{((j-n) \bmod N) k}\right) \\
& =\left(\sum_{n=0}^{N-1} a_{n} w_{N}^{n k}\right) \hat{b}_{k}=\hat{a}_{k} \hat{b}_{k}
\end{aligned}
$$

Now let $\mathbf{c}=\mathbf{a} \circ \mathbf{b}=\left(a_{j} b_{j}\right)_{j=0}^{N-1}$. Using the second property, we get

$$
a_{j}=\frac{1}{N} \sum_{k=0}^{N-1} \hat{a}_{k} w_{N}^{-j k}, \quad b_{j}=\frac{1}{N} \sum_{\ell=0}^{N-1} \hat{b}_{\ell} w_{N}^{-j \ell}, \quad j=0, \ldots, N-1
$$

Thus we obtain that for $j=0, \ldots, N-1$

$$
\begin{aligned}
c_{j} & =a_{j} b_{j}=\frac{1}{N^{2}}\left(\sum_{k=0}^{N-1} \hat{a}_{k} w_{N}^{-j k}\right)\left(\sum_{\ell=0}^{N-1} \hat{b}_{\ell} w_{N}^{-j \ell}\right) \\
& =\frac{1}{N^{2}} \sum_{k=0}^{N-1} \sum_{\ell=0}^{N-1} \hat{a}_{k} \hat{b}_{\ell} w_{N}^{-j(k+\ell)} \\
& =\frac{1}{N^{2}} \sum_{n=0}^{N-1}\left(\sum_{k=0}^{N-1} \hat{a}_{k} \hat{b}_{(n-k) \bmod N}\right) w_{N}^{-j n},
\end{aligned}
$$

i.e., $\mathbf{c}=\frac{1}{N} \mathbf{F}_{N}^{-1}(\hat{\mathbf{a}} * \hat{\mathbf{b}})$ and hence $N \hat{\mathbf{c}}=\hat{\mathbf{a}} * \hat{\mathbf{b}}$.
6. For arbitrary $\mathbf{a}, \mathbf{b} \in \mathbb{C}^{N}$ we conclude

$$
\langle\hat{\mathbf{a}}, \hat{\mathbf{a}}\rangle=\mathbf{a}^{\top} \mathbf{F}_{N} \overline{\mathbf{F}}_{N} \overline{\mathbf{b}}=N \mathbf{a}^{\top} \overline{\mathbf{b}}=N\langle\mathbf{a}, \mathbf{b}\rangle .
$$

7. The difference properties follow directly from the shift properties.
8. Since $p \in \mathbb{Z}$ and N are relatively prime, the greatest common divisor of p and N is one. Then there exist $q, M \in \mathbb{Z}$ with $p q+M N=1$ (see [6, p. 21]). By the Euler-Fermat theorem (see [6, p. 114]) the (unique modulo N) solution of the linear congruence $p q \equiv 1(\bmod N)$ is given by $q \equiv p^{\varphi(N)-1}(\bmod N)$, where $\varphi(N)$ denotes the Euler totient function.

Now we compute the $\operatorname{DFT}(N)$ of the permuted vector $\left(a_{(p j) \bmod N}\right)_{j=0}^{N-1}$. Then the k th component of the transformed vector reads

$$
\begin{equation*}
\sum_{j=0}^{N-1} a_{(p j) \bmod N} w_{N}^{j k} \tag{3.45}
\end{equation*}
$$

The value (3.45) does not change, if the sum is reordered and the summation index $j=0, \ldots, N-1$ is replaced by $(q \ell) \bmod N$ with $\ell=0, \ldots, N-1$. Indeed, by $p q \equiv 1(\bmod N)$ and (3.4) we have

$$
\ell=(p q \ell) \bmod N=[((q \ell) \bmod N) p] \bmod N
$$

and furthermore

$$
w_{N}^{[(q \ell) \bmod N] k}=w_{N}^{q \ell k}=w_{N}^{\ell[(q k) \bmod N]}
$$

Thus we obtain

$$
\begin{aligned}
\sum_{j=0}^{N-1} a_{(p j) \bmod N} w_{N}^{j k} & =\sum_{\ell=0}^{N-1} a_{(p q \ell) \bmod N} w_{N}^{q \ell k} \\
& =\sum_{j=0}^{N-1} a_{\ell} w_{N}^{\ell[(q k) \bmod N]}=\hat{a}_{(q k) \bmod N}
\end{aligned}
$$

For example, in the special case $p=q=-1$, the flipped vector $\left(a_{(-j) \bmod N}\right)_{j=0}^{N-1}$ is transformed to the flipped vector $\left(\hat{a}_{(-k) \bmod N}\right)_{k=0}^{N-1}$.

Now we analyze the symmetry properties of $\operatorname{DFT}(N)$. A vector $\mathbf{a}=\left(a_{j}\right)_{j=0}^{N-1} \in \mathbb{C}^{N}$ is called even, if $\mathbf{a}=\mathbf{J}_{N}^{\prime} \mathbf{a}$, i.e. $a_{j}=a_{(N-j) \bmod N}$ for all $j=0, \ldots, N-1$, and it is called $o d d$, if $\mathbf{a}=-\mathbf{J}_{N}^{\prime} \mathbf{a}$, i.e. $a_{j}=-a_{(N-j) \bmod N}$ for all $j=0, \ldots, N-1$. For $N=6$ the vector $\left(a_{0}, a_{1}, a_{2}, a_{3}, a_{2}, a_{1}\right)^{\top}$ is even and $\left(0, a_{1}, a_{2}, 0,-a_{2},-a_{1}\right)^{\top}$ is odd.
Corollary 3.27 For $\mathbf{a} \in \mathbb{R}^{N}$ and $\hat{\mathbf{a}}=\mathbf{F}_{N} \mathbf{a}=\left(\hat{a}_{j}\right)_{j=0}^{N-1}$ we have

$$
\overline{\hat{\mathbf{a}}}=\mathbf{J}_{N}^{\prime} \hat{\mathbf{a}}
$$

i.e., $\overline{\hat{a}}_{j}=\hat{a}_{(N-j) \bmod N}, j=0, \ldots, N-1$. In other words, Re $\hat{\mathbf{a}}$ is even and $\operatorname{Im} \hat{\mathbf{a}}$ is odd.

Proof By $\mathbf{a}=\overline{\mathbf{a}} \in \mathbb{R}^{N}$ and $\overline{\mathbf{F}}_{N}=\mathbf{J}_{N}^{\prime} \mathbf{F}_{N}$ it follows that

$$
\mathbf{J}_{N}^{\prime} \hat{\mathbf{a}}=\mathbf{J}_{N}^{\prime} \mathbf{F}_{N} \mathbf{a}=\overline{\mathbf{F}}_{N} \mathbf{a}=\overline{\mathbf{F}}_{N} \overline{\mathbf{a}}=\overline{\hat{\mathbf{a}}} .
$$

For $\hat{\mathbf{a}}=\operatorname{Re} \hat{\mathbf{a}}+\mathrm{i} \operatorname{Im} \hat{\mathbf{a}}$ we obtain

$$
\overline{\hat{\mathbf{a}}}=\operatorname{Re} \hat{\mathbf{a}}-\mathrm{i} \operatorname{Im} \hat{\mathbf{a}}=\mathbf{J}_{N}^{\prime} \hat{\mathbf{a}}=\mathbf{J}_{N}^{\prime}(\operatorname{Re} \hat{\mathbf{a}})+\mathrm{i} \mathbf{J}_{N}^{\prime}(\operatorname{Im} \hat{\mathbf{a}})
$$

and hence $\operatorname{Re} \hat{\mathbf{a}}=\mathbf{J}_{N}^{\prime}(\operatorname{Re} \hat{\mathbf{a}})$ and $\operatorname{Im} \hat{\mathbf{a}}=-\mathbf{J}_{N}^{\prime}(\operatorname{Im} \hat{\mathbf{a}})$.
Corollary 3.28 If $\mathbf{a} \in \mathbb{C}^{N}$ is even/odd, then $\hat{\mathbf{a}}=\mathbf{F}_{N} \mathbf{a}$ is even/odd. If $\mathbf{a} \in \mathbb{R}^{N}$ is even, then $\hat{\mathbf{a}}=\operatorname{Re} \hat{\mathbf{a}} \in \mathbb{R}^{N}$ is even. If $\mathbf{a} \in \mathbb{R}^{N}$ is odd, then $\hat{\mathbf{a}}=\mathrm{i} \operatorname{Im} \hat{\mathbf{a}} \in \mathrm{i} \mathbb{R}^{N}$ is odd.

Proof From $\mathbf{a}= \pm \mathbf{J}_{N}^{\prime} \mathbf{a}$ it follows that

$$
\hat{\mathbf{a}}=\mathbf{F}_{N} \mathbf{a}= \pm \mathbf{F}_{N} \mathbf{J}_{N}^{\prime} \mathbf{a}= \pm \mathbf{J}_{N}^{\prime} \mathbf{F}_{N} \mathbf{a}= \pm \mathbf{J}_{N}^{\prime} \hat{\mathbf{a}}
$$

For even $\mathbf{a} \in \mathbb{R}^{N}$ we obtain by Corollary 3.27 that $\overline{\hat{\mathbf{a}}}=\mathbf{J}_{N}^{\prime} \hat{\mathbf{a}}=\hat{\mathbf{a}}$, i.e., $\hat{\mathbf{a}} \in \mathbb{R}^{N}$ is even. Analogously we can show the assertion for odd $\mathbf{a} \in \mathbb{R}^{N}$.

3.3 Circulant Matrices

An N-by- N matrix

$$
\operatorname{circ} \mathbf{a}:=\left(a_{(j-k) \bmod N}\right)_{j, k=0}^{N-1}=\left(\begin{array}{ccccc}
a_{0} & a_{N-1} & \ldots & a_{2} & a_{1} \tag{3.46}\\
a_{1} & a_{0} & \ldots & a_{3} & a_{2} \\
\vdots & \vdots & & \vdots & \vdots \\
a_{N-1} & a_{N-2} & \ldots & a_{1} & a_{0}
\end{array}\right)
$$

is called circulant matrix generated by $\mathbf{a}=\left(a_{k}\right)_{k=0}^{N-1} \in \mathbb{C}^{N}$. The first column of circ \mathbf{a} is equal to \mathbf{a}. A circulant matrix is a special Toeplitz matrix in which the diagonals wrap around. Remember that a Toeplitz matrix is a structured matrix $\left(a_{j-k}\right)_{j, k=0}^{N-1}$ for given $\left(a_{k}\right)_{k=1-N}^{N-1} \in \mathbb{C}^{2 N-1}$ such that the entries along each diagonal are constant.
Example 3.29 If $\mathbf{b}_{k}=\left(\delta_{j-k}\right)_{j=0}^{N-1}, k=0, \ldots, N-1$, denote the standard basis vectors of \mathbb{C}^{N}, then the forward-shift matrix \mathbf{V}_{N} is a circulant matrix, since $\mathbf{V}_{N}=$ circ \mathbf{b}_{1}. More generally, we obtain that

$$
\mathbf{V}_{N}^{k}=\operatorname{circ} \mathbf{b}_{k}, \quad k=0, \ldots, N-1
$$

with $\mathbf{V}_{N}^{0}=\operatorname{circ} \mathbf{b}_{0}=\mathbf{I}_{N}$ and $\mathbf{V}_{N}^{N-1}=\mathbf{V}_{N}^{-1}=\operatorname{circ} \mathbf{b}_{N-1}$. The cyclic difference matrix is also a circulant matrix, since $\mathbf{I}_{N}-\mathbf{V}_{N}=\operatorname{circ}\left(\mathbf{b}_{0}-\mathbf{b}_{1}\right)$.

Remark 3.30 In the literature, a circulant matrix is not consistently defined. For instance in [78, p. 66] and [169, p. 33], a circulant matrix of $\mathbf{a} \in \mathbb{C}^{N}$ is defined by $\left(a_{(k-j) \bmod N}\right)_{j, k=0}^{N-1}=(\operatorname{circ} \mathbf{a})^{\top}$ such that the first row is equal to \mathbf{a}^{\top}.

Circulant matrices and cyclic convolutions of vectors in \mathbb{C}^{N} are closely related. From Lemma 3.24 it follows that for arbitrary vectors $\mathbf{a}, \mathbf{b} \in \mathbb{C}^{N}$

$$
(\operatorname{circ} \mathbf{a}) \mathbf{b}=\mathbf{a} * \mathbf{b}
$$

Using the cyclic convolution property of $\mathrm{DFT}(N)$ (see property 5 of Theorem 3.26), we obtain that a circulant matrix can be diagonalized by Fourier matrices.

Theorem 3.31 For each $\mathbf{a} \in \mathbb{C}^{N}$, the circulant matrix circ a can be diagonalized by the Fourier matrix \mathbf{F}_{N}. We have

$$
\begin{equation*}
\operatorname{circ} \mathbf{a}=\mathbf{F}_{N}^{-1}\left(\operatorname{diag}\left(\mathbf{F}_{N} \mathbf{a}\right)\right) \mathbf{F}_{N} \tag{3.47}
\end{equation*}
$$

Proof For any $\mathbf{b} \in \mathbb{C}^{N}$ we form the cyclic convolution of \mathbf{a} and \mathbf{b}. Then by the cyclic convolution property of Theorem 3.26 we obtain that

$$
\mathbf{F}_{N} \mathbf{c}=\left(\mathbf{F}_{N} \mathbf{a}\right) \circ\left(\mathbf{F}_{N} \mathbf{b}\right)=\left(\operatorname{diag}\left(\mathbf{F}_{N} \mathbf{a}\right)\right) \mathbf{F}_{N} \mathbf{b}
$$

and hence

$$
\mathbf{c}=\mathbf{F}_{N}^{-1}\left(\operatorname{diag}\left(\mathbf{F}_{N} \mathbf{a}\right)\right) \mathbf{F}_{N} \mathbf{b}
$$

On the other hand, we have $\mathbf{c}=(\operatorname{circ} \mathbf{a}) \mathbf{b}$ such that for all $\mathbf{b} \in \mathbb{C}^{N}$

$$
(\operatorname{circ} \mathbf{a}) \mathbf{b}=\mathbf{F}_{N}^{-1}\left(\operatorname{diag}\left(\mathbf{F}_{N} \mathbf{a}\right)\right) \mathbf{F}_{N} \mathbf{b}
$$

This completes the proof of (3.47).
Remark 3.32 Using the decomposition (3.47), the matrix-vector product (circ a)b can be realized by employing three $\operatorname{DFT}(N)$ and one componentwise vector multiplication. We compute

$$
(\operatorname{circ} \mathbf{a}) \mathbf{b}=\mathbf{F}_{N}^{-1}\left(\operatorname{diag}\left(\mathbf{F}_{N} \mathbf{a}\right)\right) \mathbf{F}_{N} \mathbf{b}=\mathbf{F}_{N}^{-1}(\operatorname{diag} \hat{\mathbf{a}}) \hat{\mathbf{b}}=\mathbf{F}_{N}^{-1}(\hat{\mathbf{a}} \circ \hat{\mathbf{b}}) .
$$

As we will see in Chap. 5, one $\operatorname{DFT}(N)$ of radix- 2 length can be realized by $\mathscr{O}(N \log N)$ arithmetical operations such that $(\operatorname{circ} \mathbf{a}) \mathbf{b}=\mathbf{a} * \mathbf{b}$ can be computed by $\mathscr{O}(N \log N)$ arithmetical operations too.

Corollary 3.33 For arbitrary $\mathbf{a} \in \mathbb{C}^{N}$, the eigenvalues of circ a coincide with the components $\hat{a}_{j}, j=0, \ldots, N-1$, of $\left(\hat{a}_{j}\right)_{j=0}^{N-1}=\mathbf{F}_{N} \mathbf{a}$. A right eigenvector related to the eigenvalue $\hat{a}_{j}, j=0, \ldots, N-1$, is the complex conjugate exponential vector
$\overline{\mathbf{e}}_{j}=\left(w_{N}^{-j k}\right)_{k=0}^{N-1}$ and a left eigenvector of \hat{a}_{j} is \mathbf{e}_{j}^{\top}, i.e.,

$$
\begin{equation*}
(\operatorname{circ} \mathbf{a}) \overline{\mathbf{e}}_{j}=\hat{a}_{j} \overline{\mathbf{e}}_{j}, \quad \mathbf{e}_{j}^{\top}(\operatorname{circ} \mathbf{a})=\hat{a}_{j} \mathbf{e}_{j}^{\top} . \tag{3.48}
\end{equation*}
$$

Proof Using (3.47), we obtain that

$$
(\operatorname{circ} \mathbf{a}) \mathbf{F}_{N}^{-1}=\mathbf{F}_{N}^{-1} \operatorname{diag}\left(\hat{a}_{j}\right)_{j=0}^{N-1}, \quad \mathbf{F}_{N} \operatorname{circ} \mathbf{a}=\left(\operatorname{diag}\left(\hat{a}_{j}\right)_{j=0}^{N-1}\right) \mathbf{F}_{N}
$$

with

$$
\mathbf{F}_{N}=\left(\begin{array}{c}
\mathbf{e}_{0}^{\top} \tag{3.49}\\
\mathbf{e}_{1}^{\top} \\
\vdots \\
\mathbf{e}_{N-1}^{\top}
\end{array}\right), \quad \mathbf{F}_{N}^{-1}=\frac{1}{N}\left(\overline{\mathbf{e}}_{0}\left|\overline{\mathbf{e}}_{1}\right| \ldots \mid \overline{\mathbf{e}}_{N-1}\right)
$$

Hence we conclude (3.48) holds. Note that the eigenvalues \hat{a}_{j} of circ a need not be distinct.

By the definition of the forward-shift matrix \mathbf{V}_{N}, each circulant matrix (3.46) can be written in the form

$$
\begin{equation*}
\operatorname{circ} \mathbf{a}=\sum_{k=0}^{N-1} a_{k} \mathbf{V}_{N}^{k}, \tag{3.50}
\end{equation*}
$$

where $\mathbf{V}_{N}^{0}=\mathbf{V}_{N}^{N}=\mathbf{I}_{N}$. Therefore, \mathbf{V}_{N} is called basic circulant matrix.
The representation (3.50) reveals that N-by- N circulant matrices form a commutative algebra. Linear combinations and products of circulant matrices are also circulant matrices, and products of any two circulant matrices commute. The inverse of a nonsingular circulant matrix is again a circulant matrix. The following result is very useful for the computation with circulant matrices:
Theorem 3.34 (Properties of Circulant Matrices) For arbitrary $\mathbf{a}, \mathbf{b} \in \mathbb{C}^{N}$ and $\alpha \in \mathbb{C}$ we have

1. $(\operatorname{circ} \mathbf{a})^{\top}=\operatorname{circ}\left(\mathbf{J}_{N}^{\prime} \mathbf{a}\right)$,
2. $(\operatorname{circ} \mathbf{a})+(\operatorname{circ} \mathbf{b})=\operatorname{circ}(\mathbf{a}+\mathbf{b}), \quad \alpha(\operatorname{circ} \mathbf{a})=\operatorname{circ}(\alpha \mathbf{a})$,
3. $(\operatorname{circ} \mathbf{a})(\operatorname{circ} \mathbf{b})=(\operatorname{circ} \mathbf{b})(\operatorname{circ} \mathbf{a})=\operatorname{circ}(\mathbf{a} * \mathbf{b})$,
4. circ a is a normal matrix with the spectral decomposition (3.47),
5. det $(\operatorname{circ} \mathbf{a})=\prod_{j=0}^{N-1} \hat{a}_{j}$ with $\left(\hat{a}_{j}\right)_{j=0}^{N-1}=\mathbf{F}_{N} \mathbf{a}$.
6. The Moore-Penrose pseudo-inverse of circ a has the form

$$
(\operatorname{circ} \mathbf{a})^{+}=\mathbf{F}_{N}^{-1}\left(\operatorname{diag}\left(\hat{a}_{j}^{+}\right)_{j=0}^{N-1}\right) \mathbf{F}_{N},
$$

where $\hat{a}_{j}^{+}:=\hat{a}_{j}^{-1}$ if $\hat{a}_{j} \neq 0$ and $\hat{a}_{j}^{+}:=0$ if $\hat{a}_{j}=0$.
7. circ a is invertible if and only if $\hat{a}_{j} \neq 0$ for all $j=0, \ldots, N-1$. Under this condition, $(\operatorname{circ} \mathbf{a})^{-1}$ is the circulant matrix

$$
(\operatorname{circ} \mathbf{a})^{-1}=\mathbf{F}_{N}^{-1}\left(\operatorname{diag}\left(\hat{a}_{j}^{-1}\right)_{j=0}^{N-1}\right) \mathbf{F}_{N} .
$$

Proof

1. Using $\mathbf{V}_{N}^{\top}=\mathbf{V}_{N}^{-1}$ and $\mathbf{V}_{N}^{N}=\mathbf{I}_{N}$, we obtain for $\mathbf{a}=\left(a_{k}\right)_{k=0}^{N-1} \in \mathbb{C}^{N}$ by (3.50) that

$$
\begin{aligned}
(\operatorname{circ} \mathbf{a})^{\top} & =\sum_{k=0}^{N-1} a_{k}\left(\mathbf{V}_{N}^{k}\right)^{\top}=\sum_{k=0}^{N-1} a_{k}\left(\mathbf{V}_{N}^{\top}\right)^{k}=\sum_{k=0}^{N-1} a_{k} \mathbf{V}_{N}^{-k}=\sum_{k=0}^{N-1} a_{k} \mathbf{V}_{N}^{N-k} \\
& =a_{0} \mathbf{I}_{N}+a_{N-1} \mathbf{V}_{N}+\ldots+a_{1} \mathbf{V}_{N}^{N-1}=\operatorname{circ}\left(\mathbf{J}_{N}^{\prime} \mathbf{a}\right)
\end{aligned}
$$

2. The two relations follow from the definition (3.46).
3. Let $\mathbf{a}=\left(a_{k}\right)_{k=0}^{N-1}, \mathbf{b}=\left(b_{\ell}\right)_{\ell=0}^{N-1} \in \mathbb{C}^{N}$ be given. Using $\mathbf{V}_{N}^{N}=\mathbf{I}_{N}$, we conclude that by (3.50)

$$
(\operatorname{circ} \mathbf{a})(\operatorname{circ} \mathbf{b})=\left(\sum_{k=0}^{N-1} a_{k} \mathbf{V}_{N}^{k}\right)\left(\sum_{\ell=0}^{N-1} b_{\ell} \mathbf{V}_{N}^{\ell}\right)=\sum_{n=0}^{N-1} c_{n} \mathbf{V}_{N}^{n}
$$

with the entries

$$
c_{n}=\sum_{j=0}^{N-1} a_{j} b_{(n-j) \bmod N}, \quad n=0, \ldots, N-1
$$

By $\left(c_{n}\right)_{n=0}^{N-1}=\mathbf{a} * \mathbf{b}$ we obtain $(\operatorname{circ} \mathbf{a})(\operatorname{circ} \mathbf{b})=\operatorname{circ}(\mathbf{a} * \mathbf{b})$. Since the cyclic convolution is commutative, the product of circulant matrices is also commutative.
4. By property 1 , the conjugate transpose of circ a is again a circulant matrix. Since circulant matrices commute by property 3 , circ a is a normal matrix. By (3.47) we obtain the spectral decomposition of the normal matrix

$$
\begin{equation*}
\operatorname{circ} \mathbf{a}=\frac{1}{\sqrt{N}} \overline{\mathbf{F}}_{N}\left(\operatorname{diag}\left(\mathbf{F}_{N} \mathbf{a}\right)\right) \frac{1}{\sqrt{N}} \mathbf{F}_{N} \tag{3.51}
\end{equation*}
$$

because $\frac{1}{\sqrt{N}} \mathbf{F}_{N}$ is unitary.
5. The determinant $\operatorname{det}(\operatorname{circ} \mathbf{a})$ of the matrix product (3.50) can be computed by

$$
\operatorname{det}(\operatorname{circ} \mathbf{a})=\left(\operatorname{det} \mathbf{F}_{N}\right)^{-1}\left(\prod_{j=0}^{N-1} \hat{a}_{j}\right) \operatorname{det} \mathbf{F}_{N}=\prod_{j=0}^{N-1} \hat{a}_{j}
$$

6. The Moore-Penrose pseudo-inverse \mathbf{A}_{N}^{+}of an N-by- N matrix \mathbf{A}_{N} is uniquely determined by the properties

$$
\mathbf{A}_{N} \mathbf{A}_{N}^{+} \mathbf{A}_{N}=\mathbf{A}_{N}, \quad \mathbf{A}_{N}^{+} \mathbf{A}_{N} \mathbf{A}_{N}^{+}=\mathbf{A}_{N}^{+}
$$

where $\mathbf{A}_{N} \mathbf{A}_{N}^{+}$and $\mathbf{A}_{N}^{+} \mathbf{A}_{N}$ are Hermitian. From the spectral decomposition (3.51) of circ a it follows that

$$
(\operatorname{circ} \mathbf{a})^{+}=\frac{1}{\sqrt{N}} \overline{\mathbf{F}}_{N}\left(\operatorname{diag}\left(\hat{a}_{j}\right)_{j=0}^{N-1}\right)^{+} \frac{1}{\sqrt{N}} \mathbf{F}_{N}=\mathbf{F}_{N}^{-1}\left(\operatorname{diag}\left(\hat{a}_{j}^{+}\right)_{j=0}^{N-1}\right) \mathbf{F}_{N}
$$

The matrix circ \mathbf{a} is invertible if and only if $\operatorname{det}(\operatorname{circ} \mathbf{a}) \neq 0$, i.e., if $\hat{a}_{j} \neq 0$ for all $j=0, \ldots, N-1$. In this case,

$$
\mathbf{F}_{N}^{-1}\left(\operatorname{diag}\left(\hat{a}_{j}^{-1}\right)_{j=0}^{N-1}\right) \mathbf{F}_{N}
$$

is the inverse of circ a.
Circulant matrices can be characterized by the following property.
Lemma 3.35 An N-by- N matrix \mathbf{A}_{N} is a circulant matrix if and only if \mathbf{A}_{N} and the basic circulant matrix \mathbf{V}_{N} commute, i.e.,

$$
\begin{equation*}
\mathbf{V}_{N} \mathbf{A}_{N}=\mathbf{A}_{N} \mathbf{V}_{N} \tag{3.52}
\end{equation*}
$$

Proof Each circulant matrix circ a with a $\in \mathbb{C}^{N}$ can be represented in the form (3.50). Hence circ a commutes with \mathbf{V}_{N}.
Let $\mathbf{A}_{N}=\left(a_{j, k}\right)_{j, k=0}^{N-1}$ be an arbitrary N-by- N matrix with the property (3.52) such that $\mathbf{V}_{N} \mathbf{A}_{N} \mathbf{V}_{N}^{-1}=\mathbf{A}_{N}$. From

$$
\mathbf{V}_{N} \mathbf{A}_{N} \mathbf{V}_{N}^{-1}=\left(a_{(j-1) \bmod N,(k-1) \bmod N}\right)_{j, k=0}^{N-1}
$$

it follows for all $j, k=0, \ldots, N-1$

$$
a_{(j-1) \bmod N,(k-1) \bmod N}=a_{j, k}
$$

Setting $a_{j}:=a_{j, 0}$ for $j=0, \ldots, N-1$, we conclude that $a_{j, k}=a_{(j-k) \bmod N}$ for $j, k=0, \ldots, N-1$, i.e., $\mathbf{A}_{N}=\operatorname{circ}\left(a_{j}\right)_{j=0}^{N-1}$.
Remark 3.36 For arbitrarily given $t_{k} \in \mathbb{C}, k=1-N, \ldots, N-1$, we consider the N-by- N Toeplitz matrix

$$
\mathbf{T}_{N}:=\left(t_{j-k}\right)_{j, k=0}^{N-1}=\left(\begin{array}{ccccc}
t_{0} & t_{-1} & \ldots & t_{2-N} & t_{1-N} \\
t_{1} & t_{0} & \ldots & t_{3-N} & t_{2-N} \\
\vdots & \vdots & & \vdots & \vdots \\
t_{N-1} & t_{N-2} & \ldots & t_{1} & t_{0}
\end{array}\right) .
$$

In general, \mathbf{T}_{N} is not a circulant matrix. But \mathbf{T}_{N} can be extended to a $2 N$-by- $2 N$ circulant matrix $\mathbf{C}_{2 N}$. We define

$$
\mathbf{C}_{2 N}:=\left(\begin{array}{ll}
\mathbf{T}_{N} & \mathbf{E}_{N} \\
\mathbf{E}_{N} & \mathbf{T}_{N}
\end{array}\right)
$$

with

$$
\mathbf{E}_{N}:=\left(\begin{array}{ccccc}
0 & t_{N-1} & \ldots & t_{2} & t_{1} \\
t_{1-N} & 0 & \ldots & t_{3} & t_{2} \\
\vdots & \vdots & & \vdots & \vdots \\
t_{-1} & t_{-2} & \ldots & t_{1-N} & 0
\end{array}\right)
$$

Then, $\mathbf{C}_{2 N}=\operatorname{circ} \mathbf{c}$ with the vector

$$
\mathbf{c}:=\left(t_{0}, t_{1}, \ldots, t_{N-1}, 0, t_{1-N}, \ldots, t_{-1}\right)^{\top} \in \mathbb{C}^{2 N}
$$

Thus for an arbitrary vector $\mathbf{a} \in \mathbf{C}^{N}$, the matrix-vector product $\mathbf{T}_{N} \mathbf{a}$ can be computed using the circulant matrix vector product

$$
\mathbf{C}_{2 N}\binom{\mathbf{a}}{\mathbf{0}}=\binom{\mathbf{T}_{N} \mathbf{a}}{\mathbf{E}_{N} \mathbf{a}},
$$

where $\mathbf{0} \in \mathbb{C}^{N}$ denotes the zero vector. Applying a fast Fourier transform of Chap. 5, this matrix-vector product can therefore be realized with only $\mathscr{O}(N \log N)$ arithmetical operations.

3.4 Kronecker Products and Stride Permutations

In this section we consider special block matrices that are obtained by employing the Kronecker product of two matrices. These special matrices often occur by reshaping linear equations with matrix-valued unknowns to matrix-vector representations. We will also show that block circulant matrices can again be simply diagonalized using Kronecker products of Fourier matrices.
For arbitrary matrices $\mathbf{A}_{M, N}=\left(a_{j, k}\right)_{j, k=0}^{M-1, N-1} \in \mathbb{C}^{M \times N}$ and $\mathbf{B}_{P, Q} \in \mathbb{C}^{P \times Q}$, the Kronecker product of $\mathbf{A}_{M, N}$ and $\mathbf{B}_{P, Q}$ is defined as the block matrix

$$
\begin{aligned}
\mathbf{A}_{M, N} \otimes \mathbf{B}_{P, Q} & :=\left(a_{j, k} \mathbf{B}_{P, Q}\right)_{j, k=0}^{M-1, N-1} \\
& =\left(\begin{array}{ccc}
a_{0,0} \mathbf{B}_{P, Q} & \ldots & a_{0, N-1} \mathbf{B}_{P, Q} \\
\vdots & & \vdots \\
a_{M-1,0} \mathbf{B}_{P, Q} \ldots & a_{M-1, N-1} \mathbf{B}_{P, Q}
\end{array}\right) \in \mathbb{C}^{M P \times N Q}
\end{aligned}
$$

In particular, for $\mathbf{a}=\left(a_{j}\right)_{j=0}^{M-1} \in \mathbb{C}^{M}$ and $\mathbf{b} \in \mathbb{C}^{P}$ we obtain the Kronecker product

$$
\mathbf{a} \otimes \mathbf{b}=\left(a_{j} \mathbf{b}\right)_{j=0}^{M-1}=\left(\begin{array}{c}
a_{0} \mathbf{b} \\
\vdots \\
a_{M-1} \mathbf{b}
\end{array}\right) \in \mathbb{C}^{M P}
$$

The Kronecker product of the identity matrix \mathbf{I}_{M} and the square matrix \mathbf{B}_{P} is equal to the block diagonal matrix

$$
\mathbf{I}_{M} \otimes \mathbf{B}_{P}=\left(\delta_{j-k} \mathbf{B}_{P}\right)_{j, k=0}^{M-1}=\left(\begin{array}{lll}
\mathbf{B}_{P} & & \\
& \ddots & \\
& & \mathbf{B}_{P}
\end{array}\right) \in \mathbb{C}^{M P \times M P} .
$$

Example 3.37 For the Fourier matrix \mathbf{F}_{2} we obtain that

$$
\mathbf{I}_{2} \otimes \mathbf{F}_{2}=\left(\begin{array}{rrrr}
1 & 1 & 0 & 0 \\
1 & -1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & -1
\end{array}\right), \quad \mathbf{F}_{2} \otimes \mathbf{I}_{2}=\left(\begin{array}{rrrr}
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 \\
1 & 0 & -1 & 0 \\
0 & 1 & 0 & -1
\end{array}\right)
$$

By definition, the Kronecker product $\mathbf{A}_{M, N} \otimes \mathbf{B}_{P, Q}$ has the entry $a_{j, k} b_{m, n}$ in the $(j P+m)$ th row and $(k Q+n)$ th column for $j=0, \ldots, M-1, k=0, \ldots, N-1$, $m=0, \ldots, P-1$, and $n=0, \ldots, Q-1$. Further it follows from the definition that the Kronecker product is associative, i.e., for arbitrary matrices $\mathbf{A}_{M, N} \in \mathbb{C}^{M \times N}$, $\mathbf{B}_{P, Q} \in \mathbb{C}^{P \times Q}$, and $\mathbf{C}_{R, S} \in \mathbb{C}^{R \times S}$ we have

$$
\begin{equation*}
\left(\mathbf{A}_{M, N} \otimes \mathbf{B}_{P, Q}\right) \otimes \mathbf{C}_{R, S}=\mathbf{A}_{M, N} \otimes\left(\mathbf{B}_{P, Q} \otimes \mathbf{C}_{R, S}\right) . \tag{3.53}
\end{equation*}
$$

In many applications, we especially consider Kronecker products of square matrices and of vectors. For square matrices \mathbf{A}_{M} and \mathbf{B}_{P} we simply observe by blockwise multiplication that

$$
\begin{equation*}
\mathbf{A}_{M} \otimes \mathbf{B}_{P}=\left(\mathbf{A}_{M} \otimes \mathbf{I}_{P}\right)\left(\mathbf{I}_{M} \otimes \mathbf{B}_{P}\right)=\left(\mathbf{I}_{M} \otimes \mathbf{B}_{P}\right)\left(\mathbf{A}_{M} \otimes \mathbf{I}_{P}\right) \tag{3.54}
\end{equation*}
$$

As we can see in Example 3.37, the Kronecker product is not commutative. In order to understand the relation between the Kronecker products $\mathbf{A}_{M} \otimes \mathbf{B}_{P}$ and $\mathbf{B}_{P} \otimes \mathbf{A}_{M}$, we introduce special permutation matrices. An N-by- N permutation matrix is obtained by permuting the columns of the N-by- N identity matrix \mathbf{I}_{N}. For instance, the counter-identity matrix \mathbf{J}_{N}, the flip matrix \mathbf{J}_{N}^{\prime}, and the forward-shift matrix \mathbf{V}_{N} are permutation matrices. For $N \in \mathbb{N}$ with $N=L M$, where $L, M \geq 2$
are integers, the L-stride permutation matrix $\mathbf{P}_{N}(L) \in \mathbb{C}^{N \times N}$ is defined by the property

$$
\begin{aligned}
\mathbf{P}_{N}(L) \mathbf{a} & =\left(\left(a_{L k+\ell}\right)_{k=0}^{M-1}\right)_{\ell=0}^{L-1} \\
& =\left(a_{0}, \ldots, a_{L(M-1)}\left|a_{1}, \ldots, a_{L(M-1)+1}\right| \ldots \mid a_{L-1}, \ldots, a_{L(M-1)+L-1}\right)^{\top}
\end{aligned}
$$

for arbitrary $\mathbf{a}=\left(a_{j}\right)_{j=0}^{N-1} \in \mathbb{C}^{N}$. Note that

$$
\mathbf{P}_{N}(L)=\left(\delta_{(j L-k) \bmod (N-1)}\right)_{j, k=0}^{N-1} .
$$

For even $N \in \mathbb{N}$, the 2-stride permutation matrix or even-odd permutation matrix $\mathbf{P}_{N}(2)$ is of special interest in the fast computation of $\operatorname{DFT}(N)$ (see Chap. 5). Then we have

$$
\mathbf{P}_{N}(2) \mathbf{a}=\left(\left(a_{2 k+\ell}\right)_{k=0}^{N / 2-1}\right)_{\ell=0}^{1}=\left(a_{0}, a_{2}, \ldots, a_{N-2} \mid a_{1}, a_{3}, \ldots, a_{N-1}\right)^{\top}
$$

Example 3.38 For $N=6, L=2$, and $M=3$ we get that

$$
\mathbf{P}_{6}(2)=\left(\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right), \quad \mathbf{P}_{6}(2)^{\top}=\mathbf{P}_{6}(3)=\left(\begin{array}{llllll}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) .
$$

Then we have $\mathbf{P}_{6}(2) \mathbf{P}_{6}(3)=\mathbf{I}_{6}$ and

$$
\mathbf{P}_{6}(2) \mathbf{a}=\left(a_{0}, a_{2}, a_{4}, a_{1}, a_{3}, a_{5}\right)^{\top}, \quad \mathbf{P}_{6}(3) \mathbf{a}=\left(a_{0}, a_{3}, a_{1}, a_{4}, a_{2}, a_{5}\right)^{\top}
$$

for $\mathbf{a}=\left(a_{j}\right)_{j=0}^{5}$.
The following property of stride-permutation matrices can be simply shown using Kronecker products.
Lemma 3.39 If $N \in \mathbb{N}$ can be factorized in the form $N=K L M$ with $K, L, M \in$ \mathbb{N}, then

$$
\begin{equation*}
\mathbf{P}_{N}(L M)=\mathbf{P}_{N}(L) \mathbf{P}_{N}(M)=\mathbf{P}_{N}(M) \mathbf{P}_{N}(L) \tag{3.55}
\end{equation*}
$$

In particular, for $N=L M$ we have

$$
\begin{equation*}
\mathbf{P}_{N}(L)^{-1}=\mathbf{P}_{N}(L)^{\top}=\mathbf{P}_{N}(M) \tag{3.56}
\end{equation*}
$$

Proof For arbitrary vectors $\mathbf{a} \in \mathbb{C}^{K}, \mathbf{b} \in \mathbb{C}^{L}$, and $\mathbf{c} \in \mathbb{C}^{M}$, we obtain from the definitions, on the one hand, that

$$
\mathbf{P}_{N}(L M)(\mathbf{a} \otimes \mathbf{b} \otimes \mathbf{c})=\mathbf{P}_{N}(L M)(\mathbf{a} \otimes(\mathbf{b} \otimes \mathbf{c}))=\mathbf{b} \otimes \mathbf{c} \otimes \mathbf{a}
$$

On the other hand,

$$
\begin{aligned}
\mathbf{P}_{N}(L) \mathbf{P}_{N}(M)(\mathbf{a} \otimes \mathbf{b} \otimes \mathbf{c}) & =\mathbf{P}_{N}(L)\left[\mathbf{P}_{N}(M)((\mathbf{a} \otimes \mathbf{b}) \otimes \mathbf{c})\right] \\
& =\mathbf{P}_{N}(L)(\mathbf{c} \otimes(\mathbf{a} \otimes \mathbf{b}))=\mathbf{P}_{N}(L)((\mathbf{c} \otimes \mathbf{a}) \otimes \mathbf{b}) \\
& =\mathbf{b} \otimes \mathbf{c} \otimes \mathbf{a}
\end{aligned}
$$

The two equations are true for all vectors $\mathbf{a} \otimes \mathbf{b} \otimes \mathbf{c} \in \mathbb{C}^{N}$, which span \mathbb{C}^{N}. Consequently, $\mathbf{P}_{N}(L M)=\mathbf{P}_{N}(L) \mathbf{P}_{N}(M)$. Analogously, one can show that $\mathbf{P}_{N}(L M)=\mathbf{P}_{N}(M) \mathbf{P}_{N}(L)$.

If $N=L M$, then $\mathbf{P}_{N}(L M)=\mathbf{P}_{N}(N)=\mathbf{I}_{N}$ and hence $\mathbf{P}_{N}(M) \mathbf{P}_{N}(L)=\mathbf{I}_{N}$. Since $\mathbf{P}_{N}(M)$ and $\mathbf{P}_{N}(L)$ are orthogonal matrices, we conclude (3.56).
Corollary 3.40 Let $p \in \mathbb{N}$ be a prime. For $N=p^{n}$ with $n \in \mathbb{N}$, the set $\left\{\mathbf{P}_{N}\left(p^{k}\right)\right.$: $k=0, \ldots, n-1\}$ is a cyclic group generated by the p-stride permutation matrix $\mathbf{P}_{N}(p)$ with $\mathbf{P}_{N}(p)^{k}=\mathbf{P}_{N}\left(p^{k}\right)$ for $k=0, \ldots, n-1$.

This corollary follows immediately from Lemma 3.39.
We are interested in the properties of Kronecker products. For simplicity, we restrict ourselves to square matrices.

Lemma 3.41 For arbitrary matrices $\mathbf{A}_{L} \in \mathbb{C}^{L \times L}$ and $\mathbf{B}_{M} \in \mathbb{C}^{M \times M}$ and for all vectors $\mathbf{a} \in \mathbb{C}^{L}$ and $\mathbf{b} \in \mathbb{C}^{M}$ we have

$$
\left(\mathbf{A}_{L} \otimes \mathbf{B}_{M}\right)(\mathbf{a} \otimes \mathbf{b})=\left(\mathbf{A}_{L} \mathbf{a}\right) \otimes\left(\mathbf{B}_{M} \mathbf{b}\right)
$$

Proof Assume that $\mathbf{A}_{L}=\left(a_{j, k}\right)_{j, k=0}^{L-1}$ and $\mathbf{a}=\left(a_{k}\right)_{k=0}^{L-1}$. From

$$
\mathbf{A}_{L} \otimes \mathbf{B}_{M}=\left(a_{j, k} \mathbf{B}_{M}\right)_{j, k=0}^{L-1}, \quad \mathbf{a} \otimes \mathbf{b}=\left(a_{k} \mathbf{b}\right)_{k=0}^{L-1}
$$

it follows by blockwise computation that

$$
\left(\mathbf{A}_{L} \otimes \mathbf{B}_{M}\right)(\mathbf{a} \otimes \mathbf{b})=\left(\left(\sum_{k=0}^{L-1} a_{j, k} a_{k}\right) \mathbf{B}_{M} \mathbf{b}\right)=\left(\mathbf{A}_{L} \mathbf{a}\right) \otimes\left(\mathbf{B}_{M} \mathbf{b}\right)
$$

since $\sum_{k=0}^{L-1} a_{j, k} a_{k}$ is the j th component of $\mathbf{A}_{L} \mathbf{a}$.
We denote with vec \mathbf{X} the vectorization of a matrix $\mathbf{X}=\left(\mathbf{x}_{0}|\ldots| \mathbf{x}_{M-1}\right) \in \mathbb{C}^{L \times M}$ into the vector $\left(\mathbf{x}_{0}^{\top}, \ldots, \mathbf{x}_{M-1}^{\top}\right)^{\top}=\left(\mathbf{x}_{k}\right)_{k=0}^{M-1} \in \mathbb{C}^{L M}$.

Theorem 3.42 Let $\mathbf{A}_{L}, \mathbf{C}_{L} \in \mathbb{C}^{L \times L}$, and $\mathbf{B}_{M}, \mathbf{D}_{M} \in \mathbb{C}^{M \times M}$ be arbitrary square matrices. Then the Kronecker product possesses the following properties:

1. $\left(\mathbf{A}_{L} \otimes \mathbf{B}_{M}\right)\left(\mathbf{C}_{L} \otimes \mathbf{D}_{M}\right)=\left(\mathbf{A}_{L} \mathbf{C}_{L}\right) \otimes\left(\mathbf{B}_{M} \mathbf{D}_{M}\right)$,
2. $\left(\mathbf{A}_{L} \otimes \mathbf{B}_{M}\right)^{\top}=\mathbf{A}_{L}^{\top} \otimes \mathbf{B}_{M}^{\top}$,
3. $\mathbf{P}_{N}(M)\left(\mathbf{A}_{L} \otimes \mathbf{B}_{M}\right) \mathbf{P}_{N}(L)=\mathbf{B}_{M} \otimes \mathbf{A}_{L}$ with $N=L M$,
4. $\operatorname{det}\left(\mathbf{A}_{L} \otimes \mathbf{B}_{M}\right)=\left(\operatorname{det} \mathbf{A}_{L}\right)^{M}\left(\operatorname{det} \mathbf{B}_{M}\right)^{L}$,
5. $\left(\mathbf{A}_{L} \otimes \mathbf{B}_{M}\right)^{-1}=\mathbf{A}_{L}^{-1} \otimes \mathbf{B}_{M}^{-1}$, if \mathbf{A}_{L} and \mathbf{B}_{M} are invertible.
6. Let $\mathbf{X} \in \mathbb{C}^{L \times M}$, then

$$
\operatorname{vec}\left(\mathbf{A}_{L} \mathbf{X} \mathbf{B}_{M}\right)=\left(\mathbf{B}_{M}^{\top} \otimes \mathbf{A}_{L}\right) \operatorname{vec} \mathbf{X}
$$

Proof

1. For arbitrary matrices $\mathbf{A}_{L}=\left(a_{j, k}\right)_{j, k=0}^{L-1}$ and $\mathbf{C}_{L}=\left(c_{k, \ell}\right)_{k, \ell=0}^{L-1} \in \mathbb{C}^{L \times L}$ we obtain that

$$
\mathbf{A}_{L} \otimes \mathbf{B}_{M}:=\left(a_{j, k} \mathbf{B}_{M}\right)_{j, k=0}^{L-1}, \quad \mathbf{C}_{L} \otimes \mathbf{D}_{M}:=\left(c_{k, \ell} \mathbf{D}_{M}\right)_{k, \ell=0}^{L-1}
$$

By blockwise multiplication of the two matrices we conclude that
$\left(\mathbf{A}_{L} \otimes \mathbf{B}_{M}\right)\left(\mathbf{C}_{L} \otimes \mathbf{D}_{M}\right)=\left(\sum_{k=0}^{L-1} a_{j, k} c_{k, \ell} \mathbf{B}_{M} \mathbf{D}_{M}\right)_{j, \ell=0}^{L-1}=\left(\mathbf{A}_{L} \mathbf{C}_{L}\right) \otimes\left(\mathbf{B}_{M} \mathbf{D}_{M}\right)$,
since $\sum_{k=0}^{L-1} a_{j, k} c_{k, \ell}$ is the (j, ℓ) th entry of the matrix product $\mathbf{A}_{L} \mathbf{C}_{L}$. The first property of the Kronecker product is of high importance for efficient multiplication of block matrices, since the multiplication of two matrices of large size $L M$-by- $L M$ can be transferred to the multiplication of matrices of lower sizes L-by- L and M-by- M and the realization of one Kronecker product, being computed by elementwise multiplication.
2. The second property follows immediately from the definition of the Kronecker product.
3. For arbitrary vectors $\mathbf{a} \in \mathbb{C}^{L}$ and $\mathbf{b} \in \mathbb{C}^{M}$ we find

$$
\begin{aligned}
\mathbf{P}_{N}(M)\left(\mathbf{A}_{L} \otimes \mathbf{B}_{M}\right)\left(\mathbf{P}_{N}(L)(\mathbf{b} \otimes \mathbf{a})\right) & =\mathbf{P}_{N}(M)\left(\mathbf{A}_{L} \otimes \mathbf{B}_{M}\right)(\mathbf{a} \otimes \mathbf{b}) \\
& =\mathbf{P}_{N}(M)\left(\left(\mathbf{A}_{L} \mathbf{a}\right) \otimes\left(\mathbf{B}_{M} \mathbf{b}\right)\right) \\
& =\left(\mathbf{B}_{M} \mathbf{b}\right) \otimes\left(\mathbf{A}_{L} \mathbf{a}\right)=\left(\mathbf{B}_{M} \otimes\left(\mathbf{A}_{L}\right)(\mathbf{b} \otimes \mathbf{a}) .\right.
\end{aligned}
$$

Since arbitrary vectors of the form $\mathbf{b} \otimes \mathbf{a}$ span the vector space $\mathbb{C}^{L M}$, the so-called commutation property is shown.
4. The Kronecker product $\mathbf{A}_{L} \otimes \mathbf{B}_{M}$ can be factorized in the form

$$
\mathbf{A}_{L} \otimes \mathbf{B}_{M}=\left(\mathbf{A}_{L} \otimes \mathbf{I}_{M}\right)\left(\mathbf{I}_{L} \otimes \mathbf{B}_{M}\right)
$$

For the block diagonal matrix $\mathbf{I}_{L} \otimes \mathbf{B}_{M}$ we obtain that

$$
\operatorname{det}\left(\mathbf{I}_{L} \otimes \mathbf{B}_{M}\right)=\left(\operatorname{det} \mathbf{B}_{M}\right)^{L}
$$

By the commutation property it follows that with $N=L M$

$$
\mathbf{P}_{N}(M)\left(\mathbf{A}_{L} \otimes \mathbf{I}_{M}\right) \mathbf{P}_{N}(L)=\mathbf{P}_{N}(M)\left(\mathbf{A}_{L} \otimes \mathbf{I}_{M}\right) \mathbf{P}_{N}(M)^{-1}=\mathbf{I}_{M} \otimes \mathbf{A}_{L}
$$

and hence

$$
\operatorname{det}\left(\mathbf{A}_{L} \otimes \mathbf{I}_{M}\right)=\operatorname{det}\left(\mathbf{I}_{M} \otimes \mathbf{A}_{L}\right)=\left(\operatorname{det} \mathbf{A}_{L}\right)^{M}
$$

Thus we have

$$
\operatorname{det}\left(\mathbf{A}_{L} \otimes \mathbf{B}_{M}\right)=\left(\operatorname{det}\left(\mathbf{A}_{L} \otimes \mathbf{I}_{M}\right)\right)\left(\operatorname{det}\left(\mathbf{I}_{L} \otimes \mathbf{B}_{M}\right)\right)=\left(\operatorname{det} \mathbf{A}_{L}\right)^{M}\left(\operatorname{det} \mathbf{B}_{M}\right)^{L}
$$

5. By property 4, the Kronecker product $\mathbf{A}_{L} \otimes \mathbf{B}_{M}$ is invertible if and only if \mathbf{A}_{L} and \mathbf{B}_{M} are invertible. By property 1, the inverse of $\mathbf{A}_{L} \otimes \mathbf{B}_{M}$ reads $\mathbf{A}_{L}^{-1} \otimes \mathbf{B}_{M}^{-1}$, if \mathbf{A}_{L} and \mathbf{B}_{M} are invertible.
6. Let the columns of \mathbf{X} be given by $\mathbf{X}=\left(\mathbf{x}_{0}|\ldots| \mathbf{x}_{M-1}\right)$, and let $\mathbf{B}_{M}=$ $\left(b_{j, k}\right)_{j, k=0}^{M-1}=\left(\mathbf{b}_{0}|\ldots| \mathbf{b}_{M-1}\right)$. On the one hand, we find

$$
\operatorname{vec}\left(\mathbf{A}_{L} \mathbf{X} \mathbf{B}_{M}\right)=\operatorname{vec}\left(\mathbf{A}_{L} \mathbf{X} \mathbf{b}_{0}|\ldots| \mathbf{A}_{L} \mathbf{X} \mathbf{b}_{M-1}\right)
$$

On the other hand,

$$
\begin{aligned}
\left(\mathbf{B}^{\top} \otimes \mathbf{A}_{L}\right) \operatorname{vec} \mathbf{X} & =\left(\begin{array}{ccc}
\mathbf{A}_{L} b_{0,0} & \ldots & \mathbf{A}_{L} b_{0, M-1} \\
\mathbf{A}_{L} b_{1,0} & \ldots & \mathbf{A}_{L} b_{1, M-1} \\
\vdots & & \vdots \\
\mathbf{A}_{L} b_{M-1,0} & \ldots & \mathbf{A}_{L} b_{M-1, M-1}
\end{array}\right)\left(\begin{array}{c}
\mathbf{x}_{0} \\
\vdots \\
\mathbf{x}_{M-1}
\end{array}\right) \\
& =\left(\begin{array}{c}
b_{0,0} \mathbf{A}_{L} \mathbf{x}_{0}+\ldots+b_{0, M-1} \mathbf{A}_{L} \mathbf{x}_{M-1} \\
b_{1,0} \mathbf{A}_{L} \mathbf{x}_{0}+\ldots+b_{1, M-1} \mathbf{A}_{L} \mathbf{x}_{M-1} \\
\vdots \\
b_{M-1,0} \mathbf{A}_{L} \mathbf{x}_{0}+\ldots+b_{M-1, M-1} \mathbf{A}_{L} \mathbf{x}_{M-1}
\end{array}\right)=\left(\begin{array}{c}
\mathbf{A}_{L} \mathbf{X} \mathbf{b}_{0} \\
\mathbf{A}_{L} \mathbf{X} \mathbf{b}_{1} \\
\vdots \\
\mathbf{A}_{L} \mathbf{X} \mathbf{b}_{M-1}
\end{array}\right) .
\end{aligned}
$$

Thus the assertion follows.
Now we use Kronecker products of Fourier matrices in order to diagonalize generalized circulant matrices. Assume that vectors $\mathbf{c}_{k} \in \mathbb{C}^{M}, k=0, \ldots, L-1$, are given and let $\mathbf{A}(k):=$ circ \mathbf{c}_{k} be the corresponding M-by- M circulant matrices.

Then the L-by- L block matrix

$$
\mathbf{A}_{L M}:=(\mathbf{A}((j-k) \bmod L))_{j, k=0}^{L-1}=\left(\begin{array}{cccc}
\mathbf{A}(0) & \mathbf{A}(L-1) & \ldots & \mathbf{A}(1) \\
\mathbf{A}(1) & \mathbf{A}(0) & \ldots & \mathbf{A}(2) \\
\vdots & \vdots & & \vdots \\
\mathbf{A}(L-1) & \mathbf{A}(L-2) & \ldots & \mathbf{A}(0)
\end{array}\right) \in \mathbb{C}^{L M \times L M}
$$

is called L-by- L block circulant matrix with M-by- M circulant blocks. We observe that L-by- L block circulant matrices with M-by- M circulant blocks commute, since circulant matrices commute by Theorem 3.34. Note that $\mathbf{A}_{L M}$ is already determined by the vectors $\mathbf{c}_{k}, k=0, \ldots, L-1$, or equivalently by

$$
\mathbf{C}_{M, L}:=\left(\mathbf{c}_{0}|\ldots| \mathbf{c}_{L-1}\right) \in \mathbb{C}^{M \times L}
$$

Example 3.43 Let \mathbf{A}_{L} be an L-by- L circulant matrix and let \mathbf{B}_{M} be an M-by- M circulant matrix. Obviously, the Kronecker product $\mathbf{A}_{L} \otimes \mathbf{B}_{M}$ is an L-by- L block circulant matrix with M-by- M circulant blocks \mathbf{B}_{M}. In particular, $\mathbf{I}_{L} \otimes \mathbf{B}_{M}$ is a block diagonal matrix with circulant blocks. The so-called Kronecker sum of \mathbf{A}_{L} and \mathbf{B}_{M} defined by

$$
\begin{equation*}
\left(\mathbf{A}_{L} \otimes \mathbf{I}_{M}\right)+\left(\mathbf{I}_{L} \otimes \mathbf{B}_{M}\right) \in \mathbb{C}^{L M \times L M} \tag{3.57}
\end{equation*}
$$

is also a block matrix with circulant blocks.
Lemma 3.44 Each L-by-L block circulant matrix $\mathbf{A}_{L M} \in \mathbb{C}^{L M \times L M}$ with M-byM circulant blocks $\mathbf{A}(k)=$ circ \mathbf{c}_{k} with $\mathbf{c}_{k} \in \mathbb{C}^{M}, k=0, \ldots, L-1$ can be diagonalized by the Kronecker product $\mathbf{F}_{L} \otimes \mathbf{F}_{M}$ of the Fourier matrices \mathbf{F}_{L} and \mathbf{F}_{M} in the following form

$$
\mathbf{A}_{L M}=\left(\mathbf{F}_{L} \otimes \mathbf{F}_{M}\right)^{-1}\left(\operatorname{diag}\left(\operatorname{vec} \hat{\mathbf{C}}_{M, L}\right)\right)\left(\mathbf{F}_{L} \otimes \mathbf{F}_{M}\right)
$$

where $\hat{\mathbf{C}}_{M, L}:=\mathbf{F}_{M} \mathbf{C}_{M, L} \mathbf{F}_{L}$. Moreover we have

$$
\left(\mathbf{F}_{L} \otimes \mathbf{F}_{M}\right) \operatorname{vec} \mathbf{C}_{M, L}=\operatorname{vec} \hat{\mathbf{C}}_{M, L}
$$

Proof First we compute the product $\left(\mathbf{F}_{L} \otimes \mathbf{I}_{M}\right) \mathbf{A}_{L M}\left(\mathbf{F}_{L}^{-1} \otimes \mathbf{I}_{M}\right)$ by blockwise multiplication

$$
\frac{1}{L}\left(w_{L}^{j k} \mathbf{I}_{M}\right)_{j, k=0}^{L-1}(\mathbf{A}((k-\ell) \bmod L))_{k, \ell=0}^{L-1}\left(w_{L}^{-\ell n} \mathbf{I}_{M}\right)_{\ell, n=0}^{L-1}
$$

The result is a block matrix $(\mathbf{B}(j, n))_{j, n=0}^{L-1}$ with the blocks

$$
\mathbf{B}(j, n)=\frac{1}{L} \sum_{k=0}^{L-1} \sum_{\ell=0}^{L-1} w_{L}^{j k-\ell n} \mathbf{A}((k-\ell) \bmod L) \in \mathbb{C}^{M \times M} .
$$

In the case $j=n$ we obtain after substitution $m=(k-\ell) \bmod L$ that

$$
\begin{equation*}
\mathbf{B}(j, j)=\sum_{m=0}^{L-1} w_{L}^{j m} \mathbf{A}(m) \tag{3.58}
\end{equation*}
$$

In the case $j \neq n$ we see by Lemma 3.2 that $\mathbf{B}(j, n)$ is equal to the M-by- M zero matrix. Hence $\left(\mathbf{F}_{L} \otimes \mathbf{I}_{M}\right) \mathbf{A}_{L M}\left(\mathbf{F}_{L}^{-1} \otimes \mathbf{I}_{M}\right)$ is a block diagonal matrix with the diagonal blocks in (3.58). By Theorem 3.42, the block circulant matrix $\mathbf{A}_{L M}$ with circulant blocks can be represented in the form

$$
\mathbf{A}_{L M}=\left(\mathbf{F}_{L}^{-1} \otimes \mathbf{I}_{M}\right)\left[\operatorname{diag}(\mathbf{B}(j, j))_{j=0}^{L-1}\right]\left(\mathbf{F}_{L} \otimes \mathbf{I}_{M}\right) .
$$

Since $\mathbf{A}(m)=$ circ \mathbf{c}_{m} are circulant matrices by assumption, we obtain by Theorem 3.31 that

$$
\mathbf{A}(m)=\mathbf{F}_{M}^{-1}\left(\operatorname{diag}\left(\mathbf{F}_{M} \mathbf{c}_{m}\right)\right) \mathbf{F}_{M}
$$

and hence by (3.58)

$$
\mathbf{B}(j, j)=\mathbf{F}_{M}^{-1}\left(\sum_{m=0}^{L-1} w_{L}^{j m} \operatorname{diag}\left(\mathbf{F}_{M} \mathbf{c}_{m}\right)\right) \mathbf{F}_{M}
$$

Thus by Theorem 3.42 we conclude

$$
\begin{aligned}
\mathbf{A}_{L M} & =\left(\mathbf{F}_{L}^{-1} \otimes \mathbf{I}_{M}\right)\left(\mathbf{I}_{L} \otimes \mathbf{F}_{M}^{-1}\right)\left[\operatorname{diag}\left(\sum_{m=0}^{L-1} w_{L}^{j m} \mathbf{F}_{M} \mathbf{c}_{m}\right)_{j=0}^{L-1}\right]\left(\mathbf{I}_{L} \otimes \mathbf{F}_{M}\right)\left(\mathbf{F}_{L} \otimes \mathbf{I}_{M}\right) \\
& =\left(\mathbf{F}_{L}^{-1} \otimes \mathbf{F}_{M}^{-1}\right)\left[\operatorname{diag}\left(\sum_{m=0}^{L-1} w_{L}^{j m} \mathbf{F}_{M} \mathbf{c}_{m}\right)_{j=0}^{L-1}\right]\left(\mathbf{F}_{L} \otimes \mathbf{F}_{M}\right) \\
& =\left(\mathbf{F}_{L} \otimes \mathbf{F}_{M}\right)^{-1}\left[\operatorname{diag}\left(\sum_{m=0}^{L-1} w_{L}^{j m} \mathbf{F}_{M} \mathbf{c}_{m}\right)_{j=0}^{L-1}\right]\left(\mathbf{F}_{L} \otimes \mathbf{F}_{M}\right) .
\end{aligned}
$$

Finally, we show that

$$
\left(\sum_{m=0}^{L-1} w_{L}^{j m} \mathbf{F}_{M} \mathbf{c}_{m}\right)_{j=0}^{L-1}=\operatorname{vec} \hat{\mathbf{C}}_{M, L}
$$

We recall that $\mathbf{C}_{M, L}=\left(c_{j, k}\right)_{j, k=0}^{M-1, L-1}$ has the columns $\mathbf{c}_{m}=\left(c_{j, m}\right)_{j=0}^{M-1}, m=$ $0, \ldots, L-1$, and $\hat{\mathbf{C}}_{M, L}:=\mathbf{F}_{M} \mathbf{C}_{M, L} \mathbf{F}_{L}=\left(\hat{c}_{\ell, k}\right)_{\ell, k=0}^{M-1, L-1}$ has the entries

$$
\hat{c}_{\ell, k}=\sum_{j=0}^{M-1} \sum_{m=0}^{L-1} c_{j, m} w_{M}^{j \ell} w_{L}^{k m} .
$$

From $\mathbf{F}_{L} \otimes \mathbf{F}_{M}=\left(w_{L}^{k m} \mathbf{F}_{M}\right)_{k, m=0}^{L-1}$ and $\operatorname{vec} \mathbf{C}_{M, L}=\left(\mathbf{c}_{m}\right)_{m=0}^{L-1}$ it follows by blockwise multiplication

$$
\begin{aligned}
\left(\mathbf{F}_{L} \otimes \mathbf{F}_{M}\right) \operatorname{vec} \mathbf{C}_{M, L} & =\left(\sum_{m=0}^{L-1} w_{L}^{k m} \mathbf{F}_{M} \mathbf{c}_{m}\right)_{k=0}^{L-1}=\left(\left(\sum_{m=0}^{L-1} \sum_{j=0}^{M-1} c_{j, m} w_{M}^{j \ell} w_{L}^{k m}\right)_{\ell=0}^{M-1}\right)_{k=0}^{L-1} \\
& =\left(\left(\hat{c}_{\ell, k}\right)_{\ell=0}^{M-1}\right)_{k=0}^{L-1}=\operatorname{vec} \hat{\mathbf{C}}_{M, L}
\end{aligned}
$$

This completes the proof.
Corollary 3.45 Let $\mathbf{a} \in \mathbb{C}^{L}$ and $\mathbf{b} \in \mathbb{C}^{M}$ be arbitrary given vectors and let $\mathbf{A}_{L}=$ circ \mathbf{a} and $\mathbf{B}_{M}=$ circ \mathbf{b} be the corresponding circulant matrices. Then both the Kronecker product $\mathbf{A}_{L} \otimes \mathbf{B}_{M}$ and the Kronecker sum (3.57) of \mathbf{A}_{L} and \mathbf{B}_{M} can be diagonalized by the Kronecker product $\mathbf{F}_{L} \otimes \mathbf{F}_{M}$.
If $\lambda \in \mathbb{C}$ be an eigenvalue of \mathbf{A}_{L} with corresponding eigenvector $\mathbf{x} \in \mathbb{C}^{L}$ and if $\mu \in \mathbb{C}$ be an eigenvalue of \mathbf{B}_{M} with corresponding eigenvector $\mathbf{y} \in \mathbb{C}^{M}$, then $\lambda+\mu$ is an eigenvalue of the Kronecker sum (3.57) of \mathbf{A}_{L} and \mathbf{B}_{M} with an eigenvector $\mathbf{x} \otimes \mathbf{y} \in \mathbb{C}^{L M}$.

Proof From Lemma 3.44 and Example 3.43 it follows immediately that the Kronecker product $\mathbf{A}_{L} \otimes \mathbf{B}_{M}$ and the Kronecker sum (3.57) can be diagonalized by $\mathbf{F}_{L} \otimes \mathbf{F}_{M}$.

If λ be an eigenvalue of \mathbf{A}_{L} and if μ be an eigenvalue of \mathbf{B}_{M}, then we see by Lemma 3.41 that

$$
\begin{aligned}
{\left[\left(\mathbf{A}_{L} \otimes \mathbf{I}_{M}\right)+\left(\mathbf{I}_{L} \otimes \mathbf{B}_{M}\right)\right](\mathbf{x} \otimes \mathbf{y}) } & =\left(\left(\mathbf{A}_{L} \mathbf{x}\right) \otimes \mathbf{y}\right)+\left(\left(\mathbf{x} \otimes\left(\mathbf{B}_{M} \mathbf{y}\right)\right)\right. \\
& =(\lambda+\mu)(\mathbf{x} \otimes \mathbf{y})
\end{aligned}
$$

3.5 Discrete Trigonometric Transforms

In this section we consider some real versions of the DFT. Discrete trigonometric transforms are widely used in applied mathematics, digital signal processing, and image compression. Examples of such real transforms are a discrete cosine transform (DCT), discrete sine transform (DST), and discrete Hartley transform (DHT). We will introduce these transforms and show that they are generated by orthogonal matrices.
Lemma 3.46 Let $N \geq 2$ be a given integer. Then the set of cosine vectors of type I

$$
\mathbf{c}_{k}^{\mathrm{I}}:=\sqrt{\frac{2}{N}} \varepsilon_{N}(k)\left(\varepsilon_{N}(j) \cos \frac{j k \pi}{N}\right)_{j=0}^{N}, \quad k=0, \ldots, N,
$$

forms an orthonormal basis of \mathbb{R}^{N+1}, where $\varepsilon_{N}(0)=\varepsilon_{N}(N):=\frac{\sqrt{2}}{2}$ and $\varepsilon_{N}(j):=$ 1 for $j=1, \ldots, N-1$. The $(N+1)$-by- $(N+1)$ cosine matrix of type I is defined by

$$
\begin{equation*}
\mathbf{C}_{N+1}^{\mathrm{I}}:=\sqrt{\frac{2}{N}}\left(\varepsilon_{N}(j) \varepsilon_{N}(k) \cos \frac{j k \pi}{N}\right)_{j, k=0}^{N}, \tag{3.59}
\end{equation*}
$$

i.e., it has the cosine vectors of type I as columns. Then $\mathbf{C}_{N+1}^{\mathrm{I}}$ is symmetric and orthogonal, i.e., $\left(\mathbf{C}_{N+1}^{\mathrm{I}}\right)^{-1}=\mathbf{C}_{N+1}^{\mathrm{I}}$.
Proof By Example 1.14 we know that for $x \in \mathbb{R} \backslash 2 \pi \mathbb{Z}$

$$
\sum_{j=1}^{N-1} \cos (j x)=\frac{\sin \frac{(2 N-1) x}{2}}{2 \sin \frac{x}{2}}-\frac{1}{2}
$$

In particular, it follows for $x=\frac{2 \pi k}{N}$,

$$
\begin{equation*}
\sum_{j=1}^{N-1} \cos \frac{2 k j \pi}{N}=-1, \quad k \in \mathbb{Z} \backslash N \mathbb{Z} \tag{3.60}
\end{equation*}
$$

and for $x=\frac{(2 k+1) \pi}{N}$,

$$
\begin{equation*}
\sum_{j=1}^{N-1} \cos \frac{(2 k+1) j \pi}{N}=0, \quad k \in \mathbb{Z} \tag{3.61}
\end{equation*}
$$

For $k, \ell \in\{0, \ldots, N\}$, the inner product $\left\langle\mathbf{c}_{k}^{\mathrm{I}}, \mathbf{c}_{\ell}^{\mathrm{I}}\right\rangle$ can be calculated as follows:

$$
\begin{align*}
\left\langle\mathbf{c}_{k}^{\mathrm{I}}, \mathbf{c}_{\ell}^{\mathrm{I}}\right\rangle= & \frac{2}{N} \varepsilon_{N}(k) \varepsilon_{N}(\ell) \sum_{j=0}^{N} \varepsilon_{N}(j)^{2} \cos \frac{j k \pi}{N} \cos \frac{j \ell \pi}{N} \\
= & \frac{1}{N} \varepsilon_{N}(k) \varepsilon_{N}(\ell)\left(1+(-1)^{k+\ell}+\sum_{j=1}^{N-1} \cos \frac{(k-\ell) j \pi}{N}\right. \\
& \left.+\sum_{j=1}^{N-1} \cos \frac{(k+\ell) j \pi}{N}\right) . \tag{3.62}
\end{align*}
$$

In the case $k \neq \ell$ with even $k+\ell$, the integer $k-\ell$ is also even. Hence by (3.60) and (3.62) we obtain $\left\langle\mathbf{c}_{k}^{\mathrm{I}}, \mathbf{c}_{\ell}^{\mathrm{I}}\right\rangle=0$. In the case $k \neq \ell$ with odd $k+\ell$, the integer $k-\ell$ is odd such that $\left\langle\mathbf{c}_{k}^{\mathrm{I}}, \mathbf{c}_{\ell}^{\mathrm{I}}\right\rangle=0$ by (3.61) and (3.62). For $k=\ell \in\{1, \ldots, N-1\}$ it follows from (3.60) and (3.62) that

$$
\left\langle\mathbf{c}_{k}^{\mathrm{I}}, \mathbf{c}_{\ell}^{\mathrm{I}}\right\rangle=\frac{1}{N}\left(2+(N-1)+\sum_{j=1}^{N-1} \cos \frac{2 k j \pi}{N}\right)=1
$$

For $k=\ell \in\{0, N\}$, we get

$$
\left\langle\mathbf{c}_{k}^{\mathrm{I}}, \mathbf{c}_{\ell}^{\mathrm{I}}\right\rangle=\frac{1}{2 N}(2+(N-1)+(N-1))=1 .
$$

Thus the set $\left\{\mathbf{c}_{k}^{\mathrm{I}}: k=0, \ldots, N\right\}$ is an orthonormal basis of \mathbb{R}^{N+1}, because the $N+1$ cosine vectors of type I are linearly independent and $\operatorname{dim} \mathbb{R}^{N+1}=N+1$.

The linear map from \mathbb{R}^{N+1} onto \mathbb{R}^{N+1}, which is represented by the matrixvector product $\mathbf{C}_{N+1}^{\mathrm{I}} \mathbf{a}=\left(\left\langle\mathbf{a}, \mathbf{c}_{k}^{\mathrm{I}}\right\rangle\right)_{k=0}^{N}$ for arbitrary $\mathbf{a} \in \mathbb{R}^{N+1}$, is called discrete cosine transform of type I and length $N+1$ and will be abbreviated by DCT-I ($N+$ 1). As we will show in Sect. 6.2 (see e.g. Algorithm 6.22), this transform plays an important role for evaluating expansions of Chebyshev polynomials.

Lemma 3.47 Let $N \geq 2$ be a given integer. Then the set of cosine vectors of type II

$$
\mathbf{c}_{k}^{\mathrm{II}}:=\sqrt{\frac{2}{N}}\left(\varepsilon_{N}(j) \cos \frac{(2 k+1) j \pi}{2 N}\right)_{j=0}^{N-1}, \quad k=0, \ldots, N-1,
$$

forms an orthonormal basis of \mathbb{R}^{N}. The N-by- N cosine matrix of type II is defined by the column vectors $\mathbf{c}_{k}^{\mathrm{II}}$,

$$
\begin{equation*}
\mathbf{C}_{N}^{\mathrm{II}}:=\sqrt{\frac{2}{N}}\left(\varepsilon_{N}(j) \cos \frac{(2 k+1) j \pi}{2 N}\right)_{j, k=0}^{N-1} . \tag{3.63}
\end{equation*}
$$

The matrix $\mathbf{C}_{N}^{\mathrm{II}}$ is orthogonal, but it is not symmetric. We have $\left(\mathbf{C}_{N}^{\mathrm{II}}\right)^{-1}=\left(\mathbf{C}_{N}^{\mathrm{II}}\right)^{\top}$. Proof For $k, \ell \in\{0, \ldots, N-1\}$, we calculate the inner product

$$
\begin{align*}
\left\langle\mathbf{c}_{k}^{\mathrm{II}}, \mathbf{c}_{\ell}^{\mathrm{II}}\right\rangle & =\frac{2}{N} \sum_{j=0}^{N-1} \varepsilon_{N}(j)^{2} \cos \frac{(2 k+1) j \pi}{2 N} \cos \frac{(2 \ell+1) j \pi}{2 N} \\
& =\frac{1}{N}\left(1+\sum_{j=1}^{N-1} \cos \frac{(k-\ell) j \pi}{N}+\sum_{j=1}^{N-1} \cos \frac{(k+\ell+1) j \pi}{N}\right) . \tag{3.64}
\end{align*}
$$

In the case $k \neq \ell$ this inner product vanishes by (3.60), (3.61), and (3.64). For $k=\ell$ we obtain by (3.61) and (3.64) that

$$
\left\langle\mathbf{c}_{k}^{\mathrm{II}}, \mathbf{c}_{k}^{\mathrm{II}}\right\rangle=\frac{1}{N}\left(1+(N-1)+\sum_{j=1}^{N-1} \cos \frac{(2 k+1) j \pi}{N}\right)=1 .
$$

The linear map from \mathbb{R}^{N} onto \mathbb{R}^{N}, represented by $\mathbf{C}_{N}^{\mathrm{II}} \mathbf{a}=\left(\left\langle\mathbf{a}, \mathbf{c}_{k}^{\mathrm{II}}\right\rangle\right)_{k=0}^{N-1}$ for arbitrary $\mathbf{a} \in \mathbb{R}^{N}$, is called discrete cosine transform of type II and length N and will be abbreviated by DCT-II (N). The DCT-II plays a special role for decorrelation of digital signals and images.

The N-by- N cosine matrix of type III is defined by

$$
\begin{equation*}
\mathbf{C}_{N}^{\mathrm{III}}:=\sqrt{\frac{2}{N}}\left(\varepsilon_{N}(k) \cos \frac{(2 j+1) k \pi}{2 N}\right)_{j, k=0}^{N-1} . \tag{3.65}
\end{equation*}
$$

Obviously, $\mathbf{C}_{N}^{\mathrm{III}}=\left(\mathbf{C}_{N}^{\mathrm{II}}\right)^{\top}=\left(\mathbf{C}_{N}^{\mathrm{II}}\right)^{-1}$. The columns

$$
\mathbf{c}_{k}^{\mathrm{III}}:=\sqrt{\frac{2}{N}} \varepsilon_{N}(k)\left(\cos \frac{(2 j+1) k \pi}{2 N}\right)_{j=0}^{N-1}, \quad k=0, \ldots, N-1,
$$

of $\mathbf{C}_{N}^{\text {III }}$ form an orthonormal basis of \mathbb{R}^{N} and are called cosine vectors of type III. The matrix $\mathbf{C}_{N}^{\text {III }}$ also generates a linear orthogonal map from \mathbb{R}^{N} onto \mathbb{R}^{N}, which is called discrete cosine transform of type III and length N, abbreviated by DCTIII (N). In particular, the DCT-III (N) is the inverse DCT-II (N).

Lemma 3.48 Let $N \geq 2$ be a given integer. Then the set of cosine vectors of type IV

$$
\mathbf{c}_{k}^{\mathrm{IV}}:=\sqrt{\frac{2}{N}}\left(\cos \frac{(2 j+1)(2 k+1) \pi}{4 N}\right)_{j=0}^{N-1}, \quad k=0, \ldots, N-1
$$

forms an orthonormal basis of \mathbb{R}^{N}. The N-by- N cosine matrix of type IV, defined by the columns $\mathbf{c}_{k}^{\mathrm{IV}}$,

$$
\begin{equation*}
\mathbf{C}_{N}^{\mathrm{IV}}:=\sqrt{\frac{2}{N}}\left(\cos \frac{(2 j+1)(2 k+1) \pi}{4 N}\right)_{j, k=0}^{N-1}, \tag{3.66}
\end{equation*}
$$

is symmetric and orthogonal, i.e., $\left(\mathbf{C}_{N}^{\mathrm{IV}}\right)^{-1}=\mathbf{C}_{N}^{\mathrm{IV}}$.
Proof From

$$
2 \sin x \sum_{j=0}^{N-1} \cos (2 j+1) x=\sum_{j=0}^{N-1}(\sin (2 j+2) x-\sin (2 j x))=\sin (2 N x)
$$

it follows for $x \in \mathbb{R} \backslash \pi \mathbb{Z}$

$$
\sum_{j=0}^{N-1} \cos (2 j+1) x=\frac{\sin (2 N x)}{2 \sin x}
$$

and hence

$$
\begin{align*}
\sum_{j=0}^{N-1} \cos \frac{(2 j+1) k \pi}{N}=0, & k \in \mathbb{Z} \backslash N \mathbb{Z}, \tag{3.67}\\
\sum_{j=0}^{N-1} \cos \frac{(2 j+1)(2 k+1) \pi}{2 N} & =0, \quad k \in \mathbb{Z} . \tag{3.68}
\end{align*}
$$

For $k, \ell \in\{0, \ldots, N-1\}$, we calculate the inner product

$$
\begin{align*}
& \left\langle\mathbf{c}_{k}^{\mathrm{IV}}, \mathbf{c}_{\ell}^{\mathrm{IV}}\right\rangle=\frac{2}{N} \sum_{j=0}^{N-1} \cos \frac{(2 j+1)(2 k+1) \pi}{4 N} \cos \frac{(2 j+1)(2 \ell+1) \pi}{4 N} \\
= & \frac{1}{N}\left(\sum_{j=0}^{N-1} \cos \frac{(2 j+1)(k-\ell) \pi}{2 N}+\sum_{j=0}^{N-1} \cos \frac{(2 j+1)(k+\ell+1) \pi}{2 N}\right) . \tag{3.69}
\end{align*}
$$

In the case $k \neq \ell$ this inner product vanishes by (3.67)-(3.69). For $k=\ell$ we obtain by (3.69) and (3.68) that

$$
\left\langle\mathbf{c}_{k}^{\mathrm{IV}}, \mathbf{c}_{\ell}^{\mathrm{IV}}\right\rangle=\frac{1}{N}\left(N+\sum_{j=0}^{N-1} \cos \frac{(2 j+1)(2 k+1) \pi}{2 N}\right)=1
$$

The linear map from \mathbb{R}^{N} onto \mathbb{R}^{N}, given by $\mathbf{C}_{N}^{\mathrm{IV}} \mathbf{a}=\left(\left\langle\mathbf{a}, \mathbf{c}_{k}^{\mathrm{IV}}\right\rangle\right)_{k=0}^{N-1}$ for arbitrary $\mathbf{a} \in \mathbb{R}^{N}$, is called discrete cosine transform of type IV and length N and will be abbreviated by DCT-IV (N). We will study the interplay between DCT-II (N) and DCT-IV (N) in Sect. 6.3.

Analogously to DCTs of types I-IV one can introduce discrete sine transforms.
Lemma 3.49 Let $N \geq 2$ be a given integer. Then the set of sine vectors of type I

$$
\mathbf{s}_{k}^{\mathrm{I}}:=\sqrt{\frac{2}{N}}\left(\sin \frac{(j+1)(k+1) \pi}{N}\right)_{j=0}^{N-2}, \quad k=0, \ldots, N-2,
$$

forms an orthonormal basis of \mathbb{R}^{N-1}. The $(N-1)$-by- $(N-1)$ sine matrix of type I, defined by

$$
\begin{equation*}
\mathbf{S}_{N-1}^{\mathrm{I}}:=\sqrt{\frac{2}{N}}\left(\sin \frac{(j+1)(k+1) \pi}{N}\right)_{j, k=0}^{N-2}, \tag{3.70}
\end{equation*}
$$

is symmetric and orthogonal, i.e., $\left(\mathbf{S}_{N-1}^{\mathrm{I}}\right)^{-1}=\mathbf{S}_{N-1}^{\mathrm{I}}$.
Proof For $k, \ell \in\{0, \ldots, N-1\}$, we calculate the inner product

$$
\begin{align*}
\left\langle\mathbf{s}_{k}^{\mathrm{I}}, \mathbf{s}_{\ell}^{\mathrm{I}}\right\rangle & =\frac{2}{N} \sum_{j=0}^{N-2} \sin \frac{(j+1)(k+1) \pi}{N} \sin \frac{(j+1)(\ell+1) \pi}{N} \\
& =\frac{1}{N}\left(\sum_{j=1}^{N-1} \cos \frac{(k-\ell) j \pi}{N}-\sum_{j=1}^{N-1} \cos \frac{(k+\ell+2) j \pi}{N}\right) . \tag{3.71}
\end{align*}
$$

In the case $k \neq \ell$ we observe that $k-\ell$ and $k+\ell+2$ are either both even or both odd. Hence $\left\langle\mathbf{s}_{k}^{\mathrm{I}}, \mathbf{s}_{\ell}^{\mathrm{I}}\right\rangle$ vanishes by (3.60), (3.61), and (3.71). For $k=\ell$ we obtain by (3.71) and (3.61) that

$$
\left\langle\mathbf{s}_{k}^{\mathrm{I}}, \mathbf{s}_{k}^{\mathrm{I}}\right\rangle=\frac{1}{N}\left((N-1)-\sum_{j=1}^{N-1} \cos \frac{(2 k+2) j \pi}{N}\right)=1 .
$$

The linear map from \mathbb{R}^{N-1} onto \mathbb{R}^{N-1} generated by $\mathbf{S}_{N-1}^{\mathrm{I}} \mathbf{a}=\left(\left\langle\mathbf{a}, \mathbf{s}_{k}^{\mathrm{I}}\right\rangle\right)_{k=0}^{N-2}$ for arbitrary $\mathbf{a} \in \mathbb{R}^{N-1}$, is called discrete sine transform of type I and length $N-1$ and will be abbreviated by DST-I $(N-1)$.

Let $N \geq 2$ be a given integer. The N-by- N sine matrices of type II-IV are defined by

$$
\begin{align*}
& \mathbf{S}_{N}^{\mathrm{II}}:=\sqrt{\frac{2}{N}}\left(\varepsilon_{N}(j+1) \sin \frac{(j+1)(2 k+1) \pi}{2 N}\right)_{j, k=0}^{N-1}, \tag{3.72}\\
& \mathbf{S}_{N}^{\mathrm{III}}:=\left(\mathbf{S}_{N}^{\mathrm{II}}\right)^{\top}, \tag{3.73}\\
& \mathbf{S}_{N}^{\mathrm{IV}}:=\sqrt{\frac{2}{N}}\left(\sin \frac{(2 j+1)(2 k+1) \pi}{4 N}\right)_{j, k=0}^{N-1} . \tag{3.74}
\end{align*}
$$

The discrete sine transform of type II-IV and length N is the linear mapping from \mathbb{R}^{N} onto \mathbb{R}^{N}, which is generated by the matrix-vector product with the N-by- N sine matrix of type II-IV. For these discrete sine transforms, we use the abbreviations DST-II (N), DST-III (N), or DST-IV (N).

In the following lemma we recall the intertwining relations of above cosine and sine matrices.

Lemma 3.50 For each integer $N \geq 2$, the cosine and sine matrices satisfy the following intertwining relations:

$$
\begin{aligned}
\mathbf{C}_{N+1}^{\mathrm{I}} \mathbf{J}_{N+1} & =\mathbf{D}_{N+1} \mathbf{C}_{N+1}^{\mathrm{I}}, \quad \mathbf{S}_{N-1}^{\mathrm{I}} \mathbf{J}_{N-1}=\mathbf{D}_{N-1} \mathbf{S}_{N-1}^{\mathrm{I}}, \\
\mathbf{C}_{N}^{\mathrm{II}} \mathbf{J}_{N} & =\mathbf{D}_{N} \mathbf{C}_{N}^{\mathrm{II}}, \quad \mathbf{S}_{N}^{\mathrm{II}} \mathbf{J}_{N}=\mathbf{D}_{N} \mathbf{S}_{N}^{\mathrm{II}}, \\
\mathbf{J}_{N} \mathbf{C}_{N}^{\mathrm{III}} & =\mathbf{C}_{N}^{\mathrm{III}} \mathbf{D}_{N}, \quad \mathbf{J}_{N} \mathbf{S}_{N}^{\mathrm{III}}=\mathbf{S}_{N}^{\mathrm{III}} \mathbf{D}_{N}, \\
(-1)^{N-1} \mathbf{C}_{N}^{\mathrm{IV}} \mathbf{J}_{N} \mathbf{D}_{N} & =\mathbf{J}_{N} \mathbf{D}_{N} \mathbf{C}_{N}^{\mathrm{IV}}, \quad(-1)^{N-1} \mathbf{S}_{N}^{\mathrm{IV}} \mathbf{J}_{N} \mathbf{D}_{N}=\mathbf{J}_{N} \mathbf{D}_{N} \mathbf{S}_{N}^{\mathrm{IV}}
\end{aligned}
$$

and further

$$
\begin{equation*}
\mathbf{J}_{N} \mathbf{C}_{N}^{\mathrm{II}}=\mathbf{S}_{N}^{\mathrm{II}} \mathbf{D}_{N}, \quad \mathbf{J}_{N} \mathbf{C}_{N}^{\mathrm{III}}=\mathbf{D}_{N} \mathbf{S}_{N}^{\mathrm{III}}, \quad \mathbf{C}_{N}^{\mathrm{IV}} \mathbf{J}_{N}=\mathbf{D}_{N} \mathbf{S}_{N}^{\mathrm{IV}}, \tag{3.75}
\end{equation*}
$$

where \mathbf{J}_{N} denotes the counter-identity matrix and where $\mathbf{D}_{N}:=\operatorname{diag}\left((-1)^{k}\right)_{k=0}^{N-1}$ is the diagonal sign matrix.

The proof is straightforward and is omitted here.
Lemma 3.51 For each integer $N \geq 2$, the N-by- N sine matrices of type II-IV are orthogonal. The columns of $\mathbf{S}_{N}^{\mathrm{II}}, \mathbf{S}_{N}^{\mathrm{III}}$, or $\mathbf{S}_{N}^{\mathrm{IV}}$ form an orthonormal basis of \mathbb{R}^{N}.

Proof As shown by Lemmas 3.47 and 3.48, the cosine matrices of types II, III, and IV are orthogonal. Obviously, the matrices \mathbf{J}_{N} and \mathbf{D}_{N} are orthogonal. By (3.75), the
sine matrices of types II-IV can be represented as products of orthogonal matrices

$$
\mathbf{S}_{N}^{\mathrm{II}}=\mathbf{J}_{N} \mathbf{C}_{N}^{\mathrm{II}} \mathrm{D}_{N}, \quad \mathbf{S}_{N}^{\mathrm{III}}=\left(\mathbf{S}_{N}^{\mathrm{II}}\right)^{\top}=\mathbf{D}_{N} \mathbf{C}_{N}^{\mathrm{III}} \mathrm{~J}_{N}, \quad \mathbf{S}_{N}^{\mathrm{IV}}=\mathbf{D}_{N} \mathbf{C}_{N}^{\mathrm{IV}} \mathbf{J}_{N}
$$

Hence the sine matrices $\mathbf{S}_{N}^{\mathrm{II}}, \mathbf{S}_{N}^{\mathrm{III}}$, and $\mathbf{S}_{N}^{\mathrm{IV}}$ are orthogonal, i.e., the corresponding columns of these sine matrices form orthonormal bases of \mathbb{R}^{N}.

Remark 3.52 First cosine and sine matrices appeared in connection with trigonometric approximation (see [163] and [315]). In signal processing, cosine matrices of type II and III were introduced in [2]. The above classification of cosine and sine matrices was given in [367] (cf. [306, pp. 12-21]).
Other proofs for the orthogonality of the cosine matrices $\mathbf{C}_{N+1}^{\mathrm{I}}, \mathbf{C}_{N}^{\mathrm{II}}, \mathbf{C}_{N}^{\mathrm{III}}$, and $\mathbf{C}_{N}^{\mathrm{IV}}$ can be found in [306, pp. 12-16] and [376, pp. 85-90]. Strang [343] pointed out that the cosine vectors of each type are eigenvectors of a symmetric second difference matrix and therefore orthogonal.
We will study discrete trigonometric transforms and its applications in more detail in Chap. 6. In Sect. 6.3, we will derive fast algorithms for these discrete trigonometric transforms with computational costs $\mathscr{O}(N \log N)$, if the transform length N is a power of two.

Remark 3.53 The N-by- N Hartley matrix

$$
\mathbf{H}_{N}:=\frac{1}{N}\left(\operatorname{cas} \frac{j k \pi}{N}\right)_{j, k=0}^{N-1}
$$

with cas $x:=\cos x+\sin x$ for $x \in \mathbb{R}$, where "cas" is an abbreviation of the expression "cosine and sine". The historical roots of this matrix go back to the introduction of continuous Hartley transform by R. Hartley in 1942. The need to sample signals and approximate the continuous Hartley transform by a matrixvector product led to the Hartley matrix introduced by Bracewell [44]. The Hartley matrix is symmetric and orthogonal, since the Hartley vectors

$$
\mathbf{h}_{k}:=\frac{1}{N}\left(\operatorname{cas} \frac{j k \pi}{N}\right)_{j=0}^{N-1}, \quad k=0, \ldots, N-1
$$

form an orthonormal basis of \mathbb{R}^{N}. The linear map from \mathbb{R}^{N} onto \mathbb{R}^{N} generated by the matrix vector product $\mathbf{H}_{N} \mathbf{a}=\left(\left\langle\mathbf{a}, \mathbf{h}_{k}\right\rangle\right)_{k=0}^{N-1}$ for arbitrary $\mathbf{a} \in \mathbb{R}^{N}$, is called discrete Hartley transform of length N and will be abbreviated by DHT(N). Note that the basic properties of DHT are discussed in [7] that also presents fast and numerically stable algorithms for DHT of radix-2 length N.

Chapter 4
 Multidimensional Fourier Methods

In this chapter, we consider d-dimensional Fourier methods for fixed $d \in \mathbb{N}$. We start with Fourier series of d-variate, 2π-periodic functions $f: \mathbb{T}^{d} \rightarrow \mathbb{C}$ in Sect. 4.1, where we follow the lines of Chap. 1. In particular, we present basic properties of the Fourier coefficients and learn about their decay for smooth functions.

Then, in Sect. 4.2, we deal with Fourier transforms of functions defined on \mathbb{R}^{d}. Here, we follow another path than in the case $d=1$ considered in Chap. 2. We show that the Fourier transform is a linear, bijective operator on the Schwartz space $\mathscr{S}\left(\mathbb{R}^{d}\right)$ of rapidly decaying functions. Using the density of $\mathscr{S}\left(\mathbb{R}^{d}\right)$ in $L_{1}\left(\mathbb{R}^{d}\right)$ and $L_{2}\left(\mathbb{R}^{d}\right)$, the Fourier transform on these spaces is discussed. The Poisson summation formula and the Fourier transforms of radial functions are also addressed.

In Sect. 4.3, we introduce tempered distributions as linear, continuous functionals on the Schwartz space $\mathscr{S}\left(\mathbb{R}^{d}\right)$. We consider Fourier transforms of tempered distributions and Fourier series of periodic tempered distributions. Further, we introduce the Hilbert transform and its multidimensional generalization, the Riesz transform.

As in the case $d=1$, any numerical application of d-dimensional Fourier series or Fourier transforms leads to d-dimensional discrete Fourier transforms handled in Sect. 4.4. We present the basic properties of the two-dimensional and higherdimensional DFT, including the convolution property and the aliasing formula.

4.1 Multidimensional Fourier Series

We consider d-variate, 2π-periodic functions $f: \mathbb{R}^{d} \rightarrow \mathbb{C}$, i.e., functions fulfilling $f(\mathbf{x})=f(\mathbf{x}+2 \pi \mathbf{k})$ for all $\mathbf{x}=\left(x_{j}\right)_{j=1}^{d} \in \mathbb{R}^{d}$ and all $\mathbf{k}=\left(k_{j}\right)_{j=1}^{d} \in \mathbb{Z}^{d}$. Note that the function f is 2π-periodic in each variable $x_{j}, j=1, \ldots, d$, and that f is
uniquely determined by its restriction to the hypercube $[0,2 \pi)^{d}$. Hence, f can be considered as a function defined on the d-dimensional torus $\mathbb{T}^{d}=\mathbb{R}^{d} /\left(2 \pi \mathbb{Z}^{d}\right)$. For fixed $\mathbf{n}=\left(n_{j}\right)_{j=1}^{d} \in \mathbb{Z}^{d}$, the d-variate complex exponential:

$$
\mathrm{e}^{\mathrm{i} \mathbf{n} \cdot \mathbf{x}}=\prod_{j=1}^{d} \mathrm{e}^{\mathrm{i} n_{j} x_{j}}, \quad \mathbf{x} \in \mathbb{R}^{d}
$$

is 2π-periodic, where $\mathbf{n} \cdot \mathbf{x}:=n_{1} x_{1}+\ldots+n_{d} x_{d}$ is the inner product of $\mathbf{n} \in \mathbb{Z}^{d}$ and $\mathbf{x} \in \mathbb{R}^{d}$. Further, we use the Euclidean norm $\|\mathbf{x}\|_{2}:=(\mathbf{x} \cdot \mathbf{x})^{1 / 2}$ of $\mathbf{x} \in \mathbb{R}^{d}$. For a multi-index $\boldsymbol{\alpha}=\left(\alpha_{k}\right)_{k=1}^{d} \in \mathbb{N}_{0}^{d}$ with $|\boldsymbol{\alpha}|=\alpha_{1}+\ldots+\alpha_{d}$, we use the notation:

$$
\mathbf{x}^{\alpha}:=\prod_{k=1}^{d} x_{k}^{\alpha_{k}} .
$$

Let $C\left(\mathbb{T}^{d}\right)$ be the Banach space of continuous functions $f: \mathbb{T}^{d} \rightarrow \mathbb{C}$ equipped with the norm:

$$
\|f\|_{C\left(\mathbb{T}^{d}\right)}:=\max _{\mathbf{x} \in \mathbb{T}^{d}}|f(\mathbf{x})| .
$$

By $C^{r}\left(\mathbb{T}^{d}\right), r \in \mathbb{N}$, we denote the Banach space of r-times continuously differentiable functions with the norm:

$$
\|f\|_{C^{r}\left(\mathbb{T}^{d}\right)}:=\sum_{|\alpha| \leq r} \max _{\mathbf{x} \in \mathbb{T}^{d}}\left|D^{\alpha} f(\mathbf{x})\right|,
$$

where

$$
D^{\alpha} f(\mathbf{x}):=\frac{\partial^{\alpha_{1}}}{\partial x_{1}^{\alpha_{1}}} \ldots \frac{\partial^{\alpha_{d}}}{\partial x_{d}^{\alpha_{d}}} f(\mathbf{x})
$$

denotes the partial derivative with the multi-index $\boldsymbol{\alpha}=\left(\alpha_{j}\right)_{j=1}^{d} \in \mathbb{N}_{0}^{d}$ and $|\boldsymbol{\alpha}| \leq r$.
For $1 \leq p \leq \infty$, let $L_{p}\left(\mathbb{T}^{d}\right)$ denote the Banach space of all measurable functions $f: \mathbb{T}^{d} \rightarrow \mathbb{C}$ with finite norm:

$$
\|f\|_{L_{p}\left(\mathbb{T}^{d}\right)}:= \begin{cases}\left(\frac{1}{(2 \pi)^{d}} \int_{[0,2 \pi]^{d}}|f(\mathbf{x})|^{p} \mathrm{~d} \mathbf{x}\right)^{1 / p} & 1 \leq p<\infty \\ \operatorname{ess} \sup \left\{|f(\mathbf{x})|: \mathbf{x} \in[0,2 \pi]^{d}\right\} & p=\infty\end{cases}
$$

where almost everywhere equal functions are identified. The spaces $L_{p}\left(\mathbb{T}^{d}\right)$ with $1<p<\infty$ are continuously embedded as:

$$
L_{1}\left(\mathbb{T}^{d}\right) \supset L_{p}\left(\mathbb{T}^{d}\right) \supset L_{\infty}\left(\mathbb{T}^{d}\right)
$$

By the periodicity of $f \in L_{1}\left(\mathbb{T}^{d}\right)$, we have

$$
\int_{[0,2 \pi]^{d}} f(\mathbf{x}) \mathrm{d} \mathbf{x}=\int_{[-\pi, \pi]^{d}} f(\mathbf{x}) \mathrm{d} \mathbf{x}
$$

For $p=2$, we obtain the Hilbert space $L_{2}\left(\mathbb{T}^{d}\right)$ with the inner product and norm:

$$
\langle f, g\rangle_{L_{2}\left(\mathbb{T}^{d}\right)}:=\frac{1}{(2 \pi)^{d}} \int_{[0,2 \pi]^{d}} f(\mathbf{x}) \overline{g(\mathbf{x})} \mathrm{d} \mathbf{x}, \quad\|f\|_{L_{2}\left(\mathbb{T}^{d}\right)}:=\sqrt{\langle f, f\rangle_{L_{2}\left(\mathbb{T}^{d}\right)}}
$$

for arbitrary $f, g \in L_{2}\left(\mathbb{T}^{d}\right)$. For all $f, g \in L_{2}\left(\mathbb{T}^{d}\right)$, it holds the Cauchy-Schwarz inequality:

$$
\left|\langle f, g\rangle_{L_{2}\left(\mathbb{T}^{d}\right)}\right| \leq\|f\|_{L_{2}\left(\mathbb{T}^{d}\right)}\|g\|_{L_{2}\left(\mathbb{T}^{d}\right)} .
$$

The set of all complex exponentials $\left\{\mathrm{e}^{\mathrm{i} \mathbf{k} \cdot \mathbf{x}}: \mathbf{k} \in \mathbb{Z}^{d}\right\}$ forms an orthonormal basis of $L_{2}\left(\mathbb{T}^{d}\right)$. A linear combination of complex exponentials:

$$
p(\mathbf{x})=\sum_{\mathbf{k} \in \mathbb{Z}^{d}} a_{\mathbf{k}} \mathrm{e}^{\mathrm{i} \mathbf{k} \cdot \mathbf{x}}
$$

with only finitely many coefficients $a_{\mathbf{k}} \in \mathbb{C} \backslash\{0\}$ is called d-variate, 2π-periodic trigonometric polynomial. The degree of p is the largest number $\|\mathbf{k}\|_{1}=\left|k_{1}\right|+$ $\ldots+\left|k_{d}\right|$ such that $a_{\mathbf{k}} \neq 0$ with $\mathbf{k}=\left(k_{j}\right)_{j=1}^{d} \in \mathbb{Z}^{d}$. The set of all trigonometric polynomials is dense in $L_{p}\left(\mathbb{T}^{d}\right)$ for $1 \leq p<\infty$ (see [146, p. 168]).

For $f \in L_{1}\left(\mathbb{T}^{d}\right)$ and arbitrary $\mathbf{k} \in \mathbb{Z}^{d}$, the \mathbf{k} th Fourier coefficient of f is defined as:

$$
c_{\mathbf{k}}(f):=\left\langle f(\mathbf{x}), \mathrm{e}^{\mathrm{i} \mathbf{k} \cdot \mathbf{x}}\right\rangle_{L_{2}\left(\mathbb{T}^{d}\right)}=\frac{1}{(2 \pi)^{d}} \int_{[0,2 \pi]^{d}} f(\mathbf{x}) \mathrm{e}^{-\mathrm{i} \mathbf{k} \cdot \mathbf{x}} \mathrm{~d} \mathbf{x} .
$$

As in the univariate case, the $\mathbf{k t h}$ modulus and phase of f are defined by $\left|c_{\mathbf{k}}(f)\right|$ and $\arg c_{\mathbf{k}}(f)$, respectively. Obviously, we have

$$
\left|c_{\mathbf{k}}(f)\right| \leq \frac{1}{(2 \pi)^{d}} \int_{[0,2 \pi]^{d}}|f(\mathbf{x})| \mathrm{d} \mathbf{x}=\|f\|_{L_{1}\left(\mathbb{T}^{d}\right)}
$$

The Fourier coefficients possess similar properties as in the univariate setting (cf. Lemmas 1.6 and 1.13).

Lemma 4.1 The Fourier coefficients of any functions $f, g \in L_{1}\left(\mathbb{T}^{d}\right)$ have the following properties for all $\mathbf{k}=\left(k_{j}\right)_{j=1}^{d} \in \mathbb{Z}^{d}$:

1. Uniqueness: If $c_{\mathbf{k}}(f)=c_{\mathbf{k}}(g)$ for all $\mathbf{k} \in \mathbb{Z}^{d}$, then $f=g$ almost everywhere.
2. Linearity: For all $\alpha, \beta \in \mathbb{C}$:

$$
c_{\mathbf{k}}(\alpha f+\beta g)=\alpha c_{\mathbf{k}}(f)+\beta c_{\mathbf{k}}(g)
$$

3. Translation and modulation: For all $\mathbf{x}_{0} \in[0,2 \pi)^{d}$ and $\mathbf{k}_{0} \in \mathbb{Z}^{d}$:

$$
\begin{aligned}
c_{\mathbf{k}}\left(f\left(\mathbf{x}-\mathbf{x}_{0}\right)\right) & =\mathrm{e}^{-\mathrm{i} \mathbf{k} \cdot \mathbf{x}_{0}} c_{\mathbf{k}}(f), \\
c_{\mathbf{k}}\left(\mathrm{e}^{-\mathrm{i} \mathbf{k}_{0} \cdot \mathbf{x}} f(\mathbf{x})\right) & =c_{\mathbf{k}+\mathbf{k}_{0}}(f)
\end{aligned}
$$

4. Differentiation: For $f \in L_{1}\left(\mathbb{T}^{d}\right)$ with partial derivative $\frac{\partial f}{\partial x_{j}} \in L_{1}\left(\mathbb{T}^{d}\right)$:

$$
c_{\mathbf{k}}\left(\frac{\partial f}{\partial x_{j}}\right)=\mathrm{i} k_{j} c_{\mathbf{k}}(f) .
$$

5. Convolution: For $f, g \in L_{1}\left(\mathbb{T}^{d}\right)$, the d-variate convolution:

$$
(f * g)(\mathbf{x}):=\frac{1}{(2 \pi)^{d}} \int_{[0,2 \pi]^{d}} f(\mathbf{y}) g(\mathbf{x}-\mathbf{y}) \mathrm{d} \mathbf{y}, \quad \mathbf{x} \in \mathbb{R}^{d},
$$

is contained in $L_{1}\left(\mathbb{T}^{d}\right)$ and we have

$$
c_{\mathbf{k}}(f * g)=c_{\mathbf{k}}(f) c_{\mathbf{k}}(g) .
$$

The proof of Lemma 4.1 can be given similarly as in the univariate case and is left to the reader.

Remark 4.2 The differentiation property 4 of Lemma 4.1 can be generalized. Assume that $f \in L_{1}\left(\mathbb{R}^{d}\right)$ possesses partial derivatives $D^{\alpha} f \in L_{1}\left(\mathbb{T}^{d}\right)$ for all multiindices $\boldsymbol{\alpha} \in \mathbb{N}_{0}^{d}$ with $|\boldsymbol{\alpha}| \leq r$, where $r \in \mathbb{N}$ is fixed. Repeated application of the differentiation property 4 of Lemma 4.1 provides

$$
\begin{equation*}
c_{\mathbf{k}}\left(D^{\alpha} f\right)=(\mathrm{i} \mathbf{k})^{\alpha} c_{\mathbf{k}}(f) \tag{4.1}
\end{equation*}
$$

for all $\mathbf{k} \in \mathbb{Z}^{d}$, where $(\mathrm{i} \mathbf{k})^{\alpha}$ denotes the product $\left(\mathrm{i} k_{1}\right)^{\alpha_{1}} \ldots\left(\mathrm{i} k_{d}\right)^{\alpha_{d}}$ with the convention $0^{0}=1$.

Remark 4.3 If the 2π-periodic function:

$$
f(\mathbf{x})=\prod_{j=1}^{d} f_{j}\left(x_{j}\right)
$$

is the product of univariate functions $f_{j} \in L_{1}(\mathbb{T}), j=1, \ldots, d$, then we have for all $\mathbf{k}=\left(k_{j}\right)_{j=1}^{d} \in \mathbb{Z}^{d}$

$$
c_{\mathbf{k}}(f)=\prod_{j=1}^{d} c_{k_{j}}\left(f_{j}\right)
$$

Example 4.4 Let $n \in \mathbb{N}_{0}$ be given. The nth Dirichlet kernel $D_{n}: \mathbb{T}^{d} \rightarrow \mathbb{C}$:

$$
D_{n}(\mathbf{x}):=\sum_{k_{1}=-n}^{n} \ldots \sum_{k_{d}=-n}^{n} \mathrm{e}^{\mathrm{i} \mathbf{k} \cdot \mathbf{x}}
$$

is a trigonometric polynomial of degree $d n$. It is the product of univariate nth Dirichlet kernels:

$$
D_{n}(\mathbf{x})=\prod_{j=1}^{d} D_{n}\left(x_{j}\right)
$$

For arbitrary $n \in \mathbb{N}_{0}$, the nth Fourier partial sum of $f \in L_{1}\left(\mathbb{T}^{d}\right)$ is defined by:

$$
\begin{equation*}
\left(S_{n} f\right)(\mathbf{x}):=\sum_{k_{1}=-n}^{n} \ldots \sum_{k_{d}=-n}^{n} c_{\mathbf{k}}(f) \mathrm{e}^{\mathrm{i} \mathbf{k} \cdot \mathbf{x}} . \tag{4.2}
\end{equation*}
$$

Using the nth Dirichlet kernel D_{n}, the nth Fourier partial sum $S_{n} f$ can be represented as convolution $S_{n} f=f * D_{n}$.

For $f \in L_{1}\left(\mathbb{T}^{d}\right)$, the d-dimensional Fourier series:

$$
\begin{equation*}
\sum_{\mathbf{k} \in \mathbb{Z}^{d}} c_{\mathbf{k}}(f) \mathrm{e}^{\mathrm{i} \mathbf{k} \cdot \mathbf{x}} \tag{4.3}
\end{equation*}
$$

is called convergent to f in $L_{2}\left(\mathbb{T}^{d}\right)$, if the sequence of Fourier partial sums (4.2) converges to f, that is:

$$
\lim _{n \rightarrow \infty}\left\|f-S_{n} f\right\|_{L_{2}\left(\mathbb{T}^{d}\right)}=0
$$

Then, it holds the following result on convergence in $L_{2}\left(\mathbb{T}^{d}\right)$ (cf. Lemma 1.3 for $d=1$):

Theorem 4.5 Every function $f \in L_{2}\left(\mathbb{T}^{d}\right)$ can be expanded into the Fourier series (4.3) which converges to f in $L_{2}\left(\mathbb{T}^{d}\right)$. Further, the Parseval equality:

$$
\begin{equation*}
\|f\|_{L_{2}\left(\mathbb{T}^{d}\right)}^{2}=\frac{1}{(2 \pi)^{d}} \int_{[0,2 \pi]^{d}}|f(\mathbf{x})|^{2} \mathrm{~d} \mathbf{x}=\sum_{\mathbf{k} \in \mathbb{Z}^{d}}\left|c_{\mathbf{k}}(f)\right|^{2} \tag{4.4}
\end{equation*}
$$

is fulfilled.
Now, we investigate the relation between the smoothness of the function f : $\mathbb{T}^{d} \rightarrow \mathbb{C}$ and the decay of its Fourier coefficients $c_{\mathbf{k}}(f)$ as $\|\mathbf{k}\|_{2} \rightarrow \infty$. We show that the smoother a function $f: \mathbb{T}^{d} \rightarrow \mathbb{C}$ is, the faster its Fourier coefficients $c_{\mathbf{k}}(f)$ tend to zero as $\|\mathbf{k}\|_{2} \rightarrow \infty$ (cf. Lemma 1.27 and Theorem 1.39 for $d=1$).

Lemma 4.6

1. For $f \in L_{1}\left(\mathbb{T}^{d}\right)$, we have

$$
\begin{equation*}
\lim _{\|\mathbf{k}\|_{2} \rightarrow \infty} c_{\mathbf{k}}(f)=0 \tag{4.5}
\end{equation*}
$$

2. Let $r \in \mathbb{N}$ be given. If f and its partial derivatives $D^{\alpha} f$ are contained in $L_{1}\left(\mathbb{T}^{d}\right)$ for all multi-indices $\boldsymbol{\alpha} \in \mathbb{N}_{0}^{d}$ with $|\boldsymbol{\alpha}| \leq r$, then:

$$
\begin{equation*}
\lim _{\|\mathbf{k}\|_{2} \rightarrow \infty}\left(1+\|\mathbf{k}\|_{2}^{r}\right) c_{\mathbf{k}}(f)=0 \tag{4.6}
\end{equation*}
$$

Proof

1. If $f \in L_{2}\left(\mathbb{T}^{d}\right)$, then (4.5) is a consequence of the Parseval equality (4.4). For all $\varepsilon>0$, any function $f \in L_{1}\left(\mathbb{T}^{d}\right)$ can be approximated by a trigonometric polynomial p of degree n such that $\|f-p\|_{L_{1}\left(\mathbb{T}^{d}\right)}<\varepsilon$. Then, the Fourier coefficients of $r:=f-p \in L_{1}\left(\mathbb{T}^{d}\right)$ fulfill $\left|c_{\mathbf{k}}(r)\right| \leq\|r\|_{L_{1}\left(\mathbb{T}^{d}\right)}<\varepsilon$ for all $\mathbf{k} \in \mathbb{Z}^{d}$. Further, we have $c_{\mathbf{k}}(p)=0$ for all $\mathbf{k} \in \mathbb{Z}^{d}$ with $\|\mathbf{k}\|_{1}>n$, since the trigonometric polynomial p has the degree n. By the linearity of the Fourier coefficients and by $\|\mathbf{k}\|_{1} \geq\|\mathbf{k}\|_{2}$, we obtain for all $\mathbf{k} \in \mathbb{Z}^{d}$ with $\|\mathbf{k}\|_{2}>n$ that

$$
\left|c_{\mathbf{k}}(f)\right|=\left|c_{\mathbf{k}}(p)+c_{\mathbf{k}}(r)\right|=\left|c_{\mathbf{k}}(r)\right|<\varepsilon
$$

2. We consider a fixed multi-index $\mathbf{k} \in \mathbb{Z}^{d} \backslash\{\mathbf{0}\}$ with $\left|k_{\ell}\right|=\max _{j=1, \ldots, d}\left|k_{j}\right|>0$. From (4.1), it follows that

$$
\left(\mathrm{i} k_{\ell}\right)^{r} c_{\mathbf{k}}(f)=c_{\mathbf{k}}\left(\frac{\partial^{r} f}{\partial x_{\ell}^{r}}\right)
$$

Using $\|\mathbf{k}\|_{2} \leq \sqrt{d}\left|k_{\ell}\right|$, we obtain the estimate:

$$
\|\mathbf{k}\|_{2}^{r}\left|c_{\mathbf{k}}(f)\right| \leq d^{r / 2}\left|c_{\mathbf{k}}\left(\frac{\partial^{r} f}{\partial x_{\ell}^{r}}\right)\right| \leq d^{r / 2} \max _{|\boldsymbol{\alpha}|=r}\left|c_{\mathbf{k}}\left(D^{\alpha} f\right)\right|
$$

Then from (4.5), it follows the assertion (4.6).
Now, we consider the uniform convergence of d-dimensional Fourier series.
Theorem 4.7 If $f \in C\left(\mathbb{T}^{d}\right)$ has the property:

$$
\begin{equation*}
\sum_{\mathbf{k} \in \mathbb{Z}^{d}}\left|c_{\mathbf{k}}(f)\right|<\infty \tag{4.7}
\end{equation*}
$$

then the d-dimensional Fourier series (4.3) converges uniformly to f on \mathbb{T}^{d}, that is:

$$
\lim _{n \rightarrow \infty}\left\|f-S_{n} f\right\|_{C\left(\mathbb{T}^{d}\right)}=0
$$

Proof By (4.7), the Weierstrass criterion ensures that the Fourier series (4.3) converges uniformly to a continuous function:

$$
g(\mathbf{x}):=\sum_{\mathbf{k} \in \mathbb{Z}^{d}} c_{\mathbf{k}}(f) \mathrm{e}^{\mathrm{i} \mathbf{k} \cdot \mathbf{x}}
$$

Since f and g have the same Fourier coefficients, the uniqueness property in Lemma 4.1 gives $f=g$ on \mathbb{T}^{d}.

Now, we want to show that a sufficiently smooth function $f: \mathbb{T}^{d} \rightarrow \mathbb{C}$ fulfills condition (4.7). We need the following result:

Lemma 4.8 If $2 r>d$, then:

$$
\begin{equation*}
\sum_{\mathbf{k} \in \mathbb{Z}^{d} \backslash\{\mathbf{0}\}}\|\mathbf{k}\|_{2}^{-2 r}<\infty \tag{4.8}
\end{equation*}
$$

Proof For all $\mathbf{k}=\left(k_{j}\right)_{j=1}^{d} \in \mathbb{Z}^{d} \backslash\{\mathbf{0}\}$, we have $\|\mathbf{k}\|_{2} \geq 1$. Using the inequality of arithmetic and geometric means, it follows

$$
(d+1)\|\mathbf{k}\|_{2}^{2} \geq d+\|\mathbf{k}\|_{2}^{2}=\sum_{j=1}^{d}\left(1+k_{j}^{2}\right) \geq d\left(\prod_{j=1}^{d}\left(1+k_{j}^{2}\right)\right)^{1 / d}
$$

and hence

$$
\|\mathbf{k}\|_{2}^{-2 r} \leq\left(\frac{d+1}{d}\right)^{r} \prod_{j=1}^{d}\left(1+k_{j}^{2}\right)^{-r / d} .
$$

Consequently, we obtain

$$
\begin{aligned}
& \sum_{\mathbf{k} \in \mathbb{Z}^{d} \backslash\{\mathbf{0}\}}\|\mathbf{k}\|_{2}^{-2 r} \leq\left(\frac{d+1}{d}\right)^{r} \sum_{k_{1} \in \mathbb{Z}}\left(1+k_{1}^{2}\right)^{-r / d} \cdots \sum_{k_{d} \in \mathbb{Z}}\left(1+k_{d}^{2}\right)^{-r / d} \\
= & \left(\frac{d+1}{d}\right)^{r}\left(\sum_{k \in \mathbb{Z}}\left(1+k^{2}\right)^{-r / d}\right)^{d}<\left(\frac{d+1}{d}\right)^{r}\left(1+2 \sum_{k=1}^{\infty} k^{-2 r / d}\right)^{d}<\infty .
\end{aligned}
$$

Theorem 4.9 If $f \in C^{r}\left(\mathbb{T}^{d}\right)$ with $2 r>d$, then the condition (4.7) is fulfilled and the d-dimensional Fourier series (4.3) converges uniformly to f on \mathbb{T}^{d}.

Proof By assumption, each partial derivative $D^{\alpha} f$ with $|\boldsymbol{\alpha}| \leq r$ is continuous on \mathbb{T}^{d}. Hence, we have $D^{\alpha} f \in L_{2}\left(\mathbb{T}^{d}\right)$ such that by (4.1) and the Parseval equality (4.4):

$$
\sum_{|\alpha|=r} \sum_{\mathbf{k} \in \mathbb{Z}^{d}}\left|c_{\mathbf{k}}(f)\right|^{2} \mathbf{k}^{2 \alpha}<\infty
$$

where $\mathbf{k}^{2 \alpha}$ denotes the product $k_{1}^{2 \alpha_{1}} \ldots k_{d}^{2 \alpha_{d}}$ with $0^{0}:=1$. Then, there exists a positive constant c, depending only on the dimension d and on r, such that:

$$
\sum_{|\boldsymbol{\alpha}|=r} \mathbf{k}^{2 \boldsymbol{\alpha}} \geq c\|\mathbf{k}\|_{2}^{2 r} .
$$

By the Cauchy-Schwarz inequality in $\ell_{2}\left(\mathbb{Z}^{d}\right)$ and by Lemma 4.8 , we obtain

$$
\begin{aligned}
& \sum_{\mathbf{k} \in \mathbb{Z}^{d} \backslash\{\mathbf{0}\}}\left|c_{\mathbf{k}}(f)\right| \leq \sum_{\mathbf{k} \in \mathbb{Z}^{d} \backslash\{\mathbf{0}\}}\left|c_{\mathbf{k}}(f)\right|\left(\sum_{|\boldsymbol{\alpha}|=r} \mathbf{k}^{2 \boldsymbol{\alpha}}\right)^{1 / 2} c^{-1 / 2}\|\mathbf{k}\|_{2}^{-r} \\
& \leq\left(\sum_{|\boldsymbol{\alpha}|=r} \sum_{\mathbf{k} \in \mathbb{Z}^{d}}\left|c_{\mathbf{k}}(f)\right|^{2} \mathbf{k}^{2 \boldsymbol{\alpha}}\right)^{1 / 2}\left(\sum_{\mathbf{k} \in \mathbb{Z}^{d} \backslash\{\mathbf{0}\}}\|\mathbf{k}\|_{2}^{-2 r}\right)^{1 / 2} c^{-1 / 2}<\infty .
\end{aligned}
$$

For further discussion on the theory of multidimensional Fourier series, see [341, pp. 245-250], [146, pp. 161-248], and [329, pp. 1-137].

4.2 Multidimensional Fourier Transforms

Let $C_{0}\left(\mathbb{R}^{d}\right)$ be the Banach space of all functions $f: \mathbb{R}^{d} \rightarrow \mathbb{C}$, which are continuous on \mathbb{R}^{d} and vanish as $\|\mathbf{x}\|_{2} \rightarrow \infty$, with norm:

$$
\|f\|_{C_{0}\left(\mathbb{R}^{d}\right)}:=\max _{\mathbf{x} \in \mathbb{R}^{d}}|f(\mathbf{x})| .
$$

Let $C_{c}\left(\mathbb{R}^{d}\right)$ be the subspace of all continuous functions with compact supports. By $C^{r}\left(\mathbb{R}^{d}\right), r \in \mathbb{N} \cup\{\infty\}$, we denote the set of r-times continuously differentiable functions and by $C_{c}^{r}\left(\mathbb{R}^{d}\right)$ the set of r-times continuously differentiable functions with compact supports.

For $1 \leq p \leq \infty$, let $L_{p}\left(\mathbb{R}^{d}\right)$ be the Banach space of all measurable functions $f: \mathbb{R}^{d} \rightarrow \mathbb{C}$ with finite norm:

$$
\|f\|_{L_{p}\left(\mathbb{R}^{d}\right)}:= \begin{cases}\left(\int_{\mathbb{R}^{d}}|f(\mathbf{x})|^{p} \mathrm{~d} \mathbf{x}\right)^{1 / p} & 1 \leq p<\infty \\ \operatorname{ess} \sup \left\{|f(\mathbf{x})|: \mathbf{x} \in \mathbb{R}^{d}\right\} & p=\infty\end{cases}
$$

where almost everywhere equal functions are identified. In particular, we are interested in the Hilbert space $L_{2}\left(\mathbb{R}^{d}\right)$ with inner product and norm:

$$
\langle f, g\rangle_{L_{2}\left(\mathbb{R}^{d}\right)}:=\int_{\mathbb{R}^{d}} f(\mathbf{x}) \overline{g(\mathbf{x})} \mathrm{d} \mathbf{x}, \quad\|f\|_{L_{2}\left(\mathbb{R}^{d}\right)}:=\left(\int_{\mathbb{R}^{d}}|f(\mathbf{x})|^{2} \mathrm{~d} \mathbf{x}\right)^{1 / 2}
$$

4.2.1 Fourier Transforms on $\mathscr{S}\left(\mathbb{R}^{\boldsymbol{d}}\right)$

By $\mathscr{S}\left(\mathbb{R}^{d}\right)$, we denote the set of all functions $\varphi \in C^{\infty}\left(\mathbb{R}^{d}\right)$ with the property $\mathbf{x}^{\boldsymbol{\alpha}} D^{\boldsymbol{\beta}} \varphi(\mathbf{x}) \in C_{0}\left(\mathbb{R}^{d}\right)$ for all multi-indices $\boldsymbol{\alpha}, \boldsymbol{\beta} \in \mathbb{N}_{0}^{d}$. We define the convergence in $\mathscr{S}\left(\mathbb{R}^{d}\right)$ as follows: A sequence $\left(\varphi_{k}\right)_{k \in \mathbb{N}}$ of functions $\varphi_{k} \in \mathscr{S}\left(\mathbb{R}^{d}\right)$ converges to $\varphi \in \mathscr{S}\left(\mathbb{R}^{d}\right)$, if for all multi-indices $\boldsymbol{\alpha}, \boldsymbol{\beta} \in \mathbb{N}_{0}^{d}$, the sequences $\left(\mathbf{x}^{\boldsymbol{\alpha}} D^{\boldsymbol{\beta}} \varphi_{k}\right)_{k \in \mathbb{N}}$ converge uniformly to $\mathbf{x}^{\alpha} D^{\boldsymbol{\beta}} \varphi$ on \mathbb{R}^{d}. We will write $\varphi_{k}{\underset{\mathscr{S}}{ }} \varphi$ as $k \rightarrow \infty$. Then, the linear space $\mathscr{S}\left(\mathbb{R}^{d}\right)$ with this convergence is called Schwartz space or space of rapidly decreasing functions. The name is in honor of the French mathematician L. Schwartz (1915-2002).

Any function $\varphi \in \mathscr{S}\left(\mathbb{R}^{d}\right)$ is rapidly decreasing in the sense that for all multiindices $\boldsymbol{\alpha}, \boldsymbol{\beta} \in \mathbb{N}_{0}^{d}$:

$$
\lim _{\|\mathbf{x}\|_{2} \rightarrow \infty} \mathbf{x}^{\alpha} D^{\beta} \varphi(\mathbf{x})=0 .
$$

Introducing

$$
\begin{equation*}
\|\varphi\|_{m}:=\max _{|\boldsymbol{\beta}| \leq m}\left\|\left(1+\|\mathbf{x}\|_{2}\right)^{m} D^{\boldsymbol{\beta}} \varphi(\mathbf{x})\right\|_{C_{0}\left(\mathbb{R}^{d}\right)}, \quad m \in \mathbb{N}_{0} \tag{4.9}
\end{equation*}
$$

we see that $\|\varphi\|_{0} \leq\|\varphi\|_{1} \leq\|\varphi\|_{2} \leq \ldots$ are finite for all $\varphi \in \mathscr{S}\left(\mathbb{R}^{d}\right)$. We can describe the convergence in the Schwartz space by the help of (4.9).

Lemma 4.10 For $\varphi_{k}, \varphi \in \mathscr{S}\left(\mathbb{R}^{d}\right)$, we have $\varphi_{k} \underset{\mathscr{S}}{ } \varphi$ as $k \rightarrow \infty$ if and only if for all $m \in \mathbb{N}_{0}$:

$$
\begin{equation*}
\lim _{k \rightarrow \infty}\left\|\varphi_{k}-\varphi\right\|_{m}=0 \tag{4.10}
\end{equation*}
$$

Proof

1. Let (4.10) be fulfilled for all $m \in \mathbb{N}_{0}$. Then for all $\boldsymbol{\alpha}=\left(\alpha_{j}\right)_{j=1}^{d} \in \mathbb{N}_{0}^{d} \backslash\{\boldsymbol{0}\}$ with $|\boldsymbol{\alpha}| \leq m$, we get by the relation between geometric and quadratic means that

$$
\left|\mathbf{x}^{\boldsymbol{\alpha}}\right| \leq\left(\frac{\alpha_{1} x_{1}^{2}+\ldots+\alpha_{d} x_{d}^{2}}{|\boldsymbol{\alpha}|}\right)^{|\boldsymbol{\alpha}| / 2} \leq\left(x_{1}^{2}+\ldots+x_{d}^{2}\right)^{|\boldsymbol{\alpha}| / 2} \leq\left(1+\|\mathbf{x}\|_{2}\right)^{m}
$$

so that

$$
\left|\mathbf{x}^{\alpha} D^{\beta}\left(\varphi_{k}-\varphi\right)(\mathbf{x})\right| \leq\left(1+\|\mathbf{x}\|_{2}\right)^{m}\left|D^{\beta}\left(\varphi_{k}-\varphi\right)(\mathbf{x})\right|
$$

Hence, for all $\boldsymbol{\beta} \in \mathbb{N}_{0}^{d}$ with $|\boldsymbol{\beta}| \leq m$, it holds

$$
\left\|\mathbf{x}^{\boldsymbol{\alpha}} D^{\boldsymbol{\beta}}\left(\varphi_{k}-\varphi\right)(\mathbf{x})\right\|_{C_{0}\left(\mathbb{R}^{d}\right)} \leq \sup _{\mathbf{x} \in \mathbb{R}^{d}}\left(1+\|\mathbf{x}\|_{2}\right)^{m}\left|D^{\boldsymbol{\beta}}\left(\varphi_{k}-\varphi\right)(\mathbf{x})\right| \leq\left\|\varphi_{k}-\varphi\right\|_{m}
$$

2. Assume that $\varphi_{k} \underset{\mathscr{S}}{ } \varphi$ as $k \rightarrow \infty$, i.e., for all $\boldsymbol{\alpha}, \boldsymbol{\beta} \in \mathbb{N}_{0}^{d}$ we have

$$
\lim _{k \rightarrow \infty}\left\|\mathbf{x}^{\alpha} D^{\beta}\left(\varphi_{k}-\varphi\right)(\mathbf{x})\right\|_{C_{0}\left(\mathbb{R}^{d}\right)}=0
$$

We consider multi-indices $\boldsymbol{\alpha}, \boldsymbol{\beta} \in \mathbb{N}_{0}^{d}$ with $|\boldsymbol{\alpha}| \leq m$ and $|\boldsymbol{\beta}| \leq m$ for $m \in \mathbb{N}$. Since norms in \mathbb{R}^{n} are equivalent, we obtain

$$
\begin{aligned}
\left(1+\|\mathbf{x}\|_{2}\right)^{m} & \leq C_{1}\left(1+\|\mathbf{x}\|_{2}^{m}\right) \leq C_{1}\left(1+C_{2} \sum_{j=1}^{d}\left|x_{j}\right|^{m}\right) \\
& \leq C \sum_{|\boldsymbol{\alpha}| \leq m}\left|\mathbf{x}^{\alpha}\right|
\end{aligned}
$$

This implies

$$
\left\|\left(1+\|\mathbf{x}\|_{2}\right)^{m} D^{\boldsymbol{\beta}}\left(\varphi_{k}-\varphi\right)(\mathbf{x})\right\|_{C_{0}\left(\mathbb{R}^{d}\right)} \leq C \sum_{|\boldsymbol{\alpha}| \leq m}\left\|\mathbf{x}^{\alpha} D^{\boldsymbol{\beta}}\left(\varphi_{k}-\varphi\right)(\mathbf{x})\right\|_{C_{0}\left(\mathbb{R}^{d}\right)}
$$

and hence

$$
\left\|\varphi_{k}-\varphi\right\|_{m} \leq C \max _{|\boldsymbol{\beta}| \leq m} \sum_{|\boldsymbol{\alpha}| \leq m}\left\|\mathbf{x}^{\boldsymbol{\alpha}} D^{\boldsymbol{\beta}}\left(\varphi_{k}-\varphi\right)(\mathbf{x})\right\|_{C_{0}\left(\mathbb{R}^{d}\right)}
$$

such that $\lim _{k \rightarrow \infty}\left\|\varphi_{k}-\varphi\right\|_{m}=0$.
Remark 4.11 Using Lemma 4.10, it is not hard to check that the convergence in the Schwartz space $\mathscr{S}\left(\mathbb{R}^{d}\right)$ is induced by the metric:

$$
\rho(\varphi, \psi):=\sum_{m=0}^{\infty} \frac{1}{2^{m}} \frac{\|\varphi-\psi\|_{m}}{1+\|\varphi-\psi\|_{m}}, \quad \varphi, \psi \in \mathscr{S}\left(\mathbb{R}^{d}\right),
$$

that is, the convergence $\varphi_{k} \rightarrow \underset{\mathscr{S}}{ } \varphi$ as $k \rightarrow \infty$ is equivalent to:

$$
\lim _{k \rightarrow \infty} \rho\left(\varphi_{k}, \varphi\right)=0 .
$$

Moreover, the metric space is complete by the following reason: Let $\left(\varphi_{k}\right)_{k \in \mathbb{N}}$ be a Cauchy sequence with respect to ρ. Then, for every $\boldsymbol{\alpha}, \boldsymbol{\beta} \in \mathbb{N}_{0}^{d},\left(x^{\boldsymbol{\alpha}} D^{\boldsymbol{\beta}} \varphi_{k}\right)_{k \in \mathbb{N}}$ is a Cauchy sequence in Banach space $C_{0}\left(\mathbb{R}^{d}\right)$ and converges uniformly to a function $\psi_{\alpha, \beta}$. Then, by definition of $\mathscr{S}\left(\mathbb{R}^{d}\right)$, it follows $\psi_{\alpha, \beta}(\mathbf{x})=\mathbf{x}^{\alpha} D^{\beta} \psi_{\mathbf{0}, \mathbf{0}}(\mathbf{x})$ with $\psi_{\mathbf{0}, \boldsymbol{0}} \in \mathscr{S}\left(\mathbb{R}^{d}\right)$ and hence $\varphi_{k} \xrightarrow[\mathscr{S}]{ } \psi_{\mathbf{0}, \boldsymbol{0}}$ as $k \rightarrow \infty$.

Note that the metric ρ is not generated by a norm, since $\rho(c \varphi, 0) \neq|c| \rho(\varphi, 0)$ for all $c \in \mathbb{C} \backslash\{0\}$ with $|c| \neq 1$ and nonvanishing $\varphi \in \mathscr{S}\left(\mathbb{R}^{d}\right)$.

Clearly, it holds $\mathscr{S}\left(\mathbb{R}^{d}\right) \subset C_{0}\left(\mathbb{R}^{d}\right) \subset L_{\infty}\left(\mathbb{R}^{d}\right)$ and $\mathscr{S}\left(\mathbb{R}^{d}\right) \subset L_{p}\left(\mathbb{R}^{d}\right), 1 \leq$ $p<\infty$, by the following argument: For each $\varphi \in \mathscr{S}\left(\mathbb{R}^{d}\right)$, we have by (4.9):

$$
|\varphi(\mathbf{x})| \leq\|\varphi\|_{d+1}\left(1+\|\mathbf{x}\|_{2}\right)^{-d-1}
$$

for all $\mathbf{x} \in \mathbb{R}^{d}$. Then, using polar coordinates with $r=\|\mathbf{x}\|_{2}$, we obtain

$$
\begin{aligned}
& \int_{\mathbb{R}^{d}}|\varphi(\mathbf{x})|^{p} \mathrm{~d} \mathbf{x} \leq\|\varphi\|_{d+1}^{p} \int_{\mathbb{R}^{d}}\left(1+\|\mathbf{x}\|_{2}\right)^{-p(d+1)} \mathrm{d} \mathbf{x} \\
& \leq C \int_{0}^{\infty} \frac{r^{d-1}}{(1+r)^{p(d+1)}} \mathrm{d} r \leq C \int_{0}^{\infty} \frac{1}{(1+r)^{2}} \mathrm{~d} r<\infty
\end{aligned}
$$

with some constant $C>0$. Hence, the Schwartz space $\mathscr{S}\left(\mathbb{R}^{d}\right)$ is contained in $L_{1}\left(\mathbb{R}^{d}\right) \cap L_{2}\left(\mathbb{R}^{d}\right)$.

Obviously, $C_{c}^{\infty}\left(\mathbb{R}^{d}\right) \subset \mathscr{S}\left(\mathbb{R}^{d}\right)$. Since $C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$ is dense in $L_{p}\left(\mathbb{R}^{d}\right)$, $p \in[1, \infty)$, see, e.g., [357, Satz 3.6], we also have that $\mathscr{S}\left(\mathbb{R}^{d}\right)$ is dense in $L_{p}\left(\mathbb{R}^{d}\right), p \in[1, \infty)$. Summarizing, it holds

$$
\begin{equation*}
C_{c}^{\infty}\left(\mathbb{R}^{d}\right) \subset \mathscr{S}\left(\mathbb{R}^{d}\right) \subset C_{0}^{\infty}\left(\mathbb{R}^{d}\right) \subset C^{\infty}\left(\mathbb{R}^{d}\right) \tag{4.11}
\end{equation*}
$$

Example 4.12 A typical function in $C_{c}^{\infty}\left(\mathbb{R}^{d}\right) \subset \mathscr{S}\left(\mathbb{R}^{d}\right)$ is the test function:

$$
\varphi(\mathbf{x}):= \begin{cases}\exp \left(-\frac{1}{1-\|\mathbf{x}\|_{2}^{2}}\right) & \|\mathbf{x}\|_{2}<1 \tag{4.12}\\ 0 & \|\mathbf{x}\|_{2} \geq 1\end{cases}
$$

The compact support of φ is the unit ball $\left\{\mathbf{x} \in \mathbb{R}^{d}:\|\mathbf{x}\|_{2} \leq 1\right\}$.
Any Gaussian function $\mathrm{e}^{-a\|\mathbf{x}\|_{2}^{2}}$ with $a>0$ is contained in $\mathscr{S}\left(\mathbb{R}^{d}\right)$, but it is not in $C_{c}^{\infty}\left(\mathbb{R}^{d}\right)$.

For any $n \in \mathbb{N}$, the function:

$$
f(\mathbf{x}):=\left(1+\|\mathbf{x}\|_{2}^{2}\right)^{-n} \in C_{0}^{\infty}\left(\mathbb{R}^{d}\right)
$$

does not belong to $\mathscr{S}\left(\mathbb{R}^{d}\right)$, since $\|\mathbf{x}\|_{2}^{2 n} f(\mathbf{x})$ does not tend to zero as $\|\mathbf{x}\|_{2} \rightarrow \infty$.

Example 4.13 In the univariate case, each product of a polynomial and the Gaussian function $\mathrm{e}^{-x^{2} / 2}$ is a rapidly decreasing function. By Theorem 2.25, the Hermite functions $h_{n}(x)=H_{n}(x) \mathrm{e}^{-x^{2} / 2}, n \in \mathbb{N}_{0}$, are contained in $\mathscr{S}(\mathbb{R})$ and form an orthogonal basis of $L_{2}(\mathbb{R})$. Here, H_{n} denotes the nth Hermite polynomial. Thus, $\mathscr{S}(\mathbb{R})$ is dense in $L_{2}(\mathbb{R})$. For each multi-index $\mathbf{n}=\left(n_{j}\right)_{j=1}^{d} \in \mathbb{N}_{0}^{d}$, the function $\mathbf{x}^{\mathbf{n}} \mathrm{e}^{-\|\mathbf{x}\|_{2}^{2} / 2}, \mathbf{x}=\left(x_{j}\right)_{j=1}^{d} \in \mathbb{R}^{d}$, is a rapidly decreasing function. The set of all functions:

$$
h_{\mathbf{n}}(\mathbf{x}):=\mathrm{e}^{-\|\mathbf{x}\|_{2}^{2} / 2} \prod_{j=1}^{d} H_{n_{j}}\left(x_{j}\right) \in \mathscr{S}\left(\mathbb{R}^{d}\right), \quad \mathbf{n} \in \mathbb{N}_{0}^{d},
$$

is an orthogonal basis of $L_{2}\left(\mathbb{R}^{d}\right)$. Further, $\mathscr{S}\left(\mathbb{R}^{d}\right)$ is dense in $L_{2}\left(\mathbb{R}^{d}\right)$.
For $f \in L_{1}\left(\mathbb{R}^{d}\right)$, we define its Fourier transform at $\omega \in \mathbb{R}^{d}$ by:

$$
\begin{equation*}
\mathscr{F} f(\boldsymbol{\omega})=\hat{f}(\boldsymbol{\omega}):=\int_{\mathbb{R}^{d}} f(\mathbf{x}) \mathrm{e}^{-\mathrm{i} \mathbf{x} \cdot \boldsymbol{\omega}} \mathrm{~d} \mathbf{x} \tag{4.13}
\end{equation*}
$$

Since

$$
|\hat{f}(\omega)| \leq \int_{\mathbb{R}^{d}}|f(\mathbf{x})| \mathrm{d} \mathbf{x}=\|f\|_{L_{1}\left(\mathbb{R}^{d}\right)}
$$

the Fourier transform (4.13) exists for all $\omega \in \mathbb{R}^{d}$ and is bounded on \mathbb{R}^{d}.
Example 4.14 Let $L>0$ be given. The characteristic function $f(\mathbf{x})$ of the hypercube $[-L, L]^{d} \subset \mathbb{R}^{d}$ is the product $\prod_{j=1}^{d} \chi_{[-L, L]}\left(x_{j}\right)$ of univariate characteristic
functions. By Example 2.3, the related Fourier transform reads as follows:

$$
\hat{f}(\boldsymbol{\omega})=(2 L)^{d} \prod_{j=1}^{d} \operatorname{sinc}\left(L \omega_{j}\right)
$$

Example 4.15 The Gaussian function $f(\mathbf{x}):=\mathrm{e}^{-\|\sigma \mathbf{x}\|_{2}^{2} / 2}$ with fixed $\sigma>0$ is the product of the univariate functions $f\left(x_{j}\right)=\mathrm{e}^{-\sigma^{2} x_{j}^{2} / 2}$ such that by Example 2.6:

$$
\hat{f}(\boldsymbol{\omega})=\left(\frac{2 \pi}{\sigma^{2}}\right)^{d / 2} \mathrm{e}^{-\|\boldsymbol{\omega}\|_{2}^{2} /\left(2 \sigma^{2}\right)} .
$$

By the following theorem, the Fourier transform maps the Schwartz space $\mathscr{S}\left(\mathbb{R}^{d}\right)$ into itself.

Theorem 4.16 For every $\varphi \in \mathscr{S}\left(\mathbb{R}^{d}\right)$, it holds $\mathscr{F} \varphi \in \mathscr{S}\left(\mathbb{R}^{d}\right)$, i.e., $\mathscr{F}: \mathscr{S}\left(\mathbb{R}^{d}\right) \rightarrow$ $\mathscr{S}\left(\mathbb{R}^{d}\right)$. Furthermore, $D^{\alpha}(\mathscr{F} \varphi) \in \mathscr{S}\left(\mathbb{R}^{d}\right)$ and $\mathscr{F}\left(D^{\alpha} \varphi\right) \in \mathscr{S}\left(\mathbb{R}^{d}\right)$ for all $\boldsymbol{\alpha} \in \mathbb{N}_{0}^{d}$, and we have

$$
\begin{align*}
D^{\alpha}(\mathscr{F} \varphi) & =(-\mathrm{i})^{|\alpha|} \mathscr{F}\left(\mathbf{x}^{\alpha} \varphi\right) \tag{4.14}\\
\omega^{\alpha}(\mathscr{F} \varphi) & =(-\mathrm{i})^{|\alpha|} \mathscr{F}\left(D^{\alpha} \varphi\right) \tag{4.15}
\end{align*}
$$

where the partial derivative D^{α} in (4.14) acts on ω and in (4.15) on \mathbf{x}.

Proof

1. We consider $\boldsymbol{\alpha}=\mathbf{e}_{1}$. Using Fubini's theorem, we obtain

$$
\begin{align*}
\frac{\partial}{\partial \omega_{1}}(\mathscr{F} \varphi)(\boldsymbol{\omega}) & =\lim _{h \rightarrow 0} \frac{1}{h}\left((\mathscr{F} \varphi)\left(\boldsymbol{\omega}+h \mathbf{e}_{1}\right)-(\mathscr{F} \varphi)(\boldsymbol{\omega})\right) \\
& =\lim _{h \rightarrow 0} \int_{\mathbb{R}^{d}} \varphi(\mathbf{x}) \frac{1}{h}\left(\mathrm{e}^{-\mathrm{i} \mathbf{x} \cdot\left(\boldsymbol{\omega}+h \mathbf{e}_{1}\right)}-\mathrm{e}^{-\mathrm{i} \mathbf{x} \cdot \boldsymbol{\omega}}\right) \mathrm{d} \mathbf{x} \tag{4.16}\\
& =\lim _{h \rightarrow 0} \int_{\mathbb{R}^{d-1}} \mathrm{e}^{-\mathrm{i} \tilde{\mathbf{x}} \cdot \tilde{\omega}} \int_{\mathbb{R}} \varphi(\mathbf{x}) \frac{1}{h}\left(\mathrm{e}^{-2 x_{1}\left(\omega_{1}+h\right)}-\mathrm{e}^{-\mathrm{i} x_{1} \omega_{1}}\right) \mathrm{d} x_{1} \mathrm{~d} \tilde{\mathbf{x}}
\end{align*}
$$

where $\tilde{\mathbf{x}}:=\left(x_{2}, \ldots, x_{d}\right)$. Now, $g(\omega):=\mathrm{e}^{-\mathrm{i} x \omega}$ is Lipschitz continuous with Lipschitz constant $\sup _{\omega}\left|g^{\prime}(\omega)\right|=\sup _{\omega}\left|-\mathrm{i} x \mathrm{e}^{-\mathrm{i} x \omega}\right|=|x|$ so that

$$
\frac{1}{h}\left|\mathrm{e}^{-\mathrm{i} x_{1}\left(\omega_{1}+h\right)}-\mathrm{e}^{-\mathrm{i} x_{1} \omega_{1}}\right| \leq\left|x_{1}\right| .
$$

Since $\varphi \in S\left(\mathbb{R}^{d}\right)$, we conclude that $\left|\varphi(\mathbf{x}) x_{1}\right|$ is an integrable upper bound of the sequence in the integrand of (4.16). By Lebesque's dominated convergence
theorem, one can change the order of differentiation and integration which results in:

$$
\begin{aligned}
\frac{\partial}{\partial \omega_{1}}(\mathscr{F} \varphi)(\boldsymbol{\omega}) & =\int_{\mathbb{R}^{d}} \varphi(\mathbf{x}) \frac{\partial}{\partial \omega_{1}} \mathrm{e}^{-\mathrm{i} \mathbf{x} \cdot \boldsymbol{\omega}} \mathrm{~d} \mathbf{x} \\
& =-\mathrm{i} \int_{\mathbb{R}^{d}} \varphi(\mathbf{x}) x_{1} \mathrm{e}^{-\mathrm{i} \mathbf{x} \cdot \boldsymbol{\omega}} \mathrm{~d} \mathbf{x}=-\mathrm{i}\left(\mathscr{F}\left(x_{1} \varphi\right)(\boldsymbol{\omega}) .\right.
\end{aligned}
$$

For arbitrary $\boldsymbol{\alpha} \in \mathbb{N}_{0}^{d}$, the assertion follows by induction.
2. We start by considering $\boldsymbol{\alpha}=\mathbf{e}_{1}$. From the theorem of Fubini, it follows

$$
\begin{aligned}
& \omega_{1}(\mathscr{F} \varphi)(\boldsymbol{\omega})=\int_{\mathbb{R}^{d}} \omega_{1} \mathrm{e}^{-\mathrm{i} \mathbf{x} \cdot \boldsymbol{\omega}} \varphi(\mathbf{x}) \mathrm{d} \mathbf{x} \\
& =\int_{\mathbb{R}^{d-1}} \mathrm{e}^{-\mathrm{i} \tilde{\mathbf{x}} \cdot \tilde{\omega}} \int_{\mathbb{R}} \mathrm{i} \omega_{1} \mathrm{e}^{-\mathrm{i} x_{1} \omega_{1}} \varphi(\mathbf{x}) \mathrm{d} x_{1} \mathrm{~d} x_{2} \ldots \mathrm{~d} x_{d} .
\end{aligned}
$$

For the inner integral, integration by parts yields

$$
\int_{\mathbb{R}} \mathrm{i} \omega_{1} \mathrm{e}^{-\mathrm{i} \omega_{1} x_{1}} \varphi(\mathbf{x}) \mathrm{d} x_{1}=\int_{\mathbb{R}} \mathrm{e}^{-\mathrm{i} x_{1} \omega_{1}} \frac{\partial}{\partial x_{1}} \varphi(\mathbf{x}) \mathrm{d} x_{1}
$$

Thus, we obtain

$$
\omega_{1}(\mathscr{F} \varphi)(\boldsymbol{\omega})=-\mathrm{i} \mathscr{F}\left(\frac{\partial}{\partial x_{1}} \varphi\right)(\boldsymbol{\omega}) .
$$

For an arbitrary multi-index $\boldsymbol{\alpha} \in \mathbb{N}_{0}^{d}$, the formula (4.15) follows by induction.
3. From (4.14) and (4.15), it follows for all multi-indices $\boldsymbol{\alpha}, \boldsymbol{\beta} \in \mathbb{N}_{0}^{d}$ and each $\varphi \in \mathscr{S}\left(\mathbb{R}^{d}\right):$

$$
\begin{equation*}
\omega^{\boldsymbol{\alpha}}\left[D^{\boldsymbol{\beta}}(\mathscr{F} \varphi)\right]=(-\mathrm{i})^{|\boldsymbol{\beta}|} \boldsymbol{\omega}^{\boldsymbol{\alpha}} \mathscr{F}\left(\mathbf{x}^{\boldsymbol{\beta}} \varphi\right)=(-\mathrm{i})^{|\boldsymbol{\alpha}|+|\boldsymbol{\beta}|} \mathscr{F}\left[D^{\boldsymbol{\alpha}}\left(\mathbf{x}^{\boldsymbol{\beta}} \varphi\right)\right] . \tag{4.17}
\end{equation*}
$$

Since

$$
\left|\omega^{\alpha}\left[D^{\beta}(\mathscr{F} \varphi)\right](\omega)\right|=\left|\mathscr{F}\left[D^{\alpha}\left(\mathbf{x}^{\beta} \varphi\right)\right](\omega)\right| \leq \int_{\mathbb{R}^{d}}\left|D^{\alpha}\left(\mathbf{x}^{\beta} \varphi\right)\right| \mathrm{d} x<\infty
$$

we conclude that $\omega^{\alpha}\left[D^{\beta}(\mathscr{F} \varphi)\right](\omega)$ is uniformly bounded on \mathbb{R}^{d}, so that $\mathscr{F} \varphi \in$ $\mathscr{S}\left(\mathbb{R}^{d}\right)$.

Remark 4.17 The Leibniz product rule for the partial differentiation of the product of two functions reads as follows:

$$
\begin{equation*}
D^{\boldsymbol{\alpha}}(\varphi \psi)=\sum_{\boldsymbol{\beta} \leq \boldsymbol{\alpha}}\binom{\boldsymbol{\alpha}}{\boldsymbol{\beta}}\left(D^{\boldsymbol{\beta}} \varphi\right)\left(D^{\boldsymbol{\alpha}-\boldsymbol{\beta}} \psi\right) \tag{4.18}
\end{equation*}
$$

with $\boldsymbol{\alpha}=\left(\alpha_{j}\right)_{j=1}^{d} \in \mathbb{N}_{0}^{d}$, where the sum runs over all $\boldsymbol{\beta}=\left(\beta_{j}\right)_{j=1}^{d} \in \mathbb{N}_{0}^{d}$ with $\beta_{j} \leq \alpha_{j}$ for $j=1, \ldots, d$, and where

$$
\binom{\boldsymbol{\alpha}}{\boldsymbol{\beta}}:=\frac{\alpha_{1}!\ldots \alpha_{d}!}{\beta_{1}!\ldots \beta_{d}!\left(\alpha_{1}-\beta_{1}\right)!\ldots\left(\alpha_{d}-\beta_{d}\right)!} .
$$

Based on Theorem 4.16, we can show that the Fourier transform is indeed a bijection on $\mathscr{S}\left(\mathbb{R}^{d}\right)$.

Theorem 4.18 The Fourier transform $\mathscr{F}: \mathscr{S}\left(\mathbb{R}^{d}\right) \rightarrow \mathscr{S}\left(\mathbb{R}^{d}\right)$ is a linear, bijective mapping. Further, the Fourier transform is continuous with respect to the convergence in $\mathscr{S}\left(\mathbb{R}^{d}\right)$, i.e., for $\varphi_{k}, \varphi \in \mathscr{S}\left(\mathbb{R}^{d}\right)$, $\varphi_{k} \underset{\mathscr{S}}{\longrightarrow} \varphi$ as $k \rightarrow \infty$ implies $\mathscr{F} \varphi_{k} \underset{\mathscr{S}}{ } \mathscr{F} \varphi$ as $k \rightarrow \infty$.

For all $\varphi \in \mathscr{S}\left(\mathbb{R}^{d}\right)$, the inverse Fourier transform $\mathscr{F}{ }^{-1}: \mathscr{S}\left(\mathbb{R}^{d}\right) \rightarrow \mathscr{S}\left(\mathbb{R}^{d}\right)$ is given by:

$$
\begin{equation*}
\left(\mathscr{F}^{-1} \varphi\right)(\mathbf{x}):=\frac{1}{(2 \pi)^{d}} \int_{\mathbb{R}^{d}} \varphi(\boldsymbol{\omega}) \mathrm{e}^{\mathrm{i} \mathbf{x} \cdot \boldsymbol{\omega}} \mathrm{~d} \boldsymbol{\omega} \tag{4.19}
\end{equation*}
$$

The inverse Fourier transform is also a linear, bijective mapping on $\mathscr{S}\left(\mathbb{R}^{d}\right)$ which is continuous with respect to the convergence in $\mathscr{S}\left(\mathbb{R}^{d}\right)$. Further, for all $\varphi \in \mathscr{S}\left(\mathbb{R}^{d}\right)$ and all $\mathbf{x} \in \mathbb{R}^{d}$, it holds the Fourier inversion formula:

$$
\varphi(\mathbf{x})=\frac{1}{(2 \pi)^{d}} \int_{\mathbb{R}^{d}}(\mathscr{F} \varphi)(\boldsymbol{\omega}) \mathrm{e}^{\mathrm{i} \mathbf{x} \cdot \boldsymbol{\omega}} \mathrm{~d} \boldsymbol{\omega} .
$$

Proof

1. By Theorem 4.16, the Fourier transform \mathscr{F} maps the Schwartz space $\mathscr{S}\left(\mathbb{R}^{d}\right)$ into itself. The linearity of the Fourier transform \mathscr{F} follows from those of the integral operator (4.13). For arbitrary $\varphi \in \mathscr{S}\left(\mathbb{R}^{d}\right)$, for all $\boldsymbol{\alpha}, \boldsymbol{\beta} \in \mathbb{N}_{0}^{d}$ with $|\boldsymbol{\alpha}| \leq m$ and $|\boldsymbol{\beta}| \leq m$, and for all $\boldsymbol{\omega} \in \mathbb{R}^{d}$, we obtain by (4.17) and Leibniz product rule:

$$
\begin{aligned}
& \left|\omega^{\beta} D^{\alpha}(\mathscr{F} \varphi)(\boldsymbol{\omega})\right|=\left|\mathscr{F}\left(D^{\beta}\left(\mathbf{x}^{\alpha} \varphi(\mathbf{x})\right)\right)(\boldsymbol{\omega})\right| \leq \int_{\mathbb{R}^{d}}\left|D^{\beta}\left(\mathbf{x}^{\alpha} \varphi(\mathbf{x})\right)\right| \mathrm{d} \mathbf{x} \\
& \leq C \int_{\mathbb{R}^{d}}\left(1+\|\mathbf{x}\|_{2}\right)^{m} \sum_{|\boldsymbol{\gamma}| \leq m}\left|D^{\gamma} \varphi(\mathbf{x})\right| \mathrm{d} \mathbf{x} \leq C \int_{\mathbb{R}^{d}} \frac{\left(1+\|\mathbf{x}\|_{2}\right)^{m+d+1}}{\left(1+\|\mathbf{x}\|_{2}\right)^{d+1}} \sum_{|\boldsymbol{\gamma}| \leq m}\left|D^{\gamma} \varphi(\mathbf{x})\right| \mathrm{d} \mathbf{x} \\
& \leq C \int_{\mathbb{R}^{d}} \frac{\mathrm{~d} \mathbf{x}}{\left(1+\|\mathbf{x}\|_{2}\right)^{d+1}}\|\varphi\|_{m+d+1} .
\end{aligned}
$$

By

$$
\|\mathscr{F} \varphi\|_{m}=\max _{|\boldsymbol{\gamma}| \leq m}\left\|\left(1+\|\boldsymbol{\omega}\|_{2}\right)^{m} D^{\boldsymbol{\gamma}} \mathscr{F} \varphi(\boldsymbol{\omega})\right\|_{C_{0}\left(\mathbb{R}^{d}\right)}
$$

we see that

$$
\begin{equation*}
\|\mathscr{F} \varphi\|_{m} \leq C^{\prime}\|\varphi\|_{m+d+1} \tag{4.20}
\end{equation*}
$$

for all $\varphi \in \mathscr{S}\left(\mathbb{R}^{d}\right)$ and each $m \in \mathbb{N}_{0}$.
Assume that $\varphi_{k} \underset{\mathscr{S}}{ } \varphi$ as $k \rightarrow \infty$ for $\varphi_{k}, \varphi \in \mathscr{S}\left(\mathbb{R}^{d}\right)$. Applying the inequality (4.20) to $\varphi_{k}-\varphi$, we obtain for all $m \in \mathbb{N}_{0}$

$$
\left\|\mathscr{F} \varphi_{k}-\mathscr{F} \varphi\right\|_{m} \leq C^{\prime}\left\|\varphi_{k}-\varphi\right\|_{m+d+1}
$$

From Lemma 4.10, it follows that $\mathscr{F} \varphi_{k} \underset{\mathscr{S}}{ } \mathscr{F} \varphi$ as $k \rightarrow \infty$.
2. The mapping

$$
(\tilde{\mathscr{F}} \varphi)(\mathbf{x}):=\frac{1}{(2 \pi)^{d}} \int_{\mathbb{R}^{d}} \varphi(\omega) \mathrm{e}^{\mathrm{i} \mathbf{x} \cdot \boldsymbol{\omega}} \mathrm{~d} \omega, \quad \varphi \in \mathscr{S}\left(\mathbb{R}^{d}\right),
$$

is linear and continuous from $\mathscr{S}\left(\mathbb{R}^{d}\right)$ into itself by the first step of this proof, since $(\tilde{\mathscr{F}} \varphi)(\mathbf{x})=\frac{1}{(2 \pi)^{d}}(\mathscr{F} \varphi)(-\mathbf{x})$.

Now, we show that $\tilde{\mathscr{F}}$ is the inverse mapping of \mathscr{F}. For arbitrary $\varphi, \psi \in$ $\mathscr{S}\left(\mathbb{R}^{d}\right)$, it holds by Fubini's theorem:

$$
\begin{aligned}
& \int_{\mathbb{R}^{d}}(\mathscr{F} \varphi)(\boldsymbol{\omega}) \psi(\boldsymbol{\omega}) \mathrm{e}^{\mathrm{i} \omega \cdot \mathbf{x}} \mathrm{~d} \omega=\int_{\mathbb{R}^{d}}\left(\int_{\mathbb{R}^{d}} \varphi(\mathbf{y}) \mathrm{e}^{-\mathrm{i} \omega \cdot \mathbf{y}} \mathrm{~d} \mathbf{y}\right) \psi(\boldsymbol{\omega}) \mathrm{e}^{\mathrm{i} \boldsymbol{\omega} \cdot \mathbf{x}} \mathrm{~d} \omega \\
& =\int_{\mathbb{R}^{d}} \varphi(\mathbf{y})\left(\int_{\mathbb{R}^{d}} \psi(\boldsymbol{\omega}) \mathrm{e}^{\mathrm{i}(\mathbf{x}-\mathbf{y}) \cdot \boldsymbol{\omega}} \mathrm{d} \omega\right) \mathrm{d} \mathbf{y} \\
& =\int_{\mathbb{R}^{d}} \varphi(\mathbf{y})(\mathscr{F} \psi)(\mathbf{y}-\mathbf{x}) \mathrm{d} \mathbf{y}=\int_{\mathbb{R}^{d}} \varphi(\mathbf{z}+\mathbf{x})(\mathscr{F} \psi)(\mathbf{z}) \mathrm{d} \mathbf{z}
\end{aligned}
$$

For the Gaussian function $\psi(\mathbf{x}):=\mathrm{e}^{-\|\varepsilon \mathbf{x}\|_{2}^{2} / 2}$ with $\varepsilon>0$, we have by Example 4.15 that $(\mathscr{F} \psi)(\boldsymbol{\omega})=\left(\frac{2 \pi}{\varepsilon^{2}}\right)^{d / 2} \mathrm{e}^{-\|\boldsymbol{\omega}\|_{2}^{2} /\left(2 \varepsilon^{2}\right)}$ and consequently

$$
\begin{aligned}
\int_{\mathbb{R}^{d}}(\mathscr{F} \varphi)(\boldsymbol{\omega}) \mathrm{e}^{-\|\varepsilon \boldsymbol{\omega}\|_{2}^{2} / 2} \mathrm{e}^{\mathrm{i} \omega \cdot \mathbf{x}} \mathrm{~d} \boldsymbol{\omega} & =\left(\frac{2 \pi}{\varepsilon^{2}}\right)^{d / 2} \int_{\mathbb{R}^{d}} \varphi(\mathbf{z}+\mathbf{x}) \mathrm{e}^{-\|\mathbf{z}\|_{2}^{2} /\left(2 \varepsilon^{2}\right)} \mathrm{d} \mathbf{z} \\
& =(2 \pi)^{d / 2} \int_{\mathbb{R}^{d}} \varphi(\varepsilon \mathbf{y}+\mathbf{x}) \mathrm{e}^{-\|\mathbf{y}\|_{2}^{2} / 2} \mathrm{~d} \mathbf{y}
\end{aligned}
$$

Since $\left|(\mathscr{F} \varphi)(\boldsymbol{\omega}) \mathrm{e}^{-\|\varepsilon \boldsymbol{\omega}\|_{2}^{2} / 2}\right| \leq|\mathscr{F} \varphi(\boldsymbol{\omega})|$ for all $\boldsymbol{\omega} \in \mathbb{R}^{d}$ and $\mathscr{F} \varphi \in \mathscr{S}\left(\mathbb{R}^{d}\right) \subset$ $L_{1}\left(\mathbb{R}^{d}\right)$, we obtain by Lebesgue's dominated convergence theorem:

$$
\begin{aligned}
& (\tilde{\mathscr{F}}(\mathscr{F} \varphi))(\mathbf{x})=\frac{1}{(2 \pi)^{d}} \lim _{\varepsilon \rightarrow 0} \int_{\mathbb{R}^{d}}(\mathscr{F} \varphi)(\boldsymbol{\omega}) \mathrm{e}^{-\|\varepsilon \boldsymbol{\omega}\|_{2}^{2} / 2} \mathrm{e}^{\mathrm{i} \omega \cdot \mathbf{x}} \mathrm{~d} \boldsymbol{\omega} \\
& =(2 \pi)^{-d / 2} \lim _{\varepsilon \rightarrow 0} \int_{\mathbb{R}^{d}} \varphi(\mathbf{x}+\varepsilon \mathbf{y}) \mathrm{e}^{-\|\mathbf{y}\|_{2}^{2} / 2} \mathrm{~d} \mathbf{y} \\
& =(2 \pi)^{-d / 2} \varphi(\mathbf{x}) \int_{\mathbb{R}^{d}} \mathrm{e}^{-\|\mathbf{y}\|_{2}^{2} / 2} \mathrm{~d} \mathbf{y}=\varphi(\mathbf{x})
\end{aligned}
$$

since by Example 2.6:

$$
\int_{\mathbb{R}^{d}} \mathrm{e}^{-\|\mathbf{y}\|_{2}^{2} / 2} \mathrm{~d} \mathbf{y}=\left(\int_{\mathbb{R}} \mathrm{e}^{y^{2} / 2} \mathrm{~d} y\right)^{d}=(2 \pi)^{d / 2}
$$

From $\tilde{\mathscr{F}}(\mathscr{F} \varphi)=\varphi$, it follows immediately that $\mathscr{F}(\tilde{\mathscr{F}} \varphi)=\varphi$ for all $\varphi \in$ $\mathscr{S}\left(\mathbb{R}^{d}\right)$. Hence, $\tilde{\mathscr{F}}=\mathscr{F}^{-1}$ and \mathscr{F} is bijective.

The convolution $f * g$ of two d-variate functions $f, g \in L_{1}\left(\mathbb{R}^{d}\right)$ is defined by:

$$
(f * g)(\mathbf{x}):=\int_{\mathbb{R}^{d}} f(\mathbf{y}) g(\mathbf{x}-\mathbf{y}) \mathrm{d} \mathbf{y} .
$$

Theorem 2.13 carries over to our multivariate setting. Moreover, by the following lemma the product and the convolution of two rapidly decreasing functions are again rapidly decreasing.

Lemma 4.19 For arbitrary $\varphi, \psi \in \mathscr{S}\left(\mathbb{R}^{d}\right)$, the product $\varphi \psi$ and the convolution $\varphi * \psi$ are in $\mathscr{S}\left(\mathbb{R}^{d}\right)$ and it holds $\mathscr{F}(\varphi * \psi)=\hat{\varphi} \hat{\psi}$.

Proof By the Leibniz product rule (4.18), we obtain that $\mathbf{x}^{\gamma} D^{\alpha}(\varphi(\mathbf{x}) \psi(\mathbf{x})) \in$ $C_{0}\left(\mathbb{R}^{d}\right)$ for all $\boldsymbol{\alpha}, \boldsymbol{\gamma} \in \mathbb{N}_{0}^{d}$, i.e., $\varphi \psi \in \mathscr{S}\left(\mathbb{R}^{d}\right)$.

By Theorem 4.18, we know that $\hat{\varphi}, \hat{\psi} \in \mathscr{S}\left(\mathbb{R}^{d}\right)$ and hence $\hat{\varphi} \hat{\psi} \in \mathscr{S}\left(\mathbb{R}^{d}\right)$ by the first step. Using Theorem 4.18, we obtain that $\mathscr{F}(\hat{\varphi} \hat{\psi}) \in \mathscr{S}\left(\mathbb{R}^{d}\right)$. On the other hand, we conclude by Fubini's theorem:

$$
\begin{aligned}
\mathscr{F}(\varphi * \psi)(\boldsymbol{\omega}) & =\int_{\mathbb{R}^{d}}\left(\int_{\mathbb{R}^{d}} \varphi(\mathbf{y}) \psi(\mathbf{x}-\mathbf{y}) \mathrm{d} \mathbf{y}\right) \mathrm{e}^{-\mathrm{i} \mathbf{x} \cdot \boldsymbol{\omega}} \mathrm{~d} \mathbf{x} \\
& =\int_{\mathbb{R}^{d}} \varphi(\mathbf{y}) \mathrm{e}^{-\mathrm{i} \mathbf{y} \cdot \boldsymbol{\omega}}\left(\int_{\mathbb{R}^{d}} \psi(\mathbf{x}-\mathbf{y}) \mathrm{e}^{-\mathrm{i}(\mathbf{x}-\mathbf{y}) \cdot \boldsymbol{\omega}} \mathrm{d} \mathbf{x}\right) \mathrm{d} \mathbf{y} \\
& =\left(\int_{\mathbb{R}^{d}} \varphi(\mathbf{y}) \mathrm{e}^{-\mathrm{i} \mathbf{y} \cdot \boldsymbol{\omega}} \mathrm{~d} \mathbf{y}\right) \hat{\psi}(\boldsymbol{\omega})=\hat{\varphi}(\boldsymbol{\omega}) \hat{\psi}(\boldsymbol{\omega})
\end{aligned}
$$

Therefore, $\varphi * \psi=\mathscr{F}^{-1}(\hat{\varphi} \hat{\psi}) \in \mathscr{S}\left(\mathbb{R}^{d}\right)$.

The basic properties of the d-variate Fourier transform on $\mathscr{S}\left(\mathbb{R}^{d}\right)$ can be proved similarly as in Theorems 2.5 and 2.15. The following properties 1, 3, and 4 hold also true for functions in $L_{1}\left(\mathbb{R}^{d}\right)$, whereas property 2 holds only under additional smoothness assumptions.

Theorem 4.20 (Properties of the Fourier Transform on $\mathscr{S}\left(\mathbb{R}^{d}\right)$) The Fourier

 transform of a function $\varphi \in \mathscr{S}\left(\mathbb{R}^{d}\right)$ has the following properties:1. Translation and modulation: For fixed $\mathbf{x}_{0}, \omega_{0} \in \mathbb{R}^{d}$:

$$
\begin{aligned}
\left(\varphi\left(\mathbf{x}-\mathbf{x}_{0}\right)\right)^{\wedge}(\boldsymbol{\omega}) & =\mathrm{e}^{-\mathrm{i} \mathbf{x}_{0} \cdot \boldsymbol{\omega}} \hat{\varphi}(\boldsymbol{\omega}), \\
\left(\mathrm{e}^{-\mathrm{i} \boldsymbol{\omega}_{0} \cdot \mathbf{x}} \varphi(\mathbf{x})\right)^{\wedge}(\omega) & =\hat{\varphi}\left(\boldsymbol{\omega}+\boldsymbol{\omega}_{0}\right) .
\end{aligned}
$$

2. Differentiation and multiplication: For $\boldsymbol{\alpha} \in \mathbb{N}_{0}^{d}$:

$$
\begin{aligned}
\left(D^{\alpha} \varphi(\mathbf{x})\right)^{\wedge}(\boldsymbol{\omega}) & =\mathrm{i}^{|\boldsymbol{\alpha}|} \boldsymbol{\omega}^{\alpha} \hat{\varphi}(\boldsymbol{\omega}) \\
\left(\mathbf{x}^{\boldsymbol{\alpha}} \varphi(\mathbf{x})\right)^{\wedge}(\boldsymbol{\omega}) & =\mathrm{i}^{|\boldsymbol{\alpha}|}\left(D^{\alpha} \hat{\varphi}\right)(\boldsymbol{\omega}) .
\end{aligned}
$$

3. Scaling: For $c \in \mathbb{R} \backslash\{0\}$:

$$
(\varphi(c \mathbf{x}))^{\wedge}(\boldsymbol{\omega})=\frac{1}{|c|^{d}} \hat{\varphi}\left(c^{-1} \boldsymbol{\omega}\right) .
$$

4. Convolution: For $\varphi, \psi \in \mathscr{S}\left(\mathbb{R}^{d}\right)$:

$$
(\varphi * \psi)^{\wedge}(\boldsymbol{\omega})=\hat{\varphi}(\boldsymbol{\omega}) \hat{\psi}(\boldsymbol{\omega}) .
$$

4.2.2 Fourier Transforms on $L_{1}\left(\mathbb{R}^{d}\right)$ and $L_{2}\left(\mathbb{R}^{d}\right)$

Similar to the univariate case, see Theorem 2.8, we obtain the following theorem for the Fourier transform on $L_{1}\left(\mathbb{R}^{d}\right)$.

Theorem 4.21 The Fourier transform \mathscr{F} defined by (4.13) is a linear continuous operator from $L_{1}\left(\mathbb{R}^{d}\right)$ into $C_{0}\left(\mathbb{R}^{d}\right)$ with the operator norm $\|\mathscr{F}\|_{L_{1}\left(\mathbb{R}^{d}\right) \rightarrow C_{0}\left(\mathbb{R}^{d}\right)}=1$.

Proof By (4.11), there exists for any $f \in L_{1}\left(\mathbb{R}^{d}\right)$ a sequence $\left(\varphi_{k}\right)_{k \in \mathbb{N}}$ with $\varphi_{k} \in$ $\mathscr{S}\left(\mathbb{R}^{d}\right)$ such that $\lim _{k \rightarrow \infty}\left\|f-\varphi_{k}\right\|_{L_{1}\left(\mathbb{R}^{d}\right)}=0$. Then, the $C_{0}\left(\mathbb{R}^{d}\right)$ norm of $\mathscr{F} f-$ $\mathscr{F} \varphi_{k}$ can be estimated by:

$$
\left\|\mathscr{F} f-\mathscr{F} \varphi_{k}\right\|_{C_{0}\left(\mathbb{R}^{d}\right)}=\sup _{\omega \in \mathbb{R}^{d}}\left|\mathscr{F}\left(f-\varphi_{k}\right)(\boldsymbol{\omega})\right| \leq\left\|f-\varphi_{k}\right\|_{L_{1}\left(\mathbb{R}^{d}\right)},
$$

that is, $\lim _{k \rightarrow \infty} \mathscr{F} \varphi_{k}=\mathscr{F} f$ in the norm of $C_{0}\left(\mathbb{R}^{d}\right)$. By $\mathscr{S}\left(\mathbb{R}^{d}\right) \subset C_{0}\left(\mathbb{R}^{d}\right)$ and the completeness of $C_{0}\left(\mathbb{R}^{d}\right)$, we conclude that $\mathscr{F} f \in C_{0}\left(\mathbb{R}^{d}\right)$. The operator norm of $\mathscr{F}: L_{1}\left(\mathbb{R}^{d}\right) \rightarrow C_{0}\left(\mathbb{R}^{d}\right)$ can be deduced as in the univariate case, where we have just to use the d-variate Gaussian function.

Theorem 4.22 (Fourier Inversion Formula for $L_{1}\left(\mathbb{R}^{d}\right)$ Functions) Let $f \in$ $L_{1}\left(\mathbb{R}^{d}\right)$ and $\hat{f} \in L_{1}\left(\mathbb{R}^{d}\right)$. Then, the Fourier inversion formula:

$$
\begin{equation*}
f(\mathbf{x})=\frac{1}{(2 \pi)^{d}} \int_{\mathbb{R}^{d}} \hat{f}(\boldsymbol{\omega}) \mathrm{e}^{\mathrm{i} \boldsymbol{\omega} \cdot \mathbf{x}} \mathrm{~d} \boldsymbol{\omega} \tag{4.21}
\end{equation*}
$$

holds true for almost all $\mathbf{x} \in \mathbb{R}^{d}$.
The proof follows similar lines as those of Theorem 2.10 in the univariate case. Another proof of Theorem 4.22 is sketched in Remark 4.48.

The following lemma is related to the more general Lemma 2.21 proved in the univariate case.
Lemma 4.23 For arbitrary $\varphi, \psi \in \mathscr{S}\left(\mathbb{R}^{d}\right)$, the following Parseval equality is valid:

$$
(2 \pi)^{d}\langle\varphi, \psi\rangle_{L_{2}\left(\mathbb{R}^{d}\right)}=\langle\mathscr{F} \varphi, \mathscr{F} \psi\rangle_{L_{2}\left(\mathbb{R}^{d}\right)}
$$

In particular, we have $(2 \pi)^{d / 2}\|\varphi\|_{L_{2}\left(\mathbb{R}^{d}\right)}=\|\mathscr{F} \varphi\|_{L_{2}\left(\mathbb{R}^{d}\right)}$.
Proof By Theorem 4.18, we have $\varphi=\mathscr{F}^{-1}(\mathscr{F} \varphi)$ for $\varphi \in \mathscr{S}\left(\mathbb{R}^{d}\right)$. Then, Fubini's theorem yields

$$
\begin{aligned}
& (2 \pi)^{d}\langle\varphi, \psi\rangle_{L_{2}\left(\mathbb{R}^{d}\right)}=(2 \pi)^{d} \int_{\mathbb{R}^{d}} \varphi(\mathbf{x}) \overline{\psi(\mathbf{x})} \mathrm{d} \mathbf{x} \\
& =\int_{\mathbb{R}^{d}} \overline{\psi(\mathbf{x})}\left(\int_{\mathbb{R}^{d}}(\mathscr{F} \varphi)(\boldsymbol{\omega}) \mathrm{e}^{\mathrm{i} \mathbf{x} \cdot \boldsymbol{\omega}} \mathrm{~d} \boldsymbol{\omega}\right) \mathrm{d} \mathbf{x}=\int_{\mathbb{R}^{d}}(\mathscr{F} \varphi)(\boldsymbol{\omega}) \overline{\int_{\mathbb{R}^{d}} \psi(\mathbf{x}) \mathrm{e}^{-\mathrm{i} \mathbf{x} \cdot \boldsymbol{\omega}} \mathrm{~d} \mathbf{x}} \mathrm{~d} \omega \\
& =\int_{\mathbb{R}^{d}} \mathscr{F} \varphi(\boldsymbol{\omega}) \overline{\mathscr{F} \psi(\boldsymbol{\omega})} \mathrm{d} \boldsymbol{\omega}=\langle\mathscr{F} \varphi, \mathscr{F} \psi\rangle_{L_{2}\left(\mathbb{R}^{d}\right)} .
\end{aligned}
$$

We will use the following extension theorem of bounded linear operator, see, e.g., $\left[10\right.$, Theorem 2.4.1], to extend the Fourier transform from $\mathscr{S}\left(\mathbb{R}^{d}\right)$ to $L_{2}\left(\mathbb{R}^{d}\right)$.

Theorem 4.24 (Extension of a Bounded Linear Operator) Let H be a Hilbert space and let $D \subset H$ be a linear subset which is dense in H. Further, let $F: D \rightarrow$ H be a linear bounded operator. Then, F admits a unique extension to a bounded linear operator $\tilde{F}: H \rightarrow H$ and it holds

$$
\|F\|_{D \rightarrow H}=\|\tilde{F}\|_{H \rightarrow H}
$$

For each $f \in H$ with $f=\lim _{k \rightarrow \infty} f_{k}$, where $f_{k} \in D$, it holds $\tilde{F} f=\lim _{k \rightarrow \infty} F f_{k}$.

Theorem 4.25 (Plancherel) The Fourier transform $\mathscr{F}: \mathscr{S}\left(\mathbb{R}^{d}\right) \rightarrow \mathscr{S}\left(\mathbb{R}^{d}\right)$ can be uniquely extended to a linear continuous bijective transform $\mathscr{F}: L_{2}\left(\mathbb{R}^{d}\right) \rightarrow$ $L_{2}\left(\mathbb{R}^{d}\right)$, which fulfills the Parseval equality:

$$
\begin{equation*}
(2 \pi)^{d}\langle f, g\rangle_{L_{2}\left(\mathbb{R}^{d}\right)}=\langle\mathscr{F} f, \mathscr{F} g\rangle_{L_{2}\left(\mathbb{R}^{d}\right)} \tag{4.22}
\end{equation*}
$$

for all $f, g \in L_{2}\left(\mathbb{R}^{d}\right)$. In particular, it holds $(2 \pi)^{d / 2}\|f\|_{L_{2}\left(\mathbb{R}^{d}\right)}=\|\mathscr{F} f\|_{L_{2}\left(\mathbb{R}^{d}\right)}$.
The above extension is also called Fourier transform on $L_{2}\left(\mathbb{R}^{d}\right)$ or sometimes Fourier-Plancherel transform.
Proof Applying Theorem 4.24, we consider $D=\mathscr{S}\left(\mathbb{R}^{d}\right)$ as linear, dense subspace of the Hilbert space $H=L_{2}\left(\mathbb{R}^{d}\right)$. By Lemma 4.23, we know that \mathscr{F} as well as \mathscr{F}^{-1} are bounded linear operators from D to H with the operator norms $(2 \pi)^{d / 2}$ and $(2 \pi)^{-d / 2}$. Therefore, both operators admit unique extensions $\mathscr{F}: L_{2}\left(\mathbb{R}^{d}\right) \rightarrow$ $L_{2}\left(\mathbb{R}^{d}\right)$ and $\mathscr{F}^{-1}: L_{2}\left(\mathbb{R}^{d}\right) \rightarrow L_{2}\left(\mathbb{R}^{d}\right)$ and (4.22) is fulfilled.

4.2.3 Poisson Summation Formula

Now, we generalize the one-dimensional Poisson summation formula (see Theorem 2.26). For $f \in L_{1}\left(\mathbb{R}^{d}\right)$, we introduce its 2π-periodization by:

$$
\begin{equation*}
\tilde{f}(\mathbf{x}):=\sum_{\mathbf{k} \in \mathbb{Z}^{d}} f(\mathbf{x}+2 \pi \mathbf{k}), \quad \mathbf{x} \in \mathbb{R}^{d} \tag{4.23}
\end{equation*}
$$

First, we prove the existence of the 2π-periodization $\tilde{f} \in L_{1}\left(\mathbb{T}^{d}\right)$ of $f \in L_{1}\left(\mathbb{R}^{d}\right)$.
Lemma 4.26 For given $f \in L_{1}\left(\mathbb{R}^{d}\right)$, the series in (4.23) converges absolutely for almost all $\mathbf{x} \in \mathbb{R}^{d}$ and \tilde{f} is contained in $L_{1}\left(\mathbb{T}^{d}\right)$.

Proof At first, we show that the 2π-periodization φ of $|f|$ belongs to $L_{1}\left(\mathbb{T}^{d}\right)$, that is:

$$
\varphi(\mathbf{x}):=\sum_{\mathbf{k} \in \mathbb{Z}^{d}}|f(\mathbf{x}+2 \pi \mathbf{k})| .
$$

For each $n \in \mathbb{N}$, we form the nonnegative function:

$$
\varphi_{n}(\mathbf{x}):=\sum_{k_{1}=-n}^{n-1} \ldots \sum_{k_{d}=-n}^{n-1}|f(\mathbf{x}+2 \pi \mathbf{k})| .
$$

Then, we obtain

$$
\begin{aligned}
& \int_{[0,2 \pi]^{d}} \varphi_{n}(\mathbf{x}) \mathrm{d} \mathbf{x}=\sum_{k_{1}=-n}^{n-1} \ldots \sum_{k_{d}=-n}^{n-1} \int_{[0,2 \pi]^{d}}|f(\mathbf{x}+2 \pi \mathbf{k})| \mathrm{d} \mathbf{x} \\
& =\sum_{k_{1}=-n}^{n-1} \ldots \sum_{k_{d}=-n}^{n-1} \int_{2 \pi \mathbf{k}+[0,2 \pi]^{d}}|f(\mathbf{x})| \mathrm{d} \mathbf{x}=\int_{[-2 \pi n, 2 \pi n]^{d}}|f(\mathbf{x})| \mathrm{d} \mathbf{x}
\end{aligned}
$$

and hence

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \int_{[0,2 \pi]^{d}} \varphi_{n}(\mathbf{x}) \mathrm{d} \mathbf{x}=\int_{\mathbb{R}^{d}}|f(\mathbf{x})| \mathrm{d} \mathbf{x}=\|f\|_{L_{1}\left(\mathbb{R}^{d}\right)}<\infty \tag{4.24}
\end{equation*}
$$

Since $\left(\varphi_{n}\right)_{n \in \mathbb{N}}$ is a monotone increasing sequence of nonnegative integrable functions with the property (4.24), we receive by the monotone convergence theorem of B. Levi that $\lim _{n \rightarrow \infty} \varphi_{n}(\mathbf{x})=\varphi(\mathbf{x})$ for almost all $\mathbf{x} \in \mathbb{R}^{d}$ and $\varphi \in L_{1}\left(\mathbb{T}^{d}\right)$, where it holds

$$
\int_{[0,2 \pi]^{d}} \varphi(\mathbf{x}) \mathrm{d} \mathbf{x}=\lim _{n \rightarrow \infty} \int_{[0,2 \pi]^{d}} \varphi_{n}(\mathbf{x}) \mathrm{d} \mathbf{x}=\|f\|_{L_{1}\left(\mathbb{R}^{d}\right)}
$$

In other words, the series in (4.23) converges absolutely for almost all $\mathbf{x} \in \mathbb{R}^{d}$. From

$$
|\tilde{f}(\mathbf{x})|=\left|\sum_{\mathbf{k} \in \mathbb{Z}^{d}} f(\mathbf{x}+2 \pi \mathbf{k})\right| \leq \sum_{\mathbf{k} \in \mathbb{Z}^{d}}|f(\mathbf{x}+2 \pi \mathbf{k})|=\varphi(\mathbf{x}),
$$

it follows that $\tilde{f} \in L_{1}\left(\mathbb{T}^{d}\right)$ with

$$
\|\tilde{f}\|_{L_{1}\left(\mathbb{T}^{d}\right)}=\int_{[0,2 \pi]^{d}}|\tilde{f}(\mathbf{x})| \mathrm{d} \mathbf{x} \leq \int_{[0,2 \pi]^{d}} \varphi(\mathbf{x}) \mathrm{d} \mathbf{x}=\|f\|_{L_{1}(\mathbb{R})^{d}}
$$

The d-dimensional Poisson summation formula describes an interesting connection between the values $\hat{f}(\mathbf{n}), \mathbf{n} \in \mathbb{Z}^{d}$, of the Fourier transform \hat{f} of a given function $f \in L_{1}\left(\mathbb{R}^{d}\right) \cap C_{0}\left(\mathbb{R}^{d}\right)$ and the Fourier series of the 2π-periodization \tilde{f}.
Theorem 4.27 Let $f \in C_{0}\left(\mathbb{R}^{d}\right)$ be a given function which fulfills the decay conditions:

$$
\begin{equation*}
|f(\mathbf{x})| \leq \frac{c}{1+\|\mathbf{x}\|_{2}^{d+\varepsilon}}, \quad|\hat{f}(\omega)| \leq \frac{c}{1+\|\omega\|_{2}^{d+\varepsilon}} \tag{4.25}
\end{equation*}
$$

for all $\mathbf{x}, \boldsymbol{\omega} \in \mathbb{R}^{d}$ with some constants $\varepsilon>0$ and $c>0$.

Then for all $\mathbf{x} \in \mathbb{R}^{d}$, it holds the Poisson summation formula:

$$
\begin{equation*}
(2 \pi)^{d} \tilde{f}(\mathbf{x})=(2 \pi)^{d} \sum_{\mathbf{k} \in \mathbb{Z}^{d}} f(\mathbf{x}+2 \pi \mathbf{k})=\sum_{\mathbf{n} \in \mathbb{Z}^{d}} \hat{f}(\mathbf{n}) \mathrm{e}^{\mathrm{i} \mathbf{n} \cdot \mathbf{x}}, \tag{4.26}
\end{equation*}
$$

where both series in (4.26) converge absolutely and uniformly on \mathbb{R}^{d}. In particular, for $\mathbf{x}=\mathbf{0}$ it holds

$$
(2 \pi)^{d} \sum_{\mathbf{k} \in \mathbb{Z}^{d}} f(2 \pi \mathbf{k})=\sum_{\mathbf{n} \in \mathbb{Z}^{d}} \hat{f}(\mathbf{n}) .
$$

Proof From the decay conditions (4.25), it follows that $f, \hat{f} \in L_{1}\left(\mathbb{R}^{d}\right)$ such that $\tilde{f} \in L_{1}\left(\mathbb{T}^{d}\right)$ by Lemma 4.26. Then, we obtain

$$
\begin{aligned}
c_{\mathbf{n}}(\tilde{f}) & =\frac{1}{(2 \pi)^{d}} \int_{[0,2 \pi]^{d}} \tilde{f}(\mathbf{x}) \mathrm{e}^{-\mathrm{i} \mathbf{n} \cdot \mathbf{x}} \mathrm{~d} \mathbf{x} \\
& =\frac{1}{(2 \pi)^{d}} \int_{[0,2 \pi]^{d}}\left(\sum_{\mathbf{k} \in \mathbb{Z}^{d}} f(\mathbf{x}+2 \pi \mathbf{k}) \mathrm{e}^{-\mathrm{i} \mathbf{n} \cdot(\mathbf{x}+2 \pi \mathbf{k})}\right) \mathrm{d} \mathbf{x} \\
& =\frac{1}{(2 \pi)^{d}} \int_{\mathbb{R}^{d}} f(\mathbf{x}) \mathrm{e}^{-\mathrm{i} \mathbf{n} \cdot \mathbf{x}} \mathrm{~d} \mathbf{x}=\frac{1}{(2 \pi)^{d}} \hat{f}(\mathbf{n}) .
\end{aligned}
$$

From the second decay condition and Lemma 4.8, it follows that $\sum_{\mathbf{n} \in \mathbb{Z}^{d}}|\hat{f}(\mathbf{n})|<$ ∞. Thus, by Theorem 4.7, the 2π-periodization $\tilde{f} \in C\left(\mathbb{T}^{d}\right)$ possesses the uniformly convergent Fourier series:

$$
\tilde{f}(\mathbf{x})=\frac{1}{(2 \pi)^{d}} \sum_{\mathbf{n} \in \mathbb{Z}^{d}} \hat{f}(\mathbf{n}) \mathrm{e}^{\mathrm{i} \mathbf{n} \cdot \mathbf{x}}
$$

Further, we have $\tilde{f} \in C\left(\mathbb{T}^{d}\right)$ such that (4.26) is valid for all $\mathbf{x} \in \mathbb{R}^{d}$.
Remark 4.28 The decay conditions (4.25) on f and \hat{f} are needed only for the absolute and uniform convergence of both series and the pointwise validity of (4.26). Obviously, any $f \in \mathscr{S}\left(\mathbb{R}^{d}\right)$ fulfills the decay conditions (4.25). Note that the Poisson summation formula (4.26) holds pointwise or almost everywhere under much weaker conditions on f and \hat{f}, see [151].

4.2.4 Fourier Transforms of Radial Functions

A function $f: \mathbb{R}^{d} \rightarrow \mathbb{C}$ is called a radial function, if $f(\mathbf{x})=f(\mathbf{y})$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{d}$ with $\|\mathbf{x}\|_{2}=\|\mathbf{y}\|_{2}$. Thus, a radial function f can be written in the form $f(\mathbf{x})=$ $F\left(\|\mathbf{x}\|_{2}\right)$ with certain univariate function $F:[0, \infty) \rightarrow \mathbb{C}$. A radial function f is
characterized by the property $f(\mathbf{A} \mathbf{x})=f(\mathbf{x})$ for all orthogonal matrices $\mathbf{A} \in \mathbb{R}^{d \times d}$. The Gaussian function in Example 4.15 is a typical example of a radial function. Extended material on radial functions can be found in [373].
Lemma 4.29 Let $\mathbf{A} \in \mathbb{R}^{d \times d}$ be invertible and let $f \in L_{1}\left(\mathbb{R}^{d}\right)$. Then, we have

$$
(f(\mathbf{A} \mathbf{x}))^{\wedge}(\boldsymbol{\omega})=\frac{1}{|\operatorname{det} \mathbf{A}|} \hat{f}\left(\mathbf{A}^{-\top} \boldsymbol{\omega}\right)
$$

In particular, for an orthogonal matrix $\mathbf{A} \in \mathbb{R}^{d \times d}$ we have the relation:

$$
(f(\mathbf{A} \mathbf{x}))^{\wedge}(\boldsymbol{\omega})=\hat{f}(\mathbf{A} \boldsymbol{\omega}) .
$$

Proof Substituting $\mathbf{y}:=\mathbf{A x}$, it follows

$$
\begin{aligned}
(f(\mathbf{A} \mathbf{x}))^{\wedge}(\boldsymbol{\omega}) & =\int_{\mathbb{R}^{d}} f(\mathbf{A} \mathbf{x}) \mathrm{e}^{-\mathrm{i} \boldsymbol{\omega} \cdot \mathbf{x}} \mathrm{~d} \mathbf{x} \\
& =\frac{1}{|\operatorname{det} \mathbf{A}|} \int_{\mathbb{R}^{d}} f(\mathbf{y}) \mathrm{e}^{-\mathrm{i}\left(\mathbf{A}^{-\top} \boldsymbol{\omega}\right) \cdot \mathbf{y}} \mathrm{d} \mathbf{y}=\frac{1}{|\operatorname{det} \mathbf{A}|} \hat{f}\left(\mathbf{A}^{-\top} \boldsymbol{\omega}\right)
\end{aligned}
$$

If \mathbf{A} is orthogonal, then $\mathbf{A}^{-\top}=\mathbf{A}$ and $|\operatorname{det} \mathbf{A}|=1$.
Corollary 4.30 Let $f \in L_{1}\left(\mathbb{R}^{d}\right)$ be a radial function of the form $f(\mathbf{x})=F(r)$ with $r:=\|\mathbf{x}\|_{2}$. Then, its Fourier transform \hat{f} is also a radial function. In the case $d=2$, we have

$$
\begin{equation*}
\hat{f}(\omega)=2 \pi \int_{0}^{\infty} F(r) J_{0}\left(r\|\omega\|_{2}\right) r \mathrm{~d} r \tag{4.27}
\end{equation*}
$$

where J_{0} denotes the Bessel function of order zero:

$$
J_{0}(x):=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{(k!)^{2}}\left(\frac{x}{2}\right)^{2 k}
$$

Proof The first assertion is an immediate consequence of Lemma 4.29. Let $d=2$. Using polar coordinates (r, φ) and (ρ, ψ) with $r=\|\mathbf{x}\|_{2}, \rho=\|\omega\|_{2}$ and $\varphi, \psi \in$ $[0,2 \pi)$ such that:

$$
\mathbf{x}=(r \cos \varphi, r \sin \varphi)^{\top}, \quad \boldsymbol{\omega}=(\rho \cos \psi, \rho \sin \psi)^{\top}
$$

we obtain

$$
\begin{aligned}
\hat{f}(\boldsymbol{\omega}) & =\int_{\mathbb{R}^{2}} f(\mathbf{x}) \mathrm{e}^{-\mathrm{i} \mathbf{x} \cdot \boldsymbol{\omega}} \mathrm{~d} \mathbf{x} \\
& =\int_{0}^{\infty} \int_{0}^{2 \pi} F(r) \mathrm{e}^{-\mathrm{i} r \rho \cos (\varphi-\psi)} r \mathrm{~d} \varphi \mathrm{~d} r
\end{aligned}
$$

The inner integral with respect to φ is independent of ψ, since the integrand is $2 \pi-$ periodic. For $\psi=-\frac{\pi}{2}$, we conclude by Bessel's integral formula:

$$
\int_{0}^{2 \pi} \mathrm{e}^{-\mathrm{i} r \rho \cos (\varphi+\pi / 2)} \mathrm{d} \varphi=\int_{0}^{2 \pi} \mathrm{e}^{\mathrm{i} r \rho \sin \varphi} \mathrm{~d} \varphi=2 \pi J_{0}(r \rho) .
$$

This yields the integral representation (4.27), which is called Hankel transform of order zero of F.

Remark 4.31 The Hankel transform of order zero $\mathscr{H}: L_{2}((0, \infty)) \rightarrow$ $L_{2}((0, \infty))$ is defined by:

$$
(\mathscr{H} F)(\rho):=\int_{0}^{\infty} F(r) J_{0}(r \rho) r \mathrm{~d} r .
$$

Remark 4.32 In the case $d=3$, we can use spherical coordinates for the computation of the Fourier transform of a radial function $f \in L_{1}\left(\mathbb{R}^{3}\right)$, where $f(\mathbf{x})=F\left(\|\mathbf{x}\|_{2}\right)$. This results in

$$
\begin{equation*}
\hat{f}(\boldsymbol{\omega})=\frac{4 \pi}{\|\boldsymbol{\omega}\|_{2}} \int_{0}^{\infty} F(r) r \sin \left(r\|\boldsymbol{\omega}\|_{2}\right) \mathrm{d} r, \quad \boldsymbol{\omega} \in \mathbb{R}^{3} \backslash\{\mathbf{0}\} \tag{4.28}
\end{equation*}
$$

For an arbitrary dimension $d \in \mathbb{N} \backslash\{1\}$, we obtain

$$
\hat{f}(\boldsymbol{\omega})=(2 \pi)^{d / 2}\|\boldsymbol{\omega}\|_{2}^{1-d / 2} \int_{0}^{\infty} F(r) r^{d / 2-1} J_{d / 2-1}\left(r\|\boldsymbol{\omega}\|_{2}\right) \mathrm{d} r, \quad \boldsymbol{\omega} \in \mathbb{R}^{d} \backslash\{\boldsymbol{0}\}
$$

where

$$
J_{v}(x):=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!\Gamma(k+v+1)}\left(\frac{x}{2}\right)^{2 k+v}
$$

denotes the Bessel function of order $v \geq 0$, see [341, p. 155].
Example 4.33 Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be the characteristic function of the unit disk, i.e., $f(\mathbf{x}):=1$ for $\|\mathbf{x}\|_{2} \leq 1$ and $f(\mathbf{x}):=0$ for $\|\mathbf{x}\|_{2}>1$. By (4.27), it follows for $\omega \in \mathbb{R}^{2} \backslash\{\mathbf{0}\}$ that

$$
\hat{f}(\boldsymbol{\omega})=2 \pi \int_{0}^{1} J_{0}\left(r\|\boldsymbol{\omega}\|_{2}\right) r \mathrm{~d} r=\frac{2 \pi}{\|\boldsymbol{\omega}\|_{2}} J_{1}\left(\|\boldsymbol{\omega}\|_{2}\right)
$$

and $\hat{f}(\mathbf{0})=\pi$.

Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be the characteristic function of the unit ball. Then from (4.28), it follows for $\boldsymbol{\omega} \in \mathbb{R}^{3} \backslash\{\mathbf{0}\}$ that

$$
\hat{f}(\boldsymbol{\omega})=\frac{4 \pi}{\|\boldsymbol{\omega}\|_{2}^{3}}\left(\sin \|\boldsymbol{\omega}\|_{2}-\|\boldsymbol{\omega}\|_{2} \cos \|\boldsymbol{\omega}\|_{2}\right)
$$

and in particular $\hat{f}(\mathbf{0})=\frac{4 \pi}{3}$.

4.3 Fourier Transform of Tempered Distributions

Now, we show that the Fourier transform can be generalized to the so-called tempered distributions which are linear continuous functionals on the Schwartz space $\mathscr{S}\left(\mathbb{R}^{d}\right)$, see [325]. The simplest tempered distribution, which cannot be described just by integrating the product of some function with functions from $\mathscr{S}\left(\mathbb{R}^{d}\right)$, is the Dirac distribution δ defined by $\langle\delta, \varphi\rangle:=\varphi(\mathbf{0})$ for all $\varphi \in \mathscr{S}\left(\mathbb{R}^{d}\right)$.

4.3.1 Tempered Distributions

A tempered distribution T is a continuous linear functional on $\mathscr{S}\left(\mathbb{R}^{d}\right)$. In other words, a tempered distribution $T: \mathscr{S}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{C}$ fulfills the following conditions:
(i) Linearity: For all $\alpha_{1}, \alpha_{2} \in \mathbb{C}$ and all $\varphi_{1}, \varphi_{2} \in \mathscr{S}\left(\mathbb{R}^{d}\right)$:

$$
\left\langle T, \alpha_{1} \varphi_{1}+\alpha_{2} \varphi_{2}\right\rangle=\alpha_{1}\left\langle T, \varphi_{1}\right\rangle+\alpha_{2}\left\langle T, \varphi_{2}\right\rangle .
$$

(ii) Continuity: If $\varphi_{j} \underset{\mathscr{S}}{ } \varphi$ as $j \rightarrow \infty$ with $\varphi_{j}, \varphi \in \mathscr{S}\left(\mathbb{R}^{d}\right)$, then:

$$
\lim _{j \rightarrow \infty}\left\langle T, \varphi_{j}\right\rangle=\langle T, \varphi\rangle
$$

The set of tempered distributions is denoted by $\mathscr{S}^{\prime}\left(\mathbb{R}^{d}\right)$. Defining for $T_{1}, T_{2} \in$ $\mathscr{S}^{\prime}\left(\mathbb{R}^{d}\right)$ and all $\varphi \in \mathscr{S}\left(\mathbb{R}^{d}\right)$ the operation:

$$
\left\langle\alpha_{1} T_{1}+\alpha_{2} T_{2}, \varphi\right\rangle:=\alpha_{1}\left\langle T_{1}, \varphi\right\rangle+\alpha_{2}\left\langle T_{2}, \varphi\right\rangle,
$$

the set $\mathscr{S}^{\prime}\left(\mathbb{R}^{d}\right)$ becomes a linear space. We say that a sequence $\left(T_{k}\right)_{k \in \mathbb{N}}$ of tempered distributions $T_{k} \in \mathscr{S}^{\prime}\left(\mathbb{R}^{d}\right)$ converges in $\mathscr{S}^{\prime}\left(\mathbb{R}^{d}\right)$ to $T \in \mathscr{S}^{\prime}\left(\mathbb{R}^{d}\right)$, if for all $\varphi \in$ $\mathscr{S}\left(\mathbb{R}^{d}\right)$:

$$
\lim _{k \rightarrow \infty}\left\langle T_{k}, \varphi\right\rangle=\langle T, \varphi\rangle .
$$

We will use the notation $T_{k} \xrightarrow[\mathscr{S}^{\prime}]{ } T$ as $k \rightarrow \infty$.

Lemma 4.34 (Schwartz) A linear functional $T: \mathscr{S}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{C}$ is a tempered distribution if and only if there exist constants $m \in \mathbb{N}_{0}$ and $C \geq 0$ such that for all $\varphi \in \mathscr{S}\left(\mathbb{R}^{d}\right)$:

$$
\begin{equation*}
|\langle T, \varphi\rangle| \leq C\|\varphi\|_{m} . \tag{4.29}
\end{equation*}
$$

Proof

1. Assume that (4.29) holds true. Let $\varphi_{j} \underset{\mathscr{S}}{ } \varphi$ as $j \rightarrow \infty$, i.e., by Lemma 4.10, $\lim _{j \rightarrow \infty}\left\|\varphi_{j}-\varphi\right\|_{m}=0$ for all $m \in \mathbb{N}_{0}$. From (4.29), it follows

$$
\left|\left\langle T, \varphi_{j}-\varphi\right\rangle\right| \leq C\left\|\varphi_{j}-\varphi\right\|_{m}
$$

for some $m \in \mathbb{N}_{0}$ and $C \geq 0$. Thus, $\lim _{j \rightarrow \infty}\left\langle T, \varphi_{j}-\varphi\right\rangle=0$ and hence $\lim _{j \rightarrow \infty}\left\langle T, \varphi_{j}\right\rangle=\langle T, \varphi\rangle$.
2. Conversely, let $T \in \mathscr{S}^{\prime}\left(\mathbb{R}^{d}\right)$. Then, $\varphi_{j} \underset{\mathscr{S}}{ } \varphi$ as $j \rightarrow \infty$ implies $\lim _{j \rightarrow \infty}\left\langle T, \varphi_{j}\right\rangle=\langle T, \varphi\rangle$.

Assume that for all $m \in \mathbb{N}$ and $C>0$ there exists $\varphi_{m, C} \in \mathscr{S}\left(\mathbb{R}^{d}\right)$ such that:

$$
\left|\left\langle T, \varphi_{m, C}\right\rangle\right|>C\left\|\varphi_{m, C}\right\|_{m} .
$$

Choose $C=m$ and set $\varphi_{m}:=\varphi_{m, m}$. Then, it follows $\left|\left\langle T, \varphi_{m}\right\rangle\right|>m\left\|\varphi_{m}\right\|_{m}$ and hence

$$
1=\left|\left\langle T, \frac{\varphi_{m}}{\left\langle T, \varphi_{m}\right\rangle}\right\rangle\right|>m\left\|\frac{\varphi_{m}}{\left\langle T, \varphi_{m}\right\rangle}\right\|_{m} .
$$

We introduce the function:

$$
\psi_{m}:=\frac{\varphi_{m}}{\left\langle T, \varphi_{m}\right\rangle} \in \mathscr{S}\left(\mathbb{R}^{d}\right)
$$

which has the properties $\left\langle T, \psi_{m}\right\rangle=1$ and $\left\|\psi_{m}\right\|_{m}<\frac{1}{m}$. Thus, $\psi_{m} \underset{\mathscr{S}}{ } 0$ as $m \rightarrow \infty$. On the other hand, we have by assumption $T \in \mathscr{S}^{\prime}\left(\mathbb{R}^{d}\right)$ that $\lim _{m \rightarrow \infty}\left\langle T, \psi_{m}\right\rangle=0$. This contradicts $\left\langle T, \psi_{m}\right\rangle=1$.
A measurable function $f: \mathbb{R}^{d} \rightarrow \mathbb{C}$ is called slowly increasing, if there exist $C>0$ and $N \in \mathbb{N}_{0}$ such that it holds almost everywhere:

$$
\begin{equation*}
|f(\mathbf{x})| \leq C\left(1+\|\mathbf{x}\|_{2}\right)^{N} . \tag{4.30}
\end{equation*}
$$

These functions grow at most polynomial as $\|\mathbf{x}\|_{2} \rightarrow \infty$. In particular, polynomials and complex exponential functions $\mathrm{e}^{\mathrm{i} \omega \cdot \mathbf{x}}$ are slowly increasing functions. But, the reciprocal Gaussian function $f(\mathbf{x}):=\mathrm{e}^{\|\mathbf{x}\|_{2}^{2}}$ is not a slowly increasing function.

For each slowly increasing function f, we can form the linear functional T_{f} : $\mathscr{S}\left(\mathbb{R}^{d}\right) \rightarrow \mathbb{C}$:

$$
\begin{equation*}
\left\langle T_{f}, \varphi\right\rangle:=\int_{\mathbb{R}^{d}} f(\mathbf{x}) \varphi(\mathbf{x}) \mathrm{d} \mathbf{x}, \quad \varphi \in \mathscr{S}\left(\mathbb{R}^{d}\right) \tag{4.31}
\end{equation*}
$$

By Lemma 4.34, we obtain $T_{f} \in \mathscr{S}^{\prime}\left(\mathbb{R}^{d}\right)$, because for every $\varphi \in \mathscr{S}\left(\mathbb{R}^{d}\right)$:

$$
\begin{aligned}
& \left|\left\langle T_{f}, \varphi\right\rangle\right| \leq \int_{\mathbb{R}^{d}} \frac{|f(\mathbf{x})|}{\left(1+\|\mathbf{x}\|_{2}\right)^{N+d+1}}\left(1+\|\mathbf{x}\|_{2}\right)^{N+d+1}|\varphi(\mathbf{x})| \mathrm{d} \mathbf{x} \\
& \leq C \int_{\mathbb{R}^{d}} \frac{\mathrm{~d} \mathbf{x}}{\left(1+\|\mathbf{x}\|_{2}\right)^{d+1}} \sup _{\mathbf{x} \in \mathbb{R}^{d}}\left(\left(1+\|\mathbf{x}\|_{2}\right)^{N+d+1}|\varphi(\mathbf{x})|\right) \\
& \leq C \int_{\mathbb{R}^{d}} \frac{\mathrm{~d} \mathbf{x}}{\left(1+\|\mathbf{x}\|_{2}\right)^{d+1}}\|\varphi\|_{N+d+1}
\end{aligned}
$$

A function in $L_{p}\left(\mathbb{R}^{d}\right)$ must not be slowly increasing; however, these functions give also rise to tempered distributions as the following example shows.
Example 4.35 Every function $f \in L_{p}\left(\mathbb{R}^{d}\right), 1 \leq p \leq \infty$, is in $\mathscr{S}^{\prime}\left(\mathbb{R}^{d}\right)$ by Lemma 4.34. For $p=1$, we have

$$
\left|\left\langle T_{f}, \varphi\right\rangle\right| \leq \int_{\mathbb{R}^{d}}\left|f(\mathbf{x})\|\varphi(\mathbf{x}) \mid \mathrm{d} \mathbf{x} \leq\| f\left\|_{L_{1}\left(\mathbb{R}^{d}\right)}\right\| \varphi \|_{0}<\infty\right.
$$

For $1<p \leq \infty$, let q be given by $\frac{1}{p}+\frac{1}{q}=1$, where $q=1$ if $p=\infty$. Then, we obtain for $m \in \mathbb{N}_{0}$ with $m q \geq d+1$ by Hölder's inequality:

$$
\begin{aligned}
\left|\left\langle T_{f}, \varphi\right\rangle\right| & \leq \int_{\mathbb{R}^{d}}|f(\mathbf{x})|\left(1+\|\mathbf{x}\|_{2}\right)^{-m}\left(1+\|\mathbf{x}\|_{2}\right)^{m}|\varphi(\mathbf{x})| \mathrm{d} \mathbf{x} \\
& \leq\|\varphi\|_{m} \int_{\mathbb{R}^{d}}|f(\mathbf{x})|\left(1+\|\mathbf{x}\|_{2}\right)^{-m} \mathrm{~d} \mathbf{x} \\
& \leq\|\varphi\|_{m}\|f\|_{L_{p}\left(\mathbb{R}^{d}\right)}\left(\int_{\mathbb{R}^{d}}\left(1+\|\mathbf{x}\|_{2}\right)^{-q m} \mathrm{~d} \mathbf{x}\right)^{1 / q}
\end{aligned}
$$

If a distribution $T \in \mathscr{S}^{\prime}\left(\mathbb{R}^{d}\right)$ arises from a function in the sense that $\langle T, \varphi\rangle=$ $\int_{\mathbb{R}^{d}} f(\mathbf{x}) \varphi(\mathbf{x}) \mathrm{d} \mathbf{x}$ is well defined for all $\varphi \in \mathscr{S}\left(\mathbb{R}^{d}\right)$, then we speak about a regular tempered distribution. The following example describes a distribution which is not regular.
Example 4.36 The Dirac distribution δ is defined by:

$$
\langle\delta, \varphi\rangle:=\varphi(\mathbf{0})
$$

for all $\varphi \in \mathscr{S}\left(\mathbb{R}^{d}\right)$. Clearly, the Dirac distribution δ is a continuous linear functional with $|\langle\delta, \varphi\rangle| \leq\|\varphi\|_{0}$ for all $\varphi \in \mathscr{S}\left(\mathbb{R}^{d}\right)$ so that $\delta \in \mathscr{S}^{\prime}\left(\mathbb{R}^{d}\right)$. By the following argument, the Dirac distribution is not regular: Assume in contrary that there exists a function f such that:

$$
\varphi(\mathbf{0})=\int_{\mathbb{R}^{d}} f(\mathbf{x}) \varphi(\mathbf{x}) \mathrm{d} \mathbf{x}
$$

for all $\varphi \in \mathscr{S}\left(\mathbb{R}^{d}\right)$. By (4.30), this function f is integrable over the unit ball. Let φ be the compactly supported test function (4.12) and $\varphi_{n}(\mathbf{x}):=\varphi(n \mathbf{x})$ for $n \in \mathbb{N}$. Then, we obtain the contradiction:

$$
\begin{aligned}
\mathrm{e}^{-1} & =\left|\varphi_{n}(\mathbf{0})\right|=\left|\int_{\mathbb{R}^{d}} f(\mathbf{x}) \varphi_{n}(\mathbf{x}) \mathrm{d} \mathbf{x}\right| \leq \int_{B_{1 / n}(\mathbf{0})}|f(\mathbf{x})||\varphi(n \mathbf{x})| \mathrm{d} \mathbf{x} \\
& \leq \mathrm{e}^{-1} \int_{B_{1 / n}(\mathbf{0})}|f(\mathbf{x})| \mathrm{d} \mathbf{x} \rightarrow 0 \quad \text { as } \quad n \rightarrow \infty
\end{aligned}
$$

where $B_{1 / n}(\mathbf{0})=\left\{\mathbf{x} \in \mathbb{R}^{d}:\|\mathbf{x}\|_{2} \leq 1 / n\right\}$.
Remark 4.37 In quantum mechanics, the distribution δ was introduced by the physicist Paul Dirac. It is used to model the density of an idealized point mass as a "generalized function" which is equal to zero everywhere except for zero and whose integral over \mathbb{R} is equal to one. Since there does not exist a function with these properties, the Dirac distribution was defined by Schwartz [325, p. 19] as a continuous linear functional that maps every test function $\varphi \in \mathscr{S}(\mathbb{R})$ to its value $\varphi(0)$. In signal processing, the Dirac distribution is also known as the unit impulse signal. The Kronecker symbol which is usually defined on \mathbb{Z} is a discrete analogon of the Dirac distribution.

Important operations on tempered distributions are translations, dilations, and multiplications with smooth, sufficiently fast decaying functions and derivations. In the following, we consider these operations.

The translation by $\mathbf{x}_{0} \in \mathbb{R}^{d}$ of a tempered distribution $T \in \mathscr{S}^{\prime}\left(\mathbb{R}^{d}\right)$ is the tempered distribution $T\left(\cdot-\mathbf{x}_{0}\right)$ defined for all $\varphi \in \mathscr{S}\left(\mathbb{R}^{d}\right)$ by:

$$
\left\langle T\left(\cdot-\mathbf{x}_{0}\right), \varphi\right\rangle:=\left\langle T, \varphi\left(\cdot+\mathbf{x}_{0}\right)\right\rangle .
$$

The scaling with $c \in \mathbb{R} \backslash\{0\}$ of $T \in \mathscr{S}^{\prime}\left(\mathbb{R}^{d}\right)$ is the tempered distribution $T(c \cdot)$ given for all $\varphi \in \mathscr{S}\left(\mathbb{R}^{d}\right)$ by:

$$
\langle T(c \cdot), \varphi\rangle:=\frac{1}{|c|^{d}}\left\langle T, \varphi\left(c^{-1} \cdot\right)\right\rangle .
$$

In particular for $c=-1$, we obtain the reflection of $T \in \mathscr{S}^{\prime}\left(\mathbb{R}^{d}\right)$, namely:

$$
\langle T(-\cdot), \varphi\rangle:=\langle T, \tilde{\varphi}\rangle
$$

for all $\varphi \in \mathscr{S}\left(\mathbb{R}^{d}\right)$, where $\tilde{\varphi}(\mathbf{x}):=\varphi(-\mathbf{x})$ denotes the reflection of $\varphi \in \mathscr{S}\left(\mathbb{R}^{d}\right)$.
Assume that $\psi \in C^{\infty}\left(\mathbb{R}^{d}\right)$ fulfills

$$
\begin{equation*}
\left|D^{\alpha} \psi(\mathbf{x})\right| \leq C_{\boldsymbol{\alpha}}\left(1+\|\mathbf{x}\|_{2}\right)^{N_{\alpha}} \tag{4.32}
\end{equation*}
$$

for all $\boldsymbol{\alpha} \in \mathbb{N}_{0}^{d}$ and positive constants $C_{\boldsymbol{\alpha}}$ and $N_{\boldsymbol{\alpha}}$, i.e., $D^{\alpha} \psi$ has at most polynomial growth at infinity for all $\boldsymbol{\alpha} \in \mathbb{N}_{0}^{d}$. Then, the product of ψ with a tempered distribution $T \in \mathscr{S}^{\prime}\left(\mathbb{R}^{d}\right)$ is the tempered distribution ψT defined as:

$$
\langle\psi T, \varphi\rangle:=\langle T, \psi \varphi\rangle, \quad \varphi \in \mathscr{S}\left(\mathbb{R}^{d}\right) .
$$

Note that the product of an arbitrary $C^{\infty}\left(\mathbb{R}^{d}\right)$ function with a tempered distribution is not defined.
Example 4.38 For a regular tempered distribution $T_{f} \in \mathscr{S}^{\prime}\left(\mathbb{R}^{d}\right)$ and $c \neq 0$, we obtain

$$
T_{f}\left(\cdot-\mathbf{x}_{0}\right)=T_{f\left(\cdot-\mathbf{x}_{0}\right)}, \quad T_{f}(c \cdot)=T_{f(c \cdot)}, \quad \psi T_{f}=T_{\psi f} .
$$

For the Dirac distribution δ, we have

$$
\begin{aligned}
\left\langle\delta\left(\cdot-\mathbf{x}_{0}\right), \varphi\right\rangle & =\left\langle\delta, \varphi\left(\cdot+\mathbf{x}_{0}\right)\right\rangle=\varphi\left(\mathbf{x}_{0}\right), \\
\langle\delta(c \cdot), \varphi\rangle & =\frac{1}{|c|^{d}}\left\langle\delta, \varphi\left(\frac{\dot{c}}{c}\right)\right\rangle=\frac{1}{|c|^{d}} \varphi(\mathbf{0}), \\
\langle\psi \delta, \varphi\rangle & =\langle\delta, \psi \varphi\rangle=\psi(\mathbf{0}) \varphi(\mathbf{0})
\end{aligned}
$$

for all $\varphi \in \mathscr{S}\left(\mathbb{R}^{d}\right)$, where $\psi \in C^{\infty}\left(\mathbb{R}^{d}\right)$ fulfills (4.32) for all $\boldsymbol{\alpha} \in \mathbb{N}_{0}^{d}$.
Example 4.39 The distribution T_{f} arising from the function $f(x):=\ln (|x|)$ for $x \neq 0$ and $f(x)=0$ for $x=0$ is in $\mathscr{S}^{\prime}(\mathbb{R})$ by the following reason: For all $\varphi \in \mathscr{S}(\mathbb{R})$, we have

$$
\begin{aligned}
\langle\ln (|x|), \varphi(x)\rangle & =\int_{-\infty}^{0} \ln (-x) \varphi(x) \mathrm{d} x+\int_{0}^{\infty} \ln (x) \varphi(x) \mathrm{d} x \\
& =\int_{0}^{\infty} \ln (x) \varphi(-x) \mathrm{d} x+\int_{0}^{\infty} \ln (x) \varphi(x) \mathrm{d} x
\end{aligned}
$$

Since $\ln (x) \leq x$ for $x \geq 1$, we obtain

$$
\begin{aligned}
\int_{0}^{\infty} \ln (x) \varphi(x) \mathrm{d} x & =\int_{0}^{1} \ln (x) \varphi(x) \mathrm{d} x+\int_{1}^{\infty} \ln (x) \varphi(x) \mathrm{d} x \\
& \leq\|\varphi\|_{C_{0}(\mathbb{R})} \int_{0}^{1} \ln (x) \mathrm{d} x+\int_{1}^{\infty} x \varphi(x) \mathrm{d} x \\
& =\|\varphi\|_{C_{0}(\mathbb{R})} \lim _{\varepsilon \rightarrow 0} \int_{\varepsilon}^{1} \ln (x) \mathrm{d} x+\int_{1}^{\infty} x \varphi(x) \mathrm{d} x
\end{aligned}
$$

and similarly for $\varphi(-x)$. Since $\varphi \in \mathscr{S}(\mathbb{R})$, the second integral exists. For the first integral, we get by integration by parts:

$$
\int_{\varepsilon}^{1} \ln (x) \mathrm{d} x=\left.x \ln (x)\right|_{\varepsilon} ^{1}-\int_{\varepsilon}^{1} \frac{1}{x} x \mathrm{~d} x=-\varepsilon \ln (\varepsilon)-(1-\varepsilon)
$$

and by l'Hospital's rule:

$$
\lim _{\varepsilon \rightarrow 0} \int_{\varepsilon}^{1} \ln (x) \mathrm{d} x=\lim _{\varepsilon \rightarrow 0}(-\varepsilon \ln (\varepsilon)-(1-\varepsilon))=-1
$$

Therefore, $\langle\ln (|x|), \varphi(x)\rangle$ is well defined for all $\varphi \in \mathscr{S}(\mathbb{R})$ and a tempered distribution of function type. Similarly as above, we can conclude that $\ln (|x|)$ is absolutely integrable on any compact set.

Another important operation on tempered distributions is the differentiation. For $\boldsymbol{\alpha} \in \mathbb{N}_{0}^{d}$, the derivative $D^{\alpha} T$ of a distribution $T \in \mathscr{S}^{\prime}\left(\mathbb{R}^{d}\right)$ is defined for all $\varphi \in$ $\mathscr{S}\left(\mathbb{R}^{d}\right)$ by:

$$
\begin{equation*}
\left\langle D^{\alpha} T, \varphi\right\rangle:=(-1)^{|\alpha|}\left\langle T, D^{\alpha} \varphi\right\rangle \tag{4.33}
\end{equation*}
$$

Assume that $f \in C^{r}\left(\mathbb{R}^{d}\right)$ with $r \in \mathbb{N}$ possesses slowly increasing partial derivatives $D^{\alpha} f$ for all $|\boldsymbol{\alpha}| \leq r$. Thus, $T_{D^{\alpha} f} \in \mathscr{S}^{\prime}\left(\mathbb{R}^{d}\right)$. Then, we see by integration by parts that $T_{D^{\alpha} f}=D^{\alpha} T_{f}$ for all $\boldsymbol{\alpha} \in \mathbb{N}_{0}^{d}$ with $|\boldsymbol{\alpha}| \leq r$, i.e., the distributional derivatives and the classical derivatives coincide.
Lemma 4.40 Let $T, T_{k} \in \mathscr{S}^{\prime}\left(\mathbb{R}^{d}\right)$ with $k \in \mathbb{N}$ be given. For $\lambda_{1}, \lambda_{2} \in \mathbb{R}$ and $\boldsymbol{\alpha}$, $\beta \in \mathbb{N}_{0}^{d}$, the following relations hold true:

1. $D^{\alpha} T \in \mathscr{S}^{\prime}\left(\mathbb{R}^{d}\right)$,
2. $D^{\alpha}\left(\lambda_{1} T_{1}+\lambda_{2} T_{2}\right)=\lambda_{1} D^{\alpha} T_{1}+\lambda_{2} D^{\alpha} T_{2}$,
3. $D^{\alpha}\left(D^{\beta} T\right)=D^{\beta}\left(D^{\alpha} T\right)=D^{\alpha+\beta} T$, and
4. $T_{k} \xrightarrow[\mathscr{S}^{\prime}]{\longrightarrow}$ as $k \rightarrow \infty$ implies $D^{\alpha} T_{k} \xrightarrow[\mathscr{S}^{\prime}]{ } D^{\alpha} T$ as $k \rightarrow \infty$.

Proof The properties 1-3 follow directly from the definition of the derivative of tempered distributions. Property 4 can be derived by:

$$
\lim _{k \rightarrow \infty}\left\langle D^{\alpha} T_{k}, \varphi\right\rangle=\lim _{k \rightarrow \infty}(-1)^{|\alpha|}\left\langle T_{k}, D^{\alpha} \varphi\right\rangle=(-1)^{|\boldsymbol{\alpha}|}\left\langle T, D^{\alpha} \varphi\right\rangle=\left\langle D^{\alpha} T, \varphi\right\rangle
$$

for all $\varphi \in \mathscr{S}\left(\mathbb{R}^{d}\right)$.
Example 4.41 For the slowly increasing univariate function:

$$
f(x):= \begin{cases}0 & x \leq 0 \\ x & x>0\end{cases}
$$

we obtain

$$
\begin{aligned}
\left\langle D T_{f}, \varphi\right\rangle & =-\left\langle f, \varphi^{\prime}\right\rangle=-\int_{\mathbb{R}} f(x) \varphi^{\prime}(x) \mathrm{d} x \\
& =-\int_{0}^{\infty} x \varphi^{\prime}(x) \mathrm{d} x=-\left.x \varphi(x)\right|_{0} ^{\infty}+\int_{0}^{\infty} \varphi(x) \mathrm{d} x=\int_{0}^{\infty} \varphi(x) \mathrm{d} x
\end{aligned}
$$

so that

$$
D T_{f}(x)=H(x):= \begin{cases}0 & x \leq 0 \\ 1 & x>0\end{cases}
$$

The function H is called Heaviside function. Further, we get

$$
\left\langle D^{2} T_{f}, \varphi\right\rangle=-\left\langle D T_{f}, \varphi^{\prime}\right\rangle=-\int_{0}^{\infty} \varphi^{\prime}(x) \mathrm{d} x=-\left.\varphi(x)\right|_{0} ^{\infty}=\varphi(0)=\langle\delta, \varphi\rangle
$$

so that $D^{2} T_{f}=D T_{H}=\delta$. Thus, the distributional derivative of the Heaviside function is equal to the Dirac distribution.

Example 4.42 We are interested in the distributional derivative of regular tempered distribution T_{f} of Example 4.39. For all $\varphi \in \mathscr{S}(\mathbb{R})$, we get by integration by parts:

$$
\begin{aligned}
\langle D \ln (|x|), \varphi(x)\rangle & =-\left\langle\ln (|x|), \varphi^{\prime}(x)\right\rangle \\
& =-\int_{0}^{\infty} \ln (x)\left(\varphi^{\prime}(x)+\varphi^{\prime}(-x)\right) \mathrm{d} x \\
& =-\left.\ln (x)(\varphi(x)-\varphi(-x))\right|_{0} ^{\infty}+\int_{0}^{\infty} \frac{1}{x}(\varphi(x)-\varphi(-x)) \mathrm{d} x \\
& =\lim _{\varepsilon \rightarrow 0} \ln (\varepsilon)(\varphi(\varepsilon)-\varphi(-\varepsilon))+\lim _{\varepsilon \rightarrow 0} \int_{\varepsilon}^{\infty} \frac{1}{x}(\varphi(x)-\varphi(-x)) \mathrm{d} x
\end{aligned}
$$

Taylor expansion yields

$$
\varphi(\varepsilon)=\varphi(0)+\varepsilon \varphi^{\prime}\left(\xi_{\varepsilon}\right), \quad \xi_{\varepsilon} \in(0, \varepsilon)
$$

so that by the mean value theorem:

$$
\varphi(\varepsilon)-\varphi(-\varepsilon)=\varepsilon\left(\varphi^{\prime}\left(\xi_{\varepsilon}\right)+\varphi^{\prime}\left(\xi_{-\varepsilon}\right)\right)=2 \varepsilon \varphi^{\prime}(\xi), \quad|\xi|<\varepsilon
$$

Thus:

$$
\begin{aligned}
\langle D \ln (|x|), \varphi(x)\rangle & =\lim _{\varepsilon \rightarrow 0} \int_{\varepsilon}^{\infty} \frac{1}{x}(\varphi(x)-\varphi(-x)) \mathrm{d} x=\lim _{\varepsilon \rightarrow 0}\left(\int_{\varepsilon}^{\infty}+\int_{-\infty}^{\varepsilon}\right) \frac{1}{x} \varphi(x) \mathrm{d} x \\
& =\operatorname{pv} \int_{\mathbb{R}} \frac{1}{x} \varphi(x) \mathrm{d} x,
\end{aligned}
$$

where pv denotes the Cauchy principle value integral. We see that the tempered distribution $\operatorname{pv}\left(\frac{1}{x}\right)$ defined for all $\varphi \in \mathscr{S}(\mathbb{R})$ by:

$$
\begin{equation*}
\left\langle\operatorname{pv}\left(\frac{1}{x}\right), \varphi(x)\right\rangle:=\operatorname{pv} \int_{\mathbb{R}} \frac{1}{x} \varphi(x) \mathrm{d} x \tag{4.34}
\end{equation*}
$$

fulfills $D \ln (|x|)=\operatorname{pv}\left(\frac{1}{x}\right)$. Note that the integral $\int_{\mathbb{R}} \frac{1}{x} \varphi(x) \mathrm{d} x$ does not exist for all $\varphi \in \mathscr{S}(\mathbb{R})$.
Remark 4.43 Let $f \in C^{1}\left(\mathbb{R} \backslash\left\{x_{1}, \ldots, x_{n}\right\}\right)$ be given, where $x_{k} \in \mathbb{R}, k=1, \ldots, n$, are distinct jump discontinuities of f. Then, the distributional derivative of T_{f} reads as follows:

$$
D T_{f}=f^{\prime}+\sum_{k=1}^{n}\left(f\left(x_{k}+0\right)-f\left(x_{k}-0\right)\right) \delta\left(\cdot-x_{k}\right)
$$

For example, the distributional derivative of the characteristic function $f=\chi_{[a, b]}$, where $[a, b] \subset \mathbb{R}$ is a compact interval, is equal to:

$$
D T_{f}=\delta(\cdot-a)-\delta(\cdot-b)
$$

If $f=N_{2}$ is the cardinal B-spline of order 2 (cf. Example 2.16), then the first and second distributional derivatives of T_{f} are

$$
D T_{f}=\chi_{[0,1]}-\chi_{[1,2]}, \quad D^{2} T_{f}=\delta-2 \delta(\cdot-1)+\delta(\cdot-2)
$$

For arbitrary $\psi \in \mathscr{S}\left(\mathbb{R}^{d}\right)$ and $T \in \mathscr{S}^{\prime}\left(\mathbb{R}^{d}\right)$, the convolution $\psi * T$ is defined as:

$$
\begin{equation*}
\langle\psi * T, \varphi\rangle:=\langle T, \tilde{\psi} * \varphi\rangle, \quad \varphi \in \mathscr{S}\left(\mathbb{R}^{d}\right) \tag{4.35}
\end{equation*}
$$

where $\tilde{\psi}$ denotes the reflection of ψ.

Example 4.44 Let f be a slowly increasing function. For the regular tempered distribution $T_{f} \in \mathscr{S}^{\prime}\left(\mathbb{R}^{d}\right)$ and $\psi \in \mathscr{S}\left(\mathbb{R}^{d}\right)$, we have by Fubini's theorem for all $\varphi \in \mathscr{S}\left(\mathbb{R}^{d}\right)$:

$$
\begin{aligned}
& \left\langle\psi * T_{f}, \varphi\right\rangle=\left\langle T_{f}, \tilde{\psi} * \varphi\right\rangle=\int_{\mathbb{R}^{d}} f(\mathbf{y})(\tilde{\psi} * \varphi)(\mathbf{y}) \mathrm{d} \mathbf{y} \\
& =\int_{\mathbb{R}^{d}} f(\mathbf{y})\left(\int_{\mathbb{R}^{d}} \psi(\mathbf{x}-\mathbf{y}) \varphi(\mathbf{x}) \mathrm{d} \mathbf{x}\right) \mathrm{d} \mathbf{y}=\int_{\mathbb{R}^{d}}(\psi * f)(\mathbf{x}) \varphi(\mathbf{x}) \mathrm{d} \mathbf{x},
\end{aligned}
$$

that is, $\psi * T_{f}=T_{\psi * f}$ is a regular tempered distribution generated by the $C^{\infty}\left(\mathbb{R}^{d}\right)$ function:

$$
\int_{\mathbb{R}^{d}} \psi(\mathbf{x}-\mathbf{y}) f(\mathbf{y}) \mathrm{d} \mathbf{y}=\left\langle T_{f}, \psi(\mathbf{x}-\cdot)\right\rangle .
$$

For the Dirac distribution δ and $\psi \in \mathscr{S}\left(\mathbb{R}^{d}\right)$, we get for all $\varphi \in \mathscr{S}\left(\mathbb{R}^{d}\right)$

$$
\langle\psi * \delta, \varphi\rangle=\langle\delta, \tilde{\psi} * \varphi\rangle=(\tilde{\psi} * \varphi)(\mathbf{0})=\int_{\mathbb{R}^{d}} \psi(\mathbf{x}) \varphi(\mathbf{x}) \mathrm{d} \mathbf{x}
$$

that is, $\psi * \delta=\psi$.
The convolution $\psi * T$ of $\psi \in \mathscr{S}\left(\mathbb{R}^{d}\right)$ and $T \in \mathscr{S}^{\prime}\left(\mathbb{R}^{d}\right)$ possesses the following properties:
Theorem 4.45 For all $\psi \in \mathscr{S}\left(\mathbb{R}^{d}\right)$ and $T \in \mathscr{S}^{\prime}\left(\mathbb{R}^{d}\right)$, the convolution $\psi * T$ is a regular tempered distribution generated by the slowly increasing $C^{\infty}\left(\mathbb{R}^{d}\right)$ function $\langle T, \psi(\mathbf{x}-\cdot)\rangle, \mathbf{x} \in \mathbb{R}^{d}$. For all $\boldsymbol{\alpha} \in \mathbb{N}_{0}^{d}$, it holds

$$
\begin{equation*}
D^{\alpha}(\psi * T)=\left(D^{\alpha} \psi\right) * T=\psi *\left(D^{\alpha} T\right) \tag{4.36}
\end{equation*}
$$

Proof

1. For arbitrary $\varphi \in \mathscr{S}\left(\mathbb{R}^{d}\right), T \in \mathscr{S}^{\prime}\left(\mathbb{R}^{d}\right)$, and $\boldsymbol{\alpha} \in \mathbb{N}_{0}^{d}$, we obtain by (4.33) and (4.35):

$$
\left\langle D^{\alpha}(\psi * T), \varphi\right\rangle=(-1)^{|\alpha|}\left\langle\psi * T, D^{\alpha} \varphi\right\rangle=(-1)^{|\alpha|}\left\langle T, \tilde{\psi} * D^{\alpha} \varphi\right\rangle,
$$

where $\tilde{\psi}(\mathbf{x})=\psi(-\mathbf{x})$ and

$$
\left(\tilde{\psi} * D^{\alpha} \varphi\right)(\mathbf{x})=\int_{\mathbb{R}^{d}} \tilde{\psi}(\mathbf{y}) D^{\alpha} \varphi(\mathbf{x}-\mathbf{y}) \mathrm{d} \mathbf{y} .
$$

Now, we have

$$
\begin{aligned}
& \left(\tilde{\psi} * D^{\alpha} \varphi\right)(\mathbf{x})=\int_{\mathbb{R}^{d}} \tilde{\psi}(\mathbf{y}) D^{\alpha} \varphi(\mathbf{x}-\mathbf{y}) \mathrm{d} \mathbf{y}=D^{\alpha}(\tilde{\psi} * \varphi)(\mathbf{x}) \\
& =D^{\alpha} \int_{\mathbb{R}^{d}} \tilde{\psi}(\mathbf{x}-\mathbf{y}) \varphi(\mathbf{y}) \mathrm{d} \mathbf{y}=\int_{\mathbb{R}^{d}} D^{\alpha} \tilde{\psi}(\mathbf{x}-\mathbf{y}) \varphi(\mathbf{y}) \mathrm{d} \mathbf{y}=\left(D^{\alpha} \tilde{\psi} * \varphi\right)(\mathbf{x}),
\end{aligned}
$$

since the interchange of differentiation and integration in above integrals is justified, because $\tilde{\psi}$ and φ belong to $\mathscr{S}\left(\mathbb{R}^{d}\right)$. From

$$
D^{\alpha} \tilde{\psi}=(-1)^{|\alpha|} \widetilde{D^{\alpha} \psi}
$$

it follows that

$$
\begin{aligned}
& \left\langle D^{\alpha}(\psi * T), \varphi\right\rangle=(-1)^{|\alpha|}\left\langle\psi * T, D^{\alpha} \varphi\right\rangle=\left\langle D^{\alpha} T, \tilde{\psi} * \varphi\right\rangle=\left\langle\psi * D^{\alpha} T, \varphi\right\rangle \\
& =(-1)^{|\alpha|}\left\langle T, D^{\alpha} \tilde{\psi} * \varphi\right\rangle=\left\langle T, \widetilde{\left.D^{\alpha} \psi * \varphi\right\rangle=\left\langle\left(D^{\alpha} \psi\right) * T, \varphi\right\rangle .} .\right.
\end{aligned}
$$

Thus, we have shown (4.36).
2. Now, we prove that the convolution $\psi * T$ is a regular tempered distribution generated by the complex-valued function $\langle T, \psi(\mathbf{x}-\cdot)\rangle$ for $\mathbf{x} \in \mathbb{R}^{d}$. In Example 4.44, we have seen that this is true for each regular tempered distribution.

Let $\psi, \varphi \in \mathscr{S}\left(\mathbb{R}^{d}\right)$ and $T \in \mathscr{S}^{\prime}\left(\mathbb{R}^{d}\right)$ be given. By Lemma 4.19, we know that $\tilde{\psi} * \varphi \in \mathscr{S}\left(\mathbb{R}^{d}\right)$. We represent $(\tilde{\psi} * \varphi)(\mathbf{y})$ for arbitrary $\mathbf{y} \in \mathbb{R}^{d}$ as a limit of Riemann sums:

$$
(\tilde{\psi} * \varphi)(\mathbf{y})=\int_{\mathbb{R}^{d}} \psi(\mathbf{x}-\mathbf{y}) \varphi(\mathbf{x}) \mathrm{d} \mathbf{x}=\lim _{j \rightarrow \infty} \sum_{\mathbf{k} \in \mathbb{Z}^{d}} \psi\left(\mathbf{x}_{\mathbf{k}}-\mathbf{y}\right) \psi\left(\mathbf{x}_{\mathbf{k}}\right) \frac{1}{j^{d}}
$$

where $\mathbf{x}_{\mathbf{k}}:=\frac{\mathbf{k}}{\tilde{j}}, \mathbf{k} \in \mathbb{Z}^{d}$, is the midpoint of a hypercube with side length $\frac{1}{j}$. Indeed, since $\tilde{\psi} * \varphi \in \mathscr{S}\left(\mathbb{R}^{d}\right)$, it is not hard to check that the above Riemann sums converge in $\mathscr{S}\left(\mathbb{R}^{d}\right)$. Since T is a continuous linear functional, we get

$$
\begin{aligned}
& \langle T, \tilde{\psi} * \varphi\rangle=\lim _{j \rightarrow \infty}\left\langle T, \sum_{\mathbf{k} \in \mathbb{Z}^{d}} \varphi\left(\mathbf{x}_{\mathbf{k}}-\cdot\right) \psi\left(\mathbf{x}_{\mathbf{k}}\right) \frac{1}{j^{d}}\right\rangle \\
& =\lim _{j \rightarrow \infty} \sum_{\mathbf{k} \in \mathbb{Z}^{d}} \varphi\left(\mathbf{x}_{\mathbf{k}}\right) \frac{1}{j^{d}}\left\langle T, \psi\left(\mathbf{x}_{\mathbf{k}}-\cdot\right)\right\rangle=\int_{\mathbb{R}^{d}}\langle T, \psi(\mathbf{x}-\cdot)\rangle \varphi(\mathbf{x}) \mathrm{d} \mathbf{x},
\end{aligned}
$$

that is, the convolution $\psi * T$ is a regular tempered distribution generated by the function $\langle T, \psi(\mathbf{x}-\cdot)\rangle$ which belongs to $C^{\infty}\left(\mathbb{R}^{d}\right)$ by (4.36).
3. Finally, we show that the $C^{\infty}\left(\mathbb{R}^{d}\right)$ function $\langle T, \psi(\mathbf{x}-\cdot)\rangle$ is slowly increasing. Here, we use the simple estimate:

$$
1+\|\mathbf{x}-\mathbf{y}\|_{2} \leq 1+\|\mathbf{x}\|_{2}+\|\mathbf{y}\|_{2} \leq\left(1+\|\mathbf{x}\|_{2}\right)\left(1+\|\mathbf{y}\|_{2}\right)
$$

for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^{d}$.
For arbitrary fixed $\mathbf{x}_{0} \in \mathbb{R}^{d}$ and every $m \in \mathbb{N}_{0}$, we obtain for $\psi \in \mathscr{S}\left(\mathbb{R}^{d}\right)$:

$$
\begin{aligned}
& \left\|\psi\left(\mathbf{x}_{0}-\cdot\right)\right\|_{m}=\max _{|\boldsymbol{\beta}| \leq m}\left\|\left(1+\|\mathbf{x}\|_{2}\right)^{m} D^{\boldsymbol{\beta}} \psi\left(\mathbf{x}_{0}-\mathbf{x}\right)\right\|_{C_{0}\left(\mathbb{R}^{d}\right)} \\
& =\max _{|\boldsymbol{\beta}| \leq m} \max _{\mathbf{x} \in \mathbb{R}^{d}}\left(1+\|\mathbf{x}\|_{2}\right)^{m}\left|D^{\boldsymbol{\beta}} \psi\left(\mathbf{x}_{0}-\mathbf{x}\right)\right|=\max _{|\boldsymbol{\beta}| \leq m} \max _{\mathbf{y} \in \mathbb{R}^{d}}\left(1+\left\|\mathbf{x}_{0}-\mathbf{y}\right\|_{2}\right)^{m}\left|D^{\boldsymbol{\beta}} \psi(\mathbf{y})\right| \\
& \leq\left(1+\left\|\mathbf{x}_{0}\right\|_{2}\right)^{m} \sup _{|\boldsymbol{\beta}| \leq m} \sup _{\mathbf{y} \in \mathbb{R}^{d}}\left(1+\|\mathbf{y}\|_{2}\right)^{m}\left|D^{\boldsymbol{\beta}} \psi(\mathbf{y})\right|=\left(1+\left\|\mathbf{x}_{0}\right\|_{2}\right)^{m}\|\psi\|_{m} .
\end{aligned}
$$

Since $T \in \mathscr{S}^{\prime}\left(\mathbb{R}^{d}\right)$, by Lemma 4.34 of Schwartz there exist constants $m \in \mathbb{N}_{0}$ and $C>0$, so that $|\langle T, \varphi\rangle| \leq C\|\varphi\|_{m}$ for all $\varphi \in \mathscr{S}\left(\mathbb{R}^{d}\right)$. Then, we conclude

$$
|\langle T, \psi(\mathbf{x}-\cdot)\rangle| \leq C\|\psi(\mathbf{x}-\cdot)\|_{m} \leq C\left(1+\|\mathbf{x}\|_{2}\right)^{m}\|\psi\|_{m}
$$

Hence, $\langle T, \psi(\mathbf{x}-\cdot)\rangle$ is a slowly increasing function.

4.3.2 Fourier Transforms on $\mathscr{S}^{\prime}\left(\mathbb{R}^{d}\right)$

The Fourier transform $\mathscr{F} T=\hat{T}$ of a tempered distribution $T \in \mathscr{S}^{\prime}\left(\mathbb{R}^{d}\right)$ is defined by:

$$
\begin{equation*}
\langle\mathscr{F} T, \varphi\rangle=\langle\hat{T}, \varphi\rangle:=\langle T, \mathscr{F} \varphi\rangle=\langle T, \hat{\varphi}\rangle \tag{4.37}
\end{equation*}
$$

for all $\varphi \in \mathscr{S}\left(\mathbb{R}^{d}\right)$. Indeed, \hat{T} is again a continuous linear functional on $\mathscr{S}\left(\mathbb{R}^{d}\right)$, since by Theorem 4.18, the expression $\langle T, \mathscr{F} \varphi\rangle$ defines a linear functional on $\mathscr{S}\left(\mathbb{R}^{d}\right)$. Further, $\varphi_{k} \underset{\mathscr{S}}{ } \varphi$ as $k \rightarrow \infty$, implies $\mathscr{F} \varphi_{k} \underset{\mathscr{S}}{ } \mathscr{F} \varphi$ as $k \rightarrow \infty$ so that for $T \in \mathscr{S}^{\prime}\left(\mathbb{R}^{d}\right)$, it follows

$$
\lim _{k \rightarrow \infty}\left\langle\hat{T}, \varphi_{k}\right\rangle=\lim _{k \rightarrow \infty}\left\langle T, \mathscr{F} \varphi_{k}\right\rangle=\langle T, \mathscr{F} \varphi\rangle=\langle\hat{T}, \varphi\rangle
$$

Example 4.46 Let $f \in L_{1}\left(\mathbb{R}^{d}\right)$. Then, we obtain for an arbitrary $\varphi \in \mathscr{S}\left(\mathbb{R}^{d}\right)$ by Fubini's theorem:

$$
\begin{aligned}
\left\langle\mathscr{F} T_{f}, \varphi\right\rangle & =\left\langle T_{f}, \hat{\varphi}\right\rangle=\int_{\mathbb{R}^{d}}\left(\int_{\mathbb{R}^{d}} \varphi(\mathbf{x}) \mathrm{e}^{-\mathrm{i} \mathbf{x} \cdot \omega} \mathrm{~d} \mathbf{x}\right) f(\omega) \mathrm{d} \omega \\
& =\int_{\mathbb{R}^{d}} \hat{f}(\mathbf{x}) \varphi(\mathbf{x}) \mathrm{d} \mathbf{x}=\left\langle T_{\hat{f}}, \varphi\right\rangle,
\end{aligned}
$$

that is, $\mathscr{F} T_{f}=T_{\mathscr{F} f}$.
Let $\mathbf{x}_{0} \in \mathbb{R}^{d}$ be fixed. For the shifted Dirac distribution $\delta\left(\cdot-\mathbf{x}_{0}\right)$, we have

$$
\begin{aligned}
\left\langle\mathscr{F} \delta\left(\cdot-\mathbf{x}_{0}\right), \varphi\right\rangle & =\left\langle\delta\left(\cdot-\mathbf{x}_{0}\right), \hat{\varphi}\right\rangle=\left\langle\delta\left(\cdot-\mathbf{x}_{0}\right), \int_{\mathbb{R}^{d}} \varphi(\boldsymbol{\omega}) \mathrm{e}^{-\mathrm{i} \boldsymbol{\omega} \cdot \mathbf{x}} \mathrm{~d} \boldsymbol{\omega}\right\rangle \\
& =\int_{\mathbb{R}^{d}} \varphi(\boldsymbol{\omega}) \mathrm{e}^{-\mathrm{i} \boldsymbol{\omega} \cdot \mathbf{x}_{0}} \mathrm{~d} \omega=\left\langle\mathrm{e}^{-\mathrm{i} \boldsymbol{\omega} \cdot \mathbf{x}_{0}}, \varphi(\boldsymbol{\omega})\right\rangle,
\end{aligned}
$$

so that $\mathscr{F} \delta\left(\cdot-\mathbf{x}_{0}\right)=\mathrm{e}^{-\mathrm{i} \omega \cdot \mathbf{x}_{0}}$ and in particular, for $\mathbf{x}_{0}=\mathbf{0}$ we obtain $\mathscr{F} \delta=1$.
Theorem 4.47 The Fourier transform on $\mathscr{S}^{\prime}\left(\mathbb{R}^{d}\right)$ is a linear, bijective operator $\mathscr{F}: \mathscr{S}^{\prime}\left(\mathbb{R}^{d}\right) \rightarrow \mathscr{S}^{\prime}\left(\mathbb{R}^{d}\right)$. The Fourier transform on $\mathscr{S}^{\prime}\left(\mathbb{R}^{d}\right)$ is continuous in the sense that for $T_{k}, T \in \mathscr{S}^{\prime}\left(\mathbb{R}^{d}\right)$ the convergence $T_{k} \underset{\mathscr{S}^{\prime}}{ } T$ as $k \rightarrow \infty$ implies $\mathscr{F} T_{k} \underset{\mathscr{S}^{\prime}}{ } \mathscr{F} T$ as $k \rightarrow \infty$. The inverse Fourier transform is given by:

$$
\begin{equation*}
\left\langle\mathscr{F}^{-1} T, \varphi\right\rangle=\left\langle T, \mathscr{F}^{-1} \varphi\right\rangle \tag{4.38}
\end{equation*}
$$

for all $\varphi \in \mathscr{S}\left(\mathbb{R}^{d}\right)$ which means

$$
\mathscr{F}^{-1} T:=\frac{1}{(2 \pi)^{d}} \mathscr{F} T(-\cdot) .
$$

For all $T \in \mathscr{S}^{\prime}\left(\mathbb{R}^{d}\right)$, it holds the Fourier inversion formula:

$$
\mathscr{F}^{-1}(\mathscr{F} T)=\mathscr{F}\left(\mathscr{F}^{-1} T\right)=T .
$$

Proof By definition (4.37), the Fourier transform \mathscr{F} maps $\mathscr{S}^{\prime}\left(\mathbb{R}^{d}\right)$ into itself. Obviously, \mathscr{F} is a linear operator. We show that \mathscr{F} is a continuous linear operator of $\mathscr{S}^{\prime}\left(\mathbb{R}^{d}\right)$ onto $\mathscr{S}^{\prime}\left(\mathbb{R}^{d}\right)$. Assume that $T_{k} \xrightarrow[\mathscr{S}^{\prime}]{ } T$ as $k \rightarrow \infty$. Then, we get by (4.37):

$$
\lim _{k \rightarrow \infty}\left\langle\mathscr{F} T_{k}, \varphi\right\rangle=\lim _{k \rightarrow \infty}\left\langle T_{k}, \mathscr{F} \varphi\right\rangle=\langle T, \mathscr{F} \varphi\rangle=\langle\mathscr{F} T, \varphi\rangle
$$

for all $\varphi \in \mathscr{S}\left(\mathbb{R}^{d}\right)$. This means that $\mathscr{F} T_{k} \underset{\mathscr{S}^{\prime}}{ } \mathscr{F} T$ as $k \rightarrow \infty$, i.e., the operator $\mathscr{F}: \mathscr{S}^{\prime}\left(\mathbb{R}^{d}\right) \rightarrow \mathscr{S}^{\prime}\left(\mathbb{R}^{d}\right)$ is continuous.

Next, we show that (4.38) is the inverse Fourier transform, that is:

$$
\begin{equation*}
\mathscr{F}^{-1}(\mathscr{F} T)=T, \quad \mathscr{F}\left(\mathscr{F}^{-1} T\right)=T \tag{4.39}
\end{equation*}
$$

for all $T \in \mathscr{S}^{\prime}\left(\mathbb{R}^{d}\right)$. By Theorem 4.18, we find that for all $\varphi \in \mathscr{S}\left(\mathbb{R}^{d}\right)$:

$$
\begin{aligned}
\left\langle\mathscr{F}^{-1}(\mathscr{F} T), \varphi\right\rangle & =\frac{1}{(2 \pi)^{d}}\langle\mathscr{F}(\mathscr{F} T(-\cdot)), \varphi\rangle \\
& =\frac{1}{(2 \pi)^{d}}\langle\mathscr{F} T(-\cdot), \mathscr{F} \varphi\rangle=\frac{1}{(2 \pi)^{d}}\langle\mathscr{F} T,(\mathscr{F} \varphi)(-\cdot)\rangle \\
& =\left\langle\mathscr{F} T, \mathscr{F}^{-1} \varphi\right\rangle=\left\langle T, \mathscr{F}\left(\mathscr{F}^{-1} \varphi\right)\right\rangle=\langle T, \varphi\rangle .
\end{aligned}
$$

By (4.39), each $T \in \mathscr{S}^{\prime}\left(\mathbb{R}^{d}\right)$ is the Fourier transform of the tempered distribution $S=\mathscr{F}^{-1} T$, i.e., $T=\mathscr{F} S$. Thus, both \mathscr{F} and $\mathscr{F}^{-1} \operatorname{map} \mathscr{S}^{\prime}\left(\mathbb{R}^{d}\right)$ one-to-one onto $\mathscr{S}^{\prime}\left(\mathbb{R}^{d}\right)$.

Remark 4.48 From Theorem 4.47, it follows immediately Theorem 4.22. If $f \in$ $L_{1}\left(\mathbb{R}^{d}\right)$ with $\hat{f} \in L_{1}\left(\mathbb{R}^{d}\right)$ is given, then T_{f} and $T_{\hat{f}}$ are regular tempered distributions by Example 4.35. By Theorem 4.47 and Example 4.46, we have

$$
T_{\mathscr{F}-1} \hat{f}=\mathscr{F}^{-1} T_{\hat{f}}=\mathscr{F}^{-1}\left(\mathscr{F} T_{f}\right)=T_{f}
$$

so that the functions f and

$$
\left(\mathscr{F}^{-1} \hat{f}\right)(\mathbf{x})=\frac{1}{(2 \pi)^{d}} \int_{\mathbb{R}^{d}} \hat{f}(\boldsymbol{\omega}) \mathrm{e}^{\mathrm{i} \mathbf{x} \cdot \boldsymbol{\omega}} \mathrm{~d} \boldsymbol{\omega}
$$

are equal almost everywhere.
The following theorem summarizes properties of Fourier transform on $\mathscr{S}^{\prime}\left(\mathbb{R}^{d}\right)$.
Theorem 4.49 (Properties of the Fourier Transform on $\mathscr{S}^{\prime}\left(\mathbb{R}^{d}\right)$) The Fourier transform of a tempered distribution $T \in \mathscr{S}^{\prime}\left(\mathbb{R}^{d}\right)$ has the following properties:

1. Translation and modulation: For fixed $\mathbf{x}_{0}, \omega_{0} \in \mathbb{R}^{d}$:

$$
\begin{aligned}
\mathscr{F} T\left(\cdot-\mathbf{x}_{0}\right) & =\mathrm{e}^{-\mathrm{i} \omega \cdot \mathbf{x}_{0}} \mathscr{F} T, \\
\mathscr{F}\left(\mathrm{e}^{-\mathrm{i} \omega_{0} \cdot \mathbf{x}} T\right) & =\mathscr{F} T\left(\cdot+\omega_{0}\right) .
\end{aligned}
$$

2. Differentiation and multiplication: For $\boldsymbol{\alpha} \in \mathbb{N}_{0}^{d}$:

$$
\begin{aligned}
\mathscr{F}\left(D^{\alpha} T\right) & =\mathrm{i}^{|\alpha|} \omega^{\alpha} \mathscr{F} T, \\
\mathscr{F}\left(\mathbf{x}^{\alpha} T\right) & =\mathrm{i}^{|\alpha|} D^{\alpha} \mathscr{F} T .
\end{aligned}
$$

3. Scaling: For $c \in \mathbb{R} \backslash\{0\}$:

$$
\mathscr{F} T(c \cdot)=\frac{1}{|c|^{d}} \mathscr{F} T\left(c^{-1} \cdot\right) .
$$

4. Convolution: For $\varphi \in \mathscr{S}\left(\mathbb{R}^{d}\right)$:

$$
\mathscr{F}(T * \varphi)=(\mathscr{F} T)(\mathscr{F} \varphi) .
$$

The proof follows in a straightforward way from the definitions of corresponding operators, in particular the Fourier transform (4.37) on $\mathscr{S}^{\prime}\left(\mathbb{R}^{d}\right)$ and Theorem 4.20.

Finally, we present some additional examples of Fourier transforms of tempered distributions.
Example 4.50 In Example 4.46, we have seen that for fixed $\mathbf{x}_{0} \in \mathbb{R}^{d}$:

$$
\mathscr{F} \delta\left(\cdot-\mathbf{x}_{0}\right)=\mathrm{e}^{-\mathrm{i} \omega \cdot \mathbf{x}_{0}}, \quad \mathscr{F} \delta=1
$$

Now, we determine $\mathscr{F}^{-1} 1$. By Theorem 4.47, we obtain

$$
\mathscr{F}^{-1} 1=\frac{1}{(2 \pi)^{d}} \mathscr{F} 1(-\cdot)=\frac{1}{(2 \pi)^{d}} \mathscr{F} 1,
$$

since the reflection $1(-\cdot)$ is equal to 1 . Thus, we have $\mathscr{F} 1=(2 \pi)^{d} \delta$. From Theorem 4.49, it follows for any $\boldsymbol{\alpha} \in \mathbb{N}_{0}^{d}$:

$$
\begin{aligned}
\mathscr{F}\left(D^{\alpha} \delta\right) & =(\mathrm{i} \omega)^{\alpha} \mathscr{F} \delta=(\mathrm{i} \omega)^{\alpha} 1=(\mathrm{i} \omega)^{\alpha}, \\
\mathscr{F}\left(\mathbf{x}^{\alpha}\right) & =\mathscr{F}\left(\mathbf{x}^{\alpha} 1\right)=\mathrm{i}^{|\boldsymbol{\alpha}|} D^{\alpha} \mathscr{F} 1=(2 \pi)^{d} \mathrm{i}^{|\boldsymbol{\alpha}|} D^{\alpha} \delta .
\end{aligned}
$$

Example 4.51 We are interested in the Fourier transform of the distribution pv $\left(\frac{1}{x}\right)$. from Example 4.39. First, it is not hard to check that for any $T \in \mathscr{S}^{\prime}(\mathbb{R})$:

$$
x T=1 \quad \Longleftrightarrow \quad T=\operatorname{pv}\left(\frac{1}{\cdot}\right)+C \delta
$$

with a constant $C \in \mathbb{R}$. Similarly as in Example 4.41, the derivative of the sign function:

$$
\operatorname{sgn}(x):=\left\{\begin{array}{rl}
1 & x>0 \\
0 & x=0 \\
-1 & x<0
\end{array}\right.
$$

is $D \operatorname{sgn}=2 \delta$. Then, we obtain by Theorem 4.49 for all $\varphi \in \mathscr{S}(\mathbb{R})$:

$$
\begin{aligned}
\langle\mathscr{F}(D \operatorname{sgn}), \varphi\rangle & =\langle D \operatorname{sgn}, \hat{\varphi}\rangle=2 \hat{\varphi}(0)=\langle 2 \hat{\delta}, \varphi\rangle=\langle 2, \varphi\rangle \\
& =\left\langle i \omega \operatorname{sgn}^{\wedge}(\omega), \varphi(\omega)\right\rangle
\end{aligned}
$$

so that $i \omega \operatorname{sgn}^{\wedge}(\omega)=2$ and

$$
\operatorname{sgn} \wedge=\frac{2}{\mathrm{i}} \mathrm{pv}\left(\frac{1}{.}\right)+C \delta=\frac{2}{\mathrm{i}} \mathrm{pv}\left(\frac{1}{.}\right),
$$

where the last equality, i.e., $C=0$, can be seen using the Gaussian φ. Hence, it follows

$$
\operatorname{pv}\left(\frac{1}{.}\right)^{\wedge}=-\mathrm{i} \pi \operatorname{sgn} .
$$

Remark 4.52 Using Theorem 4.47, we can simplify the d-dimensional Poisson summation formula (4.26). For arbitrary $\varphi \in \mathscr{S}\left(\mathbb{R}^{d}\right)$, we introduce the 2π periodization operator $P_{2 \pi}: \mathscr{S}\left(\mathbb{R}^{d}\right) \rightarrow C^{\infty}\left(\mathbb{T}^{d}\right)$ by:

$$
P_{2 \pi} \varphi:=\sum_{\mathbf{k} \in \mathbb{Z}^{d}} \varphi(\cdot+2 \pi \mathbf{k}) .
$$

Note that this series converges absolutely and uniformly on \mathbb{R}^{d}. Then, $P_{2 \pi} \varphi \in$ $C^{\infty}\left(\mathbb{T}^{d}\right)$ can be represented as uniformly convergent Fourier series:

$$
\left(P_{2 \pi} \varphi\right)(\mathbf{x})=\sum_{\mathbf{k} \in \mathbb{Z}^{d}} c_{\mathbf{k}}\left(P_{2 \pi} \varphi\right) \mathrm{e}^{\mathrm{i} \mathbf{k} \cdot \mathbf{x}}
$$

where

$$
\begin{aligned}
c_{\mathbf{k}}\left(P_{2 \pi} \varphi\right) & =\frac{1}{(2 \pi)^{d}} \int_{[0,2 \pi]^{d}}\left(P_{2 \pi} \varphi\right)(\mathbf{x}) \mathrm{e}^{-\mathrm{i} \mathbf{k} \cdot \mathbf{x}} \mathrm{~d} \mathbf{x} \\
& =\frac{1}{(2 \pi)^{d}} \int_{\mathbb{R}^{d}} \varphi(\mathbf{x}) \mathrm{e}^{-\mathrm{i} \mathbf{k} \cdot \mathbf{x}} \mathrm{~d} \mathbf{x}=\frac{1}{(2 \pi)^{d}} \hat{\varphi}(-\mathbf{k}) .
\end{aligned}
$$

Hence, we obtain the d-dimensional Poisson summation formula:

$$
\left(P_{2 \pi} \varphi\right)(\mathbf{x})=\frac{1}{(2 \pi)^{d}} \sum_{\mathbf{k} \in \mathbb{Z}^{d}} \hat{\varphi}(\mathbf{k}) \mathrm{e}^{-i \mathbf{k} \cdot \mathbf{x}},
$$

where the Fourier series converges absolutely and uniformly on \mathbb{R}^{d} too. For $\hat{\varphi} \in$ $\mathscr{S}\left(\mathbb{R}^{d}\right)$, we can form the uniform sampling operator $S_{1}: \mathscr{S}\left(\mathbb{R}^{d}\right) \rightarrow \mathscr{S}^{\prime}\left(\mathbb{R}^{d}\right)$ by:

$$
S_{1} \hat{\varphi}=\sum_{\mathbf{k} \in \mathbb{Z}^{d}} \hat{\varphi}(\mathbf{k}) \delta(\cdot-\mathbf{k})
$$

Obviously, $S_{1} \hat{\varphi}$ is a 1-periodic tempered distribution. For the distributional inverse Fourier transform \mathscr{F}^{-1}, we have $\mathscr{F}^{-1} \mathrm{e}^{-\mathrm{i} \mathbf{k} \cdot \omega}=\delta(\cdot-\mathbf{k})$. Thus for arbitrary $\varphi \in$ $\mathscr{S}\left(\mathbb{R}^{d}\right)$, we obtain by Theorem 4.47 the equation:

$$
P_{2 \pi} \varphi=\mathscr{F}^{-1} S_{1} \mathscr{F} \varphi
$$

In [254], the Poisson summation formula is generalized for regular tempered distributions generated by continuous, slowly increasing functions.

The spaces $\mathscr{S}\left(\mathbb{R}^{d}\right), L_{2}\left(\mathbb{R}^{d}\right)$, and $\mathscr{S}^{\prime}\left(\mathbb{R}^{d}\right)$ are a typical example of a so-called Gelfand triple named after the mathematician I.M. Gelfand (1913-2009). To obtain a Gelfand triple $\left(B, H, B^{\prime}\right)$, we equip a Hilbert space H with a dense topological vector subspace B of test functions carrying a finer topology than H such that the natural (injective) inclusion $B \subset H$ is continuous. Let B^{\prime} be the dual space of all linear continuous functionals on B with its (weak-*) topology. Then, the embedding of H^{\prime} in B^{\prime} is injective and continuous. Applying the Riesz representation theorem, we can identify H with H^{\prime} leading to the Gelfand triple:

$$
B \subset H \cong H^{\prime} \subset B^{\prime}
$$

We are interested in

$$
\begin{equation*}
\mathscr{S}\left(\mathbb{R}^{d}\right) \subset L_{2}\left(\mathbb{R}^{d}\right) \cong L_{2}\left(\mathbb{R}^{d}\right)^{\prime} \subset \mathscr{S}^{\prime}\left(\mathbb{R}^{d}\right) \tag{4.40}
\end{equation*}
$$

Note that we already know that $\mathscr{S}\left(\mathbb{R}^{d}\right)$ is dense in $L_{2}\left(\mathbb{R}^{d}\right)$. Moreover, the natural embedding is indeed continuous, since $\varphi_{k} \underset{\mathscr{S}}{ } \varphi$ as $k \rightarrow \infty$ implies

$$
\begin{aligned}
\left\|\varphi_{k}-\varphi\right\|_{L_{2}\left(\mathbb{R}^{d}\right)}^{2} & =\int_{\mathbb{R}^{d}}\left(1+\|\mathbf{x}\|_{2}\right)^{-d-1}\left(1+\|\mathbf{x}\|_{2}\right)^{d+1}\left|\varphi_{k}(\mathbf{x})-\varphi(\mathbf{x})\right|^{2} \mathrm{~d} \mathbf{x} \\
& \leq \sup _{\mathbf{x} \in \mathbb{R}^{d}}\left(1+\|\mathbf{x}\|_{2}\right)^{d+1}\left|\varphi_{k}(\mathbf{x})-\varphi(\mathbf{x})\right|^{2} \int_{\mathbb{R}^{d}} \frac{\mathrm{~d} \mathbf{y}}{\left(1+\|\mathbf{y}\|_{2}\right)^{d+1}} \\
& \leq C \sup _{\mathbf{x} \in \mathbb{R}^{d}}\left(1+\|\mathbf{x}\|_{2}\right)^{d+1}\left|\varphi_{k}(\mathbf{x})-\varphi(\mathbf{x})\right|^{2} \rightarrow 0
\end{aligned}
$$

as $k \rightarrow \infty$.
Corollary 4.53 If we identify $f \in L_{2}\left(\mathbb{R}^{d}\right)$ with $T_{f} \in \mathscr{S}^{\prime}\left(\mathbb{R}^{d}\right)$, then the Fourier transforms on $L_{2}\left(\mathbb{R}^{d}\right)$ and $\mathscr{S}^{\prime}\left(\mathbb{R}^{d}\right)$ coincide in the sense $\mathscr{F} T_{f}=T_{\mathscr{F} f}$.

Proof For any sequence $\left(f_{k}\right)_{k \in \mathbb{N}}$ of functions $f_{k} \in \mathscr{S}\left(\mathbb{R}^{d}\right)$ converging to f in $L_{2}\left(\mathbb{R}^{d}\right)$, we obtain

$$
\lim _{k \rightarrow \infty}\left\langle\mathscr{F} \varphi, \bar{f}_{k}\right\rangle_{L_{2}\left(\mathbb{R}^{d}\right)}=\langle\mathscr{F} \varphi, \bar{f}\rangle_{L_{2}\left(\mathbb{R}^{d}\right)}=\left\langle T_{f}, \mathscr{F} \varphi\right\rangle=\left\langle\mathscr{F} T_{f}, \varphi\right\rangle
$$

for all $\varphi \in \mathscr{S}\left(\mathbb{R}^{d}\right)$. On the other hand, we conclude by definition of \mathscr{F} on $L_{2}\left(\mathbb{R}^{d}\right)$ that

$$
\lim _{k \rightarrow \infty}\left\langle\mathscr{F} \varphi, \bar{f}_{k}\right\rangle_{L_{2}\left(\mathbb{R}^{d}\right)}=\lim _{k \rightarrow \infty}\left\langle\varphi, \overline{\mathscr{F} f_{k}}\right\rangle_{L_{2}\left(\mathbb{R}^{d}\right)}=\langle\varphi, \overline{\mathscr{F} f}\rangle_{L_{2}\left(\mathbb{R}^{d}\right)}=\left\langle T_{\mathscr{F} f}, \varphi\right\rangle
$$

for all $\varphi \in \mathscr{S}\left(\mathbb{R}^{d}\right)$. Thus, $\mathscr{F} T_{f}=T_{\mathscr{F} f}$ and we are done.

4.3.3 Periodic Tempered Distributions

Next, we describe the connection between 2π-periodic tempered distributions and Fourier series. We restrict our attention to the case $d=1$.

A tempered distribution $T \in \mathscr{S}^{\prime}(\mathbb{R})$ with the property $T=T(\cdot-2 \pi)$, that is:

$$
\langle T, \varphi\rangle=\langle T, \varphi(\cdot+2 \pi)\rangle
$$

for all $\varphi \in \mathscr{S}(\mathbb{R})$ is called 2π-periodic tempered distribution.
Example 4.54 We consider the so-called Dirac comb:

$$
\Delta_{2 \pi}:=\sum_{k \in \mathbb{Z}} \delta(\cdot-2 \pi k)=\lim _{n \rightarrow \infty} \sum_{k=-n}^{n} \delta(\cdot-2 \pi k),
$$

which is meant as follows: For every $\varphi \in \mathscr{S}\left(\mathbb{R}^{d}\right)$ and $T_{n}:=\sum_{k=-n}^{n} \delta(\cdot-2 \pi k) \in$ $\mathscr{S}^{\prime}(\mathbb{R})$, we have

$$
\begin{aligned}
\left|T_{n}(\varphi)\right| & =\left|\sum_{k=-n}^{n} \frac{\left(1+4 \pi^{2} k^{2}\right) \varphi(2 \pi k)}{1+4 \pi^{2} k^{2}}\right| \\
& \leq \sum_{k=-n}^{n} \frac{1}{1+4 \pi^{2} k^{2}} \sup _{x \in \mathbb{R}}(1+|x|)^{2}|\varphi(x)| \leq C\|\varphi\|_{m}
\end{aligned}
$$

where $m=2$. Hence, the absolute sum is bounded for all $n \in \mathbb{N}$ and thus converges for $n \rightarrow \infty$. The limit is $\left\langle\Delta_{2 \pi}, \varphi\right\rangle$.

Lemma 4.55 (Poisson Summation Formula for Dirac Comb) In $\mathscr{S}^{\prime}(\mathbb{R})$, it holds

$$
2 \pi \Delta_{2 \pi}=\sum_{k \in \mathbb{Z}} \mathrm{e}^{-\mathrm{i} k} .
$$

Proof Since \mathscr{F} is continuous on $\mathscr{S}^{\prime}(\mathbb{R})$, we have

$$
\begin{equation*}
\mathscr{F}\left(\sum_{k \in \mathbb{Z}} \delta(\cdot-k)\right)=\sum_{k \in \mathbb{Z}} \mathrm{e}^{\mathrm{i} k \cdot} \in \mathscr{S}^{\prime}(\mathbb{R}) . \tag{4.41}
\end{equation*}
$$

The functions from $\mathscr{S}(\mathbb{R})$ fulfill the assumptions of Poisson summation formula (4.26). Using this formula and (4.41), we obtain for all $\varphi \in \mathscr{S}(\mathbb{R})$:

$$
2 \pi\left\langle\sum_{k \in \mathbb{Z}} \delta(\cdot-2 \pi k), \varphi\right\rangle=2 \pi \sum_{k \in \mathbb{Z}} \varphi(2 \pi k)=\sum_{k \in \mathbb{Z}} \hat{\varphi}(k)=\left\langle\sum_{k \in \mathbb{Z}} \mathrm{e}^{-\mathrm{i} k}, \varphi\right\rangle .
$$

This yields the assertion.
By Theorem 1.3, we known that every function $f \in L_{2}(\mathbb{T})$ possesses a convergent Fourier series In $L_{2}(\mathbb{T})$. On the other hand, we know from Sect. 1.4 that there exists $f \in L_{1}(\mathbb{T})$ such that the sequence of Fourier partial sums $\left(S_{n} f\right)(x)$ is not convergent in $L_{1}(\mathbb{T})$ as $n \rightarrow \infty$, see [221, p. 52]. But, every $f \in L_{1}(\mathbb{T})$ generates a regular tempered distribution T_{f} which is 2π-periodic. Next, we show that the Fourier series of any function $f \in L_{1}(\mathbb{T})$ converges to f in $\mathscr{S}^{\prime}(\mathbb{R})$.

Lemma 4.56 For $f \in L_{1}(\mathbb{T})$, the Fourier series:

$$
T:=\sum_{k \in \mathbb{Z}} c_{k}(f) \mathrm{e}^{\mathrm{i} k \cdot}, \quad c_{k}(f):=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(t) \mathrm{e}^{-\mathrm{i} k t} \mathrm{~d} t
$$

is a 2π-periodic tempered distribution which coincides with T_{f} in $\mathscr{S}^{\prime}(\mathbb{R})$. The Fourier transform $\mathscr{F} T_{f}$ reads as:

$$
\mathscr{F} T_{f}=2 \pi \sum_{k \in \mathbb{Z}} c_{k}(f) \delta(\cdot-k)
$$

and the distributional derivative $D T_{f}$ as:

$$
D T_{f}=\sum_{k \in \mathbb{Z} \backslash\{0\}} \mathrm{i} k c_{k}(f) \mathrm{e}^{\mathrm{i} k}
$$

Proof Consider the nth Fourier partial sum:

$$
S_{n} f=\sum_{k=-n}^{n} c_{k}(f) \mathrm{e}^{\mathrm{i} k}
$$

For arbitrary $\varphi \in \mathscr{S}(\mathbb{R})$, we obtain by Fubini's theorem:

$$
\begin{aligned}
\left\langle S_{n} f, \varphi\right\rangle & =\int_{\mathbb{R}}\left(S_{n} f\right)(x) \varphi(x) \mathrm{d} x \\
& =\int_{0}^{2 \pi}\left(\int_{\mathbb{R}} \frac{1}{2 \pi} \sum_{k=-n}^{n} \mathrm{e}^{\mathrm{i} k(x-t)} \varphi(x) \mathrm{d} x\right) f(t) \mathrm{d} t
\end{aligned}
$$

By Lemma 4.55, we know that $\frac{1}{2 \pi} \sum_{k=-n}^{n} \mathrm{e}^{\mathrm{i} k(\cdot-t)}$ converges to $\Delta_{2 \pi}(\cdot-t)$ in $\mathscr{S}^{\prime}(\mathbb{R})$. Taking the limit for $n \rightarrow \infty$ and using Lebesgue's dominated convergence theorem, it follows

$$
\begin{aligned}
\langle T, \varphi\rangle & =\int_{0}^{2 \pi}\left\langle\Delta_{2 \pi}(\cdot-t), \varphi\right\rangle f(t) \mathrm{d} t=\int_{0}^{2 \pi}\left(\sum_{k \in \mathbb{Z}} \varphi(t+2 \pi k)\right) f(t) \mathrm{d} t \\
& =\int_{\mathbb{R}} \varphi(t) f(t) \mathrm{d} t=\langle f, \varphi\rangle
\end{aligned}
$$

for all $\varphi \in \mathscr{S}^{\prime}(\mathbb{R})$. Thus, $T=T_{f}$. Since \mathscr{F} and D are linear continuous operations in $\mathscr{S}^{\prime}(\mathbb{R})$, the Fourier transform $\mathscr{F} T_{f}$ and the derivative $D T_{f}$ can be formed term-by-term by Theorem 4.47 and Lemma 4.40.

Example 4.57 As in Example 1.9, we consider the 2π-periodic sawtooth function f given by $f(x)=\frac{1}{2}-\frac{x}{2 \pi}, x \in(0,2 \pi)$, and $f(0)=0$. This function possesses in $L_{2}(\mathbb{R})$ the pointwise convergent Fourier expansion:

$$
\sum_{k \in \mathbb{Z} \backslash\{0\}} \frac{1}{2 \pi \mathrm{i} k} \mathrm{e}^{\mathrm{i} k x}
$$

By Lemma 4.56, we obtain the representation:

$$
T_{f}=\sum_{k \in \mathbb{Z} \backslash\{0\}} \frac{1}{2 \pi \mathrm{i} k} \mathrm{e}^{\mathrm{i} k}
$$

in $\mathscr{S}^{\prime}(\mathbb{R})$. Using Lemma 4.40, this Fourier series can be termwise differentiated in $\mathscr{S}^{\prime}(\mathbb{R})$, so that

$$
\begin{aligned}
D T_{f} & =\frac{1}{2 \pi} \sum_{k \in \mathbb{Z} \backslash\{0\}} \mathrm{e}^{\mathrm{i} k \cdot} \\
& =-\frac{1}{2 \pi}+\sum_{k \in \mathbb{Z}} \delta(\cdot-2 \pi k)=-\frac{1}{2 \pi}+\Delta_{2 \pi}
\end{aligned}
$$

Finally, we want to extend Lemma 4.56 to 2π-periodic tempered distributions. Since the function $\mathrm{e}^{\mathrm{i} k \cdot}$ is not in $\mathscr{S}(\mathbb{R})$, the expression $\left\langle T, \mathrm{e}^{\mathrm{i} k \cdot}\right\rangle$ is not defined. Therefore, we choose a nonnegative compactly supported function $\theta \in C_{c}^{\infty}(\mathbb{R})$ which generates a partition of unity:

$$
\begin{equation*}
\sum_{k \in \mathbb{Z}} \theta(x+2 \pi k)=1, \quad x \in \mathbb{R} \tag{4.42}
\end{equation*}
$$

Note that the series (4.42) is locally finite, i.e., on every compact interval only a finite number of terms $\theta(x+2 \pi k)$ does not vanish identically.
Example 4.58 The even function $\theta \in C_{c}^{\infty}(\mathbb{R})$ with $\theta(x):=1$ for $0 \leq x \leq \frac{2 \pi}{3}$, $\theta(x):=0$ for $x \geq \frac{4 \pi}{3}$, and

$$
\theta(x):=\left(1+\frac{\mathrm{e}^{1 /(4 \pi / 3-x)}}{\mathrm{e}^{1 /(x-2 \pi / 3)}}\right)^{-1}, \quad \frac{2 \pi}{3}<x<\frac{4 \pi}{3}
$$

supported in $\left[-\frac{4 \pi}{3}, \frac{4 \pi}{3}\right]$ fulfills (4.42). This follows immediately from the facts that for $x \in\left(\frac{2 \pi}{3}, \frac{4 \pi}{3}\right)$ we have

$$
\sum_{k \in \mathbb{Z}} \theta(x+2 \pi k)=\theta(x)+\theta(x-2 \pi)=1
$$

by definition of θ. For $x \in\left[0, \frac{2 \pi}{3}\right]$, we have

$$
\sum_{k \in \mathbb{Z}} \theta(x+2 \pi k)=\theta(x)=1
$$

and for $x \in\left[\frac{4 \pi}{3}, 2 \pi\right]$:

$$
\sum_{k \in \mathbb{Z}} \theta(x+2 \pi k)=\theta(x-2 \pi)=1
$$

Then, $\theta \mathrm{e}^{-\mathrm{i} k} \in \mathscr{S}(\mathbb{R})$, so that the Fourier coefficients of a 2π-periodic tempered distribution $T \in \mathscr{S}^{\prime}(\mathbb{R})$ given by:

$$
\begin{equation*}
c_{k}(T):=\frac{1}{2 \pi}\left\langle T, \theta \mathrm{e}^{-\mathrm{i} k \cdot}\right\rangle, \quad k \in \mathbb{Z} \tag{4.43}
\end{equation*}
$$

are well defined. By the following reason, the Fourier coefficients are independent of the chosen $\theta \in C_{c}^{\infty}(\mathbb{R})$: Let $\theta_{1} \in C_{c}^{\infty}(\mathbb{R})$ be another function with property (4.42),

Then, by the 2π-periodicity of T, we obtain

$$
\begin{aligned}
\left\langle T, \theta_{1} \mathrm{e}^{-\mathrm{i} k \cdot}\right\rangle & =\left\langle T, \sum_{\ell \in \mathbb{Z}} \theta(\cdot+2 \ell \pi) \theta_{1} \mathrm{e}^{-\mathrm{i} k \cdot}\right\rangle \\
& =\left\langle T, \sum_{\ell \in \mathbb{Z}} \theta \theta_{1}(\cdot-2 \ell \pi) \mathrm{e}^{-\mathrm{i} k \cdot}\right\rangle=\left\langle T, \theta \mathrm{e}^{-\mathrm{i} k \cdot}\right\rangle .
\end{aligned}
$$

Theorem 4.59 Let $T \in \mathscr{S}^{\prime}(\mathbb{R})$ be a 2π-periodic tempered distribution. Then, its Fourier coefficients (4.43) are slowly increasing, i.e., there exist $m \in \mathbb{N}$ and $C>0$ such that for all $k \in \mathbb{Z}$:

$$
\begin{equation*}
\left|c_{k}(T)\right| \leq C(1+|k|)^{m} \tag{4.44}
\end{equation*}
$$

and T has the distributional Fourier series:

$$
\begin{equation*}
T=\sum_{k \in \mathbb{Z}} c_{k}(T) \mathrm{e}^{\mathrm{i} k \cdot} \tag{4.45}
\end{equation*}
$$

which converges in $\mathscr{S}^{\prime}(\mathbb{R})$. Further, we have for all $\varphi \in \mathscr{S}(\mathbb{R})$:

$$
\langle T, \varphi\rangle=\sum_{k \in \mathbb{Z}} c_{k}(T) \hat{\varphi}(-k) .
$$

The Fourier transform $\mathscr{F} T$ reads as:

$$
\begin{equation*}
\mathscr{F} T=2 \pi \sum_{k \in \mathbb{Z}} c_{k}(T) \delta(\cdot-k) . \tag{4.46}
\end{equation*}
$$

Proof By Lemma 4.34, we know that there exist $C_{1}>0$ and $m \in \mathbb{N}_{0}$ such that:

$$
\left|c_{k}(T)\right|=\frac{1}{2 \pi}\left|\left\langle T, \theta \mathrm{e}^{-\mathrm{i} k \cdot}\right\rangle\right| \leq C_{1}\left\|\theta \mathrm{e}^{-\mathrm{i} k \cdot}\right\|_{m}
$$

Then, we get by the Leibniz product rule:

$$
\left\|\theta \mathrm{e}^{-\mathrm{i} k \cdot}\right\|_{m}=\max _{|\beta| \leq m}\left\|(1+|x|)^{m} D^{\beta}\left(\theta(x) \mathrm{e}^{-\mathrm{i} k x}\right)\right\|_{C(\operatorname{supp} \varphi)} \leq C(1+|k|)^{m}
$$

which gives (4.44).
Next, we show that for arbitrary $\varphi \in \mathscr{S}(\mathbb{R})$ the series:

$$
\begin{equation*}
\sum_{k \in \mathbb{Z}} c_{k}(T) \hat{\varphi}(-k) \tag{4.47}
\end{equation*}
$$

converges. By $\varphi \in \mathscr{S}(\mathbb{R})$, we have $\hat{\varphi} \in \mathscr{S}(\mathbb{R})$, so that for some $C_{1}>0$ and m from above:

$$
(1+|k|)^{m+2}|\hat{\varphi}(-k)| \leq C_{1} .
$$

Together with (4.44), this implies

$$
\left|c_{k}(T) \hat{\varphi}(-k)\right| \leq C C_{1}(1+|k|)^{-2}
$$

for all $k \in \mathbb{Z}$, so that the series (4.47) converges absolutely.
For $n \in \mathbb{N}$, we have

$$
\left\langle\sum_{k=-n}^{n} c_{k}(T) \mathrm{e}^{\mathrm{i} k \cdot}, \varphi\right\rangle=\sum_{k=-n}^{n} c_{k}(T) \int_{\mathbb{R}} \varphi(x) \mathrm{e}^{\mathrm{i} k x} \mathrm{~d} x=\sum_{k=-n}^{n} c_{k}(T) \hat{\varphi}(-k)
$$

and letting n go to infinity, we obtain

$$
\lim _{n \rightarrow \infty}\left\langle\sum_{k=-n}^{n} c_{k}(T) \mathrm{e}^{\mathrm{i} k}, \varphi\right\rangle=\sum_{k \in \mathbb{Z}} c_{k}(T) \hat{\varphi}(-k) .
$$

Define

$$
\left\langle\sum_{k \in \mathbb{Z}} c_{k}(T) \mathrm{e}^{\mathrm{i} k \cdot}, \varphi\right\rangle:=\sum_{k \in \mathbb{Z}} c_{k}(T) \hat{\varphi}(-k)
$$

for all $\varphi \in \mathscr{S}(\mathbb{R})$. By definition of the Fourier coefficients, we see that

$$
\sum_{k=-n}^{n} c_{k}(T) \hat{\varphi}(-k)=\left\langle T, \theta \int_{\mathbb{R}} \frac{1}{2 \pi} \sum_{k=-n}^{n} \mathrm{e}^{\mathrm{i} k(x-\cdot)} \varphi(x) \mathrm{d} x\right\rangle
$$

and for $n \rightarrow \infty$ by Poisson summation formula (2.26):

$$
\sum_{k \in \mathbb{Z}} c_{k}(T) \hat{\varphi}(-k)=\left\langle T, \theta \sum_{k \in \mathbb{Z}} \varphi(\cdot-2 \pi k)\right\rangle .
$$

Now, the 2π-periodicity of T and (4.42) imply

$$
\left\langle T, \theta \sum_{k \in \mathbb{Z}} \varphi(\cdot+2 \pi k)\right\rangle=\left\langle T, \varphi \sum_{k \in \mathbb{Z}} \theta(\cdot-2 \pi k)\right\rangle=\langle T, \varphi\rangle
$$

for all $\varphi \in \mathscr{S}(\mathbb{R})$ and consequently

$$
T=\sum_{k \in \mathbb{Z}} c_{k}(T) \mathrm{e}^{\mathrm{i} k}
$$

Since the Fourier transform is continuous on $\mathscr{S}^{\prime}(\mathbb{R})$, we obtain (4.46).
Example 4.60 The Fourier coefficients of the 2π-periodic Dirac comb $\Delta_{2 \pi} \in$ $\mathscr{S}^{\prime}(\mathbb{R})$ are given by:

$$
c_{k}\left(\Delta_{2 \pi}\right)=\frac{1}{2 \pi}\left\langle\Delta_{2 \pi}, \theta \mathrm{e}^{-\mathrm{i} k \cdot}\right\rangle=\frac{1}{2 \pi} \sum_{k \in \mathbb{Z}} \theta(2 \pi k)=\frac{1}{2 \pi} .
$$

Thus, by Theorem 4.59 , the 2π-periodic Dirac comb $\Delta_{2 \pi}$ can be represented as distributional Fourier series:

$$
\Delta_{2 \pi}=\frac{1}{2 \pi} \sum_{k \in \mathbb{Z}} \mathrm{e}^{\mathrm{i} k}
$$

which is in agreement with Lemma 4.55. By (4.46), the distributional Fourier transform of $\Delta_{2 \pi}$ is equal to the 1-periodic Dirac comb:

$$
\mathscr{F} \Delta_{2 \pi}=\Delta_{1}:=\sum_{k \in \mathbb{Z}} \delta(\cdot-k) .
$$

Remark 4.61 As known, the asymptotic behavior of the Fourier coefficients $c_{k}(f)$, $k \in \mathbb{Z}$, of a given 2π-periodic function f reflects the smoothness of f. By Lemma 1.27, the Fourier coefficients $c_{k}(f)$ of $f \in L_{1}(\mathbb{T})$ tend to zero as $|k| \rightarrow$ ∞. With increasing smoothness of f, the decay of $\left|c_{k}(f)\right|$ becomes faster, see Theorem 1.39. In contrast to that, Fourier coefficients $c_{k}(T)$ of a 2π-periodic tempered distribution T possess another asymptotic behavior. By (4.44), the values $\left|c_{k}(T)\right|$ may possibly grow infinitely, but the growth is at most polynomial. For example, the Fourier coefficients $c_{k}\left(\Delta_{2 \pi}\right)=\frac{1}{2 \pi}$ of the 2π-periodic Dirac comb $\Delta_{2 \pi}$ are constant.

4.3.4 Hilbert Transform and Riesz Transform

In this subsection, we introduce the Hilbert transform and a generalization thereof to higher dimensions, the Riesz transform. Both are closely related to the so-called quadrature operators [129, 340] which will be not considered here. The transforms have many applications in signal and image processing and we will refer to some of them in the following. Concerning further information on the Hilbert transform, the reader may consult the books [154, 200, 201].

The Hilbert transform $\mathscr{H}: L_{2}(\mathbb{R}) \rightarrow L_{2}(\mathbb{R})$ is defined by:

$$
\begin{equation*}
\mathscr{H} f=\mathscr{F}^{-1}(-\mathrm{i} \operatorname{sgn}(\cdot) \hat{f}) . \tag{4.48}
\end{equation*}
$$

In the Fourier domain, it reads

$$
\widehat{\mathscr{H}} f(\omega)=-\mathrm{i} \operatorname{sgn}(\omega) \hat{f}(\omega)= \begin{cases}-\mathrm{i} \hat{f}(\omega) & \omega>0 \\ 0 & \omega=0 \\ \mathrm{i} \hat{f}(\omega) & \omega<0\end{cases}
$$

Since we have by Example 4.51 that $\mathrm{pv}\left(\frac{1}{4}\right)^{\wedge}=-\mathrm{i} \pi$ sgn, we expect by formally applying the convolution property of the Fourier transform that

$$
\mathscr{H} f(x)=\frac{1}{\pi}\left(f * \operatorname{pv}\left(\frac{1}{.}\right)\right)(x)=\frac{1}{\pi} \mathrm{pv} \int_{\mathbb{R}} \frac{f(y)}{x-y} \mathrm{~d} y .
$$

However, the convolution of a tempered distribution and a function in $L_{2}(\mathbb{R})$ is in general not defined so that we have to verify that the above integral is indeed defined almost everywhere.

Theorem 4.62 The Hilbert transform (4.48) can be expressed as:

$$
\mathscr{H} f(x)=\frac{1}{\pi}\left(f * \operatorname{pv}\left(\frac{1}{\cdot}\right)\right)(x)=\frac{1}{\pi} \mathrm{pv} \int_{\mathbb{R}} \frac{f(y)}{x-y} \mathrm{~d} y=\frac{1}{\pi} \mathrm{pv} \int_{\mathbb{R}} \frac{f(x-y)}{y} \mathrm{~d} y .
$$

Proof For $\varepsilon>0$, we define the $L_{2}(\mathbb{R})$ function:

$$
g_{\varepsilon}(x):= \begin{cases}\frac{1}{x} & |x|>\varepsilon, \\ 0 & |x| \leq \varepsilon .\end{cases}
$$

By the convolution theorem of the Fourier transform, we obtain for all $f \in L_{2}(\mathbb{R})$ that

$$
\int_{|y|>\varepsilon} \frac{f(x-y)}{y} \mathrm{~d} y=\left(f * g_{\varepsilon}\right)(x)=\mathscr{F}^{-1}\left(\hat{f} \hat{g}_{\varepsilon}\right)(x) .
$$

We have

$$
\begin{aligned}
\hat{g}_{\varepsilon}(\omega) & =\int_{|x|>\varepsilon} \frac{1}{x} \mathrm{e}^{-\mathrm{i} x \omega} \mathrm{~d} x=\int_{\varepsilon}^{\infty} \frac{1}{x}\left(\mathrm{e}^{-\mathrm{i} x \omega}-\mathrm{e}^{\mathrm{i} x \omega}\right) \mathrm{d} x \\
& =-2 \mathrm{i} \int_{\varepsilon}^{\infty} \frac{\sin (x \omega)}{x} \mathrm{~d} x=-2 \mathrm{i} \operatorname{sgn}(\omega) \int_{\omega \varepsilon}^{\infty} \frac{\sin y}{y} \mathrm{~d} y .
\end{aligned}
$$

Using Lemma 1.41, we conclude

$$
\lim _{\varepsilon \rightarrow 0} \hat{g}_{\varepsilon}(\omega)=-\mathrm{i} \pi \operatorname{sgn}(\omega)
$$

For all $\omega \neq 0$, we know that $\left|\hat{g}_{\varepsilon}(\omega)\right| \leq 2 \sup _{0<\tau<t}\left|\int_{\tau}^{t} \frac{\sin (y)}{y} \mathrm{~d} y\right|<\infty$ so that

$$
\lim _{\varepsilon \rightarrow 0}\left\|\hat{f} \hat{g}_{\varepsilon}+\mathrm{i} \pi \operatorname{sgn} \hat{f}\right\|_{L_{2}(\mathbb{R})}=0
$$

and by continuity of the Fourier transform on $L_{2}(\mathbb{R})$:

$$
\begin{aligned}
\frac{1}{\pi} \lim _{\varepsilon \rightarrow 0} \int_{|y|>\varepsilon} \frac{f(x-y)}{y} \mathrm{~d} y & =\frac{1}{\pi} \lim _{\varepsilon \rightarrow 0} \mathscr{F}^{-1}\left(\hat{f} \hat{g}_{\varepsilon}\right)(x) \\
& =\mathscr{F}^{-1}(-\mathrm{i} \operatorname{sgn}(\omega) \hat{f}(\omega))(x)
\end{aligned}
$$

In particular, Theorem 4.62 shows that the Hilbert transform of a real-valued function in $L_{2}(\mathbb{R})$ is again real-valued. In the following, we denote by $L_{2}\left(\mathbb{R}^{d}, \mathbb{R}^{n}\right)$ with $d \in \mathbb{N}$ and $n \in\{1, d\}$, the functions from $L_{2}\left(\mathbb{R}^{d}\right)$ mapping into \mathbb{R}^{n}. The Hilbert transform has various useful properties.

Theorem 4.63 (Properties of Hilbert Transform) The Hilbert transform \mathscr{H} : $L_{2}(\mathbb{R}) \rightarrow L_{2}(\mathbb{R}):$

1. multiplied by $\sqrt{2 \pi}$ is an isometry,
2. commutes with translations,
3. commutes with positive dilations,
4. is self-inverting, i.e., $(\mathrm{i} \mathscr{H})^{2}$ is the identity,
5. is anti-self-adjoint on $L_{2}(\mathbb{R}, \mathbb{R})$, that is, $\mathscr{H}^{*}=-\mathscr{H}$, and
6. anti-commutes with reflections on $L_{2}(\mathbb{R}, \mathbb{R})$, that is, $\mathscr{H}(f(-\cdot))=-\mathscr{H}$ for all $f \in L_{2}(\mathbb{R}, \mathbb{R})$.

Proof

1. The first property follows by the Parseval equality and since $|-i \operatorname{sgn}(\omega)|=1$ for $\omega \neq 0$.
2. By the property 1 of Theorem 4.49, we obtain

$$
\begin{aligned}
\mathscr{H}\left(\left(f\left(\cdot-x_{0}\right)\right)(x)\right. & =\mathscr{F}^{-1}\left(-\mathrm{i} \operatorname{sgn} \mathscr{F}\left(f\left(\cdot-x_{0}\right)\right)\right)(x) \\
& =\mathscr{F}^{-1}\left(-\mathrm{i} \operatorname{sgn}(\omega) \mathrm{e}^{-\mathrm{i} x_{0} \omega} \hat{f}(\omega)\right)(x) \\
& =\mathscr{F}^{-1}(-\mathrm{i} \operatorname{sgn} \hat{f})\left(x-x_{0}\right)=\mathscr{H} f\left(x-x_{0}\right) .
\end{aligned}
$$

3. For $c>0$, it follows

$$
\mathscr{H}(f(c \cdot))(x)=\frac{1}{\pi} \mathrm{pv} \int_{\mathbb{R}} \frac{f(c y)}{x-y} \mathrm{~d} y=\frac{1}{\pi} \mathrm{pv} \int_{\mathbb{R}} \frac{f(s)}{c x-s} \mathrm{~d} s=\mathscr{H} f(c x) .
$$

4. For all $f \in L_{2}(\mathbb{R})$, we get by (4.48)

$$
\mathrm{i} \mathscr{H} f=\mathrm{i} \mathscr{F}^{-1}(-\mathrm{i} \operatorname{sgn} \hat{f})=\mathscr{F}^{-1}(\operatorname{sgn} \hat{f})
$$

and hence:

$$
(\mathrm{i} \mathscr{H})^{2} f=\mathscr{F}^{-1}\left(\operatorname{sgn} \mathscr{F} \mathscr{F}^{-1}(\operatorname{sgn} \hat{f})\right)=\mathscr{F}^{-1}(\operatorname{sgn})^{2} \hat{f}=f .
$$

5. By the Parseval equality, we conclude for all real-valued functions $f, g \in$ $L_{2}(\mathbb{R}, \mathbb{R})$ that

$$
\begin{aligned}
\langle\mathscr{H} f, g\rangle_{L_{2}(\mathbb{R})} & =\int_{\mathbb{R}} \mathscr{F}^{-1}(-\mathrm{i} \operatorname{sgn} \hat{f})(x) g(x) \mathrm{d} x \\
& =\frac{1}{2 \pi} \int_{\mathbb{R}}(-\mathrm{i} \operatorname{sgn}(\omega) \hat{f}(\omega)) \overline{\hat{g}(\omega)} \mathrm{d} \omega \\
& =-\frac{1}{2 \pi} \int_{\mathbb{R}} \hat{f}(\omega) \overline{(-\mathrm{i} \operatorname{sgn}(\omega) \hat{g}(\omega))} \mathrm{d} \omega=-\langle f, \mathscr{H} g\rangle_{L_{2}(\mathbb{R})} .
\end{aligned}
$$

6. For all $f \in L_{2}(\mathbb{R}, \mathbb{R})$, we have $(f(-\cdot))^{\wedge}=\overline{\hat{f}}$ so that

$$
\mathscr{H}(f(-\cdot))=\mathscr{F}^{-1}(-\mathrm{i} \operatorname{sgn} \overline{\hat{f}})=-\overline{\mathscr{F}^{-1}(-\mathrm{i} \operatorname{sgn} \hat{f})}=-\mathscr{H} f .
$$

Note that up to a constant, the Hilbert transform is the only operator on $L_{2}(\mathbb{R}, \mathbb{R})$ with properties $1-3$ and 6 , and up to the sign, the only operator which fulfills properties $1-5$, see [340].

The Hilbert transform can be used to construct functions in which Fourier transform is only supported on the positive interval. For a real-valued function $f \in L_{2}(\mathbb{R}, \mathbb{R})$, the function:

$$
f_{a}(x):=f(x)+\mathrm{i} \mathscr{H} f(x)
$$

with

$$
\hat{f}_{a}(\omega)=\hat{f}(\omega)+\mathrm{i} \widehat{\mathscr{H}} f(\omega)= \begin{cases}2 \hat{f}(\omega) & \omega>0 \\ 0 & \omega<0\end{cases}
$$

is called analytic signal of f with amplitude $\left|f_{a}(x)\right|:=\left(f(x)^{2}+\mathscr{H} f(x)^{2}\right)^{1 / 2}$, phase $\phi(x):=\operatorname{atan} 2(\mathscr{H} f(x), f(x))$, and instantaneous phase $\nu(x)=\phi^{\prime}(x)$. Note that any complex-valued function f can be written as:

$$
f(x)=A(x) \mathrm{e}^{\mathrm{i} \phi(x)}=A(x) \cos (\phi(x))+\mathrm{i} A(x) \sin (\phi(x))
$$

with a nonnegative function $A(x)=|f(x)|$ and $\phi(x)=\operatorname{atan} 2(\operatorname{Im} \phi(x), \operatorname{Re} \phi(x))$. If f is real-valued, we have only the cosine part representation. For applications of analytic signals in time-frequency analysis see, e.g., [234, Chapter 4.4].

Example 4.64 For the function:

$$
f(x):=A(x) \cos \left(\omega_{0} x+\zeta_{0}\right)=\frac{1}{2} A(x)\left(\mathrm{e}^{\mathrm{i}\left(\omega_{0} x+\zeta_{0}\right)}+\mathrm{e}^{-\mathrm{i}\left(\omega_{0} x+\zeta_{0}\right)}\right)
$$

with a nonnegative, continuous function $A \in L_{2}(\mathbb{R})$ and $\omega_{0}>0$, we are interested in finding its amplitude $A(x)$ and phase $\phi(x)=\omega_{0} x+\zeta_{0}$ which is an affine function. This would be easy if we could compute somehow

$$
g(x):=A(x) \sin \left(\omega_{0} x+\zeta_{0}\right)=\frac{1}{2 \mathrm{i}} A(x)\left(\mathrm{e}^{\mathrm{i}\left(\omega_{0} x+\zeta_{0}\right)}-\mathrm{e}^{-\mathrm{i}\left(\omega_{0} x+\zeta_{0}\right)}\right)
$$

because of $f(x)+\mathrm{i} g(x)=A(x) \mathrm{e}^{\mathrm{i}\left(\omega_{0} x+\zeta_{0}\right)}$ so that

$$
A(x)=|f(x)+\mathrm{i} g(x)|, \quad \phi(x)=\operatorname{atan} 2(g(x), f(x)) .
$$

Indeed, g can sometimes be computed by the Hilbert transform of f : By the translation-modulation property of the Fourier transform, we obtain

$$
\begin{aligned}
\hat{f}(\omega) & =\frac{1}{2} \int_{\mathbb{R}}\left(A(x) \mathrm{e}^{-\mathrm{i}\left(\omega-\omega_{0}\right) x} \mathrm{e}^{\mathrm{i} \zeta_{0}}+A(x) \mathrm{e}^{-\mathrm{i}\left(\omega+\omega_{0}\right) x} \mathrm{e}^{-\mathrm{i} \zeta_{0}}\right) \mathrm{d} x \\
& =\frac{1}{2}\left(\mathrm{e}^{\mathrm{i} \zeta_{0}} \hat{A}\left(\omega-\omega_{0}\right)+\mathrm{e}^{-\mathrm{i} \zeta_{0}} \hat{A}\left(\omega+\omega_{0}\right)\right), \\
\hat{g}(\omega) & =\frac{1}{2 \mathrm{i}} \int_{\mathbb{R}}\left(A(x) \mathrm{e}^{-\mathrm{i}\left(\omega-\omega_{0}\right) x} \mathrm{e}^{\mathrm{i} \zeta_{0}}-A(x) \mathrm{e}^{-\mathrm{i}\left(\omega+\omega_{0}\right) x} \mathrm{e}^{-\mathrm{i} \zeta_{0}}\right) \mathrm{d} x \\
& =-\frac{\mathrm{i}}{2}\left(\mathrm{e}^{\mathrm{i} \zeta_{0}} \hat{A}\left(\omega-\omega_{0}\right)-\mathrm{e}^{-\mathrm{i} \zeta_{0}} \hat{A}\left(\omega+\omega_{0}\right)\right)
\end{aligned}
$$

and

$$
\widehat{\mathscr{H}} f(\omega)=-\frac{\mathrm{i}}{2} \cdot \begin{cases}\left(\mathrm{e}^{\mathrm{i} \zeta_{0}} \hat{A}\left(\omega-\omega_{0}\right)+\mathrm{e}^{-\mathrm{i} \zeta_{0}} \hat{A}\left(\omega+\omega_{0}\right)\right) & \omega>0, \\ \left(-\mathrm{e}^{\mathrm{i} \zeta_{0}} \hat{A}\left(\omega-\omega_{0}\right)-\mathrm{e}^{-\mathrm{i} \zeta_{0}} \hat{A}\left(\omega+\omega_{0}\right)\right) & \omega<0 .\end{cases}
$$

We see that $\widehat{\mathscr{H} f}(\omega)=\hat{g}(\omega)$ if and only if almost everywhere

$$
\hat{A}\left(\omega+\omega_{0}\right)=0, \quad \omega>0 \quad \text { and } \quad \hat{A}\left(\omega-\omega_{0}\right)=0, \quad \omega<0
$$

Fig. 4.1 Left: Function (4.49) and its Hilbert transform. Right: Amplitude $\left|f_{a}\right|$, and the phase ϕ of its analytical signal f_{a}
which is fulfilled if and only if \hat{A} is supported (up to a set of measure zero) in $\left[-\omega_{0}, \omega_{0}\right]$. The function:

$$
f(x):= \begin{cases}\mathrm{e}^{-x^{2}} \cos (6 x) & x \in[-\pi, \pi] \tag{4.49}\\ 0 & x \in \mathbb{R} \backslash[-\pi, \pi]\end{cases}
$$

together with its Hilbert transform as well as the amplitude and phase of its analytical signal f_{a} are shown in Fig.4.1.

The example can be also seen using the so-called Bedrosian theorem which formally says that

$$
\mathscr{H}(f g)=f \mathscr{H}(g),
$$

if either supp $\hat{f} \subseteq(0, \infty)$ and supp $\hat{g} \subseteq(0, \infty)$ or supp $\hat{f} \subseteq[-a, a]$ and supp $\hat{g} \subseteq$ $\mathbb{R} \backslash[-a, a]$. For the theorem of Bedrosian and corresponding extensions, see, e.g., [24, 49, 383].

There are several ways to generalize the Hilbert transform to higher dimensions. In the following, we concentrate on the most frequently used generalizations, namely the partial Hilbert transform and the Riesz transform.

Let $\boldsymbol{\omega}_{0} \in \mathbb{R}^{d} \backslash\{\mathbf{0}\}$ be given. The partial Hilbert transform with respect to $\boldsymbol{\omega}_{0}$ is defined for $f \in L_{2}\left(\mathbb{R}^{d}\right)$ by:

$$
\mathscr{H}_{\omega_{0}} f:=\mathscr{F}^{-1}\left(-\mathrm{i} \operatorname{sgn}\left(\omega \cdot \omega_{0}\right) \hat{f}(\omega)\right) .
$$

The partial Hilbert transform occurs in the context of functions whose Fourier transform is supported in one half-space, see [51] or [234, Chapter 4].

The Riesz transform $\mathscr{R}: L_{2}\left(\mathbb{R}^{d}, \mathbb{R}\right) \rightarrow L_{2}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$ is defined by:

$$
\mathscr{R} f=\mathscr{F}^{-1}\left(-\mathrm{i} \frac{\boldsymbol{\omega}}{\|\boldsymbol{\omega}\|_{2}} \hat{f}(\boldsymbol{\omega})\right),
$$

where the inverse Fourier transform is taken componentwise, i.e., $\mathscr{R} f=\left(\mathscr{R}_{j} f\right)_{j=1}^{d}$ with:

$$
\mathscr{R}_{j} f:=\mathscr{F}^{-1}\left(-\mathrm{i} \frac{\omega_{j}}{\|\boldsymbol{\omega}\|_{2}}(\mathscr{F} f)(\boldsymbol{\omega})\right), \quad \boldsymbol{\omega}=\left(\omega_{j}\right)_{j=1}^{d} \in \mathbb{R}^{d}
$$

Note that for $f \in L_{2}\left(\mathbb{R}^{d}\right)$ we have $\hat{f} \in L_{2}\left(\mathbb{R}^{d}\right)$ and $\frac{\omega_{j}}{\|\omega\|_{2}} \hat{f} \in L_{2}\left(\mathbb{R}^{d}\right), j=$ $1, \ldots, d$, where we set $\frac{\omega_{j}}{\|\omega\|_{2}}:=0$ if $\boldsymbol{\omega}=\mathbf{0}$. Therefore, the inverse Fourier transform is well defined. For $d=1$, the Riesz transform coincides with the Hilbert transform.

In the Fourier domain, it reads

$$
\widehat{\mathscr{R} f}(\boldsymbol{\omega})=-\mathrm{i} \frac{\omega}{\|\omega\|_{2}} \hat{f}(\boldsymbol{\omega}) .
$$

Similarly as for the Hilbert transform, it can be shown that the Riesz transform can be rewritten as:

$$
\begin{aligned}
\mathscr{R} f(\mathbf{x}) & =C_{d}\left(f * \operatorname{pv}\left(\frac{\cdot}{\|\cdot\|_{2}^{d+1}}\right)\right)(\mathbf{x}) \\
& =C_{d} \lim _{\varepsilon \rightarrow 0} \int_{\mathbb{R}^{d} \backslash B_{\varepsilon}(\mathbf{0})} \frac{\mathbf{y}}{\|\mathbf{y}\|_{2}^{d+1}} f(\mathbf{x}-\mathbf{y}) \mathrm{d} \mathbf{y}
\end{aligned}
$$

where

$$
C_{d}:=\pi^{-(d+1) / 2} \Gamma\left(\frac{d+1}{2}\right)
$$

with the Gamma function $\Gamma(z):=\int_{0}^{\infty} t^{z-1} \mathrm{e}^{-t} \mathrm{~d} t$. In particular, we have

$$
C_{1}=\frac{1}{\pi}, \quad C_{2}=\frac{1}{2 \pi}, \quad C_{3}=\frac{1}{\pi^{2}} .
$$

The Riesz transform was introduced in [309] and arises in the study of differentiability properties of harmonic potentials.

Theorem 4.65 (Properties of Riesz Transform) The Riesz transform \mathscr{R} : $L_{2}\left(\mathbb{R}^{d}, \mathbb{R}\right) \rightarrow L_{2}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right):$

1. multiplied by $(2 \pi)^{d / 2}$ is an isometry,
2. commutes with translations,
3. commutes with positive dilations,
4. fulfills for each orthogonal matrix $\mathbf{U} \in \mathbb{R}^{d \times d}$, the relation:

$$
\mathscr{R}\left(f\left(\mathbf{U}^{-1} \cdot\right)\right)=\mathbf{U} \mathscr{R} f\left(\mathbf{U}^{-1} \cdot\right),
$$

5. is anti-self-adjoint, that is, $\mathscr{R}^{*} g=-\sum_{j=1}^{d} \mathscr{R}_{j} g_{j}$ for all $g=\left(g_{j}\right)_{j=1}^{d} \in$ $L_{2}\left(\mathbb{R}^{d}, \mathbb{R}^{d}\right)$, and
6. anti-commutes with reflections on $L_{2}\left(\mathbb{R}^{d}, \mathbb{R}\right)$.

Proof We only prove the fourth property since the other ones follow similarly as for the Riesz transform. By Lemma 4.29, we obtain

$$
\begin{aligned}
\mathscr{R}\left(f\left(\mathbf{U}^{-1} \cdot\right)\right)(\mathbf{x}) & =\mathscr{F}^{-1}\left(-\mathrm{i} \frac{\boldsymbol{\omega}}{\|\boldsymbol{\omega}\|_{2}} \hat{f}\left(\mathbf{U}^{-1} \boldsymbol{\omega}\right)\right)(\mathbf{x}) \\
& =\frac{1}{(2 \pi)^{d}} \int_{\mathbb{R}}\left(-\mathrm{i} \frac{\boldsymbol{\omega}}{\|\boldsymbol{\omega}\|_{2}} \hat{f}\left(\mathbf{U}^{-1} \boldsymbol{\omega}\right)\right) \mathrm{e}^{\mathrm{i} \boldsymbol{\omega} \cdot \mathbf{x}} \mathrm{~d} \boldsymbol{\omega} \\
& =\frac{1}{(2 \pi)^{d}} \int_{\mathbb{R}}\left(-\mathrm{i} \frac{\mathbf{U v}}{\|\mathbf{v}\|_{2}} \hat{f}(\mathbf{v}) \mathrm{e}^{\mathrm{i} \mathbf{v} \cdot \mathbf{U}^{-1} \mathbf{x}}\right) \mathrm{d} \mathbf{v} \\
& =\mathbf{U} \mathscr{F}^{-1}\left(-\mathrm{i} \frac{\mathbf{v}}{\|\mathbf{v}\|_{2}} \hat{f}\right)\left(\mathbf{U}^{-1} \mathbf{x}\right) .
\end{aligned}
$$

The multidimensional counterpart of an analytic signal is the monogenic signal. Let $d=2$ and $\mathscr{R} f=\left(\mathscr{R}_{1} f, \mathscr{R}_{2} f\right)^{\top}$. Then, the monogenic signal of a function $f \in L_{2}\left(\mathbb{R}^{2}, \mathbb{R}\right)$ is defined by:

$$
f_{m}:=\left(f, \mathscr{R}_{1} f, \mathscr{R}_{2} f\right)^{\top} .
$$

The monogenic signal was introduced in image processing by Felsberg and Sommer [109] and in the context of optics by Larkin et al. [220]. It has the amplitude:

$$
A:=\sqrt{f^{2}+\left(\mathscr{R}_{1} f\right)^{2}+\left(\mathscr{R}_{2} f\right)^{2}} .
$$

Its local orientation $\theta \in(-\pi, \pi]$ and instantaneous phase $\xi \in[0, \pi]$ are determined by:

$$
f=A \cos \xi, \quad \mathscr{R}_{1} f=A \sin \xi \cos \theta, \quad \mathscr{R}_{2} f=A \sin \xi \sin \theta .
$$

The instantaneous phase can be recovered by:

$$
\xi=\arccos \frac{f}{A} .
$$

With $r:=\sqrt{\left(\mathscr{R}_{1} f\right)^{2}+\left(\mathscr{R}_{2} f\right)^{2}}=A \sin \xi$, we obtain the local orientation vector by $\left(\frac{\mathscr{R}_{1} f}{r}, \frac{\mathscr{R}_{2} f}{r}\right)^{\top}=(\cos \theta, \sin \theta)^{\top}$ and the local orientation by:

$$
\theta:=\operatorname{atan} 2\left(\mathscr{R}_{2} f, \mathscr{R}_{1} f\right) .
$$

Thus, the Riesz transform of a two-dimensional signal provides information about the amplitude, the instantaneous phase, and the local orientation (of the phase) of the signal. Therefore, it contains, in contrast to, e.g., the directional Hilbert transform where the desired direction has to be addressed in advance, an "automatic" orientation component. The Riesz transform can replace the (smoothed) gradient in structure tensors as those of Förstner and Gülch [115] to make them more robust, see, e.g., [209]. It was used in the context of steerable wavelets [361], curvelets [342], and shearlets [158].

4.4 Multidimensional Discrete Fourier Transforms

The multidimensional DFT is necessary for the computation of Fourier coefficients of a function $f \in C\left(\mathbb{T}^{d}\right)$ as well as for the calculation of the Fourier transform of a function $f \in L_{1}\left(\mathbb{R}^{d}\right) \cap C\left(\mathbb{R}^{d}\right)$. Further, the two-dimensional DFT finds numerous applications in image processing. The properties of the one-dimensional DFT (see Chap. 3) can be extended to the multidimensional DFT in a straightforward way.

4.4.1 Computation of Multivariate Fourier Coefficients

We describe the computation of Fourier coefficients $c_{\mathbf{k}}(f), \mathbf{k}=\left(k_{j}\right)_{j=1}^{d} \in \mathbb{Z}^{d}$, of a given function $f \in C\left(\mathbb{T}^{d}\right)$, where f is sampled on the uniform grid $\left\{\frac{2 \pi}{N} \mathbf{n}: \mathbf{n} \in\right.$ $\left.I_{N}^{d}\right\}$, where $N \in \mathbb{N}$ is even, $I_{N}:=\{0, \ldots, N-1\}$, and $I_{N}^{d}:=\left\{\mathbf{n}=\left(n_{j}\right)_{j=1}^{d}\right.$: $\left.n_{j} \in I_{N}, j=1, \ldots, d\right\}$. Using the rectangle rule of numerical integration, we can compute $c_{\mathbf{k}}(f)$ for $\mathbf{k} \in \mathbb{Z}^{d}$ approximately. Since $[0,2 \pi]^{d}$ is equal to the union of the N^{d} hypercubes $\frac{2 \pi}{N} \mathbf{n}+\left[0, \frac{2 \pi}{N}\right]^{d}, \mathbf{n} \in I_{N}^{d}$, we obtain

$$
\begin{aligned}
& c_{\mathbf{k}}(f)=\frac{1}{(2 \pi)^{d}} \int_{[0,2 \pi]^{d}} f(\mathbf{x}) \mathrm{e}^{-\mathrm{i} \mathbf{k} \cdot \mathbf{x}} \mathrm{~d} \mathbf{x} \approx \frac{1}{N^{d}} \sum_{\mathbf{n} \in I_{N}^{d}} f\left(\frac{2 \pi}{N} \mathbf{n}\right) \mathrm{e}^{-2 \pi \mathrm{i}(\mathbf{k} \cdot \mathbf{n}) / N} \\
& =\frac{1}{N^{d}} \sum_{\mathbf{n} \in I_{N}^{d}} f\left(\frac{2 \pi}{N} \mathbf{n}\right) w_{N}^{\mathbf{k} \cdot \mathbf{n}}
\end{aligned}
$$

with $w_{N}=\mathrm{e}^{-2 \pi \mathrm{i} / N}$. The expression:

$$
\sum_{\mathbf{n} \in I_{N}^{d}} f\left(\frac{2 \pi}{N} \mathbf{n}\right) w_{N}^{\mathbf{k} \cdot \mathbf{n}}
$$

is called the d-dimensional discrete Fourier transform of size $N_{1} \times \ldots \times N_{d}$ of the d-dimensional array $\left(f\left(\frac{2 \pi}{N} \mathbf{n}\right)\right)_{\mathbf{n} \in I_{N}^{d}}$, where $N_{1}=\ldots=N_{d}:=N$. Thus, we obtain the approximate Fourier coefficients:

$$
\begin{equation*}
\hat{f}_{\mathbf{k}}:=\frac{1}{N^{d}} \sum_{\mathbf{n} \in I_{N}^{d}} f\left(\frac{2 \pi}{N} \mathbf{n}\right) w_{N}^{\mathbf{k} \cdot \mathbf{n}} \tag{4.50}
\end{equation*}
$$

Obviously, the values $\hat{f}_{\mathbf{k}}$ are N-periodic, i.e., for all $\mathbf{k}, \mathbf{m} \in \mathbb{Z}^{d}$ we have

$$
\hat{f}_{\mathbf{k}+N \mathbf{m}}=\hat{f}_{\mathbf{k}}
$$

But by Lemma 4.6, we know that $\lim _{\|\mathbf{k}\|_{2} \rightarrow \infty} c_{\mathbf{k}}(f)=0$. Therefore, we can only expect that

$$
\hat{f_{\mathbf{k}}} \approx c_{\mathbf{k}}(f), \quad k_{j}=-\frac{N}{2}, \ldots, \frac{N}{2}-1 ; j=1, \ldots, d
$$

To see this effect more clearly, we will derive a multidimensional aliasing formula. By $\delta_{\mathbf{m}}, \mathbf{m} \in \mathbb{Z}^{d}$, we denote the d-dimensional Kronecker symbol:

$$
\delta_{\mathbf{m}}:= \begin{cases}1 & \mathbf{m}=\mathbf{0}, \\ 0 & \mathbf{m} \in \mathbb{Z}^{d} \backslash\{\mathbf{0}\}\end{cases}
$$

First, we present a generalization of Lemma 3.2.
Lemma 4.66 Let $N_{j} \in \mathbb{N} \backslash\{1\}, j=1, \ldots, d$, be given. Then for each $\mathbf{m}=$ $\left(m_{j}\right)_{j=1}^{d} \in \mathbb{Z}^{d}$, we have

$$
\begin{aligned}
\sum_{k_{1}=0}^{N_{1}-1} \ldots \sum_{k_{d}=0}^{N_{d}-1} w_{N_{1}}^{m_{1} k_{1}} \ldots w_{N_{d}}^{m_{d} k_{d}} & =\prod_{j=1}^{d}\left(N_{j} \delta_{m_{j} \bmod N}\right) \\
& = \begin{cases}\prod_{j=1}^{d} N_{j} & \mathbf{m} \in N_{1} \mathbb{Z} \times \ldots \times N_{d} \mathbb{Z} \\
0 & \mathbf{m} \in \mathbb{Z}^{d} \backslash\left(N_{1} \mathbb{Z} \times \ldots \times N_{d} \mathbb{Z}\right)\end{cases}
\end{aligned}
$$

If $N_{1}=\ldots=N_{d}=N$, then for each $\mathbf{m} \in \mathbb{Z}^{d}$:

$$
\sum_{\mathbf{k} \in I_{N}^{d}} w_{N}^{\mathbf{m} \cdot \mathbf{k}}=N^{d} \delta_{\mathbf{m} \bmod N}= \begin{cases}N^{d} & \mathbf{m} \in N \mathbb{Z}^{d} \\ 0 & \mathbf{m} \in \mathbb{Z}^{d} \backslash\left(N \mathbb{Z}^{d}\right),\end{cases}
$$

where the vector $\mathbf{m} \bmod N:=\left(m_{j} \bmod N\right)_{j=1}^{d}$ denotes the nonnegative residue of $\mathbf{m} \in \mathbb{Z}^{d}$ modulo N, and

$$
\delta_{\mathbf{m} \bmod N}=\prod_{j=1}^{d} \delta_{m_{j} \bmod N} .
$$

Proof This result is an immediate consequence of Lemma 3.2, since

$$
\sum_{k_{1}=0}^{N_{1}-1} \ldots \sum_{k_{d}=0}^{N_{d}-1} w_{N_{1}}^{m_{1} k_{1}} \ldots w_{N_{d}}^{m_{d} k_{d}}=\prod_{j=1}^{d}\left(\sum_{k_{j}=0}^{N_{j}-1} w_{N_{j}}^{m_{j} k_{j}}\right)=\prod_{j=1}^{d}\left(N_{j} \delta_{m_{j} \bmod N_{j}}\right) .
$$

The following aliasing formula describes a close relation between the Fourier coefficients $c_{\mathbf{k}}(f)$ and the approximate values $\hat{f_{\mathbf{k}}}$.

Theorem 4.67 (Aliasing Formula for d-Variate Fourier Coefficients) Let $N \in$ \mathbb{N} be even and let $f \in C\left(\mathbb{T}^{d}\right)$ be given. Assume that the Fourier coefficients $c_{\mathbf{k}}(f)$ satisfy the condition $\sum_{\mathbf{k} \in \mathbb{Z}^{d}}\left|c_{\mathbf{k}}(f)\right|<\infty$.

Then, we have the aliasing formula:

$$
\begin{equation*}
\hat{f_{\mathbf{k}}}=\sum_{\mathbf{m} \in \mathbb{Z}^{d}} c_{\mathbf{k}+N \mathbf{m}}(f) \tag{4.51}
\end{equation*}
$$

Thus for $k_{j}=-\frac{N}{2}, \ldots, \frac{N}{2}-1$ and $j=1, \ldots, d$, we have the error estimate:

$$
\left|\hat{f}_{\mathbf{k}}-c_{\mathbf{k}}(f)\right| \leq \sum_{\mathbf{m} \in \mathbb{Z}^{d} \backslash\{\mathbf{0}\}}\left|c_{\mathbf{k}+N \mathbf{m}}(f)\right| .
$$

Proof By Theorem 4.7, the d-dimensional Fourier series of f converges uniformly to f. Hence for all $\mathbf{x} \in \mathbb{T}^{d}$, we have

$$
f(\mathbf{x})=\sum_{\mathbf{m} \in \mathbb{Z}^{d}} c_{\mathbf{m}}(f) \mathrm{e}^{\mathrm{i} \mathbf{m} \cdot \mathbf{x}}
$$

In particular for $\mathbf{x}=\frac{2 \pi}{N} \mathbf{n}, \mathbf{n} \in I_{N}^{d}$, we obtain

$$
f\left(\frac{2 \pi}{N} \mathbf{n}\right)=\sum_{\mathbf{m} \in \mathbb{Z}^{d}} c_{\mathbf{m}}(f) \mathrm{e}^{2 \pi \mathrm{i}(\mathbf{m} \cdot \mathbf{n}) / N}=\sum_{\mathbf{m} \in \mathbb{Z}^{d}} c_{\mathbf{m}}(f) w_{N}^{-\mathbf{m} \cdot \mathbf{n}}
$$

Hence due to (4.50) and the pointwise convergence of the Fourier series:

$$
\begin{aligned}
\hat{f}_{\mathbf{k}} & =\frac{1}{N^{d}} \sum_{\mathbf{n} \in \mathbf{I}_{N}}\left(\sum_{\mathbf{m} \in \mathbb{Z}^{d}} c_{\mathbf{m}}(f) w_{N}^{-\mathbf{m} \cdot \mathbf{n}}\right) w_{N}^{\mathbf{k} \cdot \mathbf{n}} \\
& =\frac{1}{N^{d}} \sum_{\mathbf{m} \in \mathbb{Z}^{d}} c_{\mathbf{m}}(f) \sum_{\mathbf{n} \in I_{N}^{d}} w_{N}^{(\mathbf{k}-\mathbf{m}) \cdot \mathbf{n}}
\end{aligned}
$$

which yields the aliasing formula (4.51) by Lemma 4.66.
Now, we sketch the computation of the Fourier transform \hat{f} of a given function $f \in L_{1}\left(\mathbb{R}^{d}\right) \cap C_{0}\left(\mathbb{R}^{d}\right)$. Since $f(\mathbf{x}) \rightarrow 0$ as $\|\mathbf{x}\|_{2} \rightarrow \infty$, we obtain for sufficiently large $n \in \mathbb{N}$ that

$$
\hat{f}(\omega)=\int_{\mathbb{R}^{d}} f(\mathbf{x}) \mathrm{e}^{-\mathrm{i} \mathbf{x} \cdot \boldsymbol{\omega}} \mathrm{~d} \mathbf{x} \approx \int_{[-n \pi, n \pi]^{d}} f(\mathbf{x}) \mathrm{e}^{-\mathrm{i} \mathbf{x} \cdot \boldsymbol{\omega}} \mathrm{~d} \mathbf{x}, \quad \omega \in \mathbb{R}^{d}
$$

Using the uniform $\operatorname{grid}\left\{\frac{2 \pi}{N} \mathbf{k}: k_{j}=-\frac{n N}{2}, \ldots, \frac{n N}{2}-1 ; j=1, \ldots, d\right\}$ of the hypercube $[-n \pi, n \pi)^{d}$ for even $N \in \mathbb{N}$, we receive by the rectangle rule of numerical integration:

$$
\int_{[-n \pi, n \pi]^{d}} f(\mathbf{x}) \mathrm{e}^{-\mathrm{i} \mathbf{x} \cdot \boldsymbol{\omega}} \mathrm{~d} \mathbf{x} \approx\left(\frac{2 \pi}{N}\right)^{d} \sum_{k_{1}=-n N / 2}^{n N / 2-1} \ldots \sum_{k_{d}=-n N / 2}^{n N / 2-1} f\left(\frac{2 \pi}{N} \mathbf{k}\right) \mathrm{e}^{-2 \pi \mathrm{i}(\mathbf{k} \cdot \boldsymbol{\omega}) / N}
$$

For $\boldsymbol{\omega}=\frac{1}{n} \mathbf{m}$ with $m_{j}=-\frac{n N}{2}, \ldots, \frac{n N}{2}-1$ and $j=1, \ldots, d$, we obtain the following values:

$$
\left(\frac{2 \pi}{N}\right)^{d} \sum_{k_{1}=-n N / 2}^{n N / 2-1} \ldots \sum_{k_{d}=-n N / 2}^{n N / 2-1} f\left(\frac{2 \pi}{N} \mathbf{k}\right) w_{n N}^{\mathbf{k} \cdot \boldsymbol{\omega}} \approx \hat{f}\left(\frac{1}{n} \mathbf{m}\right),
$$

which can be considered as d-dimensional $\operatorname{DFT}\left(N_{1} \times \ldots \times N_{d}\right)$ with $N_{1}=\ldots=$ $N_{d}=n N$.

4.4.2 Two-Dimensional Discrete Fourier Transforms

Let $N_{1}, N_{2} \in \mathbb{N} \backslash\{1\}$ be given, and let $I_{N_{j}}:=\left\{0, \ldots, N_{j}-1\right\}$ for $j=1,2$ be the corresponding index sets. The linear map which maps any matrix $\mathbf{A}=$ $\left(a_{k_{1}, k_{2}}\right)_{k_{1}, k_{2}=0}^{N_{1}-1, N_{2}-1} \in \mathbb{C}^{N_{1} \times N_{2}}$ to the matrix:

$$
\hat{\mathbf{A}}=\left(\hat{a}_{n_{1}, n_{2}}\right)_{n_{1}, n_{2}=0}^{N_{1}-1, N_{2}-1}:=\mathbf{F}_{N_{1}} \mathbf{A} \mathbf{F}_{N_{2}} \in \mathbb{C}^{N_{1} \times N_{2}},
$$

is called two-dimensional discrete Fourier transform of size $N_{1} \times N_{2}$ and abbreviated by $\operatorname{DFT}\left(N_{1} \times N_{2}\right)$. The entries of the transformed matrix $\hat{\mathbf{A}}$ read as follows:

$$
\begin{equation*}
\hat{a}_{n_{1}, n_{2}}=\sum_{k_{1}=0}^{N_{1}-1} \sum_{k_{2}=0}^{N_{2}-1} a_{k_{1}, k_{2}} w_{N_{1}}^{k_{1} n_{1}} w_{N_{2}}^{k_{2} n_{2}}, \quad n_{j} \in I_{N_{j}} ; j=1,2 . \tag{4.52}
\end{equation*}
$$

If we form the entries (4.52) for all $n_{1}, n_{2} \in \mathbb{Z}$, then we observe the periodicity of $\operatorname{DFT}\left(N_{1} \times N_{2}\right)$, i.e., for all $\ell_{1}, \ell_{2} \in \mathbb{Z}$, one has

$$
\hat{a}_{n_{1}, n_{2}}=\hat{a}_{n_{1}+\ell_{1} N_{1}, n_{2}+\ell_{2} N_{2}}, \quad n_{j} \in I_{N_{j}}, j=1,2 .
$$

Remark 4.68 The two-dimensional DFT is of great importance for digital image processing. The light intensity measured by a camera is generally sampled over a rectangular array of pictures elements, the so-called pixels. Thus, a digital grayscale image is a matrix $\mathbf{A}=\left(a_{k_{1}, k_{2}}\right)_{k_{1}, k_{2}=0}^{N_{1}-1, N_{2}-1}$ of $N_{1} N_{2}$ pixels $\left(k_{1}, k_{2}\right) \in I_{N_{1}} \times I_{N_{2}}$ and corresponding grayscale values $a_{k_{1}, k_{2}} \in\{0,1, \ldots, 255\}$, where zero means black and 255 is white. Typically, $N_{1}, N_{2} \in \mathbb{N}$ are relatively large, for instance $N_{1}=N_{2}=512$.

The modulus of the transformed matrix $\hat{\mathbf{A}}$ is given by $|\hat{\mathbf{A}}|:=\left(\left|\hat{a}_{n_{1}, n_{2}}\right|\right)_{n_{1}, n_{2}=0}^{N_{1}-1, N_{2}-1}$ and its phase by:

$$
\operatorname{atan} 2(\operatorname{Im} \hat{\mathbf{A}}, \operatorname{Re} \hat{\mathbf{A}}):=\left(\operatorname{atan} 2\left(\operatorname{Im} \hat{a}_{n_{1}, n_{2}}, \operatorname{Re} \hat{a}_{n_{1}, n_{2}}\right)\right)_{n_{1}, n_{2}=0}^{N_{1}-1, N_{2}-1}
$$

where atan2 is defined in Remark 1.4. In natural images, the phase contains important structure information as illustrated in Fig. 4.2. For image sources, we refer to [42] and the databank of the Signal and Image Processing Institute of the University of Southern California (USA).

For the computation of $\operatorname{DFT}\left(N_{1} \times N_{2}\right)$, the following simple relation to onedimensional DFT's is very useful. If the data $a_{k_{1}, k_{2}}$ can be factorized as:

$$
a_{k_{1}, k_{2}}=b_{k_{1}} c_{k_{2}}, \quad k_{j} \in I_{N_{j}} ; j=1,2,
$$

Fig. 4.2 Top: Images Barbara (left) and Lena (right). Bottom: Images reconstructed with modulus of Barbara and phase of Lena (left) and conversely, with modulus of Lena and phase of Barbara (right). The phase appears to be dominant with respect to structures
then the $\operatorname{DFT}\left(N_{1} \times N_{2}\right)$ of $\mathbf{A}=\left(a_{k_{1}, k_{2}}\right)_{k_{1}, k_{2}=0}^{N_{1}-1, N_{2}-1}=\mathbf{b c}^{\top}$ reads as follows:

$$
\begin{equation*}
\hat{\mathbf{A}}=\mathbf{F}_{N_{1}} \mathbf{b} \mathbf{c}^{\top} \mathbf{F}_{N_{2}}^{\top}=\left(\hat{b}_{n_{1}} \hat{c}_{n_{2}}\right)_{n_{1}, n_{2}=0}^{N_{1}-1, N_{2}-1} \tag{4.53}
\end{equation*}
$$

where $\left(\hat{b}_{n_{1}}\right)_{n_{1}=0}^{N_{1}-1}$ is the one-dimensional $\operatorname{DFT}\left(N_{1}\right)$ of $\mathbf{b}=\left(b_{k_{1}}\right)_{k_{1}=0}^{N_{1}-1}$ and $\left(\hat{c}_{n_{2}}\right)_{n_{2}=0}^{N_{2}-1}$ is the one-dimensional $\operatorname{DFT}\left(N_{2}\right)$ of $\mathbf{c}=\left(c_{k_{2}}\right)_{k_{2}=0}^{N-1}$.
Example 4.69 For fixed $s_{j} \in I_{N_{j}}, j=1,2$, the sparse matrix:

$$
\mathbf{A}:=\left(\delta_{\left(k_{1}-s_{1}\right) \bmod N_{1}} \delta_{\left(k_{2}-s_{2}\right) \bmod N_{2}}\right)_{k_{1}, k_{2}=0}^{N_{1}-1, N_{2}-1}
$$

is transformed to $\hat{\mathbf{A}}=\left(w_{N_{1}}^{n_{1} s_{1}} w_{N_{2}}^{n_{2} s_{2}}\right)_{n_{1}, n_{2}=0}^{N_{1}-1, N_{2}-1}$. Thus, we see that a sparse matrix (i.e., a matrix with few nonzero entries) is not transformed to a sparse matrix.

Conversely, the matrix $\mathbf{B}=\left(w_{N_{1}}^{-s_{1} k_{1}} w_{N_{2}}^{-s_{2} k_{2}}\right)_{k_{1}, k_{2}=0}^{N_{1}-1, N_{2}-1}$ is mapped to:

$$
\hat{\mathbf{B}}:=N_{1} N_{2}\left(\delta_{\left(n_{1}-s_{1}\right) \bmod N_{1}} \delta_{\left(n_{2}-s_{2}\right) \bmod N_{2}}\right)_{n_{1}, n_{2}=0}^{N_{1}-1, N_{2}-1}
$$

Example 4.70 Let $N_{1}=N_{2}=N \in \mathbb{N} \backslash\{1\}$. We consider the matrix $\mathbf{A}=$ $\left(a_{k_{1}} a_{k_{2}}\right)_{k_{1}, k_{2}=0}^{N-1}$, where $a_{k_{j}}$ is defined as in Example 3.13 by:

$$
a_{k_{j}}:= \begin{cases}\frac{1}{2} & k_{j}=0 \\ \frac{k_{j}}{N} & k_{j}=1, \ldots, N-1 .\end{cases}
$$

Thus by (4.53) and Example 3.13, we obtain the entries of the transformed matrix $\hat{\mathbf{A}}$ by:

$$
\hat{a}_{n_{1}, n_{2}}=\hat{a}_{n_{1}} \hat{a}_{n_{2}}=-\frac{1}{4} \cot \frac{\pi n_{1}}{N} \cot \frac{\pi n_{2}}{N}, \quad n_{j} \in I_{N_{j}} ; j=1,2 .
$$

By Theorem 3.16, the $\operatorname{DFT}\left(N_{1} \times N_{2}\right)$ maps $\mathbb{C}^{N_{1} \times N_{2}}$ one-to-one onto itself. The inverse $\operatorname{DFT}\left(N_{1} \times N_{2}\right)$ of size $N_{1} \times N_{2}$ is given by:

$$
\mathbf{A}=\mathbf{F}_{N_{1}}^{-1} \hat{\mathbf{A}} \mathbf{F}_{N_{2}}^{-1}=\frac{1}{N_{1} N_{2}} \mathbf{J}_{N_{1}}^{\prime} \mathbf{F}_{N_{1}} \hat{\mathbf{A}} \mathbf{F}_{N_{2}} \mathbf{J}_{N_{2}}^{\prime}
$$

such that:

$$
a_{k_{1}, k_{2}}=\frac{1}{N_{1} N_{2}} \sum_{n_{1}=0}^{N_{1}-1} \sum_{n_{2}=0}^{N_{2}-1} \hat{a}_{n_{1}, n_{2}} w_{N_{1}}^{-k_{1} n_{1}} w_{N_{2}}^{-k_{2} n_{2}}, \quad k_{j} \in I_{N_{j}} ; j=1,2 .
$$

In practice, one says that the $\operatorname{DFT}\left(N_{1} \times N_{2}\right)$ is defined on the time domain or space domain $\mathbb{C}^{N_{1} \times N_{2}}$. The range of the $\operatorname{DFT}\left(N_{1} \times N_{2}\right)$ is called frequency domain which is $\mathbb{C}^{N_{1} \times N_{2}}$ too.

In the linear space $\mathbb{C}^{N_{1} \times N_{2}}$, we introduce the inner product of two complex matrices $\mathbf{A}=\left(a_{k_{1}, k_{2}}\right)_{k_{1}, k_{2}=0}^{N_{1}-1, N_{2}-1}$ and $\mathbf{B}=\left(b_{k_{1}, k_{2}}\right)_{k_{1}, k_{2}=0}^{N_{1}-1, N_{2}-1}$ by:

$$
\langle\mathbf{A}, \mathbf{B}\rangle:=\sum_{k_{1}=0}^{N_{1}-1} \sum_{k_{2}=0}^{N_{2}-1} a_{k_{1}, k_{2}} \bar{b}_{k_{1}, k_{2}}
$$

as well as the Frobenius norm of \mathbf{A} by:

$$
\|\mathbf{A}\|_{\mathrm{F}}:=\langle\mathbf{A}, \mathbf{A}\rangle^{1 / 2}=\left(\sum_{k_{1}=0}^{N_{1}-1} \sum_{k_{2}=0}^{N_{2}-1}\left|a_{k_{1}, k_{2}}\right|^{2}\right)^{1 / 2}
$$

Lemma 4.71 For given $N_{1}, N_{2} \in \mathbb{N} \backslash\{1\}$, the set of exponential matrices:

$$
\mathbf{E}_{m_{1}, m_{2}}:=\left(w_{N_{1}}^{-k_{1} m_{1}} w_{N_{2}}^{-k_{2} m_{2}}\right)_{k_{1}, k_{2}=0}^{N_{1}-1, N_{2}-1}
$$

forms an orthogonal basis of $\mathbb{C}^{N_{1} \times N_{2}}$, where $\left\|\mathbf{E}_{m_{1}, m_{2}}\right\|_{\mathrm{F}}=\sqrt{N_{1} N_{2}}$ for all $m_{j} \in$ $I_{N_{j}}$ and $j=1,2$. Any matrix $\mathbf{A} \in \mathbb{C}^{N_{1} \times N_{2}}$ can be represented in the form:

$$
\mathbf{A}=\frac{1}{N_{1} N_{2}} \sum_{m_{1}=0}^{N_{1}-1} \sum_{m_{2}=0}^{N_{2}-1}\left\langle\mathbf{A}, \mathbf{E}_{m_{1}, m_{2}}\right\rangle \mathbf{E}_{m_{1}, m_{2}}
$$

and we have

$$
\hat{\mathbf{A}}=\left(\left\langle\mathbf{A}, \mathbf{E}_{m_{1}, m_{2}}\right\rangle\right)_{m_{1}, m_{2}=0}^{N_{1}-1, N_{2}-1}
$$

Proof From Lemma 4.66, it follows that for $p_{j} \in I_{N_{j}}, j=1,2$:

$$
\begin{aligned}
& \left\langle\mathbf{E}_{m_{1}, m_{2}}, \mathbf{E}_{p_{1}, p_{2}}\right\rangle=\sum_{k_{1}=0}^{N_{1}-1} \sum_{k_{2}=0}^{N_{2}-1} w_{N_{1}}^{k_{1}\left(p_{1}-m_{1}\right)} w_{N_{2}}^{k_{2}\left(p_{2}-m_{2}\right)} \\
& =N_{1} N_{2} \delta_{\left(m_{1}-p_{1}\right) \bmod N_{1}} \delta_{\left(m_{2}-p_{2}\right) \bmod N_{2}}= \begin{cases}N_{1} N_{2} & \left(m_{1}, m_{2}\right)=\left(p_{1}, p_{2}\right), \\
0 & \left(m_{1}, m_{2}\right) \neq\left(p_{1}, p_{2}\right)\end{cases}
\end{aligned}
$$

Further, we see that $\left\|\mathbf{E}_{m_{1}, m_{2}}\right\|_{\mathrm{F}}=\sqrt{N_{1} N_{2}}$. Since $\operatorname{dim} \mathbb{C}^{N_{1} \times N_{2}}=N_{1} N_{2}$, the set of the $N_{1} N_{2}$ exponential matrices forms an orthogonal basis of $\mathbb{C}^{N_{1} \times N_{2}}$.

In addition, we introduce the cyclic convolution:

$$
\mathbf{A} * \mathbf{B}:=\left(\sum_{k_{1}=0}^{N_{1}-1} \sum_{k_{2}=0}^{N_{2}-1} a_{k_{1}, k_{2}} b_{\left(m_{1}-k_{1}\right) \bmod N_{1},\left(m_{2}-k_{2}\right) \bmod N_{2}}\right)_{m_{1}, m_{2}=0}^{N_{1}-1, N_{2}-1}
$$

and the entrywise product:

$$
\mathbf{A} \circ \mathbf{B}:=\left(a_{k_{1}, k_{2}} b_{k_{1}, k_{2}}\right)_{k_{1}, k_{2}=0}^{N_{1}-1, N_{2}-1}
$$

In the case $N_{1}=N_{2}=N$, the cyclic convolution in $\mathbb{C}^{N \times N}$ is a commutative, associative, and distributive operation with the unity $\left(\delta_{k_{1} \bmod N} \delta_{k_{2} \bmod N}\right)_{k_{1}, k_{2}=0}^{N-1}$.
Remark 4.72 The cyclic convolution is of great importance for digital image filtering. Assume that $\mathbf{A}=\left(a_{k_{1}, k_{2}}\right)_{k_{1}, k_{2}=0}^{N_{1}-1, N_{2}-1}$ is a given grayscale image. The matrix

$$
\mathbf{G}=\left(g_{k_{1}, k_{2}}\right)_{k_{1}, k_{2}=0}^{N_{1}-1, N_{2}-1} \text { with: }
$$

$$
g_{k_{1}, k_{2}}:= \begin{cases}\frac{1}{4} & \left(k_{1}, k_{2}\right)=(0,0) \\ \frac{1}{8} & \left.\left(k_{1}, k_{2}\right) \in\left\{\left(N_{1} \pm 1\right) \bmod N_{1}, 0\right),\left(0,\left(N_{2} \pm 1\right) \bmod N_{2}\right)\right\} \\ \frac{1}{16} & \left(k_{1}, k_{2}\right)=\left(\left(N_{1} \pm 1\right) \bmod N_{1},\left(N_{2} \pm 1\right) \bmod N_{2}\right) \\ 0 & \text { otherwise }\end{cases}
$$

is called discrete Gaussian filter. Then, $\mathbf{A} * \mathbf{G}$ is the filtered image. Gaussian filtering is used to blur images and to remove noise or details. The matrix $\mathbf{L}=$ $\left(\ell_{k_{1}, k_{2}}\right)_{k_{1}, k_{2}=0}^{N_{1}-1, N_{2}-1}$ with:

$$
\ell_{k_{1}, k_{2}}:= \begin{cases}4 & \left(k_{1}, k_{2}\right)=(0,0) \\ -2 & \left.\left(k_{1}, k_{2}\right) \in\left\{\left(N_{1} \pm 1\right) \bmod N_{1}, 0\right),\left(0,\left(N_{2} \pm 1\right) \bmod N_{2}\right)\right\} \\ 1 & \left(k_{1}, k_{2}\right)=\left(\left(N_{1} \pm 1\right) \bmod N_{1},\left(N_{2} \pm 1\right) \bmod N_{2}\right) \\ 0 & \text { otherwise }\end{cases}
$$

is called discrete Laplacian filter. Then, $\mathbf{A} * \mathbf{L}$ is the filtered image. Laplacian filtering distinguishes that regions of \mathbf{A} with rapid intensity change and can be used for edge detection.

The properties of $\operatorname{DFT}\left(N_{1} \times N_{2}\right)$ are immediate generalizations of the properties of one-dimensional DFT, see Theorem 3.26.

Theorem 4.73 (Properties of Two-Dimensional DFT $\left(N_{1} \times N_{2}\right)$) The $\operatorname{DFT}\left(N_{1} \times\right.$ N_{2}) possesses the following properties:

1. Linearity: For all $\mathbf{A}, \mathbf{B} \in \mathbb{C}^{N_{1} \times N_{2}}$ and $\alpha \in \mathbb{C}$, we have

$$
(\mathbf{A}+\mathbf{B})^{\wedge}=\hat{\mathbf{A}}+\hat{\mathbf{B}}, \quad(\alpha \mathbf{A})^{\wedge}=\alpha \hat{\mathbf{A}} .
$$

2. Inversion: For all $\mathbf{A} \in \mathbb{C}^{N_{1} \times N_{2}}$, we have

$$
\mathbf{A}=\mathbf{F}_{N_{1}}^{-1} \hat{\mathbf{A}} \mathbf{F}_{N_{2}}^{-1}=\frac{1}{N_{1} N_{2}} \overline{\mathbf{F}}_{N_{1}} \hat{\mathbf{A}} \overline{\mathbf{F}}_{N_{2}}=\frac{1}{N_{1} N_{2}} \mathbf{J}_{N_{1}}^{\prime} \mathbf{F}_{N_{1}} \hat{\mathbf{A}} \mathbf{F}_{N_{2}} \mathbf{J}_{N_{2}}^{\prime} .
$$

3. Flipping property: For all $\mathbf{A} \in \mathbb{C}^{N_{1} \times N_{2}}$, we have

$$
\left(\mathbf{J}_{N_{1}}^{\prime} \mathbf{A} \mathbf{J}_{N_{2}}^{\prime}\right)^{\wedge}=\mathbf{J}_{N_{1}}^{\prime} \hat{\mathbf{A}} \mathbf{J}_{N_{2}}^{\prime}, \quad(\overline{\mathbf{A}})^{\wedge}=\mathbf{J}_{N_{1}}^{\prime} \overline{\hat{\mathbf{A}}} \mathbf{J}_{N_{2}}^{\prime},
$$

where $\mathbf{J}_{N_{j}}^{\prime}$ are the flip matrices. Note that

$$
\begin{aligned}
& \mathbf{J}_{N_{1}}^{\prime} \mathbf{A} \mathbf{J}_{N_{2}}^{\prime}=\left(a_{\left(N_{1}-k_{1}\right) \bmod N_{1},\left(N_{2}-k_{2}\right) \bmod N_{2}}\right)_{k_{1}, k_{2}=0}^{N_{1}-1, N_{2}-1} \\
& \mathbf{J}_{N_{1}}^{\prime} \overline{\hat{\mathbf{A}}} \mathbf{J}_{N_{2}}^{\prime}=\left(\overline{\hat{a}}_{\left(N_{1}-n_{1}\right) \bmod N_{1},\left(N_{2}-n_{2}\right) \bmod N_{2}}\right)_{n_{1}, n_{2}=0}^{N_{1}-1, N_{2}-1}
\end{aligned}
$$

4. Shifting in time and frequency domain: For all $\mathbf{A} \in \mathbb{C}^{N_{1} \times N_{2}}$ and fixed $s_{j} \in I_{N_{j}}$, $j=1$, 2, we have

$$
\left(\mathbf{V}_{N_{1}}^{s_{1}} \mathbf{A} \mathbf{V}_{N_{2}}^{s_{2}}\right)^{\wedge}=\mathbf{M}_{N_{1}}^{s_{1}} \hat{\mathbf{A}} \mathbf{M}_{N_{2}}^{s_{2}}, \quad\left(\mathbf{M}_{N_{1}}^{-s_{1}} \mathbf{A} \mathbf{M}_{N_{2}}^{-s_{2}}\right)^{\wedge}=\mathbf{V}_{N_{1}}^{s_{1}} \hat{\mathbf{A}} \mathbf{V}_{N_{2}}^{s_{2}},
$$

where $\mathbf{V}_{N_{j}}$ are forward-shift matrices and $\mathbf{M}_{N_{j}}$ are modulation matrices. Note that

$$
\begin{aligned}
\mathbf{V}_{N_{1}}^{s_{1}} \mathbf{A} \mathbf{V}_{N_{2}}^{s_{2}} & =\left(a_{\left(k_{1}-s_{1}\right) \bmod N_{1},\left(k_{2}-s_{2}\right) \bmod N_{2}}\right)_{k_{1}, k_{2}=0}^{N_{1}-1, N_{2}-1} \\
\mathbf{M}_{N_{1}}^{s_{1}} \hat{\mathbf{A}} \mathbf{M}_{N_{2}}^{s_{2}} & =\left(w_{N_{1}}^{s_{1} n_{1}} w_{N_{2}}^{s_{2} n_{2}} \hat{a}_{n_{1}, n_{2}}\right)_{n_{1}, n_{2}=0}^{N_{1}-1, N_{2}-1}
\end{aligned}
$$

5. Cyclic convolution in time and frequency domain: For all $\mathbf{A}, \mathbf{B} \in \mathbb{C}^{N_{1} \times N_{2}}$, we have

$$
(\mathbf{A} * \mathbf{B})^{\wedge}=\hat{\mathbf{A}} \circ \hat{\mathbf{B}}, \quad N_{1} N_{2}(\mathbf{A} \circ \mathbf{B})^{\wedge}=\hat{\mathbf{A}} * \hat{\mathbf{B}}
$$

6. Parseval equality: For all $\mathbf{A}, \mathbf{B} \in \mathbb{C}^{N_{1} \times N_{2}}$, we have

$$
\langle\hat{\mathbf{A}}, \hat{\mathbf{B}}\rangle=N_{1} N_{2}\langle\mathbf{A}, \mathbf{B}\rangle
$$

such that:

$$
\|\hat{\mathbf{A}}\|_{\mathrm{F}}=\sqrt{N_{1} N_{2}}\|\mathbf{A}\|_{\mathrm{F}} .
$$

Proof

1. The linearity follows immediately from the definition of $\operatorname{DFT}\left(N_{1} \times N_{2}\right)$.
2. By (3.31) and (3.34), we obtain the inversion property.
3. By (3.31) and (3.34), we have $\mathbf{F}_{N_{j}} \mathbf{J}_{N_{j}}^{\prime}=\mathbf{J}_{N_{j}}^{\prime} \mathbf{F}_{N_{j}}=\overline{\mathbf{F}}_{N_{j}}$ for $j=1,2$ and hence:

$$
\begin{aligned}
\left(\mathbf{J}_{N_{1}}^{\prime} \mathbf{A} \mathbf{J}_{N_{2}}^{\prime}\right)^{\wedge} & =\mathbf{F}_{N_{1}} \mathbf{J}_{N_{1}}^{\prime} \mathbf{A} \mathbf{J}_{N_{2}}^{\prime} \mathbf{F}_{N_{2}} \\
& =\mathbf{J}_{N_{1}}^{\prime} \mathbf{F}_{N_{1}} \mathbf{A} \mathbf{F}_{N_{2}} \mathbf{J}_{N_{2}}^{\prime}=\mathbf{J}_{N_{1}}^{\prime} \hat{\mathbf{A}} \mathbf{J}_{N_{2}}^{\prime}
\end{aligned}
$$

Analogously, we receive that

$$
(\overline{\mathbf{A}})^{\wedge}=\mathbf{F}_{N_{1}} \overline{\mathbf{A}} \mathbf{F}_{N_{2}}=\overline{\overline{\mathbf{F}}_{N_{1}} \mathbf{A} \overline{\mathbf{F}}_{N_{2}}=\overline{\mathbf{J}_{N_{1}}^{\prime} \mathbf{F}_{N_{1}} \mathbf{A} \mathbf{F}_{N_{2}} \mathbf{J}_{N_{2}}^{\prime}}=\mathbf{J}_{N_{1}}^{\prime} \overline{\hat{\mathbf{A}}} \mathbf{J}_{N_{2}}^{\prime}}
$$

4. From (3.43) and (3.44), it follows that $\mathbf{F}_{N_{j}} \mathbf{V}_{N_{j}}^{s_{j}}=\mathbf{M}_{N_{j}}^{s_{j}} \mathbf{F}_{N_{j}}$ and $\mathbf{V}_{N_{j}}^{s_{j}} \mathbf{F}_{N_{j}}=$ $\mathbf{F}_{N_{j}} \mathbf{M}_{N_{j}}^{-s_{j}}$ and hence:

$$
\begin{aligned}
\left(\mathbf{V}_{N_{1}}^{s_{1}} \mathbf{A} \mathbf{V}_{N_{2}}^{s_{2}}\right)^{\wedge} & =\mathbf{F}_{N_{1}} \mathbf{V}_{N_{1}}^{s_{1}} \mathbf{A} \mathbf{V}_{N_{2}}^{s_{2}} \mathbf{F}_{N_{2}} \\
& =\mathbf{M}_{N_{1}}^{s_{1}} \mathbf{F}_{N_{1}} \mathbf{A} \mathbf{F}_{N_{2}} \mathbf{M}_{N_{2}}^{s_{2}}=\mathbf{M}_{N_{1}}^{s_{1}} \hat{\mathbf{A}} \mathbf{M}_{N_{2}}^{s_{2}}
\end{aligned}
$$

The transformed matrix of $\mathbf{M}_{N_{1}}^{-s_{1}} \mathbf{A} \mathbf{M}_{N_{2}}^{-s_{2}}$ can be similarly determined.
5. Let $\mathbf{C}=\left(c_{m_{1}, m_{2}}\right)_{m_{1}, m_{2}=0}^{N_{1}-1, N_{2}-1}=\mathbf{A} * \mathbf{B}$ be the cyclic convolution of the matrices $\mathbf{A}=\left(a_{k_{1}, k_{2}}\right)_{k_{1}, k_{2}=0}^{N_{1}-1, N_{2}-1}$ and $\mathbf{B}=\left(b_{k_{1}, k_{2}}\right)_{k_{1}, k_{2}=0}^{N_{1}-1, N_{2}-1}$ with the entries:

$$
c_{m_{1}, m_{2}}=\sum_{k_{1}=0}^{N_{1}-1} \sum_{k_{2}=0}^{N_{2}-1} a_{k_{1}, k_{2}} b_{\left(m_{1}-k_{1}\right) \bmod N_{1},\left(m_{2}-k_{2}\right) \bmod N_{2}}
$$

Then, we calculate the transformed matrix $\hat{\mathbf{C}}=\left(\hat{c}_{n_{1}, n_{2}}\right)_{n_{1}, n_{2}=0}^{N_{1}-1, N_{2}-1}$ by:

$$
\begin{aligned}
\hat{c}_{n_{1}, n_{2}} & =\sum_{m_{1}=0}^{N_{1}-1} \sum_{m_{2}=0}^{N_{2}-1}\left(\sum_{k_{1}=0}^{N_{1}-1} \sum_{k_{2}=0}^{N_{2}-1} a_{k_{1}, k_{2}} b_{\left(m_{1}-k_{1}\right) \bmod N_{1},\left(m_{2}-k_{2}\right) \bmod N_{2}}\right) w_{N_{1}}^{m_{1} n_{1}} w_{N_{2}}^{m_{2} n_{2}} \\
& =\left(\sum_{k_{1}=0}^{N_{1}-1} \sum_{k_{2}=0}^{N_{2}-1} a_{k_{1}, k_{2}} w_{N_{1}}^{k_{1} n_{1}} w_{N_{2}}^{k_{2} n_{2}}\right) \hat{\mathbf{b}}_{n_{1}, n_{2}}=\hat{\mathbf{a}}_{n_{1}, n_{2}} \hat{\mathbf{b}}_{n_{1}, n_{2}}
\end{aligned}
$$

The equation $N_{1} N_{2}(\mathbf{A} \circ \mathbf{B})^{\wedge}=\hat{\mathbf{A}} * \hat{\mathbf{B}}$ can be similarly shown.
6. The entries of the transformed matrices $\hat{\mathbf{A}}$ and $\hat{\mathbf{B}}$ read as follows:

$$
\hat{a}_{n_{1}, n_{2}}=\sum_{k_{1}=0}^{N_{1}-1} \sum_{k_{2}=0}^{N_{2}-1} a_{k_{1}, k_{2}} w_{N_{1}}^{k_{1} n_{1}} w_{N_{2}}^{k_{2} n_{2}}, \quad \hat{b}_{n_{1}, n_{2}}=\sum_{\ell_{1}=0}^{N_{1}-1} \sum_{\ell_{2}=0}^{N_{2}-1} b_{\ell_{1}, \ell_{2}} w_{N_{1}}^{\ell_{1} n_{1}} w_{N_{2}}^{\ell_{2} n_{2}} .
$$

Applying Lemma 4.66, we obtain

$$
\begin{aligned}
\langle\hat{\mathbf{A}}, \hat{\mathbf{B}}\rangle & =\sum_{n_{1}=0}^{N_{1}-1} \sum_{n_{2}=0}^{N_{2}-1} \hat{a}_{n_{1}, n_{2}} \overline{\hat{b}}_{n_{1}, n_{2}} \\
& =\sum_{k_{1}=0}^{N_{1}-1} \sum_{k_{2}=0}^{N_{2}-1} \sum_{\ell_{1}=0}^{N_{1}-1} \sum_{\ell_{2}=0}^{N_{2}-1} a_{k_{1}, k_{2}} \bar{b}_{\ell_{1}, \ell_{2}}\left(\sum_{n_{1}=0}^{N_{1}-1} \sum_{n_{2}=0}^{N_{2}-1} w_{N_{1}}^{\left(k_{1}-\ell_{1}\right) n_{1}} w_{N_{2}}^{\left(k_{2}-\ell_{2}\right) n_{2}}\right) \\
& =N_{1} N_{2} \sum_{k_{1}=0}^{N_{1}-1} \sum_{k_{2}=0}^{N_{2}-1} a_{k_{1}, k_{2}} \bar{b}_{k_{1}, k_{2}}=N_{1} N_{2}\langle\mathbf{A}, \mathbf{B}\rangle
\end{aligned}
$$

Now, we analyze the symmetry properties of $\operatorname{DFT}\left(N_{1} \times N_{2}\right)$. A matrix $\mathbf{A}=$ $\left(a_{k_{1}, k_{2}}\right)_{k_{1}, k_{2}=0}^{N_{1}-1, N_{2}-1}$ is called even, if $\mathbf{A}=\mathbf{J}_{N_{1}}^{\prime} \mathbf{A} \mathbf{J}_{N_{2}}^{\prime}$, i.e., for all $k_{j} \in I_{N_{j}}, j=1,2$:

$$
a_{k_{1}, k_{2}}=a_{\left(N_{1}-k_{1}\right) \bmod N_{1},\left(N_{2}-k_{2}\right) \bmod N_{2}}
$$

A matrix \mathbf{A} is called $o d d$, if $\mathbf{A}=-\mathbf{J}_{N_{1}}^{\prime} \mathbf{A} \mathbf{J}_{N_{2}}^{\prime}$, i.e., for all $k_{j} \in I_{N_{j}}, j=1,2$:

$$
a_{k_{1}, k_{2}}=-a_{\left(N_{1}-k_{1}\right) \bmod N_{1},\left(N_{2}-k_{2}\right) \bmod N_{2} .}
$$

Corollary 4.74 If $\mathbf{A} \in \mathbb{R}^{N_{1} \times N_{2}}$ is real, then $\hat{\mathbf{A}}$ has the symmetry property $\overline{\hat{\mathbf{A}}}=$ $\mathbf{J}_{N_{1}}^{\prime} \hat{\mathbf{A}} \mathbf{J}_{N_{2}}^{\prime}$, i.e., for all $n_{j} \in I_{N_{j}}, j=1,2$:

$$
\overline{\hat{a}}_{n_{1}, n_{2}}=\hat{a}_{\left(N_{1}-n_{1}\right) \bmod N_{1},\left(N_{2}-n_{2}\right) \bmod N_{2}}
$$

In other words, Re $\hat{\mathbf{A}}$ is even and $\operatorname{Im} \hat{\mathbf{A}}$ is odd.
Proof Using $\overline{\mathbf{A}}=\mathbf{A}$ and the flipping property of Theorem 4.73, we obtain

$$
\overline{\hat{\mathbf{A}}}=\mathbf{J}_{N_{1}}^{\prime} \hat{\mathbf{A}} \mathbf{J}_{N_{2}}^{\prime}
$$

From $\hat{\mathbf{A}}=\operatorname{Re} \hat{\mathbf{A}}+\mathrm{i} \operatorname{Im} \hat{\mathbf{A}}$, it follows that

$$
\operatorname{Re} \hat{\mathbf{A}}-\mathrm{i} \operatorname{Im} \hat{\mathbf{A}}=\mathbf{J}_{N_{1}}^{\prime}(\operatorname{Re} \hat{\mathbf{A}}) \mathbf{J}_{N_{2}}^{\prime}+\mathrm{i} \mathbf{J}_{N_{1}}^{\prime}(\operatorname{Im} \hat{\mathbf{A}}) \mathbf{J}_{N_{2}}^{\prime}
$$

that is, $\operatorname{Re} \hat{\mathbf{A}}=\mathbf{J}_{N_{1}}^{\prime}(\operatorname{Re} \hat{\mathbf{A}}) \mathbf{J}_{N_{2}}^{\prime}$ and $\operatorname{Im} \hat{\mathbf{A}}=-\mathbf{J}_{N_{1}}^{\prime}(\operatorname{Im} \hat{\mathbf{A}}) \mathbf{J}_{N_{2}}^{\prime}$.
Corollary 4.75 If $\mathbf{A} \in \mathbb{C}^{N_{1} \times N_{2}}$ is even/odd, then $\hat{\mathbf{A}}$ is even/odd.
If $\mathbf{A} \in \mathbb{R}^{N_{1} \times N_{2}}$ is even, then $\hat{\mathbf{A}}=\operatorname{Re} \hat{\mathbf{A}}$ is even. If $\mathbf{A} \in \mathbb{R}^{N_{1} \times N_{2}}$ is odd, then $\hat{\mathbf{A}}=\mathrm{i} \operatorname{Im} \hat{\mathbf{A}}$ is odd.

Proof From $\mathbf{A}= \pm \mathbf{J}_{N_{1}}^{\prime} \mathbf{A} \mathbf{J}_{N_{2}}^{\prime}$ and (3.34), it follows that

$$
\hat{\mathbf{A}}= \pm \mathbf{F}_{N_{1}} \mathbf{J}_{N_{1}}^{\prime} \mathbf{A} \mathbf{J}_{N_{2}}^{\prime} \mathbf{F}_{N_{2}}= \pm \mathbf{J}_{N_{1}}^{\prime} \mathbf{F}_{N_{1}} \mathbf{A} \mathbf{F}_{N_{2}} \mathbf{J}_{N_{2}}^{\prime}= \pm \mathbf{J}_{N_{1}}^{\prime} \hat{\mathbf{A}} \mathbf{J}_{N_{2}}^{\prime}
$$

For even $\mathbf{A} \in \mathbb{R}^{N_{1} \times N_{2}}$, we obtain by Corollary 4.74 that $\hat{\mathbf{A}}=\mathbf{J}_{N_{1}}^{\prime} \hat{\mathbf{A}} \mathbf{J}_{N_{2}}^{\prime}$, i.e., $\hat{\mathbf{A}} \in$ $\mathbb{R}^{N_{1} \times N_{2}}$ is even. Analogously, we can show the assertion for odd $\mathbf{A} \in \mathbb{R}^{N_{1} \times N_{2}}$.

Example 4.76 For fixed $s_{j} \in I_{N_{j}}, j=1,2$, we consider the real even matrix:

$$
\mathbf{A}=\left(\cos 2 \pi\left(\frac{s_{1} k_{1}}{N_{1}}+\frac{s_{2} k_{2}}{N_{2}}\right)\right)_{k_{1}, k_{2}=0}^{N_{1}-1, N_{2}-1}
$$

Using Example 4.69 and Euler's formula $\mathrm{e}^{\mathrm{i} x}=\cos x+\mathrm{i} \sin x$, we obtain for $\mathbf{A}=$ $\left(\operatorname{Re}\left(w_{N_{1}}^{-s_{1} k_{1}} w_{N_{2}}^{-s_{2} k_{2}}\right)\right)_{k_{1}, k_{2}=0}^{N_{1}-1, N_{2}-1}$ the real even transformed matrix:
$\hat{\mathbf{A}}=\frac{N_{1} N_{2}}{2}\left(\delta_{\left(n_{1}-s_{1}\right) \bmod N_{1}} \delta_{\left(n_{2}-s_{2}\right) \bmod N_{2}}+\delta_{\left(n_{1}+s_{1}\right) \bmod N_{1}} \delta_{\left(n_{2}+s_{2}\right) \bmod N_{2}}\right)_{n_{1}, n_{2}=0}^{N_{1}-1, N_{2}-1}$.
Analogously, the real odd matrix:

$$
\mathbf{B}=\left(\sin 2 \pi\left(\frac{s_{1} k_{1}}{N_{1}}+\frac{s_{2} k_{2}}{N_{2}}\right)\right)_{k_{1}, k_{2}=0}^{N_{1}-1, N_{2}-1}
$$

possesses the transformed matrix:
$\hat{\mathbf{B}}=\frac{N_{1} N_{2}}{2 \mathrm{i}}\left(\delta_{\left(n_{1}-s_{1}\right) \bmod N_{1}} \delta_{\left(n_{2}-s_{2}\right) \bmod N_{2}}-\delta_{\left(n_{1}+s_{1}\right) \bmod N_{1}} \delta_{\left(n_{2}+s_{2}\right) \bmod N_{2}}\right)_{n_{1}, n_{2}=0}^{N_{1}-1, N_{2}-1}$
which is imaginary and odd.
Finally, we describe two simple methods for the computation of the twodimensional DFT via one-dimensional transforms. The first method reads as follows. If $\mathbf{A} \in \mathbb{C}^{N_{1} \times N_{2}}$ has rank 2 and can be decomposed in the form:

$$
\mathbf{A}=\mathbf{b}_{1} \mathbf{c}_{1}^{\top}+\mathbf{b}_{2} \mathbf{c}_{2}^{\top}
$$

with $\mathbf{b}_{\ell} \in \mathbb{C}^{N_{1}}$ and $\mathbf{c}_{\ell} \in \mathbb{C}^{N_{2}}$ for $\ell=1,2$, then by (4.53) and the linearity of $\operatorname{DFT}\left(N_{1} \times N_{2}\right)$ the transformed matrix is equal to:

$$
\hat{\mathbf{A}}=\hat{\mathbf{b}}_{1} \hat{\mathbf{c}}_{1}^{\top}+\hat{\mathbf{b}}_{2} \hat{\mathbf{c}}_{2}^{\top},
$$

where $\hat{\mathbf{b}}_{\ell}=\mathbf{F}_{N_{1}} \mathbf{b}_{\ell}$ and $\hat{\mathbf{c}}_{\ell}=\mathbf{F}_{N_{2}} \mathbf{c}_{\ell}$ for $\ell=1,2$.
In the second method, we reshape a matrix $\mathbf{A}=\left(a_{k_{1}, k_{2}}\right)_{k_{1}, k_{2}=0}^{N_{1}-1, N_{2}-1} \in \mathbb{C}^{N_{1} \times N_{2}}$ into a vector $\mathbf{a}=\left(a_{k}\right)_{k=0}^{N_{1} N_{2}-1} \in \mathbb{C}^{N_{1} N_{2}}$ by vectorization vec : $\mathbb{C}^{N_{1} \times N_{2}} \rightarrow \mathbb{C}^{N_{1} N_{2}}$
by $a_{k_{1}+N_{1} k_{2}}:=a_{k_{1}, k_{2}}$ for $k_{j} \in I_{N_{j}}, j=1,2$. Obviously, vec : $\mathbb{C}^{N_{1} \times N_{2}} \rightarrow \mathbb{C}^{N_{1} N_{2}}$ is a linear transform which maps $\mathbb{C}^{N_{1} \times N_{2}}$ one-to-one onto $\mathbb{C}^{N_{1} N_{2}}$. Hence, vec is invertible and its inverse map reads $\operatorname{vec}^{-1}\left(a_{k}\right)_{k=0}^{N_{1} N_{2}-1}=\left(a_{k_{1}, k_{2}}\right)_{k_{1}, k_{2}=0}^{N_{1}-1, N_{2}-1}$ with $k_{1}:=k \bmod N_{1}$ and $k_{2}:=\left(k-k_{1}\right) / N_{1}$. For $N_{1}=N_{2}=2$, we have

$$
\begin{aligned}
& \operatorname{vec}\left(\begin{array}{ll}
a_{0,0} & a_{0,1} \\
a_{1,0} & a_{1,1}
\end{array}\right)=\left(\begin{array}{lll}
a_{0,0} & a_{1,0} & a_{0,1}
\end{array} a_{1,1}\right)^{\top}, \\
& \operatorname{vec}^{-1}\left(\begin{array}{llll}
a_{0} & a_{1} & a_{2} & a_{3}
\end{array}\right)^{\top}=\left(\begin{array}{ll}
a_{0} & a_{2} \\
a_{1} & a_{3}
\end{array}\right) .
\end{aligned}
$$

By Lemma 3.44, we obtain

$$
\hat{\mathbf{A}}=\operatorname{vec}^{-1}\left(\left(\mathbf{F}_{N_{2}} \otimes \mathbf{F}_{N_{1}}\right) \operatorname{vec} \mathbf{A}\right) .
$$

Unfortunately, the one-dimensional transform with transform matrix $\mathbf{F}_{N_{2}} \otimes \mathbf{F}_{N_{1}}$ is not a one-dimensional DFT. However, applying Theorem 3.42, we can write

$$
\mathbf{F}_{N_{2}} \otimes \mathbf{F}_{N_{1}}=\left(\mathbf{F}_{N_{2}} \otimes \mathbf{I}_{N_{1}}\right)\left(\mathbf{I}_{N_{2}} \otimes \mathbf{F}_{N_{1}}\right) .
$$

This factorization leads to the row-column method, see Sect. 5.3.5.

4.4.3 Higher-Dimensional Discrete Fourier Transforms

Assume that $d \in \mathbb{N} \backslash\{1,2\}$ and that $N_{j} \in \mathbb{N} \backslash\{1\}$ for $j=1, \ldots, d$ are given. For simplification, we shall use multi-index notations. We introduce the vector $\mathbf{N}:=$ $\left(N_{j}\right)_{j=1}^{d}$, the product $P:=N_{1} \ldots N_{d}$, and the d-dimensional index set $I_{\mathbf{N}}:=I_{N_{1}} \times$ $\cdots \times I_{N_{d}}$ with $I_{N_{j}}=\left\{0, \ldots, N_{j}-1\right\}$. For $\mathbf{k}=\left(k_{j}\right)_{j=1}^{d} \in \mathbb{Z}^{d}$, the multiplication $\mathbf{k} \circ$ $\mathbf{N}:=\left(k_{j} N_{j}\right)_{j=1}^{d}$ and the division $\mathbf{k} / \mathbf{N}:=\left(k_{j} / N_{j}\right)_{j=1}^{d}$ are performed elementwise. Further, we set

$$
\mathbf{k} \bmod \mathbf{N}:=\left(k_{j} \bmod N_{j}\right)_{j=1}^{d} .
$$

Let $\mathbb{C}^{N_{1} \times \ldots \times N_{d}}$ denote the set of all d-dimensional arrays $\mathbf{A}=\left(a_{\mathbf{k}}\right)_{\mathbf{k} \in I_{\mathbf{N}}}$ of size $N_{1} \times \ldots \times N_{d}$ with $a_{\mathbf{k}} \in \mathbb{C}$. Note that two-dimensional arrays are matrices.

The linear map from $\mathbb{C}^{N_{1} \times \ldots \times N_{d}}$ into itself, which transforms any d-dimensional array $\mathbf{A}=\left(a_{\mathbf{k}}\right)_{\mathbf{k} \in I_{\mathbf{N}}}$ to an array $\hat{\mathbf{A}}=\left(\hat{a}_{\mathbf{n}}\right)_{\mathbf{n} \in I_{\mathbf{N}}}$ with:

$$
\begin{equation*}
\hat{a}_{\mathbf{n}}:=\sum_{k_{1}=0}^{N_{1}-1} \ldots \sum_{k_{d}=0}^{N_{d}-1} a_{\mathbf{k}} w_{N_{1}}^{k_{1} n_{1}} \ldots w_{N_{d}}^{k_{d} n_{d}}=\sum_{\mathbf{k} \in I_{\mathbf{N}}} a_{\mathbf{k}} \mathrm{e}^{-2 \pi \mathbf{i} \mathbf{n} \cdot(\mathbf{k} / \mathbf{N})} \tag{4.54}
\end{equation*}
$$

is called d-dimensional discrete Fourier transform of size $N_{1} \times \ldots \times N_{d}$ and abbreviated by $\operatorname{DFT}\left(N_{1} \times \ldots \times N_{d}\right)$. If we form the entries (4.54) for all $\mathbf{n} \in \mathbb{Z}^{d}$, then we observe the periodicity of $\operatorname{DFT}\left(N_{1} \times \ldots \times N_{d}\right)$, namely for all $\mathbf{p} \in \mathbb{Z}^{d}$ and $\mathbf{m} \in I_{\mathrm{N}}$:

$$
\hat{a}_{\mathbf{m}}=\hat{a}_{\mathbf{m}+\mathbf{p} \circ \mathbf{N}}
$$

The inverse $\operatorname{DFT}\left(N_{1} \times \ldots \times N_{d}\right)$ maps each d-dimensional array $\mathbf{A}=\left(a_{\mathbf{n}}\right)_{\mathbf{n} \in I_{\mathbf{N}}}$ to an array $\check{\mathbf{A}}=\left(\check{a}_{\mathbf{k}}\right)_{\mathbf{k} \in I_{\mathbf{N}}}$ with:

$$
\check{a}_{\mathbf{k}}:=\frac{1}{P} \sum_{n_{1}=0}^{N_{1}-1} \ldots \sum_{n_{d}=0}^{N_{d}-1} \hat{a}_{\mathbf{n}} w_{N_{1}}^{-n_{1} k_{1}} \ldots w_{N_{d}}^{-n_{d} k_{d}}=\frac{1}{P} \sum_{\mathbf{n} \in I_{\mathbf{N}}} a_{\mathbf{n}} \mathrm{e}^{2 \pi \mathrm{i} \mathbf{n} \cdot(\mathbf{k} / \mathbf{N})}
$$

From Lemma 4.66, it follows that for all $\mathbf{m} \in \mathbb{Z}^{d}$:

$$
\sum_{\mathbf{k} \in I_{\mathbf{N}}} \mathrm{e}^{2 \pi \mathrm{i} \mathbf{m} \cdot(\mathbf{k} / \mathbf{N})}= \begin{cases}P & \mathbf{m} / \mathbf{N} \in \mathbb{Z}^{d} \\ 0 & \mathbf{m} / \mathbf{N} \notin \mathbb{Z}^{d}\end{cases}
$$

Hence, we obtain that for all $\mathbf{A} \in \mathbb{C}^{N_{1} \times \ldots \times N_{d}}$:

$$
\mathbf{A}=(\hat{\mathbf{A}})^{\wedge}=(\check{\mathbf{A}})^{\wedge} .
$$

As usually, we define entrywise the addition and the multiplication by a scalar in $\mathbb{C}^{N_{1} \times \ldots \times N_{d}}$. Further for d-dimensional arrays $\mathbf{A}=\left(a_{\mathbf{k}}\right)_{\mathbf{k} \in I_{\mathbf{N}}}$ and $\mathbf{B}=\left(b_{\mathbf{k}}\right)_{\mathbf{k} \in I_{\mathbf{N}}}$, we consider the inner product:

$$
\langle\mathbf{A}, \mathbf{B}\rangle:=\sum_{\mathbf{k} \in I_{\mathbf{N}}} a_{\mathbf{k}} \bar{b}_{\mathbf{k}}
$$

and the related norm:

$$
\|\mathbf{A}\|:=\langle\mathbf{A}, \mathbf{A}\rangle^{1 / 2}=\left(\sum_{\mathbf{k} \in I_{\mathbf{N}}}\left|a_{\mathbf{k}}\right|^{2}\right)^{1 / 2}
$$

Then, the set of exponential arrays:

$$
\mathbf{E}_{\mathbf{m}}:=\left(\mathrm{e}^{2 \pi \mathrm{i} \mathbf{m} \cdot(\mathbf{k} / \mathbf{N})}\right)_{\mathbf{k} \in I_{\mathbf{N}}}, \quad \mathbf{m} \in I_{\mathbf{N}}
$$

forms an orthogonal basis of $\mathbb{C}^{N_{1} \times \ldots \times N_{d}}$, where $\left\|\mathbf{E}_{\mathbf{m}}\right\|=\sqrt{P}$ for all $\mathbf{m} \in I_{\mathbf{N}}$. Any array $\mathbf{A} \in \mathbb{C}^{N_{1} \times \ldots \times N_{d}}$ can be represented in the form:

$$
\mathbf{A}=\frac{1}{P} \sum_{\mathbf{m} \in I_{\mathbf{N}}}\left\langle\mathbf{A}, \mathbf{E}_{\mathbf{m}}\right\rangle \mathbf{E}_{\mathbf{m}}
$$

Hence, $\hat{\mathbf{A}}$ is equal to the array:

$$
\left(\left\langle\mathbf{A}, \mathbf{E}_{\mathbf{m}}\right\rangle\right)_{\mathbf{m} \in I_{\mathbf{N}}}
$$

In addition, we introduce the cyclic convolution:

$$
\mathbf{A} * \mathbf{B}:=\left(\sum_{\mathbf{k} \in I_{\mathbf{N}}} a_{\mathbf{k}} b_{(\mathbf{m}-\mathbf{k}) \bmod \mathbf{N})_{\mathbf{m} \in I_{\mathbf{N}}}}\right.
$$

and the entrywise product:

$$
\mathbf{A} \circ \mathbf{B}:=\left(a_{\mathbf{k}} b_{\mathbf{k}}\right)_{\mathbf{m} \in I_{\mathbf{N}}}
$$

in $\mathbb{C}^{N_{1} \times \ldots \times N_{d}}$.
The properties of $\operatorname{DFT}\left(N_{1} \times \ldots \times N_{d}\right)$ are natural generalizations of Theorem 4.73.

Theorem 4.77 (Properties of d-Dimensional DFT $\left(N_{1} \times \ldots \times N_{d}\right)$) The $\mathrm{DFT}\left(N_{1} \times \ldots \times N_{d}\right)$ possesses the following properties:

1. Linearity: For all $\mathbf{A}, \mathbf{B} \in \mathbb{C}^{N_{1} \times \ldots \times N_{d}}$ and $\alpha \in \mathbb{C}$, we have

$$
(\mathbf{A}+\mathbf{B})^{\wedge}=\hat{\mathbf{A}}+\hat{\mathbf{B}}, \quad(\alpha \mathbf{A})^{\wedge}=\alpha \hat{\mathbf{A}} .
$$

2. Inversion: For all $\mathbf{A} \in \mathbb{C}^{N_{1} \times \ldots \times N_{d}}$, we have

$$
\mathbf{A}=(\hat{\mathbf{A}})^{\wedge}=(\check{\mathbf{A}})^{\wedge} .
$$

3. Flipping property: For all $\mathbf{A} \in \mathbb{C}^{N_{1} \times \ldots \times N_{d}}$, the $\operatorname{DFT}\left(N_{1} \times \ldots \times N_{d}\right)$ of the flipped array:

$$
\left(a_{(\mathbf{N}-\mathbf{k}) \bmod \mathbf{N}}\right)_{\mathbf{k} \in I_{\mathbf{N}}}
$$

is equal to:

$$
\left(\hat{a}_{(\mathbf{N}-\mathbf{n}) \bmod \mathbf{N}}\right)_{\mathbf{n} \in I_{\mathbf{N}}}
$$

The $\operatorname{DFT}\left(N_{1} \times \ldots \times N_{d}\right)$ of the conjugate complex array $\left(\bar{a}_{\mathbf{k}}\right)_{\mathbf{k} \in I_{\mathbf{N}}}$ is equal to:

$$
\left(\overline{\hat{a}}_{(\mathbf{N}-\mathbf{n}) \bmod \mathbf{N}}\right)_{\mathbf{n} \in I_{\mathbf{N}}}
$$

4. Shifting in time and frequency domain: For each $\mathbf{A} \in \mathbb{C}^{N_{1} \times \ldots \times N_{d}}$ and fixed $\mathbf{s} \in$ $I_{\mathbf{N}}$, the $\operatorname{DFT}\left(N_{1} \times \ldots \times N_{d}\right)$ of the shifted array:

$$
\left(a_{(\mathbf{k}-\mathbf{s}) \bmod \mathbf{N}}\right)_{\mathbf{k} \in I_{\mathbf{N}}}
$$

is equal to the modulated array:

$$
\mathbf{E}_{-\mathbf{s}} \circ \hat{\mathbf{A}}=\left(\mathrm{e}^{-2 \pi \mathrm{i} \mathbf{n} \cdot(\mathbf{s} / \mathbf{N})} \hat{a}_{\mathbf{n}}\right)_{\mathbf{n} \in I_{\mathbf{N}}}
$$

Further, the $\operatorname{DFT}\left(N_{1} \times \ldots \times N_{d}\right)$ of the modulated array:

$$
\mathbf{E}_{\mathbf{S}} \circ \mathbf{A}=\left(\mathrm{e}^{2 \pi \mathrm{i} \mathbf{k} \cdot(\mathbf{s} / \mathbf{N})} a_{\mathbf{k}}\right)_{\mathbf{k} \in I_{\mathbf{N}}}
$$

is equal to the shifted array:

$$
\left(\hat{a}_{(\mathbf{n}-\mathbf{s}) \bmod \mathbf{N}}\right)_{\mathbf{n} \in I_{\mathbf{N}}} .
$$

5. Cyclic convolution in time and frequency domain: For all $\mathbf{A}, \mathbf{B} \in \mathbb{C}^{N_{1} \times \ldots \times N_{d}}$, we have

$$
(\mathbf{A} * \mathbf{B})^{\wedge}=\hat{\mathbf{A}} \circ \hat{\mathbf{B}}, \quad P(\mathbf{A} \circ \mathbf{B})^{\wedge}=\hat{\mathbf{A}} * \hat{\mathbf{B}} .
$$

6. Parseval equality: For all $\mathbf{A}, \mathbf{B} \in \mathbb{C}^{N_{1} \times \ldots \times N_{d}}$, we have

$$
\langle\hat{\mathbf{A}}, \hat{\mathbf{B}}\rangle=P\langle\mathbf{A}, \mathbf{B}\rangle
$$

such that:

$$
\|\hat{\mathbf{A}}\|=\sqrt{P}\|\mathbf{A}\|
$$

The proof is similar to that of Theorem 4.73.
Now, we describe the symmetry properties of $\operatorname{DFT}\left(N_{1} \times \ldots \times N_{d}\right)$. An array $\mathbf{A}=\left(a_{\mathbf{k}}\right)_{\mathbf{k} \in I_{\mathbf{N}}} \in \mathbb{C}^{N_{1} \times \ldots \times N_{d}}$ is called even, if we have

$$
a_{\mathbf{k}}=a_{(\mathbf{N}-\mathbf{k}) \bmod \mathbf{N}}
$$

for all $\mathbf{k} \in I_{\mathbf{N}}$. Analogously, an array $\mathbf{A}=\left(a_{\mathbf{k}}\right)_{\mathbf{k} \in I_{\mathbf{N}}} \in \mathbb{C}^{N_{1} \times \ldots \times N_{d}}$ is called odd, if for all $\mathbf{k} \in I_{\mathbf{N}}$:

$$
a_{\mathbf{k}}=-a_{(\mathbf{N}-\mathbf{k}) \bmod \mathbf{N}}
$$

Corollary 4.78 If $\mathbf{A} \in \mathbb{R}^{N_{1} \times \ldots \times N_{d}}$ is a real array, then the entries of $\hat{\mathbf{A}}=\left(\hat{a}_{\mathbf{n}}\right)_{\mathbf{n} \in I_{\mathbf{N}}}$ possess the symmetry property:

$$
\overline{\hat{a}}_{\mathbf{n}}=\hat{a}_{(\mathbf{N}-\mathbf{n}) \bmod \mathbf{N}}, \quad \mathbf{n} \in I_{\mathbf{N}} .
$$

In other words, $\operatorname{Re} \hat{\mathbf{A}}$ is even and $\operatorname{Im} \hat{\mathbf{A}}$ is odd. If $\mathbf{A} \in \mathbb{C}^{N_{1} \times \ldots \times N_{d}}$ is even/odd, then $\hat{\mathbf{A}}$ is even/odd too.

This corollary can be similarly shown as Corollary 4.74.
As for the two-dimensional DFT, we can compute the d-dimensional DFT using only one-dimensional transforms. If the entries of the array $\mathbf{A} \in \mathbb{C}^{N_{1} \times \ldots \times N_{d}}$ can be factorized in the form:

$$
a_{\mathbf{k}}=b_{k_{1}} \ldots c_{k_{d}}, \quad \mathbf{k}=\left(k_{j}\right)_{j=1}^{d} \in I_{\mathbf{N}}
$$

then the entries of the transformed matrix $\hat{\mathbf{A}}$ read as follows:

$$
\hat{a}_{\mathbf{n}}=\hat{b}_{n_{1}} \ldots \hat{c}_{n_{d}}, \quad \mathbf{n}=\left(n_{j}\right)_{j=1}^{d} \in I_{\mathbf{N}}
$$

where $\left(\hat{b}_{n}\right)_{n=0}^{N_{1}-1}=\mathbf{F}_{N_{1}}\left(b_{k}\right)_{k=0}^{N_{1}-1}, \ldots,\left(\hat{c}_{n}\right)_{n=0}^{N_{d}-1}=\mathbf{F}_{N_{d}}\left(c_{k}\right)_{k=0}^{N_{d}-1}$ are onedimensional DFT's.

We can also reshape an array $\mathbf{A}=\left(a_{\mathbf{k}}\right)_{\mathbf{k} \in I_{\mathbf{N}}} \in \mathbb{C}^{N_{1} \times \ldots \times N_{d}}$ into a vector $\mathbf{a}=$ $\left(a_{k}\right)_{k=0}^{P-1} \in \mathbb{C}^{P}$ by vectorization vec : $\mathbb{C}^{N_{1} \times \ldots \times N_{d}} \rightarrow \mathbb{C}^{P}$ by:

$$
a_{k_{1}+N_{1} k_{2}+N_{1} N_{2} k_{3}+\ldots+N_{1} \ldots N_{d-1} k_{d}}:=a_{\mathbf{k}}, \quad \mathbf{k}=\left(k_{j}\right)_{j=1}^{d} \in I_{\mathbf{N}} .
$$

Obviously, vec : $\mathbb{C}^{N_{1} \times \ldots \times N_{d}} \rightarrow \mathbb{C}^{P}$ is a linear transform which maps $\mathbb{C}^{N_{1} \times \ldots \times N_{d}}$ one-to-one onto \mathbb{C}^{P}. Hence, vec is invertible and its inverse map reads $\operatorname{vec}^{-1}\left(a_{k}\right)_{k=0}^{P-1}=\left(a_{\mathbf{k}}\right)_{\mathbf{k} \in I_{\mathrm{N}}}$ with $k_{1}:=k \bmod N_{1}$ and

$$
k_{j}=\frac{k-k_{1} N_{1}-\ldots-k_{j-1} N_{1} \ldots N_{j-1}}{N_{1} \ldots N_{j-1}} \bmod N_{j}, \quad j=2, \ldots, d .
$$

By extension of Lemma 3.44, we obtain

$$
\hat{\mathbf{A}}=\operatorname{vec}^{-1}\left(\left(\mathbf{F}_{N_{d}} \otimes \ldots \otimes \mathbf{F}_{N_{1}}\right) \operatorname{vec} \mathbf{A}\right)
$$

Thus, the d-dimensional DFT is converted into a matrix-vector product with a P -by- P matrix. This matrix is however different from the Fourier matrix \mathbf{F}_{P}. The Kronecker product of Fourier matrices can be rewritten into a product of d matrices, where each of the matrix factors corresponds to a one-dimensional DFT that has to be applied to subvectors. This approach leads to the generalized row-column method in Sect. 5.3.5.

Chapter 5
 Fast Fourier Transforms

As shown in Chap. 3, any application of Fourier methods leads to the evaluation of a discrete Fourier transform of length $N(\mathrm{DFT}(N))$. Thus the efficient computation of $\operatorname{DFT}(N)$ is very important. Therefore this chapter treats fast Fourier transforms. A fast Fourier transform (FFT) is an algorithm for computing the $\operatorname{DFT}(N)$ which needs only a relatively low number of arithmetic operations.

In Sect. 5.1, we summarize the essential construction principles for fast algorithms. Section 5.2 deals with radix-2 FFTs, where N is a power of 2 . Here we show three different representations of these algorithms in order to give more insight into their structures. In Sect. 5.3, we derive some further FFTs. In particular, we consider the decomposition approach to reduce an $\operatorname{DFT}\left(N_{1} N_{2}\right)$ to $N_{1} \operatorname{DFT}\left(N_{2}\right)$ and $N_{2} \mathrm{DFT}\left(N_{1}\right)$. We also study the radix-4 FFT and the split-radix FFT. For prime N or arbitrary $N \in \mathbb{N}$, the Rader FFT and the Bluestein FFT are considered, being based on the representation of the DFT using cyclic convolutions.

The FFTs considerably reduce the computational cost for computing the DFT(N) from $2 N^{2}$ to $\mathscr{O}(N \log N)$ arithmetic operations. In Sect. 5.5 , we examine the numerical stability of the derived FFT. Note there exists no linear algorithm that can realize the $\operatorname{DFT}(N)$ with a smaller computational cost than $\mathscr{O}(N \log N)$, see [246]. Faster algorithms can be only derived, if some a priori information on the resulting vector are available. We will consider such approaches in Sect. 5.4.

5.1 Construction Principles of Fast Algorithms

One of the main reasons for the great importance of Fourier methods is the existence of fast algorithms for the implementation of DFT. Nowadays, the FFT is one of the most well-known and mostly applied fast algorithms. Many applications in mathematical physics, engineering, and signal processing were just not possible without FFT.

A frequently applied FFT is due to Cooley and Tukey [73]. Indeed an earlier fast algorithm by Good [138] used for statistical computations did not find further attention.

Around 1800, C.F. Gauss was very interested in astronomy. Using his least squares method, he has determined the orbit of the asteroid Ceres with great accuracy. Later he has fitted 12 equidistant data points for the position of the asteroid Pallas by a trigonometric polynomial. The solution of this interpolation problem leads to a DFT of length 12. In order to reduce arithmetical operations, Gauss has firstly decomposed the DFT of length 12 into DFT's of shorter lengths 3 and 4. This splitting process is the main idea of FFT.

Being interested in trigonometric interpolation problems, Runge [314] developed in 1903 fast methods for discrete sine transforms of certain lengths.

But only the development of the computer technology heavily enforced the development of fast algorithms. After deriving the Cooley-Tukey FFT in 1965, many further FFTs emerged being mostly based on similar strategies. We especially mention the Sande-Tukey FFT as another radix-2 FFT, the radix-4 FFT, and the split-radix FFT. While these FFT methods are only suited for length $N=$ 2^{t} or even $N=4^{t}$, other approaches employ cyclic convolutions and can be generalized to other lengths N. For the history of FFT, see [163] or [299, pp. 7783].

First we want to present five aspects being important for the evaluation and comparison of fast algorithms, namely computational cost, storage cost, numerical stability, suitability for parallel programming, and needed number of data rearrangements.

1. Computational Cost

The computational cost of an algorithm is determined by the number of floating point operations (flops), i.e., of single (real/complex) additions and (real/complex) multiplications to perform the algorithm. For the considered FFT we will separately give the number of required additions and multiplications.

Usually, one is only interested in the order of magnitude of the computational cost of an algorithm in dependence of the number of input values and uses the $\operatorname{big} \mathrm{O}$ notation. For two functions $f, g: \mathbb{N} \rightarrow \mathbb{R}$ with $f(N) \neq 0$ for all $N \in \mathbb{N}$, we write $g(N)=\mathscr{O}(f(N))$ for $N \rightarrow \infty$, if there exists a constant $c>0$ such that $|g(N) / f(N)| \leq c$ holds for all $N \in \mathbb{N}$. By

$$
\log _{a} N=\left(\log _{a} b\right)\left(\log _{b} N\right), \quad a, b>1
$$

we have

$$
\mathscr{O}\left(\log _{a} N\right)=\mathscr{O}\left(\log _{b} N\right)
$$

Therefore it is usual to write simply $\mathscr{O}(\log N)$ without fixing the base of the logarithm.
2. Storage Cost

While memory capacities got tremendously cheaper within the last years, it is desired that algorithms require only a memory capacity being in the same order as the size of input data. Therefore we prefer the so-called in-place algorithms, where the needed intermediate and final results can be stored by overwriting the input data. Clearly, these algorithms have to be carefully derived, since a later access to the input data or intermediate data is then impossible. Most algorithms that we consider in this chapter can be written as in-place algorithms.
3. Numerical Stability

Since the evaluations are performed in floating point arithmetic, rounding errors can accumulate essentially during a computation leading to an inaccurate result. In Sect. 5.5 we will show that the FFTs accumulate smaller rounding errors than the direct computation of the DFT using a matrix-vector multiplication.
4. Parallel Programming

In order to increase the speed of computation, it is of great interest to decompose the algorithm into independent subprocesses such that execution can be carried out simultaneously using multiprocessor systems. The results of these independent evaluations have to be combined afterwards upon completion.

The FFT has been shown to be suitable for parallel computing. One approach to efficiently implement the FFT and to represent the decomposition of the FFT into subprocesses is to use signal flow graphs, see Sect. 5.2.
5. Rearrangements of Data

The computation time of an algorithm mainly depends not only on the computational cost of the algorithm but also on the data structure as, e.g., the number and complexity of needed data rearrangements.

In practical applications the simplicity of the implementation of an algorithm plays an important role. Therefore FFTs with a simple and clear data structure are preferred to FFTs with slightly smaller computational cost but requiring more complex data arrangements.

Basic principles for the construction of fast algorithms are

- the application of recursions,
- the divide-and-conquer technique, and
- parallel programming.

All three principles are applied for the construction of FFTs.
Recursions can be used, if the computation of the final result can be decomposed into consecutive steps, where in the nth step only the intermediate results from the previous r steps are required. Optimally, we need only the information of one previous step to perform the next intermediate result such that an in-place processing is possible.

The divide-and-conquer technique is a suitable tool to reduce the execution time of an algorithm. The original problem is decomposed into several subproblems of smaller size but with the same structure. This decomposition is then iteratively applied to decrease the subproblems even further. Obviously, this technique is
closely related to the recursion approach. In order to apply the divide-and-conquer technique to construct FFTs a suitable indexing of the data is needed.

The FFTs can be described in different forms. We will especially consider the sum representation, the representation based on polynomials, and the matrix representation. The original derivation of the FFT by Cooley and Tukey [73] applied the sum representation of the $\operatorname{DFT}(N)$. For a vector $\mathbf{a}=\left(a_{j}\right)_{j=0}^{N-1} \in \mathbb{C}^{N}$ the DFT is given by $\hat{\mathbf{a}}=\left(\hat{a}_{k}\right)_{k=0}^{N-1} \in \mathbb{C}^{N}$ with the sum representation

$$
\begin{equation*}
\hat{a}_{k}:=\sum_{j=0}^{N-1} a_{j} w_{N}^{j k}, \quad k=0, \ldots, N-1, \quad w_{N}:=\mathrm{e}^{-2 \pi \mathrm{i} / N} \tag{5.1}
\end{equation*}
$$

Applying the divide-and-conquer technique, the FFT performs the above summation by iterative evaluation of partial sums.

Employing the polynomial representation of the FFT, we interpret the $\operatorname{DFT}(N)$ as evaluation of the polynomial

$$
a(z):=a_{0}+a_{1} z+\ldots+a_{N-1} z^{N-1} \in \mathbb{C}[z]
$$

at the N knots $w_{N}^{k}, k=0, \ldots, N-1$, i.e.,

$$
\begin{equation*}
\hat{a}_{k}:=a\left(w_{N}^{k}\right), \quad k=0, \ldots, N-1 . \tag{5.2}
\end{equation*}
$$

This approach to the DFT is connected with trigonometric interpolation. The FFT is now based on the fast polynomial evaluation by reducing it to the evaluation of polynomials of smaller degrees.

Besides the polynomial arithmetic, the matrix representation has been shown to be appropriate for representing fast DFT algorithms. Starting with the matrix representation of the DFT

$$
\begin{equation*}
\hat{\mathbf{a}}:=\mathbf{F}_{N} \mathbf{a} \tag{5.3}
\end{equation*}
$$

the Fourier matrix $\mathbf{F}_{N}:=\left(w_{N}^{j k}\right)_{j, k=0}^{N-1}$ is factorized into a product of sparse matrices. Then the FFT is performed by successive matrix-vector multiplications. This method requires essentially less arithmetical operations than a direct multiplication with the full matrix \mathbf{F}_{N}. The obtained algorithm is recursive, where at the nth step, only the intermediate vector obtained in the previous step is employed.

Beside the three possibilities to describe the FFTs, one tool to show the data structures of the algorithm and to simplify the programming is the signal flow graph. The signal flow graph is a directed graph whose vertices represent the intermediate results and whose edges illustrate the arithmetical operations. In this chapter, all signal flow graphs are composed of butterfly forms as presented in Fig.5.1.

The direction of evaluation in signal flow graphs is always from left to right. In particular, the factorization of the Fourier matrix into sparse matrices with at most

Fig. 5.1 Butterfly signal flow graph

two nonzero entries per row and per column can be simply transferred to a signal flow graph. For example, the matrix-vector multiplications

$$
\mathbf{F}_{2} \mathbf{a}=\left(\begin{array}{rr}
1 & 1 \\
1 & -1
\end{array}\right)\binom{a_{0}}{a_{1}}, \quad \operatorname{diag}(1, w) \mathbf{a}=\left(\begin{array}{rr}
1 & 0 \\
0 & w
\end{array}\right)\binom{a_{0}}{a_{1}}
$$

with fixed $w \in \mathbb{C}$ can be transferred to the signal flow graphs in Fig. 5.2.
As seen in Chap. 3, most applications use beside the DFT also the inverse DFT such that we need also a fast algorithm for the inverse transform. However, since

$$
\mathbf{F}_{N}^{-1}=\frac{1}{N} \mathbf{J}_{N}^{\prime} \mathbf{F}_{N}
$$

with the flip matrix $\mathbf{J}_{N}^{\prime}:=\left(\delta_{(j+k)} \bmod N\right)_{j, k=0}^{N-1}$ in Lemma 3.17, each fast algorithm for the $\operatorname{DFT}(N)$ also provides a fast algorithm for the inverse $\operatorname{DFT}(N)$, and we need not to consider this case separately.

5.2 Radix-2 FFTs

Radix-2 FFTs are based on the iterative divide-and-conquer technique for computing the $\operatorname{DFT}(N)$, if N is a power of 2 . The most well-known radix- 2 FFTs are the Cooley-Tukey FFT and the Sande-Tukey FFT [73]. These algorithms can be also adapted for parallel processing. The two radix- 2 FFTs only differ regarding the order of components of the input and output vector and the order of the multiplication with twiddle factors. As we will see from the corresponding factorization of the Fourier matrix into a product of sparse matrices, the one algorithm is derived from the other by using the transpose of the matrix product. In particular, the two algorithms possess the same computational costs. Therefore we also speak about variants of only one radix- 2 FFT.

We start with deriving the Sande-Tukey FFT using the sum representation. Then we develop the Cooley-Tukey FFT in polynomial form. Finally we show the close relation between the two algorithms by examining the corresponding factorization of the Fourier matrix. This representation will be also applied to derive an implementation that is suitable for parallel programming.

5.2.1 Sande-Tukey FFT in Summation Form

Assume that $N=2^{t}, t \in \mathbb{N} \backslash\{1\}$, is given. Then (5.1) implies

$$
\begin{align*}
\hat{a}_{k} & =\sum_{j=0}^{N / 2-1} a_{j} w_{N}^{j k}+\sum_{j=0}^{N / 2-1} a_{N / 2+j} w_{N}^{(N / 2+j) k} \\
& =\sum_{j=0}^{N / 2-1}\left(a_{j}+(-1)^{k} a_{N / 2+j}\right) w_{N}^{j k}, \quad k=0, \ldots, N-1 . \tag{5.4}
\end{align*}
$$

Considering the components of the output vector with even and odd indices, respectively, we obtain

$$
\begin{align*}
\hat{a}_{2 k} & =\sum_{j=0}^{N / 2-1}\left(a_{j}+a_{N / 2+j}\right) w_{N / 2}^{j k}, \tag{5.5}\\
\hat{a}_{2 k+1} & =\sum_{j=0}^{N / 2-1}\left(a_{j}-a_{N / 2+j}\right) w_{N}^{j} w_{N / 2}^{j k}, \quad k=0, \ldots, N / 2-1 . \tag{5.6}
\end{align*}
$$

Thus, using the divide-and-conquer technique, the $\operatorname{DFT}(N)$ is obtained by computing

- $N / 2 \mathrm{DFT}(2)$ of the vectors $\left(a_{j}, a_{N / 2+j}\right)^{\top}, j=0, \ldots, N / 2-1$,
- $N / 2$ multiplications with the twiddle factors $w_{N}^{j}, j=0, \ldots, N / 2-1$,
- $2 \operatorname{DFT}(N / 2)$ of the vectors $\left(a_{j}+a_{N / 2+j}\right)_{j=0}^{N / 2-1}$ and $\left(\left(a_{j}-a_{N / 2+j}\right) w_{N}^{j}\right)_{j=0}^{N / 2-1}$.

However, we do not evaluate the two $\operatorname{DFT}(N / 2)$ directly but apply the decomposition in (5.4) again to the two sums. We iteratively continue this procedure and obtain the desired output vector after t decomposition steps. At each iteration step we require $N / 2 \mathrm{DFT}(2)$ and $N / 2$ multiplications with twiddle factors. As we will show in Sect.4.3, this procedure reduces the computational cost to perform the $\operatorname{DFT}(N)$ to $\mathscr{O}(N \log N)$. This is an essential improvement! For example, for $N=512=2^{9}$ the computation cost is reduced by more than 50 times.

The above algorithm is called Sande-Tukey FFT. In Fig. 5.3 we show the corresponding signal flow graph of the DFT(8).

Fig. 5.3 Sande-Tukey algorithm for DFT(8) with input values in natural order (above) and in bit reversal order (below)

The evaluation of $\hat{a}_{0}=\sum_{j=0}^{N-1} a_{j}$ in the Sande-Tukey FFT is obviously executed by cascade summation. The signal flow graph well illustrates how to implement an in-place algorithm. Note that the output components are obtained in a different order, which can be described by a permutation of indices.

All indices are in the set

$$
J_{N}:=\{0, \ldots, N-1\}=\left\{0, \ldots, 2^{t}-1\right\}
$$

and can be written as t-digit binary numbers,

$$
k=\left(k_{t-1}, \ldots, k_{1}, k_{0}\right)_{2}:=k_{t-1} 2^{t-1}+\ldots+k_{1} 2+k_{0}, \quad k_{j} \in\{0,1\}
$$

The permutation $\varrho: J_{N} \rightarrow J_{N}$ with

$$
\varrho(k)=\left(k_{0}, k_{1}, \ldots, k_{t-1}\right)_{2}=k_{0} 2^{t-1}+\ldots+k_{t-2} 2+k_{t-1}
$$

is called bit reversal or bit-reversed permutation of J_{N}.
Let $\mathbf{R}_{N}:=\left(\delta_{\varrho(j)-k}\right)_{j, k=0}^{N-1}$ be the permutation matrix corresponding to ϱ. Since we have $\varrho^{2}(k)=k$ for all $k \in J_{N}$, it follows that

$$
\begin{equation*}
\mathbf{R}_{N}^{2}=\mathbf{I}_{N}, \quad \mathbf{R}_{N}=\mathbf{R}_{N}^{-1}=\mathbf{R}_{N}^{\top} \tag{5.7}
\end{equation*}
$$

Table 5.1 shows the bit reversal for $N=8=2^{3}$.
The comparison with Fig. 5.3 demonstrates that $\varrho(k)$ indeed determines the order of output components. In general we can show the following:

Lemma 5.1 For an input vector with natural order of components, the SandeTukey FFT computes the output components in bit-reversed order.

Proof We show by induction with respect to t that for $N=2^{t}$ with $t \in \mathbb{N} \backslash\{1\}$ the k th value of the output vector is $\hat{a}_{\varrho(k)}$.

For $t=1$, the assertion is obviously correct. Assuming that the assertion holds for $N=2^{t}$, we consider now the DFT of length $2 N=2^{t+1}$.

The first step of the algorithm decomposes the $\operatorname{DFT}(2 N)$ into two $\operatorname{DFT}(N)$, where for $k=0, \ldots, N-1$ the values $\hat{a}_{2 k}$ are computed at the k th position and $\hat{a}_{2 k+1}$ at the $(N+k)$ th position of the output vector. Afterwards the two $\operatorname{DFT}(N)$ are independently computed using further decomposition steps of the Sande-Tukey FFT. By induction assumption, we thus obtain after executing the

Table 5.1 Bit reversal for $N=8=2^{3}$

k	$k_{2} k_{1} k_{0}$	$k_{0} k_{1} k_{2}$	$\varrho(k)$
0	000	000	0
1	001	100	4
2	010	010	2
3	011	110	6
4	100	001	1
5	101	101	5
6	110	011	3
7	111	111	7

complete algorithm the values $\hat{a}_{2 \varrho(k)}$ at the k th position, and $\hat{a}_{2 \varrho(k)+1}$ at the $(N+k)$ th position of the output vector. The permutation $\pi: J_{2 N} \rightarrow J_{2 N}$ with

$$
\pi(k)=2 \varrho(k), \quad \pi(k+N)=2 \varrho(k)+1, \quad k=0, \ldots, N-1
$$

is by

$$
\begin{aligned}
\pi(k) & =\pi\left(\left(0, k_{t-1}, \ldots, k_{0}\right)_{2}\right)=2\left(0, k_{0}, \ldots, k_{t-2}, k_{t-1}\right)_{2}=\left(k_{0}, \ldots, k_{t-1}, 0\right)_{2}, \\
\pi(N+k) & =\pi\left(\left(1, k_{t-1}, \ldots, k_{0}\right)_{2}\right)=2\left(0, k_{0}, \ldots, k_{t-2}, k_{t-1}\right)_{2}+1=\left(k_{0}, \ldots, k_{t-1}, 1\right)_{2}
\end{aligned}
$$

indeed equivalent to the bit reversal of $J_{2 N}$.
We summarize the pseudo-code for the Sande-Tukey FFT as follows:

Algorithm 5.2 (Sande-Tukey FFT)

Input: $N=2^{t}$ with $t \in \mathbb{N} \backslash\{1\}, a_{j} \in \mathbb{C}$ for $j=0, \ldots, N-1$.

$$
\begin{aligned}
& \text { for } n:=1 \text { to } t \text { do } \\
& \text { begin } m:=2^{t-n+1} \\
& \quad \text { for } \ell:=0 \text { to } 2^{n-1}-1 \text { do } \\
& \quad \text { begin } \\
& \quad \text { for } r:=0 \text { to } m / 2-1 \text { do } \\
& \quad \text { begin } j:=r+\ell m, \\
& \\
& \qquad \quad s:=a_{j}+a_{m / 2+j}, \\
& \quad a_{m / 2+j}:=\left(a_{j}-a_{m / 2+j}\right) w_{m}^{r}, \\
& \quad a_{j}:=s
\end{aligned} \quad \begin{aligned}
& \text { end } \\
& \quad \text { end. } \\
& \text { Output: } \hat{a}_{k}:=a_{\varrho(k)} \in \mathbb{C}, k=0, \ldots, N-1 .
\end{aligned}
$$

5.2.2 Cooley-Tukey FFT in Polynomial Form

Next, we derive the Cooley-Tukey FFT in polynomial form. In the presentation of the algorithm we use multi-indices for a better illustration of the order of data. We consider the polynomial $a(z):=a_{0}+a_{1} z+\ldots+a_{N-1} z^{N-1}$ that has to be evaluated at the N knots $z=w_{N}^{k}, k=0, \ldots, N-1$. We decompose the polynomial $a(z)$ as follows:

$$
a(z)=\sum_{j=0}^{N / 2-1} a_{j} z^{j}+\sum_{j=0}^{N / 2-1} a_{N / 2+j} z^{N / 2+j}=\sum_{j=0}^{N / 2-1}\left(a_{j}+z^{N / 2} a_{N / 2+j}\right) z^{j} .
$$

By $w_{N}^{k N / 2}=(-1)^{k}=(-1)^{k_{0}}$ for all $k \in\{0, \ldots, N-1\}$ with

$$
k=\left(k_{t-1}, \ldots, k_{0}\right)_{2}, \quad k_{j} \in\{0,1\},
$$

the term $z^{N / 2}=(-1)^{k}$ can be only 1 or -1 . Thus the evaluation of $a(z)$ at $z=$ $w_{N}^{k}, k=0, \ldots, N-1$, can be reduced to the evaluation of the two polynomials

$$
a^{\left(i_{0}\right)}(z):=\sum_{j=0}^{N / 2-1} a_{j}^{\left(i_{0}\right)} z^{j}, \quad i_{0}=0,1,
$$

with the coefficients

$$
a_{j}^{\left(i_{0}\right)}:=a_{j}+(-1)^{i_{0}} a_{N / 2+j}, \quad j=0, \ldots, N / 2-1,
$$

at the $N / 2$ knots w_{N}^{k} with $k=\left(k_{t-1}, \ldots, k_{1}, i_{0}\right)_{2}$. In the first step of the algorithm, we compute the coefficients of the new polynomials $a^{\left(i_{0}\right)}(z), i_{0}=0,1$. Then we apply the method again separately to the two polynomials $a^{\left(i_{0}\right)}(z), i_{0}=0,1$. By

$$
a^{\left(i_{0}\right)}(z):=\sum_{j=0}^{N / 4-1}\left(a_{j}^{\left(i_{0}\right)}+z^{N / 4} a_{N / 4+j}^{\left(i_{0}\right)}\right) z^{j}
$$

and $w_{N}^{k N / 4}=(-1)^{k_{1}}(-\mathrm{i})^{k_{0}}$, this polynomial evaluation is equivalent to the evaluating the four polynomials

$$
a^{\left(i_{0}, i_{1}\right)}(z):=\sum_{j=0}^{N / 4-1} a_{j}^{\left(i_{0}, i_{1}\right)} z^{j}, \quad i_{0}, i_{1} \in\{0,1\}
$$

with the coefficients

$$
a_{j}^{\left(i_{0}, i_{1}\right)}:=a_{j}^{\left(i_{0}\right)}+(-1)^{i_{1}}(-1)^{i_{0}} a_{N / 4+j}^{\left(i_{0}\right)}, \quad j=0, \ldots, N / 4-1,
$$

at the $N / 4$ knots w_{N}^{k} with $k=\left(k_{t-1}, \ldots, k_{2}, i_{1}, i_{0}\right)_{2}$. Therefore, at the second step we compute the coefficients of $a^{\left(i_{0}, i_{1}\right)}(z), i_{0}, i_{1} \in\{0,1\}$. We iteratively continue the method and obtain after t steps N polynomials of degree 0 , i.e., constants that yield the desired output values. At the $\left(i_{0}, \ldots, i_{t-1}\right)_{2}$ th position of the output vector we get

$$
a^{\left(i_{0}, \ldots, i_{t-1}\right)}(z)=a_{0}^{\left(i_{0}, \ldots, i_{t-1}\right)}=a\left(w_{N}^{k}\right)=\hat{a}_{k}, \quad i_{0}, \ldots, i_{t-1} \in\{0,1\},
$$

Fig. 5.4 Cooley-Tukey FFT for $N=8$ with input values in natural order (above) and in bit reversal order (below)
with $k=\left(i_{t-1}, \ldots, i_{0}\right)_{2}$. Thus, the output values are again in bit-reversed order. Figure 5.4 shows the signal flow graph of the described Cooley-Tukey FFT for $N=8$.

Remark 5.3 In the Sande-Tukey FFT, the number of output values that can be independently computed doubles at each iteration step, i.e., the sampling rate is iteratively reduced in frequency domain. Therefore this algorithm is also called decimation-in-frequency FFT, see Fig. 5.3. Analogously, the Cooley-Tukey FFT corresponds to reduction of sampling rate in time and is therefore called decimation-in-time FFT, see Fig. 5.4.

5.2.3 Radix-2 FFT's in Matrix Form

The close connection between the two radix-2 FFTs can be well illustrated using the matrix representation. For this purpose we consider first the permutation matrices that yield the occurring index permutations when executing the algorithms. Beside the bit reversal, we introduce the perfect shuffle $\pi_{N}: J_{N} \rightarrow J_{N}$ by

$$
\begin{aligned}
\pi_{N}(k) & =\pi_{N}\left(\left(k_{t-1}, \ldots, k_{0}\right)_{2}\right) \\
& =\left(k_{t-2}, \ldots, k_{0}, k_{t-1}\right)_{2}= \begin{cases}2 k & k=0, \ldots, N / 2-1 \\
2 k+1-N & k=N / 2, \ldots, N-1\end{cases}
\end{aligned}
$$

The perfect shuffle realizes the cyclic shift of binary representation of the numbers $0, \ldots, N-1$. Then the t-times repeated cyclic shift π_{N}^{t} yields again the original order of the coefficients. Let $\mathbf{P}_{N}:=\left(\delta_{\pi_{N}(j)-k}\right)_{j, k=0}^{N-1}$ denote the corresponding permutation matrix, then

$$
\begin{equation*}
\left(\mathbf{P}_{N}\right)^{t}=\mathbf{I}_{N}, \quad\left(\mathbf{P}_{N}\right)^{t-1}=\mathbf{P}_{N}^{-1}=\mathbf{P}_{N}^{\top} . \tag{5.8}
\end{equation*}
$$

Obviously, \mathbf{P}_{N} is equivalent to the $N / 2$-stride permutation matrix considered in Sect. 3.4 with

$$
\mathbf{P}_{N} \mathbf{a}=\left(a_{0}, a_{N / 2}, a_{1}, a_{N / 2-1}, \ldots, a_{N / 2-1}, a_{N-1}\right)^{\top}
$$

The cyclic shift of $\left(k_{0}, k_{t-1}, \ldots, k_{1}\right)_{2}$ provides the original number $\left(k_{t-1}, \ldots, k_{0}\right)_{2}$, i.e.,

$$
\begin{aligned}
\pi_{N}^{-1}(k) & =\pi_{N}^{-1}\left(\left(k_{t-1}, \ldots, k_{0}\right)_{2}\right)=\left(k_{0}, k_{t-1}, \ldots, k_{1}\right)_{2} \\
& = \begin{cases}k / 2 & k \equiv 0 \bmod 2 \\
N / 2+(k-1) / 2 & k \equiv 1 \bmod 2\end{cases}
\end{aligned}
$$

Hence, at the first step of the algorithm, $\mathbf{P}_{N}^{-1}=\mathbf{P}_{N}^{\top}$ yields the desired rearrangement of output components \hat{a}_{k} taking first all even and then all odd indices. Thus, \mathbf{P}_{N}^{-1} coincides with the even-odd permutation matrix in Sect.3.4.

Example 5.4 For $N=8$, i.e., $t=3$, we obtain

$$
\mathbf{P}_{8}=\left(\begin{array}{llllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right), \quad \mathbf{P}_{8}\left(\begin{array}{l}
c_{0} \\
c_{1} \\
c_{2} \\
c_{3} \\
c_{4} \\
c_{5} \\
c_{6} \\
c_{7}
\end{array}\right)=\left(\begin{array}{l}
c_{0} \\
c_{4} \\
c_{1} \\
c_{5} \\
c_{2} \\
c_{6} \\
c_{3} \\
c_{7}
\end{array}\right)
$$

and

$$
\mathbf{P}_{8}^{\top}=\left(\begin{array}{llllllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right), \quad \mathbf{P}_{8}^{\top}\left(\begin{array}{c}
c_{0} \\
c_{1} \\
c_{2} \\
c_{3} \\
c_{4} \\
c_{5} \\
c_{6} \\
c_{7}
\end{array}\right)=\left(\begin{array}{l}
c_{0} \\
c_{2} \\
c_{4} \\
c_{6} \\
c_{1} \\
c_{3} \\
c_{5} \\
c_{7}
\end{array}\right)
$$

The first step of the Sande-Tukey FFT in Algorithm 5.2 is now by (5.5) and (5.6) equivalent to the matrix factorization

$$
\begin{equation*}
\mathbf{F}_{N}=\mathbf{P}_{N}\left(\mathbf{I}_{2} \otimes \mathbf{F}_{N / 2}\right) \mathbf{D}_{N}\left(\mathbf{F}_{2} \otimes \mathbf{I}_{N / 2}\right) \tag{5.9}
\end{equation*}
$$

with the diagonal matrix $\mathbf{W}_{N / 2}:=\operatorname{diag}\left(w_{N}^{j}\right)_{j=0}^{N / 2-1}$ and the block diagonal matrix

$$
\mathbf{D}_{N}:=\operatorname{diag}\left(\mathbf{I}_{N / 2}, \mathbf{W}_{N / 2}\right)=\left(\begin{array}{ll}
\mathbf{I}_{N / 2} & \\
& \mathbf{W}_{N / 2}
\end{array}\right)
$$

which is a diagonal matrix too. In (5.9), by \otimes we denote the Kronecker product introduced in Sect.3.4. At the second step of the decomposition the factorization is again applied to $\mathbf{F}_{N / 2}$. Thus we obtain

$$
\mathbf{F}_{N}=\mathbf{P}_{N}\left(\mathbf{I}_{2} \otimes\left[\mathbf{P}_{N / 2}\left(\mathbf{I}_{2} \otimes \mathbf{F}_{N / 4}\right) \mathbf{D}_{N / 2}\left(\mathbf{F}_{2} \otimes \mathbf{I}_{N / 4}\right)\right]\right) \mathbf{D}_{N}\left(\mathbf{F}_{2} \otimes \mathbf{I}_{N / 2}\right)
$$

with the diagonal matrices

$$
\mathbf{D}_{N / 2}:=\operatorname{diag}\left(\mathbf{I}_{N / 4}, \mathbf{W}_{N / 4}\right), \quad \mathbf{W}_{N / 4}:=\operatorname{diag}\left(w_{N / 2}^{j}\right)_{j=0}^{N / 4-1}
$$

Application of Theorem 3.42 yields

$$
\mathbf{F}_{N}=\mathbf{P}_{N}\left(\mathbf{I}_{2} \otimes \mathbf{P}_{N / 2}\right)\left(\mathbf{I}_{4} \otimes \mathbf{F}_{N / 4}\right)\left(\mathbf{I}_{2} \otimes \mathbf{D}_{N / 2}\right)\left(\mathbf{I}_{2} \otimes \mathbf{F}_{2} \otimes \mathbf{I}_{N / 4}\right) \mathbf{D}_{N}\left(\mathbf{F}_{2} \otimes \mathbf{I}_{N / 2}\right)
$$

After t steps we thus obtain the factorization of the Fourier matrix \mathbf{F}_{N} into sparse matrices for the Sande-Tukey FFT with natural order of input components

$$
\begin{align*}
\mathbf{F}_{N} & =\mathbf{R}_{N}\left(\mathbf{I}_{N / 2} \otimes \mathbf{F}_{2}\right)\left(\mathbf{I}_{N / 4} \otimes \mathbf{D}_{4}\right)\left(\mathbf{I}_{N / 4} \otimes \mathbf{F}_{2} \otimes \mathbf{I}_{2}\right)\left(\mathbf{I}_{N / 8} \otimes \mathbf{D}_{8}\right) \ldots \mathbf{D}_{N}\left(\mathbf{F}_{2} \otimes \mathbf{I}_{N / 2}\right) \\
& =\mathbf{R}_{N} \prod_{n=1}^{t} \mathbf{T}_{n}\left(\mathbf{I}_{N / 2^{n}} \otimes \mathbf{F}_{2} \otimes \mathbf{I}_{2^{n-1}}\right) \tag{5.10}
\end{align*}
$$

with the permutation matrix $\mathbf{R}_{N}=\mathbf{P}_{N}\left(\mathbf{I}_{2} \otimes \mathbf{P}_{N / 2}\right) \ldots\left(\mathbf{I}_{N / 4} \otimes \mathbf{P}_{4}\right)$ and the diagonal matrices

$$
\begin{aligned}
\mathbf{T}_{n} & :=\mathbf{I}_{N / 2^{n}} \otimes \mathbf{D}_{2^{n}}, \\
\mathbf{D}_{2^{n}} & :=\operatorname{diag}\left(\mathbf{I}_{2^{n-1}}, \mathbf{W}_{2^{n-1}}\right), \quad \mathbf{W}_{2^{n-1}}:=\operatorname{diag}\left(w_{2^{n}}^{j}\right)_{j=0}^{2^{n-1}-1}
\end{aligned}
$$

Note that $\mathbf{T}_{1}=\mathbf{I}_{N}$.
From Lemma 5.1 and by (5.7) we know already that \mathbf{R}_{N} in (5.10) is the permutation matrix corresponding to the bit reversal. We want to illustrate this fact taking a different view.

Remark 5.5 For distinct indices $j_{1}, \ldots, j_{n} \in J_{t}:=\{0, \ldots, t-1\}$ let $\left(j_{1}, j_{2}, \ldots, j_{n}\right)$ with $1 \leq n<t$ be that permutation of J_{t} that maps j_{1} to j_{2}, j_{2} to j_{3}, \ldots, j_{n-1} to j_{n}, and j_{n} to j_{1}. Such a permutation is called n-cycle. For $N=2^{t}$, the permutations of the index set J_{N} occurring in a radix- 2 FFT can be represented by permutations of the indices in its binary presentation, i.e., $\pi: J_{N} \rightarrow J_{N}$ can be written as

$$
\pi(k)=\pi\left(\left(k_{t-1}, \ldots, k_{0}\right)_{2}\right)=\left(k_{\pi_{t}(k-1)}, \ldots, k_{\pi_{t}(0)}\right)_{2}
$$

with a certain permutation $\pi_{t}: J_{t} \rightarrow J_{t}$. The perfect shuffle $\pi_{N}: J_{N} \rightarrow J_{N}$ corresponds to the t-cycle

$$
\pi_{N, t}:=(0, \ldots, t-1)
$$

and the bit reversal $\varrho: J_{N} \rightarrow J_{N}$ to the permutation

$$
\varrho_{t}:= \begin{cases}(0, t-1)(1, t-2) \ldots(t / 2-1, t / 2+1) & t \equiv 0 \bmod 2 \\ (0, t-1)(1, t-2) \ldots((t-1) / 2,(t+1) / 2) & t \equiv 1 \bmod 2\end{cases}
$$

Let $\pi_{N, n}: J_{t} \rightarrow J_{t}$ with $1 \leq n \leq t$ be given by the n-cycle

$$
\pi_{N, n}:=(0, \ldots, n-1) .
$$

Then we can prove by induction that

$$
\varrho_{t}=\pi_{N, t} \pi_{N, t-1} \ldots \pi_{N, 2} .
$$

Using the matrix representation we obtain now the desired relation

$$
\mathbf{R}_{N}=\mathbf{P}_{N}\left(\mathbf{I}_{2} \otimes \mathbf{P}_{N / 2}\right) \ldots\left(\mathbf{I}_{N / 4} \otimes \mathbf{P}_{4}\right)
$$

Example 5.6 The factorization of \mathbf{F}_{8} in (5.10) has the form

$$
\mathbf{F}_{8}=\mathbf{R}_{8}\left(\mathbf{I}_{4} \otimes \mathbf{F}_{2}\right)\left(\mathbf{I}_{2} \otimes \mathbf{D}_{4}\right)\left(\mathbf{I}_{2} \otimes \mathbf{F}_{2} \otimes \mathbf{I}_{2}\right) \mathbf{D}_{8}\left(\mathbf{F}_{2} \otimes \mathbf{I}_{4}\right)
$$

i.e.,

$$
\begin{aligned}
& \mathbf{F}_{8}=\left(\begin{array}{rrrrrrrr}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{rrrrrrrr}
1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & -1
\end{array}\right) \\
& \left(\begin{array}{rrrrrrrr}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -i & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -i
\end{array}\right)\left(\begin{array}{rrrrrrrr}
1 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\
1 & 0 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & -1
\end{array}\right) \\
& \left(\begin{array}{rrrrrrrr}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & w & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -i & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & w_{8}^{3}
\end{array}\right)\left(\begin{array}{rrrrrrrr}
1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & -1
\end{array}\right) .
\end{aligned}
$$

This factorization of \mathbf{F}_{8} yields the signal flow graph of the Sande-Tukey FFT in Fig. 5.3.

Using (5.10), we can now derive further factorizations of the Fourier matrix \mathbf{F}_{N} and obtain corresponding radix-2 FFTs. A new factorization is, e.g., obtained by taking the transpose of (5.10), where we use that $\mathbf{F}_{N}=\mathbf{F}_{N}^{\top}$. Further, we can employ the identity matrix as a new factor that is written as a product of a permutation matrix and its transpose. We finish this subsection by deriving the matrix factorizations of \mathbf{F}_{N} for the Sande-Tukey FFT with bit reversed order of input values and for the Cooley-Tukey FFT. In the next subsection we will show how these slight manipulations of the found Fourier matrix factorization can be exploited for deriving a radix- 2 FFT that is suitable for parallel programming.

We recall that by Theorem 3.42

$$
\mathbf{P}_{N}(\mathbf{A} \otimes \mathbf{B}) \mathbf{P}_{N}^{\top}=\mathbf{P}_{N}(N / 2)(\mathbf{A} \otimes \mathbf{B}) \mathbf{P}_{N}(2)=\mathbf{B} \otimes \mathbf{A}
$$

where $\mathbf{P}_{N}(2)$ denotes the even-odd permutation matrix and $\mathbf{P}_{N}(N / 2)$ is the $N / 2$ stride permutation matrix. Thus we conclude:

Corollary 5.7 Let $N=2^{t}$. Then we have

$$
\begin{aligned}
\mathbf{P}_{N}^{n}\left(\mathbf{I}_{N / 2} \otimes \mathbf{F}_{2}\right) \mathbf{P}_{N}^{-n} & =\mathbf{I}_{N / 2^{n+1}} \otimes \mathbf{F}_{2} \otimes \mathbf{I}_{2^{n}}, & & n=0, \ldots, t-1, \\
\mathbf{R}_{N}\left(\mathbf{I}_{N / 2^{n}} \otimes \mathbf{F}_{2} \otimes \mathbf{I}_{2^{n-1}}\right) \mathbf{R}_{N} & =\mathbf{I}_{2^{n-1}} \otimes \mathbf{F}_{2} \otimes \mathbf{I}_{N / 2^{n}}, & & n=1, \ldots, t
\end{aligned}
$$

From (5.10) and Corollary 5.7 we conclude the factorization of \mathbf{F}_{N} corresponding to the Sande-Tukey FFT with bit reversed order of input values,

$$
\mathbf{F}_{N}=\left(\prod_{n=1}^{t} \mathbf{T}_{n}^{\varrho}\left(\mathbf{I}_{2^{n-1}} \otimes \mathbf{F}_{2} \otimes \mathbf{I}_{N / 2^{n}}\right)\right) \mathbf{R}_{N}, \quad \mathbf{T}_{n}^{\varrho}:=\mathbf{R}_{N} \mathbf{T}_{n} \mathbf{R}_{N}
$$

The matrix factorization corresponding to the Cooley-Tukey FFT is obtained from (5.10) by taking the transpose. From $\mathbf{F}_{N}=\mathbf{F}_{N}^{\top}$ it follows that

$$
\mathbf{F}_{N}=\left(\prod_{n=1}^{t}\left(\mathbf{I}_{2^{n-1}} \otimes \mathbf{F}_{2} \otimes \mathbf{I}_{N / 2^{n}}\right) \mathbf{T}_{t-n+1}\right) \mathbf{R}_{N}
$$

This factorization equates the Cooley-Tukey FFT with bit reversal order of input values. By Corollary 5.7 we finally observe that

$$
\mathbf{F}_{N}=\mathbf{R}_{N} \prod_{n=1}^{t}\left(\mathbf{I}_{N / 2^{n}} \otimes \mathbf{F}_{2} \otimes \mathbf{I}_{2^{n-1}}\right) \mathbf{T}_{t-n+1}^{\varrho}
$$

is the matrix factorization of the Cooley-Tukey FFT with natural order of input values.

5.2.4 Radix-2 FFT for Parallel Programming

Now we want to consider a radix-2 FFT with respect to parallel programming. For parallel execution of the algorithm, the iteration steps should have the same structure. The common structure of the different steps of the radix-2 FFT consists in the applying $N / 2$ butterfly operations that are realized with a convenient N th root of unity w, see Fig. 5.1. We present the signal flow graph in the following simplified form in Fig. 5.5.

In the factorization of \mathbf{F}_{N}, the $N / 2$ butterfly operations correspond to the product of $\tilde{\mathbf{T}}_{n}\left(\mathbf{I}_{2^{n-1}} \otimes \mathbf{F}_{2} \otimes \mathbf{I}_{N / 2^{n}}\right)$ with one intermediate vector. Here, $\tilde{\mathbf{T}}_{n}$ denotes a suitable diagonal matrix. Since each time two components of the evaluated intermediate vector in one step depend only on two components of the previously computed vector, the $N / 2$ butterfly operations can be realized independently. Therefore, these operations can be evaluated in parallel. A radix-2 FFT for parallel programming should satisfy the following requirements:

1. Uniform location of the butterfly operations at each step of the algorithm. In matrix representation, this means that the nth step corresponds to the multiplication of an intermediate vector with a matrix of the form $\tilde{\mathbf{T}}_{n}\left(\mathbf{I}_{N / 2} \otimes \mathbf{F}_{2}\right)$. The individual steps should differ only with respect to the diagonal matrices $\tilde{\mathbf{T}}_{n}$.
2. Uniform data flow between the steps of the algorithm. In matrix representation, this means that the products $\tilde{\mathbf{T}}_{n}\left(\mathbf{I}_{N / 2} \otimes \mathbf{F}_{2}\right)$ are always connected by the same permutation matrix.

Now we derive a Sande-Tukey FFT for parallel programming such that its structure satisfies the above requirements. Then the corresponding factorization of the Fourier matrix \mathbf{F}_{N} is of the form

$$
\begin{equation*}
\mathbf{F}_{N}=\mathbf{Q} \prod_{n=1}^{t}\left(\tilde{\mathbf{T}}_{n}\left(\mathbf{I}_{N / 2} \otimes \mathbf{F}_{2}\right) \mathbf{P}\right) \tag{5.11}
\end{equation*}
$$

with suitable permutation matrices \mathbf{P} and \mathbf{Q} as well as diagonal matrices $\tilde{\mathbf{T}}_{n}$. We restrict ourselves to the Sande-Tukey FFT in order to illustrate the essential ideas. The Cooley-Tukey FFT and other FFTs can be treated similarly for parallelization, where we only have to take care of the appropriate diagonal matrices.

Fig. 5.5 Butterfly signal flow graph

Fig. 5.6 Radix-2 FFT with uniform positions of the butterflies for DFT(8)

Example 5.8 We want to illustrate the approach for the Sande-Tukey FFT for the DFT(8). From the signal flow graph in Fig. 5.3 and the matrix factorization in Example 5.6 it can be seen that the algorithm does not satisfy the two requirements for parallel programming. We reorganize the wanted uniform location of the butterfly operations and obtain the algorithm as illustrated in Fig. 5.6.

The corresponding factorization of the Fourier matrix \mathbf{F}_{8} is of the form

$$
\mathbf{F}_{8}=\mathbf{R}_{8}\left(\mathbf{I}_{4} \otimes \mathbf{F}_{2}\right)\left(\mathbf{I}_{2} \otimes \mathbf{P}_{4}\right) \mathbf{T}_{2}\left(\mathbf{I}_{4} \otimes \mathbf{F}_{2}\right) \mathbf{R}_{8} \mathbf{T}_{3}^{\mathrm{PS}}\left(\mathbf{I}_{4} \otimes \mathbf{F}_{2}\right) \mathbf{P}_{8}
$$

with $\mathbf{T}_{3}^{\mathrm{PS}}:=\mathbf{P}_{8} \mathbf{T}_{3} \mathbf{P}_{8}^{\top}$. This algorithm still not satisfies the second requirement of a uniform data flow between the steps of the algorithm. A completely parallelized Sande-Tukey FFT is presented in Fig. 5.7. This algorithm corresponds to the factorization

$$
\mathbf{F}_{8}=\mathbf{R}_{8}\left(\mathbf{I}_{4} \otimes \mathbf{F}_{2}\right) \mathbf{P}_{8} \mathbf{T}_{2}^{\mathrm{PS}}\left(\mathbf{I}_{4} \otimes \mathbf{F}_{2}\right) \mathbf{P}_{8} \mathbf{T}_{3}^{\mathrm{PS}}\left(\mathbf{I}_{4} \otimes \mathbf{F}_{2}\right) \mathbf{P}_{8}
$$

with $\mathbf{T}_{n}^{\mathrm{PS}}:=\mathbf{P}_{8}^{-(n-1)} \mathbf{T}_{3} \mathbf{P}_{8}^{n-1}$. The uniform data flow between the algorithm steps is realized by the perfect shuffle permutation matrix \mathbf{P}_{8}. A parallelized algorithm is well suited for hardware implementation with VLSI technology.

Fig. 5.7 Radix-2 FFT of DFT(8) for parallel programming

Generally, it follows from the factorization (5.10) of the Fourier matrix \mathbf{F}_{N} and from Corollary 5.7 that

$$
\begin{aligned}
\mathbf{F}_{N}= & \mathbf{R}_{N} \prod_{n=1}^{t} \mathbf{T}_{n}\left(\mathbf{I}_{N / 2^{n}} \otimes \mathbf{F}_{2} \otimes \mathbf{I}_{2^{n-1}}\right) \\
= & \mathbf{R}_{N} \prod_{n=1}^{t} \mathbf{T}_{n} \mathbf{P}_{N}^{n-1}\left(\mathbf{I}_{N / 2} \otimes \mathbf{F}_{2}\right) \mathbf{P}_{N}^{-(n-1)} \\
= & \mathbf{R}_{N}\left(\mathbf{I}_{N / 2} \otimes \mathbf{F}_{2}\right) \mathbf{T}_{2} \mathbf{P}_{N}\left(\mathbf{I}_{N / 2} \otimes \mathbf{F}_{2}\right) \ldots \\
& \left(\mathbf{I}_{N / 2} \otimes \mathbf{F}_{2}\right) \mathbf{P}_{N}^{-(t-2)} \mathbf{T}_{t} \mathbf{P}_{N}^{t-1}\left(\mathbf{I}_{N / 2} \otimes \mathbf{F}_{2}\right) \mathbf{P}_{N}^{-(t-1)}
\end{aligned}
$$

and further with (5.8)

$$
\begin{aligned}
\mathbf{F}_{N}= & \mathbf{R}_{N}\left(\mathbf{I}_{N / 2} \otimes \mathbf{F}_{2}\right) \mathbf{P}_{N} \mathbf{P}_{N}^{-1} \mathbf{T}_{2} \mathbf{P}_{N}\left(\mathbf{I}_{N / 2} \otimes \mathbf{F}_{2}\right) \ldots \\
& \left(\mathbf{I}_{N / 2} \otimes \mathbf{F}_{2}\right) \mathbf{P}_{N} \mathbf{P}_{N}^{-(t-1)} \mathbf{T}_{t} \mathbf{P}_{N}^{t-1}\left(\mathbf{I}_{N / 2} \otimes \mathbf{F}_{2}\right) \mathbf{P}_{N} \\
= & \mathbf{R}_{N} \prod_{n=1}^{t} \mathbf{P}_{N}^{-(n-1)} \mathbf{T}_{n} \mathbf{P}_{N}^{n-1}\left(\mathbf{I}_{N / 2} \otimes \mathbf{F}_{2}\right) \mathbf{P}_{N}
\end{aligned}
$$

i.e.,

$$
\mathbf{F}_{N}=\mathbf{R}_{N} \prod_{n=1}^{t} \mathbf{T}_{n}^{\mathrm{PS}}\left(\mathbf{I}_{N / 2} \otimes \mathbf{F}_{2}\right) \mathbf{P}_{N}
$$

with the diagonal matrices $\mathbf{T}_{n}^{\mathrm{PS}}:=\mathbf{P}_{N}^{-(n-1)} \mathbf{T}_{n} \mathbf{P}_{N}^{n-1}$ for $n=1, \ldots, t$. This yields the factorization of \mathbf{F}_{N} corresponding to the parallelized Sande-Tukey FFT.

Algorithm 5.9 (Sande-Tukey FFT of DFT(N) for Parallel Programming)

Input: $N=2^{t}$ with $t \in \mathbb{N}, \mathbf{a} \in \mathbb{C}^{N}, \mathbf{w}^{(n)}:=\left(w_{j}^{(n)}\right)_{j=0}^{N-1}$ with $w_{j}^{(n)}:=1$ for even j and

$$
w_{j}^{(n)}:=w_{2^{n}}^{\left\lfloor j / 2^{t-n+1}\right\rfloor} \text { for odd } j
$$

for $n:=1$ to t do
begin $\mathbf{a}:=\mathbf{P}_{N} \mathbf{a}$;

$$
\begin{aligned}
& \mathbf{b}:=\mathbf{a} \circ(1,-1, \ldots, 1,-1)^{\top} \\
& \mathbf{a}:=(\mathbf{a}+\mathbf{b}) \circ \mathbf{w}^{(t-n+1)}
\end{aligned}
$$

end.
Output: $\hat{\mathbf{a}}:=\mathbf{R}_{N} \mathbf{a}$.
For more information we refer to the subroutine library FFTW, see [122, 123]. A software library for computing FFTs on massively parallel, distributed memory architectures based on the Message Passing Interface standard (MPI) based on [271] is available, see [269].

5.2.5 Computational Costs of Radix-2 FFT's

Finally, we consider the computational costs of the radix-2 FFTs. We want to evaluate the number of nontrivial real multiplications and real additions.

Remark 5.10 As usual, the product of an arbitrary complex number $a=\alpha_{0}+\mathrm{i} \alpha_{1}$ with $\alpha_{0}, \alpha_{1} \in \mathbb{R} \backslash\{0\}$ and a known complex number $w=\omega_{0}+\mathrm{i} \omega_{1}$ with ω_{0}, $\omega_{1} \in \mathbb{R} \backslash\{0\}$ requires 4 real multiplications and 2 real additions. If the values $\omega_{0} \pm \omega_{1}$ are precomputed, then by
$\operatorname{Re}(a w)=\left(\alpha_{0}+\alpha_{1}\right) \omega_{0}-\alpha_{1}\left(\omega_{0}+\omega_{1}\right), \quad \operatorname{Im}(a w)=\left(\alpha_{0}+\alpha_{1}\right) \omega_{0}-\alpha_{0}\left(\omega_{0}-\omega_{1}\right)$
one needs 3 real multiplications and 3 real additions.
We start with the following observations:

1. Multiplications with ± 1 and $\pm i$ are trivial and are not taken into account.
2. The multiplication with a primitive 8 th root of unity $(\pm 1 \pm i) / \sqrt{2}$ requires 2 real multiplications and 2 real additions.
3. The multiplication with the nth primitive root of unity for $n \in \mathbb{N} \backslash\{1,2,4,8\}$ can be performed with an algorithm requiring 3 real multiplications and 3 real additions.
4. The addition of two complex numbers requires 2 real additions.

Let $\mu(t)$ denote the number of real multiplications and $\alpha(t)$ the number of real additions that are needed for executing the radix- 2 FFT of the $\mathrm{DFT}\left(2^{t}\right)$. Then, by Fig. 5.3, we observe

$$
\begin{array}{lll}
\mu(1)=0, & \alpha(1)=2 \cdot 2 & =4, \\
\mu(2)=0, & \alpha(2)=2 \cdot 2 \cdot 4 & =16, \\
\mu(3)=4, & \alpha(3)=4+2 \cdot 3 \cdot 8 & =52 .
\end{array}
$$

Let now $N=2^{t}$ with $t \in \mathbb{N} \backslash\{1\}$ be given. For evaluating the $\operatorname{DFT}(2 N)$ with the radix- 2 FFT we have to execute two $\mathrm{DFT}(N), 2 N$ complex additions, and N complex multiplications with the twiddle factors $w_{2 N}^{j}, j=0, \ldots, N-1$. Among the multiplications with twiddle factors, there are two trivial for $j=0, N / 2$ and two multiplications with primitive 8th roots of unity for $j=N / 4,3 N / 4$. Thus for $t \geq 2$ it follows that

$$
\begin{align*}
& \mu(t+1)=2 \mu(t)+3 \cdot 2^{t}-8 \tag{5.12}\\
& \alpha(t+1)=2 \alpha(t)+3 \cdot 2^{t}-8+2 \cdot 2^{t+1}=2 \alpha(t)+7 \cdot 2^{t}-8 \tag{5.13}
\end{align*}
$$

We want to transfer these recursions into explicit statements. For that purpose, we shortly summarize the theory of linear difference equations, since this method will give us a general way for obtaining explicit numbers for the computational cost.

In the following, we solve a linear difference equation of order n with constant coefficients $a_{j} \in \mathbb{R}, j=0, \ldots, n-1$, where $a_{0} \neq 0$, of the form

$$
\begin{equation*}
f(t+n)+a_{n-1} f(t+n-1)+\ldots+a_{1} f(t+1)+a_{0} f(t)=g(t), \quad t \in \mathbb{N} . \tag{5.14}
\end{equation*}
$$

Here $g: \mathbb{N} \rightarrow \mathbb{R}$ is a given sequence and $f: \mathbb{N} \rightarrow \mathbb{R}$ is the wanted sequence. If $g(t) \equiv 0$, then (5.14) is a homogeneous difference equation. We introduce the difference operator

$$
L f(t):=f(t+n)+a_{n-1} f(t+n-1)+\ldots+a_{1} f(t+1)+a_{0} f(t), \quad t \in \mathbb{N}
$$

and the corresponding characteristic polynomial

$$
p(\lambda):=\lambda^{n}+a_{n-1} \lambda^{n-1}+\ldots+a_{1} \lambda+a_{0}, \quad \lambda \in \mathbb{C} .
$$

Obviously, a solution of (5.14) is uniquely determined by the initial values $f(1)$, $f(2), \ldots, f(n)$ or, more generally, by n consecutive sequence components. In the first step we determine all solutions of the homogeneous difference equation
$L f(t)=0$. The ansatz $f(t):=\lambda_{1}^{t}$ with $\lambda_{1} \neq 0$ provides by

$$
L \lambda_{1}^{t}=p\left(\lambda_{1}\right) \lambda_{1}^{t}
$$

a nontrivial solution of $L f(t)=0$, if and only if λ_{1} is a zero of $p(\lambda)$. Let now $\lambda_{j} \in$ $\mathbb{C}, j=1, \ldots, s$, be distinct zeros of the characteristic polynomial with multiplicities r_{j}. Taking the k th derivative with regard to λ, we obtain

$$
\begin{equation*}
\frac{\mathrm{d}^{k}}{\mathrm{~d} \lambda^{k}} \lambda^{t}=k!\binom{t}{k} \lambda^{t-k}, \quad 1 \leq k \leq t \tag{5.15}
\end{equation*}
$$

and the Leibniz product rule yields

$$
\begin{equation*}
L\left(\frac{\mathrm{~d}^{k}}{\mathrm{~d} \lambda^{k}} \lambda^{t}\right)=\frac{\mathrm{d}^{k}}{\mathrm{~d} \lambda^{k}}\left(L \lambda^{t}\right)=\frac{\mathrm{d}^{k}}{\mathrm{~d} \lambda^{k}}\left(p(\lambda) \lambda^{t}\right)=\sum_{\ell=0}^{k}\binom{k}{\ell} p^{(\ell)}(\lambda) \frac{\mathrm{d}^{k-\ell}}{\mathrm{d} \lambda^{k-\ell}} \lambda^{t} . \tag{5.16}
\end{equation*}
$$

For the r_{1}-fold zero λ_{1} we conclude

$$
p\left(\lambda_{1}\right)=p^{\prime}\left(\lambda_{1}\right)=\ldots=p^{\left(r_{1}-1\right)}\left(\lambda_{1}\right)=0, \quad p^{\left(r_{1}\right)}\left(\lambda_{1}\right) \neq 0
$$

and by (5.15) and (5.16)) it follows that

$$
L\binom{t}{k} \lambda_{1}^{t}=0, \quad k=0, \ldots, r_{1}-1
$$

Thus,

$$
L\left(t^{k} \lambda_{1}^{t}\right)=0, \quad k=0, \ldots, r_{1}-1
$$

If λ_{1} is a real number, then $t^{k} \lambda_{1}^{t}, k=0, \ldots, r_{1}-1$, are r_{1} real, linearly independent solutions of $L f(t)=0$. If $\lambda_{1}=\varrho_{1} \mathrm{e}^{\mathrm{i} \varphi_{1}}$ with $\varrho_{1}>0,0<\varphi_{1}<2 \pi$, and $\varphi_{1} \neq \pi$ is a complex r_{1}-fold zero of $p(\lambda)$, then $\bar{\lambda}_{1}$ is also an r_{1}-fold zero. Hence,

$$
\operatorname{Re}\left(t^{j} \lambda_{1}^{t}\right)=t^{j} \varrho_{1}^{t} \cos \left(t \varphi_{1}\right), \quad \operatorname{Im}\left(t^{j} \lambda_{1}^{t}\right)=t^{j} \varrho_{1}^{t} \sin \left(t \varphi_{1}\right), \quad j=0, \ldots, r_{1}-1,
$$

are the $2 r_{1}$ real, linearly independent solutions of $L f(t)=0$. In this way we obtain in any case n real, linearly independent solutions of $L f(t)=0$. The general solution of $L f(t)=0$ is an arbitrary linear combination of these n solutions, see [30].

Using superposition we find the general solution of (5.14) as the sum of the general solution of the homogeneous difference equation $L f(t)=0$ and one special solution of (5.14). Often, a special solution of the inhomogeneous difference equation $L f(t)=g(t)$ can be found by the following method. For $g(t)=\alpha a^{t}$ with $\alpha \neq 0$ and $a \neq 1$, we choose in the case $p(a) \neq 0$ the ansatz $f(t)=c a^{t}$ and determine c. If $p(a)=p^{\prime}(a)=\ldots=p^{(r-1)}(a)=0$ and $p^{(r)}(a) \neq 0$, then the ansatz $f(t)=c t^{r} a^{t}$ leads to the desired special solution.

If $g(t)$ is a polynomial with $p(1) \neq 0$, then we choose an ansatz with a polynomial of the same degree as $g(t)$. If $p(1)=p^{\prime}(1)=\ldots=p^{(r-1)}(1)=$ $0, p^{(r)}(1) \neq 0$, then this polynomial is to multiply by t^{r}.

Example 5.11 We consider the linear difference equation (5.12) of first order,

$$
\mu(t+1)-2 \mu(t)=3 \cdot 2^{t}-8, \quad t \in \mathbb{N} \backslash\{1\}
$$

with the initial condition $\mu(2)=0$. The corresponding characteristic polynomial $p(\lambda):=\lambda-2$ possesses the zero $\lambda_{1}=2$, such that $\mu(t)=c 2^{t}$ with arbitrary $c \in \mathbb{R}$ is the general solution of $\mu(t+1)-2 \mu(t)=0$. To find a special solution of the inhomogeneous difference equation we set $\mu(t)=c_{1} t 2^{t}+c_{2}$ and obtain $c_{1}=\frac{3}{2}$ and $c_{2}=8$. Thus, the general solution of (5.12) reads

$$
\mu(t)=c 2^{t}+\frac{3}{2} t 2^{t}+8, \quad c \in \mathbb{R}
$$

From the initial condition $\mu(2)=0$ it follows that $c=-5$.
To compute now the $\operatorname{DFT}(N)$ of length $N=2^{t}, t \in \mathbb{N}$, with the Cooley-Tukey or Sande-Tukey FFT, we thus require

$$
\begin{equation*}
\mu(t)=\frac{3}{2} 2^{t} t-5 \cdot 2^{t}+8=\frac{3}{2} N \log _{2} N-5 N+8 \tag{5.17}
\end{equation*}
$$

nontrivial real multiplications. Similarly, we conclude from (5.13) the number of real additions

$$
\begin{equation*}
\alpha(t)=\frac{7}{2} 2^{t} t-5 \cdot 2^{t}+8=\frac{7}{2} N \log _{2} N-5 N+8 . \tag{5.18}
\end{equation*}
$$

We summarize:
Theorem 5.12 Let $N=2^{t}, t \in \mathbb{N}$, be given. Then the computational costs of the Cooley-Tukey and Sande-Tukey FFT for the $\operatorname{DFT}(N)$ are equal and amount to

$$
\alpha(t)+\mu(t)=5 N \log _{2} N-10 N+16
$$

real arithmetic operations.

5.3 Other Fast Fourier Transforms

In this section we want to study some further FFTs. On the one hand, we consider techniques that possess even less computational costs than described radix-2 FFTs, and on the other hand we study FFTs for $\operatorname{DFT}(N)$, if N is not a power of two.

5.3.1 Chinese Remainder Theorem

Efficient algorithms for computing the DFT can be deduced using the Chinese remainder theorem which was already applied in China about 1700 years ago. The first proof of this theorem was given by L. Euler in 1734. The theorem can be generalized for rings with identity element. In the following we restrict our attention to the ring of integers.

Theorem 5.13 (Chinese Remainder Theorem in \mathbb{Z})

Let $N:=N_{1} \ldots N_{d}$ be the product of pairwise coprime numbers $N_{j} \in \mathbb{N} \backslash\{1\}$, $j=1, \ldots$, d. Let $r_{j} \in \mathbb{N}_{0}$ with $r_{j}<N_{j}, j=1, \ldots, d$ be given. Then there exists a uniquely determined integer $r \in \mathbb{N}_{0}, r<N$, with residuals

$$
\begin{equation*}
r \bmod N_{j}=r_{j}, \quad j=1, \ldots, d \tag{5.19}
\end{equation*}
$$

This number can be computed by one of the following methods:

1. Lagrangian method:

$$
\begin{equation*}
r=\sum_{j=1}^{d} \frac{N}{N_{j}} t_{j} r_{j} \bmod N_{j}, \quad t_{j}:=\left(\frac{N}{N_{j}}\right)^{-1} \bmod N_{j} \tag{5.20}
\end{equation*}
$$

2. Newton's method:

$$
\begin{equation*}
r=\left[r_{1}\right]+\left[r_{1} r_{2}\right] N_{1}+\ldots+\left[r_{1} \ldots r_{d}\right] N_{1} \ldots N_{d-1} \tag{5.21}
\end{equation*}
$$

with modular divided differences

$$
\begin{aligned}
{\left[r_{j}\right] } & :=r_{j} \quad j=1, \ldots, d, \\
{\left[r_{j_{1}} r_{j_{2}}\right] } & :=\frac{\left[r_{j_{2}}\right]-\left[r_{j_{1}}\right]}{N_{j_{1}}} \bmod N_{j_{2}}, \quad 1 \leq j_{1}<j_{2} \leq d, \\
{\left[r_{j_{1}} \ldots r_{j_{m}}\right] } & :=\frac{\left[r_{j_{1}} \ldots r_{j_{m-2}} r_{j_{m}}\right]-\left[r_{j_{1}} \ldots r_{j_{m-2}} r_{j_{m-1}}\right]}{N_{j_{m-1}}} \bmod N_{j_{m}} \\
& 1 \leq j_{1}<\ldots<j_{m} \leq d .
\end{aligned}
$$

Note that $\left(N / N_{j}\right)^{-1} \bmod N_{j}$ and $N_{j}^{-1} \bmod N_{k}$ for $j \neq k$ exist, since N_{j} and N_{k}, $j \neq k$, are coprime by assumption.

Proof First we show that the numbers in (5.20) and (5.21) fulfill property (5.19). Let $r \in \mathbb{N}_{0}$ be given by (5.20). Then we have by definition of r for any $j \in\{1, \ldots, d\}$ that

$$
r \bmod N_{j}=\frac{N}{N_{j}} t_{j} r_{j} \bmod N_{j}=r_{j} \bmod N_{j}
$$

Next let $r \in \mathbb{N}_{0}$ be given (5.21). To show the assertion we apply induction on the number d of factors of N. The case $d=1$ is obvious.

Assume that the assertion is true, if N is the product of $d-1$ pairwise coprime numbers. Then we have by assumption for $N:=N_{1} \ldots N_{d-2} N_{d-1}$ and $N:=$ $N_{1} \ldots N_{d-2} N_{d}$ that
$s:=\left[r_{1}\right]+\left[r_{1} r_{2}\right] N_{1}+\ldots+\left[r_{1} \ldots r_{d-2}\right] N_{1} \ldots N_{d-3}+\left[r_{1} \ldots r_{d-2} r_{d-1}\right] N_{1} \ldots N_{d-2}$,
$t:=\left[r_{1}\right]+\left[r_{1} r_{2}\right] N_{1}+\ldots+\left[r_{1} \ldots r_{d-2}\right] N_{1} \ldots N_{d-3}+\left[r_{1} \ldots r_{d-2} r_{d}\right] N_{1} \ldots N_{d-2}$
satisfy

$$
\begin{align*}
s \bmod N_{j}=r_{j}, & j=1, \ldots, d-2, d-1 \tag{5.22}\\
t \bmod N_{j}=r_{j}, & j=1, \ldots, d-2, d \tag{5.23}
\end{align*}
$$

Now let $N:=N_{1} \ldots N_{d}$ and $r \in \mathbb{N}_{0}$ be defined by (5.21). Consider

$$
\begin{aligned}
\tilde{r} & :=s+(t-s)\left(N_{d-1}^{-1} \bmod N_{d}\right) N_{d-1} \\
& =s+\left(\left[r_{1} \ldots r_{d-2} r_{d}\right]-\left[r_{1} \ldots r_{d-2} r_{d-1}\right]\right)\left(N_{d-1}^{-1} \bmod N_{d}\right) N_{1} \ldots N_{d-1}
\end{aligned}
$$

By definition of the forward difference we see that $\tilde{r}=r$. Further we obtain by (5.22) that $\tilde{r} \bmod N_{j}=r_{j}, j=1, \ldots, d-1$, and by (5.23) that

$$
\begin{aligned}
\tilde{r} \bmod N_{d} & =s \bmod N_{d} \\
& +\left(t \bmod N_{d}-s \bmod N_{d}\right)\left(N_{d-1}^{-1} \bmod N_{d}\right)\left(N_{d-1} \bmod N_{d}\right) \\
& =t \bmod N_{d}=r_{d}
\end{aligned}
$$

Hence $r \bmod N_{j}=\tilde{r} \bmod N_{j}=r_{j}, j=1, \ldots, d$.
It remains to show that $r \in \mathbb{N}_{0}$ with $0 \leq r<N$ is uniquely determined by its residues $r_{j}, j=1, \ldots, d$. Assume that there exists another number $s \in \mathbb{N}_{0}$ with $0 \leq$ $s<N$ and $s \bmod N_{j}=r_{j}$ for all $j=1, \ldots, d$. Then it holds $(r-s) \bmod N_{j}=0$, $j=1, \ldots, d$. Since the numbers $N_{j}, j=1, \ldots, d$ are pairwise coprime, this implies $N \mid r-s$ and consequently $r-s=0$.

Example 5.14 We are searching for the smallest number $r \in \mathbb{N}_{0}$ with the property

$$
r \bmod 4=1, \quad r \bmod 9=1, \quad r \bmod 25=4
$$

We set $N:=4 \cdot 9 \cdot 5=900$. Since

$$
(9 \cdot 25)^{-1} \bmod 4=1, \quad(4 \cdot 25)^{-1} \bmod 9=1, \quad(4 \cdot 9)^{-1} \bmod 25=16
$$

we obtain by the Lagrangian method

$$
r=(9 \cdot 25 \cdot 1 \cdot 1+4 \cdot 25 \cdot 1 \cdot 1+4 \cdot 9 \cdot 16 \cdot 4) \bmod 900=829
$$

Using the following scheme to compute the divided differences

$$
\begin{array}{l|lll}
N_{1} & {\left[r_{1}\right]} & {\left[r_{1} r_{2}\right]=\frac{r_{2}-r_{1}}{N_{1}} \bmod N_{2}} & {\left[r_{1} r_{2} r_{3}\right]=\frac{\left[r_{1} r_{3}\right]-\left[r_{1} r_{2}\right]}{N_{2}} \bmod N_{3}} \\
N_{2} & {\left[r_{2}\right]} & {\left[r_{1} r_{3}\right]=\frac{r_{3}-r_{1}}{N_{1}} \bmod N_{3}} & \\
N_{3} & {\left[r_{3}\right]} & &
\end{array}
$$

that means in our case

4	1	0	23
9	1	7	
25	4		

we get by Newton's method

$$
\begin{aligned}
r & =\left[r_{1}\right]+\left[r_{1} r_{2}\right] N_{1} N_{2}+\left[r_{1} r_{2} r_{3}\right] N_{1} N_{2} \\
& =1+0 \cdot 4+23 \cdot 4 \cdot 9=829 .
\end{aligned}
$$

The Chinese remainder theorem can be generalized to polynomial rings. In this form it can be used to design fast algorithms for DFT's, see, e.g., [378]. One can employ the Chinese remainder theorem for index permutations in higher dimensional DFT algorithms.

5.3.2 Fast Algorithms for DFT of Composite Length

First we present the Coley-Tukey FFT for $\operatorname{DFT}(N)$, if $N=N_{1} N_{2}$ with $N_{r} \in \mathbb{N} \backslash\{1\}$, $r=1,2$. This algorithm is also called Gentleman-Sande FFT, see [128]. As before, the basic idea consists in evaluating the $\operatorname{DFT}(N)$ by splitting it into the computation of DFT's of smaller lengths N_{1} and N_{2} using the divide-and-conquer technique. For a suitable indexing of the input and output components we employ again a permutation of the index set $J_{N}:=\{0, \ldots, N-1\}$. Let $j_{1}:=j \bmod N_{1}$ denote the nonnegative residue modulo N_{1} of $j \in J_{N}$ and let $j_{2}:=\left\lfloor j / N_{1}\right\rfloor$ be the largest integer being smaller than or equal to j / N_{1}. Then we have

$$
\begin{equation*}
j=j_{1}+j_{2} N_{1} \tag{5.24}
\end{equation*}
$$

Analogously, let $k_{1}:=k \bmod N_{1}$ and $k_{2}:=\left\lfloor k / N_{1}\right\rfloor$ for $k \in J_{N}$ such that $k=$ $k_{1}+k_{2} N_{1}$. We introduce the permutation $\pi: J_{N} \rightarrow J_{N}$ with

$$
\begin{equation*}
\pi(k)=k_{1} N_{2}+k_{2} \tag{5.25}
\end{equation*}
$$

that we will apply for the new indexing during the evaluation of the $\operatorname{DFT}(N)$. Let \mathbf{P}_{N} be the permutation matrix corresponding to the permutation π of J_{N}, i.e.,

$$
\mathbf{P}_{N}:=\left(\delta_{\pi(j)-k}\right)_{j, k=0}^{N-1}
$$

with the Kronecker symbol δ_{j}. Then, for $\mathbf{a}:=\left(a_{j}\right)_{j=0}^{N-1} \in \mathbb{C}^{N}$ we obtain

$$
\mathbf{P}_{N} \mathbf{a}=\left(a_{\pi(j)}\right)_{j=0}^{N-1}
$$

Example 5.15 For $N=6$ with $N_{1}=3$ and $N_{2}=2$, the permutation π of $J_{6}:=$ $\{0, \ldots, 5\}$ is given by

$$
\pi(0)=0, \pi(1)=2, \pi(2)=4, \pi(3)=1, \pi(4)=3, \pi(5)=5
$$

and corresponds to the permutation matrix

$$
\mathbf{P}_{6}:=\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \tag{5.26}\\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right) .
$$

Index permutations play an important role in all FFTs. They are the key for applying the divide-and-conquer technique. Further, they form an essential tool for a precise presentation of the component order in input vectors, intermediate vectors, and output vectors of an FFT.

As in the previous section, we can present the FFT in a sum representation, polynomial representation, and matrix factorization. We start by considering the sum representation of the Cooley-Tukey FFT. From

$$
\hat{a}_{k}:=\sum_{j=0}^{N-1} a_{j} w_{N}^{j k}, \quad k=0, \ldots, N-1,
$$

it follows by inserting the indices as in (5.24) and (5.25) that
$\hat{a}_{k_{1} N_{2}+k_{2}}=\sum_{j_{1}=0}^{N_{1}-1} \sum_{j_{2}=0}^{N_{2}-1} a_{j_{1}+j_{2} N_{1}} w_{N}^{\left(j_{1}+j_{2} N_{1}\right)\left(k_{1} N_{2}+k_{2}\right)}, \quad k_{r}=0, \ldots, N_{r}-1, r=1,2$,
and by

$$
w_{N}^{\left(j_{1}+j_{2} N_{1}\right)\left(k_{1} N_{2}+k_{2}\right)}=w_{N_{1}}^{j_{1} k_{1}} w_{N}^{j_{1} k_{2}} w_{N_{2}}^{j_{2} k_{2}}
$$

further
$\hat{a}_{k_{1} N_{2}+k_{2}}=\sum_{j_{1}=0}^{N_{1}-1} w_{N_{1}}^{j_{1} k_{1}} w_{N}^{j_{1} k_{2}} \sum_{j_{2}=0}^{N_{2}-1} a_{j_{1}+j_{2} N_{1}} w_{N_{2}}^{j_{2} k_{2}}, \quad k_{r}=0, \ldots, N_{r}-1, r=1,2$.
For fixed j_{1}, the inner sum is equal to a $\operatorname{DFT}\left(N_{2}\right)$,

$$
\begin{equation*}
b_{j_{1}+k_{2} N_{1}}:=\sum_{j_{2}=0}^{N_{2}-1} a_{j_{1}+j_{2} N_{1}} w_{N_{2}}^{j_{2} k_{2}}, \quad k_{2}=0, \ldots, N_{2}-1 . \tag{5.28}
\end{equation*}
$$

Therefore, for each fixed $j_{1}=0, \ldots, N_{1}-1$, we first compute this $\operatorname{DFT}\left(N_{2}\right)$. It remains to evaluate

$$
\begin{equation*}
\hat{a}_{k_{1} N_{2}+k_{2}}=\sum_{j_{1}=0}^{N_{1}-1} b_{j_{1}+k_{2} N_{1}} w_{N}^{j_{1} k_{2}} w_{N_{1}}^{j_{1} k_{1}}, \quad k_{r}=0, \ldots, N_{r}-1, r=1,2 . \tag{5.29}
\end{equation*}
$$

Now, we first multiply the obtained intermediate values $b_{j_{1}+k_{2} N_{1}}$ with the twiddle factors $w_{N}^{j_{1} k_{2}}$,

$$
c_{j_{1}+k_{2} N_{1}}:=b_{j_{1}+k_{2} N_{1}} w_{N_{1} N_{2}}^{j_{1} k_{2}}, \quad j_{1}=0, \ldots N_{1}-1, k_{2}=0, \ldots, N_{2}-1
$$

and then compute for each fixed $k_{2}=0, \ldots, N_{2}-1$ the $\operatorname{DFT}\left(N_{1}\right)$ of the form

$$
\hat{a}_{k_{1} N_{2}+k_{2}}=\sum_{j_{1}=0}^{N_{1}-1} c_{j_{1}+k_{2} N_{1}} w_{N_{1}}^{j_{1} k_{1}}, \quad k_{1}=0, \ldots, N_{1}-1
$$

Thus, the original problem to evaluate the $\operatorname{DFT}\left(N_{1} N_{2}\right)$ has been decomposed into evaluating $N_{1} \mathrm{DFT}\left(N_{2}\right)$ and $N_{2} \mathrm{DFT}\left(N_{1}\right)$ according to the divide-and-conquer technique. We summarize the algorithm as follows:

Algorithm 5.16 (Fast Algorithm for DFT($N_{1} N_{2}$))

Input: $N_{1}, N_{2} \in \mathbb{N} \backslash\{1\}, a_{j} \in \mathbb{C}, j=0, \ldots, N_{1} N_{2}-1$.

1. Compute for each $j_{1}=0, \ldots, N_{1}-1$ the $\operatorname{DFT}\left(N_{2}\right)$

$$
b_{j_{1}+k_{2} N_{1}}:=\sum_{j_{2}=0}^{N_{2}-1} a_{j_{1}+j_{2} N_{1}} w_{N_{2}}^{j_{2} k_{2}}, \quad k_{2}=0, \ldots, N_{2}-1
$$

2. Compute the $N_{1} N_{2}$ products

$$
c_{j_{1}+k_{2} N_{1}}:=b_{j_{1}+k_{2} N_{1}} w_{N_{1} N_{2}}^{j_{1} k_{2}}, \quad j_{1}=0, \ldots, N_{1}-1, k_{2}=0, \ldots, N_{2}-1
$$

3. Compute for $k_{2}=0, \ldots, N_{2}-1$ the $\operatorname{DFT}\left(N_{1}\right)$

$$
\hat{a}_{k_{1} N_{2}+k_{2}}:=\sum_{j_{1}=0}^{N_{1}-1} c_{j_{1}+k_{2} N_{1}} w_{N_{1}}^{j_{1} k_{1}}, \quad k_{1}=0, \ldots, N_{1}-1 .
$$

Output: $\hat{a}_{k} \in \mathbb{C}, k=0, \ldots, N_{1} N_{2}-1$.
Using the above method, we indeed save arithmetical operations. While the direct computation of the $\operatorname{DFT}\left(N_{1} N_{2}\right)$ requires $N_{1}^{2} N_{2}^{2}$ complex multiplications and $N_{1} N_{2}\left(N_{1} N_{2}-1\right)$ complex additions, the application of Algorithm 5.16 needs $N_{1} N_{2}\left(N_{1}+N_{2}+1\right)$ complex multiplications and $N_{1} N_{2}\left(N_{1}+N_{2}-2\right)$ complex additions.

If the numbers N_{1} and/or N_{2} can be further factorized, then the method can be recursively applied to the DFT's of length N_{1} and N_{2} in step 1 and step 3 up to remaining prime numbers. In the special case $N_{1} N_{2}=2^{t}$ with $t \in \mathbb{N} \backslash\{1\}$, we can choose $N_{1}=2^{t-1}, N_{2}=2$. Splitting recursively the first factor again, a radix-2 FFT is obtained in the end.

Let us now derive the polynomial representation of (5.27)-(5.29). The computation of the $\operatorname{DFT}\left(N_{1} N_{2}\right)$ is by (5.24) and (5.25) equivalent to evaluating the polynomial

$$
a(z)=\sum_{j_{1}=0}^{N_{1}-1} \sum_{j_{2}=0}^{N_{2}-1} a_{j_{1}+j_{2} N_{1}} z^{j_{1}+j_{2} N_{1}}=\sum_{j_{1}=0}^{N_{1}-1} z^{j_{1}} \sum_{j_{2}=0}^{N_{2}-1} a_{j_{1}+j_{2} N_{1}} z^{j_{2} N_{1}}, \quad z \in \mathbb{C},
$$

of degree $N_{1} N_{2}-1$ at the $N_{1} N_{2}$ knots $w_{N_{1} N_{2}}^{k_{1} N_{2}+k_{2}}$ for $k_{r}=0, \ldots, N_{r}-1, r=1,2$. By $w_{N_{1} N_{2}}^{\left(k_{1} N_{2}+k_{2}\right) j_{2} N_{1}}=w_{N_{2}}^{k_{2} j_{2}}$, the term $z^{j_{2} N_{1}}$ can take for all $N_{1} N_{2}$ knots at most N_{2} different values. Therefore, evaluating $a(z)$ can be reduced to the evaluation of the N_{2} polynomials of degree $N_{1}-1$,

$$
b^{\left(k_{2}\right)}(z):=\sum_{j_{1}=0}^{N_{1}-1} b_{j_{1}}^{\left(k_{2}\right)} z^{j_{1}}, \quad k_{2}=0, \ldots, N_{2}-1
$$

with the coefficients

$$
b_{j_{1}}^{\left(k_{2}\right)}:=\sum_{j_{2}=0}^{N_{2}-1} a_{j_{1}+j_{2} N_{1}} w_{N_{2}}^{k_{2} j_{2}}, \quad j_{1}=0, \ldots, N_{1}-1
$$

at the N_{1} knots $w_{N_{1} N_{2}}^{k_{1} N_{2}+k_{2}}, k_{1}=0, \ldots, N_{1}-1$. To compute the coefficients using (5.28), i.e., $b_{j_{1}}^{\left(k_{2}\right)}=b_{j_{1}+k_{2} N_{1}}$, we have to evaluate the N_{2} polynomials $b^{\left(k_{2}\right)}(z)$ at each of the N_{1} knots (5.29). We summarize this procedure as follows:

Algorithm 5.17 (FFT of $\operatorname{DFT}\left(N_{1} N_{2}\right)$ in Polynomial Representation)

Input: $N_{1}, N_{2} \in \mathbb{N} \backslash\{1\}, a_{j} \in \mathbb{C}, j=0, \ldots, N_{1} N_{2}-1$.

1. Compute for each $j_{1}=0, \ldots, N_{1}-1$ the $\operatorname{DFT}\left(N_{2}\right)$

$$
b_{j_{1}}^{\left(k_{2}\right)}:=\sum_{j_{2}=0}^{N_{2}-1} a_{j_{1}+j_{2} N_{1}} w_{N_{2}}^{j_{2} k_{2}}, \quad k_{2}=0, \ldots, N_{2}-1
$$

2. Evaluate each of the N_{2} polynomials

$$
b^{\left(k_{2}\right)}(z):=\sum_{j_{1}=0}^{N_{1}-1} b_{j_{1}}^{\left(k_{2}\right)} z^{j_{1}}, \quad k_{2}=0, \ldots, N_{2}-1
$$

at the N_{1} knots $w_{N_{1} N_{2}}^{k_{1} N_{2}+k_{2}}, k_{1}=0, \ldots, N_{1}-1$, by $\operatorname{DFT}\left(N_{1}\right)$ and set

$$
\hat{a}_{k_{1} N_{2}+k_{2}}:=b^{\left(k_{2}\right)}\left(w_{N_{1} N_{2}}^{k_{1} N_{2}+k_{2}}\right) .
$$

Output: $\hat{a}_{k} \in \mathbb{C}, k=0, \ldots N_{1} N_{2}-1$.
As before, if N_{1} or N_{2} can be further factorized, we can apply the method recursively and obtain a radix- 2 FFT in the special case $N_{1} N_{2}=2^{t}, t \in \mathbb{N} \backslash\{1\}$.

Finally, we study the matrix representation of the Algorithm 5.16 by showing that the three steps of the algorithm correspond to a factorization of the Fourier matrix $\mathbf{F}_{N_{1} N_{2}}$ into a product of four sparse matrices. In the first step we compute the $N_{1} \operatorname{DFT}\left(N_{2}\right)$ for the N_{1} partial vectors $\left(a_{j_{1}+j_{2} N_{1}}\right)_{j_{2}=0}^{N_{2}-1}, j_{1}=0, \ldots, N_{1}-1$, of the input vector $\mathbf{a}=\left(a_{j}\right)_{j=0}^{N_{1} N_{2}-1} \in \mathbb{C}^{N_{1} N_{2}}$. This is equivalent to the matrix-vector multiplication

$$
\mathbf{b}=\left(b_{k}\right)_{k=0}^{N_{1} N_{2}-1}:=\left(\mathbf{F}_{N_{2}} \otimes \mathbf{I}_{N_{1}}\right) \mathbf{a}
$$

The multiplication of the components of the intermediate vector $\mathbf{b} \in \mathbb{C}^{N}$ with the twiddle factors in the second step can be equivalently represented by a multiplication with a diagonal matrix $\mathbf{D}_{N_{1} N_{2}}$, i.e.,

$$
\mathbf{c}=\left(c_{k}\right)_{k=0}^{N_{1} N_{2}-1}:=\mathbf{D}_{N_{1} N_{2}} \mathbf{b}
$$

where

$$
\mathbf{D}_{N_{1} N_{2}}:=\operatorname{diag}\left(\mathbf{I}_{N_{1}}, \mathbf{W}_{N_{1}}, \ldots, \mathbf{W}_{N_{1}}^{N_{2}-1}\right)=\left(\begin{array}{llll}
\mathbf{I}_{N_{1}} & & & \\
& \mathbf{W}_{N_{1}} & & \\
& & \ddots & \\
& & & \mathbf{W}_{N_{1}}^{N_{2}-1}
\end{array}\right)
$$

with $\mathbf{W}_{N_{1}}:=\operatorname{diag}\left(w_{N_{1} N_{2}}^{r}\right)_{r=0}^{N_{1}-1}$.
Finally in the third step, we apply $N_{2} \mathrm{DFT}\left(N_{1}\right)$ to the partial vectors $\left(c_{j_{1}+k_{2} N_{1}}\right)_{j_{1}=0}^{N_{1}-1}, k_{2}=0, \ldots, N_{2}-1$, of $\mathbf{c} \in \mathbb{C}^{N_{1} N_{2}}$. This can be described by

$$
\mathbf{P}_{N_{1} N_{2}} \hat{\mathbf{a}}=\left(\hat{a}_{\pi(\ell)}\right)_{\ell=0}^{N_{1} N_{2}-1}:=\left(\mathbf{I}_{N_{2}} \otimes \mathbf{F}_{N_{1}}\right) \mathbf{c} .
$$

Here, π denotes the permutation in (5.25) of output indices and $\mathbf{P}_{N_{1} N_{2}}$ is the corresponding permutation matrix.

In summary, Algorithm 5.16 corresponds to the following factorization of the Fourier matrix,

$$
\begin{equation*}
\mathbf{F}_{N_{1} N_{2}}=\mathbf{P}_{N_{1} N_{2}}^{\top}\left(\mathbf{I}_{N_{2}} \otimes \mathbf{F}_{N_{1}}\right) \mathbf{D}_{N_{1} N_{2}}\left(\mathbf{F}_{N_{2}} \otimes \mathbf{I}_{N_{1}}\right) \tag{5.30}
\end{equation*}
$$

Example 5.18 We consider the case $N=6$ with $N_{1}=3$ and $N_{2}=2$. Then it follows from (5.30) that

$$
\begin{gathered}
\mathbf{F}_{6}=\mathbf{P}_{6}^{\top}\left(\mathbf{I}_{2} \otimes \mathbf{F}_{3}\right) \mathbf{D}_{6}\left(\mathbf{F}_{2} \otimes \mathbf{I}_{3}\right)= \\
\mathbf{P}_{6}^{\top}\left(\begin{array}{ccccccc}
1 & 1 & 1 & 0 & 0 & 0 \\
1 & w_{3} & w_{3}^{2} & 0 & 0 & 0 \\
1 & w_{3}^{2} & w_{3} & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 \\
0 & 0 & 0 & 1 & w_{3} & w_{3}^{2} \\
0 & 0 & 0 & 1 & w_{3}^{2} & w_{3}
\end{array}\right)\left(\begin{array}{ccccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & w_{6} & 0 \\
0 & 0 & 0 & 0 & 0 & w_{3}
\end{array}\right)\left(\begin{array}{cccccc}
1 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 \\
1 & 0 & 0 & -1 & 0 & 0 \\
0 & 1 & 0 & 0 & -1 & 0 \\
0 & 0 & 1 & 0 & 0 & -1
\end{array}\right)
\end{gathered}
$$

with the permutation matrix \mathbf{P}_{6} in (5.26). The factorization of \mathbf{F}_{6} yields the signal flow graph in Fig. 5.8.

We want to illustrate the presented fast algorithm of $\operatorname{DFT}\left(N_{1} N_{2}\right)$ from a different point of view. For that purpose, we order the components of the input and output vectors in N_{1}-by- N_{2} matrices $\mathbf{A}:=\left(a_{j_{1}, j_{2}}\right)_{j_{1}, j_{2}=0}^{N_{1}-1, N_{2}-1}$ and $\hat{\mathbf{A}}:=\left(\hat{a}_{k_{1}, k_{2}}\right)_{k_{1}, k_{2}=0}^{N_{1}-1, N_{2}-1}$ using the following procedure,

$$
a_{j_{1}, j_{2}}:=a_{j_{1}+j_{2} N_{1}}, \quad \hat{a}_{k_{1}, k_{2}}:=a_{k_{1} N_{2}+k_{2}}, \quad k_{r}, j_{r}=0, \ldots, N_{r}-1, r=1,2 .
$$

Fig. 5.8 Signal flow graph of a fast algorithm of DFT(6)

Fig. 5.9 Realization of a fast algorithm for DFT(6)

Then the first step of Algorithm 5.16 corresponds to $N_{1} \mathrm{DFT}\left(N_{2}\right)$ of the row vectors of \mathbf{A} and the third step to $N_{2} \operatorname{DFT}\left(N_{1}\right)$ of the column vectors of the matrix $\mathbf{C}:=$ $\left(c_{j_{1}, j_{2}}\right)_{j_{1}, j_{2}=0}^{N_{1}-1, N_{2}-1}$ with the intermediate values $c_{j_{1}, j_{2}}:=c_{j_{1}+j_{2} N_{1}}$ from step 2 as components. Figure 5.9 illustrates this representation of the DFT(6).

There exist more efficient algorithms for realizing $\operatorname{DFT}\left(N_{1} N_{2}\right)$, if $\left(N_{1}, N_{2}\right)=1$, i.e., if N_{1} and N_{2} are coprime, see, e.g., $[138,257]$.

5.3.3 Radix-4 FFT and Split-Radix FFT

In this subsection we present a radix-4 FFT and a split-radix FFT. The advantage of these algorithms compared to radix- 2 FFTs consists in lower computational costs.

The radix-4 FFT works for $\operatorname{DFT}(N)$ with $N=4^{t}, t \in \mathbb{N} \backslash\{1\}$, and can be seen as a special case of the decomposition in the last subsection by taking $N_{1}=4$ and $N_{2}=$ $N / 4$, where N_{2} is decomposed iteratively into smaller powers of 4 . The split-radix FFT uses a coupling of the radix-4 FFT and the radix-2 FFT. We restrict ourselves to only one form of the radix-2 FFT and the split-radix FFT. Similar algorithms can be derived by variations of ordering of the multiplication with twiddle factors and by changing the order of components in input and output vectors, see also Sect. 5.2. Since both algorithms are again based on butterfly operations, one can also derive a version that is suitable for parallel programming similarly as in Sect. 5.2.4.

We start with the radix-4 FFT. Let $N=4^{t}$ with $t \in \mathbb{N} \backslash\{1\}$. We decompose the sum in (5.1) into the four partial sums

$$
\begin{aligned}
\hat{a}_{k} & =\sum_{j=0}^{N / 4-1}\left(a_{j} w_{N}^{j k}+a_{N / 4+j} w_{N}^{(N / 4+j) k}+a_{N / 2+j} w_{N}^{(N / 2+j) k}+a_{3 N / 4+j} w_{N}^{(3 N / 4+j) k}\right) \\
& =\sum_{j=0}^{N / 4-1}\left(a_{j}+(-\mathrm{i})^{k} a_{N / 4+j}+(-1)^{k} a_{N / 2+j}+\mathrm{i}^{k} a_{3 N / 4+j}\right) w_{N}^{j k}
\end{aligned}
$$

and consider the output values with respect to the remainders of their indices modulo 4,

$$
\begin{aligned}
\hat{a}_{4 k} & =\sum_{j=0}^{N / 4-1}\left(a_{j}+a_{N / 4+j}+a_{N / 2+j}+a_{3 N / 4+j}\right) w_{N / 4}^{j k}, \\
\hat{a}_{4 k+1} & =\sum_{j=0}^{N / 4-1}\left(a_{j}-\mathrm{i} a_{N / 4+j}-a_{N / 2+j}+\mathrm{i} a_{3 N / 4+j}\right) w_{N}^{j} w_{N / 4}^{j k}, \\
\hat{a}_{4 k+2} & =\sum_{j=0}^{N / 4-1}\left(a_{j}-a_{N / 4+j}+a_{N / 2+j}-a_{3 N / 4+j}\right) w_{N}^{2 j} w_{N / 4}^{j k}, \\
\hat{a}_{4 k+3} & =\sum_{j=0}^{N / 4-1}\left(a_{j}+\mathrm{i} a_{N / 4+j}-a_{N / 2+j}-\mathrm{i} a_{3 N / 4+j}\right) w_{N}^{3 j} w_{N / 4}^{j k}, \quad k=0, \ldots, N / 4-1 .
\end{aligned}
$$

In this way, the $\mathrm{DFT}(N)$ is decomposed into

- $N / 4 \mathrm{DFT}(4)$ of the vectors $\left(a_{j}, a_{N / 4+j}, a_{N / 2+j}, a_{3 N / 4+j}\right)^{\top}, j=0, \ldots$, $N / 4-1$,
- $3 N / 4$ complex multiplications with the twiddle factors $w_{N}^{j r}, j=0, \ldots, N / 4-1$, $r=1,2,3$,
- $4 \mathrm{DFT}(N / 4)$ of the vectors $\left(a_{j}+(-\mathrm{i})^{r} a_{N / 4+j}+(-1)^{r} a_{N / 2+j}+\mathrm{i}^{r} a_{3 N / 4+j}\right)_{j=0}^{N / 4-1}$, $r=0,1,2,3$.

The $N / 4 \mathrm{DFT}(4)$ and the multiplications with the twiddle factors are now executed in the first step of the algorithm, while the $4 \mathrm{DFT}(N / 4)$ are individually decomposed using the above approach in a recursive manner. After t reduction steps we obtain the transformed vector $\hat{\mathbf{a}}$. With this procedure, the $\operatorname{DFT}(N)$ is realized using only DFT(4) and multiplications with twiddle factors.

We now modify the algorithm by computing the DFT(4) with the radix-2 FFT thereby reducing the required number of additions. Then again, the algorithm only consists of butterfly operations. Figure 5.11 shows the signal flow graph of the radix-4 FFT for the $\mathrm{DFT}(16)$. The matrix representation of the radix-4 FFT can be obtained as follows: Let $N=4^{t}=2^{2 t}$. Then the first step of the radix-4 FFT corresponds to the factorization

$$
\mathbf{F}_{N}=\mathbf{Q}_{N}\left(\mathbf{I}_{4} \otimes \mathbf{F}_{N / 4}\right) \tilde{\mathbf{D}}_{N}\left(\mathbf{F}_{4} \otimes \mathbf{I}_{N / 4}\right)
$$

with

$$
\begin{aligned}
& \mathbf{Q}_{N}:=\mathbf{P}_{N}\left(\mathbf{I}_{2} \otimes \mathbf{P}_{N / 2}\right)\left(\mathbf{P}_{4} \otimes \mathbf{I}_{N / 4}\right), \\
& \tilde{\mathbf{D}}_{N}:=\operatorname{diag}\left(\mathbf{I}_{N / 4}, \tilde{\mathbf{W}}_{N / 4}, \tilde{\mathbf{W}}_{N / 4}^{2}, \tilde{\mathbf{W}}_{N / 4}^{3}\right), \quad \tilde{\mathbf{W}}_{N / 4}:=\operatorname{diag}\left(w_{N}^{j}\right)_{j=0}^{N / 4-1}
\end{aligned}
$$

Computing the DFT (4) with the radix-2 FFT of Algorithm 5.2 yields by (5.9) that

$$
\mathbf{F}_{4}=\mathbf{P}_{4}\left(\mathbf{I}_{2} \otimes \mathbf{F}_{2}\right) \mathbf{D}_{4}\left(\mathbf{F}_{2} \otimes \mathbf{I}_{2}\right)
$$

and thus

$$
\begin{aligned}
\mathbf{F}_{N} & =\mathbf{Q}_{N}\left(\mathbf{I}_{4} \otimes \mathbf{F}_{N / 4}\right) \tilde{\mathbf{D}}_{N}\left[\mathbf{P}_{4}\left(\mathbf{I}_{2} \otimes \mathbf{F}_{2}\right) \mathbf{D}_{4}\left(\mathbf{F}_{2} \otimes \mathbf{I}_{2}\right)\right] \otimes \mathbf{I}_{N / 4} \\
& =\mathbf{Q}_{N}\left(\mathbf{I}_{4} \otimes \mathbf{F}_{N / 4}\right)\left(\mathbf{P}_{4} \otimes \mathbf{I}_{N / 4}\right) \tilde{\mathbf{T}}_{2 t}\left(\mathbf{I}_{2} \otimes \mathbf{F}_{2} \otimes \mathbf{I}_{N / 4}\right)\left(\mathbf{D}_{4} \otimes \mathbf{I}_{N / 4}\right)\left(\mathbf{F}_{2} \otimes \mathbf{I}_{N / 2}\right) \\
& =\mathbf{P}_{N}\left(\mathbf{I}_{2} \otimes \mathbf{P}_{N / 2}\right)\left(\mathbf{I}_{4} \otimes \mathbf{F}_{N / 4}\right) \tilde{\mathbf{T}}_{2 t}\left(\mathbf{I}_{2} \otimes \mathbf{F}_{2} \otimes \mathbf{I}_{N / 4}\right)\left(\mathbf{D}_{4} \otimes \mathbf{I}_{N / 4}\right)\left(\mathbf{F}_{2} \otimes \mathbf{I}_{N / 2}\right)
\end{aligned}
$$

with $\mathbf{D}_{4}:=\operatorname{diag}(1,1,1,-\mathrm{i})^{\top}$ and

$$
\tilde{\mathbf{T}}_{2 t}:=\left(\mathbf{P}_{4}^{\top} \otimes \mathbf{I}_{N / 4}\right) \tilde{\mathbf{D}}_{N}\left(\mathbf{P}_{4} \otimes \mathbf{I}_{N / 4}\right)=\operatorname{diag}\left(\mathbf{I}_{N / 4}, \tilde{\mathbf{W}}_{N / 4}^{2}, \tilde{\mathbf{W}}_{N / 4}, \tilde{\mathbf{W}}_{N / 4}^{3}\right)
$$

The iterative application of the above factorization finally leads to the following matrix factorization that corresponds to the radix-4 FFT for the $\mathrm{DFT}(N)$ with $N=4^{t}$,

$$
\begin{equation*}
\mathbf{F}_{N}=\mathbf{R}_{N} \prod_{n=1}^{2 t} \tilde{\mathbf{T}}_{n}\left(\mathbf{I}_{N / 2^{n}} \otimes \mathbf{F}_{2} \otimes \mathbf{I}_{2^{n-1}}\right) \tag{5.31}
\end{equation*}
$$

with the bitreversal matrix \mathbf{R}_{N} and

$$
\tilde{\mathbf{T}}_{n}:=\left\{\begin{array}{ll}
\mathbf{I}_{N / 2^{n}} \otimes \mathbf{D}_{4} \otimes \mathbf{I}_{2^{n-2}} & n \equiv 0 \bmod 2, \\
\mathbf{I}_{N / 2^{n+1}} \otimes \tilde{\mathbf{D}}_{2^{n+1}} & n \equiv 1 \bmod 2,
\end{array} \quad n=1, \ldots, 2 t,\right.
$$

where

$$
\tilde{\mathbf{D}}_{2^{n+1}}:=\operatorname{diag}\left(\mathbf{I}_{2^{n-1}}, \tilde{\mathbf{W}}_{2^{n-1}}^{2}, \tilde{\mathbf{W}}_{2^{n-1}}, \tilde{\mathbf{W}}_{2^{n-1}}^{3}\right)
$$

A comparison with the factorization of \mathbf{F}_{N} corresponding to the radix-2 FFT of Algorithm 5.2 shows that the two algorithms differ with regard to the twiddle factors. The output values are again in bit-reversed order.

We determine the numbers $\mu(t)$ and $\alpha(t)$ of nontrivial real multiplications and additions needed for executing the radix-4 FFT for the $\operatorname{DFT}(N)$ with $N=4^{t}, t \in$ $\mathbb{N} \backslash\{1\}$.

For computing the $\mathrm{DFT}(4 N)$ using the radix-4 algorithm we have to execute 4 $\operatorname{DFT}(N), 8 N$ complex additions as well as $3 N$ complex multiplications with twiddle factors $w_{4 N}^{r j}, j=0, \ldots, N-1, r=1,2,3$. Among the multiplications with twiddle factors, there are 4 trivial multiplications for $(j, r)=(0,1),(0,2),(0,3),(N / 2,2)$ and 4 multiplications with 8th primitive roots of unity for $(j, r)=(N / 2,1)$, $(N / 2,3),(N / 4,2),(3 N / 4,2)$. With the considerations in Sect. 5.2 .5 we conclude

$$
\begin{aligned}
& \mu(t+1)=4 \mu(t)+9 \cdot 4^{t}-16 \\
& \alpha(t+1)=4 \alpha(t)+9 \cdot 4^{t}-16+16 \cdot 4^{t}=4 \alpha(t)+25 \cdot 4^{t}-16, \quad t \in \mathbb{N},
\end{aligned}
$$

with initial values $\mu(1)=0, \alpha(1)=16$. The explicit solutions of these linear difference equations are of the form

$$
\begin{align*}
& \mu(t)=\frac{9}{4} t 4^{t}-\frac{43}{12} 4^{t}+\frac{16}{3}=\frac{9}{8} N \log _{4} N-\frac{43}{12} N+\frac{16}{3}, \tag{5.32}\\
& \alpha(t)=\frac{25}{4} t 4^{t}-\frac{43}{12} 4^{t}+\frac{16}{3}=\frac{25}{8} N \log _{4} N-\frac{43}{12} N+\frac{16}{3}, \quad t \in \mathbb{N} .
\end{align*}
$$

A comparison of (5.32) with (5.17) and (5.18) shows that the application of the radix-4 FFT saves approximately 25% of nontrivial arithmetical operations. This saving is achieved only by a more advantageous choice of twiddle factors. Now, among the twiddle factors, there are more primitive 2^{r} th roots of unity with $r=$ $0,1,2,3$.

The idea can be similarly used to construct radix-8 and radix-16 FFTs, etc. Here, a transfer from a radix- 2^{r} FFT to a radix- 2^{r+1} FFT further reduces the computational cost, while at the same time this makes the algorithm more and more complex.

In the following, we derive the split-radix FFT. This algorithm is due to Yavne [387] and became popular under the name "split-radix FFT" in [91]. Compared to the radix- 4 FFT , it reduces the computational cost further.

Let now $N=2^{t}$ with $t \in \mathbb{N} \backslash\{1,2\}$. From (5.1) we obtain

$$
\begin{aligned}
\hat{a}_{2 k} & =\sum_{j=0}^{N / 2-1}\left(a_{j}+a_{N / 2+j}\right) w_{N / 2}^{j k}, \quad k=0, \ldots, N / 2-1, \\
\hat{a}_{4 k+1} & =\sum_{j=0}^{N / 4-1}\left(\left(a_{j}-a_{N / 2+j}\right)-\mathrm{i}\left(a_{N / 4+j}-a_{3 N / 4+j}\right)\right) w_{N}^{j} w_{N / 4}^{j k}, k=0, \ldots, N / 4-1, \\
\hat{a}_{4 k+3} & =\sum_{j=0}^{N / 4-1}\left(\left(a_{j}-a_{N / 2+j}\right)+\mathrm{i}\left(a_{N / 4+j}-a_{3 N / 4+j}\right)\right) w_{N}^{3 j} w_{N / 4}^{j k}, k=0, \ldots, N / 4-1 .
\end{aligned}
$$

In this way the $\mathrm{DFT}(N)$ is decomposed into

- $N / 2 \mathrm{DFT}(2)$ of the vectors $\left(a_{j}, a_{N / 2+j}\right)^{\top}, j=0, \ldots, N / 2-1$,
- $N / 2$ complex additions to compute the sums in the outer brackets,
- $N / 2$ complex multiplications with the twiddle factors $w_{N}^{j r}, j=0, \ldots, N / 4-1$, $r=1,3$,
- $1 \mathrm{DFT}(N / 2)$ and $2 \mathrm{DFT}(N / 4)$.

This decomposition is then again applied to the $\operatorname{DFT}(N / 2)$ and to the two $\operatorname{DFT}(N / 4)$. We iteratively continue until we finally have to compute $N / 2 \mathrm{DFT}(2)$ to obtain the output values which are again in bit-reversed order. Figure 5.12 shows the signal flow graph of the split-radix FFT for the DFT(16).

Let again $\mu(t)$ and $\alpha(t)$ be the numbers of needed real multiplications and additions for a transform length $N=2^{t}, t \in \mathbb{N} \backslash\{1\}$. To evaluate the $\operatorname{DFT}(2 N)$, the split-radix FFT requires one $\operatorname{DFT}(N)$, two $\mathrm{DFT}(N / 2), 3 N$ complex additions, and N complex multiplications with the twiddle factors $w_{2 N}^{r j}, j=0, \ldots, N / 2-1$, $r=1,3$. Among the multiplications with twiddle factors, there are two trivial multiplications for $(j, r)=(0,1),(0,3)$ and two multiplications with primitive 8th roots of unity for $(j, r)=(N / 4,1),(N / 4,3)$. Thus we obtain

$$
\begin{align*}
& \mu(t+1)=\mu(t)+2 \mu(t-1)+3 \cdot 2^{t}-8 \tag{5.33}\\
& \alpha(t+1)=\alpha(t)+2 \alpha(t-1)+3 \cdot 2^{t}-8+6 \cdot 2^{t}
\end{align*}
$$

With the initial values

$$
\begin{aligned}
& \mu(2)=0, \alpha(2)=16 \\
& \mu(3)=4, \alpha(3)=52
\end{aligned}
$$

we conclude that

$$
\begin{align*}
& \mu(t)=t 2^{t}-3 \cdot 2^{t}+4=N \log _{2} N-3 N+4, \tag{5.34}\\
& \alpha(t)=3 t 2^{t}-3 \cdot 2^{t}+4=3 N \log _{2} N-3 N+4, \quad t \in \mathbb{N} \backslash\{1\}
\end{align*}
$$

We summarize:
Theorem 5.19 For $N=4^{t}, t \in \mathbb{N}$, the computational cost of the radix-4 FFT for $\operatorname{DFT}(N)$ amounts

$$
\alpha(t)+\mu(t)=\frac{17}{2} N \log _{4} N-\frac{43}{6} N+\frac{32}{3}
$$

real arithmetical operations.
For $N=2^{t}, t \in \mathbb{N} \backslash\{1\}$, the computational cost of the split-radix FFT for $\operatorname{DFT}(N)$ adds up to

$$
\alpha(t)+\mu(t)=4 N \log _{2} N-6 N+8 .
$$

Note that comparing the computational cost of the radix-4 FFT with that of the radix-2 FFT or the split-radix FFT, one needs to keep in mind that $N=4^{t}=2^{2 t}$, i.e., for $N=4^{t}$ one needs to compare $\alpha(t)+\mu(t)$ for radix- 4 FFT with $\alpha(2 t)+\mu(2 t)$ for radix-2 FFT and split-radix FFT.

In Tables 5.2 and 5.3 , we present the number of required nontrivial real multiplications and additions for the radix- 2 FFT, the radix- 4 FFT, the radix- 8 FFT, and the split-radix FFT. For comparison of the algorithm structures, we also present the signal flow graphs of the radix-2 FFT, the radix-4 FFT, and the split-radix FFT for the DFT(16) in Figs. 5.10, 5.11, and 5.12.

Table 5.2 Number of real multiplications required by various FFTs for $\mathrm{DFT}(N)$

Table 5.3 Number of real additions required by various FFTs for $\operatorname{DFT}(N)$

N	Radix-2	Radix-4	Radix-8	Split-radix
16	24	20		20
32	88			68
64	264	208	204	196
128	712			516
256	1800	1392		1284
512	4360		13,204	3076
1024	10,248	7856		7172

N	Radix-2	Radix-4	Radix-8	Split-radix
16	152	148		148
32	408			388
64	1032	976	972	964
128	2504			2308
256	5896	5488		5380
512	13,566		12,420	12,292
1024	30,728	28,336		27,652

Fig. 5.10 Signal flow graph of the radix-2 FFT for DFT(16)

A modification of the split-radix FFT in [179] is based on the decomposition

$$
\hat{a}_{k}=\sum_{j=0}^{N / 2-1} a_{2 j} w_{N / 2}^{j k}+w_{N}^{k} \sum_{j=0}^{N / 4-1} a_{4 j+1} w_{N / 4}^{j k}+w_{N}^{-k} \sum_{j=0}^{N / 4-1} a_{4 j-1} w_{N / 4}^{j k}
$$

where $a_{-1}:=a_{N-1}$. Here, we get a conjugate complex pair of twiddle factors instead of w_{N}^{k} and $w_{N}^{3 k}$. The corresponding algorithm succeeds to reduce the twiddle factor load by rescaling and achieves a reduction of flops by further 5.6\% compared to the usual split-radix FFT. A direct generalization of the split-radix FFT for $N=$ p^{t} with $t \in \mathbb{N}$ and a small prime (e.g., $p=3$) has been considered in [363]. We remark that it is not known up to now how many flops are at least needed for an

Fig. 5.11 Signal flow graph of the radix-4 FFT for DFT(16)

FFT of length N and whether there exist an FFT algorithm that needs even less operations than the split-radix algorithm in [179]. On the other hand, it has been shown in [246] that there exists no linear algorithm to compute the $\operatorname{DFT}(N)$ with less than $\mathscr{O}(N \log N)$ arithmetical operations.

5.3.4 Rader FFT and Bluestein FFT

Most previous FFTs are suitable for a special length $N=2^{t}$ or even $N=4^{t}$ with $t \in \mathbb{N} \backslash\{1\}$. For DFT applications with a different length, one can surely enlarge them by adding zero entries in the data vector to achieve the next radix-

Fig. 5.12 Signal flow graph of the split-radix FFT for DFT(16)

2 length. However, these longer data vectors have a changed structure and are not always desirable. In this subsection, we want to consider FFTs that can work with different lengths N and still achieve a computational cost of $\mathscr{O}(N \log N)$ arithmetical operations.

We start with the Rader FFT [302] that can be used to evaluate a $\operatorname{DFT}(p)$, where $p \in \mathbb{N}$ is a prime number. Again, the permutation of input and output values will play here an essential role. But the basic idea to realize the DFT is now completely different from the previously considered radix FFTs. The idea of the Rader FFT is that the $\operatorname{DFT}(p)$ can be rewritten using a cyclic convolution of length $p-1$, which can then be realized efficiently by an FFT described in the previous subsections.

The Rader FFT is frequently applied to prime lengths $p \leq 13$. For larger p, the Bluestein FFT is usually preferred because of its simpler structure. However, the Rader FFT is mathematically interesting, since it requires a small number of multiplications.

Let now $p \geq 3$ be a prime number. The transformed vector $\hat{\mathbf{a}} \in \mathbb{C}^{p}$ of $\mathbf{a} \in \mathbb{C}^{p}$ is given by

$$
\begin{equation*}
\hat{a}_{k}:=\sum_{j=0}^{p-1} a_{j} w_{p}^{j k}, \quad k=0, \ldots, p-1, w_{p}:=\mathrm{e}^{-2 \pi \mathrm{i} / p} \tag{5.35}
\end{equation*}
$$

Since p is a prime number, the index set $\{1,2, \ldots, p-1\}$ forms the multiplicative $\operatorname{group}(\mathbb{Z} / p \mathbb{Z})^{*}$ of integers modulo p. This group is cyclic of order $\varphi(p)=p-1$, where φ denotes Euler's totient function. If g is a generating element of $(\mathbb{Z} / p \mathbb{Z})^{*}$, then each index $j \in\{1,2, \ldots, p-1\}$ can be uniquely represented in the form

$$
j=g^{u} \bmod p, \quad u \in\{0, \ldots p-2\} .
$$

For example, for $p=5$ we can choose $g=2$ as generating element of $(\mathbb{Z} / 5 \mathbb{Z})^{*}$ and find

$$
\begin{equation*}
1=2^{0}, \quad 2=2^{1}, \quad 4=2^{2}, \quad 3=2^{3} \bmod 5 \tag{5.36}
\end{equation*}
$$

In (5.35) we now consider the two indices $j=0$ and $k=0$ separately and replace $j, k \in\{1, \ldots, p-1\}$ by

$$
j=g^{u} \bmod p, \quad k=g^{v} \bmod p, \quad u, v=0, \ldots, p-2 .
$$

Then

$$
\begin{align*}
\hat{a}_{0} & =c_{0}^{0}+c_{1}^{0}, \tag{5.37}\\
\hat{a}_{g v} & =c_{0}^{0}+c_{v}^{1}, \quad v=0, \ldots, p-2, \tag{5.38}
\end{align*}
$$

with

$$
\begin{align*}
c_{0}^{0} & :=a_{0}, \quad c_{1}^{0}:=\sum_{u=0}^{p-2} a_{g u}, \\
c_{v}^{1} & :=\sum_{u=0}^{p-2} a_{g^{u}} w_{p}^{g^{u+v}}, \quad v=0, \ldots, p-2 . \tag{5.39}
\end{align*}
$$

Obviously, (5.39) describes a cyclic correlation of the ($p-1$)-dimensional vectors

$$
\mathbf{a}_{1}:=\left(a_{g^{u}}\right)_{u=0}^{p-2}, \quad \mathbf{w}^{1}:=\left(w_{p}^{g^{u}}\right)_{u=0}^{p-2} .
$$

The cyclic correlation is closely related to the cyclic convolution considered in Sects. 3.2.3 and 3.3. Employing the flip matrix

$$
\mathbf{J}_{p-1}^{\prime}=\left(\delta_{(j+k) \bmod (p-1)}\right)_{j, k=0}^{p-2} \in \mathbb{R}^{(p-1) \times(p-1)}
$$

and the vector $\mathbf{c}^{1}:=\left(c_{v}^{1}\right)_{v=0}^{p-2}$, Eq. (5.39) can be written in the form

$$
\begin{equation*}
\mathbf{c}^{1}=\operatorname{cor}\left(\mathbf{a}_{1}, \overline{\mathbf{w}}^{1}\right):=\left(\mathbf{J}_{p-1}^{\prime} \mathbf{a}_{1}\right) * \mathbf{w}^{1}=\left(\operatorname{circ} \mathbf{w}^{1}\right)\left(\mathbf{J}_{p-1}^{\prime} \mathbf{a}_{1}\right), \tag{5.40}
\end{equation*}
$$

such that (5.37)-(5.40) implies

$$
\hat{a}_{0}=c_{0}^{0}+c_{1}^{0}, \quad \hat{\mathbf{a}}_{1}=c_{0}^{0} \mathbf{1}_{p-1}+\mathbf{c}^{1} .
$$

Here $\mathbf{1}_{p-1}:=(1)_{j=0}^{p-2}$ denotes the vector with $p-1$ ones as components. Thus the $\operatorname{DFT}(p)$ can be evaluated using a cyclic convolution of length $p-1$ and $2(p-1)$ additions.

We illustrate the permutations above by a matrix representation. Let \mathbf{P}_{p} and \mathbf{Q}_{p} be the permutation matrices that realize the following rearrangements of vector components,

$$
\mathbf{P}_{p} \hat{\mathbf{a}}:=\binom{\hat{a}_{0}}{\hat{\mathbf{a}}_{1}}, \quad \mathbf{Q}_{p} \mathbf{a}:=\binom{a_{0}}{\mathbf{J}_{p-1}^{\prime} \mathbf{a}_{1}} .
$$

Obviously we have $\mathbf{Q}_{p}=\left(1 \oplus \mathbf{J}_{p-1}^{\prime}\right) \mathbf{P}_{p}$, where

$$
\mathbf{A} \oplus \mathbf{B}:=\operatorname{diag}(\mathbf{A}, \mathbf{B})=\left(\begin{array}{ll}
\mathbf{A} & \\
& \mathbf{B}
\end{array}\right)
$$

denotes the block diagonal matrix of two square matrices \mathbf{A} and \mathbf{B}. For example, for $p=5$ we obtain with (5.36)

$$
\underbrace{\left(\begin{array}{llll}
1 & & & \\
& 1 & & \\
& & 1 & \\
& & & 1 \\
& & 1
\end{array}\right)}_{\mathbf{P}_{5}:=}\left(\begin{array}{l}
\hat{a}_{0} \\
\hat{a}_{1} \\
\hat{a}_{2} \\
\hat{a}_{3} \\
\hat{a}_{4}
\end{array}\right)=\left(\begin{array}{l}
\hat{a}_{0} \\
\hat{a}_{1} \\
\hat{a}_{2} \\
\hat{a}_{4} \\
\hat{a}_{3}
\end{array}\right), \underbrace{\left(\begin{array}{llll}
1 & & & \\
& 1 & & \\
& & 1 & \\
& & & 1 \\
& & 1 &
\end{array}\right)}_{\mathbf{Q}_{5}:=}\left(\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3} \\
a_{4}
\end{array}\right)=\left(\begin{array}{l}
a_{0} \\
a_{1} \\
a_{3} \\
a_{4} \\
a_{2}
\end{array}\right) .
$$

From $\hat{\mathbf{a}}=\mathbf{F}_{p} \mathbf{a}$ it follows by (5.37)-(5.40) now

$$
\begin{equation*}
\mathbf{P}_{p} \hat{\mathbf{a}}=\mathbf{P}_{p} \mathbf{F}_{p} \mathbf{Q}_{p}^{\top} \mathbf{Q}_{p} \mathbf{a}=\tilde{\mathbf{F}}_{p} \mathbf{Q}_{p} \mathbf{a} \tag{5.41}
\end{equation*}
$$

with the matrix $\tilde{\mathbf{F}}_{p}$ being composed by row and column permutations of \mathbf{F}_{p},

$$
\tilde{\mathbf{F}}_{p}:=\mathbf{P}_{p} \mathbf{F}_{p} \mathbf{Q}_{p}^{\top}=\left(\begin{array}{c|c}
1 & \mathbf{1}_{p-1}^{\top} \tag{5.42}\\
\hline \mathbf{1}_{p-1} & \operatorname{circ} \mathbf{w}^{1}
\end{array}\right) .
$$

A simple computation shows that $\tilde{\mathbf{F}}_{p}=\mathbf{A}_{p}\left(1 \oplus \operatorname{circ} \mathbf{w}^{1}\right)$ with

$$
\mathbf{A}_{p}:=\left(\begin{array}{c|c}
1 & -\mathbf{1}_{p-1}^{\top} \tag{5.43}\\
\hline \mathbf{1}_{p-1} & \mathbf{I}_{p-1}
\end{array}\right) .
$$

For $p=5$ we particularly obtain

$$
\left(\begin{array}{l}
\hat{a}_{0} \\
\hat{a}_{1} \\
\hat{a}_{2} \\
\hat{a}_{4} \\
\hat{a}_{3}
\end{array}\right)=\underbrace{\left(\begin{array}{c|cccc}
1 & 1 & 1 & 1 & 1 \\
\hline 1 & w_{5} & w_{5}^{3} & w_{5}^{4} & w_{5}^{2} \\
1 & w_{5}^{2} & w_{5} & w_{5}^{3} & w_{5}^{4} \\
1 & w_{5}^{4} & w_{5}^{2} & w_{5} & w_{5}^{3} \\
1 & w_{5}^{3} & w_{5}^{4} & w_{5}^{2} & w_{5}
\end{array}\right)}_{\tilde{\mathbf{F}}_{5}:=}\left(\begin{array}{c}
a_{0} \\
a_{1} \\
a_{3} \\
a_{4} \\
a_{2}
\end{array}\right) .
$$

The essential part of the Rader FFT, the cyclic convolution of length $p-1$ in (5.40), can now be computed by employing a fast algorithm for cyclic convolutions based on Theorem 3.31. The multiplication with a circulant matrix can be realized with 3 $\operatorname{DFT}(p-1)$ and $p-1$ multiplications. Indeed, (3.47) implies

$$
\left(\operatorname{circ} \mathbf{w}^{1}\right)\left(\mathbf{J}_{p-1}^{\prime} \mathbf{a}_{1}\right)=\mathbf{F}_{p-1}^{-1}\left(\operatorname{diag}\left(\mathbf{F}_{p-1} \mathbf{w}^{1}\right)\right) \mathbf{F}_{p-1}\left(\mathbf{J}_{p-1} \mathbf{a}_{1}\right) .
$$

Assuming that $p-1$ can be factorized into powers of small prime factors, we may use an FFT as described in Sect. 5.3.2. For small integers $p-1$ there exist different efficient convolution algorithms, see, e.g., [36, 257], based on the Chinese remainder theorem.

Example 5.20 In the case $p=5$ we particularly have

$$
\begin{aligned}
& \operatorname{circ} \mathbf{w}^{1}=\mathbf{F}_{4}^{-1} \operatorname{diag}\left(\mathbf{F}_{4} \mathbf{w}^{1}\right) \mathbf{F}_{4} \\
& =\frac{1}{4} \mathbf{P}_{4}\left(\begin{array}{ll}
\mathbf{F}_{2} & \\
& \mathbf{F}_{2}
\end{array}\right) \overline{\mathbf{D}}_{4}\left(\begin{array}{cc}
\mathbf{I}_{2} & \mathbf{I}_{2} \\
\mathbf{I}_{2} & -\mathbf{I}_{2}
\end{array}\right)\left(\operatorname{diag} \widehat{\mathbf{w}}^{1}\right) \mathbf{P}_{4}\left(\begin{array}{ll}
\mathbf{F}_{2} & \\
& \mathbf{F}_{2}
\end{array}\right) \mathbf{D}_{4}\left(\begin{array}{ll}
\mathbf{I}_{2} & \mathbf{I}_{2} \\
\mathbf{I}_{2} & -\mathbf{I}_{2}
\end{array}\right)
\end{aligned}
$$

with the even-odd permutation matrix \mathbf{P}_{4} and $\mathbf{D}_{4}=\operatorname{diag}(1,1,1,-i)^{\top}$. Here the factorization (5.9) of \mathbf{F}_{4} is used.

A generalization of the Rader FFT is the Winograd FFT that can be applied for fast computation of $\operatorname{DFT}\left(p^{t}\right)$, where $p \in \mathbb{N}$ is a prime and $t \in \mathbb{N} \backslash\{1\}$. It employs the special group structure of $\left(\mathbb{Z} / p^{t} \mathbb{Z}\right)^{*}$, for details see [378].

The Bluestein FFT is also based on the idea to write the $\mathrm{DFT}(N)$ as a convolution. The obtained circulant N-by- N matrix can in turn be embedded into a circulant M -by- M matrix, where $M=2^{t}, t \in \mathbb{N}$, satisfies $2 N-2 \leq M<4 N$. To compute the obtained convolution of length M, a radix- 2 FFT or split-radix FFT can be employed in order to end up with an $\mathscr{O}(N \log N)$ algorithm.

Let now $N \in \mathbb{N} \backslash\{1,2\}$ be given, where N is not a power of 2 . With

$$
k j=\frac{1}{2}\left(k^{2}+j^{2}-(k-j)^{2}\right)
$$

we can rewrite (5.1) as

$$
\hat{a}_{k}=\sum_{j=0}^{N-1} a_{j} w_{N}^{k j}=w_{N}^{k^{2} / 2} \sum_{j=0}^{N-1} a_{j} w_{N}^{j^{2} / 2} w_{N}^{-(k-j)^{2} / 2}, \quad k=0, \ldots, N-1 .
$$

Multiplication with $w_{N}^{-k^{2} / 2}$ on both sides gives

$$
\begin{equation*}
z_{k}:=w_{N}^{-k^{2} / 2} \hat{a}_{k}=\sum_{j=0}^{N-1}\left(a_{j} w_{N}^{j^{2} / 2}\right) w_{N}^{-(k-j)^{2} / 2}=\sum_{j=0}^{N-1} b_{j} h_{k-j}, \quad k=0, \ldots, N-1 \tag{5.44}
\end{equation*}
$$

with

$$
\mathbf{b}:=\left(b_{j}\right)_{j=0}^{N-1}=\left(a_{j} w_{N}^{j^{2} / 2}\right)_{j=0}^{N-1}, \quad \mathbf{h}:=\left(h_{j}\right)_{j=0}^{N-1}=\left(w_{N}^{-j^{2} / 2}\right)_{j=0}^{N-1}
$$

We observe that

$$
h_{k-j}=w_{N}^{-(k-j)^{2} / 2}=h_{j-k}
$$

such that the circulant matrix $\operatorname{circ} \mathbf{h}=\left(h_{(j-k)} \bmod N\right)_{j, k=0}^{N-1}$ is symmetric. With $\mathbf{z}:=$ $\left(z_{k}\right)_{k=0}^{N-1}$, Eq. (5.44) can now be rewritten as

$$
\mathbf{z}=(\operatorname{diag} \mathbf{h}) \mathbf{F}_{N} \mathbf{a}=\mathbf{b} * \mathbf{h}=(\operatorname{circ} \mathbf{h}) \mathbf{b}=(\operatorname{circ} \mathbf{h})(\operatorname{diag} \overline{\mathbf{h}}) \mathbf{a},
$$

where $\overline{\mathbf{h}}:=\left(\bar{h}_{j}\right)_{j=0}^{N-1}$ is the conjugate complex vector. Thus, we obtain the matrix factorization

$$
\mathbf{F}_{N}=(\operatorname{diag} \mathbf{h})^{-1}(\operatorname{circ} \mathbf{h})(\operatorname{diag} \overline{\mathbf{h}}) .
$$

This representation of \mathbf{F}_{N} is not yet efficient. But the idea is now to embed circ \mathbf{h} into a circulant M-by- M matrix circ \mathbf{h}^{1} with $M=2^{t}, t \in \mathbb{N}$, and $2 N-2 \leq M<$ $4 N$. We determine $\mathbf{h}^{1}=\left(h_{j}^{1}\right)_{j=0}^{M-1} \in \mathbb{C}^{M}$ with

$$
h_{j}^{1}:= \begin{cases}h_{j} & 0 \leq j \leq N-1, \tag{5.45}\\ 0 & N \leq j \leq M-N, \\ h_{M-j} & M-N+1 \leq j \leq M-1\end{cases}
$$

For example, for $N=7$, we have to choose $M=16=2^{4}$ such that $12 \leq M<28$, and \mathbf{h}^{1} is of the form

$$
\mathbf{h}^{1}=\left(h_{0}, h_{1}, h_{2}, h_{3}, h_{4}, h_{5}, h_{6}, 0,0,0, h_{6}, h_{5}, h_{4}, h_{3}, h_{2}, h_{1}\right)^{\top}
$$

with $h_{j}=w_{7}^{-j^{2} / 2}$. Observe that $\operatorname{circ} \mathbf{h}^{1}$ contains $\operatorname{circ} \mathbf{h}$ as a submatrix at the left upper corner. In order to compute the convolution $\mathbf{h} * \mathbf{b}=(\operatorname{circ} \mathbf{h}) \mathbf{b}$, we therefore consider the enlarged vector $\mathbf{b}^{1}=\left(b_{j}^{1}\right)_{j=0}^{M-1}$ with

$$
b_{j}^{1}:= \begin{cases}b_{j} & 0 \leq j \leq N-1 \tag{5.46}\\ 0 & N \leq j \leq M-1\end{cases}
$$

such that the computation of $(\operatorname{circ} \mathbf{h}) \mathbf{b}$ is equivalent with evaluating the first N components of $\left(\operatorname{circ} \mathbf{h}^{1}\right) \mathbf{b}^{1}$.

We summarize the Bluestein FFT as follows:

Algorithm 5.21 (Bluestein FFT)

Input: $N \in \mathbb{N} \backslash\{1\}, \mathbf{a}=\left(a_{j}\right)_{j=0}^{N-1} \in \mathbb{C}^{N}$.

1. Determine $M:=2^{t}$ with $t:=\left\lfloor\log _{2}(4 N-1)\right\rfloor$.
2. Compute $\mathbf{b}:=\left(a_{j} w_{N}^{j^{2} / 2}\right)_{j=0}^{N-1}$ and $\mathbf{h}:=\left(w_{N}^{-j^{2} / 2}\right)_{j=0}^{N-1}$.
3. Enlarge \mathbf{h} to \mathbf{h}^{1} and \mathbf{b} to $\mathbf{b}_{\hat{1}}^{1}$ according to (5.45) and (5.46).
4. Compute $\hat{\mathbf{h}}^{1}=\mathbf{F}_{M} \mathbf{h}^{1}$ and $\hat{\mathbf{b}}^{1}=\mathbf{F}_{M} \mathbf{b}^{1}$ using a radix- 2 FFT of length M.
5. Compute $\hat{\mathbf{z}}:=\hat{\mathbf{h}}^{1} \circ \hat{\mathbf{b}}^{1}=\left(\hat{h}_{k}^{1} \hat{b}_{k}^{1}\right)_{k=0}^{M-1}$.
6. Compute $\mathbf{z}=\mathbf{F}_{M}^{-1} \hat{\mathbf{z}}$ using a radix- 2 FFT of length M.
7. Calculate $\hat{\mathbf{a}}:=\left(w_{N}^{j^{2} / 2} z_{j}\right)_{j=0}^{N-1}$.

Output: $\hat{\mathbf{a}} \in \mathbb{C}^{N}$.

The numerical effort for the Bluestein FFT is governed by the $3 \mathrm{DFT}(M)$, but since $M<4 N$, it easily follows that the computational cost of the Bluestein FFT is still $\mathscr{O}(N \log N)$.

Remark 5.22 Let us give some further notes on FFTs. This field has been intensively studied within the last 60 years, and a lot of extensions have been suggested that we are not able to present in this chapter. Therefore we only want to give a few further ideas that can be found in the literature and refer, e.g., to [47, 92, 163, 362].

1. An early attempt to obtain a fast DFT algorithm is due to Goerzel [132], who applied a recursive scheme to the simultaneous computation of $c(x)=$ $\sum_{k=0}^{N-1} a_{k} \cos k x$ and $s(x)=\sum_{k=0}^{N-1} a_{k} \sin k x$. The Goerzel algorithm has a higher complexity than FFTs, but it is of interest for computing only a small number of selected values of $c(x)$ and $s(x)$.
2. Bruun's FFT [50] uses z-transform filters to reduce the number of complex multiplications compared to the usual FFT.
3. Winograd developed a theory of multiplicative complexity of bilinear forms that can be exploited for fast convolution algorithms using a minimal number of multiplications, see [377, 379].
4. The FFT has also been generalized to finite fields, where the notion "cyclotomic FFT" has been coined. It is again based on a transfer to several circular convolutions, see, e.g., [381] and the references therein.

5.3.5 Multidimensional FFTs

For fixed $N_{1}, N_{2} \in \mathbb{N} \backslash\{1\}$, we consider the two-dimensional $\mathrm{DFT}\left(N_{1} \times N_{2}\right)$ of the form

$$
\hat{\mathbf{A}}=\mathbf{F}_{N_{1}} \mathbf{A} \mathbf{F}_{N_{2}},
$$

where $\mathbf{A}=\left(a_{k_{1}, k_{2}}\right)_{k_{1}, k_{2}=0}^{N_{1}-1, N_{2}-1}$ and $\hat{\mathbf{A}}=\left(\hat{a}_{n_{1}, n_{1}}\right)_{n_{1}, n_{2}=0}^{N_{1}-1, N_{2}-1}$ are complex N_{1}-by- N_{2} matrices as in Sect. 4.4.2. For the entries $\hat{a}_{n_{1}, n_{2}}$ we obtain from (4.52)
$\hat{a}_{n_{1}, n_{2}}=\sum_{k_{1}=0}^{N_{1}-1} \sum_{k_{2}=0}^{N_{2}-1} a_{k_{1}, k_{2}} w_{N_{1}}^{k_{1} n_{1}} w_{N_{2}}^{k_{2} n_{2}}, \quad n_{1}=0, \ldots, N_{1}-1 ; n_{2}=0, \ldots, N_{2}-1$.

The fast evaluation of $\hat{\mathbf{A}}$ can be performed using only one-dimensional FFTs.

First we present the row-column method for the two-dimensional DFT $\left(N_{1} \times N_{2}\right)$. Let $\mathbf{A}^{\top}=\left(\mathbf{a}_{0}\left|\mathbf{a}_{1}\right| \ldots \mid \mathbf{a}_{N_{1}-1}\right)$, where $\mathbf{a}_{k_{1}} \in \mathbb{C}^{N_{2}}, k_{1}=0, \ldots, N_{1}-1$, denote the N_{1} rows of \mathbf{A}. Then the product

$$
\mathbf{F}_{N_{2}} \mathbf{A}^{\top}=\left(\mathbf{F}_{N_{2}} \mathbf{a}_{0}\left|\mathbf{F}_{N_{2}} \mathbf{a}_{1}\right| \ldots \mid \mathbf{F}_{N_{2}} \mathbf{a}_{N_{1}-1}\right)
$$

can be performed by applying an FFT of length N_{2} to each row of A separately. We obtain $\mathbf{B}^{\top}=\left(\mathbf{A} \mathbf{F}_{N_{2}}\right)^{\top}=\left(\hat{\mathbf{a}}_{0}\left|\hat{\mathbf{a}}_{1}\right| \ldots \mid \hat{\mathbf{a}}_{N_{1}-1}\right)$ and therefore $\hat{\mathbf{A}}=\mathbf{F}_{N_{1}} \mathbf{B}$. Let now $\mathbf{B}=\left(\mathbf{b}_{0}\left|\mathbf{b}_{1}\right| \ldots \mid \mathbf{b}_{N_{2}-1}\right)$ with columns $\mathbf{b}_{k_{2}} \in \mathbb{C}^{N_{1}}, k_{2}=0, \ldots, N_{2}-1$. Then

$$
\hat{\mathbf{A}}=\mathbf{F}_{N_{1}} \mathbf{B}=\left(\mathbf{F}_{N_{1}} \mathbf{b}_{0}\left|\mathbf{F}_{N_{1}} \mathbf{b}_{1}\right| \ldots \mid \mathbf{F}_{N_{1}} \mathbf{b}_{N_{2}-1}\right)
$$

can be performed by applying an FFT of length N_{1} to each column of B. Obviously we can also compute $\tilde{\mathbf{B}}=\mathbf{F}_{N_{1}} \mathbf{A}$ by applying a one-dimensional $\operatorname{DFT}\left(N_{1}\right)$ to each column of \mathbf{A} in the first step and then compute $\tilde{\mathbf{B}} \mathbf{F}_{N_{2}}$ by applying a $\operatorname{DFT}\left(N_{2}\right)$ to each row of $\tilde{\mathbf{B}}$ in the second step.

By reshaping the matrix $\mathbf{A}=\left(a_{k_{1}, k_{2}}\right)_{k_{1}, k_{2}}^{N_{1}-1, N_{2}-1}$ into a vector $\mathbf{a}=\operatorname{vec} \mathbf{A} \in \mathbb{C}^{N_{1} N_{2}}$ with $a_{k_{1}+N_{1} k_{2}}=a_{k_{1}, k_{2}}$ we can transfer the two-dimensional DFT into a matrixvector product. Applying Theorem 3.42 we obtain

$$
\operatorname{vec} \hat{\mathbf{A}}=\left(\mathbf{F}_{N_{2}} \otimes \mathbf{F}_{N_{1}}\right) \operatorname{vec} \mathbf{A}=\left(\mathbf{F}_{N_{2}} \otimes \mathbf{I}_{N_{1}}\right)\left(\mathbf{I}_{N_{2}} \otimes \mathbf{F}_{N_{1}}\right) \operatorname{vec} \mathbf{A} .
$$

The multiplication vec $\mathbf{B}=\left(\mathbf{I}_{N_{2}} \otimes \mathbf{F}_{N_{1}}\right)$ vec \mathbf{A} is equivalent with applying the onedimensional FFT of length N_{2} to each row of \mathbf{A}, and the multiplication $\left(\mathbf{F}_{N_{2}} \otimes\right.$ $\mathbf{I}_{N_{1}}$) vec \mathbf{B} is equivalent with applying the one-dimensional FFT of length N_{1} to each column of \mathbf{B}.

We also present the sum representation of the row-column method for the twodimensional $\operatorname{DFT}\left(N_{1} \times N_{2}\right)$ of $\mathbf{A}=\left(a_{k_{1}, k_{2}}\right)_{k_{1}, k_{2}=0}^{N_{1}-1, N_{2}-1}$. We rewrite the double sum in (5.47),

$$
\hat{a}_{n_{1}, n_{2}}=\sum_{k_{1}=0}^{N_{1}-1} w_{N_{1}}^{k_{1} n_{1}} \underbrace{\left(\sum_{k_{2}=0}^{N_{2}-1} a_{k_{1}, k_{2}} w_{N_{2}}^{k_{2} n_{2}}\right)}_{b_{k_{1}, n_{2}}:=} .
$$

Now, for each $k_{1} \in I_{N_{1}}$ we first compute the vectors $\left(b_{k_{1}, n_{2}}\right)_{n_{2}=0}^{N_{2}-1}$ using a onedimensional $\operatorname{DFT}\left(N_{2}\right)$ applied to the k_{1} th row of \mathbf{A}. Then we compute

$$
\hat{a}_{n_{1}, n_{2}}=\sum_{k_{1}=0}^{N_{1}-1} b_{k_{1}, n_{2}} w_{N_{1}}^{k_{1} n_{1}},
$$

i.e., for each $n_{2} \in I_{N_{2}}$ we calculate the one-dimensional $\operatorname{DFT}\left(N_{1}\right)$ of the n_{2} th column of the intermediate array $\left(b_{k_{1}, n_{2}}\right)_{k_{1}, n_{2}=0}^{N_{1}-1, N_{2}-1}$. In summary, we can compute a general $\operatorname{DFT}\left(N_{1} \times N_{2}\right)$ by means of $N_{1} \operatorname{DFT}\left(N_{2}\right)$ and $N_{2} \operatorname{DFT}\left(N_{1}\right)$.

Algorithm 5.23 (Row-Column Method for DFT $\left(N_{1} \times N_{2}\right)$)

Input: $N_{1}, N_{2} \in \mathbb{N} \backslash\{1\}, \mathbf{A} \in \mathbb{C}^{N_{1} \times N_{2}}$.

1. Compute the $\operatorname{DFT}\left(N_{2}\right)$ for each of the N_{1} rows of \mathbf{A} by one-dimensional FFT's to obtain

$$
\mathbf{B}^{\top}=\left(\mathbf{A} \mathbf{F}_{N_{2}}\right)^{\top}=\left(\hat{\mathbf{a}}_{0}\left|\hat{\mathbf{a}}_{1}\right| \ldots \mid \hat{\mathbf{a}}_{N_{1}-1}\right) .
$$

2. Compute the $\operatorname{DFT}\left(N_{1}\right)$ for each of the N_{2} columns of $\mathbf{B}=\left(\mathbf{b}_{0}\left|\mathbf{b}_{1}\right| \ldots \mid \mathbf{b}_{N_{2}-1}\right)$ by one-dimensional FFT's to obtain

$$
\hat{\mathbf{A}}=\mathbf{F}_{N_{1}} \mathbf{B}=\left(\hat{\mathbf{b}}_{0}\left|\hat{\mathbf{b}}_{1}\right| \ldots \mid \hat{\mathbf{b}}_{N_{2}-1}\right)
$$

Output: $\hat{\mathbf{A}} \in \mathbb{C}^{N_{1} \times N_{2}}$.
The computational cost to apply Algorithm 5.23 is $\mathscr{O}\left(N_{1} N_{2}\left(\log N_{1}\right)\left(\log N_{2}\right)\right)$ assuming that a one-dimensional FFT of length N requires $\mathscr{O}(N \log N)$ floating point operations.

Now we describe the nesting method for the two-dimensional DFT $\left(N_{1} \times N_{2}\right)$. Compared to the row-column method considered above, we can reduce the computational cost of the two-dimensional DFT using the known factorization of the Fourier matrix \mathbf{F}_{N} that we have found to derive the one-dimensional FFTs. As shown in (5.30), for $N=M_{1} M_{2}$ we have the matrix factorization

$$
\mathbf{F}_{N}=\mathbf{P}_{N}\left(\mathbf{I}_{M_{2}} \otimes \mathbf{F}_{M_{1}}\right) \mathbf{D}_{M_{1} M_{2}}\left(\mathbf{F}_{M_{2}} \otimes \mathbf{I}_{M_{1}}\right)
$$

with the block diagonal matrix

$$
\mathbf{D}_{M_{1} M_{2}}=\operatorname{diag}\left(\mathbf{I}_{M_{1}}, \mathbf{W}_{M_{1}}, \ldots, \mathbf{W}_{M_{1}}^{M_{2}-1}\right)=\left(\begin{array}{llll}
\mathbf{I}_{M_{1}} & & & \\
& \mathbf{W}_{M_{1}} & & \\
& & \ddots & \\
& & & \mathbf{W}_{M_{1}}^{M_{2}-1}
\end{array}\right)
$$

where $\mathbf{W}_{M_{1}}=\operatorname{diag}\left(w_{N}^{r}\right)_{r=0}^{M_{1}-1}$. Assuming now that we have the factorizations $N_{1}=K_{1} K_{2}$ and $N_{2}=L_{1} L_{2}$ with $K_{1}, K_{2}, L_{1}, L_{2} \in \mathbb{N} \backslash\{1\}$ the two-dimensional $\operatorname{DFT}\left(N_{1} \times N_{2}\right)$ can be rewritten as

$$
\begin{equation*}
\hat{\mathbf{A}}=\mathbf{P}_{N_{1}}\left(\mathbf{I}_{K_{2}} \otimes \mathbf{F}_{K_{1}}\right) \mathbf{D}_{K_{1} K_{2}}\left(\mathbf{F}_{K_{2}} \otimes \mathbf{I}_{K_{1}}\right) \mathbf{A}\left(\mathbf{F}_{L_{2}} \otimes \mathbf{I}_{L_{1}}\right) \mathbf{D}_{L_{1} L_{2}}\left(\mathbf{I}_{L_{2}} \otimes \mathbf{F}_{L_{1}}\right) \mathbf{P}_{N_{2}}^{\top} \tag{5.48}
\end{equation*}
$$

where we have used that $\mathbf{F}_{N_{2}}$ and all matrix factors in the factorization up to $\mathbf{P}_{N_{2}}$ are symmetric. Now the computation of $\hat{\mathbf{A}}$ can be performed as follows:

Algorithm 5.24 (Nesting Method for DFT $\left(N_{1} \times N_{2}\right)$)

Input: $N_{1}, N_{2} \in \mathbb{N} \backslash\{1\}, \mathbf{A} \in \mathbb{C}^{N_{1} \times N_{2}}$.

1. Compute $\mathbf{B}:=\left(\mathbf{F}_{K_{2}} \otimes \mathbf{I}_{K_{1}}\right) \mathbf{A}\left(\mathbf{F}_{L_{2}} \otimes \mathbf{I}_{L_{1}}\right)$.
2. Compute $\mathbf{C}:=\mathbf{D}_{K_{1} K_{2}} \mathbf{B} \mathbf{D}_{L_{1} L_{2}}$ by

$$
c_{n_{1}, n_{2}}=b_{n_{1}, n_{2}} d_{n_{1}, n_{2}}, \quad n_{1}=0, \ldots, N_{1}-1 ; n_{2}=0, \ldots N_{2}-1,
$$

where $d_{n_{1}, n_{2}}:=\mathbf{D}_{K_{1} K_{2}}\left(n_{1}, n_{1}\right) \mathbf{D}_{L_{1} L_{2}}\left(n_{2}, n_{2}\right)$ is the product of the n_{1} th diagonal element of $\mathbf{D}_{K_{1} K_{2}}$ and the n_{2} th diagonal element of $\mathbf{D}_{L_{1} L_{2}}$.
3. Compute $\hat{\mathbf{A}}:=\mathbf{P}_{N_{1}}\left(\mathbf{I}_{K_{2}} \otimes \mathbf{F}_{K_{1}}\right) \mathbf{C}\left(\mathbf{I}_{L_{2}} \otimes \mathbf{F}_{L_{1}}\right) \mathbf{P}_{N_{2}}^{\top}$.

Output: $\hat{\mathbf{A}} \in \mathbb{C}^{N_{1} \times N_{2}}$.
By reshaping the matrices to vectors using the vectorization as in Theorem 3.42, the factorization (5.48) can be rewritten as

$$
\begin{align*}
& \operatorname{vec} \hat{\mathbf{A}}=\left(\mathbf{P}_{N_{2}}\left(\mathbf{I}_{L_{2}} \otimes \mathbf{F}_{L_{1}}\right) \mathbf{D}_{L_{1} L_{2}}\left(\mathbf{F}_{L_{2}} \otimes \mathbf{I}_{L_{1}}\right)\right) \\
& \quad \otimes\left(\mathbf{P}_{N_{1}}\left(\mathbf{I}_{K_{1}} \otimes \mathbf{F}_{K_{1}}\right) \mathbf{D}_{K_{1} K_{2}}\left(\mathbf{F}_{K_{2}} \otimes \mathbf{I}_{K_{1}}\right)\right) \operatorname{vec} \mathbf{A} \\
& =\left(\mathbf{P}_{N_{2}} \otimes \mathbf{P}_{N_{1}}\right)\left(\left(\mathbf{I}_{L_{2}} \otimes \mathbf{F}_{L_{1}}\right) \otimes\left(\mathbf{I}_{K_{1}} \otimes \mathbf{F}_{K_{1}}\right)\right)\left(\mathbf{D}_{L_{1} L_{2}} \otimes \mathbf{D}_{K_{1} K_{2}}\right) \\
& \quad \cdot\left(\left(\mathbf{F}_{L_{2}} \otimes \mathbf{I}_{L_{1}}\right) \otimes\left(\mathbf{F}_{K_{2}} \otimes \mathbf{I}_{K_{1}}\right)\right) \operatorname{vec} \mathbf{A} . \tag{5.49}
\end{align*}
$$

Hence successive multiplication with these matrices corresponds to the three steps of Algorithm 5.24. Compared to the application of the row-column method connected with the considered DFT of composite length, we save multiplications assuming that the diagonal values $d_{n_{1}, n_{2}}$ of the matrix $\mathbf{D}_{L_{1} L_{2}} \otimes \mathbf{D}_{K_{1} K_{2}}$ in step 2 of Algorithm 5.24 are precomputed beforehand. The structure of the diagonal matrices implies that the multiplication with $\mathbf{D}_{K_{1} K_{2}}$ from the left and with $\mathbf{D}_{L_{1} L_{2}}$ from the right that needs to be performed using the row-column method requires $\left(N_{1}-K_{1}\right) N_{2}+\left(N_{2}-L_{1}\right) N_{1}$ multiplications, while step 2 of Algorithm 5.23 needs $N_{1} N_{2}-L_{1} K_{1}$ multiplications with precomputed values $d_{n_{1} n_{2}}$. Here we have taken into consideration that $d_{n_{1}, n_{2}}=1$ for $n_{1}=0, \ldots, K_{1}-1$ and $n_{2}=0, \ldots, L_{1}-1$. In the special case $N=N_{1}=N_{2}$ and $L_{1}=K_{1}$ we save $\left(N-K_{1}\right)^{2}$ multiplications. If N_{1} and N_{2} are powers of two, then the nesting approach can also be applied using the full factorization of the Fourier matrices $\mathbf{F}_{N_{1}}$ and $\mathbf{F}_{N_{2}}$ as given in (5.10), and we can save multiplications at each level if applying the nesting method instead of multiplying with the diagonal matrices of twiddle factors from left and right. If particularly $N_{1}=N_{2}=N$, then we have $\log _{2} N$ levels and save $\left(\log _{2} N\right)\left(\frac{N}{2}\right)^{2}$ multiplications compared to the row-column method.

Now we consider higher dimensional FFTs, i.e., $d \in \mathbb{N} \backslash\{1,2\}$ is of moderate size. We generalize the row-column method and the nesting method to compute the
d-dimensional DFT. Let $\mathbf{N}=\left(N_{j}\right)_{j=1}^{d} \in(\mathbb{N} \backslash\{1\})^{d}$ and the index set

$$
I_{\mathbf{N}}:=I_{N_{1}} \times I_{N_{2}} \ldots \times I_{N_{d}}
$$

with $I_{N_{j}}:=\left\{0, \ldots, N_{j}-1\right\}$ be given. Recall that for a d-dimensional array $\mathbf{A}=$ $\left(a_{\mathbf{k}}\right)_{\mathbf{k} \in I_{\mathbf{N}}}$ of size $N_{1} \times \ldots \times N_{d}$ the d-dimensional DFT $\hat{\mathbf{A}}=\left(\hat{a}_{\mathbf{n}}\right)_{n \in I_{\mathrm{N}}}$ is given by (4.54), i.e.,

$$
\hat{a}_{\mathbf{n}}:=\sum_{k_{1}=0}^{N_{1}-1} \ldots \sum_{k_{d}=0}^{N_{d}-1} a_{\mathbf{k}} w_{N_{1}}^{k_{1} n_{1}} \ldots w_{N_{d}}^{k_{d} n_{d}}=\sum_{\mathbf{k} \in I_{\mathbf{N}}} a_{\mathbf{k}} \mathrm{e}^{-2 \pi \mathrm{i} \mathbf{n} \cdot(\mathbf{k} / \mathbf{N})}
$$

For moderate dimension d, a generalized row-column method is often used for the computation of the d-dimensional DFT of $\mathbf{A}=\left(a_{\mathbf{k}}\right)_{\mathbf{k} \in I_{\mathbf{N}}}$. We rewrite the multiple sum above,

$$
\hat{a}_{n_{1}, n_{2}, \ldots, n_{d}}=\sum_{k_{1}=0}^{N_{1}-1} w_{N_{1}}^{k_{1} n_{1}} \underbrace{\left(\sum_{k_{2}=0}^{N_{2}-1} \ldots \sum_{k_{d}=0}^{N_{d}-1} a_{\mathbf{k}} w_{N_{2}}^{k_{2} n_{2}} \ldots w_{N_{d}}^{k_{d} n_{d}}\right)}_{b_{k_{1}, n_{2}, \ldots, n_{d}}:=} .
$$

Thus for a given array $\left(b_{k_{1}, n_{2}, \ldots, n_{d}}\right)$ of size $N_{1} \times \ldots \times N_{d}$, we compute

$$
\hat{a}_{n_{1}, n_{2}, \ldots, n_{d}}=\sum_{k_{1}=0}^{N_{1}-1} b_{k_{1}, n_{2}, \ldots, n_{d}} w_{N_{1}}^{k_{1} n_{1}}
$$

i.e., for each $\left(n_{2}, \ldots, n_{d}\right)^{\top} \in I_{N_{2}} \times \ldots \times I_{N_{d}}$ we calculate a one-dimensional $\operatorname{DFT}\left(N_{1}\right)$. The arrays $\mathbf{B}_{k_{1}}=\left(b_{k_{1}, n_{2}, \ldots, n_{d}}\right)_{\left(n_{2}, \ldots, n_{d}\right)^{\top} \in I_{N_{2}} \times \ldots \times I_{N_{d}}}$ are obtained by a ($d-1$)-dimensional $\operatorname{DFT}\left(N_{2} \times \ldots \times N_{d}\right)$. The computational costs to compute the d-dimensional DFT are therefore

$$
N_{2} \ldots N_{d} \operatorname{DFT}\left(N_{1}\right)+N_{1} \operatorname{DFT}\left(N_{2} \times \ldots \times N_{d}\right) .
$$

Recursive application of this idea with regard to each dimension thus requires for the d-dimensional $\operatorname{DFT}\left(N_{1} \times \ldots \times N_{d}\right)$

$$
\begin{equation*}
N_{1} \cdots N_{d}\left(\frac{1}{N_{1}} \operatorname{DFT}\left(N_{1}\right)+\frac{1}{N_{2}} \operatorname{DFT}\left(N_{2}\right)+\ldots+\frac{1}{N_{d}} \operatorname{DFT}\left(N_{d}\right)\right) \tag{5.50}
\end{equation*}
$$

with computational cost of $\mathscr{O}\left(N_{1} N_{2} \ldots N_{d} \log _{2}\left(N_{1} N_{2} \ldots N_{d}\right)\right)$. If we apply the mapping vec : $\mathbb{C}^{N_{1} \times \ldots \times N_{d}} \rightarrow \mathbf{C}^{P}$ with $P=N_{1} N_{2} \cdots N_{d}$ introduced in Sect. 4.4.3
and reshape the array $\mathbf{A}=\left(a_{\mathbf{k}}\right)_{\mathbf{k} \in I_{\mathbf{N}}} \in \mathbb{C}^{N_{1} \times \ldots \times N_{d}}$ into a vector vec $\mathbf{A}=\mathbf{a}=$ $\left(a_{k}\right)_{k=0}^{P-1}$ by

$$
a_{k_{1}+N_{1} k_{2}+N_{1} N_{2} k_{3}+\ldots+N_{1} \ldots N_{d-1} k_{d}}:=a_{\mathbf{k}}, \quad \mathbf{k}=\left(k_{j}\right)_{j=1}^{d} \in I_{\mathbf{N}}
$$

then we can rewrite the d-dimensional DFT as a matrix-vector product

$$
\begin{aligned}
\operatorname{vec} \hat{\mathbf{A}} & =\left(\mathbf{F}_{N_{d}} \otimes \cdots \otimes \mathbf{F}_{N_{1}}\right) \operatorname{vec} \mathbf{A} \\
& =\left(\mathbf{F}_{N_{d}} \otimes \mathbf{I}_{P / N_{d}}\right) \ldots\left(\mathbf{I}_{P / N_{1} N_{2}} \otimes \mathbf{F}_{N_{2}} \otimes \mathbf{I}_{N_{1}}\right)\left(\mathbf{I}_{P / N_{1}} \otimes \mathbf{F}_{N_{1}}\right) \operatorname{vec} \mathbf{A}
\end{aligned}
$$

Thus the row-column method can be reinterpreted as the application of the onedimensional DFT $\left(N_{j}\right)$ to subvectors of vec \mathbf{A}. Similarly as for the two-dimensional FFT, we can now again employ the factorization of the Fourier matrices $\mathbf{F}_{N_{j}}$ and reorder the multiplications to save operations by the nesting method. Using, for example, a similar factorization as in (5.49), we arrive for $d=3$ with $N_{1}=K_{1} K_{2}$, $N_{2}=L_{1} L_{2}$, and $N_{3}=M_{1} M_{2}$ that

$$
\begin{aligned}
& \operatorname{vec} \hat{\mathbf{A}}=\left(\mathbf{P}_{N_{3}} \otimes \mathbf{P}_{N_{2}} \otimes \mathbf{P}_{N_{1}}\right)\left(\left(\mathbf{I}_{M_{2}} \otimes \mathbf{F}_{M_{1}}\right) \otimes\left(\mathbf{I}_{L_{2}} \otimes \mathbf{F}_{L_{1}}\right) \otimes\left(\mathbf{I}_{K_{1}} \otimes \mathbf{F}_{K_{1}}\right)\right) \\
& \quad \cdot\left(\mathbf{D}_{M_{1} M_{2}} \otimes \mathbf{D}_{L_{1} L_{2}} \otimes \mathbf{D}_{K_{1} K_{2}}\right)\left(\left(\mathbf{F}_{M_{2}} \otimes \mathbf{I}_{M_{1}}\right) \otimes\left(\mathbf{F}_{L_{2}} \otimes \mathbf{I}_{L_{1}}\right) \otimes\left(\mathbf{F}_{K_{2}} \otimes \mathbf{I}_{K_{1}}\right)\right) \operatorname{vec} \mathbf{A} .
\end{aligned}
$$

As for the two-dimensional DFT, we can save multiplications by precomputing the diagonal matrix $\mathbf{D}_{M_{1} M_{2}} \otimes \mathbf{D}_{L_{1} L_{2}} \otimes \mathbf{D}_{K_{1} K_{2}}$ and multiplying it to the vectorized array at once. For comparison, using the row-column method we multiply with the three matrices $\mathbf{D}_{M_{1} M_{2}} \otimes \mathbf{I}_{N_{2}} \otimes \mathbf{I}_{N_{1}}, \mathbf{I}_{N_{3}} \otimes \mathbf{D}_{L_{1} L_{2}} \otimes \mathbf{I}_{N_{1}}$, and $\mathbf{I}_{N_{3}} \otimes \mathbf{I}_{N_{2}} \otimes \mathbf{D}_{K_{1} K_{2}}$ separately.

Generally, if we assume that the one-dimensional radix-2 FFT requires $\frac{N}{2} \log _{2} N$ complex multiplications and $N \log _{2} N$ complex additions, then the row-column method using this radix-2 FFT for the d-dimensional DFT $\left(N_{1} \times \ldots \times N_{d}\right)$ with $N_{1}=$ $\ldots=N_{d}=N=2^{t}$ requires $\left(\log _{2} N\right)^{d} \frac{N^{d}}{2}$ complex multiplications by (5.50). Applying the nesting method, we need only $\left(\log _{2} N\right)\left(N^{d}-\left(\frac{N}{2}\right)^{d}\right)$ multiplications by performing the multiplication with the diagonal matrix of precomputed twiddle factors, see Table 5.4. Here we have taken into account for both methods that the matrices of twiddle factors \mathbf{D}_{N} possess $N / 2$ ones such that the multiplication with \mathbf{D}_{N} requires $N / 2$ multiplications.

5.4 Sparse FFT

In the previous sections we have derived fast algorithms to execute the $\mathrm{DFT}(N)$ for arbitrary input vectors $\mathbf{a} \in \mathbb{C}^{N}$. All fast algorithms possess the computational costs $\mathscr{O}(N \log N)$, where the split-radix FFT is one of the most efficient known FFTs up to now.

Table 5.4 Numbers of complex multiplications and additions required by various multidimensional FFTs based on radix-2 FFT

Size	Row-column method, radix-2		Nesting method, radix-2	
	μ	α	μ	α
8×8	192	384	144	384
32×32	5120	10,240	3840	10,240
64×64	24,576	49,152	18,432	49,152
128×128	114,688	229,378	86,096	229,378
256×256	524,288	1,048,576	393,216	1,048,576
$8 \times 8 \times 8$	2304	4608	1344	4608
$64 \times 64 \times 64$	2,359,296	4,718,592	1,376,256	4,718,592

However, in recent years there has been some effort to derive the so-called sparse FFTs with sublinear computational costs. These methods exploit a priori knowledge on the vector $\hat{\mathbf{a}}$ to be recovered. Frequently used assumptions are that $\hat{\mathbf{a}} \in \mathbb{C}^{N}$ is sparse or has only a small amount of significant frequencies. Often, further assumptions regard the recovery of frequencies in a certain quantized range. One can distinguish between probabilistic and deterministic algorithms on the one hand and between approximate and exact algorithms on the other hand. Further, many sparse FFTs employ special input data being different from the components of a given vector $\mathbf{a} \in \mathbb{C}^{N}$ to compute $\hat{\mathbf{a}}=\mathbf{F}_{N} \mathbf{a}$.

In this section we restrict ourselves to exact deterministic sparse FFTs that use only the given components of $\mathbf{a} \in \mathbb{C}^{N}$ to evaluate $\hat{\mathbf{a}}$.

5.4.1 Single Frequency Recovery

In the simplest case, where $\mathbf{a} \in \mathbb{C}^{N}$ possesses only one frequency, i.e., $\hat{\mathbf{a}} \in \mathbb{C}^{N}$ is 1sparse. Let us assume that $\hat{\mathbf{a}}=\left(\hat{a}_{k}\right)_{k=0}^{N-1}$ has one nonzero component $\left|\hat{a}_{k_{0}}\right| \geq \theta>0$ and $a_{k}=0$ for $k \in\{0, \ldots, N-1\} \backslash\left\{k_{0}\right\}$. In order to compute $\hat{\mathbf{a}}$, we only need to recover the index k_{0} and the value $\hat{a}_{k_{0}} \in \mathbb{C}$.

Considering the inverse $\operatorname{DFT}(N)$, this assumption leads to

$$
a_{j}=\frac{1}{N} \sum_{k=0}^{N-1} \hat{a}_{k} w_{N}^{-j k}=\frac{1}{N} \hat{a}_{k_{0}} w_{N}^{-j k_{0}}, \quad j=0, \ldots, N-1 .
$$

In particular,

$$
a_{0}=\frac{1}{N} \hat{a}_{k_{0}}, \quad a_{1}=\frac{1}{N} \hat{a}_{k_{0}} w_{N}^{-k_{0}}
$$

Thus, only two components of a are sufficient to recover $\hat{\mathbf{a}}$, where

$$
\hat{a}_{k_{0}}=N a_{0}, \quad w_{N}^{-k_{0}}=\frac{a_{1}}{a_{0}}
$$

More generally, two arbitrary components $a_{j_{1}}, a_{j_{2}}$ of \mathbf{a} with $j_{1} \neq j_{2}$ yield

$$
w_{N}^{-k_{0}\left(j_{2}-j_{1}\right)}=\frac{a_{j_{2}}}{a_{j_{1}}}, \quad \hat{a}_{k_{0}}=N a_{j_{1}} w_{N}^{k_{0} j_{1}}
$$

where k_{0} can be extracted from the first term. However, the above procedure is numerically instable for large N. Small perturbations in a_{1} and a_{0} may lead to a wrong result for k_{0}, since the values w_{N}^{k} lie denser on the unit circle for larger N.

We want to derive a numerically stable algorithm for the recovery of â. For simplicity, we assume that $N=2^{t}, t \in \mathbb{N} \backslash\{1\}$. We introduce the periodizations $\hat{\mathbf{a}}^{(\ell)}$ of â by

$$
\begin{equation*}
\hat{\mathbf{a}}^{(\ell)}:=\left(\sum_{r=0}^{2^{t-\ell}-1} \hat{a}_{k+2^{\ell} r}\right)_{k=0}^{2^{\ell}-1}, \quad \ell=0, \ldots, t \tag{5.51}
\end{equation*}
$$

In particular, $\hat{\mathbf{a}}^{(t)}:=\hat{\mathbf{a}}$, and the recursion

$$
\begin{equation*}
\hat{\mathbf{a}}^{(\ell)}=\left(\hat{a}_{k}^{(\ell+1)}\right)_{k=0}^{2^{\ell}-1}+\left(\hat{a}_{k+2^{\ell}}^{(\ell+1)}\right)_{k=0}^{2^{\ell}-1}, \quad \ell=0, \ldots, t-1, \tag{5.52}
\end{equation*}
$$

is satisfied. The following lemma shows the close connection between the vector a being the inverse DFT of $\hat{\mathbf{a}}$ and the inverse DFT's of $\hat{\mathbf{a}}^{(\ell)}$ for $\ell=0, \ldots, t-1$.

Lemma 5.25 For the vectors $\hat{\mathbf{a}}^{(\ell)} \in \mathbb{C}^{2^{\ell}}, \ell=0, \ldots, t$, in (5.51) we have

$$
\mathbf{a}^{(\ell)}:=\mathbf{F}_{2^{\ell}}^{-1} \hat{\mathbf{a}}^{(\ell)}=2^{t-\ell}\left(a_{2^{t-\ell}}\right)_{j=0}^{2^{\ell}-1},
$$

where $\mathbf{a}=\left(a_{j}\right)_{j=0}^{N-1}=\mathbf{F}_{N}^{-1} \hat{\mathbf{a}} \in \mathbb{C}^{N}$ is the inverse DFT of $\hat{\mathbf{a}} \in \mathbb{C}^{N}$.
Proof We obtain by (5.51) that

$$
\begin{aligned}
a_{j}^{(\ell)} & =\frac{1}{2^{\ell}} \sum_{k=0}^{2^{\ell}-1} \hat{a}_{k}^{(\ell)} w_{2^{\ell}}^{-j k}=\frac{1}{2^{\ell}} \sum_{k=0}^{2^{\ell}-1}\left(\sum_{r=0}^{2^{t-\ell}-1} \hat{a}_{k+2^{\ell} r}\right) w_{2^{\ell}}^{-j k} \\
& =\frac{1}{2^{\ell}} \sum_{k=0}^{2^{t}-1} \hat{a}_{k} w_{2^{\ell}}^{-j k}=\frac{1}{2^{\ell}} \sum_{k=0}^{N-1} \hat{a}_{k} w_{N}^{-\left(2^{t-\ell} j\right) k}=2^{t-\ell} a_{2^{t-\ell} j}
\end{aligned}
$$

for all $j=0, \ldots, 2^{\ell}-1$.

We observe that all periodizations $\hat{\mathbf{a}}^{(\ell)}$ of $\hat{\mathbf{a}}^{(t)}=\hat{\mathbf{a}}$ are again 1-sparse, where the index of the nonzero frequency may change according to (5.52), while the magnitude of the nonzero frequency is always the same. For example, for $\hat{\mathbf{a}}=\hat{\mathbf{a}}^{(3)}=$ $(0,0,0,0,0,0,1,0)^{\top}$, we find

$$
\hat{\mathbf{a}}^{(2)}=(0,0,1,0)^{\top}, \quad \hat{\mathbf{a}}^{(1)}=(1,0)^{\top}, \quad \hat{\mathbf{a}}^{(0)}=(1) .
$$

Denoting the index of the nonzero entry of $\hat{\mathbf{a}}^{(\ell)}$ by $k_{0}^{(\ell)}$, the recursion (5.52) implies that

$$
k_{0}^{(\ell)}= \begin{cases}k_{0}^{(\ell+1)} & 0 \leq k_{0}^{(\ell+1)} \leq 2^{\ell}-1 \tag{5.53}\\ k_{0}^{(\ell+1)}-2^{\ell} & 2^{\ell} \leq k_{0}^{(\ell+1)} \leq 2^{\ell+1}-1\end{cases}
$$

while $\hat{a}_{k_{0}}=\hat{a}_{k_{0}^{(t)}}^{(t)}=\hat{a}_{k_{0}^{(t-1)}}^{(t-1)}=\ldots=\hat{a}_{k_{0}^{(0)}}^{(0)}$. Thus, fixing $\hat{a}_{k_{0}}=N a_{0}$, a robust recovery of k_{0} can be achieved by recursive computation of the indices $k_{0}^{(0)}, \ldots, k_{0}^{(t)}$.

Set $k_{0}^{(0)}:=0$, since obviously $\hat{\mathbf{a}}^{(0)}=\hat{a}_{0}^{(0)}=N a_{0}$. Now, we want to evaluate $k_{0}^{(1)}$. Using Lemma 5.25, we consider now $a_{1}^{(1)}=2^{t-1} a_{2^{t-1}}=2^{t-1} a_{N / 2}$. By assumption, we find

$$
a_{1}^{(1)}=\frac{1}{2} \sum_{k=0}^{1} \hat{a}_{k}^{(1)} w_{2}^{-k}=\frac{1}{2} \hat{a}_{k_{0}^{(1)}}(-1)^{-k_{0}^{(1)}}=\frac{1}{2} \hat{a}_{k_{0}}(-1)^{-k_{0}^{(1)}},
$$

while $a_{0}^{(1)}=2^{t-1} a_{0}=\frac{1}{2} \hat{a}_{k_{0}}$. It follows that $k_{0}^{(1)}=k_{0}^{(0)}=0$ if $a_{0}^{(1)}=a_{1}^{(1)}$, i.e., if $a_{0}=a_{N / 2}$, and $k_{0}^{(1)}=1$ if $a_{0}=-a_{N / 2}$. Hence we set $k_{0}^{(1)}=k_{0}^{(0)}$ if $\left|a_{0}-a_{N / 2}\right| \leq\left|a_{0}+a_{N / 2}\right|$ and $k_{0}^{(1)}=k_{0}^{(0)}+1$ otherwise.

Generally, assuming that $k_{0}^{(\ell)}$ is known, by (5.53) we have only to decide whether $k_{0}^{(\ell+1)}=k_{0}^{(\ell)}$ or $k_{0}^{(\ell+1)}=k_{0}^{(\ell)}+2^{\ell}$. We consider $a_{1}^{(\ell+1)}=2^{t-(\ell+1)} a_{2^{t-\ell-1}}$ and $a_{0}^{(\ell+1)}=2^{t-\ell} a_{0}$, and conclude that

$$
a_{1}^{(\ell+1)}=\frac{1}{2^{\ell+1}} \hat{a}_{k_{0}}^{(\ell+1)} w_{2^{\ell+1}}^{-k_{0}^{(\ell+1)}}=\frac{1}{2^{\ell+1}} \hat{a}_{k_{0}} w_{2^{\ell+1}}^{-k_{0}^{(\ell+1)}}, \quad a_{0}^{(\ell+1)}=\frac{1}{2^{\ell+1}} \hat{a}_{k_{0}} .
$$

Thus we choose $k_{0}^{(\ell+1)}=k_{0}^{(\ell)}$ if $\left|a_{1}^{(\ell+1)}-a_{0}^{(\ell+1)} w_{2^{\ell+1}}^{-k_{0}^{(\ell)}}\right| \leq\left|a_{1}^{(\ell+1)}+a_{0}^{(\ell+1)} w_{2^{\ell+1}}^{-k_{0}^{(\ell)}}\right|$, or equivalently, if

$$
\left|a_{2^{t-\ell-1}}-a_{0} w_{2^{\ell+1}}^{-k_{0}^{(\ell)}}\right| \leq\left|a_{2^{t-\ell-1}}+a_{0} w_{2^{\ell+1}}^{-k_{0}^{(\ell)}}\right|
$$

and $k_{0}^{(\ell+1)}=k_{0}^{(\ell)}+2^{\ell}$ otherwise. Proceeding in this way, we compute $a_{k_{0}}$ and $k_{0}=k_{0}^{(t)}$ employing the $t+1$ values $a_{0}, a_{2^{t-1}}, a_{2^{t-2}}, \ldots, a_{2}, a_{1}$ with computational cost of $\mathscr{O}(\log N)$:

Algorithm 5.26 (Robust Sparse FFT for Single Frequency Recovery)

Input: $N=2^{t}$ with $t \in \mathbb{N} \backslash\{1\}$, components $a_{0}, a_{2^{\ell}} \in \mathbb{C}, \ell=0, \ldots, 2^{t-1}$, of $\mathbf{a}=\left(a_{j}\right)_{j=0}^{N-1} \in \mathbb{C}^{N}$.

1. Compute $\hat{a}:=N a_{0}$.
2. Set $k_{0}:=0$.
3. For $\ell=0, \ldots, t-1$ if $\left|a_{2^{t-\ell-1}}-a_{0} w_{2^{\ell+1}}^{-k_{0}}\right|>\left|a_{2^{t-\ell-1}}+a_{0} w_{2^{++1}}^{-k_{0}}\right|$, then $k_{0}:=$ $k_{0}+2^{\ell}$.

Output: index $k_{0} \in\{0, \ldots, N-1\}, \hat{a}_{k_{0}}:=\hat{a}$.
Computational cost: $\mathscr{O}(\log N)$.

5.4.2 Recovery of Vectors with One Frequency Band

The above idea can be simply transferred to the fast recovery of vectors â possessing only one frequency band of short support with given length, see also [274]. Assume that $\hat{\mathbf{a}}=\left(\hat{a}_{k}\right)_{k=0}^{N-1}$ possesses a short support of given length M, i.e., we assume that there exists an index $\mu \in\{0, \ldots, N-1\}$ such that all non-vanishing components of $\hat{\text { a }}$ have their indices in the support set

$$
I_{M}:=\{\mu,(\mu+1) \bmod N, \ldots,(\mu+M-1) \bmod N\},
$$

while $\hat{a}_{k}=0$ for $k \in\{0, \ldots, N-1\} \backslash I_{M}$. We assume that the frequency band is chosen of minimal size and that $\left|\hat{a}_{\mu}\right| \geq \theta>0$ and $\left|\hat{a}_{(\mu+M-1) \bmod N}\right| \geq \theta>0$ are significant frequencies, then M is called support length of â.

For example, both vectors $(0,0,0,1,2,0,2,0)^{\top}$ and $(2,0,0,0,0,1,2,0)^{\top}$ have a support length $M=4$, where $\mu=3, I_{4}=\{3,4,5,6\}$ for the first vector and $\mu=5$ and $I_{4}=\{5,6,7,0\}$ for the second vector.

In order to recover $\hat{\mathbf{a}} \in \mathbb{C}^{N}$ with support length M, we determine $L \in \mathbb{N}$ such that $2^{L-1}<M \leq 2^{L}$. Then we compute in the first step the $(L+1)$-periodization $\hat{\mathbf{a}}^{(L+1)}$ of $\hat{\mathbf{a}}$ applying a $\operatorname{DFT}\left(2^{L+1}\right)$. More precisely, by Lemma 5.25 we have to compute

$$
\hat{\mathbf{a}}^{(L+1)}=2^{t-L-1} \mathbf{F}_{2^{L+1}}\left(a_{2^{t-L-1} j}\right)_{j=0}^{2^{L+1}-1} .
$$

By (5.51) it follows that $\hat{\mathbf{a}}^{(L+1)}$ also possesses a support of length M, where the nonzero components corresponding to the support set are already the desired nonzero components that occur also in $\hat{\mathbf{a}}$. Moreover, the first support index $\mu^{(L+1)}$ of the support set of $\hat{\mathbf{a}}^{(L+1)}$ is uniquely determined. Thus, to recover $\hat{\mathbf{a}}$, we only need to compute the correct first support index $\mu=\mu^{(t)}$ in order to shift the found nonzero coefficients to their right place. This problem is now very similar to the problem to find the single support index k_{0} for single frequency recovery. Let $\mu^{(\ell)}$ denote the first support indices of $\hat{\mathbf{a}}^{(\ell)}$ for $\ell=L+1, \ldots, t$. As before, (5.52) implies
that

$$
\mu^{(\ell)}= \begin{cases}\mu^{(\ell+1)} & 0 \leq \mu^{(\ell+1)} \leq 2^{\ell}-1 \\ \mu^{(\ell+1)}-2^{\ell} & 2^{\ell} \leq \mu^{(\ell+1)} \leq 2^{\ell+1}-1\end{cases}
$$

Conversely, for given $\mu^{(\ell)}$ the next index $\mu^{(\ell+1)}$ can only take the values $\mu^{(\ell)}$ or $\mu^{(\ell)}+2^{\ell}$.

Example 5.27 Assume that we have a given vector $\mathbf{a} \in \mathbb{C}^{16}$ and a priori knowledge that a possesses a frequency band of support length $M=3$. We want to recover $\hat{\mathbf{a}}=\left(\hat{a}_{k}\right)_{k=0}^{15} \in \mathbb{C}^{16}$ with $\hat{a}_{13}=\hat{a}_{14}=\hat{a}_{15}=1$ and $\hat{a}_{k}=0$ for $k=0, \ldots, 12$.

From $M=3$ we obtain $L=2$ and $2^{L+1}=8$. In the first step, we compute the periodized vector $\hat{\mathbf{a}}^{(3)} \in \mathbb{C}^{8}$ by applying a $\operatorname{DFT}(8)$ to the vector $\left(a_{2 j}\right)_{j=0}^{7}$. This gives

$$
\hat{\mathbf{a}}^{(3)}=(0,0,0,0,0,1,1,1)^{\top} .
$$

Obviously, $\hat{\mathbf{a}}^{(3)}$ has also support length 3 and the first support index $\mu^{(3)}=5$. In the last step, we need to recover $\hat{\mathbf{a}}=\hat{\mathbf{a}}^{(4)}$ from $\hat{\mathbf{a}}^{(3)}$. By (5.52), we only need to find out whether $\mu^{(4)}=5$ or $\mu^{(4)}=5+8=13$, where in the second case the already computed nonzero components of $\hat{\mathbf{a}}^{(3)}$ only need an index shift of 8 .

Generally, if $\mu^{(\ell+1)}=\mu^{(\ell)}$ is true, then each component of

$$
\mathbf{F}_{2^{\ell+1}}^{-1} \hat{\mathbf{a}}^{(\ell+1)}=2^{t-\ell-1}\left(a_{2^{t-\ell-1}}\right)_{j=0}^{2^{\ell+1}-1}
$$

satisfies

$$
2^{t-\ell-1} a_{2^{t-\ell-1} j}=\sum_{k=\mu^{(\ell)}}^{\mu^{(\ell)}+M-1} \hat{a}_{k \bmod 2^{\ell+1}}^{(\ell+1)} w_{2^{\ell+1}}^{-j k}=w_{2^{\ell+1}}^{-j \mu^{(\ell)}} \sum_{k=0}^{M-1} \hat{a}_{\left(k+\mu^{L L+1)}\right) \bmod 2^{L+1}}^{(L+1)} w_{2^{\ell+1}}^{-j k},
$$

where we have used that $\hat{\mathbf{a}}^{(L+1)}$ already contains the correct component values. Similarly, if $\mu^{(\ell+1)}=\mu^{(\ell)}+2^{\ell}$, then it follows that

$$
\begin{aligned}
2^{t-\ell-1} a_{2^{t-\ell-1} j} & =\sum_{k=\mu^{(\ell)}+2^{\ell}}^{\mu^{(\ell)}+2^{\ell}+M-1} \hat{a}_{k \bmod 2^{\ell+1}}^{(\ell+1)} w_{2^{l+1}}^{-j k} \\
& =(-1)^{j} w_{2^{\ell+1}}^{-j \mu^{(\ell)}} \sum_{k=0}^{M-1} \hat{a}_{\left(k+\mu^{(L+1)}\right) \bmod 2^{L+1}}^{(L+1)} w_{2^{\ell+1}}^{-j k} .
\end{aligned}
$$

We choose now j_{ℓ} as an odd integer in $\left\{1,3,5, \ldots, 2^{\ell+1}-1\right\}$ such that $a_{2^{t-\ell-1}} j_{\ell \ell} \neq 0$. This is always possible, since if the vector $\left(a_{2^{t-\ell-1}(2 j+1)}\right)_{j=0}^{2^{\ell}-1}$ had M or more zero components, the equations above would imply that $\hat{\mathbf{a}}^{(L+1)}=\mathbf{0}$, contradicting the
assumption. Now, taking $j=j \ell$, we need to compare $a_{2^{t-\ell-1} j_{\ell}}$ with

$$
A_{\ell}:=2^{\ell+1-t} w_{2^{\ell+1}}^{-\mu^{(\ell)} j_{\ell}} \sum_{k=0}^{M-1} \hat{a}_{k+\mu^{(L+1)} \bmod 2^{L+1}}^{(L+1)} w_{2^{\ell+1}}^{-k j_{\ell}}
$$

If

$$
\left|A_{\ell}-a_{2^{t-\ell-1} j_{\ell}}\right| \leq\left|A_{\ell}+a_{2^{t-\ell-1} j_{\ell}}\right|
$$

then we have to take $\mu^{(\ell+1)}=\mu^{(\ell)}$, and we take $\mu^{(\ell+1)}=\mu^{(\ell)}+2^{\ell}$ otherwise.

Algorithm 5.28 (Sparse FFT for a Vector with Small Frequency Band)

Input: $N=2^{t}$ with $t \in \mathbb{N} \backslash\{1\}, \mathbf{a} \in \mathbb{C}^{N}$ vector with small frequency band, upper bound N of support length M of $\hat{\mathbf{a}}$.

1. Compute $L:=\left\lceil\log _{2} M\right\rceil$.
2. If $L \geq t-1$ compute $\hat{\mathbf{a}}:=\mathbf{F}_{N} \mathbf{a}$ by FFT of length N.
3. If $L<t-1$, then
3.1. Set $\mathbf{a}^{(L+1)}:=\left(a_{2^{t-L-1} j}\right)_{j=0}^{2^{L+1}-1}$ and compute $\hat{\mathbf{a}}^{(L+1)}:=\mathbf{F}_{2^{L+1}} \mathbf{a}^{(L+1)}$ by FFT of length 2^{L+1}.
3.2. Determine the first support index μ of $\hat{\mathbf{a}}^{(L+1)}$ as follows:

Compute

$$
e_{0}:=\sum_{k=0}^{M-1}\left|\hat{a}_{k}^{(L+1)}\right|^{2} .
$$

For $k=1, \ldots, 2^{L+1}-1$ compute

$$
e_{k}:=e_{k-1}-\left|\hat{a}_{(k-1) \bmod 2 L+1}^{(L+1)}\right|^{2}+\left|\hat{a}_{(k+M-1) \bmod 2^{L+1}}^{(L+1)}\right|^{2} .
$$

Compute $\mu:=\arg \max \left\{e_{k}: k=0, \ldots, 2^{L+1}-1\right\}$ and set $\mu_{0}:=\mu$.
3.3. For $\ell=L+1, \ldots, t-1$ choose $j \in\left\{1,3, \ldots, 2^{\ell}-1\right\}$ such that $\left|a_{2^{t-\ell-1} j}\right|>$ θ. Compute

$$
A:=2^{\ell+1-t} w_{2^{\ell+1}}^{-\mu j} \sum_{k=0}^{M-1} \hat{a}_{k+\mu \bmod 2^{L+1}}^{(L+1)} w_{2^{\ell+1}}^{-k j}
$$

If $\left|A-a_{2^{t-\ell-1} j}\right|>\left|A+a_{2^{t-\ell-1}}\right|$, then $\mu:=\mu+2^{\ell}$.
3.4. Set $\hat{\mathbf{a}}:=\mathbf{0} \in \mathbb{C}^{N}$.
3.5. For $r=0, \ldots, M-1$ set

$$
\hat{a}_{(\mu+r) \bmod N}:=\hat{a}_{\left(\mu_{0}+r\right) \bmod 2^{L+1}}^{(L+1)} .
$$

Output: $\hat{\mathbf{a}} \in \mathbb{C}^{N}$, first support index $\mu \in\{0, \ldots, N-1\}$.
Computational cost: $\mathscr{O}(M \log N)$.
Let us shortly study the computational cost to execute the sparse FFT in Algorithm 5.28. If $M \geq N / 4$, then the usual FFT of length N should be used to recover â with $\mathscr{O}(N \log N)$ flops. For $M<N / 4$, step 3.1 requires $\mathscr{O}((L+$ 1) $\left.2^{L+1}\right)=\mathscr{O}(M \log M)$ flops, since $2^{L+1}<4 M$. Step 3.2 involves the computation of energies e_{k} with $\mathscr{O}\left(2^{L+1}\right)=\mathscr{O}(M)$ flops. In step 3.3 we have to perform $t-L-1$ scalar products of length M and $t-L-1$ comparisons requiring computational costs of $\mathscr{O}(M(\log N-\log M)$. Finding j requires at most $M(t-L-1)$ comparisons. The complete algorithm is governed by the $\operatorname{DFT}\left(2^{L+1}\right)$ and the computations in step 3.5 with overall computational cost of $\mathscr{O}(M \log N)$.

5.4.3 Recovery of Sparse Fourier Vectors

Assume now that $\hat{\mathbf{a}}=\left(\hat{a}_{j}\right)_{j=0}^{N-1} \in\left(\mathbb{R}_{+}+\mathrm{i} \mathbb{R}_{+}\right)^{N}$, i.e., $\operatorname{Re} \hat{a}_{j} \geq 0$ and $\operatorname{Im} \hat{a}_{j} \geq 0$ for all $j=0, \ldots, N-1$, is M-sparse, i.e., â possesses M nonzero components, where $M \in \mathbb{N}_{0}$ with $M \leq N=2^{t}, t \in \mathbb{N}$, is not a priori known. Let $\mathbf{a}=\mathbf{F}_{N}^{-1} \hat{\mathbf{a}}=\left(a_{k}\right)_{k=0}^{N-1}$ be the given vector of length N. We follow the ideas in [278] and want to derive a fast and numerically stable algorithm to reconstruct $\hat{\mathbf{a}}$ from adaptively chosen components of \mathbf{a}. For that purpose, we again use the periodized vectors $\hat{\mathbf{a}}^{(\ell)} \in\left(\mathbb{R}_{+}+\right.$ $\left.\mathrm{i} \mathbb{R}_{+}\right)^{2^{\ell}}$ as defined in (5.51).

The basic idea consists in recursive evaluation of the vectors $\hat{\mathbf{a}}^{(\ell)}$ in (5.51) for $\ell=0, \ldots, t$, using the fact that the sparsities M_{ℓ} of $\hat{\mathbf{a}}^{(\ell)}$ satisfy

$$
M_{0} \leq M_{1} \leq M_{2} \leq \ldots \leq M_{t}=M .
$$

In particular, no cancelations can occur and the components of $\hat{\mathbf{a}}^{(\ell)}$ are contained in the first quadrant of the complex plane, i.e., $\operatorname{Re} \hat{a}_{j}^{(\ell)} \geq 0$ and $\operatorname{Im} \hat{a}_{j}^{(\ell)} \geq 0$ for $j=0, \ldots, 2^{\ell}-1$.

We start by considering $\hat{\mathbf{a}}^{(0)}$. Obviously,

$$
\hat{\mathbf{a}}^{(0)}=\sum_{k=0}^{N-1} \hat{a}_{k}=N a_{0}
$$

Since â possesses all components in the first quadrant, we can conclude that for $a_{0}=0$ the vector â is the zero vector, i.e., it is 0 -sparse.

Having found $\hat{\mathbf{a}}^{(0)}=N a_{0}>0$, we proceed and consider $\hat{\mathbf{a}}^{(1)}$. By (5.52), we find $\hat{\mathbf{a}}^{(1)}=\left(\hat{a}_{0}^{(1)}, \hat{a}_{1}^{(1)}\right)^{\top}$, where $\hat{a}_{0}^{(1)}+\hat{a}_{1}^{(1)}=\hat{\mathbf{a}}^{(0)}=N a_{0}$ is already known. Applying Lemma 5.25, we now choose the component $\frac{N}{2} a_{N / 2}=\hat{a}_{0}^{(1)}-\hat{a}_{1}^{(1)}$. Hence, with
$\hat{a}_{1}^{(1)}=\hat{\mathbf{a}}^{(0)}-\hat{a}_{0}^{(1)}$ we obtain $\frac{N}{2} a_{N / 2}=2 \hat{a}_{0}^{(1)}-\hat{\mathbf{a}}^{(0)}$, i.e.,

$$
\hat{a}_{0}^{(1)}=\frac{1}{2}\left(\hat{\mathbf{a}}^{(0)}+\frac{N}{2} a_{N / 2}\right), \quad \hat{a}_{1}^{(1)}=\hat{\mathbf{a}}^{(0)}-\hat{a}_{0}^{(1)} .
$$

If $\hat{a}_{0}^{(1)}=0$, we can conclude that all even components of $\hat{\mathbf{a}}$ vanish, and we do not need to consider them further. If $\hat{a}_{1}^{(1)}=0$, it follows analogously that all odd components of â are zero.

Generally, having computed $\hat{\mathbf{a}}^{(\ell)}$ at the ℓ th level of iteration, let $M_{\ell} \leq 2^{\ell}$ be the obtained sparsity of $\hat{\mathbf{a}}^{(\ell)}$, and let

$$
0 \leq n_{1}^{(\ell)}<n_{2}^{(\ell)}<\ldots<n_{M_{\ell}}^{(\ell)} \leq 2^{\ell}-1
$$

be the indices of the corresponding nonzero components of $\hat{\mathbf{a}}^{(\ell)}$. From (5.52) we can conclude that $\hat{\mathbf{a}}^{(\ell+1)}$ possesses at most $2 M_{\ell}$ nonzero components, and we only need to consider $\hat{a}_{n_{k}}^{(\ell+1)}$ and $\hat{a}_{n_{k}+2^{\ell}}^{(\ell+1)}$ for $k=1, \ldots, M_{\ell}$ as candidates for nonzero entries while all other components of $\hat{\mathbf{a}}^{(\ell+1)}$ can be assumed to be zero. Moreover, (5.52) provides already M_{ℓ} conditions on these values,

$$
\hat{a}_{n_{k}}^{(\ell+1)}+\hat{a}_{n_{k}+2^{\ell}}^{(\ell+1)}=\hat{a}_{n_{k}}^{(\ell)}, \quad k=1, \ldots, M_{\ell} .
$$

Therefore, we need only M_{ℓ} further data to recover $\hat{\mathbf{a}}^{(\ell+1)}$. In particular, we can show the following result, see [278]:

Theorem 5.29 Let $\hat{\mathbf{a}}^{(\ell)}, \ell=0, \ldots, t$, be the vectors defined in (5.51). Then for each $\ell=0, \ldots, t-1$, we have:

If $\hat{\mathbf{a}}^{(\bar{\ell})}$ is M_{ℓ}-sparse with support indices $0 \leq n_{1}^{(\ell)}<n_{2}^{(\ell)}<\ldots<n_{M_{\ell}}^{(\ell)} \leq 2^{\ell}-1$, then the vector $\hat{\mathbf{a}}^{(\ell+1)}$ can be uniquely recovered from $\hat{\mathbf{a}}^{(\ell)}$ and M_{ℓ} components $a_{j_{1}}, \ldots, a_{j_{M_{\ell}}}$ of $\mathbf{a}=\mathbf{F}_{N}^{-1} \hat{\mathbf{a}}$, where the indices $j_{1}, \ldots, j_{M_{\ell}}$ are taken from the set $\left\{2^{t-\ell-1}(2 j+1): j=0, \ldots 2^{\ell}-1\right\}$ such that the matrix

$$
\left(w_{N}^{j_{p} n_{r}^{(\ell)}}\right)_{p, r=1}^{M_{\ell}}=\left(\mathrm{e}^{-2 \pi \mathrm{i} j_{p} n_{r}^{(\ell)} / N}\right)_{p, r=1}^{M_{\ell}} \in \mathbb{C}^{M_{\ell} \times M_{\ell}}
$$

is invertible.
Proof Using the vector notation $\hat{\mathbf{a}}_{0}^{(\ell+1)}:=\left(\hat{a}_{k}^{(\ell+1)}\right)_{k=0}^{2^{\ell}-1}$ and $\hat{\mathbf{a}}_{1}^{(\ell+1)}:=\left(\hat{a}_{k}^{(\ell+1)}\right)_{k=2^{\ell}}^{2^{\ell+1}-1}$, the recursion (5.52) yields

$$
\begin{equation*}
\hat{\mathbf{a}}^{(\ell)}=\hat{\mathbf{a}}_{0}^{(\ell+1)}+\hat{\mathbf{a}}_{1}^{(\ell+1)} . \tag{5.54}
\end{equation*}
$$

Therefore, for given $\hat{\mathbf{a}}^{(\ell)}$, we only need to compute $\hat{\mathbf{a}}_{0}^{(\ell+1)}$ to recover $\hat{\mathbf{a}}^{(\ell+1)}$. By Lemma 5.25, we find

$$
\begin{align*}
& \left(a_{2^{t-\ell-1}} j\right)_{j=0}^{2^{\ell+1}-1}=\mathbf{a}^{(\ell+1)}=\mathbf{F}_{2^{\ell+1}}^{-1}\binom{\hat{\mathbf{a}}_{0}^{(\ell+1)}}{\hat{\mathbf{a}}_{1}^{(\ell+1)}}=\mathbf{F}_{2^{\ell+1}}^{-1}\binom{\hat{\mathbf{a}}_{0}^{(\ell+1)}}{\hat{\mathbf{a}}^{(\ell)}-\hat{\mathbf{a}}_{0}^{(\ell+1)}} \\
& =2^{-\ell-1}\left(w_{2^{\ell+1}}^{-j k}\right)_{j, k=0}^{2^{\ell+1}-1,2^{\ell}-1} \hat{\mathbf{a}}_{0}^{(\ell+1)}+2^{-\ell-1}\left((-1)^{j} w_{2^{\ell+1}}^{-j k}\right)_{j, k=0}^{2^{\ell+1}-1,2^{\ell}-1}\left(\hat{\mathbf{a}}^{(\ell)}-\hat{\mathbf{a}}_{0}^{(\ell+1)}\right) . \tag{5.55}
\end{align*}
$$

Let now $0 \leq n_{1}^{(\ell)}<n_{1}^{(\ell)}<\ldots<n_{M_{\ell}}^{(\ell)} \leq 2^{\ell}-1$ be the indices of the nonzero entries of $\hat{\mathbf{a}}^{(\ell)}$. Then by (5.54) also $\hat{\mathbf{a}}_{0}^{(\ell+1)}$ can have nonzero entries only at these components. We restrict the vectors according to

$$
\tilde{\hat{\mathbf{a}}}_{0}^{(\ell+1)}:=\left(\hat{a}_{n_{r}^{(\ell)}}^{(\ell+1)}\right)_{r=1}^{M_{\ell}}, \quad \tilde{\hat{\mathbf{a}}}^{(\ell)}:=\left(\hat{a}_{n_{r}^{(\ell)}}^{(\ell)}\right)_{r=1}^{M_{\ell}} .
$$

Further, let $j_{1}, \ldots, j_{M_{\ell}}$ be distinct indices from $\left\{2^{t-\ell-1}(2 r+1): r=0, \ldots 2^{\ell}-1\right\}$, i.e., we have $j_{p}:=2^{t-\ell-1}\left(2 \kappa_{p}+1\right)$ with $\kappa_{p} \in\left\{0, \ldots, 2^{\ell}-1\right\}$ for $p=1, \ldots, M_{\ell}$. We now restrict the linear system (5.55) to the M_{ℓ} equations corresponding to these indices $j_{1}, \ldots, j_{M_{\ell}}$ and find

$$
\mathbf{b}^{(\ell+1)}:=\left(\begin{array}{c}
a_{j_{1}} \tag{5.56}\\
\vdots \\
a_{j_{M_{\ell}}}
\end{array}\right)=\left(\begin{array}{c}
a_{2 \kappa_{1}+1}^{(\ell+1)} \\
\vdots \\
a_{2 \kappa_{M_{\ell}}+1}^{(\ell+1)}
\end{array}\right)=\mathbf{A}^{(\ell+1)} \widetilde{\hat{\mathbf{a}}}_{0}^{(\ell+1)}-\mathbf{A}^{(\ell+1)}\left(\tilde{\hat{\mathbf{a}}}^{(\ell)}-\tilde{\hat{\mathbf{a}}}_{0}^{(\ell+1)}\right),
$$

where

$$
\begin{align*}
\mathbf{A}^{(\ell+1)} & =2^{-\ell-1}\left(w_{N}^{-j_{p} n_{r}^{(\ell)}}\right)_{p, r=1}^{M_{\ell}} \\
& =2^{-\ell-1}\left(w_{2^{\ell}}^{-\kappa_{p} n_{r}^{(\ell)}}\right)_{p, r=1}^{M_{\ell}} \operatorname{diag}\left(\omega_{2^{\ell+1}}^{-n_{1}^{(\ell)}}, \ldots, \omega_{2^{\ell+1}}^{-n_{M}^{(\ell)}}\right)^{\top} . \tag{5.57}
\end{align*}
$$

If $\mathbf{A}^{(\ell+1)}$ and $\left(w_{2^{\ell}}^{-\kappa_{p} n_{r}^{(\ell)}}\right)_{p, r=1}^{M_{\ell}}$, respectively, is invertible, it follows from (5.56) that

$$
\begin{equation*}
\mathbf{A}^{(\ell+1)} \tilde{\hat{\mathbf{a}}}_{0}^{(\ell+1)}=\frac{1}{2}\left(\mathbf{b}^{(\ell+1)}+\mathbf{A}^{(\ell+1)} \tilde{\hat{\mathbf{a}}}^{(\ell)}\right) . \tag{5.58}
\end{equation*}
$$

Thus, to recover $\tilde{\hat{\mathbf{a}}}_{0}^{(\ell+1)}$ we have to solve this system of M_{ℓ} linear equations in M_{ℓ} unknowns, and the components of $\hat{\mathbf{a}}^{(\ell+1)}$ are given by

$$
\hat{a}_{k}^{(\ell+1)}= \begin{cases}\left(\tilde{\hat{\mathbf{a}}}_{0}^{(\ell+1)}\right)_{r} & k=n_{r}^{(\ell)}, \\ \left(\tilde{\hat{\mathbf{a}}}^{(\ell)}\right)_{r}-\left(\tilde{\hat{\mathbf{a}}}_{0}^{(\ell+1)}\right)_{r} & k=n_{r}^{(\ell)}+2^{\ell}, \\ 0 & \text { otherwise. }\end{cases}
$$

This completes the proof.
Theorem 5.29 yields that we essentially have to solve the linear system (5.58) in order to compute $\hat{\mathbf{a}}^{(\ell+1)}$ from $\hat{\mathbf{a}}^{(\ell)}$. We summarize this approach in the following algorithm, where the conventional FFT is used at each step as long as this is more efficient than solving the linear system (5.58).

Algorithm 5.30 (Recovery of Sparse Vector â $\left.\in\left(\mathbb{R}_{+}+\mathrm{i} \mathbb{R}_{+}\right)^{N}\right)$
Input: $N=2^{t}$ with $t \in \mathbb{N}, \mathbf{a}=\left(a_{j}\right)_{j=0}^{N-1} \in \mathbb{C}^{N}, \theta>0$ shrinkage constant.

1. Set $M:=0$ and $K:=\{0\}$.
2. If $a_{0}<\theta$, then $\hat{\mathbf{a}}=\mathbf{0}$ and $I^{(t)}=\emptyset$.
3. If $a_{0} \geq \theta$, then
3.1. Set $M:=1, I^{(0)}:=\{0\}, \hat{\mathbf{a}}^{(0)}:=N a_{0}$, and $\tilde{\hat{\mathbf{a}}}^{(0)}:=\hat{\mathbf{a}}^{(0)}$.
3.2. For $\ell=0$ to $t-1$ do

If $M^{2} \geq 2^{\ell}$, then choose $\mathbf{b}^{(\ell+1)}:=\left(a_{2 p+1}^{(\ell+1)}\right)_{p=0}^{2^{\ell}-1}=\left(a_{2^{t-\ell-1}(2 p+1)}\right)_{p=0}^{2^{\ell}-1} \in \mathbb{C}^{M}$ and solve the linear system

$$
\mathbf{F}_{2^{\ell}}^{-1}\left(\operatorname{diag}\left(w_{2^{\ell+1}}^{-k}\right)_{k=0}^{2^{\ell}-1}\right) \hat{\mathbf{a}}_{0}^{(\ell+1)}=\frac{1}{2}\left(2 \mathbf{b}^{(\ell+1)}+\mathbf{F}_{2^{\ell}}^{-1}\left(\operatorname{diag}\left(w_{2^{\ell+1}}^{-k}\right)_{k=0}^{2^{\ell}-1}\right) \hat{\mathbf{a}}^{(\ell)}\right)
$$

using an FFT of length 2^{ℓ}.
Find the index set I_{ℓ} of components in $\hat{\mathbf{a}}^{(\ell)}$ with $\hat{a}_{k}^{(\ell)} \geq \theta$ for $k \in I^{(\ell)}$ and set its cardinality $M:=\left|I_{\ell}\right|$,
else

- Choose M indices $j_{p}=2^{t-\ell-1}\left(2 \kappa_{p}+1\right)$ with $\kappa_{p} \in\left\{0, \ldots, 2^{\ell}-1\right\}$ for $p=1, \ldots, M$ such that

$$
\mathbf{A}^{(\ell+1)}:=2^{-\ell-1}\left(w_{N}^{-j_{p} r}\right)_{p=1, \ldots, M ; r \in I^{(\ell)}}
$$

is well-conditioned and set $K:=K \cup\left\{j_{1}, \ldots, j_{M}\right\}$.

- Choose the vector $\mathbf{b}^{(\ell+1)}:=\left(a_{j_{p}}\right)_{p=1}^{M} \in \mathbb{C}^{M}$ and solve the linear system

$$
\mathbf{A}^{(\ell+1)} \tilde{\hat{\mathbf{a}}}_{0}^{(\ell+1)}=\frac{1}{2}\left(\mathbf{b}^{(\ell+1)}+\mathbf{A}^{(\ell+1)} \tilde{\hat{\mathbf{a}}}^{(\ell)}\right) .
$$

- Set $\tilde{\hat{\mathbf{a}}}_{1}^{(\ell+1)}:=\tilde{\hat{\mathbf{a}}}^{(\ell)}-\widetilde{\hat{\mathbf{a}}}_{0}^{(\ell+1)}$ and $\tilde{\hat{\mathbf{a}}}^{(\ell+1)}:=\left(\left(\widetilde{\hat{\mathbf{a}}}_{0}^{(\ell+1)}\right)^{\top},\left(\tilde{\hat{\mathbf{a}}}_{1}^{(\ell+1)}\right)^{\top}\right)^{\top}$.
- Determine the index set $I^{(\ell+1)} \subset\left(I^{(\ell)} \cup\left(I^{(\ell)}+2^{\ell}\right)\right)$ such that $\hat{a}_{k}^{(\ell+1)} \geq \theta$ for $k \in I^{(\ell+1)}$. Set $M:=\left|I^{(j+1)}\right|$.

Output: $I^{(t)}$ is the set of active indices in $\hat{\mathbf{a}}$ with $M=\left|I^{(t)}\right|$ and $\widetilde{\mathbf{a}}=\widetilde{\mathbf{a}}^{(t)}=$ $\left(a_{k}\right)_{k \in I^{(t)}}$.
K is the index set of used components of \mathbf{a}.
Note that the matrices $\mathbf{A}^{(\ell+1)}$ are scaled partial Fourier matrices, namely the restrictions of the Fourier matrix \mathbf{F}_{N}^{-1} to the columns $n_{1}^{(\ell)}, \ldots, n_{M_{\ell}}^{(\ell)}$ and the rows $k_{1}, \ldots, k_{M_{\ell}}$. For given M column indices $n_{1}^{(\ell)}, \ldots n_{M_{\ell}}^{(\ell)}$, we are allowed to choose the row indices in a way such that a good condition of $\mathbf{A}^{(\ell+1)}$ is ensured. Observe that we can always choose $k_{p}=2^{t-\ell-1}\left(2 \kappa_{p}+1\right)$ with $\kappa_{p}=p-1$, for $p=1, \ldots, M_{\ell}$ to ensure invertibility. This means, we can just take the first M_{ℓ} rows of $\mathbf{F}_{2^{\ell}}^{-1}$ in the product representation (5.57). However, the condition of this matrix can get very large for larger ℓ.

Example 5.31 Assume that we want to recover the 4 -sparse vector $\hat{\mathbf{a}} \in \mathbb{C}^{128}$ with $\hat{a}_{k}=1$ for $k \in I^{(7)}:=\{1,6,22,59\}$. For the periodizations of $\hat{\mathbf{a}}$ we find the sparsity and the index sets

$$
\begin{array}{ll}
I^{(0)}=\{0\}, & M_{0}=1, \\
I^{(1)}=\{0,1\}, & M_{1}=2, \\
I^{(2)}=\{1,2,3\}, & M_{2}=3, \\
I^{(3)}=\{1,3,6\}, & M_{3}=3, \\
I^{(4)}=\{1,6,11\}, & M_{4}=3, \\
I^{(5)}=\{1,6,22,27\}, & M_{5}=4, \\
I^{(6)}=\{1,6,22,59\}, & M_{6}=4 .
\end{array}
$$

For $\ell=0,1,2,3$ we have $M_{\ell}^{2} \geq 2^{\ell}$ and therefore just apply the FFT of length 2^{ℓ} as described in the first part of the algorithm to recover

$$
\hat{\mathbf{a}}^{(4)}=(0,1,0,0,0,0,2,0,0,0,0,1,0,0,0,0)^{\top} .
$$

For $\ell=4$, we have $M_{4}^{2}<2^{4}$ and apply the restricted Fourier matrix for the recovery of $\hat{\mathbf{a}}^{(5)}$. The index set $I^{(5)}$ of nonzero components of $\hat{\mathbf{a}}^{(5)}$ is a subset of $I^{(4)} \cup\left(I^{(4)}+\right.$ 16) $=\{1,6,11,17,22,27\}$. We simply choose $k_{p}^{(4)}=2^{7-4-1}\left(2 \kappa_{p}+1\right)$ with $\kappa_{p}=$ $p-1$ for $p=1, \ldots, M_{4}$, i.e., $\left(k_{1}^{(4)}, k_{2}^{(4)}, k_{3}^{(4)}\right)=2^{2}(1,3,5)=(4,12,20)$. The matrix $A^{(5)}$ reads

$$
\mathbf{A}^{(5)}=\frac{1}{32}\left(w_{16}^{-(p-1) n_{r}^{(4)}}\right)_{p, r=1}^{3} \operatorname{diag}\left(w_{32}^{-1}, w_{32}^{-6}, w_{32}^{-11}\right)^{\top}
$$

and possesses the condition number $\left\|\mathbf{A}^{(5)}\right\|_{2}\left\|\left(\mathbf{A}^{(5)}\right)^{-1}\right\|_{2}=1.1923$. Solving a system with 3 linear equations in 3 unknowns yields $\hat{\mathbf{a}}^{(5)}$ and $I^{(5)}=\{1,6,22,27\}$.

Similarly, we find at the next iteration steps 5 and 6 the 4-by- 4 coefficient matrices

$$
\mathbf{A}^{(6)}=\frac{1}{64}\left(w_{32}^{-(p-1) n_{r}^{(5)}}\right)_{p, r=1}^{4} \operatorname{diag}\left(w_{64}^{-1}, w_{64}^{-6}, w_{64}^{-22}, w_{64}^{-27}\right)^{\top}
$$

with condition number 4.7150 to recover $\hat{\mathbf{a}}^{(6)}$ and

$$
\mathbf{A}^{(7)}=\frac{1}{128}\left(w_{64}^{-(p-1) n_{r}^{(6)}}\right)_{p, r=1}^{4} \operatorname{diag}\left(w_{128}^{-1}, w_{128}^{-6}, w_{128}^{-22}, w_{128}^{-59}\right)^{\top}
$$

with condition number 21.2101 to recover $\hat{\mathbf{a}}^{(7)}$.
Thus, we have employed only the components $a_{8 k}, k=0, \ldots, 15$, in the first four iteration steps (for $\ell=0,1,2,3$) to recover $\hat{\mathbf{a}}^{(4)}$, the entries $a_{4(2 k+1)}, k=0,1,2$, at level $\ell=4, \widehat{x}_{2(2 k+1)}, k=0,1,2,3$, at level $\ell=5$, and $\widehat{x}_{2 k+1}, k=0,1,2,3$, at level $\ell=6$. Summing up, we have to employ 27 of the 127 Fourier components to recover $\hat{\mathbf{a}}$, while the computational cost is governed by solving the FFT of length 16 for getting \hat{a} (up to level 3) the 3 linear systems with the coefficient matrices $\mathbf{A}^{(5)}$, $\mathbf{A}^{(6)}$, and $\mathbf{A}^{(7)}$, respectively.

While the condition numbers of $\mathbf{A}^{(\ell+1)}$ in the above example are still moderate, the choice $\kappa_{p}=p-1, p=1, \ldots, M_{\ell}$, does not always lead to good condition numbers if N is large. For example, for $N=1024$, the recovery of a 4 -sparse vector with $I^{(10)}=I^{(9)}=\{1,6,22,59\}$ employs a 4-by-4 matrix $\mathbf{A}^{(10)}$ at the last iteration level $\ell=9$ possessing the condition number 22742 .

In order to be able to efficiently compute the linear system (5.58), we want to preserve a Vandermonde structure for the matrix factor $\left(w_{2^{\ell}}^{\kappa_{p} n_{r}^{(\ell)}}\right)_{p, r=1}^{M_{\ell}}$ of $\mathbf{A}^{(\ell+1)}$ and at the same time ensure a good condition of this matrix. Therefore, we only consider matrices of the form $\left(w_{2^{\ell}}^{(p-1) \sigma^{(\ell)} n_{r}^{(\ell)}}\right)_{p, r=1}^{M_{\ell}}$, i.e., we set $\kappa_{p}:=(p-1) \sigma^{(\ell)}$ for $p=1, \ldots, M_{\ell}$. The parameter $\sigma^{(\ell)} \in\left\{1,2, \ldots, 2^{\ell}-1\right\}$ has to be chosen in a way such that $\left(w_{2^{\ell}}^{(p-1) \sigma^{(\ell)} n_{r}^{(\ell)}}\right)_{p, r=1}^{M_{\ell}}$ and thus $\mathbf{A}^{(\ell+1)}$ is well-conditioned.

In [278], it has been shown that the condition of $\mathbf{A}^{(\ell+1)}$ mainly depends on the distribution of the knots $w_{2^{\ell}}^{\sigma^{(\ell)} n_{r}^{(\ell)}}$ on the unit circle, or equivalently on the distribution of $\sigma^{(\ell)} n_{r}^{(\ell)} \bmod 2^{\ell}$ in the interval $\left[0,2^{\ell}-1\right]$. One simple heuristic approach suggested in [278] to choose $\sigma^{(\ell)}$ is the following procedure. Note that this procedure is only needed if $M_{\ell}^{2}<2^{\ell}$.

Algorithm 5.32 (Choice of $\sigma^{(\ell)}$ to Compute $\mathbf{A}^{(\ell+1)}$)

Input: $\ell \geq 1, M_{\ell-1}, M_{\ell}, I^{(\ell)}=\left\{n_{1}^{(\ell)}, \ldots, n_{M_{\ell}}^{(\ell)}\right\}, \sigma^{(\ell-1)}$ if available.
If $\ell \leq 3$ or $M_{\ell}=1$, choose $\sigma^{(\ell)}:=1$
else
if $M_{\ell-1}=M_{\ell}$ then
if $\sigma^{(\ell-1)}$ is given, then $\sigma^{(\ell)}:=2 \sigma^{(\ell-1)}$
else set $\ell:=\ell-1$ and start the algorithm again to compute $\sigma^{(\ell-1)}$ first. else

1. Fix Σ as the set of $M^{(\ell)}$ largest prime numbers being smaller than $2^{\ell-1}$.
2. For all $\sigma \in \Sigma$
2.1. Compute the set $\sigma I^{(\ell)}:=\left\{\sigma n_{1}^{(\ell)} \bmod 2^{\ell}, \ldots, \sigma n_{M_{\ell}}^{(\ell)} \bmod 2^{\ell}\right\}$.
2.2. Order the elements of $\sigma I^{(\ell)}$ by size and compute the smallest distance L_{σ} between neighboring values.
3. Choose $\sigma^{(\ell)}:=\arg \max \left\{L_{\sigma}: \sigma \in \Sigma\right\}$. If several parameters σ achieve the same distance L_{σ}, choose from this subset one $\sigma^{(\ell)}=\sigma$ that minimizes $\left|\sum_{k=1}^{M_{\ell}} w_{2 \ell}^{\sigma n_{k}^{(\ell)}}\right|$.
Output: $\sigma^{(\ell)} \in\left\{1, \ldots, 2^{\ell-1}\right\}$.
Computational cost: at most $\mathscr{O}\left(M_{\ell}^{2}\right)$ flops disregarding the computation of Σ.
The set Σ can be simply precomputed and is not counted as computational cost. Step 2 of the Algorithm 5.32 requires $\mathscr{O}\left(M_{\ell}^{2}\right)$ flops and Step 3 only $\mathscr{O}\left(M_{\ell}\right)$ flops.

Employing Algorithm 5.32 for computing $\mathbf{A}^{(\ell+1)}$ of the form

$$
\mathbf{A}^{(\ell+1)}=2^{-\ell-1}\left(w_{2^{\ell}}^{(p-1) \sigma^{(\ell)} n_{r}^{(\ell)}}\right)_{p, r=1}^{M_{\ell}} \operatorname{diag}\left(w_{2^{\ell+1}}^{-n_{1}^{(\ell)}}, \ldots, w_{2^{\ell+1}}^{-n_{M}^{(\ell)}}\right)^{\top}
$$

in Algorithm 5.30 (for $M_{\ell}^{2}<2^{\ell}$), we can solve the linear system (5.58) with $\mathscr{O}\left(M_{\ell}^{2}\right)$ flops using the Vandermonde structure, see, e.g., [84]. Altogether, since $M_{\ell} \leq M$ for all $\ell=0, \ldots, t$, the computational cost of Algorithm 5.30 is at most $\mathscr{O}\left(2^{\ell} \log 2^{\ell}\right) \leq \mathscr{O}\left(M^{2} \log M^{2}\right)$ to execute all levels $\ell=0$ to $\left\lfloor\log _{2} M^{2}\right\rfloor$, and $\mathscr{O}\left((t-\ell) M^{2}\right)=\overline{\mathscr{O}}\left(\left(\log N-\log M^{2}\right) M^{2}\right)$ for the remaining steps. Thus we obtain overall computational cost of $\mathscr{O}\left(M^{2} \log N\right)$, and the algorithm is more efficient than the usual FFT of length N if $M^{2}<N$. Note that the sparsity M needs not to be known in advance, and the Algorithm 5.30 in fact falls back automatically to an FFT with $\mathscr{O}(N \log N)$ arithmetical operations, if $M^{2} \geq N$.

Remark 5.33 The additional strong condition that â satisfies $\operatorname{Re} \hat{a}_{j} \geq 0$ and $\operatorname{Im} \hat{a}_{j} \geq$ 0 is only needed in order to avoid cancelations. The approach similarly applies if, e.g., the components of $\hat{\mathbf{a}}$ are all in only one of the four quadrants. Moreover, it is very unlikely that full cancelations occur in the periodized vectors $\hat{\mathbf{a}}^{(\ell)}$, such that the idea almost always works for arbitrary sparse vectors $\hat{\mathbf{a}}$.

In [275], the sparse FFT for vectors with small frequency band has been considered. But differently from our considerations in Sect.5.4.2, no a priori knowledge on the size of the frequency band is needed, but a possible band size is automatically exploited during the algorithm. This improvement goes along with the drawback that the range of the Fourier components needs to be restricted similarly as in this subsection in order to avoid cancellations.

The consideration of sublinear DFT algorithms goes back to the 1990s, we refer to [130] for a review of these randomized methods that possess a constant error probability. In the last years, the research on sparse FFT has been intensified, see, e.g., $[157,263]$ and the survey [131]. While randomized algorithms suffer from the fact that they provide not always correct results, there exist also recent deterministic approaches that make no errors. Beside the results that have been presented in this subsection, we refer to deterministic algorithms in [3, 34, 174, 175, 222] based on arithmetical progressions and the Chinese remainder theorem. In contrast to the results given here, these algorithms need access to special signal values in an adaptive way, and these values are usually different from the components of the given input vector $\mathbf{a} \in \mathbb{C}^{N}$. A further class of algorithms employs the Prony method [164, 265, 298], see also Chap. 10, where however, the emerging Hankel matrices can have very large condition numbers. For various applications of sparse FFT, we refer to [156].

5.5 Numerical Stability of FFT

In this section, we show that an FFT of length N that is based on a unitary factorization of the unitary Fourier matrix $\frac{1}{\sqrt{N}} \mathbb{F}_{N}$ is numerically stable in practice, if $N \in \mathbb{N}$ is a power of 2 . We will employ the model of floating point arithmetic and study the normwise forward and backward stability of the FFT.

Assume that we work with a binary floating point number system $\mathbb{F} \subset \mathbb{R}$, see [168, pp. 36-40]. This is a subset of real numbers of the form

$$
\tilde{x}= \pm m \times 2^{e-t}= \pm 2^{e}\left(\frac{d_{1}}{2}+\frac{d_{2}}{4}+\ldots+\frac{d_{t}}{2^{t}}\right)
$$

with precision t, exponent range $e_{\min } \leq e \leq e_{\max }$, and $d_{1}, \ldots, d_{t} \in\{0,1\}$. The mantissa m satisfies $0 \leq m \leq 2^{t}-1$, where for each $\tilde{x} \in \mathbb{F} \backslash\{0\}$ it is assumed that $m \geq 2^{t-1}$, i.e., $d_{1}=1$. In case of single precision (i.e., 24 bits for the mantissa and 8 bits for the exponent), the so-called unit roundoff u is given by $u=2^{-24} \approx 5.96 \times 10^{-8}$. For double precision (i.e., 53 bits for the mantissa and 11 bits for the exponent) we have $u=2^{-53} \approx 1.11 \times 10^{-16}$, see [168, p. 41].

We use the standard model of binary floating point arithmetic in \mathbb{R}, see [134, pp. 60-61] or [168, p. 40], that is based on the following assumptions:

- If $a \in \mathbb{R}$ is represented by a floating point number $\mathrm{fl}(a) \in \mathbb{F}$, then

$$
\mathrm{fl}(a)=a(1+\epsilon), \quad|\epsilon| \leq u,
$$

where u is the unit roundoff.

- For arbitrary floating point numbers $a, b \in \mathbb{F}$ and any arithmetical operation $\circ \in\{+,-, \times, /\}$ we assume that

$$
\mathrm{fl}(a \circ b)=(a \circ b)(1+\epsilon), \quad|\epsilon| \leq u .
$$

For complex arithmetic that is implemented by real operations, we can conclude the following estimates, see also [67].

Lemma 5.34 For $x=a+\mathrm{i} b, y=c+\mathrm{i} d \in \mathbb{C}$ with $a, b, c, d \in \mathbb{F}$ we have

$$
\begin{aligned}
|\mathrm{fl}(x+y)-(x+y)| & \leq|x+y| u \\
|\mathrm{fl}(x y)-x y| & \leq(1+\sqrt{2})|x y| u
\end{aligned}
$$

Proof Using the assumptions, we obtain

$$
\begin{aligned}
\mathrm{fl}(x+y) & =\mathrm{fl}(a+c)+\mathrm{ifl}(b+d) \\
& =(a+c)\left(1+\epsilon_{1}\right)+\mathrm{i}(b+d)\left(1+\epsilon_{2}\right)=(x+y)+\epsilon_{1}(a+c)+\mathrm{i} \epsilon_{2}(b+d)
\end{aligned}
$$

with $\left|\epsilon_{1}\right|,\left|\epsilon_{2}\right| \leq u$, and thus

$$
|f f(x+y)-(x+y)|^{2} \leq\left|\epsilon_{1}\right|^{2}|a+c|^{2}+\left|\epsilon_{2}\right|^{2}|b+d|^{2} \leq u^{2}|x+y|^{2}
$$

The estimate for complex multiplication can be similarly shown, see [67, Lemma 2.5.3].

We study now the influence of floating point arithmetic for the computation of the $\operatorname{DFT}(N)$, where $N \in \mathbb{N} \backslash\{1\}$. Let $\mathbf{x} \in \mathbb{C}^{N}$ be an arbitrary input vector and

$$
\frac{1}{\sqrt{N}} \mathbf{F}_{N}=\frac{1}{\sqrt{N}}\left(w^{j k}\right)_{j, k=0}^{N-1}, \quad w_{N}:=\mathrm{e}^{-2 \pi \mathrm{i} / N}
$$

We denote with $\mathbf{y}:=\frac{1}{\sqrt{N}} \mathbf{F}_{N} \mathbf{x}$ the exact output vector and with $\widetilde{\mathbf{y}} \in \mathbb{C}^{N}$ the vector that is computed by floating point arithmetic with unit roundoff u. Then, there exists a vector $\Delta \mathbf{x} \in \mathbb{C}^{N}$ such that $\tilde{\mathbf{y}}$ can be written as

$$
\widetilde{\mathbf{y}}=\frac{1}{\sqrt{N}} \mathbf{F}_{N}(\mathbf{x}+\Delta \mathbf{x})
$$

According to [168, pp. 129-130], we say that an algorithm computing the matrixvector product $\frac{1}{\sqrt{N}} \mathbf{F}_{N} \mathbf{x}$ is normwise backward stable, if for all vectors $\mathbf{x} \in \mathbb{C}^{N}$ there exists a positive constant k_{N} such that

$$
\begin{equation*}
\|\Delta \mathbf{x}\|_{2} \leq\left(k_{N} u+\mathscr{O}\left(u^{2}\right)\right)\|\mathbf{x}\|_{2} \tag{5.59}
\end{equation*}
$$

holds with $k_{N} u \ll 1$. Here, $\|\mathbf{x}\|_{2}:=\left(\sum_{k=0}^{N-1}\left|x_{k}\right|^{2}\right)^{1 / 2}$ denotes the Euclidean norm of \mathbf{x}. Observe that the size of k_{N} is a measure for the numerical stability of the algorithm. Since by (3.31), the matrix $\frac{1}{\sqrt{N}} \mathbf{F}_{N}$ is unitary, we conclude that

$$
\|\Delta \mathbf{x}\|_{2}=\left\|\frac{1}{\sqrt{N}} \mathbf{F}_{N} \Delta \mathbf{x}\right\|_{2}=\|\widetilde{\mathbf{y}}-\mathbf{y}\|_{2}, \quad\|\mathbf{x}\|_{2}=\left\|\frac{1}{\sqrt{N}} \mathbf{F}_{N} \mathbf{x}\right\|_{2}=\|\mathbf{y}\|_{2} .
$$

Thus, the inequality (5.59) implies

$$
\begin{equation*}
\|\widetilde{\mathbf{y}}-\mathbf{y}\|_{2}=\|\Delta \mathbf{x}\|_{2} \leq\left(k_{N} u+\mathscr{O}\left(u^{2}\right)\right)\|\mathbf{x}\|_{2}=\left(k_{N} u+\mathscr{O}\left(u^{2}\right)\right)\|\mathbf{y}\|_{2}, \tag{5.60}
\end{equation*}
$$

i.e., we also have the normwise forward stability.

In the following, we will derive worst case estimates for the backward stability constant k_{N} for the Sande-Tukey FFT and compare it to the constant obtained by employing a direct computation of $\frac{1}{\sqrt{N}} \mathbf{F}_{N} \mathbf{x}$.

Let us assume that the N th roots of unity $w_{N}^{k}, k=0, \ldots, N-1$, are precomputed by a direct call, i.e.,

$$
\widetilde{w}_{N}^{k}:=\mathrm{fl}\left(\cos \frac{2 k \pi}{N}\right)-\mathrm{ifl}\left(\sin \frac{2 k \pi}{N}\right)
$$

using quality library routines, such that

$$
\left|\mathrm{fl}\left(\cos \frac{2 k \pi}{N}\right)-\cos \frac{2 k \pi}{N}\right| \leq u, \quad\left|\mathrm{fl}\left(\sin \frac{2 k \pi}{N}\right)-\sin \frac{2 k \pi}{N}\right| \leq u
$$

Then it follows that

$$
\left|\widetilde{w}_{N}^{k}-w_{N}^{k}\right|^{2} \leq\left|\mathrm{fl}\left(\cos \frac{2 k \pi}{N}\right)-\cos \frac{2 k \pi}{N}-\mathrm{ifl}\left(\sin \frac{2 k \pi}{N}\right)+\mathrm{i} \sin \frac{2 k \pi}{N}\right|^{2} \leq 2 u^{2},
$$

i.e., $\left|\widetilde{w}_{N}^{k}-w_{N}^{k}\right| \leq \sqrt{2} u$. The direct call is most accurate but more time consuming than other precomputations of w_{N}^{k} using recursions, see, e.g., [67, 295].

Next, we study how floating point errors accumulate. Assume that \tilde{x}_{1} and \tilde{x}_{2} have been obtained from previous floating point computations with discrepancies $\left|\tilde{x}_{j}-x_{j}\right|=\delta\left(x_{j}\right) u+\mathscr{O}\left(u^{2}\right)$ for $j=1,2$. Then $\tilde{x}=\mathrm{fl}\left(\tilde{x}_{1} \circ \tilde{x}_{2}\right)$ has a new discrepancy $\delta(x)$, where $x=x_{1} \circ x_{2}$.
Lemma 5.35 Let $x_{1}, x_{2} \in \mathbb{C}$ with $\left|\tilde{x}_{j}-x_{j}\right| \leq \delta\left(x_{j}\right) u+\mathscr{O}\left(u^{2}\right)$ for $j=1,2$ be given. Then we have

$$
\begin{aligned}
& \left|\mathrm{fl}\left(\tilde{x}_{1}+\tilde{x}_{2}\right)-\left(x_{1}+x_{2}\right)\right| \leq\left(\left|x_{1}+x_{2}\right|+\delta\left(x_{1}\right)+\delta\left(x_{2}\right)\right) u+\mathscr{O}\left(u^{2}\right), \\
& \left|\mathrm{fl}\left(\widetilde{x}_{1} \tilde{x}_{2}\right)-\left(x_{1} x_{2}\right)\right| \leq\left((1+\sqrt{2})\left|x_{1} x_{2}\right|+\delta\left(x_{1}\right)\left|x_{2}\right|+\delta\left(x_{2}\right)\left|x_{1}\right|\right) u+\mathscr{O}\left(u^{2}\right) .
\end{aligned}
$$

Proof We obtain by Lemma 5.34 with floating point numbers $\tilde{x}_{1}, \tilde{x}_{2} \in \mathbb{F}$,

$$
\begin{aligned}
& \left|\mathrm{ff}\left(\widetilde{x}_{1}+\tilde{x}_{2}\right)-\left(x_{1}+x_{2}\right)\right| \leq\left|\mathrm{ff}\left(\tilde{x}_{1}+\tilde{x}_{2}\right)-\left(\tilde{x}_{1}+\tilde{x}_{2}\right)\right|+\left|\left(\widetilde{x}_{1}+\tilde{x}_{2}\right)-\left(x_{1}+x_{2}\right)\right| \\
& \leq\left(\left|\widetilde{x}_{1}+\widetilde{x}_{2}\right|+\delta\left(x_{1}\right)+\delta\left(x_{2}\right)\right) u+\mathscr{O}\left(u^{2}\right)=\left(\left|x_{1}+x_{2}\right|+\delta\left(x_{1}\right)+\delta\left(x_{2}\right)\right) u+\mathscr{O}\left(u^{2}\right),
\end{aligned}
$$

where we have used $\left|\tilde{x}_{1}+\tilde{x}_{2}\right|=\left|x_{1}+x_{2}\right|+\mathscr{O}(u)$. Similarly, for the multiplication we obtain

$$
\left|\mathrm{fl}\left(\widetilde{x}_{1} \tilde{x}_{2}\right)-\left(x_{1} x_{2}\right)\right| \leq\left|\mathrm{ff}\left(\widetilde{x}_{1} \tilde{x}_{2}\right)-\left(\widetilde{x}_{1} \tilde{x}_{2}\right)\right|+\left|\left(\tilde{x}_{1} \tilde{x}_{2}\right)-\left(x_{1} x_{2}\right)\right| .
$$

Lemma 5.34 implies for the first term

$$
\left|\mathrm{fl}\left(\widetilde{x}_{1} \tilde{x}_{2}\right)-\left(\widetilde{x}_{1} \tilde{x}_{2}\right)\right| \leq(1+\sqrt{2})\left|\widetilde{x}_{1} \tilde{x}_{2}\right| u+\mathscr{O}\left(u^{2}\right)
$$

and for the second term

$$
\begin{aligned}
& \left|\left(\widetilde{x}_{1} \tilde{x}_{2}\right)-\left(x_{1} x_{2}\right)\right| \leq\left|\widetilde{x}_{2}\left(\tilde{x}_{1}-x_{1}\right)\right|+\left|x_{1}\left(\tilde{x}_{2}-x_{2}\right)\right| \\
& \quad \leq\left(\left|x_{2}\right|+\delta\left(x_{2}\right) u\right) \delta\left(x_{1}\right) u+\left|x_{1}\right| \delta\left(x_{2}\right) u+\mathscr{O}\left(u^{2}\right) .
\end{aligned}
$$

In particular, $\left|\tilde{x}_{1} \tilde{x}_{2}\right|=\left|x_{1} x_{2}\right|+\mathscr{O}(u)$. Thus the assertion follows.
In order to estimate the stability constant k_{N} for a $\mathrm{DFT}(N)$ algorithm, we first recall the roundoff error for scalar products of vectors.
Lemma 5.36 Let $N \in \mathbb{N}$ be fixed. Let $\mathbf{x}=\left(x_{j}\right)_{j=0}^{N-1}, \mathbf{y}=\left(y_{j}\right)_{j=0}^{N-1} \in \mathbb{C}^{N}$ be arbitrary vectors and let $\widetilde{\mathbf{x}}=\left(\widetilde{x}_{j}\right)_{j=0}^{N-1}, \widetilde{\mathbf{y}}=\left(\tilde{y}_{j}\right)_{j=0}^{N-1} \in(\mathbb{F}+\mathrm{i} \mathbb{F})^{N}$ be their floating point representations such that $\left|\widetilde{x}_{j}-x_{j}\right| \leq \sqrt{2}\left|x_{j}\right| u+\mathscr{O}\left(u^{2}\right)$ and $\left|\tilde{y}_{j}-y_{j}\right| \leq$ $\left|y_{j}\right| u+\mathscr{O}\left(u^{2}\right)$ for $j=0, \ldots, N-1$.

Then we have

$$
\left|\mathrm{fl}\left(\widetilde{\mathbf{x}}^{\top} \widetilde{\mathbf{y}}\right)-\left(\mathbf{x}^{\top} \mathbf{y}\right)\right| \leq\left((N+1+2 \sqrt{2})|\mathbf{x}|^{\top}|\mathbf{y}|\right) u+\mathscr{O}\left(u^{2}\right)
$$

for recursive summation, and

$$
\left|\mathrm{fl}\left(\widetilde{\mathbf{x}}^{\top} \widetilde{\mathbf{y}}\right)-\left(\mathbf{x}^{\top} \mathbf{y}\right)\right| \leq\left((t+2+2 \sqrt{2})|\mathbf{x}|^{\top}|\mathbf{y}|\right) u+\mathscr{O}\left(u^{2}\right)
$$

for cascade summation, where $|\mathbf{x}|:=\left(\left|x_{j}\right|\right)_{j=0}^{N-1}$ and $t:=\left\lceil\log _{2} N\right\rceil$ for $N \in \mathbb{N} \backslash\{1\}$. Proof

1. We show the estimate for recursive estimation using induction with respect to N. For $N=1$ it follows by Lemma 5.35 with $\delta\left(x_{0}\right) \leq \sqrt{2}\left|x_{0}\right|$ and $\delta\left(y_{0}\right) \leq\left|y_{0}\right|$ that

$$
\begin{aligned}
\left|\mathrm{fl}\left(\widetilde{x}_{0} \tilde{y}_{0}\right)-x_{0} y_{0}\right| & \leq\left((1+\sqrt{2})\left|x_{0}\right|\left|y_{0}\right|+\left|x_{0}\right|\left|y_{0}\right|+\sqrt{2}\left|y_{0}\right|\left|x_{0}\right|\right) u+\mathscr{O}\left(u^{2}\right) \\
& =\left((2+2 \sqrt{2})\left|x_{0}\right|\left|y_{0}\right|\right) u+\mathscr{O}\left(u^{2}\right) .
\end{aligned}
$$

Assume now that \widetilde{z} is the result of the computation of $\widetilde{\mathbf{x}}_{1}^{\top} \widetilde{\mathbf{y}}_{1}$ in floating point arithmetic for $\widetilde{\mathbf{x}}_{1}, \widetilde{\mathbf{y}}_{1} \in \mathbb{C}^{N}$. Let $\widetilde{\mathbf{x}}:=\left(\widetilde{\mathbf{x}}_{1}^{\top}, \widetilde{x}_{N+1}\right)^{\top} \in \mathbb{C}^{N+1}$ and $\widetilde{\mathbf{y}}:=$ $\left(\widetilde{\mathbf{y}}_{1}^{\top}, \tilde{y}_{N+1}\right)^{\top} \in \mathbb{C}^{N+1}$. Using the intermediate result \widetilde{z}, we find by Lemma 5.35 and the induction hypothesis with discrepancies $\delta(z) \leq(N+1+2 \sqrt{2})|z|$ and $\delta\left(x_{N+1} y_{N+1}\right) \leq(2+2 \sqrt{2})\left|x_{N+1} y_{N+1}\right|$,

$$
\begin{aligned}
& \left|\mathrm{fl}\left(\widetilde{\mathbf{x}}^{\top} \widetilde{\mathbf{y}}\right)-\left(\mathbf{x}^{\top} \mathbf{y}\right)\right|=\left|\mathrm{fl}\left(\widetilde{z}+\mathrm{fl}\left(\widetilde{x}_{N+1} \tilde{y}_{N+1}\right)\right)-\left(\mathbf{x}^{\top} \mathbf{y}\right)\right| \\
& \leq\left(\left|z+x_{N+1} y_{N+1}\right|+\delta(z)+\delta\left(x_{N+1} y_{N+1}\right)\right) u+\mathscr{O}\left(u^{2}\right) \\
& \leq\left(|\mathbf{x}|^{\top}|\mathbf{y}|+(N+1+2 \sqrt{2})\left|\mathbf{x}_{1}\right|^{\top}\left|\mathbf{y}_{1}\right|+(2+2 \sqrt{2})\left|x_{N+1} y_{N+1}\right|\right) u+\mathscr{O}\left(u^{2}\right) \\
& \leq\left((N+2+2 \sqrt{2})|\mathbf{x}|^{\top}|\mathbf{y}|\right) u+\mathscr{O}\left(u^{2}\right) .
\end{aligned}
$$

2. For cascade summation, we also proceed by induction, this time over t, where $t=\left\lceil\log _{2} N\right\rceil$ and $N \in \mathbb{N} \backslash\{1\}$. For $t=1$, i.e., $N=2$, it follows from the recursive summation that

$$
\left|\mathrm{fl}\left(\widetilde{\mathbf{x}}^{\top} \widetilde{\mathbf{y}}\right)-\left(\mathbf{x}^{\top} \mathbf{y}\right)\right| \leq\left((3+2 \sqrt{2})|\mathbf{x}|^{\top}|\mathbf{y}|\right) u+\mathscr{O}\left(u^{2}\right) .
$$

Assume now that \widetilde{z}_{1} is the result of the computation of $\widetilde{\mathbf{x}}_{1}^{\top} \widetilde{\mathbf{y}}_{1}$ in floating point arithmetic for $\widetilde{\mathbf{x}}_{1}, \widetilde{\mathbf{y}}_{1} \in \mathbb{C}^{N}$, and \widetilde{z}_{2} is the result of the computation of $\widetilde{\mathbf{x}}_{2}^{\top} \widetilde{\mathbf{y}}_{2}$ in floating point arithmetic for $\widetilde{\mathbf{x}}_{2}, \widetilde{\mathbf{y}}_{2} \in \mathbb{C}^{N}$ using cascade summation. Let $\widetilde{\mathbf{x}}:=$ $\left(\widetilde{\mathbf{x}}_{1}^{\top}, \widetilde{\mathbf{x}}_{2}^{\top}\right)^{\top} \in \mathbb{C}^{2 N}$ and $\widetilde{\mathbf{y}}:=\left(\widetilde{\mathbf{y}}_{1}^{\top}, \tilde{\mathbf{y}}_{2}^{\top}\right)^{\top} \in \mathbb{C}^{2 N}$. Using the intermediate results \widetilde{z}_{1}, \widetilde{z}_{2} for the scalar products $z_{1}=\mathbf{x}_{1}^{\top} \mathbf{y}_{1}$ and $z_{2}=\mathbf{x}_{2}^{\top} \mathbf{y}_{2}$, we obtain by Lemma 5.35 and the induction hypothesis

$$
\begin{aligned}
& \left|f\left(1 \widetilde{\mathbf{x}}^{\top} \widetilde{\mathbf{y}}\right)-\left(\mathbf{x}^{\top} \mathbf{y}\right)\right|=\left|f\left(\widetilde{z}_{1}+\widetilde{z}_{2}\right)\right| \leq\left(\left|z_{1}+z_{2}\right|+\delta\left(z_{1}\right)+\delta\left(z_{2}\right)\right) u+\mathscr{O}\left(u^{2}\right) \\
& \leq\left(|\mathbf{x}|^{\top}|\mathbf{y}|+(t+2+2 \sqrt{2})\left|\mathbf{x}_{1}\right|^{\top}\left|\mathbf{y}_{1}\right|+(t+2+2 \sqrt{2})\left|\mathbf{x}_{2}\right|^{\top}\left|\mathbf{y}_{2}\right|\right) u+\mathscr{O}\left(u^{2}\right) \\
& \leq\left((t+3+2 \sqrt{2})|\mathbf{x}|^{\top}|\mathbf{y}|\right) u+\mathscr{O}\left(u^{2}\right) .
\end{aligned}
$$

Thus, the assertion follows.
We are now ready to estimate the backward stability constant for the direct computation of the $\operatorname{DFT}(N)$ of radix- 2 length N.

Theorem 5.37 Let $N=2^{t}, t \in \mathbb{N}$, be given. Assume that the entries of the floating point representation of the Fourier matrix $\widetilde{\mathbf{F}}_{N}$ satisfy $\left|\widetilde{w}_{N}^{k}-w_{N}^{k}\right| \leq \sqrt{2} u$ for $k=$ $0, \ldots, N-1$. Further let $\widetilde{\mathbf{x}}=\left(\widetilde{x}_{j}\right)_{j=0}^{N-1}$ be the vector of floating point numbers representing $\mathbf{x}=\left(x_{j}\right)_{j=0}^{N-1} \in \mathbb{C}^{N}$ with $\left|\tilde{x}_{j}-x_{j}\right| \leq\left|x_{j}\right| u$.

Then the direct computation of $\frac{1}{\sqrt{N}} \mathbf{F}_{N} \mathbf{x}$ is normwise backward stable, and we have

$$
\left\|\mathrm{fl}\left(\frac{1}{\sqrt{N}} \widetilde{\mathbf{F}}_{N} \widetilde{\mathbf{x}}\right)-\frac{1}{\sqrt{N}} \mathbf{F}_{N} \mathbf{x}\right\|_{2} \leq\left(k_{N} u+\mathscr{O}\left(u^{2}\right)\right)\|\mathbf{x}\|_{2}
$$

with the constant

$$
k_{N}= \begin{cases}\sqrt{N}(N+1+2 \sqrt{2}) & \text { for recursive summation } \\ \sqrt{N}\left(\log _{2} N+2+2 \sqrt{2}\right) & \text { for cascade summation }\end{cases}
$$

Proof We apply Lemma 5.36 to each component of the matrix-vector product $\frac{1}{\sqrt{N}} \mathbf{F}_{N} \mathbf{x}$, not counting the factor $\frac{1}{\sqrt{N}}$ which is for even t only a shift in binary arithmetic. For the j th component, we obtain for recursive summation

$$
\begin{aligned}
& \left|\mathrm{fl}\left(\frac{1}{\sqrt{N}} \widetilde{\mathbf{F}}_{N} \widetilde{\mathbf{x}}\right)_{j}-\left(\frac{1}{\sqrt{N}} \mathbf{F}_{N} \mathbf{x}\right)_{j}\right| \leq \frac{1}{\sqrt{N}}\left((N+1+2 \sqrt{2})\left((1)_{k=0}^{N-1}\right)^{\top}|\mathbf{x}|\right) u+\mathscr{O}\left(u^{2}\right) \\
& =\left(\frac{1}{\sqrt{N}}(N+1+2 \sqrt{2})\|\mathbf{x}\|_{1}\right) u+\mathscr{O}\left(u^{2}\right) \leq\left((N+1+2 \sqrt{2})\|\mathbf{x}\|_{2}\right) u+\mathscr{O}\left(u^{2}\right)
\end{aligned}
$$

Here we have used that $\|\mathbf{x}\|_{1} \leq \sqrt{N}\|\mathbf{x}\|_{2}$. Taking now the Euclidean norm, it follows that

$$
\left(\sum_{j=0}^{N-1}\left|\mathrm{fl}\left(\frac{1}{\sqrt{N}} \widetilde{\mathbf{F}}_{N} \widetilde{\mathbf{x}}\right)_{j}-\left(\frac{1}{\sqrt{N}} \mathbf{F}_{N} \mathbf{x}\right)_{j}\right|^{2}\right)^{1 / 2} \leq\left(\sqrt{N}(N+1+2 \sqrt{2})\|\mathbf{x}\|_{2}\right) u+\mathscr{O}\left(u^{2}\right)
$$

The result for cascade summation follows analogously.
In comparison, we estimate now the worst case backward stability constant for a radix-2 FFT considered in Sect. 5.2. Particularly, we employ the matrix factorization (5.10) related to the Sande-Tukey FFT, i.e.,

$$
\mathbf{F}_{N}=\mathbf{R}_{N} \prod_{n=1}^{t} \mathbf{T}_{n}\left(\mathbf{I}_{N / 2^{n}} \otimes \mathbf{F}_{2} \otimes \mathbf{I}_{2^{n-1}}\right)=\mathbf{R}_{N} \mathbf{M}_{N}^{(t)} \mathbf{M}_{N}^{(t-1)} \ldots \mathbf{M}_{N}^{(1)}
$$

where

$$
\begin{equation*}
\mathbf{M}_{N}^{(j)}:=\mathbf{T}_{t-j}\left(\mathbf{I}_{2 j} \otimes \mathbf{F}_{2} \otimes \mathbf{I}_{2^{t-j-1}}\right) \tag{5.61}
\end{equation*}
$$

Recall that \mathbf{R}_{N} is a permutation matrix, and

$$
\begin{aligned}
\mathbf{T}_{t-j} & :=\mathbf{I}_{2 j} \otimes \mathbf{D}_{2^{t-j}} \\
\mathbf{D}_{2^{t-j}} & :=\operatorname{diag}\left(\mathbf{I}_{2^{t-j-1}}, \mathbf{W}_{2^{t-j-1}}\right), \quad \mathbf{W}_{2^{t-j-1}}:=\operatorname{diag}\left(w_{2^{t-j}}^{j}\right)_{j=0}^{2^{t-j-1}-1}
\end{aligned}
$$

In particular, $\mathbf{T}_{1}=\mathbf{I}_{N}$. The matrices $\mathbf{I}_{2^{j}} \otimes \mathbf{F}_{2} \otimes \mathbf{I}_{2^{t-j-1}}$ are sparse with only two nonzero entries per row, and these entries are either 1 or -1 . Multiplication with these matrices just means one addition or one subtraction per component.

Theorem 5.38 Let $N=2^{t}, t \in \mathbb{N}$. Assume that $\left|\widetilde{w}_{N}^{k}-w_{N}^{k}\right| \leq \sqrt{2} u$ for $k=$ $0, \ldots, N-1$. Further let $\widetilde{\mathbf{x}}=\left(\widetilde{x}_{j}\right)_{j=0}^{N-1}$ be the vector of floating point numbers representing $\mathbf{x}=\left(x_{j}\right)_{j=0}^{N-1}$ with $\left|\widetilde{x}_{j}-x_{j}\right| \leq\left|x_{j}\right| u$.

Then the Sande-Tukey FFT is normwise backward stable with the constant

$$
k_{N}=(2+3 \sqrt{2}) \log _{2} N+1
$$

Proof

1. Let $\widetilde{\mathbf{x}}^{(0)}:=\widetilde{\mathbf{x}}$ such that $\left\|\widetilde{\mathbf{x}}^{(0)}-\mathbf{x}^{(0)}\right\|_{2} \leq u\|\mathbf{x}\|_{2}$. The Sande-Tukey FFT is employed by successive multiplication with the sparse matrices $\mathbf{M}_{N}^{(j)}, j=$ $1, \ldots, t$, and the permutation \mathbf{R}_{N} in (5.61). We introduce the vectors

$$
\widetilde{\mathbf{x}}^{(j)}:=\mathrm{fl}\left(\tilde{\mathbf{M}}_{N}^{(j)} \widetilde{\mathbf{x}}^{(j-1)}\right), \quad j=1, \ldots, t
$$

while $\mathbf{x}^{(j)}:=\mathbf{M}_{N}^{(j)} \ldots \mathbf{M}_{N}^{(1)} \mathbf{x}$ is the exact result after j steps. Here,

$$
\widetilde{\mathbf{M}}_{N}^{(j)}:=\widetilde{\mathbf{T}}_{t-j}\left(\mathbf{I}_{2^{j}} \otimes \mathbf{F}_{2} \otimes \mathbf{I}_{2^{t-j-1}}\right)
$$

denotes the floating point representation of $\mathbf{M}_{N}^{(j)}$ using \widetilde{w}_{N}^{k}. Note that $\frac{1}{\sqrt{N}} \mathbf{R}_{N} \widetilde{\mathbf{x}}^{(t)}$ is the result of the algorithm in floating point arithmetic, where we do not take into account errors caused by the multiplication with $\frac{1}{\sqrt{N}}$ as before. We consider the errors e_{j} of the form

$$
e_{j}:=\left\|\widetilde{\mathbf{x}}^{(j)}-\widetilde{\mathbf{M}}^{(j)} \widetilde{\mathbf{x}}^{(j-1)}\right\|_{2}, \quad j=1, \ldots, t
$$

Then we can estimate the floating point error as follows:

$$
\begin{aligned}
\left\|\widetilde{\mathbf{x}}^{(j)}-\mathbf{x}^{(j)}\right\|_{2} \leq & \left\|\widetilde{\mathbf{x}}^{(j)}-\widetilde{\mathbf{M}}^{(j)} \widetilde{\mathbf{x}}^{(j-1)}\right\|_{2}+\left\|\tilde{\mathbf{M}}^{(j)} \widetilde{\mathbf{x}}^{(j-1)}-\widetilde{\mathbf{M}}^{(j)} \mathbf{x}^{(j-1)}\right\|_{2} \\
& +\left\|\tilde{\mathbf{M}}^{(j)} \mathbf{x}^{(j-1)}-\mathbf{M}^{(j)} \mathbf{x}^{(j-1)}\right\|_{2} \\
\leq & e_{j}+\left\|\widetilde{\mathbf{M}}^{(j)}\right\|_{2}\left\|\widetilde{\mathbf{x}}^{(j-1)}-\mathbf{x}^{(j-1)}\right\|_{2}+\left\|\tilde{\mathbf{M}}^{(j)}-\mathbf{M}^{(j)}\right\|_{2}\left\|\mathbf{x}^{(j-1)}\right\|_{2} .
\end{aligned}
$$

Observing that

$$
\left\|\tilde{\mathbf{M}}^{(j)}\right\|_{2}=\left\|\widetilde{\mathbf{T}}_{t-j}\right\|_{2}\left\|\mathbf{I}_{2^{j}} \otimes \mathbf{F}_{2} \otimes \mathbf{I}_{2^{t-j-1}}\right\|_{2}=\sqrt{2}\left\|\widetilde{\mathbf{T}}_{t-j}\right\|_{2} \leq \sqrt{2}(1+\sqrt{2} u)
$$

and that

$$
\begin{aligned}
\left\|\tilde{\mathbf{M}}^{(j)}-\mathbf{M}^{(j)}\right\|_{2} & =\left\|\left(\widetilde{\mathbf{T}}_{t-j}-\mathbf{T}_{t-j}\right)\left(\mathbf{I}_{2^{j}} \otimes \mathbf{F}_{2} \otimes \mathbf{I}_{2^{t-j-1}}\right)\right\|_{2} \\
& \leq \sqrt{2}\left\|\widetilde{\mathbf{T}}_{t-j}-\mathbf{T}_{t-j}\right\|_{2}<2 u,
\end{aligned}
$$

we obtain

$$
\begin{equation*}
\left\|\widetilde{\mathbf{x}}^{(j)}-\mathbf{x}^{(j)}\right\|_{2} \leq e_{j}+\sqrt{2}\left\|\widetilde{\mathbf{x}}^{(j-1)}-\mathbf{x}^{(j-1)}\right\|_{2}+2\left\|\mathbf{x}^{(j-1)}\right\|_{2} u+\mathscr{O}\left(u^{2}\right) . \tag{5.62}
\end{equation*}
$$

2. We show now that $e_{j} \leq 2 \sqrt{2}(1+\sqrt{2})\left\|\mathbf{x}^{(j-1)}\right\|_{2} u$ for all $j=1, \ldots, t$. Introducing the intermediate vectors

$$
\widetilde{\mathbf{y}}^{(j)}:=\mathrm{fl}\left(\left(\mathbf{I}_{2^{j}} \otimes \mathbf{F}_{2} \otimes \mathbf{I}_{2^{t-j-1}}\right) \widetilde{\mathbf{x}}^{(j-1)}\right), \quad \mathbf{y}^{(j)}:=\left(\mathbf{I}_{2^{j}} \otimes \mathbf{F}_{2} \otimes \mathbf{I}_{2^{t-j-1}}\right) \widetilde{\mathbf{x}}^{(j-1)}
$$

we conclude that $\widetilde{\mathbf{x}}^{(j)}=\mathrm{fl}\left(\widetilde{\mathbf{T}}_{t-j} \widetilde{\mathbf{y}}^{(j)}\right)$. By Lemma 5.35 with $\delta\left(\widetilde{x}_{k}^{(j)}\right)=0$ for all k, we find for each component

$$
\begin{equation*}
\left|\widetilde{y}_{k}^{(j)}-y_{k}^{(j)}\right| \leq\left|y_{k}^{(j)}\right| u+\mathscr{O}\left(u^{2}\right) \tag{5.63}
\end{equation*}
$$

and thus

$$
\left\|\widetilde{\mathbf{y}}^{(j)}-\mathbf{y}^{(j)}\right\|_{2} \leq\left\|\mathbf{y}^{(j)}\right\|_{2} u=\sqrt{2}\left\|\widetilde{\mathbf{x}}^{(j-1)}\right\|_{2} u,
$$

where we have used that $\left\|\mathbf{I}_{2 j} \otimes \mathbf{F}_{2} \otimes \mathbf{I}_{2^{t-j-1}}\right\|_{2}=\sqrt{2}$. Next, the multiplication with the diagonal matrix $\widetilde{\mathbf{T}}_{t-j}$ implies by Lemma 5.35

$$
\begin{aligned}
\left|\widetilde{x}_{k}^{(j)}-\left(\mathbf{M}_{N}^{(j)} \widetilde{\mathbf{x}}^{(j-1)}\right)_{k}\right| & =\left|\left(\mathrm{fl}\left(\widetilde{\mathbf{T}}_{t-j} \widetilde{\mathbf{y}}^{(j)}\right)\right)_{k}-\left(\mathbf{T}_{t-j} \mathbf{y}^{(j)}\right)_{k}\right| \\
& \leq\left((1+\sqrt{2})\left|y_{k}^{(j)}\right|+\sqrt{2}\left|y_{k}^{(j)}\right|+\delta\left(y_{k}^{(j)}\right)\right) u+\mathscr{O}\left(u^{2}\right) \\
& \leq\left(2(1+\sqrt{2})\left|y_{k}^{(j)}\right|\right) u+\mathscr{O}\left(u^{2}\right),
\end{aligned}
$$

where we have used the assumption $\left|\widetilde{w}_{N}^{k}-w_{N}^{k}\right| \leq \sqrt{2} u$ and that (5.63) implies $\delta\left(y_{k}^{(j)}\right)=\left|y_{k}^{(j)}\right|$. Thus, we conclude
$e_{j}=\left\|\widetilde{\mathbf{x}}^{(j)}-\widetilde{\mathbf{M}}^{(j)} \widetilde{\mathbf{x}}^{(j-1)}\right\|_{2} \leq 2(1+\sqrt{2})\left\|\mathbf{y}^{(j)}\right\|_{2} u=2 \sqrt{2}(1+\sqrt{2})\left\|\mathbf{x}^{(j-1)}\right\|_{2} u$.
3. We recall that $\left\|\mathbf{x}^{(j)}\right\|_{2}=2^{j / 2}\|\mathbf{x}\|_{2}$. Thus, the relation (5.62) can be written as

$$
\begin{aligned}
\left\|\widetilde{\mathbf{x}}^{(j)}-\mathbf{x}^{(j)}\right\|_{2} \leq & 2 \sqrt{2}(1+\sqrt{2})\left\|\mathbf{x}^{(j-1)}\right\|_{2} u+\sqrt{2}\left\|\widetilde{\mathbf{x}}^{(j-1)}-\mathbf{x}^{(j-1)}\right\|_{2} \\
& +2\left\|\mathbf{x}^{(j-1)}\right\|_{2} u+\mathscr{O}\left(u^{2}\right)
\end{aligned}
$$

Starting with $\left\|\widetilde{\mathbf{x}}^{(0)}-\mathbf{x}^{(0)}\right\|_{2} \leq u\|\mathbf{x}\|_{2}$, we show by induction over j that

$$
\left\|\widetilde{\mathbf{x}}^{(j)}-\mathbf{x}^{(j)}\right\|_{2} \leq 2^{j / 2}((2 j+1)+3 \sqrt{2} j)\|\mathbf{x}\|_{2} u+\mathscr{O}\left(u^{2}\right)
$$

is true for $j=1, \ldots, t$. For $j=1$,

$$
\begin{aligned}
\left\|\widetilde{\mathbf{x}}^{(1)}-\mathbf{x}^{(1)}\right\|_{2} & \leq 2 \sqrt{2}(1+\sqrt{2})\left\|\mathbf{x}^{(0)}\right\|_{2} u+\sqrt{2}\left\|\widetilde{\mathbf{x}}^{(0)}-\mathbf{x}^{(0)}\right\|_{2}+2\left\|\mathbf{x}^{(0)}\right\|_{2} u+\mathscr{O}\left(u^{2}\right) \\
& =\sqrt{2}(3+3 \sqrt{2})\|\mathbf{x}\|_{2},
\end{aligned}
$$

and the assertion is correct. Assume now that the assertion is true for some $j \in$ $\{1, \ldots, t-1\}$. Then

$$
\begin{aligned}
& \left\|\widetilde{\mathbf{x}}^{(j+1)}-\mathbf{x}^{(j+1)}\right\|_{2} \leq 2(\sqrt{2}+3)\left\|\mathbf{x}^{(j)}\right\|_{2} u+\sqrt{2}\left\|\widetilde{\mathbf{x}}^{(j)}-\mathbf{x}^{(j)}\right\|_{2}+\mathscr{O}\left(u^{2}\right) \\
= & 2(\sqrt{2}+3) 2^{j / 2}\|\mathbf{x}\|_{2} u+2^{(j+1) / 2}((2 j+1)+3 \sqrt{2} j)\|\mathbf{x}\|_{2} u+\mathscr{O}\left(u^{2}\right) \\
= & 2^{(j+1) / 2}((2 j+3)+3 \sqrt{2}(j+1))\|\mathbf{x}\|_{2} u+\mathscr{O}\left(u^{2}\right) .
\end{aligned}
$$

Finally, it follows with $\widetilde{\mathbf{F}}_{N}=\mathbf{R}_{N} \widetilde{\mathbf{M}}_{N}^{(t)} \ldots \widetilde{\mathbf{M}}_{N}^{(1)}$ and $t=\log _{2} N$ that

$$
\begin{aligned}
& \left\|\mathrm{f}\left(\frac{1}{\sqrt{N}} \widetilde{\mathbf{F}}_{N} \widetilde{\mathbf{x}}\right)-\frac{1}{\sqrt{N}} \mathbf{F}_{N} \mathbf{x}\right\|_{2}=\frac{1}{\sqrt{N}}\left\|\widetilde{\mathbf{x}}^{(t)}-\mathbf{x}^{(t)}\right\|_{2} \\
& \leq\left((2+3 \sqrt{2}) \log _{2} N+1\right)\|\mathbf{x}\|_{2} u+\mathscr{O}\left(u^{2}\right)
\end{aligned}
$$

Comparing the constants of backward stability for the usual matrix-vector multiplication and the Sande-Tukey FFT, we emphasize that the FFT not only saves computational effort but also provides much more accurate results than direct computation.

Remark 5.39 In [168, pp. 452-454], the numerical stability of the Cooley-Tukey radix- 2 FFT is investigated. The obtained result $k_{N}=\mathscr{O}\left(\log _{2} N\right)$ for various FFTs has been shown in different papers, see $[8,67,304,384]$ under the assumption that \mathbf{x} is contained in \mathbb{F}^{N} and all twiddle factors are either exactly known or precomputed by direct call. In [67, 295, 321, 351], special attention was put on the influence of the recursive precomputation of twiddle factors that can essentially deteriorate the final result.

Beside worst case estimates, also the average case backward numerical stability of FFT has been studied, see $[60,350]$ with the result $k_{N}=\mathscr{O}\left(\sqrt{\log _{2} N}\right)$.

Chapter 6
 Chebyshev Methods and Fast DCT Algorithms

This chapter is concerned with Chebyshev methods and fast algorithms for the discrete cosine transform (DCT). Chebyshev methods are fundamental for the approximation and integration of real-valued functions defined on a compact interval. In Sect. 6.1, we introduce the Chebyshev polynomials of first kind and study their properties. Further, we consider the close connection between Chebyshev expansions and Fourier expansions of even 2π-periodic functions, the convergence of Chebyshev series, and the properties of Chebyshev coefficients. Section 6.2 addresses the efficient evaluation of polynomials, which are given in the orthogonal basis of Chebyshev polynomials. We present fast DCT algorithms in Sect. 6.3. These fast DCT algorithms are based either on the FFT or on the orthogonal factorization of the related cosine matrix.

In Sect. 6.4, we describe the polynomial interpolation at Chebyshev extreme points (together with a barycentric interpolation formula) and the Clenshaw-Curtis quadrature. Fast algorithms for the evaluation of polynomials at Chebyshev extreme points, for computing products of polynomials as well as for interpolation and quadrature involve different types of the DCT. In Sect. 6.5, we consider the discrete polynomial transform which is a far-reaching generalization of the DCT.

6.1 Chebyshev Polynomials and Chebyshev Series

The basis of Chebyshev polynomials possesses a lot of favorable properties and is therefore of high interest as an alternative to the monomial basis for representing polynomials and polynomial expansions.

6.1.1 Chebyshev Polynomials

We consider the interval $I:=[-1,1]$ and define the functions

$$
\begin{equation*}
T_{k}(x):=\cos (k \arccos x) \tag{6.1}
\end{equation*}
$$

for all $k \in \mathbb{N}_{0}$ and all $x \in I$. Applying the substitution $x=\cos t, t \in[0, \pi]$, we observe that

$$
\begin{equation*}
T_{k}(\cos t)=\cos (k t), \quad k \in \mathbb{N}_{0}, \tag{6.2}
\end{equation*}
$$

for all $t \in[0, \pi]$ and hence for all $t \in \mathbb{R}$. Formula (6.2) implies that the graph of T_{5} on I is a "distorted" harmonic oscillation, see Fig. 6.1.

The trigonometric identity

$$
\cos (k+1) t+\cos (k-1) t=2 \cos t \cos (k t), \quad k \in \mathbb{N}
$$

provides the important recursion formula

$$
\begin{equation*}
T_{k+1}(x)=2 x T_{k}(x)-T_{k-1}(x), \quad k \in \mathbb{N}, \tag{6.3}
\end{equation*}
$$

with initial polynomials $T_{0}(x)=1$ and $T_{1}(x)=x$. Thus T_{k} is an algebraic polynomial of degree k with leading coefficient 2^{k-1}. Clearly, the polynomials T_{k} can be extended to \mathbb{R} such that the recursion formula (6.3) holds for all $x \in \mathbb{R}$. The polynomial $T_{k}: \mathbb{R} \rightarrow \mathbb{R}$ of degree $k \in \mathbb{N}_{0}$ is called the kth Chebyshev polynomial of first kind.

Remark 6.1 Originally these polynomials were investigated in 1854 by the Russian mathematician P.L. Chebyshev (1821-1894), see Fig. 6.2 (Image source: [347]). Note that the Russian name has several transliterations (such as Tschebyscheff, Tschebyschew, and Tschebyschow). We emphasize that the Chebyshev polynomials are of similar importance as the complex exponentials (1.10) for the approximation

Fig. 6.1 Comparison between $\cos (5 \cdot)$ restricted on $[0, \pi]$ (left) and T_{5} restricted on I (right)

Fig. 6.2 The Russian mathematician Pafnuty Lvovich Chebyshev (1821-1894)

Fig. 6.3 The Chebyshev polynomials T_{0} (black), T_{1} (red), T_{2} (orange), T_{3} (green), T_{4} (blue), and T_{5} (violet) restricted on I

of 2π-periodic functions. There exist several excellent publications [238, 262, 310, 356] on Chebyshev polynomials.

For $k=2, \ldots, 5$, the recursion formula (6.3) yields

$$
\begin{array}{ll}
T_{2}(x)=2 x^{2}-1, & T_{3}(x)=4 x^{3}-3 x \\
T_{4}(x)=8 x^{4}-8 x^{2}+1, & T_{5}(x)=16 x^{5}-20 x^{3}+5 x
\end{array}
$$

Figure 6.3 shows the Chebyshev polynomials T_{k} restricted on I for $k=0, \ldots, 5$. From

$$
\arccos (-x)=\pi-\arccos x, \quad x \in I
$$

it follows by (6.1) that for all $k \in \mathbb{N}_{0}$ and all $x \in I$

$$
\begin{equation*}
T_{k}(-x)=\cos (k \arccos (-x))=\cos (k \pi-k \arccos x)=(-1)^{k} T_{k}(x) \tag{6.4}
\end{equation*}
$$

Hence $T_{2 k}, k \in \mathbb{N}_{0}$, is even and $T_{2 k+1}, k \in \mathbb{N}_{0}$, is odd. Further, we have for all $k \in \mathbb{N}_{0}$

$$
T_{k}(1)=1, \quad T_{k}(-1)=(-1)^{k}, \quad T_{2 k}(0)=(-1)^{k+1}, \quad T_{2 k+1}(0)=0 .
$$

Lemma 6.2 For each $k \in \mathbb{N}_{0}$ the Chebyshev polynomial T_{k} possesses the explicit representation

$$
T_{k}(x)= \begin{cases}\frac{1}{2}\left[\left(x+\mathrm{i} \sqrt{1-x^{2}}\right)^{k}+\left(x-\mathrm{i} \sqrt{1-x^{2}}\right)^{k}\right] & x \in I, \\ \frac{1}{2}\left[\left(x-\sqrt{x^{2}-1}\right)^{k}+\left(x+\sqrt{x^{2}-1}\right)^{k}\right] & x \in \mathbb{R} \backslash I .\end{cases}
$$

Proof For $k=0$ and $k=1$ these explicit expressions yield $T_{0}(x)=1$ and $T_{1}(x)=$ x for all $x \in \mathbb{R}$. Simple calculation shows that for arbitrary $k \in \mathbb{N}$ the explicit expressions fulfill the recursion formula (6.3) for all $x \in \mathbb{R}$. Hence these explicit formulas represent T_{k}.

Let $L_{2, w}(I)$ denote the real weighted Hilbert space of all measurable functions $f: I \rightarrow \mathbb{R}$ with

$$
\int_{-1}^{1} w(x) f(x)^{2} \mathrm{~d} x<\infty
$$

with the weight

$$
w(x):=\left(1-x^{2}\right)^{-1 / 2}, \quad x \in(-1,1) .
$$

The inner product of $L_{2, w}(I)$ is given by

$$
\langle f, g\rangle_{L_{2, w}(I)}:=\frac{1}{\pi} \int_{-1}^{1} w(x) f(x) g(x) \mathrm{d} x
$$

for all $f, g \in L_{2, w}(I)$, and the related norm of $f \in L_{2, w}(I)$ is equal to

$$
\|f\|_{L_{2, w}(I)}:=\langle f, f\rangle_{L_{2, w}(I)}^{1 / 2} .
$$

As usual, almost equal functions are identified in $L_{2, w}(I)$. The following result shows that the Chebyshev polynomials satisfy similar orthogonality relations as the complex exponentials (1.10) in the weighted Hilbert space.

Theorem 6.3 The Chebyshev polynomials $T_{k}, k \in \mathbb{N}_{0}$, form a complete orthogonal system in $L_{2, w}(I)$. For all $k, \ell \in \mathbb{N}_{0}$ we have

$$
\left\langle T_{k}, T_{\ell}\right\rangle_{L_{2, w}(I)}= \begin{cases}1 & k=\ell=0 \\ \frac{1}{2} & k=\ell>0 \\ 0 & k \neq \ell\end{cases}
$$

Proof The orthogonality of the Chebyshev polynomials follows immediately from the identity

$$
\left\langle T_{k}, T_{\ell}\right\rangle_{L_{2, w}(I)}=\frac{1}{\pi} \int_{0}^{\pi} \cos (k t) \cos (\ell t) \mathrm{d} t=\frac{1}{2 \pi} \int_{0}^{\pi}(\cos (k-\ell) t+\cos (k+\ell) t) \mathrm{d} t
$$

The completeness of the orthogonal system $\left\{T_{k}: k \in \mathbb{N}_{0}\right\}$ is a consequence of Theorem 1.1: For $f \in L_{2, w}(I)$ with $a_{k}[f]=0$ for all $k \in \mathbb{N}_{0}$ we can conclude that

$$
0=a_{k}[f]=2\left\langle f, T_{k}\right\rangle_{L_{2, w}(I)}=\frac{1}{\pi} \int_{-\pi}^{\pi} \varphi(t) \cos (k t) \mathrm{d} t
$$

with $\varphi=f(\cos \cdot)$. Since φ is even, we obtain for all $k \in \mathbb{Z}$

$$
\int_{-\pi}^{\pi} \varphi(t) \mathrm{e}^{-\mathrm{i} k t} \mathrm{~d} t=0
$$

Hence $\varphi=0$ almost everywhere on \mathbb{R} by Theorem 1.1 and thus $f=0$ almost everywhere on I.

We summarize some further useful properties of the Chebyshev polynomials on I.
Lemma 6.4 The Chebyshev polynomials (6.1) possess the following properties:

1. For all $k \in \mathbb{N}_{0}$ we have $\left|T_{k}(x)\right| \leq 1$ for $x \in I$.
2. The Chebyshev polynomial $T_{k}, k \in \mathbb{N}$, has exactly $k+1$ extreme points

$$
x_{j}^{(k)}:=\cos \frac{j \pi}{k} \in I, \quad j=0, \ldots, k
$$

with $T_{k}\left(x_{j}^{(k)}\right)=(-1)^{j}$.
3. The Chebyshev polynomial $T_{k}, k \in \mathbb{N}$, possesses k simple zeros

$$
z_{j}^{(k)}:=\cos \frac{(2 j+1) \pi}{2 k}, \quad j=0, \ldots, k-1
$$

Between two neighboring zeros of T_{k+1} there is exactly one zero of T_{k}.
4. For all $k, \ell \in \mathbb{N}_{0}$ we have

$$
\begin{equation*}
2 T_{k} T_{\ell}=T_{k+\ell}+T_{|k-\ell|}, \quad T_{k}\left(T_{\ell}\right)=T_{k \ell} \tag{6.5}
\end{equation*}
$$

The proof of this lemma results immediately from the representation (6.1). For fixed $N \in \mathbb{N} \backslash\{1\}$, the points $x_{j}^{(N)}, j=0, \ldots, N$, are called Chebyshev extreme points and the points $z_{j}^{(N)}, j=0, \ldots, N-1$, are called Chebyshev zero points. Sometimes Chebyshev extreme points are also called Chebyshev points.

A polynomial of the form $p(x)=p_{0}+p_{1} x+\ldots+p_{n} x^{n}$ with the leading coefficient $p_{n}=1$ is called monic. For example, $2^{-k} T_{k+1} \in \mathscr{P}_{k+1}, k \in \mathbb{N}_{0}$, is monic. We will show that the polynomial $2^{-k} T_{k+1}$ has minimal norm among all monic polynomials of \mathscr{P}_{k+1} in $C(I)$.

Lemma 6.5 Let $k \in \mathbb{N}_{0}$ be given. For each monic polynomial $p \in \mathscr{P}_{k+1}$ we have

$$
2^{-k}=\max _{x \in I} 2^{-k}\left|T_{k+1}(x)\right| \leq \max _{x \in I}|p(x)|=\|p\|_{C(I)}
$$

Proof

1. For $x_{j}^{(k+1)}:=\cos \frac{j \pi}{k+1}, j=0, \ldots, k+1$, the monic polynomial $2^{-k} T_{k+1}$ possesses the extreme value $(-1)^{j} 2^{-k}$. Hence, we see that

$$
2^{-k}=\max _{x \in I} 2^{-k}\left|T_{k+1}(x)\right|
$$

2. Assume that there exists a monic polynomial $p \in \mathscr{P}_{k+1}$ with $|p(x)|<2^{-k}$ for all $x \in I$. Then the polynomial $q:=2^{-k} T_{k+1}-p \in \mathscr{P}_{k}$ has alternating positive and negative values at the $k+2$ points $x_{j}^{(k+1)}, j=0, \ldots, k+1$. Thus, by the intermediate value theorem, q possesses at least $k+1$ distinct zeros such that $q=0$. Consequently we receive $p=2^{-k} T_{k+1}$ contradicting our assumption.

Remark 6.6 The Chebyshev polynomials of second kind can be defined by the recursion formula

$$
U_{k+1}(x)=2 x U_{k}(x)-U_{k-1}(x), \quad k \in \mathbb{N},
$$

starting with $U_{0}(x)=1$ and $U_{1}(x)=2 x$ for all $x \in \mathbb{R}$. For $x \in(-1,1)$, the Chebyshev polynomials of second kind can be represented in the form

$$
\begin{equation*}
U_{k}(x)=\frac{\sin ((k+1) \arccos x)}{\sin (\arccos x)}, \quad k \in \mathbb{N}_{0} . \tag{6.6}
\end{equation*}
$$

Comparing this formula with (6.1), we conclude that

$$
\begin{equation*}
(k+1) U_{k}=T_{k+1}^{\prime}, \quad k \in \mathbb{N}_{0} \tag{6.7}
\end{equation*}
$$

Note that for all $k \in \mathbb{N}_{0}$ we have

$$
\begin{equation*}
U_{k}(-1)=(-1)^{k}(k+1), \quad U_{k}(1)=k+1, \quad U_{2 k}(0)=(-1)^{k}, \quad U_{2 k+1}(0)=0 . \tag{6.8}
\end{equation*}
$$

Further, the $n+1$ polynomials $U_{k}, k=0, \ldots, n$, form an orthonormal basis of \mathscr{P}_{n} with respect to the inner product

$$
\frac{2}{\pi} \int_{-1}^{1} \sqrt{1-x^{2}} f(x) g(x) \mathrm{d} x
$$

Remark 6.7 Chebyshev polynomials of first and second kind are special Jacobi polynomials which are orthogonal polynomials related to the inner product

$$
\int_{-1}^{1}(1-x)^{\alpha}(1+x)^{\beta} f(x) g(x) \mathrm{d} x
$$

with certain parameters $\alpha>-1$ and $\beta>-1$.
Finally we consider the recursive computation of derivatives and integrals of Chebyshev polynomials.

Lemma 6.8 The derivative of the Chebyshev polynomial T_{k} fulfills the recursion formula

$$
\begin{equation*}
T_{k}^{\prime}=2 k T_{k-1}+\frac{k}{k-2} T_{k-2}^{\prime}, \quad k=3,4 \ldots, \tag{6.9}
\end{equation*}
$$

starting with $T_{0}^{\prime}=0, T_{1}^{\prime}=T_{0}$, and $T_{2}^{\prime}=4 T_{1}$.
The integral of the Chebyshev polynomial T_{k} satisfies the formula

$$
\begin{equation*}
\int_{-1}^{x} T_{k}(t) \mathrm{d} t=\frac{1}{2(k+1)} T_{k+1}(x)-\frac{1}{2(k-1)} T_{k-1}(x)+\frac{(-1)^{k-1}}{k^{2}-1}, \quad k=2,3 \ldots, \tag{6.10}
\end{equation*}
$$

and

$$
\int_{-1}^{x} T_{0}(t) \mathrm{d} t=T_{1}(x)+1, \quad \int_{-1}^{x} T_{1}(t) \mathrm{d} t=\frac{1}{4} T_{2}(x)-\frac{1}{4} .
$$

Particularly it follows for all $k \in \mathbb{N}_{0}$ that

$$
\begin{equation*}
\int_{-1}^{1} T_{2 k}(t) \mathrm{d} t=\frac{-2}{4 k^{2}-1}, \quad \int_{-1}^{1} T_{2 k+1}(t) \mathrm{d} t=0 \tag{6.11}
\end{equation*}
$$

Proof

1. Let $k \in \mathbb{N} \backslash\{1\}$. Substituting $x=\cos t, t \in[0, \pi]$, we obtain $T_{k}(x)=\cos (k t)$ by (6.1). Differentiation with respect to t provides

$$
\frac{1}{k} T_{k}^{\prime}(x)=\frac{\sin (k t)}{\sin t}, \quad t \in(0, \pi)
$$

Thus, for $t \in(0, \pi)$, i.e., $x \in(-1,1)$, it follows the equation

$$
\begin{aligned}
\frac{1}{k+1} T_{k+1}^{\prime}(x)-\frac{1}{k-1} T_{k-1}^{\prime}(x) & =\frac{\sin (k+1) t-\sin (k-1) t}{\sin t} \\
& =2 \cos (k t)=2 T_{k}(x)
\end{aligned}
$$

We conclude that the polynomial identity

$$
\begin{equation*}
\frac{1}{k+1} T_{k+1}^{\prime}-\frac{1}{k-1} T_{k-1}^{\prime}=2 T_{k} \tag{6.12}
\end{equation*}
$$

is valid on \mathbb{R}.
2. Integration of (6.12) yields that

$$
\int_{-1}^{x} T_{k}(t) \mathrm{d} t=\frac{1}{2(k+1)} T_{k+1}(x)-\frac{1}{2(k-1)} T_{k-1}(x)+c_{k}
$$

with some integration constant c_{k}. Especially for $x=-1$ we obtain by $T_{k}(-1)=$ $(-1)^{k}$ that

$$
0=\frac{(-1)^{k+1}}{2(k+1)}-\frac{(-1)^{k-1}}{2(k-1)}+c_{k}
$$

and hence

$$
c_{k}=\frac{(-1)^{k-1}}{k^{2}-1}
$$

Thus, we have shown (6.10). For $x=1$ we conclude now (6.11) from $T_{k}(1)$ $=1$.

6.1.2 Chebyshev Series

In this section we consider real-valued functions defined on the compact interval $I:=[-1,1]$. By the substitution $x=\cos t, t \in[0, \pi]$, the interval $[0, \pi]$ can be one-to-one mapped onto I. Conversely, the inverse function $t=\arccos x, x \in I$, maps one-to-one I onto $[0, \pi]$ (see Fig. 6.4).

Let $f: I \rightarrow \mathbb{R}$ be an arbitrary real-valued function satisfying

$$
\int_{-1}^{1} \frac{1}{\sqrt{1-x^{2}}} f(x)^{2} \mathrm{~d} x<\infty .
$$

Fig. 6.4 The cosine function restricted on $[0, \pi]$ (left) and its inverse function arccos (right)

Since

$$
\begin{equation*}
\int_{-1}^{1} \frac{1}{\sqrt{1-x^{2}}} \mathrm{~d} x=\pi \tag{6.13}
\end{equation*}
$$

each continuous function $f: I \rightarrow \mathbb{R}$ fulfills the above condition. Now we form $f(\cos \cdot):[0, \pi] \rightarrow \mathbb{R}$ and extend this function on \mathbb{R} by

$$
\varphi(t):=f(\cos t), \quad t \in \mathbb{R}
$$

Obviously, φ is a 2π-periodic, even function with

$$
\int_{0}^{\pi} \varphi(t)^{2} \mathrm{~d} t=\int_{-1}^{1} \frac{1}{\sqrt{1-x^{2}}} f(x)^{2} \mathrm{~d} x<\infty .
$$

We denote the subspace of all even, real-valued functions of $L_{2}(\mathbb{T})$ by $L_{2 \text {,even }}(\mathbb{T})$. Recall that by Theorem 1.3 each function $\varphi \in L_{2 \text {,even }}(\mathbb{T})$ can be represented as a convergent real Fourier series

$$
\begin{equation*}
\varphi(t)=\frac{1}{2} a_{0}(\varphi)+\sum_{k=1}^{\infty} a_{k}(\varphi) \cos (k t), \quad t \in \mathbb{R}, \tag{6.14}
\end{equation*}
$$

with the Fourier coefficients

$$
\begin{equation*}
a_{k}(\varphi):=\frac{1}{\pi} \int_{-\pi}^{\pi} \varphi(t) \cos (k t) \mathrm{d} t=\frac{2}{\pi} \int_{0}^{\pi} \varphi(t) \cos (k t) \mathrm{d} t . \tag{6.15}
\end{equation*}
$$

Here, convergence in $L_{2}(\mathbb{T})$ means that

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left\|\varphi-S_{n} \varphi\right\|_{L_{2}(\mathbb{T})}=0, \tag{6.16}
\end{equation*}
$$

where

$$
\begin{equation*}
S_{n} \varphi:=\frac{1}{2} a_{0}(\varphi)+\sum_{k=1}^{n} a_{k}(\varphi) \cos (k \cdot) \tag{6.17}
\end{equation*}
$$

is the nth partial sum of the Fourier series. If we restrict (6.14) onto $[0, \pi]$ and substitute $t=\arccos x, x \in I$, then we obtain

$$
\varphi(\arccos x)=f(x)=\frac{1}{2} a_{0}(\varphi)+\sum_{k=1}^{\infty} a_{k}(\varphi) T_{k}(x), \quad x \in I,
$$

with T_{k} being the Chebyshev polynomials defined in (6.1). Substituting $t=$ $\arccos x, x \in I$, in (6.15), we obtain for $\varphi(t)=f(\cos t)$

$$
\begin{equation*}
a_{k}[f]:=a_{k}(\varphi)=\frac{2}{\pi} \int_{-1}^{1} w(x) f(x) T_{k}(x) \mathrm{d} x, \quad k \in \mathbb{N}_{0}, \tag{6.18}
\end{equation*}
$$

with the weight

$$
w(x):=\left(1-x^{2}\right)^{-1 / 2}, \quad x \in(-1,1) .
$$

The coefficient $a_{k}[f]$ in (6.18) is called k th Chebyshev coefficient of $f \in L_{2, w}(I)$.
Remark 6.9 For sufficiently large $N \in \mathbb{N}$, the numerical computation of the Chebyshev coefficients $a_{k}[f], k=0, \ldots, N-1$, is based on DCT introduced in Sect.3.5. We have

$$
a_{k}[f]=a_{k}(\varphi)=\frac{2}{\pi} \int_{0}^{\pi} f(\cos t) \cos (k t) \mathrm{d} t
$$

Analogously to the computation of the Fourier coefficients in Sect. 3.1, we split the interval $[0, \pi]$ into N subintervals of equal length and use the related midpoint rule such that

$$
a_{k}[f] \approx \frac{2}{N} \sum_{j=0}^{N-1} f\left(\cos \frac{(2 j+1) \pi}{2 N}\right) \cos \frac{(2 j+1) k \pi}{2 N}, \quad k=0, \ldots, N-1
$$

These sums can be calculated by the DCT-II (N), see Sect. 6.3.

For $f(\cos t)=\varphi(t)$, the Fourier series (6.14) of the transformed function $\varphi \in$ $L_{2, \text { even }}(\mathbb{T})$ transfers to the so-called Chebyshev series of $f \in L_{2, w}(I)$ which has the form

$$
f=\frac{1}{2} a_{0}[f]+\sum_{k=1}^{\infty} a_{k}[f] T_{k}
$$

The nth partial sum of the Chebyshev series is denoted by $C_{n} f$.
Theorem 6.10 Let $f \in L_{2, w}(I)$ be given. Then the sequence $\left(C_{n} f\right)_{n=0}^{\infty}$ of partial sums of the Chebyshev series converges to f in the norm of $L_{2, w}(I)$, i.e.

$$
\lim _{n \rightarrow \infty}\left\|f-C_{n} f\right\|_{L_{2, w}(I)}=0
$$

Further, for all $f, g \in L_{2, w}(I)$ the following Parseval equalities are satisfied,

$$
\begin{align*}
2\|f\|_{L_{2, w}(I)}^{2} & =\frac{1}{2} a_{0}[f]^{2}+\sum_{k=1}^{\infty} a_{k}[f]^{2} \\
2\langle f, g\rangle_{L_{2, w}(I)} & =\frac{1}{2} a_{0}[f] a_{0}[g]+\sum_{k=1}^{\infty} a_{k}[f] a_{k}[g] \tag{6.19}
\end{align*}
$$

Proof From $f \in L_{2, w}(I)$ it follows that $\varphi=f(\cos \cdot) \in L_{2}(\mathbb{T})$. Therefore, the Fourier partial sum $\left(S_{n} \varphi\right)(t)$ coincides with the partial sum $\left(C_{n} f\right)(x)$ of the Chebyshev series, if $x=\cos t \in I$ for $t \in[0, \pi]$. By Theorem 1.3 we know that

$$
\lim _{n \rightarrow \infty}\left\|\varphi-S_{n} \varphi\right\|_{L_{2}(\mathbb{T})}=0
$$

Since

$$
\left\|f-C_{n} f\right\|_{L_{2, w}(I)}=\left\|\varphi-S_{n} \varphi\right\|_{L_{2}(\mathbb{T})},
$$

we obtain the convergence of the Chebyshev series of f in $L_{2, w}(I)$.
The Parseval equalities for the Chebyshev coefficients are now a consequence of the Parseval equalities for the Fourier coefficients.

A simple criterion for the uniform convergence of the Chebyshev series can be given as follows:

Lemma 6.11 Let $f \in C(I)$ with

$$
\sum_{k=0}^{\infty}\left|a_{k}[f]\right|<\infty
$$

be given. Then the Chebyshev series of f converges absolutely and uniformly on I to f.

Proof By (6.1) it holds $\left|T_{k}(x)\right| \leq 1$ for all $x \in I$. Thus, using the Weierstrass criterion of uniform convergence, the Chebyshev series converges absolutely and uniformly on I. The limit g is continuous on I. From the completeness of the orthogonal system $\left\{T_{k}: k \in \mathbb{N}_{0}\right\}$ it follows that $f=g$ almost everywhere on I, since their Chebyshev coefficients coincide for all $k \in \mathbb{N}_{0}$. Observing that f, $g \in C(I)$, we conclude that the functions f and g are identical.

As usual by $C(I)$ we denote the Banach space of all continuous functions f : $I \rightarrow \mathbb{R}$ with the norm

$$
\|f\|_{C(I)}:=\max _{x \in I}|f(x)| .
$$

Let $C^{r}(I), r \in \mathbb{N}$, be the set of all r-times continuously differentiable functions $f: I \rightarrow \mathbb{R}$, i.e., for each $j=0, \ldots, r$ the derivative $f^{(j)}$ is continuous on $(-1,1)$ and the one-sided derivatives $f^{(j)}(-1+0)$ as well as $f^{(j)}(1-0)$ exist and fulfill the conditions

$$
f^{(j)}(-1+0)=\lim _{x \rightarrow-1+0} f^{(j)}(x), \quad f^{(j)}(1-0)=\lim _{x \rightarrow 1-0} f^{(j)}(x)
$$

Theorem 6.12 For $f \in C^{1}(I)$, the corresponding Chebyshev series converges absolutely and uniformly on I to f. If $f \in C^{r}(I), r \in \mathbb{N}$, then we have

$$
\lim _{n \rightarrow \infty} n^{r-1}\left\|f-C_{n} f\right\|_{C(I)}=0
$$

Proof If $f \in C^{r}(I)$ with $r \in \mathbb{N}$, then the even function $\varphi=f(\cos \cdot)$ is contained in $C^{r}(\mathbb{T})$. By Theorem 1.39 we have

$$
\lim _{n \rightarrow \infty} n^{r-1}\left\|\varphi-S_{n} \varphi\right\|_{C(\mathbb{T})}=0
$$

From $\varphi-S_{n} \varphi=f-C_{n} f$ the assertion follows.
Example 6.13 We consider $f(x):=|x|, x \in I$. Then $f \in C(I)$ is even. The related Chebyshev coefficients of f are for $k \in \mathbb{N}_{0}$ of the form

$$
a_{2 k}[f]=\frac{4}{\pi} \int_{0}^{1} w(x) x T_{2 k}(x) \mathrm{d} x, \quad a_{2 k+1}[f]=0
$$

The substitution $x=\cos t, t \in\left[0, \frac{\pi}{2}\right]$, provides for each $k \in \mathbb{N}_{0}$

$$
a_{2 k}[f]=\frac{4}{\pi} \int_{0}^{\pi / 2} \cos t \cos (2 k t) \mathrm{d} t=-\frac{(-1)^{k} 4}{\left(4 k^{2}-1\right) \pi}
$$

Fig. 6.5 The function $f(x):=|x|, x \in I$, and the partial sums $C_{n} f$ of the Chebyshev series for $n=2$ (blue) and $n=4$ (red)

By Theorem 6.11 the Chebyshev series of f converges absolutely and uniformly on I to f, i.e.,

$$
|x|=\frac{2}{\pi}-\frac{4}{\pi} \sum_{k=1}^{\infty} \frac{(-1)^{k} 4}{\left(4 k^{2}-1\right) \pi} T_{2 k}(x), \quad x \in I
$$

Figure 6.5 illustrates the partial sums $C_{2} f$ and $C_{4} f$ of the Chebyshev series.
Example 6.14 We consider the sign function

$$
f(x)=\operatorname{sgn} x:= \begin{cases}1 & x \in(0,1] \\ 0 & x=0 \\ -1 & x \in[-1,0)\end{cases}
$$

Since f is odd, we find for all $k \in \mathbb{N}_{0}$

$$
a_{2 k}[f]=0, \quad a_{2 k+1}[f]=\frac{4}{\pi} \int_{0}^{1} w(x) T_{2 k+1}(x) \mathrm{d} x .
$$

Substituting $x=\cos t, t \in\left[0, \frac{\pi}{2}\right]$, we obtain

$$
a_{2 k+1}[f]=\frac{4}{\pi} \int_{0}^{\pi / 2} \cos (2 k+1) t \mathrm{~d} t=\frac{(-1)^{k} 4}{(2 k+1) \pi}, \quad k \in \mathbb{N}_{0} .
$$

Then the Chebyshev series of f converges pointwise to f, since the even 2π periodic function $\varphi=f(\cos \cdot)$ is piecewise continuously differentiable and hence the Fourier series of φ converges pointwise to φ by Theorem 1.34. The jump discontinuity at $x=0$ leads to the Gibbs phenomenon, see Sect. 1.4.3. Each partial sum $C_{n} f$ of the Chebyshev series oscillates with overshoot and undershoot near

Fig. 6.6 The function $f(x):=\operatorname{sgn} x, x \in I$, and the partial sums $C_{n} f$ of the Chebyshev series for $n=8$ (blue) and $n=16$ (red)

$x=0$. Figure 6.6 shows the partial sums $C_{8} f$ and $C_{16} f$ of the Chebyshev series for the sign function f.

In the following theorem we summarize some simple properties of the Chebyshev coefficients.

Theorem 6.15 (Properties of Chebyshev Coefficients) For all $k \in \mathbb{N}_{0}$, the Chebyshev coefficients of $f, g \in L_{2, w}(I)$ possess the following properties:

1. Linearity: For all $\alpha, \beta \in \mathbb{C}$,

$$
a_{k}[\alpha f+\beta g]=\alpha a_{k}[f]+\beta a_{k}[g] .
$$

2. Translation: For all $\ell \in \mathbb{N}_{0}$,

$$
a_{k}\left[T_{\ell} f\right]=\frac{1}{2}\left(a_{k+\ell}[f]+a_{|k-\ell|}[f]\right)
$$

3. Symmetry:

$$
a_{k}[f(-\cdot)]=(-1)^{k} a_{k}[f] .
$$

4. Differentiation: If additionally $f^{\prime} \in L_{2, w}(I)$, then for all $k \in \mathbb{N}$

$$
a_{k}[f]=\frac{1}{2 k}\left(a_{k-1}\left[f^{\prime}\right]-a_{k+1}\left[f^{\prime}\right]\right) .
$$

Proof The linearity follows immediately from the definition of the Chebyshev coefficients. Using relation in (6.5), we conclude that

$$
\begin{aligned}
a_{k}\left[T_{\ell} f\right] & =\frac{2}{\pi} \int_{-1}^{1} w(x) f(x) T_{\ell}(x) T_{k}(x) \mathrm{d} x \\
& =\frac{1}{2}\left(a_{k+\ell}[f]+a_{|k-\ell|}[f]\right)
\end{aligned}
$$

The symmetry is a simple consequence of (6.4). Using integration by parts, we find that

$$
\begin{aligned}
& a_{k}[f]=\frac{2}{\pi} \int_{0}^{\pi} f(\cos t) \cos (k t) \mathrm{d} t \\
& =\left.\frac{2}{k \pi} f(\cos t) \sin (k t)\right|_{0} ^{\pi}+\frac{2}{k \pi} \int_{0}^{\pi} f^{\prime}(\cos t) \sin t \sin (k t) \mathrm{d} t \\
& =\frac{1}{k \pi} \int_{0}^{\pi} f^{\prime}(\cos t)(\cos (k-1) t-\cos (k+1) t) \mathrm{d} t=\frac{1}{2 k}\left(a_{k-1}\left[f^{\prime}\right]-a_{k+1}\left[f^{\prime}\right]\right) .
\end{aligned}
$$

This completes the proof.
We finish this section by studying the decay properties of the Chebyshev coefficients and the Chebyshev series for expansions of smooth functions.

Theorem 6.16 For fixed $r \in \mathbb{N}_{0}$, let $f \in C^{r+1}(I)$ be given. Then for all $n>r$, the Chebyshev coefficients of f satisfy the inequality

$$
\begin{equation*}
\left|a_{n}[f]\right| \leq \frac{2}{n(n-1) \ldots(n-r)}\left\|f^{(r+1)}\right\|_{C(I)} . \tag{6.20}
\end{equation*}
$$

Further, for all $n>r$, the partial sum $C_{n} f$ of the Chebyshev series satisfies

$$
\begin{equation*}
\left\|f-C_{n} f\right\|_{C(I)} \leq \frac{2}{r(n-r)^{r}}\left\|f^{(r+1)}\right\|_{C(I)} . \tag{6.21}
\end{equation*}
$$

Proof Using $\left|T_{n}(x)\right| \leq 1$ for all $x \in I$ and (6.13), we can estimate

$$
\left|a_{n}\left[f^{(r+1)}\right]\right|=\frac{2}{\pi}\left|\int_{-1}^{1} \frac{1}{\sqrt{1-x^{2}}} f^{(r+1)}(x) T_{n}(x) \mathrm{d} x\right| \leq 2\left\|f^{(r+1)}\right\|_{C(I)} .
$$

By the differentiation property of the Chebyshev coefficients in Theorem 6.15 we conclude that

$$
\left|a_{n}\left[f^{(r)}\right]\right| \leq \frac{1}{2 n}\left(\left|a_{n-1}\left[f^{(r+1)}\right]\right|+\left|a_{n+1}\left[f^{(r+1)}\right]\right|\right) \leq \frac{2}{n}\left\|f^{(r+1)}\right\|_{C(I)} .
$$

Analogously we receive

$$
\left|a_{n}\left[f^{(r-1)}\right]\right| \leq \frac{1}{2 n}\left(\left|a_{n-1}\left[f^{(r)}\right]\right|+\left|a_{n+1}\left[f^{(r)}\right]\right|\right) \leq \frac{2}{n(n-1)}\left\|f^{(r+1)}\right\|_{C(I)} .
$$

If we continue in this way, we obtain (6.20) such that

$$
\left|a_{n}[f]\right| \leq \frac{2}{n(n-1) \ldots(n-r)}\left\|f^{(r+1)}\right\|_{C(I)} \leq \frac{2}{(n-r)^{r+1}}\left\|f^{(r+1)}\right\|_{C(I)}
$$

By Theorem 6.12 the Chebyshev series of $f \in C^{r+1}(I)$ converges uniformly on I. Using $\left|T_{k}(x)\right| \leq 1$ for all $x \in I$, the remainder

$$
f-C_{n} f=\sum_{k=n+1}^{\infty} a_{k}[f] T_{k}
$$

can be estimated by

$$
\begin{aligned}
& \left\|f-C_{n} f\right\|_{C(I)} \leq \sum_{k=n+1}^{\infty}\left|a_{k}[f]\right| \leq 2\left\|f^{(r+1)}\right\|_{C(I)} \sum_{k=n+1}^{\infty} \frac{1}{(k-r)^{r+1}} \\
& \leq 2\left\|f^{(r+1)}\right\|_{C(I)} \int_{n}^{\infty} \frac{1}{(t-r)^{r+1}} \mathrm{~d} t=2\left\|f^{(r+1)}\right\|_{C(I)} \frac{1}{r(n-r)^{r}} .
\end{aligned}
$$

Remark 6.17 Similar estimates of the Chebyshev coefficients $a_{k}[f]$ and of the remainder $f-C_{n} f$ are shown in [356, pp. 52-54] and [233] under the weaker assumption that $f, f^{\prime}, \ldots, f^{(r)}$ are absolutely continuous on I and that

$$
\int_{-1}^{1} \frac{\left|f^{(r+1)}(x)\right|}{\sqrt{1-x^{2}}} \mathrm{~d} x<\infty
$$

Summing up we can say by Theorems 6.12 and 6.16:
The smoother a function $f: I \rightarrow \mathbb{R}$, the faster its Chebyshev coefficients $a_{k}[f]$ tend to zero as $n \rightarrow \infty$ and the faster its Chebyshev series converges uniformly to f.

6.2 Fast Evaluation of Polynomials

The goal of the following considerations is the efficient evaluation of algebraic polynomials and of polynomial operations.

6.2.1 Horner Scheme and Clenshaw Algorithm

Let \mathscr{P}_{n} denote the set of all real algebraic polynomials up to degree $n \in \mathbb{N}_{0}$,

$$
\begin{equation*}
p(x):=p_{0}+p_{1} x+\ldots+p_{n} x^{n}, \quad x \in[a, b], \tag{6.22}
\end{equation*}
$$

where $[a, b] \subset \mathbb{R}$ is a compact interval. We want to compute a polynomial (6.22) with real coefficients $p_{k}, k=0, \ldots, n$, at one point $x_{0} \in[a, b]$ by a low number of arithmetic operations. In order to reduce the number of needed multiplications, we
write $p\left(x_{0}\right)$ in the form of nested multiplications

$$
p\left(x_{0}\right)=p_{0}+x_{0}\left(p_{1}+x_{0}\left(p_{2}+x_{0}\left(\ldots\left(p_{n-1}+x_{0} p_{n}\right) \ldots\right)\right)\right) .
$$

This simple idea leads to the well-known Horner scheme.

Algorithm 6.18 (Horner Scheme)

Input: $n \in \mathbb{N} \backslash\{1\}, x_{0} \in[a, b], p_{k} \in \mathbb{R}$ for $k=0, \ldots, n$.

1. Set $q_{n-1}:=p_{n}$ and calculate recursively for $j=2, \ldots, n$

$$
\begin{equation*}
q_{n-j}:=p_{n-j+1}+x_{0} q_{n-j+1} \tag{6.23}
\end{equation*}
$$

2. Form $p\left(x_{0}\right):=p_{0}+x_{0} q_{0}$.

Output: $p\left(x_{0}\right) \in \mathbb{R}$.
Computational cost: $\mathscr{O}(n)$.
Performing n real multiplications and n real additions, we arrive at the value $p\left(x_{0}\right)$. But this is not the complete story of the Horner scheme. Introducing the polynomial

$$
q(x):=q_{0}+q_{1} x+\ldots+q_{n-1} x^{n-1}
$$

we obtain by comparing coefficient method and (6.23) that

$$
p(x)=q(x)\left(x-x_{0}\right)+p\left(x_{0}\right) .
$$

Hence the Horner scheme describes also the division of the polynomial in (6.22) by the linear factor $x-x_{0}$. Therefore, by repeated application of the Horner scheme we can also calculate the derivatives of the polynomial (6.22) at the point $x_{0} \in[a, b]$. For simplicity, we only sketch the computation of $p^{\prime}\left(x_{0}\right)$ and $p^{\prime \prime}\left(x_{0}\right)$. Using the Horner scheme, we divide $q(x)$ by $x-x_{0}$ and obtain

$$
q(x)=r(x)\left(x-x_{0}\right)+q\left(x_{0}\right) .
$$

Then we divide the polynomial $r(x)$ by $x-x_{0}$ such that

$$
r(x)=s(x)\left(x-x_{0}\right)+r\left(x_{0}\right) .
$$

This implies that

$$
\begin{aligned}
p(x) & =r(x)\left(x-x_{0}\right)^{2}+q\left(x_{0}\right)\left(x-x_{0}\right)+p\left(x_{0}\right) \\
& =s(x)\left(x-x_{0}\right)^{3}+r\left(x_{0}\right)\left(x-x_{0}\right)^{2}+q\left(x_{0}\right)\left(x-x_{0}\right)+p\left(x_{0}\right)
\end{aligned}
$$

and hence

$$
q\left(x_{0}\right)=p^{\prime}\left(x_{0}\right), \quad r\left(x_{0}\right)=\frac{1}{2} p^{\prime \prime}\left(x_{0}\right)
$$

As known, the monomials $x^{k}, k=0, \ldots, n$, form a simple basis of \mathscr{P}_{n}. Unfortunately, the monomial basis is unfavorable from a numerical point of view. Therefore we are interested in another basis of \mathscr{P}_{n} which is more convenient for numerical calculations. Using the Chebyshev polynomials (6.1), such a basis of \mathscr{P}_{n} can be formed by the polynomials

$$
T_{k}^{[a, b]}(x):=T_{k}\left(\frac{2 x-a-b}{b-a}\right), \quad k=0, \ldots, n .
$$

For the interval $[0,1]$ we obtain the shifted Chebyshev polynomials

$$
T_{k}^{[0,1]}(x):=T_{k}(2 x-1)
$$

For the properties of shifted Chebyshev polynomials, see [262, pp. 20-21].
We restrict our considerations to polynomials on $I:=[-1,1]$ and want to use the Chebyshev polynomials $T_{k}, k=0, \ldots, n$, as orthogonal basis of \mathscr{P}_{n}. An arbitrary polynomial $p \in \mathscr{P}_{n}$ can be uniquely represented in the form

$$
\begin{equation*}
p=\frac{1}{2} a_{0}+\sum_{k=1}^{n} a_{k} T_{k} \tag{6.24}
\end{equation*}
$$

with some coefficients $a_{k} \in \mathbb{R}, k=0, \ldots, n$. For an efficient computation of the polynomial value $p\left(x_{0}\right)$ for fixed $x_{0} \in I$, we apply the Clenshaw algorithm. To this end we iteratively reduce the degree of p by means of the recursion formula (6.3). Assume that $n \geq 5$ and $a_{n} \neq 0$. Applying (6.3) to T_{n} in (6.24), we obtain

$$
p\left(x_{0}\right)=\frac{1}{2} a_{0}+\sum_{k=1}^{n-3} a_{k} T_{k}\left(x_{0}\right)+\left(a_{n-2}-b_{n}\right) T_{n-2}\left(x_{0}\right)+b_{n-1} T_{n-1}\left(x_{0}\right)
$$

with $b_{n}:=a_{n}$ and $b_{n-1}:=2 x_{0} b_{n}+a_{n-1}$. Next, with $b_{n-2}:=2 x_{0} b_{n-1}-b_{n}+a_{n-2}$ it follows by (6.3) that

$$
p\left(x_{0}\right)=\frac{1}{2} a_{0}+\sum_{k=1}^{n-4} a_{k} T_{k}\left(x_{0}\right)+\left(a_{n-3}-b_{n-1}\right) T_{n-3}\left(x_{0}\right)+b_{n-2} T_{n-2}\left(x_{0}\right) .
$$

In this way we can continue. Thus the Clenshaw algorithm can be considered as an analogon of Algorithm 6.18, see [70].

Algorithm 6.19 (Clenshaw Algorithm)

Input: $n \in \mathbb{N} \backslash\{1\}, x_{0} \in I, a_{k} \in \mathbb{R}$ for $k=0, \ldots, n$.

1. Set $b_{n+2}=b_{n+1}:=0$ and calculate recursively for $j=0, \ldots, n$

$$
\begin{equation*}
b_{n-j}:=2 x_{0} b_{n-j+1}-b_{n-j+2}+a_{n-j} . \tag{6.25}
\end{equation*}
$$

2. Form $p\left(x_{0}\right):=\frac{1}{2}\left(b_{0}-b_{2}\right)$.

Output: $p\left(x_{0}\right) \in \mathbb{R}$.
The Clenshaw algorithm needs $\mathscr{O}(n)$ arithmetic operations and is convenient for the computation of few values of the polynomial (6.24). The generalization to polynomials with arbitrary three-term recurrence relation is straightforward.

6.2.2 Polynomial Evaluation and Interpolation at Chebyshev Points

Now we want to compute simultaneously all values of an arbitrary polynomial in (6.24) of high degree n on the grid of all Chebyshev zero points

$$
\begin{equation*}
z_{k}^{(N)}:=\cos \frac{(2 k+1) \pi}{2 N}, \quad k=0, \ldots, N-1, \tag{6.26}
\end{equation*}
$$

with an integer $N \geq n+1$. Setting $a_{j}:=0, j=n+1, \ldots, N-1$, and forming the vectors

$$
\mathbf{a}:=\left(\frac{\sqrt{2}}{2} a_{0}, a_{1}, \ldots, a_{N-1}\right)^{\top}, \quad \mathbf{p}:=\left(p\left(z_{k}^{(N)}\right)\right)_{k=0}^{N-1}
$$

we obtain

$$
\begin{equation*}
\mathbf{p}=\sqrt{\frac{N}{2}} \mathbf{C}_{N}^{\mathrm{III}} \mathbf{a} \tag{6.27}
\end{equation*}
$$

with the orthogonal cosine matrix of type III

$$
\mathbf{C}_{N}^{\mathrm{III}}=\sqrt{\frac{2}{N}}\left(\varepsilon_{N}(j) \cos \frac{(2 k+1) j \pi}{2 N}\right)_{k, j=0}^{N-1}
$$

If N is a power of two, the vector \mathbf{p} can be rapidly computed by a fast DCT-III (N) algorithm, see Sect. 6.3.

Algorithm 6.20 (Polynomial Values at Chebyshev Zero Points)

Input: $n \in \mathbb{N} \backslash\{1\}, N:=2^{t} \geq n+1$ with $t \in \mathbb{N} \backslash\{1\}$, $a_{k} \in \mathbb{R}$ for $k=0, \ldots, n$.

1. Set $a_{j}:=0, j=n+1, \ldots, N-1$, and $\mathbf{a}:=\left(\frac{\sqrt{2}}{2} a_{0}, a_{1}, \ldots, a_{N-1}\right)^{\top}$.
2. Compute (6.27) by Algorithm 6.30 or 6.37 .

Output: $p\left(z_{k}^{(N)}\right) \in \mathbb{R}, k=0, \ldots, N-1$.
Computational cost: $\mathscr{O}(N \log N)$.
The simultaneous computation of N values of an arbitrary polynomial of degree n with $n \leq N-1$ requires only $\mathscr{O}(N \log N)$ arithmetic operations. This is an important advantage compared to the Clenshaw Algorithm 6.19, since this method would require $\mathscr{O}(n N)$ arithmetic operations.

From (6.27) and Lemma 3.47 it follows that

$$
\begin{equation*}
\mathbf{a}=\sqrt{\frac{2}{N}}\left(\mathbf{C}_{N}^{\mathrm{III}}\right)^{-1} \mathbf{p}=\sqrt{\frac{2}{N}} \mathbf{C}_{N}^{\mathrm{II}} \mathbf{p} \tag{6.28}
\end{equation*}
$$

In other words, the coefficients $a_{k}, k=0, \ldots, N-1$, of the polynomial

$$
\begin{equation*}
p=\frac{1}{2} a_{0}+\sum_{j=0}^{N-1} a_{j} T_{j} \tag{6.29}
\end{equation*}
$$

are obtained by interpolation at Chebyshev zero points $z_{k}^{(N)}, k=0, \ldots, N-1$ in (6.26). Thus we obtain:

Lemma 6.21 Let $N \in \mathbb{N} \backslash\{1\}$ be given. For arbitrary $p_{j} \in \mathbb{R}, j=0, \ldots, N-1$, there exists a unique polynomial $p \in \mathscr{P}_{N-1}$ of the form (6.29) which solves the interpolation problem

$$
\begin{equation*}
p\left(z_{j}^{(N)}\right)=p_{j}, \quad j=0, \ldots, N-1 \tag{6.30}
\end{equation*}
$$

The coefficients of (6.29) can be computed by (6.28), i.e.,

$$
a_{k}=\frac{2}{N} \sum_{j=0}^{N-1} p_{j} \cos \frac{(2 j+1) k \pi}{2 N}, \quad k=0, \ldots, N-1 .
$$

The same idea of simultaneous computation of polynomial values and of polynomial interpolation can be used for the nonequispaced grid of Chebyshev extreme points $x_{j}^{(N)}=\cos \frac{j \pi}{N}, j=0, \ldots, N$. In this case we represent an arbitrary polynomial $p \in \mathscr{P}_{N}$ in the form

$$
\begin{equation*}
p=\frac{1}{2} a_{0}+\sum_{k=1}^{N-1} a_{k} T_{k}+\frac{1}{2} a_{N} T_{N} \tag{6.31}
\end{equation*}
$$

with real coefficients a_{k}. For the simultaneous computation of the values $p\left(x_{j}^{(N)}\right)$, $j=0, \ldots, N$, we obtain that

$$
\begin{equation*}
\mathbf{p}=\sqrt{\frac{N}{2}} \mathbf{C}_{N+1}^{\mathrm{I}} \mathbf{a} \tag{6.32}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathbf{p}:=\left(\varepsilon_{N}(j) p\left(x_{j}^{(N)}\right)\right)_{j=0}^{N}, \quad \mathbf{a}=\left(\varepsilon_{N}(k) a_{k}\right)_{k=0}^{N} \tag{6.33}
\end{equation*}
$$

with $\varepsilon_{N}(0)=\varepsilon_{N}(N):=\frac{\sqrt{2}}{2}$ and $\varepsilon_{N}(j):=1, j=1, \ldots, N-1$. Here,

$$
\mathbf{C}_{N+1}^{\mathrm{I}}=\sqrt{\frac{2}{N}}\left(\varepsilon_{N}(j) \varepsilon_{N}(k) \cos \frac{j k \pi}{N}\right)_{j, k=0}^{N}
$$

denotes the orthogonal cosine matrix of type (see Lemma 3.46). If N is a power of two, the vector \mathbf{p} can be rapidly computed by a fast DCT-I $(N+1)$ algorithm, see Sect. 6.3.

Algorithm 6.22 (Polynomial Values at Chebyshev Extreme Points)

Input: $N:=2^{t}$ with $t \in \mathbb{N} \backslash\{0\}, a_{k} \in \mathbb{R}$ for $k=0, \ldots, N$.

1. Form the vector $\mathbf{a}:=\left(\varepsilon_{N}(k) a_{k}\right)_{k=0}^{N}$.
2. Compute $\left(p_{j}\right)_{j=0}^{N}:=\sqrt{\frac{N}{2}} \mathbf{C}_{N+1}^{\mathrm{I}}$ a by fast DCT-I $(N+1)$ using Algorithm 6.28 or 6.35 .
3. Form $p\left(x_{j}^{(N)}\right):=\varepsilon_{N}(j)^{-1} p_{j}, j=0, \ldots, N$.

Output: $p\left(x_{j}^{(N)}\right) \in \mathbb{R}, j=0, \ldots, N$.
Computational cost: $\mathscr{O}(N \log N)$.
From (6.32) and Lemma 3.46 it follows that

$$
\begin{equation*}
\mathbf{a}=\sqrt{\frac{2}{N}}\left(\mathbf{C}_{N+1}^{\mathrm{I}}\right)^{-1} \mathbf{p}=\sqrt{\frac{2}{N}} \mathbf{C}_{N+1}^{\mathrm{I}} \mathbf{p} . \tag{6.34}
\end{equation*}
$$

In other words, the coefficients $a_{k}, k=0, \ldots, N$, of the polynomial (6.31) are obtained by interpolation at Chebyshev extreme points $x_{k}^{(N)}=\cos \frac{\pi k}{N}, k=$ $0, \ldots, N$. Thus we get:

Lemma 6.23 Let $N \in \mathbb{N} \backslash\{1\}$ be given. For arbitrary $p_{j} \in \mathbb{R}, j=0, \ldots, N$, there exists a unique polynomial $p \in \mathscr{P}_{N}$ of the form (6.31) which solves the interpolation problem

$$
\begin{equation*}
p\left(x_{j}^{(N)}\right)=p_{j}, \quad j=0, \ldots, N, \tag{6.35}
\end{equation*}
$$

with $x_{j}^{(N)}=\cos \frac{\pi j}{N}$. The coefficients of the polynomial in (6.31) can be computed by (6.34), i.e.,

$$
a_{k}=\frac{2}{N}\left(\frac{1}{2} p_{0}+\sum_{j=1}^{N-1} p_{j} \cos \frac{j k \pi}{N}+\frac{1}{2}(-1)^{k} p_{N}\right), \quad k=0, \ldots, N
$$

Now we derive an efficient and numerically stable representation of the interpolating polynomial (6.31) based on the so-called barycentric formula for interpolating polynomial introduced by Salzer [317] (see also [31] and [356, pp. 33-41]).

Theorem 6.24 (Barycentric Interpolation at Chebyshev Extreme Points) Let $N \in \mathbb{N} \backslash\{1\}$ be given. The polynomial (6.31) which interpolates the real data p_{j} at the Chebyshev extreme points $x_{j}^{(N)}=\cos \frac{\pi j}{N}, j=0, \ldots, N$, satisfies the barycentric formula

$$
\begin{equation*}
p(x)=\frac{\frac{p_{0}}{2(x-1)}+\sum_{j=1}^{N-1} \frac{(-1)^{j} p_{j}}{x-x_{j}^{(N)}}+\frac{(-1)^{N} p_{N}}{2(x+1)}}{\frac{1}{2(x-1)}+\sum_{j=1}^{N-1} \frac{(-1)^{j}}{x-x_{j}^{(N)}}+\frac{(-1)^{N}}{2(x+1)}} \tag{6.36}
\end{equation*}
$$

for all $x \in \mathbb{R} \backslash\left\{x_{j}^{(N)}: j=0, \ldots, N\right\}$ and $p\left(x_{j}^{(N)}\right)=p_{j}$ for $x=x_{j}^{(N)}, j=$ $0, \ldots, N$.

Proof

1. Using the node polynomial

$$
\ell(x):=\prod_{j=0}^{N}\left(x-x_{j}^{(N)}\right)
$$

we form the kth Lagrange basis polynomial

$$
\begin{equation*}
\ell_{k}(x):=\frac{\ell(x)}{\ell^{\prime}\left(x_{k}^{(N)}\right)\left(x-x_{k}^{(N)}\right)}, \tag{6.37}
\end{equation*}
$$

where

$$
\ell^{\prime}\left(x_{k}^{(N)}\right)=\prod_{\substack{j=0 \\ j \neq k}}^{N}\left(x_{k}^{(N)}-x_{j}^{(N)}\right)
$$

The Lagrange basis polynomials possess the interpolation property

$$
\begin{equation*}
\ell_{k}\left(x_{j}^{(N)}\right)=\delta_{j-k}, \quad j, k=0, \ldots, N \tag{6.38}
\end{equation*}
$$

Then the interpolation problem $p\left(x_{j}^{(N)}\right)=p_{j}, j=0, \ldots, N$, has the solution

$$
\begin{equation*}
p(x)=\sum_{k=0}^{N} p_{k} \ell_{k}(x)=\ell(x) \sum_{k=0}^{N} \frac{p_{k}}{\ell^{\prime}\left(x_{k}^{(N)}\right)\left(x-x_{k}^{(N)}\right)} \tag{6.39}
\end{equation*}
$$

which is uniquely determined in \mathscr{P}_{N}. Particularly, for the constant polynomial $p \equiv 1$ we have $p_{k}=1, k=0, \ldots, N$, and obtain

$$
\begin{equation*}
1=\sum_{k=0}^{N} \ell_{k}(x)=\ell(x) \sum_{k=0}^{N} \frac{1}{\ell^{\prime}\left(x_{k}^{(N)}\right)\left(x-x_{k}^{(N)}\right)} . \tag{6.40}
\end{equation*}
$$

Dividing (6.39) by (6.40), we get the barycentric formula

$$
\begin{equation*}
p(x)=\frac{\sum_{k=0}^{N} \frac{p_{k}}{\ell^{\prime}\left(x_{k}^{(N)}\right)\left(x-x_{k}^{(N)}\right)}}{\sum_{k=0}^{N} \frac{1}{\ell^{\prime}\left(x_{k}^{(N)}\right)\left(x-x_{k}^{(N)}\right)}} . \tag{6.41}
\end{equation*}
$$

2. Now we calculate $\ell^{\prime}\left(x_{k}^{(N)}\right)$. Employing the substitution $x=\cos t$, we simply observe that the monic polynomial of degree $N+1$
$2^{-N}\left(T_{N+1}(x)-T_{N-1}(x)\right)=2^{-N}(\cos (N+1) t-\cos (N-1) t)=-2^{1-N} \sin N t \sin t$
possesses the $N+1$ distinct zeros $x_{k}^{(N)}=\cos \frac{k \pi}{N}, k=0, \ldots, N$, such that the node polynomial reads

$$
\ell(x)=2^{-N}\left(T_{N+1}(x)-T_{N-1}(x)\right) .
$$

Consequently we obtain by (6.7) that

$$
\begin{aligned}
\ell^{\prime}\left(x_{k}^{(N)}\right) & =2^{-N}\left(T_{N+1}^{\prime}\left(x_{k}^{(N)}\right)-T_{N-1}^{\prime}\left(x_{k}^{(N)}\right)\right) \\
& =2^{-N}\left((N+1) U_{N}\left(x_{k}^{(N)}\right)-(N-1) U_{N-2}\left(x_{k}^{(N)}\right)\right) .
\end{aligned}
$$

Applying (6.6) and (6.8), we find

$$
(N+1) U_{N}\left(x_{k}^{(N)}\right)-(N-1) U_{N-2}\left(x_{k}^{(N)}\right)= \begin{cases}4 N & k=0 \\ 2 N(-1)^{k} & k=1, \ldots, N-1 \\ 4 N(-1)^{N} & k=N\end{cases}
$$

and hence

$$
\ell^{\prime}\left(x_{k}^{(N)}\right)= \begin{cases}2^{2-N} N & k=0 \\ 2^{1-N} N(-1)^{k} & k=1, \ldots, N-1 \\ 2^{2-N} N(-1)^{N} & k=N\end{cases}
$$

By (6.41) the above result completes the proof of (6.36).
The barycentric formula (6.36) is very helpful for interpolation at Chebyshev extreme points. By (6.36) the interpolation polynomial is expressed as a weighted average of the given values p_{j}. This expression can be efficiently computed by the fast summation method, see Sect. 7.6.

Remark 6.25 A similar barycentric formula can be derived for the interpolation at Chebyshev zero points $z_{j}^{(N)}=\cos \frac{(2 j+1) \pi}{2 N}$ for $j=0, \ldots, N-1$. Then the corresponding node polynomial has the form

$$
\ell(x)=\prod_{j=0}^{N-1}\left(x-z_{j}^{(N)}\right)=2^{1-N} T_{N}(x)
$$

By (6.7) we obtain

$$
\ell^{\prime}\left(z_{j}^{(N)}\right)=\frac{2^{1-N} N \sin \left(j+\frac{\pi}{2}\right)}{\sin \frac{(2 j+1) \pi}{2 N}}=\frac{2^{1-N} N(-1)^{j}}{\sin \frac{(2 j+1) \pi}{2 N}}, \quad j=0, \ldots, N-1 .
$$

Similarly to (6.41), the polynomial $p \in \mathscr{P}_{N-1}$ which interpolates the real data p_{j} at the Chebyshev zero points $z_{j}^{(N)}, j=0, \ldots, N-1$, satisfies the barycentric formula

$$
p(x)=\frac{\sum_{k=0}^{N-1} \frac{p_{k}}{\ell^{\prime}\left(z_{k}^{(N)}\right)\left(x-z_{k}^{(N)}\right)}}{\sum_{k=0}^{N-1} \frac{1}{\ell^{\prime}\left(z_{k}^{(N)}\right)\left(x-z_{k}^{(N)}\right)}}=\frac{\sum_{k=0}^{N-1} \frac{(-1)^{k} p_{k} \sin \left(\frac{(2 k+1) \pi}{2 N}\right)}{x-z_{k}^{(N)}}}{\sum_{k=0}^{N-1} \frac{(-1)^{k} \sin \left(\frac{(2 k+1) \pi}{2 N}\right)}{x-z_{k}^{(N)}}}
$$

for all $x \in \mathbb{R} \backslash\left\{z_{j}^{(N)}: j=0, \ldots, N-1\right\}$ and $p\left(z_{j}^{(N)}\right)=p_{j}$ for $x=z_{j}^{(N)}$, $j=0, \ldots, N-1$.

Next we describe the differentiation and integration of polynomials being given on the basis of Chebyshev polynomials.

Theorem 6.26 For fixed $n \in \mathbb{N} \backslash\{1\}$, let an arbitrary polynomial $p \in \mathscr{P}_{n}$ be given in the form $p=\frac{a_{0}}{2}+\sum_{j=1}^{n} a_{j} T_{j}$. Then the derivative p^{\prime} has the form

$$
\begin{equation*}
p^{\prime}=\frac{1}{2} d_{0}+\sum_{j=1}^{n-1} d_{j} T_{j} \tag{6.42}
\end{equation*}
$$

where the coefficients d_{j} satisfy the recursion

$$
\begin{equation*}
d_{n-1-j}:=d_{n+1-j}+2(n-j) a_{n-j}, \quad j=0,1, \ldots, n-1 \tag{6.43}
\end{equation*}
$$

with $d_{n+1}=d_{n}:=0$. Further the integral of the polynomial p can be calculated by

$$
\begin{equation*}
\int_{-1}^{x} p(t) \mathrm{d} t=\frac{1}{2} c_{0}+\sum_{j=1}^{n+1} c_{j} T_{j}(x) \tag{6.44}
\end{equation*}
$$

with the recursion formula

$$
\begin{equation*}
c_{j}:=\frac{1}{2 j}\left(a_{j-1}-a_{j+1}\right), \quad j=1,2, \ldots, n+1 \tag{6.45}
\end{equation*}
$$

starting with

$$
c_{0}:=a_{0}-\frac{1}{2} a_{1}+2 \sum_{j=2}^{n}(-1)^{j+1} \frac{a_{j}}{j^{2}-1}
$$

where we set $a_{n+1}=a_{n+2}:=0$.
Proof The integration formulas (6.44)-(6.45) are direct consequences of (6.10). For proving the differentiation formulas (6.42)-(6.43) we apply the integration formulas (6.44)-(6.45). Let $p \in \mathscr{P}_{n}$ be given in the form (6.24). Obviously, $p^{\prime} \in \mathscr{P}_{n-1}$ can be represented in the form (6.42) with certain coefficients $d_{j} \in \mathbb{R}$, $j=0, \ldots, n-1$. Then it follows that

$$
\int_{-1}^{x} p^{\prime}(t) \mathrm{d} t=p(x)-p(-1)=\left(\frac{1}{2} a_{0}-p(-1)\right)+\sum_{j=1}^{n} a_{j} T_{j}(x) .
$$

By (6.44)-(6.45) we obtain

$$
a_{j}=\frac{1}{2 j}\left(d_{j-1}-d_{j+1}\right), \quad j=1, \ldots, n
$$

where we fix $d_{n}=d_{n+1}:=0$. Hence the coefficients d_{n-1}, \ldots, d_{0} can be recursively computed by (6.43).

6.2.3 Fast Evaluation of Polynomial Products

Assume that two polynomials $p, q \in \mathscr{P}_{n}$ are given in the monomial basis, i.e.,

$$
\begin{aligned}
& p(x)=p_{0}+p_{1} x+\ldots+p_{n} x^{n}, \\
& q(x)=q_{0}+q_{1} x+\ldots+q_{n} x^{n}
\end{aligned}
$$

with real coefficients p_{k} and q_{k}. Then the related product $r:=p q \in \mathscr{P}_{2 n}$ possesses the form

$$
r(x)=r_{0}+r_{1} x+\ldots+r_{2 n} x^{2 n}
$$

with real coefficients

$$
r_{k}= \begin{cases}\sum_{j=0}^{k} p_{j} q_{k-j} & k=0, \ldots, n, \\ \sum_{j=k-n}^{n} p_{j} q_{k-j} & k=n+1, \ldots, 2 n\end{cases}
$$

This product can be efficiently calculated by cyclic convolution of the corresponding coefficient vectors, see Sect.3.2. Let $N \geq 2 n+2$ be a fixed power of two. We introduce the corresponding coefficient vectors

$$
\begin{aligned}
\mathbf{p} & :=\left(p_{0}, p_{1}, \ldots, p_{n}, 0, \ldots, 0\right)^{\top} \in \mathbb{R}^{N} \\
\mathbf{q} & :=\left(q_{0}, q_{1}, \ldots, q_{n}, 0, \ldots, 0\right)^{\top} \in \mathbb{R}^{N} \\
\mathbf{r} & :=\left(r_{0}, r_{1}, \ldots, r_{n}, r_{n+1}, \ldots, r_{2 n}, 0, \ldots, 0\right)^{\top} \in \mathbb{R}^{N},
\end{aligned}
$$

then it follows that $\mathbf{r}=\mathbf{p} * \mathbf{q}$. Applying the convolution property of the DFT in Theorem 3.26 we find

$$
\mathbf{r}=\mathbf{F}_{N}^{-1}\left(\left(\mathbf{F}_{N} \mathbf{p}\right) \circ\left(\mathbf{F}_{N} \mathbf{q}\right)\right)=\frac{1}{N} \mathbf{J}_{N}^{\prime} \mathbf{F}_{N}\left(\left(\mathbf{F}_{N} \mathbf{p}\right) \circ\left(\mathbf{F}_{N} \mathbf{q}\right)\right),
$$

with the Fourier matrix \mathbf{F}_{N}, the flip matrix \mathbf{J}_{N}^{\prime}, and the componentwise product \circ. Using FFT, we can thus calculate the coefficient vector \mathbf{r} by $\mathscr{O}(N \log N)$ arithmetic operations.

Now we assume that $p, q \in \mathscr{P}_{n}$ are given on the basis of Chebyshev polynomials $T_{k}, k=0, \ldots, n$. How can we efficiently calculate the product $p q \in \mathscr{P}_{2 n}$ in the corresponding basis of Chebyshev polynomials?
Theorem 6.27 For fixed $n \in \mathbb{N} \backslash\{1\}$, let $p, q \in \mathscr{P}_{n}$ be given polynomials of the form

$$
p=\frac{1}{2} a_{0}+\sum_{k=1}^{n} a_{k} T_{k}, \quad q=\frac{1}{2} b_{0}+\sum_{\ell=1}^{n} b_{\ell} T_{\ell}
$$

where $a_{k}, b_{\ell} \in \mathbb{R}, k, \ell=0, \ldots, n$.

Then the productr $:=p q \in \mathscr{P}_{2 n}$ possesses the form

$$
r=\frac{1}{2} c_{0}+\sum_{k=1}^{2 n} c_{k} T_{k}
$$

with the coefficients

$$
2 c_{k}:= \begin{cases}a_{0} b_{0}+2 \sum_{\ell=1}^{n} a_{\ell} b_{\ell} & k=0, \\ \sum_{\ell=0}^{k} a_{k-\ell} b_{\ell}+\sum_{\ell=1}^{n-k}\left(a_{\ell} b_{\ell+k}+a_{\ell+k} b_{\ell}\right) & k=1, \ldots, n-1, \\ \sum_{\ell=k-n}^{n} a_{k-\ell} b_{\ell} & k=n, \ldots, 2 n\end{cases}
$$

Proof

1. First we calculate the special products $2 p T_{\ell}$ for $\ell=1, \ldots, n$ by means of (6.5),

$$
\begin{aligned}
2 p T_{\ell} & =a_{0} T_{\ell}+\sum_{k=1}^{n} a_{k}\left(2 T_{k} T_{\ell}\right)=a_{0} T_{\ell}+\sum_{k=1}^{n} a_{k} T_{k+\ell}+\sum_{k=1}^{n} a_{k} T_{|k-\ell|} \\
& =\sum_{k=\ell}^{n+\ell} a_{k-\ell} T_{k}+\sum_{k=1}^{\ell-1} a_{\ell-k} T_{k}+a_{\ell}+\sum_{k=1}^{n-\ell} a_{k+\ell} T_{k}
\end{aligned}
$$

Hence it follows that

$$
\begin{equation*}
2 p b_{\ell} T_{\ell}=\sum_{k=\ell}^{n+\ell} a_{k-\ell} b_{\ell} T_{k}+\sum_{k=1}^{\ell-1} a_{\ell-k} b_{\ell} T_{k}+a_{\ell} b_{\ell}+\sum_{k=1}^{n-\ell} a_{k+\ell} b_{\ell} T_{k} \tag{6.46}
\end{equation*}
$$

Further we observe that

$$
\begin{equation*}
p b_{0}=\frac{1}{2} a_{0} b_{0}+\sum_{k=1}^{n} a_{k} b_{0} T_{k} \tag{6.47}
\end{equation*}
$$

2. If we sum up all equations (6.46) for $\ell=1, \ldots, n$ and Eq. (6.47), then we obtain

$$
\begin{aligned}
2 p q= & \left(\frac{1}{2} a_{0} b_{0}+\sum_{\ell=1}^{n} a_{\ell} b_{\ell}\right)+\sum_{k=1}^{n} a_{k} b_{0} T_{k}+\sum_{\ell=1}^{n} \sum_{k=\ell}^{n+\ell} a_{k-\ell} b_{\ell} T_{k} \\
& +\sum_{\ell=2}^{n} \sum_{k=1}^{\ell-1} a_{\ell-k} b_{\ell} T_{k}+\sum_{\ell=1}^{n-1} \sum_{k=1}^{n-\ell} a_{k+\ell} b_{\ell} T_{k} .
\end{aligned}
$$

We change the order of summation in the double sums,

$$
\begin{aligned}
& \sum_{\ell=1}^{n} \sum_{k=\ell}^{n+\ell} a_{k-\ell} b_{\ell} T_{k}=\left(\sum_{k=1}^{n} \sum_{\ell=1}^{k}+\sum_{k=n+1}^{2 n} \sum_{\ell=k-n}^{n}\right) a_{k-\ell} b_{\ell} T_{k} \\
& \sum_{\ell=2}^{n} \sum_{k=1}^{\ell-1} a_{\ell-k} b_{\ell} T_{k}=\sum_{k=1}^{n-1} \sum_{\ell=k+1}^{n} a_{\ell-k} b_{\ell} T_{k}, \\
& \sum_{\ell=1}^{n-1} \sum_{k=1}^{n-\ell} a_{k+\ell} b_{\ell} T_{k}=\sum_{k=1}^{n-1} \sum_{\ell=1}^{n-k} a_{k+\ell} b_{\ell} T_{k}
\end{aligned}
$$

such that we receive

$$
\begin{aligned}
2 p q= & \left(\frac{1}{2} a_{0} b_{0}+\sum_{\ell=1}^{n} a_{\ell} b_{\ell}\right)+\sum_{k=1}^{n}\left(\sum_{\ell=0}^{k} a_{k-\ell} b_{\ell}\right) T_{k}+\sum_{k=n+1}^{2 n}\left(\sum_{\ell=k-n}^{n} a_{k-\ell} b_{\ell}\right) T_{k} \\
& +\sum_{k=1}^{n-1}\left(\sum_{\ell=k+1}^{n} a_{\ell-k} b_{\ell}\right) T_{k}+\sum_{k=1}^{n-1}\left(\sum_{\ell=1}^{n-k} a_{k+\ell} b_{\ell}\right) T_{k}
\end{aligned}
$$

Taking into account that

$$
\sum_{\ell=k+1}^{n} a_{\ell-k} b_{\ell}=\sum_{\ell=1}^{n-k} a_{\ell} b_{\ell+k}
$$

we obtain the assertion.
The numerical computation of the coefficients $c_{k}, k=0, \ldots, 2 n$, of the polynomial multiplication $r=p q \in \mathscr{P}_{2 n}$ can be efficiently realized by means of DCT. For this purpose, we choose $N \geq 2 n+2$ as a power of two and we form the corresponding coefficient vectors

$$
\begin{aligned}
\mathbf{a} & :=\left(\frac{\sqrt{2}}{2} a_{0}, a_{1}, \ldots, a_{n}, 0, \ldots, 0\right)^{\top} \in \mathbb{R}^{N}, \\
\mathbf{b} & :=\left(\frac{\sqrt{2}}{2} b_{0}, b_{1}, \ldots, b_{n}, 0, \ldots, 0\right)^{\top} \in \mathbb{R}^{N}, \\
\mathbf{c} & :=\left(\frac{\sqrt{2}}{2} c_{0}, c_{1}, \ldots, c_{n}, c_{n+1}, \ldots, c_{2 n}, 0, \ldots, 0\right)^{\top} \in \mathbb{R}^{N} .
\end{aligned}
$$

From $r(z)=p(z) q(z)$, we particularly conclude for the Chebyshev zero points $z_{k}^{(N)}=\cos \frac{(2 k+1) \pi}{2 N}, k=0, \ldots, N-1$, that

$$
p\left(z_{k}^{(N)}\right) q\left(z_{k}^{(N)}\right)=r\left(z_{k}^{(N)}\right), \quad k=0, \ldots, N-1 .
$$

Recalling (6.27), the vectors of polynomial values and the corresponding coefficient vectors are related by

$$
\begin{aligned}
\mathbf{p} & :=\left(p\left(z_{k}^{(N)}\right)\right)_{k=0}^{N-1}=\sqrt{\frac{N}{2}} \mathbf{C}_{N}^{\mathrm{III}} \mathbf{a} \\
\mathbf{q} & :=\left(q\left(z_{k}^{(N)}\right)\right)_{k=0}^{N-1}=\sqrt{\frac{N}{2}} \mathbf{C}_{N}^{\mathrm{III}} \mathbf{b} \\
\mathbf{r} & :=\left(r\left(z_{k}^{(N)}\right)\right)_{k=0}^{N-1}=\sqrt{\frac{N}{2}} \mathbf{C}_{N}^{\mathrm{III}} \mathbf{c}
\end{aligned}
$$

Since \mathbf{r} is equal to the componentwise product of \mathbf{p} and \mathbf{q}, it follows that

$$
\sqrt{\frac{N}{2}} \mathbf{C}_{N}^{\mathrm{III}} \mathbf{c}=\mathbf{r}=\mathbf{p} \circ \mathbf{q}=\frac{N}{2}\left(\mathbf{C}_{N}^{\mathrm{III}} \mathbf{a}\right) \circ\left(\mathbf{C}_{N}^{\mathrm{III}} \mathbf{b}\right)
$$

Hence we obtain by Lemma 3.47 that

$$
\mathbf{c}=\sqrt{\frac{N}{2}} \mathbf{C}_{N}^{\mathrm{II}}\left(\left(\mathbf{C}_{N}^{\mathrm{II}} \mathbf{a}\right) \circ\left(\mathbf{C}_{N}^{\mathrm{III}} \mathbf{b}\right)\right) .
$$

Using fast DCT algorithms, we can thus calculate the coefficient vector \mathbf{c} by $\mathscr{O}(N \log N)$ arithmetic operations, see Sect. 6.3.

6.3 Fast DCT Algorithms

In this section, we want to derive fast algorithms for discrete cosine transform (DCT) and discrete sine transform (DST), respectively. These discrete trigonometric transforms have been considered already in Sect. 3.5. As we have seen for example in Sect. 6.2, these transforms naturally occur, if we want to evaluate polynomials efficiently. Other applications relate to polynomial interpolation in Sect. 6.4 and to data decorrelation. For simplicity, we shortly recall the matrices related to DCT and DST from Sect. 3.5. Let $N \geq 2$ be a given integer. In the following, we consider cosine and sine matrices of types I-IV which are defined by

$$
\begin{align*}
\mathbf{C}_{N+1}^{\mathrm{I}} & :=\sqrt{\frac{2}{N}}\left(\epsilon_{N}(j) \epsilon_{N}(k) \cos \frac{j k \pi}{N}\right)_{j, k=0}^{N}, \\
\mathbf{C}_{N}^{\mathrm{II}} & :=\sqrt{\frac{2}{N}}\left(\epsilon_{N}(j) \cos \frac{j(2 k+1) \pi}{2 N}\right)_{j, k=0}^{N-1}, \quad \mathbf{C}_{N}^{\mathrm{III}}:=\left(\mathbf{C}_{N}^{\mathrm{II}}\right)^{\top}, \\
\mathbf{C}_{N}^{\mathrm{IV}} & :=\sqrt{\frac{2}{N}}\left(\cos \frac{(2 j+1)(2 k+1) \pi}{4 N}\right)_{j, k=0}^{N-1}, \tag{6.48}
\end{align*}
$$

$$
\begin{aligned}
\mathbf{S}_{N-1}^{\mathrm{I}} & :=\sqrt{\frac{2}{N}}\left(\sin \frac{(j+1)(k+1) \pi}{N}\right)_{j, k=0}^{N-2} \\
\mathbf{S}_{N}^{\mathrm{II}} & :=\sqrt{\frac{2}{N}}\left(\epsilon_{N}(j+1) \sin \frac{(j+1)(2 k+1) \pi}{2 N}\right)_{j, k=0}^{N-1}, \quad \mathbf{S}_{N}^{\mathrm{III}}:=\left(\mathbf{S}_{N}^{\mathrm{II}}\right)^{\top} \\
\mathbf{S}_{N}^{\mathrm{IV}} & :=\sqrt{\frac{2}{N}}\left(\sin \frac{(2 j+1)(2 k+1) \pi}{4 N}\right)_{j, k=0}^{N-1}
\end{aligned}
$$

Here we set $\epsilon_{N}(0)=\epsilon_{N}(N):=\sqrt{2} / 2$ and $\epsilon_{N}(j):=1$ for $j \in\{1, \ldots, N-1\}$. In our notation a subscript of a matrix denotes the corresponding order, while a superscript signifies the "type" of the matrix.

As shown in Sect. 3.5, the cosine and sine matrices of type I-IV are orthogonal. We say that a discrete trigonometric transform of length M is a linear transform that maps each vector $\mathbf{x} \in \mathbb{R}^{M}$ to $\mathbf{T} \mathbf{x} \in \mathbb{R}^{M}$, where the matrix $\mathbf{T} \in \mathbb{R}^{M \times M}$ is a cosine or sine matrix in (6.48) and $M \in\{N-1, N, N+1\}$.

There exists a large variety of fast algorithms to evaluate these matrix-vector products. We want to restrict ourselves here to two different approaches. The first method is based on the close connection between trigonometric functions and the complex exponentials by Euler's formula. Therefore, we can always employ the FFT to compute the DCT and DST. The second approach involves a direct matrix factorization of an orthogonal trigonometric matrix into a product of sparse real matrices such that the discrete trigonometric transform can be performed in real arithmetic. In particular, if this matrix factorization is additionally orthogonal, the corresponding algorithms possess excellent numerical stability, see [273].

6.3.1 Fast DCT Algorithms via FFT

The DCT and the DST of length N (or $N+1$ and $N-1$, respectively for DCT-I and DST-I) can always be reduced to a DFT of length $2 N$ such that we can apply an FFT with computational cost of $\mathscr{O}(N \log N)$. We exemplarily show the idea for the DCTs and give the algorithms for all transforms.

Let us start with the DCT-I. In order to compute the components of $\hat{\mathbf{a}}=\mathbf{C}_{N+1}^{\mathrm{I}} \mathbf{a}$ with $\mathbf{a}=\left(a_{k}\right)_{k=0}^{N}$, we introduce the vector $\mathbf{y} \in \mathbb{R}^{2 N}$ of the form

$$
\mathbf{y}:=\left(\sqrt{2} a_{0}, a_{1}, \ldots, a_{N-1}, \sqrt{2} a_{N}, a_{N-1}, a_{N-2}, \ldots, a_{1}\right)^{\top} .
$$

Then we obtain with $w_{2 N}:=\mathrm{e}^{-2 \pi \mathrm{i} /(2 N)}=\mathrm{e}^{-\pi \mathrm{i} / N}$ for $j=0, \ldots, N$,

$$
\begin{aligned}
& \hat{a}_{j}=\sqrt{\frac{2}{N}} \epsilon_{N}(j) \sum_{k=0}^{N} a_{k} \epsilon_{N}(k) \cos \frac{2 \pi j k}{2 N} \\
& =\sqrt{\frac{2}{N}} \epsilon_{N}(j)\left(\frac{\sqrt{2}}{2} a_{0}+(-1)^{j} \frac{\sqrt{2}}{2} a_{N}+\frac{1}{2} \sum_{k=1}^{N-1} a_{k}\left(w_{2 N}^{j k}+w_{2 N}^{-j k}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\sqrt{\frac{2}{N}} \epsilon_{N}(j)\left(\frac{\sqrt{2}}{2} a_{0}+(-1)^{j} \frac{\sqrt{2}}{2} a_{N}+\frac{1}{2} \sum_{k=1}^{N-1} a_{k} w_{2 N}^{j k}+\frac{1}{2} \sum_{k=1}^{N-1} a_{k} w_{2 N}^{j(2 N-k)}\right) \\
& =\sqrt{\frac{2}{N}} \epsilon_{N}(j)\left(\frac{\sqrt{2}}{2} a_{0}+(-1)^{j} \frac{\sqrt{2}}{2} a_{N}+\frac{1}{2} \sum_{k=1}^{N-1} a_{k} w_{2 N}^{j k}+\frac{1}{2} \sum_{k=N+1}^{2 N-1} a_{2 N-k} w_{2 N}^{j k}\right) \\
& =\frac{1}{\sqrt{2 N}} \epsilon_{N}(j) \sum_{k=0}^{2 N-1} y_{k} w_{2 N}^{j k} .
\end{aligned}
$$

Thus, $\sqrt{2 N}\left(\epsilon_{N}(j)^{-1}\right)_{j=0}^{N} \circ \hat{\mathbf{a}}$ is the partial vector formed by the first $N+1$ components of $\hat{\mathbf{y}}:=\mathbf{F}_{2 N} \mathbf{y}$. This observation implies the following

Algorithm 6.28 (DCT-I $(N+1)$ via DFT ($2 N$))

Input: $N \in \mathbb{N} \backslash\{1\}, \mathbf{a}=\left(a_{j}\right)_{j=0}^{N} \in \mathbb{R}^{N+1}$.

1. Determine $\mathbf{y} \in \mathbb{R}^{2 N}$ with

$$
y_{k}:= \begin{cases}\sqrt{2} a_{k} & k=0, N, \\ a_{k} & k=1, \ldots, N-1, \\ a_{2 N-k} & k=N+1, \ldots, 2 N-1 .\end{cases}
$$

2. Compute $\hat{\mathbf{y}}=\mathbf{F}_{2 N} \mathbf{y}$ using an FFT of length $2 N$.
3. Set

$$
\hat{a}_{j}:=\frac{1}{\sqrt{2 N}} \epsilon_{N}(j) \operatorname{Re} \hat{y}_{j}, \quad j=0, \ldots, N
$$

Output: $\hat{\mathbf{a}}=\left(\hat{a}_{j}\right)_{j=0}^{N}=\mathbf{C}_{N+1}^{\mathrm{I}} \mathbf{a} \in \mathbb{R}^{N+1}$.
Computational cost: $\mathscr{O}(N \log N)$.
For the DCT-II we proceed similarly. Let now $\hat{\mathbf{a}}:=\mathbf{C}_{N}^{\mathrm{II}} \mathbf{a}$. Defining the vector

$$
\mathbf{y}:=\left(a_{0}, a_{1}, \ldots, a_{N-1}, a_{N-1}, \ldots, a_{0}\right)^{\top} \in \mathbb{R}^{2 N}
$$

we find for $j=0, \ldots, N-1$,

$$
\begin{aligned}
& \hat{a}_{j}=\sqrt{\frac{2}{N}} \epsilon_{N}(j) \sum_{k=0}^{N-1} a_{k} \cos \frac{2 \pi j(2 k+1)}{4 N}=\frac{\epsilon_{N}(j)}{\sqrt{2 N}} \sum_{k=0}^{N-1} a_{k}\left(w_{4 N}^{j(2 k+1)}+w_{4 N}^{-j(2 k+2-1)}\right) \\
& =\frac{\epsilon_{N}(j)}{\sqrt{2 N}} w_{4 N}^{j}\left(\sum_{k=0}^{N-1} a_{k} w_{2 N}^{j k}+\sum_{k=N}^{2 N-1} a_{2 N-k-1} w_{2 N}^{j k}\right)=\frac{\epsilon_{N}(j)}{\sqrt{2 N}} w_{4 N}^{j}\left(\sum_{k=0}^{2 N-1} y_{k} w_{2 N}^{j k}\right),
\end{aligned}
$$

implying the following

Algorithm 6.29 (DCT-II (N) via DFT ($2 N$))

Input: $N \in \mathbb{N} \backslash\{1\}, \mathbf{a}=\left(a_{j}\right)_{j=0}^{N-1} \in \mathbb{R}^{N}$.

1. Determine $\mathbf{y} \in \mathbb{R}^{2 N}$ with

$$
y_{k}:= \begin{cases}a_{k} & k=0, \ldots, N-1 \\ a_{2 N-k-1} & k=N, \ldots, 2 N-1\end{cases}
$$

2. Compute $\hat{\mathbf{y}}=\mathbf{F}_{2 N} \mathbf{y}$ using an FFT of length $2 N$.
3. Set

$$
\hat{a}_{j}:=\frac{1}{\sqrt{2 N}} \epsilon_{N}(j) \operatorname{Re}\left(w_{4 N}^{j} \hat{y}_{j}\right), \quad j=0, \ldots, N-1 .
$$

Output: $\hat{\mathbf{a}}=\left(\hat{a}_{j}\right)_{j=0}^{N-1}=\mathbf{C}_{N}^{\mathrm{II}} \mathbf{a} \in \mathbb{R}^{N}$.
Computational cost: $\mathscr{O}(N \log N)$.
The DCT-III can be implemented using the following observation. Let now $\hat{\mathbf{a}}:=$ $\mathbf{C}_{N}^{\mathrm{III}}$ a. We determine
$\mathbf{y}:=\left(\sqrt{2} a_{0}, w_{4 N}^{1} a_{1}, w_{4 N}^{2} a_{2}, \ldots, w_{4 N}^{N-1} a_{N-1}, 0, w_{4 N}^{-N+1} a_{N-1}, \ldots, w_{4 N}^{-1} a_{1}\right)^{\top} \in \mathbb{C}^{2 N}$, and obtain for $j=0, \ldots, N-1$,

$$
\begin{aligned}
& \hat{a}_{j}=\sqrt{\frac{2}{N}} \sum_{k=0}^{N-1} \epsilon_{N}(k) a_{k} \cos \frac{2 \pi k(2 j+1)}{4 N}=\frac{1}{\sqrt{2 N}}\left(\sqrt{2} a_{0}+\sum_{k=1}^{N-1} a_{k}\left(w_{4 N}^{(2 j+1) k}+w_{4 N}^{-(2 j+1) k}\right)\right) \\
& =\frac{1}{\sqrt{2 N}}\left(\sqrt{2} a_{0}+\sum_{k=1}^{N-1}\left(a_{k} w_{4 N}^{k}\right) w_{2 N}^{j k}+\sum_{k=N+1}^{2 N-1}\left(a_{2 N-k} w_{4 N}^{2 N+k}\right) w_{2 N}^{j k}\right)=\frac{1}{\sqrt{2 N}} \sum_{k=0}^{2 N-1} y_{k} w_{2 N}^{j k} .
\end{aligned}
$$

Thus we derive the following algorithm for the DCT-III:

Algorithm 6.30 (DCT-III (N) via DFT ($2 N$))

Input: $N \in \mathbb{N} \backslash\{1\}, \mathbf{a}=\left(a_{j}\right)_{j=0}^{N-1} \in \mathbb{R}^{N}$.

1. Determine $\mathbf{y} \in \mathbb{C}^{2 N}$ with

$$
y_{k}:= \begin{cases}\sqrt{2} a_{k} & k=0, \\ w_{4 N}^{k} a_{k} & k=1, \ldots, N-1 \\ 0 & k=N \\ w_{4 N}^{2 N+k} a_{2 N-k} & k=N+1, \ldots, 2 N-1\end{cases}
$$

2. Compute $\hat{\mathbf{y}}=\mathbf{F}_{2 N} \mathbf{y}$ using an FFT of length $2 N$.
3. Set

$$
\hat{a}_{j}:=\frac{1}{\sqrt{2 N}} \operatorname{Re} \hat{y}_{j}, \quad j=0, \ldots, N-1
$$

Output: $\hat{\mathbf{a}}=\left(\hat{a}_{j}\right)_{j=0}^{N-1}=\mathbf{C}_{N}^{\mathrm{III}} \mathbf{a} \in \mathbb{R}^{N}$.
Computational cost: $\mathscr{O}(N \log N)$.
Finally, we consider the DCT-IV (N). Let $\hat{\mathbf{a}}:=\mathbf{C}_{N}^{\mathrm{IV}} \mathbf{a}$. This time we employ the vector
$\mathbf{y}:=\left(w_{4 N}^{0} a_{0}, w_{4 N}^{1} a_{1}, \ldots, w_{4 N}^{N-1} a_{N-1}, w_{4 N}^{-N} a_{N-1}, w_{4 N}^{-N+1} a_{N-2}, \ldots, w_{4 N}^{-1} a_{0}\right)^{\top} \in \mathbb{C}^{2 N}$.
Using that

$$
\begin{aligned}
\cos \frac{(2 j+1)(2 k+1) \pi}{4 N} & =\frac{1}{2}\left(w_{8 N}^{(2 j+1)(2 k+1)}+w_{8 N}^{-(2 j+1)(2 k+1)}\right) \\
& =\frac{1}{2} w_{8 N}^{(2 j+1)}\left(w_{4 N}^{k} w_{2 N}^{j k}+w_{4 N}^{-(k+1)} w_{2 N}^{-j(k+1)}\right)
\end{aligned}
$$

we obtain for $j=0, \ldots, N-1$,

$$
\begin{aligned}
\hat{a}_{j} & =\sqrt{\frac{2}{N}} \sum_{k=0}^{N-1} a_{k} \cos \frac{2 \pi(2 j+1)(2 k+1)}{8 N} \\
& =\frac{1}{\sqrt{2 N}} \sum_{k=0}^{N-1} a_{k} w_{8 N}^{(2 j+1)}\left(w_{4 N}^{k} w_{2 N}^{j k}+w_{4 N}^{-(k+1)} w_{2 N}^{-j(k+1)}\right) \\
& =\frac{1}{\sqrt{2 N}} w_{8 N}^{(2 j+1)}\left(\sum_{k=0}^{N-1}\left(a_{k} w_{4 N}^{k}\right) w_{2 N}^{j k}+\sum_{k=0}^{N-1}\left(a_{k} w_{4 N}^{-(k+1)}\right) w_{2 N}^{j(2 N-k-1)}\right) \\
& =\frac{1}{\sqrt{2 N}} w_{8 N}^{(2 j+1)}\left(\sum_{k=0}^{N-1}\left(a_{k} w_{4 N}^{k}\right) w_{2 N}^{j k}+\sum_{k=N}^{2 N-1}\left(a_{2 N-k-1} w_{4 N}^{-2 N+k}\right) w_{2 N}^{j k}\right) \\
& =\frac{1}{\sqrt{2 N}} w_{8 N}^{(2 j+1)} \sum_{k=0}^{2 N-1} y_{k} w_{2 N}^{j k} .
\end{aligned}
$$

Thus we conclude the following algorithm for the DCT-IV.
Algorithm 6.31 (DCT-IV (N) via DFT ($2 N$))
Input: $N \in \mathbb{N} \backslash\{1\}, \mathbf{a}=\left(a_{j}\right)_{j=0}^{N-1} \in \mathbb{R}^{N}$.

1. Determine $\mathbf{y} \in \mathbb{C}^{2 N}$ with

$$
y_{k}:= \begin{cases}w_{4 N}^{k} a_{k} & k=0, \ldots, N-1 \\ w_{4 N}^{2 N+k} a_{2 N-k-1} & k=N, \ldots, 2 N-1 .\end{cases}
$$

2. Compute $\hat{\mathbf{y}}=\mathbf{F}_{2 N} \mathbf{y}$ using an FFT of length $2 N$.
3. $\mathrm{Se} t$

$$
\hat{a}_{j}:=\frac{1}{\sqrt{2 N}} \operatorname{Re}\left(w_{8 N}^{2 j+1} \hat{y}_{j}\right), \quad j=0, \ldots, N-1
$$

Output: $\hat{\mathbf{a}}=\left(\hat{a}_{j}\right)_{j=0}^{N-1}=\mathbf{C}_{N}^{\mathrm{IV}} \mathbf{a} \in \mathbb{R}^{N}$.
Computational cost: $\mathscr{O}(N \log N)$.
The DST algorithms can be similarly derived from the FFT of length $2 N$. We summarize them in Table 6.1, where we use the vectors $\mathbf{y}=\left(y_{k}\right)_{k=0}^{2 N-1} \in \mathbb{C}^{2 N}$ and $\hat{\mathbf{y}}=\left(\hat{y}_{j}\right)_{j=0}^{2 N-1}=\mathbf{F}_{2 N} \mathbf{y}$.

6.3.2 Fast DCT Algorithms via Orthogonal Matrix Factorizations

Based on the considerations in [273, 367, 368], we want to derive numerically stable fast DCT algorithms which are based on real factorizations of the corresponding cosine and sine matrices into products of sparse, (almost) orthogonal matrices of simple structure. These algorithms are completely recursive, simple to implement and use only permutations, scaling with $\sqrt{2}$, butterfly operations, and plane rotations or rotation-reflections.

In order to present the sparse factorizations of the cosine and sine matrices, we first introduce a collection of special sparse matrices that we will need later. Recall that \mathbf{I}_{N} and \mathbf{J}_{N} denote the identity and counter-identity matrices of order N. Further, $\mathbf{P}_{N}=\mathbf{P}_{N}(2)$ denotes the 2-stride permutation matrix as in Sect. 3.4. We use the

Table 6.1 DST algorithms of lengths $N-1$ and N, respectively, based on an FFT of length $2 N$

DST	Vector \mathbf{y}	Vector â
$\hat{\mathbf{a}}=\mathbf{S}_{N-1}^{\mathrm{I}} \mathbf{a}$	$y_{k}:= \begin{cases}0 & k=0, N, \\ -w_{2 N}^{k} a_{k-1} & k=1, \ldots, N-1, \\ w_{2 N}^{k} a_{2 N-k-1} & k=N+1, \ldots, N\end{cases}$	$\begin{aligned} & \hat{a}_{j}:=\frac{1}{\sqrt{2 N}} \operatorname{Re}\left((-\mathrm{i}) \hat{y}_{j}\right), \\ & j=0, \ldots, N-2 \end{aligned}$
$\hat{\mathbf{a}}=\mathbf{S}_{N}^{\mathrm{II}} \mathbf{a}$	$y_{k}:= \begin{cases}-w_{2 N}^{k} a_{k} & k=0, \ldots, N-1, \\ w_{2 N}^{k} a_{2 N-k-1} & k=N, \ldots, 2 N-1\end{cases}$	$\begin{aligned} & \hat{a}_{j}:=\frac{1}{\sqrt{2 N}} \epsilon_{N}(j+1) \operatorname{Re}\left((-\mathrm{i}) w_{4 N}^{j+1} \hat{y}_{j}\right), \\ & j=0, \ldots, N-1 \end{aligned}$
$\hat{\mathbf{a}}=\mathbf{S}_{N}^{\text {III }} \mathbf{a}$	$y_{k}:= \begin{cases}-w_{4 N}^{k+1} a_{k} & k=0, \ldots, N-2, \\ \sqrt{2} \mathrm{i} a_{N-1} & k=N-1, \\ -w_{4 N}^{k+1} a_{2 N-k-2} & k=N, \ldots, 2 N-2, \\ 0 & k=N-1\end{cases}$	$\begin{aligned} & \hat{a}_{j}:=\frac{1}{\sqrt{2 N}} \operatorname{Re}\left((-\mathrm{i}) w_{2 N}^{j} \hat{y}_{j}\right), \\ & j=0, \ldots, N-1 \end{aligned}$
$\hat{\mathbf{a}}=\mathbf{S}_{N}^{\mathrm{IV}} \mathbf{a}$	$y_{k}:= \begin{cases}-w_{4 N}^{k} a_{k} & k=0, \ldots, N-1, \\ -w_{4 N}^{k} a_{2 N-k-1} & k=N, \ldots, 2 N-1\end{cases}$	$\begin{aligned} & \hat{a}_{j}:=\frac{1}{\sqrt{2 N}} \operatorname{Re}\left((-\mathrm{i}) w_{8 N}^{2 j+1} \hat{y}_{j}\right), \\ & j=0, \ldots, N-1 \end{aligned}$

notation $\mathbf{A} \oplus \mathbf{B}=\operatorname{diag}(\mathbf{A}, \mathbf{B})$ for block diagonal matrices, where the square matrices \mathbf{A} and \mathbf{B} can have different orders. Let

$$
\mathbf{D}_{N}:=\operatorname{diag}\left((-1)^{k}\right)_{k=0}^{N-1}
$$

be the diagonal sign matrix. For even $N \geq 4$ let $N_{1}:=\frac{N}{2}$. We introduce the sparse orthogonal matrices

$$
\mathbf{A}_{N}:=\left(1 \oplus \frac{1}{\sqrt{2}}\left(\begin{array}{ll}
\mathbf{I}_{N_{1}-1} & \mathbf{I}_{N_{1}-1} \\
\mathbf{I}_{N_{1}-1}-\mathbf{I}_{N_{1}-1}
\end{array}\right) \oplus(-1)\right)\left(\mathbf{I}_{N_{1}} \oplus \mathbf{D}_{N_{1}} \mathbf{J}_{N_{1}}\right),
$$

and

$$
\begin{gathered}
\mathbf{B}_{N}:=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
\mathbf{I}_{N_{1}} & \mathbf{J}_{N_{1}} \\
\mathbf{I}_{N_{1}} & -\mathbf{J}_{N_{1}}
\end{array}\right), \quad \mathbf{B}_{N+1}:=\frac{1}{\sqrt{2}}\left(\begin{array}{lll}
\mathbf{I}_{N_{1}} & \mathbf{J}_{N_{1}} \\
& \sqrt{2} & \\
\mathbf{I}_{N_{1}} & -\mathbf{J}_{N_{1}}
\end{array}\right), \\
\tilde{\mathbf{B}}_{N}:=\left(\begin{array}{lll}
\mathbf{I}_{N_{1}} \oplus & \left.\mathbf{D}_{N_{1}}\right)
\end{array}\right)\left(\begin{array}{cc}
\operatorname{diag} \mathbf{c}_{N_{1}} & \left(\operatorname{diag} \mathbf{s}_{N_{1}}\right) \mathbf{J}_{N_{1}} \\
-\mathbf{J}_{N_{1}} \operatorname{diag} \mathbf{s}_{N_{1}} & \operatorname{diag}\left(\mathbf{J}_{N_{1}} \mathbf{c}_{N_{1}}\right)
\end{array}\right),
\end{gathered}
$$

where

$$
\mathbf{c}_{N_{1}}:=\left(\cos \frac{(2 k+1) \pi}{4 N}\right)_{k=0}^{N_{1}-1}, \quad \mathbf{s}_{N_{1}}:=\left(\sin \frac{(2 k+1) \pi}{4 N}\right)_{k=0}^{N_{1}-1} .
$$

All these sparse "butterfly" matrices possess at most two nonzero components in each row and each column. The modified identity matrices are denoted by

$$
\mathbf{I}_{N}^{\prime}:=\sqrt{2} \oplus \mathbf{I}_{N-1}, \quad \mathbf{I}_{N}^{\prime \prime}:=\mathbf{I}_{N-1} \oplus \sqrt{2}
$$

Finally, let \mathbf{V}_{N} be the forward shift matrix as in Sect.3.2. Now, we can show the following factorizations of the cosine matrices of types I-IV.

Theorem 6.32 Let $N \geq 4$ be an even integer and $N_{1}:=N / 2$.
(i) The cosine matrix $\mathbf{C}_{N}^{\text {II }}$ satisfies the orthogonal factorization

$$
\begin{equation*}
\mathbf{C}_{N}^{\mathrm{II}}=\mathbf{P}_{N}^{\top}\left(\mathbf{C}_{N_{1}}^{\mathrm{II}} \oplus \mathbf{C}_{N_{1}}^{\mathrm{IV}}\right) \mathbf{B}_{N} \tag{6.49}
\end{equation*}
$$

(ii) The cosine matrix $\mathbf{C}_{N+1}^{\mathrm{I}}$ can be orthogonally factorized in the form

$$
\begin{equation*}
\mathbf{C}_{N+1}^{\mathrm{I}}=\mathbf{P}_{N+1}^{\top}\left(\mathbf{C}_{N_{1}+1}^{\mathrm{I}} \oplus \mathbf{C}_{N_{1}}^{\mathrm{III}}\right) \mathbf{B}_{N+1} \tag{6.50}
\end{equation*}
$$

Proof In order to show (6.49) we first permute the rows of $\mathbf{C}_{N}^{\text {II }}$ by multiplying with \mathbf{P}_{N} and write the result as a block matrix
$\mathbf{P}_{N} \mathbf{C}_{N}^{\mathrm{II}}=\frac{1}{\sqrt{N_{1}}}\left(\begin{array}{cc}\left(\epsilon_{N}(2 j) \cos \frac{2 j(2 k+1) \pi}{2 N}\right)_{j, k=0}^{N_{1}-1} & \left(\epsilon_{N}(2 j) \cos \frac{2 j(N+2 k+1) \pi}{2 N}\right)_{j, k=0}^{N_{1}-1} \\ \left(\cos \frac{(2 j+1)(2 k+1) \pi}{2 N}\right)_{j, k=0}^{N_{1}-1} & \left(\cos \frac{(2 j+1)(N+2 k+1) \pi}{2 N}\right)_{j, k=0}^{N_{1}-1}\end{array}\right)$.
Recalling the definition of $\mathbf{C}_{N}^{\mathrm{IV}}$ and using

$$
\cos \frac{j(N+2 k+1) \pi}{N}=\cos \frac{j(N-2 k-1) \pi}{N}, \quad \cos \frac{(2 j+1)(N+2 k+1) \pi}{2 N}=-\cos \frac{(2 j+1)(N-2 k-1) \pi}{2 N},
$$

it follows immediately that the four blocks of $\mathbf{P}_{N} \mathbf{C}_{N}^{\mathrm{II}}$ can be represented by $\mathbf{C}_{N_{1}}^{\mathrm{II}}$ and $\mathbf{C}_{N_{1}}^{\mathrm{IV}}$,

$$
\begin{aligned}
\mathbf{P}_{N} \mathbf{C}_{N}^{\mathrm{II}} & =\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
\mathbf{C}_{N_{1}}^{\mathrm{II}} & \mathbf{C}_{N_{1}}^{\mathrm{II}} \\
\mathbf{J}_{N_{1}} \\
\mathbf{C}_{N_{1}}^{\mathrm{IV}} & -\mathbf{C}_{N_{1}}^{\mathrm{IV}} \mathbf{J}_{N_{1}}
\end{array}\right)=\left(\mathbf{C}_{N_{1}}^{\mathrm{II}} \oplus \mathbf{C}_{N_{1}}^{\mathrm{IV}}\right) \frac{1}{\sqrt{2}}\left(\begin{array}{cc}
\mathbf{I}_{N_{1}} & \mathbf{J}_{N_{1}} \\
\mathbf{I}_{N_{1}} & -\mathbf{J}_{N_{1}}
\end{array}\right) \\
& =\left(\mathbf{C}_{N_{1}}^{\mathrm{II}} \oplus \mathbf{C}_{N_{1}}^{\mathrm{IV}}\right) \mathbf{B}_{N}
\end{aligned}
$$

Since $\mathbf{P}_{N}^{-1}=\mathbf{P}_{N}^{\top}$ and $\mathbf{B}_{N} \mathbf{B}_{N}^{\top}=\mathbf{I}_{N}$, the matrices \mathbf{P}_{N} and \mathbf{B}_{N} are orthogonal. The proof of (6.50) follows similarly.

From (6.49) we also obtain a factorization of $\mathbf{C}_{N}^{\mathrm{III}}$,

$$
\begin{equation*}
\mathbf{C}_{N}^{\mathrm{III}}=\mathbf{B}_{N}^{\top}\left(\mathbf{C}_{N_{1}}^{\mathrm{III}} \oplus \mathbf{C}_{N_{1}}^{\mathrm{IV}}\right) \mathbf{P}_{N} \tag{6.51}
\end{equation*}
$$

The next theorem provides an orthogonal factorization of $\mathbf{C}_{N}^{\mathrm{IV}}$ for even $N \geq 4$.
Theorem 6.33 For even $N \geq 4$, the cosine matrix $\mathbf{C}_{N}^{\mathrm{IV}}$ can be orthogonally factorized in the form

$$
\begin{equation*}
\mathbf{C}_{N}^{\mathrm{IV}}=\mathbf{P}_{N}^{\top} \mathbf{A}_{N}\left(\mathbf{C}_{N_{1}}^{\mathrm{II}} \oplus \mathbf{C}_{N_{1}}^{\mathrm{II}}\right) \tilde{\mathbf{B}}_{N} \tag{6.52}
\end{equation*}
$$

Proof We permute the rows of $\mathbf{C}_{N}^{\mathrm{IV}}$ by multiplying with \mathbf{P}_{N} and write the result as a block matrix,

$$
\mathbf{P}_{N} \mathbf{C}_{N}^{\mathrm{IV}}=\frac{1}{\sqrt{N_{1}}}\binom{\left(\cos \frac{(4 j+1)(2 k+1) \pi}{4 N}\right)_{j, k=0}^{N_{1}-1}\left(\cos \frac{(4 j+1)(N+2 k+1) \pi}{4 N}\right)_{j, k=0}^{N_{1}-1}}{\left(\cos \frac{(4 j+3)(2 k+1) \pi}{4 N}\right)_{j, k=0}^{N_{1}-1}\left(\cos \frac{(4 j+3)(N+2 k+1) \pi}{4 N}\right)_{j, k=0}^{N_{1}-1}}
$$

Now we consider the single blocks of $\mathbf{P}_{N} \mathbf{C}_{N}^{\mathrm{IV}}$ and represent every block by $\mathbf{C}_{N_{1}}^{\mathrm{II}}$ and $\mathbf{S}_{N_{1}}^{\mathrm{II}}$. By

$$
\cos \frac{(4 j+1)(2 k+1) \pi}{4 N}=\cos \frac{j(2 k+1) \pi}{N} \cos \frac{(2 k+1) \pi}{4 N}-\sin \frac{j(2 k+1) \pi}{N} \sin \frac{(2 k+1) \pi}{4 N}
$$

it follows that

$$
\begin{align*}
& \frac{1}{\sqrt{N_{1}}}\left(\cos \frac{(4 j+1)(2 k+1) \pi}{4 N}\right)_{j, k=0}^{N_{1}-1}=\frac{1}{\sqrt{2}}\left(\mathbf{I}_{N_{1}}^{\prime} \mathbf{C}_{N_{1}}^{\mathrm{II}} \operatorname{diag} \mathbf{c}_{N_{1}}-\mathbf{V}_{N_{1}} \mathbf{S}_{N_{1}}^{\mathrm{II}} \operatorname{diag} \mathbf{s}_{N_{1}}\right) \\
& =\frac{1}{\sqrt{2}}\left(\mathbf{I}_{N_{1}}^{\prime} \mathbf{C}_{N_{1}}^{\mathrm{II}} \operatorname{diag} \mathbf{c}_{N_{1}}-\mathbf{V}_{N_{1}} \mathbf{D}_{N_{1}} \mathbf{S}_{N_{1}}^{\mathrm{II}} \mathbf{J}_{N_{1}} \operatorname{diag} \mathbf{s}_{N_{1}}\right) \tag{6.53}
\end{align*}
$$

Further, with

$$
\cos \frac{(4 j+3)(2 k+1) \pi}{4 N}=\cos \frac{(j+1)(2 k+1) \pi}{N} \cos \frac{(2 k+1) \pi}{4 N}+\sin \frac{(j+1)(2 k+1) \pi}{N} \sin \frac{(2 k+1) \pi}{4 N}
$$

we obtain

$$
\begin{align*}
& \frac{1}{\sqrt{N_{1}}}\left(\cos \frac{(4 j+3)(2 k+1) \pi}{4 N}\right)_{j, k=0}^{N_{1}-1}=\frac{1}{\sqrt{2}}\left(\mathbf{V}_{N_{1}}^{\top} \mathbf{C}_{N_{1}}^{\mathrm{II}} \operatorname{diag} \mathbf{c}_{N_{1}}+\mathbf{I}_{N_{1}}^{\prime \prime} \mathbf{S}_{N_{1}}^{\mathrm{II}} \operatorname{diag} \mathbf{s}_{N_{1}}\right) \\
& =\frac{1}{\sqrt{2}}\left(\mathbf{V}_{N_{1}}^{\top} \mathbf{C}_{N_{1}}^{\mathrm{II}} \operatorname{diag} \mathbf{c}_{N_{1}}+\mathbf{I}_{N_{1}}^{\prime \prime} \mathbf{D}_{N_{1}} \mathbf{S}_{N_{1}}^{\mathrm{II}} \mathbf{J}_{N_{1}} \operatorname{diag} \mathbf{s}_{N_{1}}\right) \tag{6.54}
\end{align*}
$$

From

$$
\begin{aligned}
& \cos \frac{(4 j+1)(N+2 k+1) \pi}{4 N}=(-1)^{j} \cos \left(\frac{j(2 k+1) \pi}{N}+\frac{(N+2 k+1) \pi}{4 N}\right) \\
& =(-1)^{j} \cos \frac{j(2 k+1) \pi}{N} \sin \frac{(N-2 k-1) \pi}{4 N}-(-1)^{j} \sin \frac{j(2 k+1) \pi}{N} \cos \frac{(N-2 k-1) \pi}{4 N}
\end{aligned}
$$

we conclude

$$
\begin{align*}
& \frac{1}{\sqrt{N_{1}}}\left(\cos \frac{(4 j+1)(N+2 k+1) \pi}{4 N}\right)_{j, k=0}^{N_{1}-1} \\
& =\frac{1}{\sqrt{2}}\left(\mathbf{D}_{N_{1}} \mathbf{I}_{N_{1}}^{\prime} \mathbf{C}_{N_{1}}^{\mathrm{II}} \operatorname{diag}\left(\mathbf{J}_{N_{1}} \mathbf{s}_{N_{1}}\right)-\mathbf{D}_{N_{1}} \mathbf{V}_{N_{1}} \mathbf{S}_{N_{1}}^{\mathrm{II}} \operatorname{diag}\left(\mathbf{J}_{N_{1}} \mathbf{c}_{N_{1}}\right)\right) \\
& =\frac{1}{\sqrt{2}}\left(\mathbf{I}_{N_{1}}^{\prime} \mathbf{C}_{N_{1}}^{\mathrm{II}} \mathbf{J}_{N_{1}} \operatorname{diag}\left(\mathbf{J}_{N_{1}} \mathbf{s}_{N_{1}}\right)+\mathbf{V}_{N_{1}} \mathbf{D}_{N_{1}} \mathbf{S}_{N_{1}}^{\mathrm{II}} \operatorname{diag}\left(\mathbf{J}_{N_{1}} \mathbf{c}_{N_{1}}\right)\right) . \tag{6.55}
\end{align*}
$$

Here we have used that $\mathbf{D}_{N_{1}} \mathbf{I}_{N_{1}}^{\prime}=\mathbf{I}_{N_{1}}^{\prime} \mathbf{D}_{N_{1}}$ and $-\mathbf{D}_{N_{1}} \mathbf{V}_{N_{1}}=\mathbf{V}_{N_{1}} \mathbf{D}_{N_{1}}$. Finally,

$$
\begin{aligned}
& \cos \frac{(4 j+3)(N+2 k+1) \pi}{4 N}=(-1)^{j+1} \cos \left(\frac{(j+1)(2 k+1) \pi}{N}-\frac{(N+2 k+1) \pi}{4 N}\right) \\
& =(-1)^{j+1} \cos \frac{(j+1)(2 k+1) \pi}{N} \sin \frac{(N-2 k-1) \pi}{4 N}+(-1)^{j+1} \sin \frac{(j+1)(2 k+1) \pi}{N} \cos \frac{(N-2 k-1) \pi}{4 N}
\end{aligned}
$$

implies that

$$
\begin{align*}
& \frac{1}{\sqrt{N_{1}}}\left(\cos \frac{(4 j+3)(N+2 k+1) \pi}{4 N}\right)_{j, k=0}^{N_{1}-1} \\
& =-\frac{1}{\sqrt{2}}\left(\mathbf{D}_{N_{1}} \mathbf{V}_{N_{1}}^{\top} \mathbf{C}_{N_{1}}^{\mathrm{II}} \operatorname{diag}\left(\mathbf{J}_{N_{1}} \mathbf{s}_{N_{1}}\right)+\mathbf{D}_{N_{1}} \mathbf{I}_{N_{1}}^{\prime \prime} \mathbf{S}_{N_{1}}^{\mathrm{II}} \operatorname{diag}\left(\mathbf{J}_{N_{1}} \mathbf{c}_{N_{1}}\right)\right) \\
& =\frac{1}{\sqrt{2}}\left(\mathbf{V}_{N_{1}}^{\top} \mathbf{D}_{N_{1}} \mathbf{C}_{N_{1}}^{\mathrm{II}} \operatorname{diag}\left(\mathbf{J}_{N_{1}} \mathbf{s}_{N_{1}}\right)-\mathbf{I}_{N_{1}}^{\prime \prime} \mathbf{D}_{N_{1}} \mathbf{S}_{N_{1}}^{\mathrm{II}} \operatorname{diag}\left(\mathbf{J}_{N_{1}} \mathbf{c}_{N_{1}}\right)\right) \\
& =\frac{1}{\sqrt{2}}\left(\mathbf{V}_{N_{1}}^{\top} \mathbf{C}_{N_{1}}^{\mathrm{II}} \mathbf{J}_{N_{1}} \operatorname{diag}\left(\mathbf{J}_{N_{1}} \mathbf{s}_{N_{1}}\right)-\mathbf{I}_{N_{1}}^{\prime \prime} \mathbf{D}_{N_{1}} \mathbf{S}_{N_{1}}^{\mathrm{II}} \operatorname{diag}\left(\mathbf{J}_{N_{1}} \mathbf{c}_{N_{1}}\right)\right) \tag{6.56}
\end{align*}
$$

Using the relations (6.53)-(6.56), we find the following factorization
$\mathbf{P}_{N} \mathbf{C}_{N}^{\mathrm{IV}}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}\mathbf{I}_{N_{1}}^{\prime} & \mathbf{v}_{N_{1}} \mathbf{D}_{N_{1}} \\ \mathbf{V}_{N_{1}}^{\top} & -\mathbf{I}_{N_{1}}^{\prime} \\ \mathbf{D}_{N_{1}}\end{array}\right)\left(\mathbf{C}_{N_{1}}^{\mathrm{II}} \oplus \mathbf{S}_{N_{1}}^{\mathrm{II}}\right)\left(\begin{array}{cc}\operatorname{diag} \mathbf{c}_{N_{1}} & \left(\operatorname{diag} \mathbf{s}_{N_{N_{1}}}\right) \mathbf{J}_{N_{1}} \\ -\mathbf{J}_{N_{1}} \operatorname{diag} \mathbf{s}_{N_{1}} \operatorname{diag}\left(\mathbf{J}_{N_{1}} \mathbf{c}_{N_{1}}\right)\end{array}\right)$,
where

$$
\left(\begin{array}{cc}
\mathbf{I}_{N_{1}}^{\prime} & \mathbf{V}_{N_{1}} \mathbf{D}_{N_{1}} \\
\mathbf{V}_{N_{1}}^{\top} & -\mathbf{I}_{N_{1}}^{\prime \prime} \mathbf{D}_{N_{1}}
\end{array}\right)=\left(\sqrt{2} \oplus\left(\begin{array}{cc}
\mathbf{I}_{N_{1}-1} & \mathbf{I}_{N_{1}-1} \\
\mathbf{I}_{N_{1}-1} & -\mathbf{I}_{N_{1}-1}
\end{array}\right) \oplus(-\sqrt{2})\right)\left(\mathbf{I}_{N_{1}} \oplus \mathbf{D}_{N_{1}}\right) .
$$

Thus (6.52) follows by the intertwining relation $\mathbf{S}_{N_{1}}^{\mathrm{II}}=\mathbf{J}_{N_{1}} \mathbf{C}_{N_{1}}^{\mathrm{II}} \mathbf{D}_{N_{1}}$. The orthogonality of \mathbf{A}_{N} and $\tilde{\mathbf{B}}_{N}$ can be simply observed. Note that $\tilde{\mathbf{B}}_{N}$ consists only of N_{1} plane rotations or rotation-reflections.

Since $\mathbf{C}_{N}^{\mathrm{IV}}$ is symmetric, we also obtain the factorization

$$
\begin{equation*}
\mathbf{C}_{N}^{\mathrm{IV}}=\tilde{\mathbf{B}}_{N}^{\top}\left(\mathbf{C}_{N_{1}}^{\mathrm{III}} \oplus \mathbf{C}_{N_{1}}^{\mathrm{III}}\right) \mathbf{A}_{N}^{\top} \mathbf{P}_{N} \tag{6.57}
\end{equation*}
$$

Example 6.34 For $N=4$ we find

$$
\mathbf{C}_{4}^{\mathrm{II}}=\mathbf{P}_{4}^{\top}\left(\mathbf{C}_{2}^{\mathrm{II}} \oplus \mathbf{C}_{2}^{\mathrm{IV}}\right) \mathbf{B}_{4}=\frac{1}{2} \mathbf{P}_{4}^{\top}\left(\sqrt{2} \mathbf{C}_{2}^{\mathrm{II}} \oplus \sqrt{2} \mathbf{C}_{2}^{\mathrm{IV}}\right) \sqrt{2} \mathbf{B}_{4}
$$

with

$$
\mathbf{C}_{2}^{\mathrm{II}}=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right), \quad \mathbf{C}_{2}^{\mathrm{IV}}=\left(\begin{array}{cc}
\cos \frac{\pi}{8} & \sin \frac{\pi}{8} \\
\sin \frac{\pi}{8} & -\cos \frac{\pi}{8}
\end{array}\right), \quad \mathbf{B}_{4}=\left(\begin{array}{cc}
\mathbf{I}_{2} & \mathbf{J}_{2} \\
\mathbf{I}_{2} & -\mathbf{J}_{2}
\end{array}\right) .
$$

Thus $\mathbf{C}_{4}^{\mathrm{II}} \mathbf{a}$ with $\mathbf{a} \in \mathbb{R}^{4}$ can be computed with 8 additions and 4 multiplications (not counting the scaling by $\frac{1}{2}$). Similarly,

$$
\mathbf{C}_{4}^{\mathrm{III}}=\mathbf{B}_{4}^{\top}\left(\mathbf{C}_{2}^{\mathrm{III}} \oplus \mathbf{C}_{2}^{\mathrm{IV}}\right) \mathbf{P}_{4}=\frac{1}{2}\left(\sqrt{2} \mathbf{B}_{4}^{\top}\right)\left(\sqrt{2} \mathbf{C}_{2}^{\mathrm{III}} \oplus \sqrt{2} \mathbf{C}_{2}^{\mathrm{IV}}\right) \mathbf{P}_{4}
$$

with $\mathbf{C}_{2}^{\text {III }}=\mathbf{C}_{2}^{\text {II }}$. Further, we find

$$
\mathbf{C}_{4}^{\mathrm{IV}}=\mathbf{P}_{4}^{\top} \mathbf{A}_{4}\left(\mathbf{C}_{2}^{\mathrm{II}} \oplus \mathbf{C}_{2}^{\mathrm{II}}\right) \tilde{\mathbf{B}}_{4}=\frac{1}{2} \mathbf{P}_{4}^{\top} \sqrt{2} \mathbf{A}_{4}\left(\sqrt{2} \mathbf{C}_{2}^{\mathrm{II}} \oplus \sqrt{2} \mathbf{C}_{2}^{\mathrm{II}}\right) \tilde{\mathbf{B}}_{4}
$$

with

$$
\mathbf{A}_{4}=\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
\sqrt{2} & & \\
& 1 & 1 \\
& 1 & -1
\end{array}\right), \quad \tilde{\mathbf{B}}_{4}=\left(\begin{array}{llll}
\cos \frac{\pi}{16} & & & \sin \frac{\pi}{16} \\
& & \cos \frac{3 \pi}{16} & \sin \frac{3 \pi}{16} \\
\\
& & -\sin \frac{3 \pi}{16} & \cos \frac{3 \pi}{16}
\end{array}\right]
$$

such that $\mathbf{C}_{4}^{\mathrm{IV}} \mathbf{a}$ with $\mathbf{a} \in \mathbb{R}^{4}$ can be computed with 10 additions and 10 multiplications. Finally,

$$
\mathbf{C}_{5}^{\mathrm{I}}=\mathbf{P}_{5}^{\top}\left(\mathbf{C}_{3}^{\mathrm{I}} \oplus \mathbf{C}_{2}^{\mathrm{III}}\right) \mathbf{B}_{5}=\frac{1}{2} \mathbf{P}_{5}^{\top}\left(\sqrt{2} \mathbf{C}_{3}^{\mathrm{I}} \oplus \sqrt{2} \mathbf{C}_{2}^{\mathrm{III}}\right) \sqrt{2} \mathbf{B}_{5},
$$

where particularly

$$
\sqrt{2} \mathbf{C}_{3}^{\mathrm{I}}=\mathbf{P}_{3}^{\top}\left(\mathbf{C}_{2}^{\mathrm{II}} \oplus 1\right) \sqrt{2} \mathbf{B}_{3}
$$

with

$$
\mathbf{B}_{5}=\frac{1}{\sqrt{2}}\left(\begin{array}{ll}
\mathbf{I}_{2} & \\
\mathbf{J}_{2} \\
& \sqrt{2} \\
\mathbf{I}_{2} & -\mathbf{J}_{2}
\end{array}\right), \quad \mathbf{B}_{3}=\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
1 & & 1 \\
& \sqrt{2} & \\
1 & & -1
\end{array}\right) .
$$

Thus the computation of $\mathbf{C}_{5}^{\mathrm{I}} \mathbf{a}$ with $\mathbf{a} \in \mathbb{R}^{5}$ requires 10 additions and 4 multiplications.

The derived factorizations of the cosine matrices of types I-IV imply the following recursive fast algorithms. We compute $\hat{\mathbf{a}}=\sqrt{N} \mathbf{C}_{N}^{\mathrm{X}} \mathbf{a}$ for $\mathrm{X} \in\{$ II, III, IV $\}$ with $\mathbf{a} \in \mathbb{R}^{N}$ and $\hat{\mathbf{a}}=\sqrt{N} \mathbf{C}_{N+1}^{\mathrm{I}}$ a with $\mathbf{a} \in \mathbb{R}^{N+1}$. The corresponding recursive procedures are called $\cos -I(\mathbf{a}, N+1), \cos -I I(\mathbf{a}, N), \cos -I I I(\mathbf{a}, N)$, and COS - IV (a, N), respectively.

Algorithm $6.35(\cos -I(a, N+1)$ via Matrix Factorization)
Input: $N=2^{t}, t \in \mathbb{N}, N_{1}=N / 2, \mathbf{a} \in \mathbb{R}^{N+1}$.

1. If $N=2$, then

$$
\hat{\mathbf{a}}=\mathbf{P}_{3}^{\top}\left(\mathbf{C}_{2}^{\mathrm{II}} \oplus 1\right) \sqrt{2} \mathbf{B}_{3} \mathbf{a} .
$$

2. If $N \geq 4$, then

$$
\begin{aligned}
\left(u_{j}\right)_{j=0}^{N} & :=\sqrt{2} \mathbf{B}_{N+1} \mathbf{a}, \\
\mathbf{v}^{\prime} & :=\cos -\mathrm{I}\left(\left(u_{j}\right)_{j=0}^{N_{1}}, N_{1}+1\right), \\
\mathbf{v}^{\prime \prime} & :=\cos -\operatorname{III}\left(\left(u_{j}\right)_{j=N_{1}+1}^{N}, N_{1}\right), \\
\hat{\mathbf{a}} & :=\mathbf{P}_{N+1}^{\top}\left(\left(\mathbf{v}^{\prime}\right)^{\top},\left(\mathbf{v}^{\prime \prime}\right)^{\top}\right)^{\top} .
\end{aligned}
$$

Output: $\hat{\mathbf{a}}=\sqrt{N} \mathbf{C}_{N+1}^{I} \mathbf{a} \in \mathbb{R}^{N+1}$.
Computational cost: $\mathscr{O}(N \log N)$.

Algorithm 6.36 ($\cos -\mathrm{II}(\mathbf{a}, N)$ via Matrix Factorization)

Input: $N=2^{t}, t \in \mathbb{N}, N_{1}=N / 2, \mathbf{a} \in \mathbb{R}^{N}$.

1. If $N=2$, then

$$
\hat{\mathbf{a}}=\sqrt{2} \mathbf{C}_{2}^{\mathrm{II}} \mathbf{a} .
$$

2. If $N \geq 4$, then

$$
\begin{aligned}
\left(u_{j}\right)_{j=0}^{N-1} & :=\sqrt{2} \mathbf{B}_{N} \mathbf{a}, \\
\mathbf{v}^{\prime} & :=\cos -\mathrm{II}\left(\left(u_{j}\right)_{j=0}^{N_{1}-1}, N_{1}\right), \\
\mathbf{v}^{\prime \prime} & :=\cos -\mathrm{IV}\left(\left(u_{j}\right)_{j=N_{1}}^{N-1}, N_{1}\right), \\
\hat{\mathbf{a}} & :=\mathbf{P}_{N}^{\top}\left(\left(\mathbf{v}^{\prime}\right)^{\top},\left(\mathbf{v}^{\prime \prime}\right)^{\top}\right)^{\top} .
\end{aligned}
$$

Output: $\hat{\mathbf{a}}=\sqrt{N} \mathbf{C}_{N}^{\mathrm{II}} \mathbf{a} \in \mathbb{R}^{N}$.
Computational cost: $\mathscr{O}(N \log N)$.

Algorithm 6.37 (\cos - III (a, N) via Matrix Factorization)

Input: $N=2^{t}, t \in \mathbb{N}, N_{1}=N / 2, \mathbf{a} \in \mathbb{R}^{N}$.

1. If $N=2$, then

$$
\hat{\mathbf{a}}=\sqrt{2} \mathbf{C}_{2}^{\mathrm{III}} \mathbf{a}
$$

2. If $N \geq 4$, then

$$
\begin{aligned}
\left(u_{j}\right)_{j=0}^{N-1} & :=\mathbf{P}_{N} \mathbf{a}, \\
\mathbf{v}^{\prime} & :=\cos -\operatorname{III}\left(\left(u_{j}\right)_{j=0}^{N_{1}-1}, N_{1}\right),
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{v}^{\prime \prime} & :=\cos -\operatorname{IV}\left(\left(u_{j}\right)_{j=N_{1}}^{N-1}, N_{1}\right), \\
\hat{\mathbf{a}} & :=\sqrt{2} \mathbf{B}_{N}^{\top}\left(\left(\mathbf{v}^{\prime}\right)^{\top},\left(\mathbf{v}^{\prime \prime}\right)^{\top}\right)^{\top} .
\end{aligned}
$$

Output: $\hat{\mathbf{a}}=\sqrt{N} \mathbf{C}_{N}^{\mathrm{III}} \mathbf{a} \in \mathbb{R}^{N}$.
Computational cost: $\mathscr{O}(N \log N)$.

Algorithm 6.38 ($\cos -\mathrm{IV}(\mathbf{a}, N)$ via Matrix Factorization)

Input: $N=2^{t}, t \in \mathbb{N}, N_{1}=N / 2, \mathbf{a} \in \mathbb{R}^{N}$.

1. If $N=2$, then

$$
\hat{\mathbf{a}}=\sqrt{2} \mathbf{C}_{2}^{\mathrm{IV}} \mathbf{a}
$$

2. If $N \geq 4$, then

$$
\begin{aligned}
\left(u_{j}\right)_{j=0}^{N-1} & :=\sqrt{2} \tilde{\mathbf{B}}_{N} \mathbf{a}, \\
\mathbf{v}^{\prime} & :=\cos -\mathrm{II}\left(\left(u_{j}\right)_{j=0}^{N_{1}-1}, N_{1}\right), \\
\mathbf{v}^{\prime \prime} & :=\cos -\mathrm{II}\left(\left(u_{j}\right)_{j=N_{1}}^{N-1}, N_{1}\right), \\
\mathbf{w} & :=\mathbf{A}_{N}\left(\left(\mathbf{v}^{\prime}\right)^{\top},\left(\mathbf{v}^{\prime \prime}\right)^{\top}\right)^{\top}, \\
\hat{\mathbf{a}} & :=\mathbf{P}_{N}^{\top} \mathbf{w} .
\end{aligned}
$$

Output: $\hat{\mathbf{a}}=\sqrt{N} \mathbf{C}_{N}^{\mathrm{IV}} \mathbf{a} \in \mathbb{R}^{N}$.
Computational cost: $\mathscr{O}(N \log N)$.
Let us consider the computational costs of these algorithms in real arithmetic. Here, we do not count permutations and multiplications with ± 1 or 2^{k} for $k \in$ \mathbb{Z}. Let $\alpha(\cos -I I, N)$ and $\mu(\cos -\mathrm{II}, N)$ denote the number of additions and multiplications of Algorithm 6.36. For the other algorithms we employ analogous notations. The following result is due to [273].

Theorem 6.39 Let $N=2^{t}, t \in \mathbb{N} \backslash\{1\}$, be given. Then the recursive Algorithms 6.35-6.38 require the following numbers of additions and multiplications

$$
\begin{aligned}
\alpha(\cos -\mathrm{II}, N) & =\alpha(\cos -\mathrm{III}, N)=\frac{4}{3} N t-\frac{8}{9} N-\frac{1}{9}(-1)^{t}+1 \\
\mu(\cos -\mathrm{II}, N) & =\mu(\cos -\mathrm{III}, N)=N t-\frac{4}{3} N+\frac{1}{3}(-1)^{t}+1 \\
\alpha(\cos -\mathrm{IV}, N) & =\frac{4}{3} N t-\frac{2}{9} N+\frac{2}{9}(-1)^{t}
\end{aligned}
$$

$$
\begin{aligned}
\mu(\cos -\mathrm{IV}, N) & =N t+\frac{2}{3} N-\frac{2}{3}(-1)^{t}, \\
\alpha(\cos -\mathrm{I}, N+1) & =\frac{4}{3} N t-\frac{14}{9} N+\frac{1}{2} t+\frac{7}{2}+\frac{1}{18}(-1)^{t}, \\
\mu(\cos -\mathrm{I}, N+1) & =N t-\frac{4}{3} N+\frac{5}{2}-\frac{1}{6}(-1)^{t} .
\end{aligned}
$$

Proof

1. We compute $\alpha(\cos -\mathrm{II}, N)$ and $\alpha(\cos -\mathrm{IV}, N)$. From Example 6.34 it follows that

$$
\left.\begin{array}{rl}
\alpha(\cos -I I, 2) & =2, \\
\alpha(\cos -I V, 2) & =2, \tag{6.59}
\end{array} \quad \alpha(\cos -I I, 4)=8, ~ 子, 4\right)=10 .
$$

Further, Algorithms 6.36 and 6.38 imply the recursions

$$
\begin{aligned}
\alpha(\cos -\mathrm{II}, N) & =\alpha\left(\sqrt{2} \mathbf{B}_{N}\right)+\alpha\left(\cos -\mathrm{II}, N_{1}\right)+\alpha\left(\cos -\mathrm{IV}, N_{1}\right), \\
\alpha(\cos -\mathrm{IV}, N) & =\alpha\left(\sqrt{2} \tilde{\mathbf{B}}_{N}\right)+2 \alpha\left(\cos -\mathrm{II}, N_{1}\right)+\alpha\left(\mathbf{A}_{N}\right),
\end{aligned}
$$

where $\alpha\left(\sqrt{2} \mathbf{B}_{N}\right)$ denotes the number of additions required for the product $\sqrt{2} \mathbf{B}_{N} \mathbf{a}$ for an arbitrary vector $\mathbf{a} \in \mathbb{R}^{N}$. Analogously, $\alpha\left(\sqrt{2} \tilde{\mathbf{B}}_{N}\right)$ and $\alpha\left(\mathbf{A}_{N}\right)$ are determined. From the definitions of $\mathbf{B}_{N}, \tilde{\mathbf{B}}_{N}$, and \mathbf{A}_{N} it follows that

$$
\alpha\left(\sqrt{2} \mathbf{B}_{N}\right)=\alpha\left(\sqrt{2} \tilde{\mathbf{B}}_{N}\right)=N, \quad \alpha\left(\sqrt{2} \mathbf{A}_{N}\right)=N-2 .
$$

Thus, we obtain the linear difference equation of order 2 (with respect to $t \geq 3$),

$$
\alpha\left(\cos -\mathrm{II}, 2^{t}\right)=\alpha\left(\cos -\mathrm{II}, 2^{t-1}\right)+2 \alpha\left(\cos -\mathrm{II}, 2^{t-2}\right)+2^{t+1}-2 .
$$

With the initial conditions in (6.58) we find the unique solution

$$
\alpha(\cos -\mathrm{II}, N)=\alpha(\cos -\mathrm{III}, N)=\frac{4}{3} N t-\frac{8}{9} N-\frac{1}{9}(-1)^{t}+1
$$

which can be simply verified by induction with respect to t. Thus,

$$
\alpha(\cos -\mathrm{IV}, N)=\frac{4}{3} N t-\frac{2}{9} N+\frac{2}{9}(-1)^{t} .
$$

2. The computational cost for $\cos -\mathrm{III}(\mathbf{a}, N)$ is obviously the same as for $\cos -\mathrm{II}(\mathbf{a}, N)$.
3. Finally, for $\cos -\mathrm{I}(\mathbf{a}, N)$ we conclude

$$
\alpha(\cos -\mathrm{I}, N+1)=\alpha\left(\sqrt{2} \mathbf{B}_{N+1}\right)+\alpha\left(\cos -\mathrm{I}, N_{1}+1\right)+\alpha\left(\cos -\mathrm{III}, N_{1}\right)
$$

and hence by $\alpha\left(\sqrt{2} \mathbf{B}_{N+1}\right)=N$ that

$$
\begin{aligned}
\alpha\left(\cos -\mathrm{I}, 2^{t}+1\right) & =2^{t}+\alpha\left(\cos -\mathrm{I}, 2^{t-1}+1\right)+\frac{2}{3} 2^{t}(t-1)-\frac{4}{9} 2^{t}-\frac{1}{9}(-1)^{t-1}+1 \\
& =\alpha\left(\cos -\mathrm{I}, 2^{t-1}+1\right)+\frac{2}{3} 2^{t} t-\frac{1}{9} 2^{t}+\frac{1}{9}(-1)^{t}+1
\end{aligned}
$$

Together with the initial condition $\alpha(\cos -\mathrm{I}, 3)=4$ we conclude

$$
\alpha\left(\cos -\mathrm{I}, 2^{t}\right)=\frac{4}{3} N t-\frac{14}{9} N+\frac{1}{2} t+\frac{7}{2}+\frac{1}{18}(-1)^{t} .
$$

The results for the required number of multiplications can be derived analogously.

Remark 6.40

1. Comparing the computational costs of the DCT algorithms based on orthogonal factorization in real arithmetic with the FFT based algorithms in the previous subsection, we gain a factor larger than 4. Taking, e.g., Algorithm 6.29 using the Sande-Tukey Algorithm for FFT of length $2 N$ in the second step, we have by Theorem 5.12 costs of $10 N \log _{2}(2 N)-20 N+16=10 N \log _{2} N-10 N+$ 16 and further N multiplications to evaluate the needed vector $\left(w_{4 N}^{j} \hat{y}_{j}\right)_{j=0}^{N-1}$. In comparison, Theorem 6.39 shows computational cost of at most $\frac{7}{3} N \log _{2} N-$ $\frac{20}{9} N+\frac{22}{9}$ for Algorithm 6.36.
2. A detailed analysis of the roundoff errors for the fast DCT Algorithms 6.35-6.38 shows their excellent numerical stability, see [273].
3. Besides the proposed fast trigonometric transforms based on FFT or on orthogonal matrix factorization, there exist further fast DCT algorithms in real arithmetic via polynomial arithmetic with Chebyshev polynomials, see, e.g., [107, 108, 300, 337, 339]. These DCT algorithms generate nonorthogonal matrix factorizations of the cosine and sine matrices and therefore are inferior regarding numerical stability, see [18, 273, 324, 350].
4. Similar orthogonal matrix factorizations and corresponding recursive algorithms can be also derived for the sine matrices, see [273].

6.4 Interpolation and Quadrature Using Chebyshev Expansions

Now we show that interpolation at Chebyshev extreme points has excellent numerical properties. Further we describe the efficient Clenshaw-Curtis quadrature which is an interpolatory quadrature rule at Chebyshev extreme points.

6.4.1 Interpolation at Chebyshev Extreme Points

Let $N \in \mathbb{N} \backslash\{1\}$ be fixed and let $I:=[-1,1]$. Then the nonequispaced Chebyshev extreme points $x_{j}^{(N)}=\cos \frac{j \pi}{N} \in I, j=0, \ldots, N$, are denser near the endpoints ± 1, see Fig. 6.7. We want to interpolate an arbitrary function $f \in C(I)$ at the Chebyshev extreme points $x_{j}^{(N)}, j=0, \ldots, N$, by a polynomial $p_{N} \in \mathscr{P}_{N}$. Then the interpolation conditions

$$
\begin{equation*}
p_{N}\left(x_{j}^{(N)}\right)=f\left(x_{j}^{(N)}\right), \quad j=0, \ldots, N \tag{6.60}
\end{equation*}
$$

have to be satisfied. Since the Chebyshev polynomials $T_{j}, j=0, \ldots, N$, form a basis of \mathscr{P}_{N}, the polynomial p_{N} can be expressed as a Chebyshev expansion

$$
\begin{equation*}
p_{N}=\frac{1}{2} a_{0}^{(N)}[f]+\sum_{k=1}^{N-1} a_{k}^{(N)}[f] T_{k}+\frac{1}{2} a_{N}^{(N)}[f] T_{N}=\sum_{k=0}^{N} \varepsilon_{N}(k)^{2} a_{k}^{(N)}[f] T_{k} \tag{6.61}
\end{equation*}
$$

with certain coefficients $a_{k}^{(N)}[f] \in \mathbb{R}$, where $\varepsilon_{N}(0)=\varepsilon_{N}(N):=\frac{\sqrt{2}}{2}$ and $\varepsilon_{N}(j):=$ $1, j=1, \ldots, N-1$. The interpolation conditions in (6.60) imply the linear system

$$
f\left(x_{j}^{(N)}\right)=\sum_{k=0}^{N} \varepsilon_{N}(k)^{2} a_{k}^{(N)}[f] \cos \frac{j k \pi}{N}, \quad j=0, \ldots, N .
$$

Fig. 6.7 The nonequispaced Chebyshev extreme points
$x_{j}^{(8)}=\cos \frac{j \pi}{8} \in[-1,1]$, $j=0, \ldots, 8$, and the equispaced points $\mathrm{e}^{\mathrm{i} j \pi / 8}$, $j=0, \ldots, 8$, on the upper unit semicircle

This linear system can be written in the matrix-vector form

$$
\begin{equation*}
\left(\varepsilon_{N}(j) f\left(x_{j}^{(N)}\right)\right)_{j=0}^{N}=\sqrt{\frac{N}{2}} \mathbf{C}_{N+1}^{\mathrm{I}}\left(\varepsilon_{N}(k) a_{k}^{(N)}[f]\right)_{k=0}^{N}, \tag{6.62}
\end{equation*}
$$

where $\mathbf{C}_{N+1}^{\mathrm{I}}$ in (3.59) is the cosine matrix of type I. Recall that the symmetric cosine matrix of type I is orthogonal by Lemma 3.46, i.e., $\left(\mathbf{C}_{N+1}^{\mathrm{I}}\right)^{-1}=\mathbf{C}_{N+1}^{\mathrm{I}}$. Hence the linear system (6.62) possesses the unique solution

$$
\left(\varepsilon_{N}(k) a_{k}^{(N)}[f]\right)_{k=0}^{N}=\sqrt{\frac{2}{N}} \mathbf{C}_{N+1}^{\mathrm{I}}\left(\varepsilon_{N}(j) f\left(x_{j}^{(N)}\right)\right)_{j=0}^{N} .
$$

If N is a power of two, we can apply a fast algorithm of DCT-I $(N+1)$ from Sect. 6.3 for the computation of the matrix-vector product above. We summarize:

Lemma 6.41 Let $N \in \mathbb{N} \backslash\{1\}$ be fixed and let $f \in C(I)$ be given. Then the interpolation problem (6.60) at Chebyshev extreme points $x_{j}^{(N)}, j=0, \ldots, N$, has a unique solution of the form (6.61) in \mathscr{P}_{N} with the coefficients

$$
\begin{equation*}
a_{k}^{(N)}[f]=\frac{2}{N} \sum_{j=0}^{N} \varepsilon_{N}(j)^{2} f\left(x_{j}^{(N)}\right) \cos \frac{j k \pi}{N}, \quad k=0, \ldots, N . \tag{6.63}
\end{equation*}
$$

If $f \in C(I)$ is even, then p_{N} is even and $a_{2 k+1}^{(N)}[f]=0$ for $k=0, \ldots,\lfloor(N-1) / 2\rfloor$. If $f \in C(I)$ is odd, then p_{N} is odd and $a_{2 k}^{(N)}[f]=0$ for $k=0, \ldots,\lfloor N / 2\rfloor$.

The Chebyshev coefficients $a_{j}[f], j \in \mathbb{N}_{0}$, of a given function f in (6.18) and the coefficients $a_{k}^{(N)}[f], k=0, \ldots, N$, of the corresponding interpolation polynomial (6.63) are closely related. This connection can be described by the aliasing formulas for Chebyshev coefficients, see [71].

Lemma 6.42 (Aliasing Formulas for Chebyshev Coefficients) Let $N \in \mathbb{N} \backslash\{1\}$ be fixed. Assume that the Chebyshev coefficients of a given function $f \in C(I)$ satisfy the condition

$$
\begin{equation*}
\sum_{j=0}^{\infty}\left|a_{j}[f]\right|<\infty . \tag{6.64}
\end{equation*}
$$

Then the aliasing formulas

$$
\begin{equation*}
a_{k}^{(N)}[f]=a_{k}[f]+\sum_{\ell=1}^{\infty}\left(a_{2 \ell N+k}[f]+a_{2 \ell N-k}[f]\right) \tag{6.65}
\end{equation*}
$$

hold for $k=1, \ldots, N-1$, and for $k=0$ and $k=N$ we have

$$
\begin{align*}
& a_{0}^{(N)}[f]=a_{0}[f]+2 \sum_{\ell=1}^{\infty} a_{2 \ell N}[f], \tag{6.66}\\
& a_{N}^{(N)}[f]=2 a_{N}[f]+2 \sum_{\ell=1}^{\infty} a_{(2 \ell+1) N}[f] . \tag{6.67}
\end{align*}
$$

Proof By assumption (6.64) and Lemma 6.11, the Chebyshev series

$$
\frac{1}{2} a_{0}[f]+\sum_{\ell=1}^{\infty} a_{\ell}[f] T_{\ell}
$$

converges absolutely and uniformly on I to f. Thus we obtain the function values

$$
f\left(x_{j}^{(N)}\right)=\frac{1}{2} a_{0}[f]+\sum_{\ell=1}^{\infty} a_{\ell}[f] \cos \frac{j \ell \pi}{N}, \quad j=0, \ldots, N
$$

at the Chebyshev extreme points $x_{j}^{(N)}=\cos \frac{j \pi}{N}$. By (6.63), the interpolation polynomial in (6.61) possesses the coefficients

$$
\begin{aligned}
& a_{k}^{(N)}[f]=\frac{2}{N} \sum_{j=0}^{N} \varepsilon_{N}(j)^{2} f\left(x_{j}^{(N)}\right) \cos \frac{j k \pi}{N} \\
& =a_{0}[f] \frac{1}{N} \sum_{j=0}^{N} \varepsilon_{N}(j)^{2} \cos \frac{j k \pi}{N}+\sum_{\ell=1}^{\infty} a_{\ell}[f] \frac{2}{N} \sum_{j=0}^{N} \varepsilon_{N}(j)^{2} \cos \frac{j \ell \pi}{N} \cos \frac{j k \pi}{N}
\end{aligned}
$$

Using (3.60) and (3.61), we see that

$$
\frac{1}{N} \sum_{j=0}^{N} \varepsilon_{N}(j)^{2} \cos \frac{j k \pi}{N}=\frac{1}{N}\left(\frac{1}{2}+\sum_{j=1}^{N-1} \cos \frac{j k \pi}{N}+\frac{1}{2}(-1)^{k}\right)= \begin{cases}1 & k=0, \\ 0 & k=1, \ldots, N\end{cases}
$$

Analogously we evaluate the sum

$$
\begin{aligned}
& \frac{2}{N} \sum_{j=0}^{N} \varepsilon_{N}(j)^{2} \cos \frac{j \ell \pi}{N} \cos \frac{j k \pi}{N} \\
= & \frac{1}{N}\left(1+(-1)^{\ell+k}+\sum_{j=1}^{N-1} \cos \frac{j(\ell-k) \pi}{N}+\sum_{j=1}^{N-1} \cos \frac{j(\ell+k) \pi}{N}\right)
\end{aligned}
$$

$$
= \begin{cases}2 & k=0, \ell=2 s N, s \in \mathbb{N} \\ 1 & k=1, \ldots, N-1, \ell=2 s N+k, s \in \mathbb{N}_{0} \\ 1 & k=1, \ldots, N-1, \ell=2 s N-k, s \in \mathbb{N} \\ 2 & k=N, \ell=(2 s+1) N, s \in \mathbb{N}_{0}, \\ 0 & \text { otherwise }\end{cases}
$$

This completes the proof of the aliasing formulas for Chebyshev coefficients.
The aliasing formulas (6.65)-(6.67) for Chebyshev coefficients immediately provide a useful estimate of the interpolation error.

Theorem 6.43 Let $N \in \mathbb{N} \backslash\{1\}$ be fixed. Assume that the Chebyshev coefficients of a given function $f \in C(I)$ satisfy the condition (6.64).

Then the polynomial $p_{N} \in \mathscr{P}_{N}$ which interpolates f at the Chebyshev extreme points $x_{j}^{(N)}, j=0, \ldots, N$, satisfies the error estimate

$$
\begin{equation*}
\left\|f-p_{N}\right\|_{C(I)} \leq 2 \sum_{k=N+1}^{\infty}\left|a_{k}[f]\right| \tag{6.68}
\end{equation*}
$$

If $f \in C^{r+1}(I)$ for fixed $r \in \mathbb{N}$ and $N>r$, then

$$
\begin{equation*}
\left\|f-p_{N}\right\|_{C(I)} \leq \frac{4}{r(N-r)^{r}}\left\|f^{(r+1)}\right\|_{C(I)} . \tag{6.69}
\end{equation*}
$$

Proof

1. By Lemma 6.41 , the interpolation polynomial p_{N} possesses the form (6.61) with the coefficients in (6.63). If $C_{N} f$ denotes the N th partial sum of the Chebyshev series of f, then we have

$$
\left\|f-p_{N}\right\|_{C(I)} \leq\left\|f-C_{N} f\right\|_{C(I)}+\left\|C_{N} f-p_{N}\right\|_{C(I)} .
$$

Obviously, we see by $\left|T_{k}(x)\right| \leq 1$ for $x \in I$ that

$$
\left\|f-C_{N} f\right\|_{C(I)}=\left\|\sum_{k=N+1}^{\infty} a_{k}[f] T_{k}\right\|_{C(I)} \leq \sum_{k=N+1}^{\infty}\left|a_{k}[f]\right| .
$$

Using the aliasing formulas (6.65)-(6.67), we obtain

$$
\left\|C_{N} f-p_{N}\right\|_{C(I)} \leq \sum_{k=0}^{N-1} \varepsilon_{N}(k)^{2}\left|a_{k}[f]-a_{k}^{(N)}[f]\right|+\left|a_{N}[f]-\frac{1}{2} a_{N}^{(N)}[f]\right|
$$

$$
\begin{aligned}
& \leq \sum_{\ell=1}^{\infty}\left(\left|a_{2 \ell N}[f]\right|+\left|a_{(2 \ell+1) N}[f]\right|\right)+\sum_{k=1}^{N-1} \sum_{\ell=1}^{\infty}\left(\left|a_{2 \ell N+k}[f]\right|+\left|a_{2 \ell N-k}[f]\right|\right) \\
& =\sum_{k=N+1}^{\infty}\left|a_{k}[f]\right|
\end{aligned}
$$

Thus (6.68) is shown.
2. Let $f \in C^{r+1}(I)$ for fixed $r \in \mathbb{N}$ be given. Assume that $N \in \mathbb{N}$ with $N>r$. Then for any $k>r$ the Chebyshev coefficients can be estimated by (6.20) such that

$$
\left|a_{k}[f]\right| \leq \frac{2}{(k-r)^{r+1}}\left\|f^{(r+1)}\right\|_{C(I)}
$$

Thus from (6.68) it follows that

$$
\begin{aligned}
& \left\|f-p_{N}\right\|_{C(I)} \leq 4\left\|f^{(r+1)}\right\|_{C(I)} \sum_{k=N+1}^{\infty} \frac{1}{(k-r)^{r+1}} \\
& \leq 4\left\|f^{(r+1)}\right\|_{C(I)} \int_{N}^{\infty} \frac{1}{(x-r)^{r+1}} \mathrm{~d} x=4\left\|f^{(r+1)}\right\|_{C(I)} \frac{1}{r(N-r)^{r}}
\end{aligned}
$$

Example 6.44 We interpolate the function $f(x):=\mathrm{e}^{x}$ for $x \in I$ at Chebyshev extreme points $x_{j}^{(N)}, j=0, \ldots, N$. Choosing $r=10$, by (6.69) the interpolation error can be estimated for any $N>10$ by

$$
\left\|f-p_{N}\right\|_{C(I)} \leq \frac{2 \mathrm{e}}{(N-10)^{10}}
$$

We emphasize that the polynomial interpolation at Chebyshev extreme points $x_{j}^{(N)} \in I, j=0, \ldots, N$, has excellent properties:

The coefficients of the interpolation polynomial p_{N} can be rapidly computed by a fast algorithm of DCT- $\mathrm{I}(N+1)$.
The interpolation polynomial p_{N} can be evaluated stably by the barycentric formula (6.36).
The smoother the given function $f: I \rightarrow \mathbb{R}$, the faster the interpolation error $\left\|f-p_{N}\right\|_{C(I)}$ tends to zero for $N \rightarrow \infty$.

This situation changes completely for interpolation at equispaced points $y_{j}^{(N)}:=$ $-1+\frac{2 j}{N} \in I, j=0, \ldots, N$. We illustrate the essential influence of the chosen interpolation points by the famous example of Runge [313].

Example 6.45 The Runge phenomenon shows that equispaced polynomial interpolation of a continuous function can be troublesome. Therefore we interpolate the rational function $f(x):=\left(25 x^{2}+1\right)^{-1}, x \in I$, at the equispaced points
$y_{j}^{(N)}:=-1+\frac{2 j}{N} \in I, j=0, \ldots, N$. Then we observe that the corresponding interpolation polynomial $q_{N} \in \mathscr{P}_{N}$ with

$$
q_{N}\left(y_{j}^{(N)}\right)=f\left(y_{j}^{(N)}\right), \quad j=0, \ldots, N,
$$

oscillates near the endpoints ± 1 such that the interpolation error $\left\|f-q_{N}\right\|_{C(I)}$ increases for growing N. Thus the interpolation polynomial q_{N} does not converge uniformly on I to f as $N \rightarrow \infty$. Figure 6.8 shows the graphs of f and of the related interpolation polynomials q_{N} for $N=10$ and $N=15$.

On the other hand, if we interpolate f at the nonequispaced Chebyshev extreme points $x_{j}^{(N)} \in I, j=0, \ldots, N$, then by Theorem 6.43 the corresponding interpolation polynomials p_{N} converge uniformly on I to f as $N \rightarrow \infty$. Figure 6.9 illustrates the nice approximation behavior of the interpolation polynomial p_{15}.

Fig. 6.8 The function $f(x):=\left(25 x^{2}+1\right)^{-1}$, $x \in[-1,1]$, and the related interpolation polynomials q_{N} with equispaced nodes $y_{j}^{(N)}$, $j=0, \ldots, N$, for $N=9$ (blue) and $N=15$ (red)

Fig. 6.9 The function $f(x):=\left(25 x^{2}+1\right)^{-1}$, $x \in[-1,1]$, and the related interpolation polynomial p_{N} with nonequispaced Chebyshev extreme points $x_{j}^{(N)}, j=0, \ldots, N$, for $N=15$ (red)

Compared with the best approximation of $f \in C(I)$ by algebraic polynomials in \mathscr{P}_{N}, which exists and is unique on the compact interval I, the interpolation polynomial p_{N} at the Chebyshev extreme points $x_{j}^{(N)}, j=0, \ldots, N$, has distinguished approximation properties for sufficiently large N :

Theorem 6.46 Let $f \in C^{r}(I)$ with $r \in \mathbb{N} \backslash\{1\}$ be given. Further let $N \in \mathbb{N}$ with $N>r$. Then the interpolation polynomial $p_{N} \in \mathscr{P}_{N}$ of f at the Chebyshev extreme points $x_{j}^{(N)}, j=0, \ldots, N$, satisfies the inequality

$$
\left\|f-p_{N}\right\|_{C(I)} \leq\left(5+\frac{2}{\pi} \ln (2 N-1)\right) E_{N}(f)
$$

where

$$
E_{N}(f):=\inf \left\{\|f-p\|_{C(I)}: p \in \mathscr{P}_{N}\right\}
$$

denotes the best approximation error of f by polynomials in \mathscr{P}_{N}.
Proof

1. Let $p_{N}^{*} \in \mathscr{P}_{N}$ denote the (unique) polynomial of best approximation of f on I, i.e.,

$$
\begin{equation*}
\left\|f-p_{N}^{*}\right\|_{C(I)}=E_{N}(f) \tag{6.70}
\end{equation*}
$$

Using the Lagrange basis polynomials $\ell_{j}^{(N)} \in \mathscr{P}_{N}$ defined by (6.37) the interpolation polynomial $p_{N} \in \mathscr{P}_{N}$ of f at the Chebyshev extreme points $x_{j}^{(N)}$, $j=0, \ldots, N$, can be expressed as

$$
\begin{equation*}
p_{N}=\sum_{j=0}^{N} f\left(x_{j}^{(N)}\right) \ell_{j}^{(N)} \tag{6.71}
\end{equation*}
$$

Especially for $f=p_{N}^{*}$ it follows

$$
\begin{equation*}
p_{N}^{*}=\sum_{j=0}^{N} p_{N}^{*}\left(x_{j}^{(N)}\right) \ell_{j}^{(N)} \tag{6.72}
\end{equation*}
$$

Then the triangle inequality yields

$$
\begin{equation*}
\left\|f-p_{N}\right\|_{C(I)} \leq\left\|f-p_{N}^{*}\right\|_{C(I)}+\left\|p_{N}^{*}-p_{N}\right\|_{C(I)} \tag{6.73}
\end{equation*}
$$

By (6.71) and (6.72) we can estimate

$$
\begin{align*}
\left\|p_{N}^{*}-p_{N}\right\|_{C(I)} & \leq \sum_{j=0}^{N}\left|p_{N}^{*}\left(x_{j}^{(N)}\right)-f\left(x_{j}^{(N)}\right)\right|\left\|\ell_{j}^{(N)}\right\|_{C(I)} \\
& \leq\left\|p_{N}^{*}-f\right\|_{C(I)} \lambda_{N}=E_{N}(f) \lambda_{N} \tag{6.74}
\end{align*}
$$

where

$$
\lambda_{N}:=\sum_{j=0}^{N}\left\|\ell_{j}^{(N)}\right\|_{C(I)}=\max _{x \in I} \sum_{j=0}^{N}\left|\ell_{j}^{(N)}(x)\right|
$$

denotes the Lebesgue constant for polynomial interpolation at Chebyshev extreme points. By (6.74) the Lebesgue constant measures the distance between the interpolation polynomial p_{N} and the best approximation polynomial p_{N}^{*} subject to $E_{N}(f)$. From (6.73), (6.74), and (6.70) it follows

$$
\left\|f-p_{N}\right\|_{C(I)} \leq\left\|f-p_{N}^{*}\right\|_{C(I)}\left(1+\lambda_{N}\right)=\left(1+\lambda_{N}\right) E_{N}(f) .
$$

2. Now we estimate the Lebesgue constant λ_{N} for interpolation at Chebyshev extreme points $x_{j}^{(N)}, j=0, \ldots, N$. Using the modified Dirichlet kernel

$$
D_{N}^{*}(t)=\frac{1}{2}+\sum_{j=1}^{N-1} \cos (j t)+\frac{1}{2} \cos (N t)= \begin{cases}\frac{1}{2} \sin (N t) \cot \frac{t}{2} & t \in \mathbb{R} \backslash 2 \pi \mathbb{Z} \\ N & t \in 2 \pi \mathbb{Z}\end{cases}
$$

we observe that

$$
D_{N}^{*}\left(\frac{j \pi}{N}\right)= \begin{cases}N & j \equiv 0 \bmod (2 N) \\ 0 & j \not \equiv 0 \bmod (2 N)\end{cases}
$$

Thus for $t \in[0, \pi]$ and $j=0, \ldots, N$ we find

$$
\ell_{j}^{(N)}(\cos t)=\frac{1}{N} D_{N}^{*}\left(t-\frac{j \pi}{N}\right)= \begin{cases}\frac{(-1)^{j}}{2 N} \sin (N t) \cot \left(\frac{t}{2}-\frac{j \pi}{2 N}\right) & t \in[0, \pi] \backslash\left\{\frac{j \pi}{N}\right\} \\ 1 & t=\frac{j \pi}{N}\end{cases}
$$

Consequently we have to estimate the function

$$
s(t):= \begin{cases}\frac{1}{2 N} \sum_{j=0}^{N}\left|\sin (N t) \cot \left(\frac{t}{2}-\frac{j \pi}{2 N}\right)\right| & t \in[0, \pi] \backslash\left\{\frac{j \pi}{N}: j=0, \ldots, N\right\}, \\ 1 & t \in\left\{\frac{j \pi}{N}: j=0, \ldots, N\right\}\end{cases}
$$

3. First, we observe that $s(t)$ is $\frac{\pi}{N}$-periodic. We consider $\sin (N t) \cot \frac{t}{2}$ on the set $\left[\frac{-(2 N+1) \pi}{2 N}, \frac{(2 N+1) \pi}{2 N}\right] \backslash\{0\}$. From

$$
\frac{2}{\pi}|x| \leq|\sin x| \leq|x|, \quad x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]
$$

and $|\cos x| \leq 1$ we obtain the inequality

$$
\left|\sin (N t) \cot \frac{t}{2}\right| \leq \frac{N \pi|t|}{|t|}=N \pi, \quad t \in\left[-\frac{\pi}{2 N}, \frac{\pi}{2 N}\right] \backslash\{0\}
$$

For $t \in\left[-\frac{(2 j+1) \pi}{2 N},-\frac{(2 j-1) \pi}{2 N}\right] \cup\left[\frac{(2 j-1) \pi}{2 N}, \frac{(2 j+1) \pi}{2 N}\right], j=1, \ldots, N$, we conclude

$$
\left|\sin (N t) \cot \frac{t}{2}\right| \leq \frac{1}{\left|\sin \frac{t}{2}\right|} \leq \frac{1}{\sin \frac{(2 j-1) \pi}{4 N}}
$$

using that $\sin t$ is monotonously increasing in $\left[0, \frac{\pi}{2}\right)$. Thus for $t \in[0, \pi] \backslash\left\{\frac{j \pi}{N}\right.$: $j=0, \ldots, N\}$ it follows the estimate

$$
s(t) \leq \frac{1}{2 N}\left(N \pi+2 \sum_{j=1}^{N} \frac{1}{\sin \frac{(2 j-1) \pi}{4 N}}\right) .
$$

Introducing the increasing function $h \in C^{1}\left[0, \frac{\pi}{2}\right]$ by

$$
h(t):= \begin{cases}\frac{1}{\sin t}-\frac{1}{t} & t \in\left(0, \frac{\pi}{2}\right] \\ 0 & t=0\end{cases}
$$

we continue with the estimation of $s(t)$ and get

$$
\begin{aligned}
s(t) & \leq \frac{\pi}{2}+\frac{1}{N} \sum_{j=1}^{N} \frac{4 N}{(2 j-1) \pi}+\frac{1}{N} \sum_{j=1}^{N} h\left(\frac{(2 j-1) \pi}{4 N}\right) \\
& =\frac{\pi}{2}+\frac{2}{\pi} \sum_{j=1}^{N} \frac{2}{(2 j-1)}+\frac{2}{\pi} \frac{\pi}{2 N} \sum_{j=1}^{N} h\left(\frac{(2 j-1) \pi}{4 N}\right) .
\end{aligned}
$$

Interpreting the two sums as Riemann sums of corresponding definite integrals, this provides

$$
\begin{gathered}
\sum_{j=1}^{N} \frac{2}{(2 j-1)}=2+\sum_{j=2}^{N} \frac{1}{(j-1 / 2)}<2+\int_{1 / 2}^{N-1 / 2} \frac{\mathrm{~d} t}{t}=2+\ln (2 N-1) \\
\frac{\pi}{2 N} \sum_{j=1}^{N} h\left(\frac{(2 j-1) \pi}{4 N}\right)<\frac{\pi}{2} h\left(\frac{\pi}{2}\right)=\frac{\pi}{2}-1
\end{gathered}
$$

Therefore we obtain

$$
s(t) \leq \frac{\pi}{2}+\frac{2}{\pi}\left(2+\ln (2 N-1)+\frac{\pi}{2}-1\right)<4+\frac{2}{\pi} \ln (2 N-1) .
$$

and hence

$$
\lambda_{N} \leq 4+\frac{2}{\pi} \ln (2 N-1)
$$

Remark 6.47

1. For the interpolation at the Chebyshev zero points $z_{j}^{(N+1)}=\cos \frac{(2 j+1) \pi}{2 N+2}$, $j=0, \ldots, N$, one obtains similar results as for the described interpolation at Chebyshev extreme points $x_{j}^{(N)}=\cos \frac{j \pi}{N}, j=0, \ldots, N$, see [382].
2. Let a sufficiently smooth function $f \in C^{r}(I)$ with fixed $r \in \mathbb{N} \backslash\{1\}$ be given. Then the simultaneous approximation of f and its derivatives by polynomial interpolation can be investigated. If $p_{N} \in \mathscr{P}_{N}$ denotes the interpolation polynomial of $f \in C^{r}(I)$ at the Chebyshev extreme points $x_{j}^{(N)}, j=0, \ldots, N$, then Haverkamp [159, 160] pointed out that

$$
\begin{aligned}
& \left\|f^{\prime}-p_{N}^{\prime}\right\|_{C(I)} \leq(2+2 \ln N) E_{N-1}\left(f^{\prime}\right) \\
& \left\|f^{\prime \prime}-p_{N}^{\prime \prime}\right\|_{C(I)} \leq \frac{\pi^{2}}{3} N E_{N-2}\left(f^{\prime \prime}\right)
\end{aligned}
$$

The numerical computation of p_{N}^{\prime} and $p_{N}^{\prime \prime}$ can be performed by Lemma 6.8.
3. Interpolation at Chebyshev nodes is also used in collocation methods for the Cauchy singular integral equation

$$
a(x) u(x)+\frac{b(x)}{\pi} \int_{-1}^{1} \frac{u(y)}{y-x} \mathrm{~d} y=f(x), \quad x \in(-1,1),
$$

where the functions $a, b, f:[-1,1] \rightarrow \mathbb{C}$ are given and $u:(-1,1) \rightarrow \mathbb{C}$ is the unknown solution, see, e.g., [180]. An efficient solution of the collocation equations is based on the application of fast algorithms of discrete trigonometric transforms, see [181], and on fast summation methods, see [182].

6.4.2 Clenshaw-Curtis Quadrature

Now we will apply the interpolation polynomial (6.61) of a given function $f \in$ $C(I)$ to numerical integration. In the quadrature problem, we wish to calculate an approximate value of the integral

$$
I(f):=\int_{-1}^{1} f(x) \mathrm{d} x
$$

We obtain the famous Clenshaw-Curtis quadrature, see [71], where the function f in the integral is replaced by its interpolation polynomial (6.61) at the Chebyshev extreme points $x_{j}^{(N)}, j=0, \ldots, N$, such that

$$
I(f) \approx Q_{N}(f):=\int_{-1}^{1} p_{N}(x) \mathrm{d} x
$$

By Lemma 6.8, the integrals of the Chebyshev polynomials possess the exact values

$$
\int_{-1}^{1} T_{2 j}(x) \mathrm{d} x=\frac{2}{1-4 j^{2}}, \quad \int_{-1}^{1} T_{2 j+1}(x) \mathrm{d} x=0, \quad j \in \mathbb{N}_{0} .
$$

Thus we obtain the Clenshaw-Curtis quadrature formula from (6.61),

$$
Q_{N}(f)= \begin{cases}a_{0}^{(N)}[f]+\sum_{j=0}^{N / 2-1} \frac{2}{1-4 j^{2}} a_{2 j}^{(N)}[f]+\frac{1}{1-N^{2}} a_{N}^{(N)}[f] & N \text { even }, \tag{6.75}\\ a_{0}^{(N)}[f]+\sum_{j=0}^{(N-1) / 2-1} \frac{2}{1-4 j^{2}} a_{2 j}^{(N)}[f] & N \text { odd }\end{cases}
$$

with the corresponding quadrature error

$$
R_{N}(f):=I(f)-Q_{N}(f)
$$

Note that T_{N+1} is odd for even N and hence

$$
\int_{-1}^{1} T_{N+1}(x) \mathrm{d} x=0 .
$$

Consequently, $R_{N}(p)=0$ for all polynomials $p \in \mathscr{P}_{N+1}$, if N is even, and for all $p \in \mathscr{P}_{N}$, if N is odd. Therefore, all polynomials up to degree N are exactly integrated by the Clenshaw-Curtis rule.

Example 6.48 The simplest Clenshaw-Curtis quadrature formulas read as follows:

$$
\begin{aligned}
& Q_{1}(f)=f(-1)+f(1) \\
& Q_{2}(f)=\frac{1}{3} f(-1)+\frac{4}{3} f(0)+\frac{1}{3} f(1), \\
& Q_{3}(f)=\frac{1}{9} f(-1)+\frac{8}{9} f\left(-\frac{1}{2}\right)+\frac{8}{9} f\left(\frac{1}{2}\right)+\frac{1}{9} f(1), \\
& Q_{4}(f)=\frac{1}{15} f(-1)+\frac{8}{15} f\left(-\frac{\sqrt{2}}{2}\right)+\frac{4}{5} f(0)+\frac{8}{15} f\left(\frac{\sqrt{2}}{2}\right)+\frac{1}{15} f(1) .
\end{aligned}
$$

Note that $Q_{1}(f)$ coincides with the trapezoidal rule and that $Q_{2}(f)$ is equal to Simpson's rule.

Assume that $N \in \mathbb{N}$ is given. Using the explicit coefficients of p_{N} in (6.63) and changing the order of summations, the quadrature formula (6.75) possesses the form

$$
Q_{N}(f)=\sum_{k=0}^{N} \varepsilon_{N}(k)^{2} q_{k}^{(N)} f\left(x_{k}^{(N)}\right)
$$

with the quadrature weights

$$
q_{k}^{(N)}:= \begin{cases}\frac{2}{N} \sum_{j=0}^{N / 2} \varepsilon_{N}(2 j)^{2} \frac{2}{1-4 j^{2}} \cos \frac{2 j k \pi}{N} & N \text { even }, \tag{6.76}\\ \frac{2}{N} \sum_{j=0}^{(N-1) / 2} \varepsilon_{N}(2 j)^{2} \frac{2}{1-4 j^{2}} \cos \frac{2 j k \pi}{N} & N \text { odd }\end{cases}
$$

for $k=0, \ldots, N$.
Theorem 6.49 Let $N \in \mathbb{N}$ be given. All weights $q_{k}^{(N)}, k=0, \ldots, N$, of the Clenshaw-Curtis quadrature are positive. In particular,

$$
q_{0}^{(N)}=q_{N}^{(N)}= \begin{cases}\frac{2}{N^{2}-1} & N \text { even }, \\ \frac{2}{N^{2}} & N \text { odd }\end{cases}
$$

and for $k=1, \ldots, N-1$,

$$
q_{k}^{(N)}=q_{N-k}^{(N)} \geq \begin{cases}\frac{2}{N^{2}-1} & N \text { even } \\ \frac{2}{N^{2}} & N \text { even }\end{cases}
$$

Further,

$$
\sum_{k=0}^{N} \varepsilon_{N}(j)^{2} q_{k}^{(N)}=2
$$

For each $f \in C(I)$ we have

$$
\begin{equation*}
\lim _{N \rightarrow \infty} Q_{N}(f)=I(f)=\int_{-1}^{1} f(x) \mathrm{d} x . \tag{6.77}
\end{equation*}
$$

If $f \in C(I)$ is odd, then $I(f)=Q_{N}(f)=0$.
Proof

1. Assume that N is even. Using (6.76) we will show the inequality

$$
\frac{N}{2} q_{k}^{(N)}=\sum_{j=0}^{N / 2} \varepsilon_{N}(2 j)^{2} \frac{2}{1-4 j^{2}} \cos \frac{2 j k \pi}{N} \geq \frac{N}{N^{2}-1}, \quad k=0, \ldots, N
$$

Since $|\cos x| \leq 1$ for all $x \in \mathbb{R}$, it follows by the triangle inequality that

$$
\begin{aligned}
& \sum_{j=0}^{N / 2} \varepsilon_{N}(2 j)^{2} \frac{2}{1-4 j^{2}} \cos \frac{2 j k \pi}{N} \geq 1-\left(\sum_{j=1}^{N / 2-1} \frac{2}{4 j^{2}-1}+\frac{1}{N^{2}-1}\right) \\
& =1+\sum_{j=1}^{N / 2-1}\left(\frac{1}{2 j+1}-\frac{1}{2 j-1}\right)-\frac{1}{N^{2}-1}=1+\left(\frac{1}{N-1}-1\right)-\frac{1}{N^{2}-1}
\end{aligned}
$$

For $k=0$ and $k=N$ we have $\cos \frac{2 \pi j k}{N}=1$ for $j=0, \ldots, \frac{N}{2}$, and therefore even find the equality

$$
\begin{aligned}
q_{0}^{(N)}=q_{N}^{(N)} & =\frac{2}{N}\left(1-\sum_{j=1}^{N / 2-1} \frac{2}{4 j^{2}-1}-\frac{1}{N^{2}-1}\right) \\
& =\frac{2}{N}\left(1+\frac{1}{N-1}-1-\frac{1}{N^{2}-1}\right)=\frac{2}{N^{2}-1}
\end{aligned}
$$

For odd N the assertions can be shown analogously.
The Clenshaw-Curtis quadrature is exact for the constant function $f \equiv 1$, i.e.,

$$
Q_{N}(1)=\sum_{k=0}^{N} \varepsilon_{N}(j)^{2} q_{k}^{(N)}=\int_{-1}^{1} 1 \mathrm{~d} x=2 .
$$

2. Formula (6.77) follows from Theorem 1.24 of Banach-Steinhaus using the fact that

$$
\lim _{N \rightarrow \infty} Q_{N}(p)=I(p)=\int_{-1}^{1} p(x) \mathrm{d} x
$$

is satisfied for each polynomial p.
Employing Theorem 6.43 we obtain a useful estimate for the error of the Clenshaw-Curtis quadrature.

Theorem 6.50 Let $N \in \mathbb{N} \backslash\{1\}$ and let $f \in C^{r+1}(I)$ with $r \in \mathbb{N}$ be given. Then for any $N>r+1$ the quadrature error of the Clenshaw-Curtis quadrature can be estimated by

$$
\begin{equation*}
\left|I(f)-Q_{N}(f)\right| \leq \frac{4}{r(N-r-1)^{r}}\left\|f^{(r+1)}\right\|_{C(I)} \tag{6.78}
\end{equation*}
$$

Proof

1. First we express $f \in C^{r+1}(I)$ in the form $f=f_{0}+f_{1}$ with

$$
f_{0}(x):=\frac{1}{2}(f(x)+f(-x)), \quad f_{1}(x):=\frac{1}{2}(f(x)-f(-x)), \quad x \in I .
$$

For the odd function f_{1}, we see that $I\left(f_{1}\right)=Q_{N}\left(f_{1}\right)=0$ and hence

$$
I(f)=I\left(f_{0}\right), \quad Q_{N}(f)=Q_{N}\left(f_{0}\right)
$$

Therefore we can replace f by its even part $f_{0} \in C^{r+1}(I)$, where

$$
\left\|f_{0}^{(r+1)}\right\|_{C(I)} \leq\left\|f^{(r+1)}\right\|_{C(I)} .
$$

2. Let $p_{N} \in \mathscr{P}_{N}$ denote the interpolation polynomial of f_{0} at the Chebyshev extreme points $x_{j}^{(N)}, j=0, \ldots, N$. Using Theorem 6.43 we estimate

$$
\begin{aligned}
\left|I\left(f_{0}\right)-Q_{N}\left(f_{0}\right)\right| & =\left|\int_{-1}^{1}\left(f_{0}(x)-p_{N}(x)\right) \mathrm{d} x\right| \leq 2\left\|f_{0}-p_{N}\right\|_{C(I)} \\
& \leq 4 \sum_{\ell=\lfloor N / 2\rfloor+1}^{\infty}\left|a_{2 \ell}\left[f_{0}\right]\right|
\end{aligned}
$$

since $a_{k}\left[f_{0}\right]=0$ for all odd $k \in \mathbb{N}$. By (6.20) we know for all $2 \ell>r$ that

$$
\left|a_{2 \ell}\left[f_{0}\right]\right| \leq \frac{2}{(2 \ell-r)^{r+1}}\left\|f_{0}^{(r+1)}\right\|_{C(I)}
$$

Therefore we obtain

$$
\begin{aligned}
& \left|I\left(f_{0}\right)-Q_{N}\left(f_{0}\right)\right| \leq 8\left\|f_{0}^{(r+1)}\right\|_{C(I)} \sum_{\ell=\lfloor N / 2\rfloor+1}^{\infty} \frac{1}{(2 \ell-r)^{r+1}} \\
& \leq 8\left\|f_{0}^{(r+1)}\right\|_{C(I)} \int_{\lfloor N / 2\rfloor}^{\infty} \frac{\mathrm{d} x}{(2 x-r)^{r+1}} \leq \frac{4}{r(N-r-1)^{r}}\left\|f_{0}^{(r+1)}\right\|_{C(I)} .
\end{aligned}
$$

Remark 6.51 The inequality (6.78) is not sharp. For better error estimates we refer to [355, 382]. It is very remarkable that the Clenshaw-Curtis quadrature gives results nearly as accurate as the Gauss quadrature for most integrands, see [355] and [356, Chapter 19].

For the numerical realization of $Q_{N}[f]$ we suggest to use (6.75). By

$$
\begin{aligned}
a_{2 k}^{(N)}[f] & =\frac{2}{N} \sum_{j=0}^{N} \varepsilon_{N}(j)^{2} f\left(x_{j}^{(N)}\right) \cos \frac{2 j k \pi}{N} \\
& =\frac{2}{N} \sum_{j=0}^{N / 2} \varepsilon_{N / 2}(j)^{2}\left(f\left(x_{j}^{(N)}\right)+f\left(x_{N-j}^{(N)}\right)\right) \cos \frac{2 j k \pi}{N}
\end{aligned}
$$

we can calculate $a_{2 k}^{(N)}[f]$ by means of DCT-I $(N / 2+1)$,

$$
\begin{equation*}
\left(\varepsilon_{N / 2}(k) a_{2 k}^{(N)}[f]\right)_{k=0}^{N / 2}=\frac{1}{\sqrt{N}} \mathbf{C}_{N / 2+1}^{\mathrm{I}}\left(\varepsilon_{N / 2}(j) f_{j}\right)_{j=0}^{N / 2}, \tag{6.79}
\end{equation*}
$$

where we set $f_{j}:=f\left(x_{j}^{(N)}\right)+f\left(x_{N-j}^{(N)}\right), j=0, \ldots, N / 2$. Thus we obtain the following efficient algorithm of numerical integration:

Algorithm 6.52 (Clenshaw-Curtis Quadrature)

Input: $t \in \mathbb{N} \backslash\{1\}, N:=2^{t}, f\left(x_{j}^{(N)}\right) \in \mathbb{R}, j=0, \ldots, N$, for given $f \in C(I)$, where $x_{j}^{(N)}:=\cos \frac{j \pi}{N}$.

1. For $j=0, \ldots, N / 2$ form

$$
\varepsilon_{N / 2}(j) f_{j}:=\varepsilon_{N / 2}(j)\left(f\left(x_{j}^{(N)}\right)+f\left(x_{N-j}^{(N)}\right)\right) .
$$

2. Compute (6.79) by Algorithm 6.28 or 6.35 .
3. Calculate

$$
Q_{N}(f):=\sum_{k=0}^{N / 2} \varepsilon_{N / 2}(k)^{2} \frac{2}{1-4 k^{2}} a_{2 k}^{(N)}[f] .
$$

Output: $Q_{N}(f) \in \mathbb{R}$ approximate value of the integral $I(f)$.
Computational cost: $\mathscr{O}(N \log N)$.
Example 6.53 The rational function $f(x):=\left(x^{4}+x^{2}+\frac{9}{10}\right)^{-1}, x \in I$, possesses the exact integral value $I(f)=1.582233 \ldots$. Algorithm 6.52 provides the following approximate integral values for $N=2^{t}, t=2, \ldots, 6$:

N	$Q_{N}(f)$
4	1.548821
8	1.582355
16	1.582233
32	1.582233
64	1.582233

Example 6.54 We consider the needle-shaped function $f(x):=\left(10^{-4}+x^{2}\right)^{-1}$, $x \in I$. The integral of f over I has the exact value

$$
\int_{-1}^{1} \frac{\mathrm{~d} x}{10^{-4}+x^{2}}=200 \arctan 100=312.159332 \ldots
$$

For $N=2^{t}, t=7, \ldots, 12$, Algorithm 6.52 provides the following results:

N	$Q_{N}(f)$
128	364.781238
256	315.935656
512	314.572364
1024	312.173620
2048	312.159332
4096	312.159332

The convergence of this quadrature formula can be improved by a simple trick. Since f is even, we obtain by substitution $x=\frac{t-1}{2}$,

$$
\int_{-1}^{1} \frac{\mathrm{~d} x}{10^{-4}+x^{2}}=2 \int_{-1}^{0} \frac{\mathrm{~d} x}{10^{-4}+x^{2}}=4 \int_{-1}^{1} \frac{\mathrm{~d} t}{4 \cdot 10^{-4}+(t-1)^{2}} .
$$

such that the function $g(t)=4\left(4 \cdot 10^{-4}+(t-1)^{2}\right)^{-1}, t \in I$, possesses a needle at the endpoint $t=1$. Since the Chebyshev extreme points are clustered near the endpoints of I, we obtain much better results for lower N :

N	$Q_{N}(g)$
8	217.014988
16	312.154705
32	312.084832
64	312.159554
128	312.159332
256	312.159332

Summarizing we can say:
The Clenshaw-Curtis quadrature formula $Q_{N}(f)$ for $f \in C(I)$ is an interpolatory quadrature rule with explicitly given nodes $x_{j}^{(N)}=\cos \frac{j \pi}{N}, j=0, \ldots, N$, and positive weights. For even N, the terms $a_{2 j}^{(N)}[f], j=0, \ldots, \frac{N}{2}$, in $Q_{N}(f)$ can be efficiently and stably computed by a fast algorithm of DCT-I $\left(\frac{N}{2}+1\right)$. Each polynomial $p \in \mathscr{P}_{N}$ is exactly integrated over I. For sufficiently smooth
functions, the Clenshaw-Curtis quadrature gives similarly accurate results as the Gauss quadrature.
Remark 6.55 The popular Clenshaw-Curtis quadrature for nonoscillatory integrals can be generalized to highly oscillatory integrals, i.e., integrals of highly oscillating integrands, which occur in fluid dynamics, acoustic, and electromagnetic scattering. The excellent book [83] presents efficient algorithms for computing highly oscillatory integrals such as

$$
I_{\omega}[f]:=\int_{-1}^{1} f(x) \mathrm{e}^{\mathrm{i} \omega x} \mathrm{~d} x
$$

where $f \in C^{s}(I)$ is sufficiently smooth and $\omega \gg 1$. Efficient quadrature methods for highly oscillatory integrals use the asymptotic behavior of $I_{\omega}[f]$ for large ω. In the Filon-Clenshaw-Curtis quadrature one interpolates f by a polynomial

$$
p(x):=\sum_{j=0}^{2 s+N} p_{j} T_{j}(x)
$$

such that

$$
\begin{aligned}
p^{(\ell)}(-1) & =f^{(\ell)}(-1), \quad p^{(\ell)}(1)=f^{(\ell)}(1), \quad \ell=0, \ldots, s, \\
p\left(x_{k}^{(N)}\right) & =f\left(x_{k}^{(N)}\right), \quad k=1, \ldots, N-1,
\end{aligned}
$$

where the coefficients p_{j} can be calculated by DCT-I, for details see [83, pp. 6266]. Then one determines

$$
I_{\omega}[p]=\sum_{j=0}^{2 s+N} p_{j} b_{j}(\omega)
$$

with

$$
b_{j}(\omega):=\int_{-1}^{1} T_{j}(x) \mathrm{e}^{\mathrm{i} \omega x} \mathrm{~d} x, \quad j=0, \ldots, 2 s+N
$$

which can be explicitly computed

$$
\begin{aligned}
& b_{0}(\omega)=\frac{2 \sin \omega}{\omega}, \quad b_{1}(\omega)=-\frac{2 \mathrm{i} \cos \omega}{\omega}+\frac{2 \mathrm{i} \sin \omega}{\omega^{2}}, \\
& b_{2}(\omega)=\frac{8 \cos \omega}{\omega^{2}}+\left(\frac{2}{\omega}-\frac{8}{\omega^{3}}\right) \sin \omega, \ldots
\end{aligned}
$$

6.5 Discrete Polynomial Transforms

We show that orthogonal polynomials satisfy a three-term recursion formula. Furthermore, we derive a fast algorithm to evaluate an arbitrary linear combination of orthogonal polynomials on a nonuniform grid of Chebyshev extreme points.

6.5.1 Orthogonal Polynomials

Let ω be a nonnegative, integrable weight function defined almost everywhere on $I:=[-1,1]$. Let $L_{2, \omega}(I)$ denote the real weighted Hilbert space with the inner product

$$
\begin{equation*}
\langle f, g\rangle_{L_{2, \omega}(I)}:=\int_{-1}^{1} \omega(x) f(x) g(x) \mathrm{d} x, \quad f, g \in L_{2, \omega}(I), \tag{6.80}
\end{equation*}
$$

and the related norm

$$
\|f\|_{L_{2, \omega}(I)}:=\sqrt{\langle f, f\rangle_{L_{2, \omega}(I)}} .
$$

A sequence $\left(P_{n}\right)_{n=0}^{\infty}$ of real polynomials $P_{n} \in \mathscr{P}_{n}, n \in \mathbb{N}_{0}$, is called a sequence of orthogonal polynomials with respect to (6.80), if $\left\langle P_{m}, P_{n}\right\rangle_{L_{2, \omega}(I)}=0$ for all distinct $m, n \in \mathbb{N}_{0}$ and if each polynomial P_{n} possesses exactly the degree $n \in \mathbb{N}_{0}$. If $\left(P_{n}\right)_{n=0}^{\infty}$ is a sequence of orthogonal polynomials, then $\left(c_{n} P_{n}\right)_{n=0}^{\infty}$ with arbitrary $c_{n} \in \mathbb{R} \backslash\{0\}$ is also a sequence of orthogonal polynomials. Obviously, the orthogonal polynomials $P_{k}, k=0, \ldots, N$, form an orthogonal basis of \mathscr{P}_{N} with respect to the inner product defined in (6.80).

A sequence of orthonormal polynomials is a sequence $\left(P_{n}\right)_{n=0}^{\infty}$ of orthogonal polynomials with the property $\left\|P_{n}\right\|_{L_{2, \omega}(I)}=1$ for each $n \in \mathbb{N}_{0}$. Starting from the sequence of monomials $M_{n}(x):=x^{n}, n \in \mathbb{N}_{0}$, a sequence of orthonormal polynomials P_{n} can be constructed by the known Gram-Schmidt orthogonalization procedure, i.e., one forms $P_{0}:=M_{0} /\left\|M_{0}\right\|_{L_{2, \omega}(I)}$ and then recursively for $n=$ $1,2, \ldots$

$$
\tilde{P}_{n}:=M_{n}-\sum_{k=0}^{n-1}\left\langle M_{n}, P_{k}\right\rangle_{L_{2, \omega}(I)} P_{k}, \quad P_{n}:=\frac{1}{\left\|\tilde{P}_{n}\right\|_{L_{2, \omega}(I)}} \tilde{P}_{n} .
$$

For the theory of orthogonal polynomials we refer to the books [65, 127, 348].
Example 6.56 For the weight function $\omega(x):=(1-x)^{\alpha}(1+x)^{\beta}, x \in(-1,1)$, with $\alpha>-1$ and $\beta>-1$, the related orthogonal polynomials are called Jacobi polynomial. For $\alpha=\beta=0$ we obtain the Legendre polynomials. The case $\alpha=$ $\beta=-\frac{1}{2}$ leads to the Chebyshev polynomials of first kind and $\alpha=\beta=\frac{1}{2}$ to
the Chebyshev polynomials of second kind up to a constant factor. For $\alpha=\beta=$ $\lambda-\frac{1}{2}$ with $\lambda>-\frac{1}{2}$ we receive the ultraspherical polynomials which are also called Gegenbauer polynomials.

For efficient computation with orthogonal polynomials it is essential that orthogonal polynomials can be recursively calculated:
Lemma 6.57 If $\left(P_{n}\right)_{n=0}^{\infty}$ is a sequence of orthogonal polynomials $P_{n} \in \mathscr{P}_{n}$, then the polynomials P_{n} satisfy a three-term recurrence relation

$$
\begin{equation*}
P_{n}(x)=\left(\alpha_{n} x+\beta_{n}\right) P_{n-1}(x)+\gamma_{n} P_{n-2}(x), \quad n \in \mathbb{N}, \tag{6.81}
\end{equation*}
$$

with $P_{-1}(x):=0$ and $P_{0}(x):=1$, where α_{n}, β_{n}, and γ_{n} are real coefficients with $\alpha_{n} \neq 0$ and $\gamma_{n} \neq 0$.
Proof Clearly, formula (6.81) holds for $n=1$ and $n=2$. We consider $n \geq 3$. If c_{n} and c_{n-1} are the leading coefficients of P_{n} and P_{n-1}, respectively, then we set $\alpha_{n}:=\frac{c_{n}}{c_{n-1}} \neq 0$. Thus $q(x):=P_{n}(x)-\alpha_{n} x P_{n-1}(x) \in \mathscr{P}_{n-1}$ can be expressed as

$$
q=d_{0} P_{0}+\ldots+d_{n-1} P_{n-1}
$$

For $k=0, \ldots, n-3$ this provides $d_{k}=0$ by the orthogonality, since $x P_{k}(x) \in$ \mathscr{P}_{k+1} can be written as a linear combination of P_{0}, \ldots, P_{k+1} and therefore
$\left\langle P_{k}, q\right\rangle_{L_{2, \omega}(I)}=\left\langle P_{k}, P_{n}\right\rangle_{L_{2, \omega}(I)}-\alpha_{n}\left\langle x P_{k}(x), P_{n-1}(x)\right\rangle_{L_{2, \omega}(I)}=0=d_{k}\left\|P_{k}\right\|_{L_{2, \omega}(I)}^{2}$.
Thus with $\beta_{n}:=d_{n-1}$ and $\gamma_{n}:=d_{n-2}$ we find

$$
P_{n}(x)=\alpha_{n} x P_{n-1}(x)+\beta_{n} P_{n-1}(x)+\gamma_{n} P_{n-2}(x) .
$$

The coefficient γ_{n} does not vanish, since the orthogonality implies

$$
0=\left\langle P_{n}, P_{n-2}\right\rangle_{L_{2, \omega}(I)}=\frac{\alpha_{n}}{\alpha_{n-1}}\left\|P_{n-1}\right\|_{L_{2, \omega}(I)}^{2}+\gamma_{n}\left\|P_{n-2}\right\|_{L_{2, \omega}(I)}^{2} .
$$

Example 6.58 The Legendre polynomials L_{n} normalized by $L_{n}(1)=1$ satisfy the three-term recurrence relation

$$
L_{n+2}(x)=\frac{2 n+3}{n+2} x L_{n+1}(x)-\frac{n+1}{n+2} L_{n}(x)
$$

for $n \in \mathbb{N}_{0}$ with $L_{0}(x):=1$ and $L_{1}(x):=x$ (see [348, p. 81]).
The Chebyshev polynomials T_{n} normalized by $T_{n}(1)=1$ satisfy the three-term relation

$$
T_{n+2}(x)=2 x T_{n+1}(x)-T_{n}(x)
$$

for $n \in \mathbb{N}_{0}$ with $T_{0}(x):=1$ and $T_{1}(x):=1$.

Let now $\left(P_{n}\right)_{n=0}^{\infty}$ be a sequence of orthogonal polynomials $P_{n} \in \mathscr{P}_{n}$ with respect to (6.80). Then, every $p \in \mathscr{P}_{N}$ can be represented as

$$
p=\sum_{k=0}^{N} \frac{\left\langle p, P_{k}\right\rangle_{L_{2, \omega}(I)}}{\left\langle P_{k}, P_{k}\right\rangle_{L_{2, \omega}(I)}} P_{k} .
$$

The inner product $\left\langle p, P_{k}\right\rangle_{L_{2, \omega}(I)}$ can be exactly computed by a suitable interpolatory quadrature rule of the form

$$
\begin{equation*}
\left\langle p, P_{k}\right\rangle_{L_{2, \omega}(I)}=\int_{-1}^{1} \omega(x) p(x) P_{k}(x) \mathrm{d} x=\sum_{j=0}^{2 N} w_{j}^{(2 N)} p\left(x_{j}^{(2 N)}\right) P_{k}\left(x_{j}^{(2 N)}\right) \tag{6.82}
\end{equation*}
$$

for $k=0, \ldots, N$, where we again employ the Chebyshev extreme points $x_{j}^{(2 N)}=$ $\cos \frac{j \pi}{2 N}$, and where the quadrature weights $w_{j}^{(2 N)}$ are obtained using the integrals of the Lagrange basis functions $\ell_{j}^{(2 N)}$ related to the points $x_{j}^{(2 N)}$, i.e.,

$$
w_{j}^{(2 N)}:=\int_{-1}^{1} \omega(x) \ell_{j}^{(2 N)}(x) \mathrm{d} x, \quad \ell_{j}^{(2 N)}(x)=\prod_{\substack{k=0 \\ k \neq j}}^{2 N} \frac{x-x_{k}^{(2 N)}}{x_{j}^{(2 N)}-x_{k}^{(2 N)}} .
$$

For the special case $\omega \equiv 1$ in (6.80), the quadrature rule in (6.82) coincides with the Clenshaw-Curtis quadrature rule of order $2 N$ in Sect. 6.4, where the interpolation polynomial at the knots $x_{j}^{(2 N)}, j=0, \ldots, 2 N$, has been applied. In that special case, the weights $w_{j}^{(2 N)}$ are of the form

$$
w_{j}^{(2 N)}=\frac{\epsilon_{2 N}(j)^{2}}{N} \sum_{\ell=0}^{N} \epsilon_{2 N}(2 \ell)^{2} \frac{2}{1-4 \ell^{2}} \cos \frac{2 \ell j \pi}{2 N},
$$

see (6.76), with $\epsilon_{2 N}(0)=\epsilon_{2 N}(2 N)=\frac{1}{\sqrt{2}}$ and $\epsilon_{2 N}(j)=1$ for $j=1, \ldots, 2 N-1$. For other weights $\omega(x)$ the expressions for $w_{j}^{(2 N)}$ may look more complicated, but we will still be able to compute them by a fast DCT-I algorithm.

6.5.2 Fast Evaluation of Orthogonal Expansions

Let now $M, N \in \mathbb{N}$ with $M \geq N$ be given powers of two. In this section we are interested in efficient solutions of the following two problems (see [293]):

Problem 1 For given $a_{k} \in \mathbb{R}, k=0, \ldots, N$, compute the discrete polynomial transform $\operatorname{DPT}(N+1, M+1): \mathbb{R}^{N+1} \rightarrow \mathbb{R}^{M+1}$ defined by

$$
\begin{equation*}
\hat{a}_{j}:=\sum_{k=0}^{N} a_{k} P_{k}\left(x_{j}^{(M)}\right), \quad j=0, \ldots, M, \tag{6.83}
\end{equation*}
$$

where $x_{j}^{(M)}=\cos \frac{j \pi}{M}, j=0, \ldots, M$. The corresponding transform matrix

$$
\mathbf{P}:=\left(P_{k}\left(x_{j}^{(M)}\right)\right)_{j, k=0}^{M, N} \in \mathbb{R}^{(M+1) \times(N+1)}
$$

is called Vandermonde-like matrix. This first problem addresses the evaluation of an arbitrary polynomial

$$
p:=\sum_{k=0}^{N} a_{k} P_{k} \in \mathscr{P}_{N}
$$

on the nonuniform grid of Chebyshev extreme points $x_{j}^{(M)} \in I, j=0, \ldots, M$. The discrete polynomial transform can be considered as a generalization of DCT-I, since for $P_{k}=T_{k}, k=0, \ldots, N$, the DPT $(M+1, N+1)$ reads

$$
\hat{a}_{j}:=\sum_{k=0}^{N} a_{k} T_{k}\left(x_{j}^{(M)}\right)=\sum_{k=0}^{N} a_{k} \cos \frac{j k \pi}{M}, \quad j=0, \ldots, M .
$$

Problem 2 For given $b_{j} \in \mathbb{R}, j=0, \ldots, M$, compute the transposed discrete polynomial transform TDPT $(M+1, N+1): \mathbb{R}^{M+1} \rightarrow \mathbb{R}^{N+1}$ defined by

$$
\begin{equation*}
\tilde{b}_{k}:=\sum_{j=0}^{M} b_{j} P_{k}\left(x_{j}^{(M)}\right), \quad k=0, \ldots, N . \tag{6.84}
\end{equation*}
$$

This transposed problem is of similar form as (6.82) for $M=2 N$ and with $b_{j}=w_{j}^{(2 N)} p\left(x_{j}^{(2 N)}\right)$. Therefore, it needs to be solved in order to compute the Fourier coefficients of the polynomial $p \in \mathscr{P}_{N}$ in the orthogonal basis $\left\{P_{k}: k=\right.$ $0, \ldots, N\}$.

A direct realization of (6.83) or (6.84) by the Clenshaw algorithm, see Algorithm 6.19 , would require computational cost of $\mathscr{O}(M N)$. We want to derive fast algorithms to solve these two problems with only $\mathscr{O}\left(N\left(\log _{2} N\right)^{2}+M \log _{2} M\right)$ arithmetical operations.

We will start with considering the first problem. The main idea is as follows. First, we will derive a fast algorithm for the change of basis from the polynomial expansion in the basis $\left\{P_{k}: k=0, \ldots, N\right\}$ to the basis $\left\{T_{k}: k=0, \ldots, N\right\}$ of

Chebyshev polynomials. Then we can employ a fast DCT-I algorithm to evaluate

$$
\begin{equation*}
p=\sum_{k=0}^{N} a_{k} T_{k}, \quad a_{k} \in \mathbb{R} \tag{6.85}
\end{equation*}
$$

at the Chebyshev extreme points $x_{j}^{(M)}=\cos \frac{j \pi}{M}, j=0, \ldots, M$. The values $p\left(x_{j}^{(M)}\right), j=0, \ldots, M$, can be efficiently computed using Algorithm 6.22 involving a DCT-I $(M+1)$, where we only need to pay attention because of the slightly different normalization in (6.85) compared to (6.24). Here, we obtain

$$
\begin{equation*}
\left(\varepsilon_{M}(j) p\left(x_{j}^{(M)}\right)\right)_{j=0}^{M}=\sqrt{\frac{M}{2}} \mathbf{C}_{M+1}^{\mathrm{I}}\left(\delta_{M}(k) a_{k}\right)_{k=0}^{M}, \tag{6.86}
\end{equation*}
$$

where we set $a_{k}:=0$ for $k=N+1, \ldots, M$ and $\delta_{M}(0):=\sqrt{2}, \delta_{M}(k):=1$ for $k=1, \ldots, M$.

Let us now consider the problem to change the basis of a polynomial from $\left\{P_{k}\right.$: $k=0, \ldots, N\}$ to the basis $\left\{T_{k}: k=0, \ldots, N\right\}$ in an efficient way. For that purpose we present in the first step a further algorithm for fast polynomial multiplication that is slightly different from the algorithm given in Theorem 6.26. Let $p \in \mathscr{P}_{n}$ be given in the form

$$
\begin{equation*}
p=\sum_{k=0}^{n} a_{k} T_{k}, \quad a_{k} \in \mathbb{R} \tag{6.87}
\end{equation*}
$$

Further, let $q \in \mathscr{P}_{m}$ with $m \in \mathbb{N}$ be a fixed polynomial with known polynomial values $q\left(x_{j}^{(M)}\right), j=0, \ldots, M$, where $M=2^{s}, s \in \mathbb{N}$, with $M / 2 \leq m+n<M$ is chosen. Then the Chebyshev coefficients $b_{k} \in \mathbb{R}, k=0, \ldots, m+n$, in

$$
r:=p q=\sum_{k=0}^{n+m} b_{k} T_{k}
$$

can be computed in a fast way by the following procedure, see [16].

Algorithm 6.59 (Fast Polynomial Multiplication in Chebyshev Polynomial Basis)
 Input: $m, n \in \mathbb{N}, M=2^{s}, s \in \mathbb{N}$, with $M / 2 \leq m+n<M$, polynomial values $q\left(x_{j}^{(M)}\right) \in \mathbb{R}, j=0, \ldots, M$, of $q \in \mathscr{P}_{m}$, Chebyshev coefficients $a_{k} \in \mathbb{R}, k=0, \ldots, n$, of $p \in \mathscr{P}_{n}$, $\varepsilon_{M}(0)=\varepsilon_{M}(M):=\frac{\sqrt{2}}{2}, \varepsilon_{M}(k):=1, k=1, \ldots, M-1$, $\delta_{M}(0)=\delta_{M}(M):=\sqrt{2}, \delta_{M}(k):=1, k=1, \ldots, M-1$.

1. Set $a_{k}:=0, k=n+1, \ldots, M$, and compute the values $\varepsilon_{M}(j) p\left(x_{j}^{(M)}\right), j=$ $0, \ldots, M$, by (6.86) using a DCT-I $(M+1)$, as in Algorithm 6.28 or 6.35 .
2. Evaluate the $M+1$ products

$$
\varepsilon_{M}(j) r\left(x_{j}^{(M)}\right):=\left(\varepsilon_{M}(j) p\left(x_{j}^{(M)}\right)\right) q\left(x_{j}^{(M)}\right), \quad j=0, \ldots, M .
$$

3. Compute

$$
\left(\tilde{b}_{k}\right)_{k=0}^{M-1}:=\sqrt{\frac{2}{M}} \mathbf{C}_{M+1}^{\mathrm{I}}\left(\varepsilon_{M}(j) r\left(x_{j}^{(M)}\right)\right)_{j=0}^{M}
$$

by a fast algorithm of DCT-I $(M+1)$ using Algorithm 6.28 or 6.35 and form $b_{k}:=\delta_{M}(k)^{-1} \tilde{b}_{k}, k=0, \ldots, m+n$.

Output: $b_{k} \in \mathbb{R}, k=0, \ldots, m+n$, Chebyshev coefficients of the product $p q \in$ \mathscr{P}_{m+n}.
Computational cost: $\mathscr{O}(M \log M)$.
By Theorem 6.39, the fast DCT-I $\left(2^{s}+1\right)$ Algorithm 6.35 requires $2^{s} s-\frac{4}{3} 2^{s}+$ $\frac{5}{2}-\frac{1}{6}(-1)^{s}$ multiplications and $\frac{4}{3} 2^{s} s-\frac{14}{9} 2^{s}+\frac{1}{2} s+\frac{7}{2}+\frac{1}{18}(-1)^{s}$ additions. Hence, Algorithm 6.59 realizes the multiplication of the polynomials $p \in \mathscr{P}_{n}$ and $q \in \mathscr{P}_{m}$ in the Chebyshev polynomial basis by less than $2 M \log M$ multiplications and $\frac{8}{3} M \log M$ additions.

For the change of basis from $\left\{P_{k}: k=0, \ldots, N\right\}$ to $\left\{T_{k}: k=0, \ldots, N\right\}$ we want to employ a divide-and-conquer technique, where we will use the so-called associated orthogonal polynomials.

Assume that the sequence $\left(P_{n}\right)_{n=0}^{\infty}$ of orthogonal polynomials satisfies the threeterm recurrence relation (6.81). Replacing the coefficient index $n \in \mathbb{N}_{0}$ in (6.81) by $n+c$ with $c \in \mathbb{N}_{0}$, we obtain the so-called associated orthogonal polynomials $P_{n}(\cdot, c) \in \mathscr{P}_{n}$ defined recursively by

$$
\begin{equation*}
P_{n}(x, c):=\left(\alpha_{n+c} x+\beta_{n+c}\right) P_{n-1}(x, c)+\gamma_{n+c} P_{n-2}(x, c), \quad n \in \mathbb{N}, \tag{6.88}
\end{equation*}
$$

with $P_{-1}(x, c):=0$ and $P_{0}(x, c):=1$. By induction one can show the following result (see [27]):

Lemma 6.60 For all $c, n \in \mathbb{N}_{0}$,

$$
\begin{equation*}
P_{c+n}=P_{n}(\cdot, c) P_{c}+\gamma_{c+1} P_{n-1}(\cdot, c+1) P_{c-1} . \tag{6.89}
\end{equation*}
$$

Proof For $n=0$ and $n=1$, Eq. (6.89) is true for all $c \in \mathbb{N}_{0}$. Assume that (6.89) holds up to fixed $n \in \mathbb{N}$ for all $c \in \mathbb{N}_{0}$. We employ an induction argument. Using (6.81) and (6.88), we obtain

$$
\begin{aligned}
& P_{c+n+1}(x)=\left(\alpha_{c+n+1} x+\beta_{c+n+1}\right) P_{c+n}(x)+\gamma_{c+n+1} P_{c+n-1}(x) \\
& =\left(\alpha_{c+n+1} x+\beta_{c+n+1}\right)\left(P_{n}(x, c) P_{c}(x)+\gamma_{c+1} P_{n-1}(x, c+1) P_{c-1}(x)\right)
\end{aligned}
$$

$$
\begin{aligned}
& +\gamma_{c+n+1}\left(P_{n-1}(x, c) P_{c}(x)+\gamma_{c+1} P_{n-2}(x, c+1) P_{c-1}(x)\right) \\
= & \left(\left(\alpha_{c+n+1} x+\beta_{c+n+1}\right) P_{n}(x, c)+\gamma_{c+n+1} P_{n-1}(x, c)\right) P_{c}(x) \\
& +\left(\left(\alpha_{c+n+1} x+\beta_{c+n+1}\right) P_{n-1}(x, c+1)+\gamma_{c+n+1} P_{n-2}(x, c+1)\right) \gamma_{c+1} P_{c-1}(x) \\
= & P_{n+1}(x, c) P_{c}(x)+\gamma_{c+1} P_{n}(x, c+1) P_{c-1}(x) .
\end{aligned}
$$

Lemma 6.60 implies

$$
\begin{equation*}
\binom{P_{c+n}}{P_{c+n+1}}=\mathbf{U}_{n}(\cdot, c)^{\top}\binom{P_{c-1}}{P_{c}} \tag{6.90}
\end{equation*}
$$

with

$$
\mathbf{U}_{n}(\cdot, c):=\left(\begin{array}{cc}
\gamma_{c+1} P_{n-1}(\cdot, c+1) & \gamma_{c+1} P_{n}(\cdot, c+1) \\
P_{n}(\cdot, c) & P_{n+1}(\cdot, c)
\end{array}\right) .
$$

This polynomial matrix $\mathbf{U}_{n}(\cdot, c)$ contains polynomial entries of degree $n-1, n$ and $n+1$, respectively.

Now we describe the exchange between the bases $\left\{P_{k}: k=0, \ldots, N\right\}$ and $\left\{T_{k}: k=0, \ldots, N\right\}$ of \mathscr{P}_{N}, where $N=2^{t}, t \in \mathbb{N}$. Assume that $p \in \mathscr{P}_{N}$ is given in the orthogonal basis $\left\{P_{k}: k=0, \ldots, N\right\}$ by

$$
\begin{equation*}
p=\sum_{k=0}^{N} a_{k} P_{k} \tag{6.91}
\end{equation*}
$$

with real coefficients a_{k}. Our goal is the fast evaluation of the related Chebyshev coefficients \tilde{a}_{k} in the representation

$$
\begin{equation*}
p=\sum_{k=0}^{N} \tilde{a}_{k} T_{k} . \tag{6.92}
\end{equation*}
$$

In an initial step we use (6.81) and the fact that $T_{1}(x)=x$ to obtain

$$
\begin{aligned}
p(x) & =\sum_{k=0}^{N-1} a_{k} P_{k}(x)+a_{N}\left(\left(\alpha_{N} x+\beta_{N}\right) P_{N-1}(x)+\gamma_{N} P_{N-2}(x)\right) \\
& =\sum_{k=0}^{N-1} a_{k}^{(0)}(x) P_{k}(x)
\end{aligned}
$$

with

$$
a_{k}^{(0)}(x):= \begin{cases}a_{k} & k=0, \ldots, N-3 \tag{6.93}\\ a_{N-2}+\gamma_{N} a_{N} & k=N-2, \\ a_{N-1}+\beta_{N} a_{N}+\alpha_{N} a_{N} T_{1}(x) & k=N-1,\end{cases}
$$

where $a_{N-1}^{(0)}$ is a linear polynomial while $a_{k}^{(0)}$ are constants for $k=0, \ldots, N-2$. Now, we obtain

$$
\begin{aligned}
p & =\sum_{k=0}^{N-1} a_{k}^{(0)} P_{k}=\sum_{k=0}^{N / 4-1}\left(\sum_{\ell=0}^{3} a_{4 k+\ell}^{(0)} P_{4 k+\ell}\right) \\
& =\sum_{k=0}^{N / 4-1}\left(a_{4 k}^{(0)}, a_{4 k+1}^{(0)}\right)\binom{P_{4 k}}{P_{4 k+1}}+\left(a_{4 k+2}^{(0)}, a_{4 k+3}^{(0)}\right)\binom{P_{4 k+2}}{P_{4 k+3}} \\
& =\sum_{k=0}^{N / 4-1}\left(\left(a_{4 k}^{(0)}, a_{4 k+1}^{(0)}\right)+\left(a_{4 k+2}^{(0)}, a_{4 k+3}^{(0)}\right) \mathbf{U}_{1}(\cdot, 4 k+1)^{\top}\right)\binom{P_{4 k}}{P_{4 k+1}},
\end{aligned}
$$

where we have used (6.90) with $n=1$ and $c=4 k+1$ for $k=0, \ldots, N / 4-1$. This yields

$$
p=\sum_{k=0}^{N / 4-1}\left(a_{4 k}^{(1)} P_{4 k}+a_{4 k+1}^{(1)} P_{4 k+1}\right)
$$

with

$$
\begin{equation*}
\binom{a_{4 k}^{(1)}}{a_{4 k+1}^{(1)}}:=\binom{a_{4 k}^{(0)}}{a_{4 k+1}^{(0)}}+\mathbf{U}_{1}(\cdot, 4 k+1)\binom{a_{4 k+2}^{(0)}}{a_{4 k+3}^{(0)}} . \tag{6.94}
\end{equation*}
$$

Observe that the degree of polynomials in $\mathbf{U}_{1}(\cdot, 4 k+1)$ is at most 2, and therefore the degree of the polynomials $a_{4 k}^{(1)}$ and $a_{4 k+1}^{(1)}$ in (6.94) is at most 3 . The computation of the polynomial coefficients of $a_{4 k}^{(1)}, a_{4 k+1}^{(1)} \in \mathscr{P}_{3}, k=0, \ldots, \frac{N}{4}-1$ can be realized by employing Algorithm 6.59 with $M=4$. However, for these polynomials of low degree we can also compute the Chebyshev coefficients directly with $4 N+5$ multiplications and $\frac{5}{2} N+3$ additions (see Fig. 6.10).

Fig. 6.10 Cascade summation for the computation of the coefficient vector $\left(\tilde{a}_{k}\right)_{k=0}^{16}$ in the case $N=16$

We apply the cascade summation above now iteratively. In the next step, we compute

$$
\begin{aligned}
p & =\sum_{k=0}^{N / 4-1}\left(a_{4 k}^{(1)} P_{4 k}+a_{4 k+1}^{(1)} P_{4 k+1}\right) \\
& =\sum_{k=0}^{N / 8-1}\left(a_{8 k}^{(1)}, a_{8 k+1}^{(1)}\right)\binom{P_{8 k}}{P_{8 k+1}}+\left(a_{8 k+4}^{(1)}, a_{8 k+5}^{(1)}\right)\binom{P_{8 k+4}}{P_{8 k+5}} \\
& =\sum_{k=0}^{N / 8-1}\left(\left(a_{8 k}^{(1)}, a_{8 k+1}^{(1)}\right)+\left(a_{8 k+4}^{(1)}, a_{8 k+5}^{(1)}\right) \mathbf{U}_{3}(\cdot, 8 k+1)^{\top}\right)\binom{P_{8 k}}{P_{8 k+1}},
\end{aligned}
$$

implying

$$
p=\sum_{k=0}^{N / 8-1}\left(a_{8 k}^{(2)} P_{8 k}+a_{8 k+1}^{(2)} P_{8 k+1}\right)
$$

with

$$
\binom{a_{8 k}^{(2)}}{a_{8 k+1}^{(2)}}:=\binom{a_{8 k}^{(1)}}{a_{8 k+1}^{(1)}}+\mathbf{U}_{3}(\cdot, 8 k+1)\binom{a_{8 k+4}^{(1)}}{a_{8 k+5}^{(1)}} .
$$

Generally, in step $\tau \in\{2, \ldots, t-1\}$, we compute by (6.90) with $n=2^{\tau}-1$ the Chebyshev coefficients of the polynomials $a_{2^{\tau+1} k}^{(\tau)}, a_{2^{\tau+1} k+1}^{(\tau)} \in \mathscr{P}_{2^{\tau+1}-1}, k=$ $0, \ldots, N / 2^{\tau+1}-1$, defined by

$$
\begin{equation*}
\binom{a_{2^{\tau+1} k}^{(\tau)}}{a_{2^{\tau+1} k+1}^{(\tau)}}:=\binom{a_{2^{\tau+1} k}^{(\tau-1)}}{a_{2^{\tau+1} k+1}^{(\tau-1)}}+\mathbf{U}_{2^{\tau}-1}\left(\cdot, 2^{\tau+1} k+1\right)\binom{a_{2^{\tau+1} k+2^{\tau}}^{(\tau-1)}}{a_{2^{\tau+1} k+2^{\tau}+1}^{(\tau-1)}} \tag{6.95}
\end{equation*}
$$

where we calculate the Chebyshev coefficients of the polynomials by Algorithm 6.59 (with $M=2^{\tau+1}$). Assume that the entries of $\mathbf{U}_{2^{\tau}-1}\left(x_{\ell}^{\left(2^{\tau+1}\right)}, 2^{\tau+1} k+1\right)$ for $k=0, \ldots, N / 2^{\tau+1}$ and $\ell=0, \ldots, 2^{\tau+1}$ have been precomputed by Clenshaw Algorithm 6.19. Then step τ requires $4 \frac{N}{2^{\tau+1}}$ applications of Algorithm 6.59. Therefore we have computational costs of less than $8 N(\tau+1)$ multiplications and $\frac{32}{3} N(\tau+1)+2 N$ additions at step τ with the result

$$
p=\sum_{k=0}^{N / 2^{\tau+1}-1}\left(a_{2^{\tau+1} k}^{(\tau)} P_{2^{\tau+1} k}+a_{2^{\tau+1} k+1}^{(\tau)} P_{2^{\tau+1} k+1}\right)
$$

After step $t-1$, we arrive at

$$
p=a_{0}^{(t-1)} P_{0}+a_{1}^{(t-1)} P_{1}
$$

with the polynomial coefficients

$$
a_{0}^{(t-1)}=\sum_{n=0}^{N} a_{0, n}^{(t-1)} T_{n}, \quad a_{1}^{(t-1)}=\sum_{n=0}^{N-1} a_{1, n}^{(t-1)} T_{n}
$$

and where $P_{0}(x)=1, P_{1}(x)=\alpha_{1} x+\beta_{1}$. Therefore, by

$$
x T_{0}(x)=T_{1}(x), \quad x T_{n}(x)=\frac{1}{2}\left(T_{n+1}(x)+T_{n-1}(x)\right), \quad n=1,2, \ldots
$$

we conclude

$$
p=a_{0}^{(t-1)}+a_{1}^{(t)}
$$

with

$$
\begin{aligned}
& a_{1}^{(t)}=a_{1}^{(t-1)} P_{1}=\sum_{n=0}^{N-1} a_{1, n}^{(t-1)} T_{n}(x)\left(\alpha_{1} x+\beta_{1}\right) \\
& =\sum_{n=0}^{N-1} \beta_{1} a_{1, n}^{(t-1)} T_{n}(x)+\alpha_{1} a_{1,0}^{(t-1)} T_{1}(x)+\sum_{n=1}^{N-1} \alpha_{1} a_{1, n}^{(t-1)} \frac{1}{2}\left(T_{n-1}(x)+T_{n+1}(x)\right) \\
& =\sum_{n=0}^{N} a_{1, n}^{(t)} T_{n}(x)
\end{aligned}
$$

For the coefficients we obtain

$$
a_{1, n}^{(t)}:= \begin{cases}\beta_{1} a_{1,0}^{(t-1)}+\frac{1}{2} \alpha_{1} a_{1,1}^{(t-1)} & n=0, \tag{6.96}\\ \beta_{1} a_{1,1}^{(t-1)}+\alpha_{1} a_{1,0}^{(t-1)}+\frac{1}{2} \alpha_{1} a_{1,2}^{(t-1)} & n=1, \\ \beta_{1} a_{1, n}^{t-1)}+\frac{1}{2} \alpha_{1}\left(a_{1, n-1}^{(t-1)}+a_{1, n+1}^{(t-1)}\right) & n=2, \ldots, N-2, \\ \beta_{1} a_{1, N-1}^{(t-1)}+\frac{1}{2} \alpha_{1} a_{1, N-2}^{(t-1)} & n=N-1, \\ \frac{1}{2} \alpha_{1} a_{1, N-1}^{(t-1)} & n=N .\end{cases}
$$

The final addition of the Chebyshev coefficients of $a_{0}^{(t-1)}$ and $a_{1}^{(t)}$ yields the desired Chebyshev coefficients of p, i.e.

$$
\begin{equation*}
\left(\tilde{a}_{n}\right)_{n=0}^{N}=\left(a_{0, n}^{(t-1)}\right)_{n=0}^{N}+\left(a_{1, n}^{(t)}\right)_{n=0}^{N} . \tag{6.97}
\end{equation*}
$$

We summarize the discrete polynomial transform that computes the new coefficients of the Chebyshev expansion of a polynomial given in a different basis of orthogonal polynomials and solves problem 1 by evaluating the resulting Chebyshev expansion at the knots $x_{j}^{(M)}$.

Algorithm 6.61 (Fast Algorithm of DPT $(N+1, M+1)$)

Input: $N=2^{t}, M=2^{s}$ with $s, t \in \mathbb{N}$ and $s \geq t$,
$a_{k} \in \mathbb{R}, k=0, \ldots, N$, coefficients in (6.91),
precomputed matrices $\mathbf{U}_{2^{\tau}-1}\left(x_{\ell}^{\left(2^{\tau+1}\right)}, 2^{\tau+1} k+1\right)$ for $\tau=1, \ldots, t-1$,
$k=0, \ldots, 2^{t-\tau-1}$, and $\ell=0, \ldots, 2^{\tau+1}$.

1. Compute $a_{k}^{(0)}, k=0, \ldots, 2^{t}-1$ by (6.93).
2. $\operatorname{For} \tau=1, \ldots, t-1$ do

$$
\text { Step } \tau \text {. For } k=0, \ldots, 2^{t-\tau-1}-1 \text { compute }(6.95) \text { by Algorithm } 6.59 .
$$

3. Step t. Compute $\tilde{a}_{n}, n=0, \ldots, N$, by (6.96) and (6.97).
4. Compute (6.86) by a DCT-I $(M+1)$ using Algorithm 6.28 or 6.35 .

Output: $p\left(x_{j}^{(M)}\right), j=0, \ldots, M$.
Computational cost: $\mathscr{O}\left(N \log ^{2} N+M \log M\right)$.
In this algorithm, we have to store the precomputed elements of the matrices \mathbf{U}. Counting the arithmetic operations in each step, we verify that the complete basis exchange algorithm possesses computational costs of $\mathscr{O}\left(N \log ^{2} N\right)$.

Finally, using fast DCT-I $(M+1)$, the computation of (6.86) takes $M \log M$ multiplications and $\frac{4}{3} M \log M$ additions, see Theorem 6.39.

Remark 6.62 A fast algorithm for the transposed discrete polynomial transform TDPT $(N+1, M+1)$ in Problem 2, i.e., the fast evaluation of

$$
\hat{a}_{k}:=\sum_{\ell=0}^{N} a_{\ell} P_{k}\left(\cos \frac{\pi \ell}{M}\right), \quad k=0, \ldots, N,
$$

can be obtained immediately by "reversing" Algorithm 6.61. In other words, we have simply to reverse the direction of the arrows in the flow graph of Algorithm 6.61. For the special case of spherical polynomials this was done in [195]. See also the algorithm in [88] for the Legendre polynomials and the generalization to arbitrary polynomials satisfying a three-term recurrence relation in [89, 161]. The suggested algorithms are part of the NFFT software, see [199, ../examples/fpt]. Furthermore there exists a MATLAB interface, see [199, ../matlab/fpt].

Fast algorithms based on semiseparable matrices can be found in [193, 194]. Fast algorithms based on asymptotic formulas for the Chebyshev-Legendre transform have been developed in $[155,173]$. A method for the discrete polynomial transform based on diagonally scaled Hadamard products involving Toeplitz and Hankel matrices is proposed in [354].

Chapter 7
 Fast Fourier Transforms for Nonequispaced Data

In this chapter, we describe fast algorithms for the computation of the DFT for d-variate nonequispaced data, since in a variety of applications the restriction to equispaced data is a serious drawback. These algorithms are called nonequispaced fast Fourier transforms and abbreviated by NFFT. In Sect. 7.1, we present a unified approach to the NFFT for nonequispaced data either in space or frequency domain. The NFFT is an approximate algorithm which is based on approximation of a d-variate trigonometric polynomial by a linear combination of translates of a 2π periodic window function. For special window functions we obtain the NFFT of Dutt and Rokhlin [95], Beylkin [32], and Steidl [338]. Section 7.2 is devoted to error estimates for special window functions. The connection between the approximation error and the arithmetic cost of the NFFT is described in Theorem 7.8. We will show that the NFFT requires asymptotically the same arithmetical cost as the FFT, since we are only interested in computing the result up to a finite precision. In Sect. 7.3, we generalize the results of Sect.7.1. We investigate the NFFT for nonequispaced data in space and frequency domains. Based on the NFFT approach, we derive fast approximate algorithms for discrete trigonometric transforms with nonequispaced knots in Sect. 7.4. Section 7.5 describes the fast summation of radial functions with a variety of applications. In Sect. 7.6, we develop methods for inverse nonequispaced transforms, where we distinguish between direct and iterative methods.

7.1 Nonequispaced Data Either in Space or Frequency Domain

For a given dimension $d \in \mathbb{N}$ and for large $N \in \mathbb{N}$, let

$$
I_{N}^{d}:=\left\{\mathbf{k} \in \mathbb{Z}^{d}:-\frac{N}{2} \mathbf{1}_{d} \leq \mathbf{k}<\frac{N}{2} \mathbf{1}_{d}\right\}
$$

be an index set, where $\mathbf{1}_{d}:=(1, \ldots, 1)^{\top} \in \mathbb{Z}^{d}$ and the inequality holds for each component. We use the hypercube $[-\pi, \pi)^{d}$ as a representative of the d dimensional torus \mathbb{T}^{d}. The inner product of $\mathbf{x}=\left(x_{t}\right)_{t=1}^{d}$ and $\mathbf{y}=\left(y_{t}\right)_{t=1}^{d} \in \mathbb{R}^{d}$ is denoted by

$$
\mathbf{x} \cdot \mathbf{y}:=\mathbf{x}^{\top} \mathbf{y}=\sum_{t=1}^{d} x_{t} y_{t}
$$

First we describe the NFFT for nonequispaced data $\mathbf{x}_{j} \in \mathbb{T}^{d}, j \in I_{M}^{1}$, in the space domain and equispaced data in the frequency domain, i.e., we are interested in the fast evaluation of the d-variate, 2π-periodic trigonometric polynomial

$$
\begin{equation*}
f(\mathbf{x}):=\sum_{\mathbf{k} \in I_{N}^{d}} \hat{f}_{\mathbf{k}} \mathrm{e}^{i \mathbf{k} \cdot \mathbf{x}}, \quad \hat{f}_{\mathbf{k}} \in \mathbb{C} \tag{7.1}
\end{equation*}
$$

at arbitrary knots $\mathbf{x}_{j} \in \mathbb{T}^{d}, j \in I_{M}^{1}$ for given arbitrary coefficients $\hat{f}_{\mathbf{k}} \in \mathbb{C}, \mathbf{k} \in I_{N}^{d}$. In other words, we will derive an efficient algorithm for the fast and stable evaluation of the M values

$$
\begin{equation*}
f_{j}:=f\left(\mathbf{x}_{j}\right)=\sum_{\mathbf{k} \in I_{N}^{d}} \hat{f}_{\mathbf{k}} \mathrm{e}^{\mathrm{i} \mathbf{k} \cdot \mathbf{x}_{j}}, \quad j \in I_{M}^{1} \tag{7.2}
\end{equation*}
$$

The main idea is to approximate $f(\mathbf{x})$ by a linear combination of translates of a suitable d-variate window function in a first step and to evaluate the obtained approximation at the knots $\mathbf{x}_{j}, j \in I_{M}^{1}$ in a second step. Starting with a window function $\varphi \in L_{2}\left(\mathbb{R}^{d}\right) \cap L_{1}\left(\mathbb{R}^{d}\right)$ which is well localized in space and frequency, we define the 2π-periodic function

$$
\begin{equation*}
\tilde{\varphi}(\mathbf{x}):=\sum_{\mathbf{r} \in \mathbb{Z}^{d}} \varphi(\mathbf{x}+2 \pi \mathbf{r}) \tag{7.3}
\end{equation*}
$$

which has the uniformly convergent Fourier series

$$
\begin{equation*}
\tilde{\varphi}(\mathbf{x})=\sum_{\mathbf{k} \in \mathbb{Z}^{d}} c_{\mathbf{k}}(\tilde{\varphi}) \mathrm{e}^{\mathrm{i} \mathbf{k} \cdot \mathbf{x}} \tag{7.4}
\end{equation*}
$$

with the Fourier coefficients

$$
\begin{equation*}
c_{\mathbf{k}}(\tilde{\varphi}):=\frac{1}{(2 \pi)^{d}} \int_{[-\pi, \pi]^{d}} \tilde{\varphi}(\mathbf{x}) \mathrm{e}^{-\mathrm{i} \mathbf{k} \cdot \mathbf{x}} \mathrm{~d} \mathbf{x}, \quad \mathbf{k} \in \mathbb{Z}^{d} \tag{7.5}
\end{equation*}
$$

There is a close relation between the Fourier coefficients $c_{\mathbf{k}}(\tilde{\varphi})$ in (7.5) and the Fourier transform $\hat{\varphi}(\mathbf{k})$ of the function φ, namely

$$
\begin{equation*}
\hat{\varphi}(\mathbf{k}):=\int_{\mathbb{R}^{d}} \varphi(\mathbf{x}) \mathrm{e}^{-\mathrm{i} \mathbf{k} \cdot \mathbf{x}} \mathrm{~d} \mathbf{x}=(2 \pi)^{d} c_{\mathbf{k}}(\tilde{\varphi}), \quad \mathbf{k} \in \mathbb{Z}^{d}, \tag{7.6}
\end{equation*}
$$

which is known from the Poisson summation formula, see the proof of Theorem 4.27. Let now $\sigma \geq 1$ be an oversampling factor such that $\sigma N \in \mathbb{N}$. This factor will later determine the size of a DFT. One should choose σ such that the DFT of length σN can be efficiently realized by FFT. Now we determine the coefficients $g_{\mathbf{l}} \in \mathbb{C}, \mathbf{l} \in I_{\sigma N}^{d}$, of the linear combination

$$
\begin{equation*}
s_{1}(\mathbf{x}):=\sum_{\mathbf{l} \in I_{\sigma N}^{d}} g_{\mathbf{l}} \tilde{\varphi}\left(\mathbf{x}-\frac{2 \pi \mathbf{l}}{\sigma N}\right) \tag{7.7}
\end{equation*}
$$

such that the function s_{1} is an approximation of the trigonometric polynomial (7.1). Computing the Fourier series of the 2π-periodic function s_{1}, we obtain by Lemma 4.1

$$
\begin{align*}
s_{1}(\mathbf{x}) & =\sum_{\mathbf{k} \in \mathbb{Z}^{d}} c_{\mathbf{k}}\left(s_{1}\right) \mathrm{e}^{\mathrm{i} \mathbf{k} \cdot \mathbf{x}}=\sum_{\mathbf{k} \in \mathbb{Z}^{d}} \hat{g}_{\mathbf{k}} c_{\mathbf{k}}(\tilde{\varphi}) \mathrm{e}^{\mathrm{i} \mathbf{k} \cdot \mathbf{x}} \\
& =\sum_{\mathbf{k} \in I_{\sigma N}^{d}} \hat{g}_{\mathbf{k}} c_{\mathbf{k}}(\tilde{\varphi}) \mathrm{e}^{\mathrm{i} \mathbf{k} \cdot \mathbf{x}}+\sum_{\mathbf{r} \in \mathbb{Z}^{d} \backslash\{0\}} \sum_{\mathbf{k} \in I_{\sigma N}^{d}} \hat{g}_{\mathbf{k}} c_{\mathbf{k}+\sigma N \mathbf{r}}(\tilde{\varphi}) \mathrm{e}^{\mathrm{i}(\mathbf{k}+\sigma N \mathbf{r}) \cdot \mathbf{x}} \tag{7.8}
\end{align*}
$$

with the discrete Fourier coefficients

$$
\begin{equation*}
\hat{g}_{\mathbf{k}}:=\sum_{\mathbf{l} \in I_{\sigma N}^{d}} g_{\mathbf{l}} \mathrm{e}^{-2 \pi \mathrm{i} \mathbf{k} \cdot \mathbf{l} /(\sigma N)} . \tag{7.9}
\end{equation*}
$$

Assuming that $\left|c_{\mathbf{k}}(\tilde{\varphi})\right|$ are relatively small for $\|\mathbf{k}\|_{\infty} \geq \sigma N-\frac{N}{2}$ and that $c_{\mathbf{k}}(\tilde{\varphi}) \neq 0$ for all $\mathbf{k} \in I_{N}^{d}$, we compare the trigonometric polynomial (7.1) with the first sum of the Fourier series (7.8) and choose

$$
\hat{g}_{\mathbf{k}}= \begin{cases}\hat{f}_{\mathbf{k}} / c_{\mathbf{k}}(\tilde{\varphi}) & \mathbf{k} \in I_{N}^{d} \tag{7.10}\\ 0 & \mathbf{k} \in I_{\sigma N}^{d} \backslash I_{N}^{d}\end{cases}
$$

We compute the coefficients g_{1} in the linear combination (7.7) by applying the d variate inverse FFT of size $(\sigma N) \times \ldots(\sigma N)$ and obtain

$$
\begin{equation*}
g_{\mathbf{I}}=\frac{1}{(\sigma N)^{d}} \sum_{\mathbf{k} \in I_{N}^{d}} \hat{g}_{\mathbf{k}} \mathrm{e}^{2 \pi \mathrm{i} \mathbf{k} \cdot \mathbf{l} /(\sigma N)}, \quad \mathbf{l} \in I_{\sigma N}^{d} . \tag{7.11}
\end{equation*}
$$

Further we assume that the function φ is well localized in space domain and can be well approximated by its truncation $\psi:=\varphi \mid Q$ on $Q:=\left[-\frac{2 \pi m}{\sigma N}, \frac{2 \pi m}{\sigma N}\right]^{d}$, where $2 m \ll \sigma N$ and $m \in \mathbb{N}$. Thus we have

$$
\psi(\mathbf{x})=\varphi(\mathbf{x}) \chi_{Q}(\mathbf{x})= \begin{cases}\varphi(\mathbf{x}) & \mathbf{x} \in Q \tag{7.12}\\ 0 & \mathbf{x} \in \mathbb{R}^{d} \backslash Q\end{cases}
$$

where χ_{Q} denotes the characteristic function of $Q \subset[-\pi, \pi]^{d}$, since $2 m \ll \sigma N$. We consider again the 2π-periodic function

$$
\begin{equation*}
\tilde{\psi}(\mathbf{x}):=\sum_{\mathbf{r} \in \mathbb{Z}^{d}} \psi(\mathbf{x}+2 \pi \mathbf{r}) \in L_{2}\left(\mathbb{T}^{d}\right) \tag{7.13}
\end{equation*}
$$

and approximate s_{1} by the function

$$
\begin{equation*}
s(\mathbf{x}):=\sum_{\mathbf{l} \in I_{\sigma N}^{d}} g_{\mathbf{l}} \tilde{\psi}\left(\mathbf{x}-\frac{2 \pi \mathbf{l}}{\sigma N}\right)=\sum_{\mathbf{l} \in I_{\sigma N, m}(\mathbf{x})} g_{\mathbf{l}} \tilde{\psi}\left(\mathbf{x}-\frac{2 \pi \mathbf{l}}{\sigma N}\right) . \tag{7.14}
\end{equation*}
$$

Here, the index set $I_{\sigma N, m}(\mathbf{x})$ is given by

$$
I_{\sigma N, m}(\mathbf{x}):=\left\{\mathbf{l} \in I_{\sigma N}^{d}: \frac{\sigma N}{2 \pi} \mathbf{x}-m \mathbf{1}_{d} \leq \mathbf{l} \leq \frac{\sigma N}{2 \pi} \mathbf{x}+m \mathbf{1}_{d}\right\}
$$

For a fixed knot \mathbf{x}_{j} we see that the sum (7.14) contains at most $(2 m+1)^{d}$ nonzero terms. Finally we obtain

$$
f\left(\mathbf{x}_{j}\right) \approx s_{1}\left(\mathbf{x}_{j}\right) \approx s\left(\mathbf{x}_{j}\right)
$$

Thus we can approximately compute the sum (7.1) for all $\mathbf{x}_{j}, j \in I_{M}^{1}$, with a computational cost of $\mathscr{O}\left(N^{d} \log N+m^{d} M\right)$ operations. The presented approach involves two approximations, s_{1} and s. We will study the related error estimates in Sect. 7.2. In the following we summarize this algorithm of NFFT as follows:

Algorithm 7.1 (NFFT)

Input: $N, M \in \mathbb{N}, \sigma>1, m \in \mathbb{N}, \mathbf{x}_{j} \in \mathbb{T}^{d}$ for $j \in I_{M}^{1}, \hat{f}_{\mathbf{k}} \in \mathbb{C}$ for $\mathbf{k} \in I_{N}^{d}$.
Precomputation: (i) Compute the nonzero Fourier coefficients $c_{\mathbf{k}}(\tilde{\varphi})$ for all $\mathbf{k} \in I_{N}^{d}$.
(ii) Compute the values $\tilde{\psi}\left(\mathbf{x}_{j}-\frac{2 \pi \mathbf{l}}{\sigma N}\right)$ for $j \in I_{M}^{1}$ and $\mathbf{l} \in I_{\sigma N, m}\left(\mathbf{x}_{j}\right)$.

1. Let $\hat{g}_{\mathbf{k}}:=\hat{f}_{\mathbf{k}} / c_{\mathbf{k}}(\tilde{\varphi})$ for $\mathbf{k} \in I_{N}^{d}$.
2. Compute the values

$$
g_{\mathbf{l}}:=\frac{1}{(\sigma N)^{d}} \sum_{\mathbf{k} \in I_{N}^{d}} \hat{g}_{\mathbf{k}} \mathrm{e}^{2 \pi \mathbf{i} \mathbf{k} \cdot \mathbf{l} /(\sigma N)}, \quad \mathbf{l} \in I_{\sigma N}^{d} .
$$

using a d-variate FFT.

3. Compute

$$
s\left(\mathbf{x}_{j}\right):=\sum_{\mathbf{l} \in I_{\sigma N, m}\left(\mathbf{x}_{j}\right)} g_{\mathbf{l}} \tilde{\psi}\left(\mathbf{x}_{j}-\frac{2 \pi \mathbf{l}}{\sigma N}\right), \quad j \in I_{M}^{1} .
$$

Output: $s\left(\mathbf{x}_{j}\right), j \in I_{M}^{1}$, approximating the values $f\left(\mathbf{x}_{j}\right)$ in (7.2).
Computational cost: $\mathscr{O}\left(N^{d} \log N+m^{d} M\right)$.
Remark 7.2

1. In Sect. 7.2 we will investigate different window functions φ and ψ. There will be also used $\tilde{\psi}$, which can be very efficiently computed such that the precomputation step (ii) can be omitted.
2. For window functions, which are expensive to compute, one can use the lookup table technique. If the d-variate window function has the form

$$
\varphi(\mathbf{x})=\prod_{t=1}^{d} \varphi_{t}\left(x_{t}\right)
$$

with even univariate window functions φ_{t}, then the precomputation step can be performed as follows. We precompute the equidistant samples $\varphi_{t}\left(\frac{r m}{K \sigma N}\right)$ for $r=$ $0, \ldots, K$ with $K \in \mathbb{N}$ and compute for the actual node \mathbf{x}_{j} during the NFFT the values $\varphi_{t}\left(\left(\mathbf{x}_{j}\right)_{t}-\frac{2 \pi l_{t}}{\sigma N}\right)$ for $t=1, \ldots, d$ and $l_{t} \in I_{n_{t}, m}\left(\left(\mathbf{x}_{j}\right)_{t}\right)$ by means of the linear interpolation from its two neighboring precomputed samples, see, e.g., [198] for details.

Next we describe the NFFT for nonequispaced data in the frequency domain and equispaced data in the space domain. We want to compute the values

$$
\begin{equation*}
h(\mathbf{k}):=\sum_{j \in I_{M}^{1}} f_{j} \mathrm{e}^{\mathrm{i} \mathbf{k} \cdot \mathbf{x}_{j}}, \quad \mathbf{k} \in I_{N}^{d}, \tag{7.15}
\end{equation*}
$$

with arbitrary nodes $\mathbf{x}_{j} \in \mathbb{T}^{d}, j \in I_{M}^{1}$, and given data $f_{j} \in \mathbb{C}, j \in I_{M}^{1}$. For this purpose we introduce the 2π-periodic function

$$
\tilde{g}(\mathbf{x}):=\sum_{j \in I_{M}^{1}} f_{j} \tilde{\varphi}\left(\mathbf{x}+\mathbf{x}_{j}\right)
$$

with $\tilde{\varphi}$ in (7.3). For the Fourier coefficients of \tilde{g} we obtain by (7.5) and (7.15) the identity

$$
\begin{align*}
c_{\mathbf{k}}(\tilde{g}) & =\frac{1}{(2 \pi)^{d}} \int_{[-\pi, \pi]^{d}} \tilde{g}(\mathbf{x}) \mathrm{e}^{-\mathrm{i} \mathbf{k} \cdot \mathbf{x}} \mathrm{~d} \mathbf{x}=\sum_{j \in I_{M}^{1}} f_{j} \mathrm{e}^{\mathrm{i} \mathbf{k} \cdot \mathbf{x}_{j}} c_{\mathbf{k}}(\tilde{\varphi}) \\
& =h(\mathbf{k}) c_{\mathbf{k}}(\tilde{\varphi}), \quad \mathbf{k} \in \mathbb{Z}^{d} \tag{7.16}
\end{align*}
$$

Thus the unknown values $h(\mathbf{k}), \mathbf{k} \in I_{N}^{d}$, can be computed, if the values $c_{\mathbf{k}}(\tilde{\varphi})$ and $c_{\mathbf{k}}(\tilde{g})$ for $\mathbf{k} \in I_{N}^{d}$ are available. The Fourier coefficients (7.16) of \tilde{g} can be approximated by using the trapezoidal rule

$$
c_{\mathbf{k}}(\tilde{g}) \approx \frac{1}{(\sigma N)^{d}} \sum_{\mathbf{l} \in I_{\sigma N}^{d}} \sum_{j \in I_{M}^{1}} f_{j} \tilde{\varphi}\left(\mathbf{x}_{j}-\frac{2 \pi \mathbf{l}}{\sigma N}\right) \mathrm{e}^{2 \pi \mathrm{i} \mathbf{k} \cdot \mathbf{l} /(\sigma N)}
$$

Similarly as above let φ be well-localized in the space domain, such that φ can be approximated by its truncation $\psi=\varphi \mid Q$ on $Q=\left[-\frac{2 \pi m}{\sigma N}, \frac{2 \pi m}{\sigma N}\right]^{d}$. Hence the 2π-periodic function $\tilde{\varphi}$ can be well approximated by the 2π-periodic function $\tilde{\psi}$.

We summarize the proposed method and denote it as nonequispaced fast Fourier transform transposed NFFT^{\top}.

Algorithm 7.3 ($\mathbf{N F F T}^{\top}$)

Input: $N \in \mathbb{N}, \sigma>1, m \in \mathbb{N}, \mathbf{x}_{j} \in \mathbb{T}^{d}$ for $j \in I_{M}^{1}, \tilde{f}_{\mathbf{k}} \in \mathbb{C}$ for $\mathbf{k} \in I_{N}^{d}$.
Precomputation: (i) Compute the nonzero Fourier coefficients $c_{\mathbf{k}}(\tilde{\varphi})$ for $\mathbf{k} \in I_{N}^{d}$.
(ii) Compute the values $\tilde{\psi}\left(\mathbf{x}_{j}-\frac{2 \pi \mathbf{1}}{\sigma N}\right)$ for $\mathbf{l} \in I_{\sigma N}^{d}$ and $j \in$ $I_{\sigma N, m}^{\mathrm{T}}(\mathbf{l})$, where $I_{\sigma N, m}^{\mathrm{T}}(\mathbf{l}):=\left\{j \in I_{M}^{1}: \mathbf{l}-m \mathbf{1}_{d} \leq \frac{\sigma N}{2 \pi} \mathbf{x}_{j} \leq\right.$ $\left.\mathbf{l}+m \mathbf{1}_{d}\right\}$.

1. Compute

$$
\hat{g}_{\mathbf{l}}:=\sum_{j \in I_{\sigma N, m}^{\mathrm{T}}(\mathbf{l})} f_{j} \tilde{\psi}\left(\mathbf{x}_{j}-\frac{2 \pi \mathbf{l}}{\sigma N}\right), \quad \mathbf{l} \in I_{\sigma N}^{d} .
$$

2. Compute with the d-variate FFT

$$
\tilde{c}_{\mathbf{k}}(\tilde{g}):=\frac{1}{(\sigma N)^{d}} \sum_{\mathbf{l} \in I_{\sigma N}^{d}} \hat{g}_{\mathbf{l}} \mathrm{e}^{2 \pi \mathrm{i} \mathbf{k} \cdot \mathbf{l} /(\sigma N)}, \quad \mathbf{k} \in I_{N}^{d}
$$

3. Compute $\tilde{h}(\mathbf{k}):=\tilde{c}_{\mathbf{k}}(\tilde{g}) / c_{\mathbf{k}}(\tilde{\varphi})$ for $\mathbf{k} \in I_{N}^{d}$.

Output: $\tilde{h}(\mathbf{k}), \mathbf{k} \in I_{N}^{d}$, approximating the values $h(\mathbf{k})$ in (7.15).
Computational cost: $\mathscr{O}\left(N^{d} \log N+m^{d} M\right)$.
Remark 7.4 Setting $\hat{f_{\mathbf{k}}}=\delta_{\mathbf{k}-\mathbf{m}}$ for arbitrary $\mathbf{k} \in I_{N}^{d}$ and fixed $\mathbf{m} \in I_{N}^{d}$, where $\delta_{\mathbf{k}}$ denotes the d-variate Kronecker symbol, we see that the two Algorithms 7.1 and 7.3 use the approximation

$$
\begin{equation*}
\mathrm{e}^{\mathrm{i} \mathbf{m} \cdot \mathbf{x}} \approx \frac{(2 \pi)^{d}}{(\sigma N)^{d} \hat{\varphi}(\mathbf{m})} \sum_{\mathbf{l} \in I_{\sigma N}^{d}} \tilde{\psi}\left(\mathbf{x}-\frac{2 \pi \mathbf{l}}{\sigma N}\right) \mathrm{e}^{2 \pi \mathrm{i} \mathbf{m} \cdot \mathbf{l} /(\sigma N)} \tag{7.17}
\end{equation*}
$$

In some cases it is helpful to describe the algorithms as matrix-vector products. This representation shows the close relation between the Algorithms 7.1 and 7.3. In order to write the sums (7.2) and (7.15) as matrix-vector products, we introduce the vectors

$$
\begin{equation*}
\hat{\mathbf{f}}:=\left(\hat{f}_{\mathbf{k}}\right)_{\mathbf{k} \in I_{N}^{d}} \in \mathbb{C}^{N^{d}}, \quad \mathbf{f}:=\left(f_{j}\right)_{j \in I_{M}^{1}} \in \mathbb{C}^{M} \tag{7.18}
\end{equation*}
$$

and the nonequispaced Fourier matrix

$$
\begin{equation*}
\mathbf{A}:=\left(\mathrm{e}^{\mathrm{i} \mathbf{k} \cdot \mathbf{x}_{j}}\right)_{j \in I_{M}^{1}, \mathbf{k} \in I_{N}^{d}} \in \mathbb{C}^{M \times N^{d}} \tag{7.19}
\end{equation*}
$$

Then the evaluation of the sums (7.2) for $j=-M / 2, \ldots, M / 2-1$ is equivalent to the computation of the matrix-vector product $\mathbf{A} \hat{\mathbf{f}}$. Thus a naive evaluation of $\mathbf{A} \hat{\mathbf{f}}$ takes $\mathscr{O}\left(N^{d} M\right)$ arithmetical operations.

For equispaced knots $-2 \pi \mathbf{j} / N, \mathbf{j} \in I_{N}^{d}, t=1, \ldots, d$, the matrix \mathbf{A} coincides with classical d-variate Fourier matrix

$$
\mathbf{F}_{N}^{d}:=\left(\mathrm{e}^{-2 \pi \mathrm{i} \mathbf{k} \cdot \mathbf{j} / N}\right)_{\mathbf{j}, \mathbf{k} \in I_{N}^{d}} \in \mathbb{C}^{N^{d} \times N^{d}},
$$

and we can compute the matrix-vector product with the help of an FFT.
In the following we show that Algorithm 7.1 can be interpreted as an approximate factorization of the matrix \mathbf{A} in (7.19) into the product of structured matrices

$$
\begin{equation*}
\mathbf{B} \mathbf{F}_{\sigma N, N}^{d} \mathbf{D} . \tag{7.20}
\end{equation*}
$$

Each matrix corresponds to one step in Algorithm 7.1:

1. The diagonal matrix $\mathbf{D} \in \mathbb{C}^{N^{d} \times N^{d}}$ is given by

$$
\begin{equation*}
\mathbf{D}:=\operatorname{diag}\left(c_{\mathbf{k}}(\tilde{\varphi})^{-1}\right)_{\mathbf{k} \in I_{N}^{d}} . \tag{7.21}
\end{equation*}
$$

2. The matrix $\mathbf{F}_{\sigma N, N}^{d} \in \mathbb{C}^{(\sigma N)^{d} \times N^{d}}$ is the d-variate, truncated Fourier matrix

$$
\begin{align*}
\mathbf{F}_{\sigma N, N}^{d} & :=\frac{1}{(\sigma N)^{d}}\left(\mathrm{e}^{2 \pi \mathrm{i} \mathbf{k} \cdot \mathbf{l} /(\sigma N)}\right)_{\mathbf{l} \in I_{\sigma N}^{d}, \mathbf{k} \in I_{N}^{d}} \tag{7.22}\\
& =\underbrace{\mathbf{F}_{\sigma N, N}^{1} \otimes \ldots \otimes \mathbf{F}_{\sigma N, N}^{1}}_{d-\text { times }},
\end{align*}
$$

which is the Kronecker product of d truncated Fourier matrices

$$
\mathbf{F}_{\sigma N, N}^{1}=\frac{1}{\sigma N}\left(\mathrm{e}^{2 \pi \mathrm{i} k l /(\sigma N)}\right)_{l \in I_{\sigma N}^{1}, k \in I_{N}^{1}} .
$$

3. Finally, $\mathbf{B} \in \mathbb{R}^{M \times(\sigma N)^{d}}$ is a sparse multilevel band matrix

$$
\begin{equation*}
\mathbf{B}:=\left(\tilde{\psi}\left(\mathbf{x}_{j}-\frac{2 \pi \mathbf{l}}{\sigma N}\right)\right)_{j \in I_{M}^{1}, \mathbf{l} \in I_{\sigma N}^{d}} \tag{7.23}
\end{equation*}
$$

It is now obvious that we compute the values $h(\mathbf{k})$ in (7.15) by the matrix-vector multiplication with the transposed matrix of \mathbf{A}, i.e.,

$$
(h(\mathbf{k}))_{\mathbf{k} \in I_{N}^{d}}=\mathbf{A}^{\top}\left(f_{j}\right)_{j \in I_{M}^{1}} .
$$

To this end, we calculate the values $h(\mathbf{k})$ in (7.15) approximately by transposing the factorization (7.20), i.e.,

$$
(h(\mathbf{k}))_{\mathbf{k} \in I_{N}^{d}} \approx \mathbf{D}^{\top}\left(\mathbf{F}_{\sigma N, N}^{d}\right)^{\top} \mathbf{B}^{\top}\left(f_{j}\right)_{j \in I_{M}^{1}} .
$$

A comparison with Algorithm 7.3 shows that this factorization describes the three steps of Algorithm 7.3. We emphasize that Algorithms 7.1 and 7.3 compute only approximate values. Therefore we will discuss the approximation errors in the next section.

Remark 7.5 Let $\mathbf{A} \in \mathbb{C}^{M \times N}$ with $M \leq N$ be a given rectangular matrix. For $1 \leq$ $s<N$, the restricted isometry constant δ_{s} of \mathbf{A} is the smallest number $\delta_{s} \in[0,1)$, for which

$$
\left(1-\delta_{s}\right)\|\mathbf{x}\|_{2}^{2} \leq\|\mathbf{A} \mathbf{x}\|_{2}^{2} \leq\left(1+\delta_{s}\right)\|\mathbf{x}\|_{2}^{2}
$$

for all s-sparse vectors $\mathbf{x} \in \mathbb{C}^{N}$, i.e., \mathbf{x} possesses exactly s nonzero components. The matrix \mathbf{A} is said to have the restricted isometry property, if δ_{s} is small for s reasonably large compared to M.

For a matrix \mathbf{A} with restricted isometry property, the following important recovery result was shown in $[61,117,118]$: Assume that $\delta_{2 s}<0.6246$. For $\mathbf{x} \in \mathbb{C}^{N}$, let a noisy measurement vector $\mathbf{y}=\mathbf{A x}+\mathbf{e}$ be given, where $\mathbf{e} \in \mathbb{C}^{M}$ is an error vector with small norm $\|\mathbf{e}\|_{2}<\varepsilon$. Let $\mathbf{x}^{*} \in \mathbb{C}^{N}$ be the minimizer of

$$
\arg \min _{\mathbf{z} \in \mathbb{C}^{N}}\|\mathbf{z}\|_{1} \text { subject to }\|\mathbf{A} \mathbf{z}-\mathbf{y}\|_{2} \leq \varepsilon .
$$

Then it holds

$$
\left\|\mathbf{x}-\mathbf{x}^{*}\right\|_{2} \leq c_{1} \frac{\sigma_{s}(\mathbf{x})_{1}}{\sqrt{s}}+c_{2} \varepsilon
$$

where c_{1} and c_{2} are positive constants depending only on $\delta_{2 s}$. In particular, if $\mathbf{x} \in \mathbb{C}^{N}$ is an s-sparse vector and if $\varepsilon=0$, then the recovery in $\ell_{1}\left(\mathbb{C}^{N}\right)$ is exact,
i.e., $\mathbf{x}^{*}=\mathbf{x}$. By $\sigma_{s}(\mathbf{x})_{1}$ we denote the best s-term approximation of $\mathbf{x} \in \mathbb{C}^{N}$ in $\ell_{1}\left(\mathbb{C}^{N}\right)$, i.e.,

$$
\sigma_{s}(\mathbf{x})_{1}:=\inf \left\{\|\mathbf{y}-\mathbf{x}\|_{1}: \mathbf{y} \in \mathbb{C}^{N}\|\mathbf{y}\|_{0} \leq s\right\}
$$

where $\|\mathbf{y}\|_{0}$ denotes the number of nonzero components of \mathbf{y}. For a proof of this result see [118, p. 44]. Several algorithms for sparse recovery such as basis pursuit, thresholding-based algorithm, and greedy algorithm are presented in [118, pp. 6173, 141-170].

An important example of a matrix with restricted isometry property is a rectangular nonequispaced Fourier matrix

$$
\mathbf{A}:=\frac{1}{\sqrt{M}}\left(\mathrm{e}^{\mathrm{i} k x_{j}}\right)_{j, k=0}^{M-1, N-1}
$$

where the points $x_{j}, j=0, \ldots, M-1$, are chosen independently and uniformly at random from $[0,2 \pi]$. If for $\delta \in(0,1)$,

$$
M \geq c \delta^{-2} s(\ln N)^{4}
$$

then with probability at least $1-N^{-(\ln N)^{3}}$ the restricted isometry constant δ_{s} of the nonequispaced Fourier matrix \mathbf{A} satisfies $\delta_{s} \leq \delta$, where $c>0$ is a universal constant (see [118, p. 405]).

7.2 Approximation Errors for Special Window Functions

In contrast to the FFT, the NFFT and NFFT^{\top} are approximate algorithms. Hence the relation between the exactness of the computed result and computational cost of the algorithm is important. In this section we start with a general error estimate. Later we consider the error estimates for special window functions. For simplicity, we only consider the NFFT, since the NFFT^{\top} produces the same approximation error by the corresponding approximate matrix factorization (7.20) of the nonequispaced Fourier matrix (7.19).

We split the approximation error of Algorithm 7.1

$$
\begin{equation*}
E\left(\mathbf{x}_{j}\right):=\left|f\left(\mathbf{x}_{j}\right)-s\left(\mathbf{x}_{j}\right)\right| \tag{7.24}
\end{equation*}
$$

into the aliasing error

$$
E_{\mathrm{a}}\left(\mathbf{x}_{j}\right):=\left|f\left(\mathbf{x}_{j}\right)-s_{1}\left(\mathbf{x}_{j}\right)\right|
$$

and the truncation error

$$
E_{\mathrm{t}}\left(\mathbf{x}_{j}\right):=\left|s_{1}\left(\mathbf{x}_{j}\right)-s\left(\mathbf{x}_{j}\right)\right|,
$$

such that we have $E\left(\mathbf{x}_{j}\right) \leq E_{\mathrm{a}}\left(\mathbf{x}_{j}\right)+E_{\mathrm{t}}\left(\mathbf{x}_{j}\right)$. The aliasing error, which is due to the truncation in the frequency domain, can be written by using (7.1), (7.6), (7.8), (7.9), and (7.10) in the form

$$
\begin{align*}
E_{\mathrm{a}}\left(\mathbf{x}_{j}\right) & =\left|\sum_{\mathbf{k} \in I_{\sigma N}^{d}} \sum_{\mathbf{r} \in \mathbb{Z}^{d} \backslash\{\mathbf{0}\}} \hat{g}_{\mathbf{k}} c_{\mathbf{k}+\sigma N \mathbf{r}}(\tilde{\varphi}) \mathrm{e}^{\mathrm{i}(\mathbf{k}+\sigma N \mathbf{r}) \cdot \mathbf{x}_{j}}\right| \\
& \leq \sum_{\mathbf{k} \in I_{N}^{d}}\left|\hat{f}_{\mathbf{k}}\right| \sum_{\mathbf{r} \in \mathbb{Z}^{d} \backslash\{\mathbf{0}\}} \frac{|\hat{\varphi}(\mathbf{k}+\sigma N \mathbf{r})|}{|\hat{\varphi}(\mathbf{k})|} \\
& \leq\|\hat{\mathbf{f}}\|_{1} \max _{\mathbf{k} \in I_{N}^{d}} \sum_{\mathbf{r} \in \mathbb{Z}^{d} \backslash\{\mathbf{0}\}} \frac{|\hat{\varphi}(\mathbf{k}+\sigma N \mathbf{r})|}{|\hat{\varphi}(\mathbf{k})|} \tag{7.25}
\end{align*}
$$

The truncation error $E_{\mathrm{t}}\left(\mathbf{x}_{j}\right)$ is obtained by truncating φ in space domain. Using the functions $s_{1}(\mathbf{x})$ and $s(\mathbf{x})$ in (7.7) and (7.14), we obtain

$$
\begin{equation*}
E_{\mathrm{t}}\left(\mathbf{x}_{j}\right)=\left|\sum_{\mathbf{l} \in \mathbf{I}_{\sigma N}^{d}} g_{\mathbf{l}}\left(\tilde{\varphi}\left(\mathbf{x}_{j}-\frac{2 \pi \mathbf{l}}{\sigma N}\right)-\tilde{\psi}\left(\mathbf{x}_{j}-\frac{2 \pi \mathbf{l}}{\sigma N}\right)\right)\right| \tag{7.26}
\end{equation*}
$$

Applying the relation (7.6), the evaluation of $\hat{g}_{\mathbf{k}}$ in (7.10) and the identity

$$
\begin{equation*}
g_{\mathbf{I}}=\frac{1}{(\sigma N)^{d}} \sum_{\mathbf{k} \in I_{N}^{d}} \frac{\hat{f}_{\mathbf{k}}}{\hat{\varphi}(\mathbf{k})} \mathrm{e}^{2 \pi \mathrm{i} \mathbf{k} \cdot \mathbf{l} /(\sigma N)} \tag{7.27}
\end{equation*}
$$

we obtain

$$
E_{\mathrm{t}}\left(\mathbf{x}_{j}\right)=\frac{1}{(\sigma N)^{d}}\left|\sum_{\mathbf{l} \in \mathbf{I}_{\sigma N}^{d}} \sum_{\mathbf{k} \in I_{N}^{d}} \frac{\hat{f}_{\mathbf{k}}}{\hat{\varphi}(\mathbf{k})} \mathrm{e}^{2 \pi \mathrm{i} \mathbf{k} \cdot \mathbf{l} /(\sigma N)}\left(\tilde{\varphi}\left(\mathbf{x}_{j}-\frac{2 \pi \mathbf{l}}{\sigma N}\right)-\tilde{\psi}\left(\mathbf{x}_{j}-\frac{2 \pi \mathbf{l}}{\sigma N}\right)\right)\right|
$$

and further

$$
\begin{aligned}
E_{\mathrm{t}}\left(\mathbf{x}_{j}\right) & =\frac{1}{(\sigma N)^{d}}\left|\sum_{\mathbf{k} \in I_{N}^{d}} \frac{\hat{\mathrm{f}}_{\mathbf{k}}}{\hat{\varphi}(\mathbf{k})} \sum_{\mathbf{l} \in \mathbf{I}_{\sigma N}^{d}}\left(\tilde{\varphi}\left(\mathbf{x}_{j}-\frac{2 \pi \mathbf{l}}{\sigma N}\right)-\tilde{\psi}\left(\mathbf{x}_{j}-\frac{2 \pi \mathbf{l}}{\sigma N}\right)\right) \mathrm{e}^{2 \pi \mathrm{i} \mathbf{k} \cdot \mathbf{l} /(\sigma N)}\right| \\
& \leq \frac{\|\hat{\mathbf{f}}\|_{1}}{(\sigma N)^{d}} \max _{\mathbf{k} \in \mathbf{I}_{N}^{d}} \frac{1}{|\hat{\varphi}(\mathbf{k})|}\left|\sum_{\mathbf{l} \in \mathbf{I}_{\sigma N}^{d}}\left(\tilde{\varphi}\left(\mathbf{x}_{j}-\frac{2 \pi \mathbf{l}}{\sigma N}\right)-\tilde{\psi}\left(\mathbf{x}_{j}-\frac{2 \pi \mathbf{l}}{\sigma N}\right)\right) \mathrm{e}^{2 \pi \mathrm{i} \mathbf{k} \cdot \mathbf{l} /(\sigma N)}\right| .
\end{aligned}
$$

Now we simplify the sum over l. Using the functions in (7.3), (7.12), and (7.13), we deduce

$$
\tilde{\varphi}(\mathbf{x})-\tilde{\psi}(\mathbf{x})=\sum_{\mathbf{r} \in \mathbb{Z}^{d}}\left(\varphi(\mathbf{x}+2 \pi \mathbf{r})-\varphi(\mathbf{x}+2 \pi \mathbf{r}) \chi_{Q}(\mathbf{x}+2 \pi \mathbf{r})\right) .
$$

with $Q=\left[-\frac{2 \pi m}{\sigma N}, \frac{2 \pi m}{\sigma N}\right]^{d}$. For the sum occurring in the estimate of $E_{\mathrm{t}}\left(\mathbf{x}_{j}\right)$ in (7.26) we obtain

$$
\begin{aligned}
& \left|\sum_{\mathbf{l} \in \mathbf{I}_{\sigma N}^{d}}\left(\tilde{\varphi}\left(\mathbf{x}_{j}-\frac{2 \pi \mathbf{l}}{\sigma N}\right)-\tilde{\psi}\left(\mathbf{x}_{j}-\frac{2 \pi \mathbf{l}}{\sigma N}\right)\right) \mathrm{e}^{2 \pi \mathrm{i} \mathbf{k} \cdot \mathbf{l} /(\sigma N)}\right| \\
= & \left\lvert\, \sum_{\mathbf{l} \in \mathbf{I}_{\sigma N}^{d}} \sum_{\mathbf{r} \in \mathbb{Z}^{d}}\left(\varphi\left(\mathbf{x}_{j}-\frac{2 \pi \mathbf{l}}{\sigma N}+2 \pi \mathbf{r}\right)\right.\right. \\
& \left.-\varphi\left(\mathbf{x}_{j}-\frac{2 \pi \mathbf{l}}{\sigma N}+2 \pi \mathbf{r}\right) \chi_{Q}\left(\mathbf{x}_{j}-\frac{2 \pi \mathbf{l}}{\sigma N}+2 \pi \mathbf{r}\right)\right) \mathrm{e}^{2 \pi \mathrm{i} \mathbf{k} \cdot \mathbf{l} /(\sigma N)} \mid \\
\leq & \left|\sum_{\mathbf{r} \in \mathbb{Z}^{d}}\left(\varphi\left(\mathbf{x}_{j}+\frac{2 \pi \mathbf{r}}{\sigma N}\right)-\varphi\left(\mathbf{x}_{j}+\frac{2 \pi \mathbf{r}}{\sigma N}\right) \chi_{Q}\left(\mathbf{x}_{j}+\frac{2 \pi \mathbf{r}}{\sigma N}\right)\right) \mathrm{e}^{2 \pi \mathrm{i} \mathbf{k} \cdot \mathbf{r} /(\sigma N)}\right| \\
= & \left|\sum_{\left\|\mathbf{x}_{j}+\frac{2 \pi \mathbf{r}}{\sigma N}\right\|_{\infty}>\frac{2 \pi m}{\sigma N}} \varphi\left(\mathbf{x}_{j}+\frac{2 \pi \mathbf{r}}{\sigma N}\right) \mathrm{e}^{2 \pi \mathrm{i} \mathbf{k} \cdot \mathbf{r} /(\sigma N)}\right|
\end{aligned}
$$

and finally conclude for the truncation error in (7.26) the inequality

$$
\begin{align*}
E_{\mathrm{t}}\left(\mathbf{x}_{j}\right) & \leq \frac{\|\hat{\mathbf{f}}\|_{1}}{(\sigma N)^{d}} \max _{\mathbf{k} \in \mathbf{I}_{N}^{d}} \frac{1}{|\hat{\varphi}(\mathbf{k})|}\left|\sum_{\left\|\mathbf{x}_{j}+\frac{2 \pi \mathbf{r}}{\sigma N}\right\|_{\infty}>\frac{2 \pi m}{\sigma N}} \varphi\left(\mathbf{x}_{j}+\frac{2 \pi \mathbf{r}}{\sigma N}\right) \mathrm{e}^{2 \pi \mathrm{i} \mathbf{k} \cdot \mathbf{r} /(\sigma N)}\right| \\
& \leq \frac{\|\hat{\mathbf{f}}\|_{1}}{(\sigma N)^{d}} \max _{\mathbf{k} \in \mathbf{I}_{N}^{d}} \frac{1}{|\hat{\varphi}(\mathbf{k})|} \sum_{\left\|\mathbf{x}_{j}+\frac{2 \pi}{\sigma N}\right\|_{\infty}>\frac{2 \pi m}{\sigma N}}\left|\varphi\left(\mathbf{x}_{j}+\frac{2 \pi \mathbf{r}}{\sigma N}\right)\right| \tag{7.28}
\end{align*}
$$

Usually one uses a special d-variate window function, which is the tensor product of a univariate window function $\varphi: \mathbb{R} \rightarrow \mathbb{R}$. For simplicity, the tensor product

$$
\varphi(\mathbf{x}):=\prod_{t=1}^{d} \varphi\left(x_{t}\right), \quad \mathbf{x}=\left(x_{t}\right)_{t=1}^{d} \in \mathbb{R}^{d}
$$

is denoted again by φ. For the Fourier transform of this d-variate window function we obtain

$$
\hat{\varphi}(\mathbf{k})=\prod_{t=1}^{d} \hat{\varphi}\left(k_{t}\right), \quad \mathbf{k}:=\left(k_{t}\right)_{t=1}^{d} \in \mathbb{Z}^{d}
$$

Similarly, we introduce the d-variate truncated window function $\psi: \mathbb{R}^{d} \rightarrow \mathbb{R}$ as tensor product of the univariate truncated window function $\psi: \mathbb{R} \rightarrow \mathbb{R}$. Clearly, the Fourier coefficients of the d-variate, 2π-periodic function (7.3) are products of the Fourier coefficients of the univariate, 2π-periodic function $\tilde{\varphi}$.

In the following we restrict ourselves to the univariate case and study the approximation errors occurring in the NFFT algorithms for special univariate window functions more closely. For the multivariate case we refer to [93, 101]. We remark further that error estimates in the norm of $L_{2}(\mathbb{T})$ were discussed in [177, 251].

To keep the aliasing error and the truncation error small, several window functions with good localizations in time and frequency domain can be applied. We start with window functions which are formed by centered B-splines.

Let $M_{1}: \mathbb{R} \rightarrow \mathbb{R}$ be the characteristic function of the interval $[-1 / 2,1 / 2)$. For $m \in \mathbb{N}$ let

$$
M_{m+1}(x):=\left(M_{m} * M_{1}\right)(x)=\int_{-1 / 2}^{1 / 2} M_{m}(x-t) \mathrm{d} t, \quad x \in \mathbb{R}
$$

be the centered cardinal B-spline of order $m+1$. Note that M_{2} is the centered hat function and that

$$
N_{m}(x):=M_{m}\left(x-\frac{m}{2}\right), \quad x \in \mathbb{R}
$$

is the cardinal B-spline of order m. As in [32, 338], we consider the (dilated) centered cardinal B-spline of order $2 m$ as window function

$$
\begin{equation*}
\varphi(x)=M_{2 m}\left(\frac{\sigma N}{2 \pi} x\right), \quad x \in \mathbb{R} \tag{7.29}
\end{equation*}
$$

where $\sigma \geq 1$ is the oversampling factor and $2 m \ll \sigma N$. The window function φ has the compact support

$$
\operatorname{supp} \varphi=\left[-\frac{2 \pi m}{\sigma N}, \frac{2 \pi m}{\sigma N}\right] \subset[-\pi, \pi]
$$

We compute the Fourier transform

$$
\begin{aligned}
\hat{\varphi}(\omega) & =\int_{\mathbb{R}} \varphi(x) \mathrm{e}^{-\mathrm{i} \omega x} \mathrm{~d} x=\int_{\mathbb{R}} M_{2 m}\left(\frac{\sigma N}{2 \pi} x\right) \mathrm{e}^{-\mathrm{i} \omega x} \mathrm{~d} x \\
& =\frac{2 \pi}{\sigma N} \int_{\mathbb{R}} M_{2 m}(t) \mathrm{e}^{-2 \pi \mathrm{i} \omega t /(\sigma N)} \mathrm{d} t
\end{aligned}
$$

By Example 2.16, the convolution property $M_{2 m}(t)=\left(M_{1} * M_{1} * \ldots * M_{1}\right)(t)$ of the Fourier transform yields

$$
\hat{\varphi}(\omega)=\frac{2 \pi}{\sigma N}\left(\int_{-1 / 2}^{1 / 2} \mathrm{e}^{-2 \pi \mathrm{i} \omega t /(\sigma N)} \mathrm{d} t\right)^{2 m}=\frac{2 \pi}{\sigma N}\left(\operatorname{sinc} \frac{\omega \pi}{\sigma N}\right)^{2 m}
$$

with the \sin function $\operatorname{sinc} x:=\frac{\sin x}{x}$ for $x \in \mathbb{R} \backslash\{0\}$ and $\operatorname{sinc} 0:=1$. Note that $\hat{\varphi}(k)>0$ for all $k \in I_{N}^{1}$. Since $\varphi(x)$ in (7.29) is supported on $[-2 \pi m /(\sigma N), 2 \pi m /(\sigma N)]$, we have $\psi=\varphi$. For arbitrary knots $x_{j} \in \mathbb{T}, j \in I_{M}^{1}$, and each data vector $\hat{\mathbf{f}}=\left(\hat{f}_{k}\right)_{k \in I_{N}^{1}}$, we obtain by (7.25) the approximation error

$$
\begin{equation*}
E\left(x_{j}\right)=E_{\mathrm{a}}\left(x_{j}\right) \leq\|\hat{\boldsymbol{f}}\|_{1} \max _{k \in I_{N}^{1}} \sum_{r \in \mathbb{Z} \backslash\{0\}} \frac{|\hat{\varphi}(k+\sigma N r)|}{|\hat{\varphi}(k)|} \tag{7.30}
\end{equation*}
$$

with

$$
\begin{equation*}
\frac{|\hat{\varphi}(k+\sigma N r)|}{|\hat{\varphi}(k)|}=\left(\frac{k}{k+\sigma N r}\right)^{2 m} . \tag{7.31}
\end{equation*}
$$

Lemma 7.6 (See [338]) Assume that $\sigma>1$ and $2 m \ll \sigma N$. Then for the window function φ in (7.29) with $\psi=\varphi$, the approximation error of the NFFT can be estimated by

$$
\begin{equation*}
E\left(x_{j}\right) \leq \frac{4}{(2 \sigma-1)^{2 m}}\|\hat{\mathbf{f}}\|_{1}, \tag{7.32}
\end{equation*}
$$

where $x_{j} \in[-\pi, \pi), j \in I_{M}^{1}$, are arbitrary knots and $\hat{\mathbf{f}} \in \mathbb{C}^{N}$ is an arbitrary data vector.

Proof By (7.30) and (7.31) we conclude that

$$
\begin{equation*}
E\left(x_{j}\right) \leq\|\hat{\mathbf{f}}\|_{1} \max _{k \in I_{N}^{1}} \sum_{r \in \mathbb{Z} \backslash\{0\}}\left(\frac{k /(\sigma N)}{r+k /(\sigma N)}\right)^{2 m} \tag{7.33}
\end{equation*}
$$

Setting $u=\frac{k}{\sigma N}$ for $k \in I_{N}^{1}$, we have $|u| \leq \frac{1}{2 \sigma}<1$. Now we show that

$$
\begin{equation*}
\sum_{r \in \mathbb{Z} \backslash\{0\}}\left(\frac{u}{u+r}\right)^{2 m} \leq \frac{4}{(2 \sigma-1)^{2 m}} \tag{7.34}
\end{equation*}
$$

For $0 \leq u \leq \frac{1}{2 \sigma}<1$ we have

$$
\sum_{r \in \mathbb{Z}\{0\}}\left(\frac{u}{u+r}\right)^{2 m}=\left(\frac{u}{u-1}\right)^{2 m}+\left(\frac{u}{u+1}\right)^{2 m}+\sum_{r=2}^{\infty}\left[\left(\frac{u}{u-r}\right)^{2 m}+\left(\frac{u}{u+r}\right)^{2 m}\right]
$$

By $u+r>|u-r|$ for $r \in \mathbb{N}$ it follows that $\left(\frac{u}{u+r}\right)^{2 m} \leq\left(\frac{u}{u-r}\right)^{2 m}$ and hence

$$
\begin{aligned}
\sum_{r \in \mathbb{Z} \backslash\{0\}}\left(\frac{u}{u+r}\right)^{2 m} & \leq 2\left(\frac{u}{u-1}\right)^{2 m}+2 \sum_{r=2}^{\infty}\left(\frac{u}{u-r}\right)^{2 m} \\
& \leq 2\left(\frac{u}{u-1}\right)^{2 m}+2 \int_{1}^{\infty}\left(\frac{u}{u-x}\right)^{2 m} \mathrm{~d} x \\
& \leq 2\left(\frac{u}{u-1}\right)^{2 m}\left(1+\frac{1-u}{2 m-1}\right)<4\left(\frac{u}{u-1}\right)^{2 m}
\end{aligned}
$$

Since the function $\left(\frac{u}{u-1}\right)^{2 m}$ increases in [0, $\left.\frac{1}{2 \sigma}\right]$, the above sum has the upper bound $\frac{4}{(2 \sigma-1)^{2 m}}$ for each $m \in \mathbb{N}$. In the case $-1 \leq-\frac{1}{2 \sigma}<u<0$, we replace u by $-u$ and obtain the same upper bound. Now, the estimate (7.32) follows from (7.33) and (7.34).

Next we consider the (dilated) Gaussian function [93, 95, 338]

$$
\begin{equation*}
\varphi(x):=\frac{1}{\sqrt{\pi b}} \mathrm{e}^{-\left(\frac{\sigma N}{2 \pi} x\right)^{2} / b}, \quad x \in \mathbb{R} \tag{7.35}
\end{equation*}
$$

with the parameter $b:=\frac{2 \sigma m}{(2 \sigma-1) \pi}$ which determines the localization of $\varphi(x)$ in (7.35) in time and frequency domain. As shown in Example 2.6, the Fourier transform of (7.35) reads

$$
\begin{equation*}
\hat{\varphi}(\omega)=\frac{2 \pi}{\sigma N} \mathrm{e}^{-\left(\frac{\pi \omega}{\sigma N}\right)^{2} b} . \tag{7.36}
\end{equation*}
$$

Lemma 7.7 (See [338]) Assume that $\sigma>1$ and $2 m \ll \sigma N$. Then for the Gaussian function in (7.35) and the truncated function $\psi=\varphi \left\lvert\,\left[-\frac{2 \pi m}{\sigma N}, \frac{2 \pi m}{\sigma N}\right]\right.$, the approximation error of the NFFT can be estimated by

$$
\begin{equation*}
E\left(x_{j}\right) \leq 4 \mathrm{e}^{-m \pi(1-1 /(2 \sigma-1))}\|\hat{\mathbf{f}}\|_{1}, \tag{7.37}
\end{equation*}
$$

where $x_{j} \in[-\pi, \pi), j \in I_{M}^{1}$, is an arbitrary knot and $\hat{\mathbf{f}} \in \mathbb{C}^{N}$ is an arbitrary data vector.

Proof

1. For $a>0$ and $c>0$ we have

$$
\begin{equation*}
\int_{a}^{\infty} \mathrm{e}^{-c x^{2}} \mathrm{~d} x=\int_{0}^{\infty} \mathrm{e}^{-c(x+a)^{2}} \mathrm{~d} x \leq \mathrm{e}^{-c a^{2}} \int_{0}^{\infty} \mathrm{e}^{-2 a c x} \mathrm{~d} x=\frac{1}{2 a c} \mathrm{e}^{-c a^{2}}, \tag{7.38}
\end{equation*}
$$

where we have used that $\mathrm{e}^{-c x^{2}} \leq 1$.
2. Using (7.25) and (7.36), we estimate the aliasing error

$$
E_{\mathrm{a}}\left(x_{j}\right) \leq\|\hat{\mathbf{f}}\|_{1} \max _{k \in I_{N}^{1}} \sum_{r \in \mathbb{Z} \backslash\{0\}} \mathrm{e}^{-b \pi^{2}\left(r^{2}+2 k r /(\sigma N)\right)}
$$

Since $\mathrm{e}^{x}+\mathrm{e}^{-x}$ is monotonously increasing on $[0, N / 2]$, it follows that

$$
\begin{aligned}
E_{\mathrm{a}}\left(x_{j}\right) \leq & \|\hat{\mathbf{f}}\|_{1} \sum_{r=1}^{\infty}\left(\mathrm{e}^{-b \pi^{2}\left(r^{2}-r / \sigma\right)}+\mathrm{e}^{-b \pi^{2}\left(r^{2}+r / \sigma\right)}\right) \\
\leq & \|\hat{\mathbf{f}}\|_{1} \mathrm{e}^{-b \pi^{2}(1-1 / \sigma)}\left(1+\mathrm{e}^{-2 b \pi^{2} / \sigma}\right) \\
& +\|\hat{\mathbf{f}}\|_{1} \mathrm{e}^{b(\pi /(2 \sigma))^{2}} \sum_{r=2}^{\infty}\left(\mathrm{e}^{-b \pi^{2}(r-1 /(2 \sigma))^{2}}+\mathrm{e}^{-b \pi^{2}(r+1 /(2 \sigma))^{2}}\right) \\
\leq & \|\hat{\mathbf{f}}\|_{1} \mathrm{e}^{-b \pi^{2}(1-1 / \sigma)}\left(1+\mathrm{e}^{-2 b \pi^{2} / \sigma}\right) \\
& +\|\hat{\mathbf{f}}\|_{1} \mathrm{e}^{b(\pi /(2 \sigma))^{2}} \int_{1}^{\infty}\left(\mathrm{e}^{-b \pi^{2}(x-1 /(2 \sigma))^{2}}+\mathrm{e}^{-b \pi^{2}(x+1 /(2 \sigma))^{2}}\right) \mathrm{d} x .
\end{aligned}
$$

By (7.38) we obtain

$$
\begin{aligned}
& \mathrm{e}^{b(\pi /(2 \sigma))^{2}} \int_{1}^{\infty} \mathrm{e}^{-b \pi^{2}(x-1 /(2 \sigma))^{2}} \mathrm{~d} x \\
= & \mathrm{e}^{b(\pi /(2 \sigma))^{2}} \int_{1-1 /(2 \sigma)}^{\infty} \mathrm{e}^{-b \pi^{2} y^{2}} \mathrm{~d} y=\mathrm{e}^{b(\pi /(2 \sigma))^{2}} \frac{1}{2(1-1 /(2 \sigma)) b \pi^{2}} \mathrm{e}^{-b \pi^{2}(1-1 /(2 \sigma))^{2}} \\
= & \mathrm{e}^{-b \pi^{2}(1-1 / \sigma)} \frac{\sigma}{(2 \sigma-1) b \pi^{2}}
\end{aligned}
$$

and analogously

$$
\mathrm{e}^{b(\pi /(2 \sigma))^{2}} \int_{1}^{\infty} \mathrm{e}^{-b \pi^{2}(x+1 /(2 \sigma))^{2}} \mathrm{~d} x=\mathrm{e}^{-b \pi^{2}(1+1 / \sigma)} \frac{\sigma}{(2 \sigma+1) b \pi^{2}}
$$

Thus we conclude

$$
\begin{align*}
E_{\mathrm{a}}\left(x_{j}\right) \leq & \|\hat{\mathbf{f}}\|_{1} \mathrm{e}^{-b \pi^{2}(1-1 / \sigma)}\left(1+\frac{\sigma}{(2 \sigma-1) b \pi^{2}}\right. \\
& \left.+\mathrm{e}^{-2 b \pi^{2} / \sigma}\left(1+\frac{\sigma}{(2 \sigma+1) b \pi^{2}}\right)\right) . \tag{7.39}
\end{align*}
$$

3. Applying (7.28), (7.36), and (7.38), we estimate the truncation error

$$
\begin{aligned}
E_{\mathrm{t}}\left(x_{j}\right) & \leq\|\hat{\mathbf{f}}\|_{1} \frac{1}{2 \pi} \mathrm{e}^{b(\pi /(2 \sigma))^{2}} \sum_{\left|x_{j}+\frac{2 \pi r}{\sigma N}\right|>\frac{2 \pi m}{\sigma N}}\left|\varphi\left(x_{j}+\frac{2 \pi r}{\sigma N}\right)\right| \\
& \leq\|\hat{\mathbf{f}}\|_{1} \frac{1}{2 \pi} \mathrm{e}^{b(\pi /(2 \sigma))^{2}} \frac{1}{\sqrt{\pi b}} \sum_{\left|\frac{\sigma N}{2 \pi} x_{j}+r\right|>m} \mathrm{e}^{-\left(\frac{\sigma N}{2 \pi} x_{j}+r\right)^{2} / b} \\
& \leq\|\hat{\mathbf{f}}\|_{1} \frac{1}{2 \pi} \mathrm{e}^{b \pi^{2} /(2 \sigma)^{2}} \frac{1}{\sqrt{\pi b}} \sum_{q=m}^{\infty} \mathrm{e}^{-q^{2} / b} \\
& \leq\|\hat{\mathbf{f}}\|_{1} \frac{1}{2 \sqrt{b \pi^{3}}} \mathrm{e}^{b \pi^{2} /(2 \sigma)^{2}}\left(\mathrm{e}^{-m^{2} / b}+\int_{m}^{\infty} \mathrm{e}^{-x^{2} / b} \mathrm{~d} x\right) \\
& \leq\|\hat{\mathbf{f}}\|_{1} \frac{1}{2 \sqrt{b \pi^{3}}} \mathrm{e}^{b \pi^{2} /(2 \sigma)^{2}-m^{2} / b}\left(1+\frac{b}{2 m}\right)
\end{aligned}
$$

Since the localization parameter b of the Gaussian function $\varphi(x)$ in (7.35) is chosen as $b=\frac{2 \sigma m}{(2 \sigma-1) \pi}$, we conclude that

$$
-b \pi^{2}\left(\frac{m^{2}}{\pi^{2} b^{2}}-\frac{1}{(2 \sigma)^{2}}\right)=-b \pi^{2}\left(\frac{(2 \sigma-1)^{2}-1}{(2 \sigma)^{2}}\right)=-b \pi^{2}\left(1-\frac{1}{\sigma}\right)
$$

and hence

$$
\begin{equation*}
E_{\mathrm{t}}\left(x_{j}\right) \leq\|\hat{\mathbf{f}}\|_{1} \frac{1}{2 \sqrt{b \pi^{3}}}\left(1+\frac{\sigma}{(2 \sigma-1) \pi}\right) \mathrm{e}^{-b \pi^{2}(1-1 / \sigma)} . \tag{7.40}
\end{equation*}
$$

Using (7.39) and (7.40), the approximation error can be estimated by

$$
E\left(x_{j}\right) \leq E_{\mathrm{a}}\left(x_{j}\right)+E_{\mathrm{t}}\left(x_{j}\right) \leq 4 \mathrm{e}^{-m \pi(1-1 /(2 \sigma-1))}\|\hat{\mathbf{f}}\|_{1},
$$

since $b \pi^{2}(1-1 / \sigma)=m \pi(1-1 /(2 \sigma-1))$.
Further special window functions are the (dilated) power of the sinc function [280],

$$
\begin{equation*}
\varphi(x)=\frac{N \pi(2 \sigma-1)}{m}\left(\operatorname{sinc} \frac{N x(2 \sigma-1)}{4 m}\right)^{2 m}, \quad x \in \mathbb{R}, \tag{7.41}
\end{equation*}
$$

with the Fourier transform

$$
\hat{\varphi}(\omega)=M_{2 m}\left(\frac{2 m \omega}{(2 \sigma-1) N}\right), \quad \omega \in \mathbb{R},
$$

and the (dilated) Kaiser-Bessel function [120, 176],

$$
\varphi(x)= \begin{cases}\frac{\sinh \left(b \sqrt{m^{2}-\left(\frac{\sigma N}{2 \pi}\right)^{2} x^{2}}\right)}{\sqrt{m^{2}-\left(\frac{\sigma N}{2 \pi}\right)^{2} x^{2}}} & |x|<\frac{2 \pi m}{\sigma N}, \tag{7.42}\\ b \operatorname{sinc}\left(b \sqrt{\left(\frac{\sigma N}{2 \pi}\right)^{2} x^{2}-m^{2}}\right) & |x| \geq \frac{2 \pi m}{\sigma N},\end{cases}
$$

with $b:=\pi\left(2-\frac{1}{\sigma}\right)$. The corresponding Fourier transform is given by

$$
\hat{\varphi}(\omega)= \begin{cases}\frac{2}{\sigma N} I_{0}\left(m \sqrt{b^{2}-(2 \pi \omega /(\sigma N))^{2}}\right) & |\omega| \leq \sigma N\left(1-\frac{1}{2 \sigma}\right), \\ 0 & \text { otherwise }\end{cases}
$$

where I_{0} denotes the modified zero-order Bessel function. For these window functions φ the approximation error of NFFT can be estimated as follows:

Theorem 7.8 Assume that $\sigma>1$ and $2 m \ll \sigma N$. Then for the window functions φ in (7.29), (7.35), (7.41), or (7.42) with the corresponding truncated window function $\psi=\varphi \left\lvert\,\left[-\frac{2 \pi m}{\sigma N}, \frac{2 \pi m}{\sigma N}\right]\right.$, the approximation error of the NFFT can be estimated by

$$
\begin{equation*}
E\left(x_{j}\right) \leq C(\sigma, m)\|\mathbf{f}\|_{1}, \tag{7.43}
\end{equation*}
$$

where $x_{j} \in[-\pi, \pi), j \in I_{M}^{1}$, are arbitrary knots and $\hat{\mathbf{f}} \in \mathbb{C}^{N}$ is an arbitrary data vector. The constant $C(\sigma, m)$ reads as follows:

$$
C(\sigma, m):= \begin{cases}\left(\frac{4}{2 \sigma-1}\right)^{2 m} & \text { for (7.29) } \\ 4 \mathrm{e}^{-m \pi(1-1 /(2 \sigma-1))} & \text { for (7.35) } \\ \frac{1}{m-1}\left(\frac{2}{\sigma^{2 m}}+\left(\frac{\sigma}{2 \sigma-1}\right)^{2 m}\right) & \text { for (7.41) } \\ 5 \pi^{2} m^{3 / 2} \sqrt[4]{1-\frac{1}{\sigma}} \mathrm{e}^{-2 \pi m \sqrt{1-1 / \sigma}} & \text { for }(7.42)\end{cases}
$$

Proof For the window functions (7.29) and (7.35), the approximation errors are estimated in Lemmas 7.6 and 7.7. For an estimate of the approximation error related to (7.41) and (7.42), we refer to [280].

Thus, for a fixed oversampling factor $\sigma>1$, the approximation error of the NFFT decays exponentially with the number m of summands in (7.14). On the other hand, the computational cost of the NFFT increases with m. Beylkin [32, 33] used B-splines, whereas Dutt and Rokhlin [95] applied Gaussian functions as window functions. Further approaches are based on scaling vectors [253], on minimizing the Frobenius norm of certain error matrices [256] or on min-max interpolation [110]. Employing the results in $[110,256]$ we prefer to apply the Algorithms 7.1 and 7.3
with Kaiser-Bessel functions or, by interchanging the time and frequency domain, with the Bessel window $[120,251,252]$ which is defined by

$$
\varphi(x):= \begin{cases}I_{0}\left(b \sqrt{m^{2}-\left(\frac{\sigma N}{2 \pi}\right)^{2} x^{2}}\right) & |x| \leq \frac{2 \pi m}{\sigma N} \\ 0 & |x|>\frac{2 \pi m}{\sigma N}\end{cases}
$$

with $b:=(2 \sigma-1) \frac{\pi}{\sigma}$. The Fourier transform of the Bessel window is given by

$$
\hat{\varphi}(\omega)=\frac{2 \pi}{\sigma N} \begin{cases}\frac{\sinh \left(m \sqrt{b^{2}-4 \pi^{2} \omega^{2} /\left(\sigma^{2} N^{2}\right)}\right)}{\sqrt{b^{2}-4 \pi^{2} \omega^{2} /\left(\sigma^{2} N^{2}\right)}} & |\omega|<\frac{\sigma N b}{2 \pi} \tag{7.44}\\ m \operatorname{sinc}\left(m \sqrt{4 \pi^{2} \omega^{2} /\left(\sigma^{2} N^{2}\right)-b^{2}}\right) & |\omega| \geq \frac{\sigma N b}{2 \pi}\end{cases}
$$

Further we remark that in some applications a relatively small oversampling factor $\sigma>1$ or even $\sigma=1$ can be used, see [251, 252]. These papers contain error estimates related to the root mean square error as well as algorithms for tuning the involved parameter.

7.3 Nonequispaced Data in Space and Frequency Domain

The algorithms in Sect. 7.1 are methods for nonequispaced knots in the space/frequency domain and equispaced knots in the frequency/space domain. Now we generalize these methods to nonequispaced knots in space as well as in frequency domain. Introducing the exponential sum $f:[-\pi, \pi]^{d} \rightarrow \mathbb{C}$ by

$$
f(\boldsymbol{\omega})=\sum_{k \in I_{M_{1}}^{1}} f_{k} \mathrm{e}^{-\mathrm{i} N \mathbf{x}_{k} \cdot \boldsymbol{\omega}}, \quad \boldsymbol{\omega} \in[-\pi, \pi]^{d},
$$

we derive an algorithm for the fast evaluation of

$$
\begin{equation*}
f\left(\boldsymbol{\omega}_{j}\right)=\sum_{k \in I_{M_{1}}^{1}} f_{k} \mathrm{e}^{-\mathrm{i} N \mathbf{x}_{k} \cdot \boldsymbol{\omega}_{j}}, \quad j \in I_{M_{2}}^{1}, \tag{7.45}
\end{equation*}
$$

where $\mathbf{x}_{k} \in[0,2 \pi]^{d}$ and $\omega_{j} \in[-\pi, \pi]^{d}$ are nonequispaced knots and $f_{k} \in \mathbb{C}$ are given coefficients. Here $N \in \mathbb{N}$ with $N \gg 1$ is called the nonharmonic bandwidth. We denote methods for the fast evaluation of the sums (7.45) as NNFFT. These algorithms were introduced for the first time in [101, 102], see also [294]. The algorithms are also called nonuniform FFT of type 3, see [224]. We will see that the NNFFT is a combination of Algorithms 7.1 and 7.3.

Let $\varphi_{1} \in L_{2}\left(\mathbb{R}^{d}\right) \cap L_{1}\left(\mathbb{R}^{d}\right)$ be a sufficiently smooth function, and recall that its Fourier transform is given by

$$
\hat{\varphi}_{1}(\boldsymbol{\omega})=\int_{\mathbb{R}^{d}} \varphi_{1}(\mathbf{x}) \mathrm{e}^{-\mathrm{i} \boldsymbol{\omega} \cdot \mathbf{x}} \mathrm{~d} \mathbf{x}
$$

Assume that $\hat{\varphi}_{1}(\boldsymbol{\omega}) \neq 0$ for all $\omega \in N[-\pi, \pi]^{d}$. For the function

$$
G(\mathbf{x}):=\sum_{k \in I_{M_{1}}^{1}} f_{k} \varphi_{1}\left(\mathbf{x}-\mathbf{x}_{k}\right), \quad \mathbf{x} \in \mathbb{R}^{d},
$$

we obtain the Fourier transformed function

$$
\hat{G}(\boldsymbol{\omega})=\sum_{k \in I_{M_{1}}^{1}} f_{k} \mathrm{e}^{-\mathrm{i} \mathbf{x}_{k} \cdot \boldsymbol{\omega}} \hat{\varphi}_{1}(\boldsymbol{\omega}), \quad \boldsymbol{\omega} \in \mathbb{R}^{d},
$$

and hence the relation

$$
f\left(\omega_{j}\right)=\frac{\hat{G}\left(N \omega_{j}\right)}{\hat{\varphi}_{1}\left(N \omega_{j}\right)}, \quad j \in I_{M_{2}}^{1} .
$$

Using this representation, for given $\hat{\varphi}_{1}$ we have to compute the function \hat{G} at the $\operatorname{nodes} N \omega_{j}, j \in I_{M_{2}}^{1}$.

For a given oversampling factor $\sigma_{1}>1$, let $N_{1}:=\sigma_{1} N$. Further let $m_{1} \in \mathbb{N}$ with $2 m_{1} \ll N_{1}$ be given and choose the parameter $a=1+2 m_{1} / N_{1}$. Now,

$$
\hat{G}(\boldsymbol{\omega})=\sum_{k \in I_{M_{1}}^{1}} f_{k} \int_{\mathbb{R}^{d}} \varphi_{1}\left(\mathbf{x}-\mathbf{x}_{k}\right) \mathrm{e}^{-\mathrm{i} \mathbf{x} \cdot \boldsymbol{\omega}} \mathrm{~d} \mathbf{x}
$$

can be rewritten using a $2 \pi a$-periodization of φ_{1}. We obtain

$$
\begin{equation*}
\hat{G}(\boldsymbol{\omega})=\sum_{k \in I_{M_{1}}^{1}} f_{k} \int_{a[-\pi, \pi]^{d}} \sum_{\mathbf{r} \in \mathbb{Z}^{d}} \varphi_{1}\left(\mathbf{x}+2 \pi a \mathbf{r}-\mathbf{x}_{k}\right) \mathrm{e}^{-\mathrm{i}(\mathbf{x}+2 \pi a \mathbf{r}) \cdot \boldsymbol{\omega}} \mathrm{d} \mathbf{x} \tag{7.46}
\end{equation*}
$$

We discretize this integral by the rectangular rule and find the approximation

$$
\begin{equation*}
\hat{G}(\boldsymbol{\omega}) \approx S_{1}(\boldsymbol{\omega}):=N_{1}^{-d} \sum_{k \in I_{M_{1}}^{1}} f_{k} \sum_{\mathbf{t} \in I_{a N_{1}}^{d}} \sum_{\mathbf{r} \in \mathbb{Z}^{d}} \varphi_{1}\left(\frac{2 \pi \mathbf{t}}{N_{1}}+2 \pi a \mathbf{r}-\mathbf{x}_{k}\right) \mathrm{e}^{-\mathrm{i}\left(\frac{2 \pi \mathbf{t}}{N_{1}}+2 \pi a \mathbf{r}\right) \cdot \boldsymbol{\omega}} \tag{7.47}
\end{equation*}
$$

Similarly as in Sect.7.1, we assume that φ_{1} is localized in space domain and can be replaced by a compactly supported function ψ_{1} with supp $\psi_{1} \subseteq\left[-\frac{2 \pi m_{1}}{N_{1}}, \frac{2 \pi m_{1}}{N_{1}}\right]^{d}$. Then, the inner sum in (7.47) contains nonzero terms only for $\mathbf{r}=\mathbf{0}$. We change the order of summations and find

$$
S_{1}(\boldsymbol{\omega}) \approx S_{2}(\boldsymbol{\omega}):=N_{1}^{-d} \sum_{\mathbf{t} \in I_{a N_{1}}^{d}}\left(\sum_{k \in I_{M_{1}}^{1}} f_{k} \psi_{1}\left(\frac{2 \pi \mathbf{t}}{N_{1}}-\mathbf{x}_{k}\right)\right) \mathrm{e}^{-2 \pi \mathrm{i} \mathbf{t} \cdot \boldsymbol{\omega} / N_{1}}
$$

After computing the inner sum over $k \in I_{M_{1}}^{1}$, we evaluate the outer sum very efficiently with the help of Algorithm 7.1. The related window function and parameters are written with the subscript 2 . We summarize this approach:

Algorithm 7.9 (NNFFT)

Input: $N \in \mathbb{N}, \sigma_{1}>1, \sigma_{2}>1, N_{1}:=\sigma_{1} N, a:=1+\frac{2 m_{1}}{N_{1}}, N_{2}:=\sigma_{1} \sigma_{2} a N$,

$$
\mathbf{x}_{k} \in[0,2 \pi]^{d}, f_{k} \in \mathbb{C} \text { for } k \in I_{M_{1}}^{1}, \omega_{j} \in[-\pi, \pi]^{d} \text { for } j \in I_{M_{2}}^{1}
$$

Precomputation: (i) Compute the nonzero Fourier transforms $\hat{\varphi}_{1}\left(N_{1} \omega_{j}\right)$ for $j \in$ $I_{M_{1}}^{1}$.
(ii) Compute $\psi_{1}\left(\frac{2 \pi \mathbf{t}}{N_{1}}-\mathbf{x}_{k}\right)$ for $k \in I_{N_{1}, m_{1}}^{\mathrm{T}}(\mathbf{t})$ and $\mathbf{t} \in I_{a N_{1}}^{d}\left(\mathbf{x}_{k}\right)$, where
$I_{N_{1}, m_{1}}^{\mathrm{T}}(\mathbf{t}):=\left\{k \in I_{M_{1}}^{1}: \mathbf{t}-m_{1} \mathbf{1}_{d} \leq \frac{N_{1}}{2 \pi} \mathbf{x}_{k} \leq \mathbf{t}+m_{1} \mathbf{1}_{d}\right\}$.
(iii) Compute the nonzero Fourier transforms $\hat{\varphi}_{2}(\mathbf{t})$ for $\mathbf{t} \in I_{a N_{1}}^{d}$.
(iv) Compute $\psi_{2}\left(\omega_{j}-\frac{2 \pi \mathbf{l}}{N_{2}}\right)$ for $j \in I_{M_{2}}^{1}$ and $\mathbf{l} \in I_{N_{2}, m_{2}}\left(\omega_{j}\right)$.

1. Calculate

$$
F(\mathbf{t}):=\sum_{k \in I_{N_{1}, m}^{\mathrm{T}}} f_{k} \psi_{1}\left(\frac{2 \pi \mathbf{t}}{N_{1}}-\mathbf{x}_{k}\right), \quad \mathbf{t} \in I_{a N_{1}}^{d} .
$$

2. Determine $\hat{g}_{\mathbf{t}}:=F(\mathbf{t}) / \hat{\varphi}_{2}(\mathbf{t})$ for $\mathbf{t} \in I_{a N_{1}}^{d}$.
3. Compute

$$
g_{\mathbf{1}}:=N_{2}^{-d} \sum_{\mathbf{t} \in I_{a N_{1}}^{d}} \hat{g}_{\mathbf{t}} \mathrm{e}^{-2 \pi \mathrm{i} \mathbf{t} \cdot \mathbf{l} / N_{2}}, \quad \mathbf{l} \in I_{N_{2}}^{d}
$$

using a d-variate FFT.
4. Compute

$$
s\left(\boldsymbol{\omega}_{j}\right):=N_{1}^{-d} \sum_{\mathbf{l} \in I_{N_{2}, m_{2}}\left(\boldsymbol{\omega}_{j}\right)} g_{\mathbf{l}} \psi_{2}\left(\boldsymbol{\omega}_{j}-\frac{2 \pi \mathbf{l}}{N_{2}}\right), \quad j \in I_{M_{2}}^{1} .
$$

5. Compute $S\left(\boldsymbol{\omega}_{j}\right):=s\left(\boldsymbol{\omega}_{j}\right) / \hat{\varphi}_{1}\left(N_{1} \boldsymbol{\omega}_{j}\right), j \in I_{M_{2}}^{1}$.

Output: $S\left(\omega_{j}\right)$ approximate value of $f\left(\omega_{j}\right), j \in I_{M}^{1}$.
Computational cost: $\mathscr{O}\left(\left(\sigma_{1} \sigma_{2} a N\right)^{d} \log \left(\sigma_{1} \sigma_{2} a N\right)+m_{1} M_{1}+m_{2} M_{2}\right)=$ $\mathscr{O}\left(N^{d} \log N+M_{1}+M_{2}\right)$.

We estimate the approximation error of Algorithm 7.9 by

$$
E\left(\omega_{j}\right):=\left|f\left(\omega_{j}\right)-S\left(\omega_{j}\right)\right| \leq E_{\mathrm{a}}\left(\omega_{j}\right)+E_{\mathrm{t}}\left(\boldsymbol{\omega}_{j}\right)+E_{\mathrm{p}}\left(\boldsymbol{\omega}_{j}\right),
$$

with the aliasing error $E_{\mathrm{a}}\left(\boldsymbol{\omega}_{j}\right):=\left|f\left(\boldsymbol{\omega}_{j}\right)-\frac{S_{1}\left(\omega_{j}\right)}{\hat{\varphi}_{1}\left(N_{1} \omega_{j}\right)}\right|$, the truncation error $E_{\mathrm{t}}\left(\boldsymbol{\omega}_{j}\right):=$ $\left|\frac{S_{1}\left(\omega_{j}\right)-S_{2}\left(\omega_{j}\right)}{\hat{\varphi}_{1}\left(\omega_{j}\right)}\right|$, and the propagated error $E_{\mathrm{p}}\left(\boldsymbol{\omega}_{j}\right):=\left|\frac{S_{2}\left(\omega_{j}\right)-s\left(\boldsymbol{\omega}_{j}\right)}{\hat{\varphi}_{1}\left(N_{1} \omega_{j}\right)}\right|$. The propagated error $E_{\mathrm{p}}\left(\boldsymbol{\omega}_{j}\right)$ is the product of the approximation error of Algorithm 7.1 and $\left|\hat{\varphi}_{1}\left(N_{1} \omega_{j}\right)\right|^{-1}$. The truncation error $E_{\mathrm{t}}\left(\omega_{j}\right)$ behaves as the truncation error in Algorithm 7.1. The error $E_{\mathrm{a}}\left(\omega_{j}\right)$ is due to the discretization of the integral (7.46) and can be estimated by the aliasing formula, see [102] for details.

7.4 Nonequispaced Fast Trigonometric Transforms

In this section we present fast algorithms for the discrete trigonometric transforms, see Sects. 3.5 and 6.3, at arbitrary nodes. We investigate methods for the nonequispaced fast cosine transform (NFCT) as well as methods for the nonequispaced fast sine transform (NFST). In [279], three different methods for the NDCT have been compared, where the most efficient procedure is based on an approximation of the sums by translates of a window function. We restrict ourselves to the univariate case. The generalization to the multivariate case follows similarly as for the NFFT. All presented algorithms (also in the multivariate case) are part of the software [199].

First we develop a method for the fast evaluation of the even, 2π-periodic function

$$
\begin{equation*}
f^{\mathrm{c}}(x):=\sum_{k=0}^{N-1} \hat{f}_{k}^{\mathrm{c}} \cos (k x), \quad x \in \mathbb{R}, \tag{7.48}
\end{equation*}
$$

at the nonequidistant nodes $x_{j} \in[0, \pi], j=0, \ldots, M-1$, and with arbitrary real coefficients $\hat{f}_{k}^{\mathrm{c}}, k=0, \ldots, N-1$. This evaluation can be written as matrix-vector product $\mathbf{A} \hat{\mathbf{f}}$ with the nonequispaced cosine matrix

$$
\begin{equation*}
\mathbf{A}:=\left(\cos \left(k x_{j}\right)\right)_{j, k=0}^{M-1, N-1} \in \mathbb{R}^{M \times N} \tag{7.49}
\end{equation*}
$$

and the vector $\hat{\mathbf{f}}=\left(\hat{f}_{k}^{\mathrm{c}}\right)_{k=0}^{N-1}$. A fast algorithm for the nonequispaced discrete cosine transform (NDCT) can be deduced from the NFFT, see Algorithm 7.1.

Let an oversampling factor $\sigma \geq 1$ with $\sigma N \in \mathbb{N}$ be given. As in (7.3) we introduce the 2π-periodization $\tilde{\varphi}$ of an even, well-localized window function $\varphi \in L_{2}(\mathbb{R}) \cap L_{1}(\mathbb{R})$. Assume that $\tilde{\varphi}$ has a uniformly convergent Fourier series. Our goal is now to evaluate the coefficients $g_{\ell} \in \mathbb{R}, \ell=0, \ldots, \sigma N$, in the linear combination

$$
\begin{equation*}
s_{1}(x):=\sum_{\ell=0}^{\sigma N} g_{\ell} \tilde{\varphi}\left(x-\frac{\pi \ell}{\sigma N}\right), \quad x \in \mathbb{R}, \tag{7.50}
\end{equation*}
$$

such that s_{1} is an approximation of f^{c}. To this end, we rewrite the function f^{c} in (7.48) as a sum of exponentials,

$$
\begin{equation*}
f^{c}(x)=f(x):=\sum_{k=-N}^{N-1} \hat{f}_{k} \mathrm{e}^{\mathrm{i} k x}, \quad x \in \mathbb{R}, \tag{7.51}
\end{equation*}
$$

with $\hat{f}_{0}=\hat{f}_{0}^{c}, \hat{f}_{-N}=0$, and $\hat{f}_{k}=\hat{f}_{-k}=\frac{1}{2} \hat{f}_{k}^{c}$ for $k=1, \ldots, N-1$. We immediately obtain the identity $f^{\mathrm{c}}(x)=f(x)$, if $\hat{f}_{k}^{\mathrm{c}}=2\left(\varepsilon_{N}(k)\right)^{2} \hat{f}_{k}$. Since $\tilde{\varphi}$ is an even 2π-periodic function, we obtain for the Fourier coefficients $c_{k}(\tilde{\varphi})=c_{-k}(\tilde{\varphi})$ and with (7.10) also $\hat{g}_{k}=\hat{g}_{-k}$. We take into account the symmetry in step 2 of the NFFT Algorithm 7.1 and compute the coefficients g_{ℓ} in (7.50) by

$$
g_{\ell}=\operatorname{Re}\left(g_{\ell}\right)=\frac{1}{\sigma N} \sum_{k=0}^{\sigma N}\left(\varepsilon_{\sigma N}(k)\right)^{2} \hat{g}_{k} \cos \frac{2 \pi k \ell}{\sigma N}, \quad \ell=0, \ldots, \sigma N .
$$

Here we use the notation as in Lemma 3.46 with $\varepsilon_{N}(0)=\varepsilon_{N}(N):=\sqrt{2} / 2$ and $\varepsilon_{N}(j):=1$ for $j=1, \ldots, N-1$. We observe that $g_{\ell}=g_{2 \sigma N r-\ell,} r \in \mathbb{Z}$, i.e., one can compute the coefficients g_{ℓ} in (7.50) with the help of a DCT-I of length $\sigma N+1$, see (3.59) and Sect. 6.3. We proceed similarly as in Sect. 7.1 and approximate s_{1} by

$$
\begin{equation*}
s(x):=\sum_{\ell=\lfloor 2 \sigma N x\rfloor-m}^{\lceil 2 \sigma N x\rceil+m} g_{\ell} \tilde{\psi}\left(x-\frac{\pi \ell}{\sigma N}\right), \quad x \in \mathbb{R} . \tag{7.52}
\end{equation*}
$$

For a fixed node $x_{j} \in[0, \pi]$, the sum (7.52) contains at most $2 m+2$ nonzero summands. Hence we approximate the sum (7.48) at the nodes $x_{j}, j=0, \ldots, M-$ 1, due to

$$
f(x) \approx s_{1}(x) \approx s(x)
$$

by evaluation of $s\left(x_{j}\right), j=0, \ldots, M-1$. In summary we obtain the following algorithm:

Algorithm 7.10 (NFCT)

Input: $N, M \in \mathbb{N}, \sigma>1, m \in \mathbb{N}, x_{j} \in[0, \pi]$ for $j=0, \ldots, M-1$, $\hat{f}_{k}^{\mathrm{c}} \in \mathbb{R}$ for $k=0, \ldots, N-1$.
Precomputation: (i) Compute the nonzero Fourier coefficients $c_{k}(\tilde{\varphi})$ for all $k=$ $0, \ldots, N-1$.
(ii) Compute the values $\tilde{\psi}\left(x_{j}-\frac{\pi \ell}{\sigma N}\right)$ for $j=0, \ldots, M-1$ and $\ell \in I_{\sigma N, m}\left(x_{j}\right)$.

1. Set

$$
\hat{g}_{k}:= \begin{cases}\frac{\hat{f}_{k}^{c}}{2\left(\varepsilon_{\sigma N}(k)\right)^{2} c_{k}(\tilde{\varphi})} & k=0, \ldots, N-1, \\ 0 & k=N, \ldots, \sigma N .\end{cases}
$$

2. Compute

$$
g_{\ell}:=\frac{1}{\sigma N} \sum_{k=0}^{\sigma N}\left(\varepsilon_{\sigma N}(k)\right)^{2} \hat{g}_{k} \cos \frac{\pi k \ell}{\sigma N}, \quad \ell=0, \ldots, \sigma N
$$

using a fast algorithm of DCT-I $(\sigma N+1)$, see Algorithm 6.28 or 6.35 .
3. Compute

$$
s\left(x_{j}\right):=\sum_{\ell=\left\lfloor 2 \sigma N x_{j}\right\rfloor-m}^{\left\lceil 2 \sigma N x_{j}\right\rceil+m} g_{\ell} \tilde{\psi}\left(x_{j}-\frac{\pi \ell}{\sigma N}\right), \quad j=0, \ldots, M-1 .
$$

Output: $s\left(x_{j}\right), j=0, \ldots, M-1$, approximate values of $f^{c}\left(x_{j}\right)$ in (7.48).
Computational cost: $\mathscr{O}(N \log N+m M)$.
In the following we deduce a fast algorithm for the transposed problem, i.e., for the fast evaluation of

$$
\begin{equation*}
h(k):=\sum_{j=0}^{M-1} h_{j} \cos \left(k x_{j}\right), \quad k=0, \ldots, N-1 \tag{7.53}
\end{equation*}
$$

with nonequispaced nodes $x_{j} \in[0, \pi]$. To this end, we write the Algorithm 7.10 in matrix-vector form, since the evaluation of the sum (7.48) at the nodes x_{j} is equivalent to a matrix-vector multiplication with the transposed matrix \mathbf{A}^{\top} of the nonequispaced cosine matrix (7.49). By Algorithm 7.10, A can be approximated
by the matrix product $\mathbf{B} \mathbf{C}_{\sigma N+1, t}^{\mathrm{I}} \mathbf{D}$, where each matrix corresponds to one step of Algorithm 7.10:

1. The diagonal matrix $\mathbf{D} \in \mathbb{R}^{N \times N}$ is given by

$$
\mathbf{D}:=\operatorname{diag}\left(\left(2\left(\varepsilon_{\sigma N}(k)\right)^{2} c_{k}(\tilde{\varphi})\right)^{-1}\right)_{k=0}^{N-1}
$$

2. The matrix $\mathbf{C}_{\sigma N+1, t}^{\mathrm{I}} \in \mathbb{R}^{\sigma N \times N}$ is a truncated cosine matrix of type I (in a nonorthogonal form)

$$
\mathbf{C}_{\sigma N+1, t}^{\mathrm{I}}:=\left(\frac{\left(\varepsilon_{\sigma N}(k)\right)^{2}}{\sigma N} \cos \frac{\pi k \ell}{\sigma N}\right)_{\ell, k=0}^{\sigma N-1, N-1}
$$

3. The sparse matrix $\mathbf{B}=\left(b_{j, \ell}\right)_{j, \ell=0}^{M-1, \sigma N-1} \in \mathbb{R}^{M \times \sigma N}$ has the entries

$$
b_{j, \ell}:= \begin{cases}\tilde{\psi}\left(x_{j}-\frac{\pi \ell}{\sigma N}\right) & \ell \in\left\{\left\lfloor 2 \sigma N x_{j}\right\rfloor-m, \ldots,\left\lceil 2 \sigma N x_{j}\right\rceil+m\right\} \\ 0 & \text { otherwise }\end{cases}
$$

and possesses at most $2 m+1$ nonzero entries per row. The approximate factorization of \mathbf{A} allows to derive an algorithm for the fast evaluation of (7.53), since

$$
\begin{aligned}
\mathbf{g}:=(h(k))_{k=0}^{N-1} & =\mathbf{A}^{\top}\left(h_{j}\right)_{j=0}^{M-1} \\
& \approx \mathbf{D}^{\top}\left(\mathbf{C}_{\sigma N+1, t}^{I}\right)^{\top} \mathbf{B}^{\top}\left(h_{j}\right)_{j=0}^{M-1}
\end{aligned}
$$

We immediately obtain the following algorithm:

Algorithm 7.11 ($\mathbf{N F C T}^{\top}$)

Input: $N \in \mathbb{N}, \sigma>1, m \in \mathbb{N}, x_{j} \in[0, \pi]$ for $j=0, \ldots, M-1$, $h_{j} \in \mathbb{R}$ for $j=0, \ldots, M-1$.
Precomputation: (i) Compute the nonzero Fourier coefficients $c_{k}(\tilde{\varphi})$ for $k=$ $0, \ldots, N-1$.
(ii) Compute the values $\tilde{\psi}\left(x_{j}-\frac{\pi \ell}{\sigma N}\right)$ for $\ell \in I_{\sigma N}^{1}$ and $j \in$ $I_{\sigma N, m}^{\mathrm{T}}(\ell)$, where $I_{\sigma N, m}^{\mathrm{T}}(\ell):=\{j \in\{0, \ldots, M-1\}: \ell-m \leq$ $\left.\frac{\sigma N}{\pi} x_{j} \leq \ell+m\right\}$.

1. Set $\mathbf{g}:=\mathbf{B}^{\top} \mathbf{h}$ by computing

$$
\begin{aligned}
& \text { for } \ell=0 \ldots, \sigma N \\
& \quad g_{\ell}:=0 \\
& \text { end } \\
& \text { for } j=0, \ldots, M-1 \\
& \quad \text { for } \ell=\left\lfloor\sigma N x_{j}\right\rfloor-m, \ldots,\left\lceil\sigma N x_{j}\right\rceil+m
\end{aligned}
$$

$$
\begin{aligned}
& \quad g_{\ell}:=g_{\ell}+h_{j} \tilde{\psi}\left(x_{j}-\frac{\pi \ell}{\sigma N}\right) \\
& \text { end } \\
& \text { end. }
\end{aligned}
$$

2. Compute

$$
\hat{g}_{k}:=\frac{1}{\sigma N} \sum_{\ell=0}^{\sigma N}\left(\varepsilon_{\sigma N}(\ell)\right)^{2} g_{\ell} \cos \frac{\pi k \ell}{\sigma N}, \quad k=0, \ldots, N-1
$$

using a fast algorithm of DCT-I $(\sigma N+1)$, see Algorithm 6.28 or 6.35 .
3. Compute $\tilde{h}(k):=\hat{g}_{k} /\left(2\left(\varepsilon_{\sigma N}(k)\right)^{2} c_{k}(\tilde{\varphi})\right)$ for $k=0,1, \ldots, N-1$.

Output: $\tilde{h}(k), k=0, \ldots, N-1$, approximate values for $h(k)$ in (7.53).
Computational cost: $\mathscr{O}(N \log N+m M)$.
Now we modify the NFFT in order to derive a fast algorithm for the evaluation of the odd, 2π-periodic trigonometric polynomial

$$
\begin{equation*}
f^{\mathrm{s}}(x)=\sum_{k=1}^{N-1} \hat{f}_{k}^{\mathrm{s}} \sin (k x), \quad x \in \mathbb{R}, \tag{7.54}
\end{equation*}
$$

at nonequispaced nodes $x_{j} \in(0, \pi)$. To this end, we rewrite f^{s} in (7.54) as a sum of exponentials and obtain

$$
\mathrm{i} f^{s}(x)=f(x)=\sum_{k=-N}^{N-1} \hat{f}_{k} \mathrm{e}^{\mathrm{i} k x}=\mathrm{i} \sum_{k=1}^{N-1} 2 \hat{f}_{k} \sin (k x), \quad x \in \mathbb{R}
$$

with $\hat{f}_{0}=\hat{f}_{-N}=0$ and $\hat{f}_{k}=-\hat{f}_{-k}=\frac{1}{2} \hat{f}_{k}^{s}$ for $k=1, \ldots, N-1$. Similarly as before, we approximate $f(x)$ by a function $s_{1}(x)$ as in (7.50) and obtain for the coefficients g_{l} for $\ell=1, \ldots, \sigma N-1$

$$
\begin{equation*}
-\mathrm{i} g_{\ell}=\frac{-\mathrm{i}}{2 \sigma N} \sum_{k=-\sigma N}^{\sigma N-1} \hat{g}_{k} \mathrm{e}^{\pi \mathrm{i} k \ell /(\sigma N)}=\frac{1}{\sigma N} \sum_{k=1}^{\sigma N-1} \hat{g}_{k} \sin \frac{\pi k \ell}{\sigma N} . \tag{7.55}
\end{equation*}
$$

and particularly $g_{0}=g_{\sigma N}=0$. Moreover, we observe that $g_{2 \sigma N r-\ell}=-g_{\ell}$ for all $r \in \mathbb{Z}$. Finally we compute the sum

$$
\begin{equation*}
\mathrm{i} s\left(x_{j}\right):=\sum_{\ell=\left\lfloor 2 \sigma N x_{j}\right\rfloor-m}^{\left\lceil 2 \sigma N x_{j}\right\rceil+m} \mathrm{i} g_{\ell} \tilde{\psi}\left(x_{j}-\frac{\pi \ell}{\sigma N}\right) \tag{7.56}
\end{equation*}
$$

similarly as in (7.52) and obtain the approximate values of $f^{s}\left(x_{j}\right)=\mathrm{i} f\left(x_{j}\right) \approx$ i $s\left(x_{j}\right), j=0, \ldots, M-1$.

We summarize algorithm for the fast evaluation of the nonequispaced discrete sine transform:

Algorithm 7.12 (NFST)

Input: $N \in \mathbb{N}, \sigma>1, m \in \mathbb{N}, x_{j} \in(0, \pi)$ for $j=0, \ldots, M-1$, $\hat{f}_{k}^{\mathrm{s}} \in \mathbb{R}$ for $k=1, \ldots, N-1$.
Precomputation: (i) Compute the nonzero Fourier coefficients $c_{k}(\tilde{\varphi})$ for all $k=$ $0, \ldots, N-1$.
(ii) Compute the values $\tilde{\psi}\left(x_{j}-\frac{\pi \ell}{\sigma N}\right)$ for $j=0, \ldots, M-1$ and $\ell \in I_{\sigma N, m}^{\mathrm{T}}\left(x_{j}\right)$.

1. Set

$$
\hat{g}_{k}:= \begin{cases}\frac{\hat{f}_{k}^{\mathrm{s}}}{2 c_{k}(\tilde{\varphi})} & k=1, \ldots, N-1 \\ 0 & k=0 \text { and } k=N, \ldots, \sigma N .\end{cases}
$$

2. Compute

$$
g_{\ell}:=\frac{1}{\sigma N} \sum_{k=1}^{\sigma N-1} \hat{g}_{k} \sin \frac{\pi k \ell}{\sigma N}, \quad \ell=1, \ldots, \sigma N-1
$$

using a fast algorithm of DST-I $(\sigma N-1)$, see Table 6.1 and Remark 6.40, and set $g_{0}:=0$.
3. Compute

$$
s\left(x_{j}\right):=\sum_{\ell=\left\lfloor 2 \sigma N x_{j}\right\rfloor-m}^{\left\lceil 2 \sigma N x_{j}\right\rceil+m} g_{\ell} \tilde{\psi}\left(x_{j}-\frac{\pi \ell}{\sigma N}\right), \quad j=0, \ldots, M-1 .
$$

Output: $s\left(x_{j}\right), j=0, \ldots, M-1$, approximate values of $f^{s}\left(x_{j}\right)$ in (7.54).
Computational cost: $\mathscr{O}(N \log N+m M)$.
An algorithm for the fast evaluation of the values

$$
\begin{equation*}
h(k):=\sum_{j=0}^{M-1} h_{j} \sin \left(k x_{j}\right), \tag{7.57}
\end{equation*}
$$

follows immediately by transposing the matrix-vector product as described in the case of NFCT. Note that these algorithms can also be generalized to the multivariate case. The corresponding algorithms are part of the software in [199].

Remark 7.13 Instead of (7.49) we consider the rectangular nonequispaced cosine matrix

$$
\mathbf{C}:=\frac{1}{\sqrt{M}}\left(\begin{array}{ccccc}
\sqrt{2} & \cos x_{0} & \cos \left(2 x_{0}\right) & \ldots & \cos (N-1) x_{0} \\
\sqrt{2} & \cos x_{1} & \cos \left(2 x_{1}\right) & \ldots & \cos (N-1) x_{1} \\
\sqrt{2} & \cos x_{2} & \cos \left(2 x_{2}\right) & \ldots & \cos (N-1) x_{2} \\
\vdots & \vdots & \vdots & & \vdots \\
\sqrt{2} & \cos x_{M-1} & \cos \left(2 x_{M-1}\right) & \ldots & \cos (N-1) x_{M-1}
\end{array}\right) \in \mathbb{R}^{M \times N},
$$

where $x_{\ell} \in[0, \pi], \ell=0, \ldots, M-1$, are independent identically distributed random variables. Assume that $1 \leq s<N$ and $0<\delta<1$. If

$$
M \geq 2 c \delta^{-2} s(\ln s)^{3} \log N
$$

then with probability at least $1-N^{-\gamma}(\ln s)^{3}$, the restricted isometry constant δ_{s} of \mathbf{C} satisfies $\delta_{s} \leq \delta$, where c and γ are positive constants. Then the nonequispaced cosine matrix \mathbf{C} has the restricted isometry property, i.e., for all s-sparse vectors $\mathbf{x} \in \mathbb{R}^{N}$ with s nonzero components it holds

$$
\left(1-\delta_{s}\right)\|\mathbf{x}\|_{2}^{2} \leq\|\mathbf{C} \mathbf{x}\|_{2}^{2} \leq\left(1+\delta_{s}\right)\|\mathbf{x}\|_{2}^{2} .
$$

This remarkable result is a special case of a more general issue in [308, Theorem 4.3] for the polynomial set $\left\{\sqrt{2}, T_{1}(x), \ldots, T_{N-1}(x)\right\}$ which is an orthonormal system in $L_{2, w}(I)$ by Theorem 6.3.

7.5 Fast Summation at Nonequispaced Knots

Let K be an even, real univariate function which is infinitely differentiable at least in $\mathbb{R} \backslash\{0\}$. We form the radially symmetric, d-variate function

$$
\mathscr{K}(\mathbf{x}):=K\left(\|\mathbf{x}\|_{2}\right), \quad \mathbf{x} \in \mathbb{R}^{d} \backslash\{\mathbf{0}\}
$$

where $\|\cdot\|_{2}$ denotes the Euclidean norm in \mathbb{R}^{d}. If K or its derivatives have singularities at zero, then \mathscr{K} is called singular kernel function. If K is infinitely differentiable at zero as well, then \mathscr{K} is defined on \mathbb{R}^{d} and is called nonsingular kernel function. For given $\alpha_{k} \in \mathbb{C}$ and for distinct points $\mathbf{x}_{k} \in \mathbb{R}^{d}, k=1, \ldots, M_{1}$, we consider the d-variate function

$$
\begin{equation*}
f(\mathbf{y}):=\sum_{k=1}^{M_{1}} \alpha_{k} \mathscr{K}\left(\mathbf{y}-\mathbf{x}_{k}\right)=\sum_{k=1}^{M_{1}} \alpha_{k} K\left(\left\|\mathbf{y}-\mathbf{x}_{k}\right\|_{2}\right) \tag{7.58}
\end{equation*}
$$

In this section, we develop algorithms for the fast computation of the sums

$$
\begin{equation*}
f\left(\mathbf{y}_{j}\right):=\sum_{k=1}^{M_{1}} \alpha_{k} \mathscr{K}\left(\mathbf{y}_{j}-\mathbf{x}_{k}\right), \quad j=1, \ldots, M_{2} \tag{7.59}
\end{equation*}
$$

for given knots $\mathbf{y}_{j} \in \mathbb{R}^{d}$. In the case of a singular kernel function \mathscr{K}, we assume that $\mathbf{x}_{k} \neq \mathbf{y}_{j}$ for all pairs of indices.

Example 7.14 If $K(x)$ is equal to $\ln |x|, \frac{1}{|x|}$, or $|x|^{2} \ln |x|$ for $x \in \mathbb{R} \backslash\{0\}$, then we obtain known singular kernel functions. For arbitrary $\mathbf{x} \in \mathbb{R}^{d} \backslash\{\mathbf{0}\}$, the singularity function of the d-variate Laplacian reads as follows:

$$
\mathscr{K}(\mathbf{x})= \begin{cases}\ln \|\mathbf{x}\|_{2} & d=2 \\ \|\mathbf{x}\|_{2}^{2-d} & d \geq 3\end{cases}
$$

This singular kernel function appears in particle simulation [147, 272].
The thin-plate spline [90]

$$
\mathscr{K}(\mathbf{x})=\|\mathbf{x}\|_{2}^{2} \ln \|\mathbf{x}\|_{2}, \quad \mathbf{x} \in \mathbb{R}^{d} \backslash\{\mathbf{0}\}
$$

is often used for the scattered data approximation of surfaces.
For $K(x)=\sqrt{x^{2}+c^{2}}$ with some $c>0$, the corresponding kernel function \mathscr{K} is the multiquadrix. For $K(x)=\left(x^{2}+c^{2}\right)^{-1 / 2}$ with some $c>0$, the corresponding kernel function \mathscr{K} is the inverse multiquadrix. In all these cases we obtain singular kernel functions.

For fixed $\delta>0$, a frequently used nonsingular kernel function

$$
\mathscr{K}(\mathbf{x})=\mathrm{e}^{-\delta\|\mathbf{x}\|_{2}^{2}}, \quad \mathbf{x} \in \mathbb{R}^{d},
$$

which arises in the context of diffusion [148], image processing [103], fluid dynamics, and finance [48], is generated by the Gaussian function $K(x)=\mathrm{e}^{-\delta x^{2}}$.

For equispaced knots \mathbf{x}_{k} and \mathbf{y}_{j}, (7.59) is simply a discrete convolution and its fast computation can be mainly realized by fast Fourier methods exploiting the basic property

$$
\mathrm{e}^{\mathrm{i}(\mathbf{y}-\mathbf{x})}=\mathrm{e}^{\mathrm{i} \mathbf{y}} \mathrm{e}^{-\mathrm{i} \mathbf{x}}
$$

Following these lines, we propose to compute the convolution at nonequispaced knots (7.59) by fast Fourier transforms at nonequispaced knots, i.e., NFFT and NFFT^{\top}, as presented in Sect.7.1. For a nonsingular kernel function \mathscr{K}, for example, the Gaussian kernel function, our fast summation algorithm requires $\mathscr{O}\left(M_{1}+M_{2}\right)$ arithmetic operations for arbitrary distributed points \mathbf{x}_{k} and \mathbf{y}_{j}. For
a singular kernel function \mathscr{K}, we have to introduce an additional regularization procedure and a so-called near field correction. If either the knots \mathbf{x}_{k} or \mathbf{y}_{j} are "sufficiently uniformly distributed," a notation which we will clarify later, then our algorithm requires $\mathscr{O}\left(\left(M_{1}+M_{2}\right) \log \left(M_{1}^{1 / d}\right)\right)$ or $\mathscr{O}\left(\left(M_{1}+M_{2}\right) \log \left(M_{2}^{1 / d}\right)\right)$ arithmetic operations, where the big \mathscr{O} constant depends on the desired accuracy of the computation.

As seen in Example 7.14, the kernel function \mathscr{K} is in general a nonperiodic function, while the use of Fourier methods requires to replace \mathscr{K} by a periodic version. Without loss of generality we assume that the knots satisfy $\left\|\mathbf{x}_{k}\right\|_{2}<\frac{\pi}{2}-\frac{\varepsilon_{\mathrm{B}}}{2}$, $\left\|\mathbf{y}_{j}\right\|_{2}<\frac{\pi}{2}-\frac{\varepsilon_{\mathrm{B}}}{2}$, and consequently $\left\|\mathbf{y}_{j}-\mathbf{x}_{k}\right\|_{2}<\pi-\varepsilon_{\mathrm{B}}$. The parameter $\varepsilon_{\mathrm{B}} \in(0, \pi)$, which we will specify later, guarantees that K has to be evaluated only at points in the interval $\left[-\pi+\varepsilon_{\mathrm{B}}, \pi-\varepsilon_{\mathrm{B}}\right]$.

First we regularize K near zero and near the points $\pm \pi$ to obtain a 2π-periodic sufficiently smooth function K_{R}. For this purpose we set

$$
K_{\mathrm{R}}(x):= \begin{cases}T_{\mathrm{I}}(x) & |x| \leq \varepsilon_{\mathrm{I}} \tag{7.60}\\ K(x) & \varepsilon_{\mathrm{I}}<|x| \leq \pi-\varepsilon_{\mathrm{B}} \\ T_{\mathrm{B}}(|x|) & \pi-\varepsilon_{\mathrm{B}}<|x| \leq \pi\end{cases}
$$

where $0<\varepsilon_{\mathrm{I}}<\pi-\varepsilon_{\mathrm{B}}<\pi$. Then we extend this function 2π-periodically on \mathbb{R}. The functions $T_{\mathrm{I}}, T_{\mathrm{B}} \in \mathscr{P}_{2 r-1}$ will be chosen such that the 2π-periodic extension of K_{R} is contained in $C^{r-1}(\mathbb{T})$ for an appropriate parameter $r \in \mathbb{N}$. This regularization of K is possible by using algebraic polynomials, but also by applying splines or trigonometric polynomials. Here we determine polynomials T_{I} and $T_{\mathrm{B}} \in \mathscr{P}_{2 r-1}$ by two-point Taylor interpolation. Applying Lemma 9.35, the two-point Taylor interpolation polynomial T_{I} is determined by the interpolation conditions

$$
\begin{aligned}
T_{\mathrm{I}}^{(j)}\left(-\varepsilon_{\mathrm{I}}\right) & =K^{(j)}\left(-\varepsilon_{\mathrm{I}}\right)=(-1)^{j} K^{(j)}\left(\varepsilon_{\mathrm{I}}\right), \\
T_{\mathrm{I}}^{(j)}\left(\varepsilon_{\mathrm{I}}\right) & =K^{(j)}\left(\varepsilon_{\mathrm{I}}\right), \quad j=0, \ldots, r-1 .
\end{aligned}
$$

Note that T_{I} is an even polynomial of degree $2 r-2$. Analogously, we choose the twopoint Taylor interpolation polynomial $T_{\mathrm{B}} \in \mathscr{P}_{2 r-1}$ with the interpolation conditions

$$
\begin{equation*}
T_{\mathrm{B}}^{(j)}\left(\pi-\varepsilon_{\mathrm{B}}\right)=K^{(j)}\left(\pi-\varepsilon_{\mathrm{B}}\right), \quad T_{\mathrm{B}}^{(j)}(\pi)=\delta_{j} K(\pi), \quad j=0, \ldots, r-1, \tag{7.61}
\end{equation*}
$$

where δ_{j} denotes the Kronecker symbol. Thus the 2π-periodic extension of (7.60) is contained in $C^{r-1}(\mathbb{T})$.

For $\mathbf{x} \in[-\pi, \pi]^{d}$, we introduce the function

$$
\mathscr{K}_{\mathrm{R}}(\mathbf{x}):= \begin{cases}K_{\mathrm{R}}\left(\|\mathbf{x}\|_{2}\right) & \|\mathbf{x}\|_{2}<\pi \\ T_{\mathrm{B}}(\pi) & \|\mathbf{x}\|_{2} \geq \pi\end{cases}
$$

and extend this function 2π-periodically on \mathbb{R}^{d}.

Next we approximate the sufficiently smooth, 2π-periodic function \mathscr{K}_{R} by a partial sum of its Fourier series, where the Fourier coefficients are computed by a simple quadrature rule, that means for sufficiently large, even $n \in \mathbb{N}$ we form

$$
\begin{equation*}
\mathscr{K}_{\mathrm{RF}}(\mathbf{x}):=\sum_{\mathbf{l} \in I_{n}^{d}} b_{\mathbf{l}} \mathrm{e}^{\mathrm{i} \mathbf{1} \cdot \mathbf{x}}, \tag{7.62}
\end{equation*}
$$

where I_{n}^{d} denotes the index set $\left[-\frac{n}{2}, \frac{n}{2}-1\right]^{d} \cap \mathbb{Z}^{d}$ and where

$$
\begin{equation*}
b_{\mathbf{l}}:=\frac{1}{n^{d}} \sum_{\mathbf{j} \in I_{n}^{d}} \mathscr{K}_{\mathrm{R}}\left(\frac{2 \pi \mathbf{j}}{n}\right) \mathrm{e}^{-2 \pi \mathrm{i} \mathbf{j} \mathbf{1} / n}, \quad \mathbf{l} \in I_{n}^{d} . \tag{7.63}
\end{equation*}
$$

Then our original kernel function \mathscr{K} splits into

$$
\begin{equation*}
\mathscr{K}=\left(\mathscr{K}-\mathscr{K}_{\mathrm{R}}\right)+\left(\mathscr{K}_{\mathrm{R}}-\mathscr{K}_{\mathrm{RF}}\right)+\mathscr{K}_{\mathrm{RF}}=\mathscr{K}_{\mathrm{NE}}+\mathscr{K}_{\mathrm{ER}}+\mathscr{K}_{\mathrm{RF}}, \tag{7.64}
\end{equation*}
$$

where $\mathscr{K}_{\mathrm{NE}}:=\mathscr{K}^{-}-\mathscr{K}_{\mathrm{R}}$ and $\mathscr{K}_{\mathrm{ER}}:=\mathscr{K}_{\mathrm{R}}-\mathscr{K}_{\mathrm{RF}}$. Since \mathscr{K}_{R} is sufficiently smooth, its Fourier approximation $\mathscr{K}_{\text {RF }}$ generates only a small error $\mathscr{K}_{\text {ER }}$. We neglect this error and approximate f by

$$
\tilde{f}(\mathbf{x}):=f_{\mathrm{NE}}(\mathbf{x})+f_{\mathrm{RF}}(\mathbf{x}), \quad \mathbf{x} \in \mathbb{R}^{d} \backslash\{\mathbf{0}\},
$$

with the near field sum

$$
\begin{equation*}
f_{\mathrm{NE}}(\mathbf{x}):=\sum_{k=1}^{M_{1}} \alpha_{k} \mathscr{K}_{\mathrm{NE}}\left(\mathbf{x}-\mathbf{x}_{k}\right) \tag{7.65}
\end{equation*}
$$

and the far field sum

$$
\begin{equation*}
f_{\mathrm{RF}}(\mathbf{x}):=\sum_{k=1}^{M_{1}} \alpha_{k} \mathscr{K}_{\mathrm{RF}}\left(\mathbf{x}-\mathbf{x}_{k}\right) . \tag{7.66}
\end{equation*}
$$

Instead of $f\left(\mathbf{y}_{j}\right), j=1, \ldots, M_{2}$, we evaluate the approximate values $\tilde{f}\left(\mathbf{y}_{j}\right)$. If either the points \mathbf{x}_{k} or the points \mathbf{y}_{j} are "sufficiently uniformly distributed," this can indeed be done in a fast way as follows.

- Near field computation of (7.65):

By definition (7.60), the function $\mathscr{K}_{\text {NE }}$ restricted on $[-\pi, \pi]^{d}$ has only values with sufficiently large magnitudes in the ball of radius ε_{I} around the origin and near the sphere $\left\{\mathbf{x} \in \mathbb{R}^{d}:\|\mathbf{x}\|_{2}=\pi\right\}$. The second set is not of interest, since $\left\|\mathbf{x}_{k}-\mathbf{y}_{j}\right\|_{2} \leq \pi-\varepsilon_{\mathrm{B}}$ by assumption. To achieve the desired computational cost of our algorithm, we suppose that either the M_{1} points \mathbf{x}_{k} or the M_{2} points \mathbf{y}_{j} are sufficiently uniformly distributed, i.e., there exists a small constant $v \in \mathbb{N}$ such
that every ball of radius ε_{I} contains at most ν of the points \mathbf{x}_{k} and of the points \mathbf{y}_{j}, respectively. This implies that ε_{I} depends linearly on $M_{1}^{-1 / d}$ or $M_{2}^{-1 / d}$. In the following, we restrict our attention to the case

$$
\begin{equation*}
\varepsilon_{\mathrm{I}} \approx \sqrt[d]{\frac{v}{M_{2}}} \tag{7.67}
\end{equation*}
$$

Then the sum (7.65) contains for fixed \mathbf{y}_{j} not more than v summands and its evaluation at M_{2} knots requires only $\mathscr{O}\left(\nu M_{2}\right)$ arithmetic operations.

- Far field summation of (7.66) by NFFT^{\top} and NFFT:

Substituting (7.62) for $\mathscr{K}_{\text {RF }}$, we obtain

$$
f_{\mathrm{RF}}\left(\mathbf{y}_{j}\right)=\sum_{k=1}^{M_{1}} \alpha_{k} \sum_{\mathbf{l} \in I_{n}^{d}} b_{\mathbf{l}} \mathrm{e}^{\mathrm{i} \mathbf{l} \cdot\left(\mathbf{y}_{j}-\mathbf{x}_{k}\right)}=\sum_{\mathbf{l} \in I_{n}^{d}} b_{\mathbf{l}}\left(\sum_{k=1}^{M_{1}} \alpha_{k} \mathrm{e}^{-\mathrm{i} \mathbf{l} \cdot \mathbf{x}_{k}}\right) \mathrm{e}^{\mathrm{i} \mathbf{l} \cdot \mathbf{y}_{j}}
$$

The expression in the inner brackets can be computed by a d-variate NFFT^{\top} of size $n \times \ldots \times n$. This is followed by n^{d} multiplications with b_{1} and completed by a d-variate NFFT of size $n \times \ldots \times n$ to compute the outer sum with the complex exponentials. If m is the cutoff parameter and $\rho=2$ the oversampling factor of the NFFT^{\top} or NFFT, then the proposed evaluation of the values $f_{\mathrm{RF}}\left(\mathbf{y}_{j}\right), j=$ $1, \ldots, M_{2}$, requires $\mathscr{O}\left(m^{d}\left(M_{1}+M_{2}\right)+(\rho n)^{d} \log (\rho n)\right)$ arithmetic operations. The relation between M_{1}, M_{2}, and n is determined by the approximation error of the algorithm and is investigated in detail in [281, 296].

In summary we obtain the following algorithm for fast summation of nonequispaced knots for a singular kernel function:

Algorithm 7.15 (Fast Summation with Singular Kernel Function)

Input: $\alpha_{k} \in \mathbb{C}$ for $k=1, \ldots, M_{1}$,
$\mathbf{x}_{k} \in \mathbb{R}^{d}$ for $k=1, \ldots, M_{1}$ with $\left\|\mathbf{x}_{k}\right\|_{2}<\frac{1}{2}\left(\pi-\varepsilon_{\mathrm{B}}\right)$,
$\mathbf{y}_{j} \in \mathbb{R}^{d}$ for $j=1, \ldots, M_{2}$ with $\left\|\mathbf{y}_{j}\right\|_{2}<\frac{1}{2}\left(\pi-\varepsilon_{\mathrm{B}}\right)$.
Precomputation: Compute the polynomials T_{I} and T_{B} by Lemma 9.35.
Compute ($\left.b_{1}\right)_{\mathbf{l} \in I_{n}^{d}}$ by (7.63) and (7.60).
Compute $\mathscr{K}_{\mathrm{NE}}\left(\mathbf{y}_{j}-\mathbf{x}_{k}\right)$ for $j=1, \ldots, M_{2}$ and $k \in I_{\varepsilon_{\mathrm{I}}}^{\mathrm{NE}}(j)$, where $I_{\varepsilon_{\mathrm{I}}}^{\mathrm{NE}}(j):=\left\{k \in\left\{1, \ldots, M_{1}\right\}:\left\|\mathbf{y}_{j}-\mathbf{x}_{k}\right\|_{2}<\varepsilon_{\mathrm{I}}\right\}$.

1. For each $\mathbf{I} \in I_{n}^{d}$ compute

$$
a_{\mathbf{I}}:=\sum_{k=1}^{M_{1}} \alpha_{k} \mathrm{e}^{-\mathrm{i} \mathbf{l} \cdot \mathbf{x}_{k}}
$$

using the d-variate NFFT^{\top} of size $n \times \ldots \times n$, see Algorithm 7.3.
2. For each $\mathbf{l} \in I_{n}^{d}$ compute the products $d_{\mathbf{1}}:=a_{\mathbf{1}} b_{\mathbf{1}}$.
3. For $j=1, \ldots, M_{2}$ compute the far field sums

$$
f_{\mathrm{RF}}\left(\mathbf{y}_{j}\right):=\sum_{\mathbf{l} \in I_{n}^{d}} d_{\mathbf{l}} \mathrm{e}^{\mathrm{i} \cdot \mathbf{y}_{j}}
$$

using the d-variate NFFT of size $n \times \ldots \times n$, see Algorithm 7.1.
4. For $j=1, \ldots, M_{2}$ compute the near field sums

$$
f_{\mathrm{NE}}\left(\mathbf{y}_{j}\right):=\sum_{k \in I_{\varepsilon_{\mathrm{I}}}^{\mathrm{NE}}(j)} \alpha_{k} \mathscr{K}_{\mathrm{NE}}\left(\mathbf{y}_{j}-\mathbf{x}_{k}\right) .
$$

5. For $j=1, \ldots, M_{2}$ compute the near field corrections

$$
\tilde{f}\left(\mathbf{y}_{j}\right):=f_{\mathrm{NE}}\left(\mathbf{y}_{j}\right)+f_{\mathrm{RF}}\left(\mathbf{y}_{j}\right) .
$$

Output: $\tilde{f}\left(\mathbf{y}_{j}\right), j=1, \ldots, M_{2}$, approximate values of $f\left(\mathbf{y}_{j}\right)$.
Computational cost: $\mathscr{O}\left(n^{d} \log n+m^{d}\left(M_{1}+M_{2}\right)\right)$.
Remark 7.16 Algorithm 7.15 can be written in matrix-vector notation as follows. Introducing the kernel matrix

$$
\mathbf{K}:=\left(\mathscr{K}\left(\mathbf{y}_{j}-\mathbf{x}_{k}\right)\right)_{j, k=1}^{M_{2}, M_{1}} \in \mathbb{R}^{M_{2}, M_{1}}
$$

and the coefficient vector $\boldsymbol{\alpha}:=\left(\alpha_{k}\right)_{k=1}^{M_{1}} \in \mathbb{C}^{M_{1}}$, Algorithm 7.15 reads in matrixvector notation

$$
\mathbf{K} \boldsymbol{\alpha} \approx\left(\mathbf{A}_{2} \mathbf{D}_{\mathscr{K}_{\mathrm{R}}} \overline{\mathbf{A}}_{1}^{\top}+\mathbf{K}_{\mathrm{NE}}\right) \boldsymbol{\alpha}
$$

where

$$
\begin{array}{ll}
\mathbf{A}_{1}:=\left(\mathrm{e}^{\mathrm{i} \mathbf{l} \cdot \mathbf{x}_{k}}\right)_{k=1, \ldots, M_{1}, \mathbf{l} \in I_{n}^{d}}, & \mathbf{D}_{\mathscr{K}_{\mathrm{R}}}:=\operatorname{diag}\left(b_{\mathbf{1}}\right)_{\mathbf{l} \in I_{n}^{d}}, \\
\mathbf{A}_{2}:=\left(\mathrm{e}^{\mathrm{i} \mathbf{l} \cdot \mathbf{y}_{j}}\right)_{j=1, \ldots, M_{2}, \mathbf{l} \in I_{n}^{d}}, & \mathbf{K}_{\mathrm{NE}}:=\left(\mathscr{K}_{\mathrm{NE}}\left(\mathbf{y}_{j}-\mathbf{x}_{k}\right)\right)_{j, k=1}^{M_{2}, M_{1}} .
\end{array}
$$

Using the matrix factorization (7.20) of our NFFT, we have

$$
\mathbf{A}_{1} \approx \mathbf{B}_{1} \mathbf{F}_{\sigma n, n}^{d} \mathbf{D}_{1}, \quad \mathbf{A}_{2} \approx \mathbf{B}_{2} \mathbf{F}_{\sigma n, n}^{d} \mathbf{D}_{2}
$$

with diagonal matrices \mathbf{D}_{1} and \mathbf{D}_{2}, sparse matrices \mathbf{B}_{1} and \mathbf{B}_{2} having at most $(2 m+$ 1) ${ }^{d}$ nonzero entries in each row and column and the d-variate Fourier matrix given in (7.22).

This can be rewritten as

$$
\mathbf{K} \boldsymbol{\alpha} \approx\left(\overline{\mathbf{B}}_{M_{2}} \mathbf{T} \mathbf{B}_{M_{1}}^{\top}+\mathbf{K}_{\mathrm{NE}}\right) \boldsymbol{\alpha},
$$

where $\mathbf{T}:=\mathbf{F}_{\sigma n, n} \mathbf{D}_{n} \mathbf{D}_{\mathscr{K}_{R}} \mathbf{D}_{n} \mathbf{F}_{\sigma n, n}^{\top}$ is a multilevel-Toeplitz matrix. Note that one can avoid the complex arithmetic by using fast Toeplitz matrix-vector multiplications based on discrete trigonometric transforms (see [291, Algorithm 3]).

Next we are interested in a nonsingular kernel function $\mathscr{K}(\mathbf{x})=K\left(\|\mathbf{x}\|_{2}\right)$ for $\mathbf{x} \in \mathbb{R}^{d}$. For instance, the Gaussian function $K(x)=\mathrm{e}^{-\delta x^{2}}$ with fixed $\delta>0$ generates such a nonsingular kernel function. Here a regularization of K near zero is not necessary. Thus our computation does not require a near field correction. If $K(x)$ is very small near $x= \pm \pi$, that is the case for the Gaussian function with sufficiently large value δ, we also don't need a regularization of K near $\pm \pi$. In this case we set $K_{\mathrm{R}}:=K$ on $[-\pi, \pi]$ and

$$
\mathscr{K}_{\mathrm{R}}(\mathbf{x}):= \begin{cases}K\left(\|\mathbf{x}\|_{2}\right) & \|\mathbf{x}\|_{2}<\pi, \tag{7.68}\\ K(\pi) & \mathbf{x} \in[-\pi, \pi]^{d} \text { with }\|\mathbf{x}\|_{2} \geq \pi .\end{cases}
$$

Otherwise, if we need a regularization of K near $\pm \pi$. Therefore we choose the two-point Taylor interpolation polynomial $T_{\mathrm{B}} \in \mathscr{P}_{2 r-1}$ with the interpolation conditions (7.61) and use the function

$$
\mathscr{K}_{\mathrm{R}}(\mathbf{x})= \begin{cases}K\left(\|\mathbf{x}\|_{2}\right) & \|\mathbf{x}\|_{2} \leq \pi-\varepsilon_{\mathrm{B}} \tag{7.69}\\ T_{\mathrm{B}}\left(\|\mathbf{x}\|_{2}\right) & \pi-\varepsilon_{\mathrm{B}}<\|\mathbf{x}\|_{2}<\pi \\ T_{\mathrm{B}}(\pi) & \mathbf{x} \in[-\pi, \pi]^{d} \text { with }\|\mathbf{x}\|_{2} \geq \pi\end{cases}
$$

Then Algorithm 7.15 can also be applied for the fast summation with a nonsingular kernel function and it simplifies to its first three steps. Moreover we will see that the lack of the "near field correction" implies that the size $n \times \ldots \times n$ of the NFFT and NFFT ${ }^{\top}$ does not depend on the numbers M_{1} and M_{2} of the given knots. Thus the Algorithm 7.15 with steps 1-3 requires for a nonsingular kernel only $\mathscr{O}\left((\rho n)^{d} \log (\rho n)+m^{d}\left(M_{1}+M_{2}\right)\right)=\mathscr{O}\left(M_{1}+M_{2}\right)$ arithmetic operations. Applying Algorithm 7.15 to the Gaussian function $K(x)=\mathrm{e}^{-\delta x^{2}}$ with fixed $\delta>0$, we obtain the fast Gauss transform.

Algorithm 7.17 (Fast Gauss Transform)

Input: $\alpha_{k} \in \mathbb{C}$ for $k=1, \ldots, M_{1}$,
$\mathbf{x}_{k} \in \mathbb{R}^{d}$ for $k=1, \ldots, M_{1}$ with $\left\|\mathbf{x}_{k}\right\|_{2}<\frac{1}{2}\left(\pi-\varepsilon_{\mathrm{B}}\right)$,
$\mathbf{y}_{j} \in \mathbb{R}^{d}$ for $j=1, \ldots, M_{2}$ with $\left\|\mathbf{y}_{j}\right\|_{2}<\frac{1}{2}\left(\pi-\varepsilon_{\mathrm{B}}\right)$.
Precomputation: Compute the polynomial T_{B} by Lemma 9.35.
Form $\mathscr{K}_{\mathrm{R}}(\mathbf{x})$ by (7.68) or (7.69) for $K(x)=\mathrm{e}^{-\delta x^{2}}$.
Compute $\left(b_{1}\right)_{\mathbf{1} \in I_{n}^{d}}$ by (7.63) using FFT of size $n \times \ldots \times n$.

1. For each $\mathbf{l} \in I_{n}^{d}$ compute

$$
a_{\mathbf{l}}:=\sum_{k=1}^{M_{1}} \alpha_{k} \mathrm{e}^{-\mathrm{i} \mathbf{l} \cdot \mathbf{x}_{k}}
$$

using the d-variate NFFT^{\top} of size $n \times \ldots \times n$, see Algorithm 7.3.
2. For each $\mathbf{I} \in I_{n}^{d}$ compute the products $d_{\mathbf{1}}:=a_{\mathbf{1}} b_{\mathbf{1}}$.
3. For $j=1, \ldots, M_{2}$ compute the far field sums

$$
\tilde{f}\left(\mathbf{y}_{j}\right)=f_{\mathrm{RF}}\left(\mathbf{y}_{j}\right):=\sum_{\mathbf{l} \in I_{n}^{d}} d_{\mathbf{l}} \mathrm{e}^{\mathrm{i} \mathbf{l} \cdot \mathbf{y}_{j}}
$$

using the d-variate NFFT of size $n \times \ldots \times n$, see Algorithm 7.1.
Output: $\tilde{f}\left(\mathbf{y}_{j}\right), j=1, \ldots, M_{2}$, approximate values of

$$
f\left(\mathbf{y}_{j}\right)=\sum_{k=1}^{M_{1}} \alpha_{k} \mathrm{e}^{-\delta\left\|\mathbf{y}_{j}-\mathbf{x}_{k}\right\|_{2}^{2}}
$$

Computational cost: $\mathscr{O}\left(m^{d}\left(M_{1}+M_{2}\right)\right)$.
Remark 7.18 Fast algorithms for the discrete Gauss transforms have been introduced in [23, 149, 150]. Error estimates for fast summation at nonequispaced knots have been presented in [280, 281] and for the Gauss transform in [214]. The related software is available from [199], where a variety of different kernels is implemented. Furthermore there exists a MATLAB interface, see [199, ./matlab/fastsum].

7.6 Inverse Nonequispaced Discrete Transforms

Important examples of nonequispaced discrete transforms are the nonequispaced discrete Fourier transform (NDFT) (see Sect. 7.1) and the nonequispaced discrete cosine transform (NDCT) (see Sect. 7.4). As shown in Sects. 7.1 and 7.4, fast nonequispaced discrete transforms are efficient algorithms for the computation of matrix-vector products $\mathbf{A} \mathbf{f}$, where \mathbf{A} denotes the matrix of a nonequispaced discrete transform and where \mathbf{f} is an arbitrary given vector. The goal of this section is to present algorithms for inverse nonequispaced discrete transforms. Inverse nonequispaced discrete transform of a given vector \mathbf{f} means the determination of a vector \mathbf{f} as (approximate) solution of the linear system

$$
\mathbf{A} \hat{\mathbf{f}}=\mathbf{f}
$$

First we present direct methods for inverse NDCT and inverse NDFT in the one-dimensional case. Note that we compute the inverse nonequispaced discrete transform without knowledge of a (generalized) inverse matrix of the nonequispaced discrete transform. Instead of that, we first use a fast summation step and then the inverse nonequispaced discrete transform can be realized as an inverse equispaced discrete transform. Later we sketch iterative methods for inverse NDFT in the multidimensional case.

7.6.1 Direct Methods for Inverse NDCT and Inverse NDFT

We consider the one-dimensional case and study direct methods for the inverse NDCT first. We start with recalling the NDCT (7.48), where we have to evaluate the polynomial

$$
p(x)=\sum_{k=0}^{N} \hat{f}_{k} T_{k}(x)
$$

at arbitrary distinct nodes $x_{j} \in[-1,1]$. Here, $T_{k}(x)=\cos (k \arccos x), x \in$ $[-1,1]$, denotes the k th Chebyshev polynomial (of first kind).

In Sect. 6.2 we have already shown that using the Chebyshev extreme points $x_{j}^{(N)}:=\cos \frac{j \pi}{N}, j=0, \ldots, N$, we can evaluate the polynomial p at the nodes $x_{j}^{(N)}$, $j=0, \ldots, N$, with $\mathscr{O}(N \log N)$ arithmetic operations employing a DCT-I $(N+1)$. Vice versa, we can compute $\hat{f}_{k}, k=0, \ldots, N$, from samples $p\left(x_{j}^{(N)}\right)$, since the DCT-I is an orthogonal transform, see Lemma 3.46.

The inverse NDCT can be formulated as follows: Compute the coefficients $\hat{f}_{k} \in$ $\mathbb{R}, k=0, \ldots, N$, from given values

$$
p\left(x_{j}\right)=\sum_{k=0}^{N} \hat{f}_{k} T_{k}\left(x_{j}\right)
$$

at arbitrary distinct nodes $x_{j} \in[-1,1], j=0, \ldots, N$. Taking the fast summation technique in Sect. 7.5 we transfer the inverse NDCT into an inverse DCT-I. To derive the inverse NDCT we will use the following result.
Theorem 7.19 For arbitrary distinct nodes $x_{j} \in[-1,1], j=0, \ldots, N$, and $\hat{f_{k}} \in$ $\mathbb{R}, k=0, \ldots, N$, let

$$
\begin{equation*}
f_{j}:=\sum_{k=0}^{N} \hat{f}_{k} T_{k}\left(x_{j}\right)=\sum_{k=0}^{N} \hat{f}_{k} \cos \left(k \arccos x_{j}\right), \quad j=0, \ldots, N, \tag{7.70}
\end{equation*}
$$

i.e., $\left(f_{j}\right)_{j=0}^{N}$ is the NDCT of $\left(\hat{f}_{k}\right)_{k=0}^{N}$. Further, for the Chebyshev extreme points $x_{\ell}^{(N)}=\cos \frac{\ell \pi}{N}, \ell=0, \ldots, N$, let

$$
\begin{equation*}
g_{\ell}:=\sum_{k=0}^{N} \hat{f}_{k} T_{k}\left(x_{\ell}^{(N)}\right)=\sum_{k=0}^{N} \hat{f}_{k} \cos \frac{\ell k \pi}{N}, \quad \ell=0, \ldots, N \tag{7.71}
\end{equation*}
$$

i.e., $\left(g_{\ell}\right)_{\ell=0}^{N}$ is the DCT-I $(N+1)$ (up to normalization constants) of $\left(\hat{f}_{k}\right)_{k=0}^{N}$. Assume that $x_{\ell}^{(N)} \neq x_{k}$ for all $\ell, k=0, \ldots, N$.

Then we have

$$
\begin{equation*}
g_{\ell}=c_{\ell} \sum_{j=0}^{N} \frac{f_{j} d_{j}}{x_{\ell}^{(N)}-x_{j}}, \quad \ell=0, \ldots, N \tag{7.72}
\end{equation*}
$$

where

$$
\begin{align*}
c_{\ell} & =\prod_{k=0}^{N}\left(x_{\ell}^{(N)}-x_{k}\right), \quad \ell=0, \ldots, N \tag{7.73}\\
d_{j} & =\prod_{\substack{k=0 \\
k \neq j}}^{N} \frac{1}{x_{j}-x_{k}}, \quad j=0, \ldots, N . \tag{7.74}
\end{align*}
$$

Proof Let the polynomial p be defined by

$$
p(x)=\sum_{k=0}^{N} \hat{f}_{k} T_{k}(x) .
$$

Using the Lagrange interpolation formula at the points x_{j}, we rewrite p in the form

$$
p(x)=\sum_{j=0}^{N} p\left(x_{j}\right) \prod_{\substack{k=0 \\ k \neq j}}^{N} \frac{x-x_{k}}{x_{j}-x_{k}} .
$$

Thus for $x \neq x_{j}$ we obtain

$$
\begin{equation*}
p(x)=\prod_{n=0}^{N}\left(x-x_{n}\right) \sum_{j=0}^{N} \frac{p\left(x_{j}\right)}{x-x_{j}} \prod_{\substack{k=0 \\ k \neq j}}^{N} \frac{1}{x_{j}-x_{k}}, \tag{7.75}
\end{equation*}
$$

and hence

$$
p\left(x_{\ell}^{(N)}\right)=g_{\ell}=c_{\ell} \sum_{j=0}^{N} \frac{f_{j} g_{j}}{x_{\ell}^{(N)}-x_{j}} .
$$

This completes the proof.
Remark 7.20 Formula (7.75) can be considered as a special case of the barycentric formula, see Sect. 6.2 and [31, formula (8.1)].

Consequently, we can efficiently compute the values g_{ℓ} via (7.72) from the given values f_{j} by Algorithm 7.15 using the singular kernel function $\frac{1}{x}$. Applying inverse DCT-I, we then calculate the values $\hat{f_{k}}, k=0, \ldots, N$, from $g_{\ell}, \ell=0, \ldots, N$. We summarize this procedure:

Algorithm 7.21 (Inverse NDCT)

Input: $x_{j} \in[-1,1], f_{j} \in \mathbb{R}, j=0, \ldots, N$.
Precomputation: $c_{\ell}, \ell=0, \ldots, N$, by (7.73),

$$
d_{j}, j=0, \ldots, N, \text { by (7.74) or by Remark 7.22. }
$$

1. Compute the values $g_{\ell}, \ell=0, \ldots, N$ in (7.72) by Algorithm 7.15 with the kernel $\frac{1}{x}$.
2. Compute the values $\hat{f}_{k}, k=0, \ldots, N$ in (7.71) by the inverse $\operatorname{DCT}-\mathrm{I}(N+1)$ using Algorithm 6.28 or 6.35 .

Output: $\hat{f}_{k}, k=0, \ldots, N$.
Computational cost: $\mathscr{O}(N \log N)$.
Remark 7.22 The naive precomputation of c_{ℓ} and d_{j} can be improved using the relations

$$
\begin{aligned}
c_{\ell} & =\prod_{k=0}^{N}\left(x_{\ell}^{(N)}-x_{k}\right)=\left(\operatorname{sgn} c_{\ell}\right) \exp \left(\sum_{k=0}^{N} \ln \left|x_{\ell}^{(N)}-x_{k}\right|\right), \\
d_{j} & =\prod_{\substack{k=0 \\
k \neq j}}^{N} \frac{1}{x_{j}-x_{k}}=\left(\operatorname{sgn} d_{j}\right) \exp \left(-\sum_{\substack{k=0 \\
k \neq j}}^{N} \ln \left|x_{j}-x_{k}\right|\right)
\end{aligned}
$$

and applying Algorithm 7.15 with the singular kernel function $\ln |x|$.
Based on the same ideas, we will also develop a fast algorithm for the inverse NDFT. In contrast to [96] we use the fast summation method of Algorithm 7.15 with the kernel $\cot x$ instead of the fast multipole method. Note that with the simple modification in (7.60) we can handle odd singular kernels as well. Taking the fast
summation technique we transfer the inverse NDFT into an inverse DFT. The inverse NDFT is based on the following result, see [96, Theorem 2.3]:
Theorem 7.23 For $N \in 2 \mathbb{N}$, let $x_{j} \in[-\pi, \pi) \backslash\left\{\frac{2 \pi k}{N}: k=-\frac{N}{2}, \ldots, \frac{N}{2}-1\right\}$, $j=-\frac{N}{2}, \ldots, \frac{N}{2}-1$ be distinct nodes and let $\hat{f}_{k} \in \mathbb{C}, k=-\frac{N}{2}, \ldots, \frac{N}{2}-1$ be given. Let

$$
\begin{equation*}
f_{j}:=\sum_{k=-N / 2}^{N / 2-1} \hat{f}_{k} \mathrm{e}^{\mathrm{i} k x_{j}}, \quad j=-\frac{N}{2}, \ldots, \frac{N}{2}-1 \tag{7.76}
\end{equation*}
$$

i.e., $\left(f_{j}\right)_{j=-N / 2}^{N / 2-1}$ is the NDFT of $\left(\hat{f}_{k}\right)_{k=-N / 2}^{N / 2-1}$. Further, for equispaced nodes $h_{\ell}^{(N)}:=$ $\frac{2 \pi \ell}{N}, \ell=-\frac{N}{2}, \ldots, \frac{N}{2}-1$, let

$$
\begin{equation*}
g_{\ell}:=\sum_{k=-N / 2}^{N / 2-1} \hat{f}_{k} \mathrm{e}^{\mathrm{i} k h_{\ell}^{(N)}}=\sum_{k=-N / 2}^{N / 2-1} \hat{f}_{k} \mathrm{e}^{2 \pi \mathrm{i} k \ell / N}, \quad \ell=-\frac{N}{2}, \ldots, \frac{N}{2}-1 \tag{7.77}
\end{equation*}
$$

i.e., $\left(g_{\ell}\right)_{\ell=-N / 2}^{N / 2-1}$ is the modified DFT of $\left(\hat{f_{k}}\right)_{k=-N / 2}^{N / 2-1}$.

Then we have

$$
\begin{equation*}
g_{\ell}=c_{\ell} \sum_{j=-N / 2}^{N / 2-1} f_{j} d_{j}\left(\cot \left(\frac{h_{\ell}^{(N)}-x_{j}}{2}\right)-\mathrm{i}\right) \tag{7.78}
\end{equation*}
$$

with

$$
\begin{align*}
& c_{\ell}:=\prod_{k=-N / 2}^{N / 2-1} \sin \frac{h_{\ell}^{(N)}-x_{k}}{2}, \tag{7.79}\\
& d_{j}:=\prod_{\substack{k=-N / 2 \\
k \neq j}}^{N / 2-1} \frac{1}{\sin \frac{x_{j}-x_{k}}{2}} . \tag{7.80}
\end{align*}
$$

Proof We introduce the polynomial p by

$$
p(z):=\sum_{k=0}^{N-1} \hat{f}_{k-N / 2} z^{k}, \quad z \in \mathbb{C}
$$

Using the Lagrange interpolation formula at the distinct nodes $z_{k}:=\mathrm{e}^{\mathrm{i} x_{k}}, k=$ $-\frac{N}{2}, \ldots, \frac{N}{2}$, we rewrite p in the form

$$
p(z)=\sum_{j=-N / 2}^{N / 2-1} p\left(z_{j}\right) \prod_{\substack{k=-N / 2 \\ k \neq j}}^{N / 2-1} \frac{z-z_{k}}{z_{j}-z_{k}} .
$$

Then for $z \neq z_{j}$ we obtain

$$
p(z)=\prod_{n=-N / 2}^{N / 2-1}\left(z-z_{n}\right) \sum_{j=-N / 2}^{N / 2-1} \frac{p\left(z_{j}\right)}{z-z_{j}} \prod_{\substack{k=-N / 2 \\ k \neq j}}^{N / 2-1} \frac{1}{z_{j}-z_{k}} .
$$

The equispaced nodes $w_{N}^{-\ell}:=\mathrm{e}^{\mathrm{i} h_{\ell}^{(N)}}=\mathrm{e}^{2 \pi \mathrm{i} \ell / N}, \ell=-\frac{N}{2}, \ldots, \frac{N}{2}$ are complex N th roots of unity which satisfy the condition $w_{N}^{-\ell} \neq z_{j}$ for all indices ℓ and j by assumption. Hence for $z=w_{N}^{-\ell}$ it follows that

$$
\begin{equation*}
p\left(w_{N}^{-\ell}\right)=\prod_{n=-N / 2}^{N / 2-1}\left(w_{N}^{-\ell}-z_{n}\right) \sum_{j=-N / 2}^{N / 2-1} \frac{p\left(z_{j}\right)}{w_{N}^{-\ell}-z_{j}} \prod_{\substack{k=-N / 2 \\ k \neq j}}^{N / 2-1} \frac{1}{z_{j}-z_{k}} . \tag{7.81}
\end{equation*}
$$

By (7.76) and (7.77) we have

$$
f_{j}=z_{j}^{-N / 2} p\left(z_{j}\right), \quad g_{j}=(-1)^{j} p\left(w_{N}^{-j}\right), \quad j=-\frac{N}{2}, \ldots, \frac{N}{2}-1 .
$$

Using (7.79), we calculate

$$
\begin{aligned}
\prod_{n=-N / 2}^{N / 2-1}\left(w_{N}^{-\ell}-z_{n}\right) & =\prod_{n=-N / 2}^{N / 2-1}\left(\mathrm{e}^{\mathrm{i} h_{\ell}^{(N)}}-\mathrm{e}^{\mathrm{i} x_{n}}\right) \\
& =\prod_{n=-N / 2}^{N / 2-1} \mathrm{e}^{\mathrm{i}\left(h_{\ell}^{(N)}+x_{n}\right) / 2}\left(\mathrm{e}^{\mathrm{i}\left(h_{\ell}^{(N)}-x_{n}\right) / 2}-\mathrm{e}^{-\mathrm{i}\left(h_{\ell}^{(N)}-x_{n}\right) / 2}\right) \\
& =(-1)^{\ell}(2 \mathrm{i})^{N} \prod_{n=-N / 2}^{N / 2-1} \mathrm{e}^{\mathrm{i} x_{n} / 2} \sin \frac{h_{\ell}^{(N)}-x_{n}}{2}=(-1)^{\ell}(2 \mathrm{i})^{N} a c_{\ell}
\end{aligned}
$$

with

$$
a:=\prod_{n=-N / 2}^{N / 2-1} \mathrm{e}^{\mathrm{i} x_{n} / 2} .
$$

Analogously with (7.80) we compute the product

$$
\begin{aligned}
\prod_{\substack{k=-N / 2 \\
k \neq j}}^{N / 2-1}\left(z_{j}-z_{k}\right) & =(2 \mathrm{i})^{N-1} \mathrm{e}^{\mathrm{i} x_{j}(N-1) / 2} \prod_{\substack{k=-N / 2 \\
k \neq j}}^{N / 2-1} \mathrm{e}^{\mathrm{i} x_{k} / 2} \sin \frac{x_{j}-x_{k}}{2} \\
& =(2 \mathrm{i})^{N-1} \mathrm{e}^{\mathrm{i} x_{j}(N-2) / 2} \frac{a}{d_{j}} .
\end{aligned}
$$

Then from (7.81) it follows that

$$
p\left(w_{N}^{-\ell}\right)=(-1)^{\ell} g_{\ell}=2 \mathrm{i}(-1)^{\ell} c_{\ell} \sum_{j=-N / 2}^{N / 2-1} \mathrm{e}^{\mathrm{i} x_{j}} \frac{f_{j} d_{j}}{w_{N}^{-\ell}-z_{j}} .
$$

With

$$
\cot x=\mathrm{i} \frac{\mathrm{e}^{\mathrm{i} x}+\mathrm{e}^{-\mathrm{i} x}}{\mathrm{e}^{\mathrm{i} x}-\mathrm{e}^{-\mathrm{i} x}}, \quad x \in \mathbb{R} \backslash(\pi \mathbb{Z})
$$

we find

$$
\cot \frac{h_{\ell}^{(N)}-x_{j}}{2}-\mathrm{i}=\frac{2 \mathrm{i} z_{j}}{w_{N}^{-\ell}-z_{j}}
$$

This implies the relation (7.78).
Consequently we can efficiently compute the values g_{ℓ} via (7.78) from the given values f_{j} using a univariate variant of Algorithm 7.15 with the odd kernel $\cot x$. Applying the modified DFT, we can calculate the values $\hat{f}_{k}, k=-\frac{N}{2}, \ldots \frac{N}{2}-1$, from $g_{\ell}, \ell=-\frac{N}{2}, \ldots \frac{N}{2}-1$.

Algorithm 7.24 (Inverse NDFT)

Input: $N \in 2 \mathbb{N}, x_{j} \in[-\pi, \pi) \backslash\left\{\frac{2 \pi k}{N}: k=-\frac{N}{2}, \ldots, \frac{N}{2}-1\right\}, f_{j} \in \mathbb{C}, j=$ $-\frac{N}{2}, \ldots, \frac{N}{2}-1$.
Precomputation: $c_{\ell}, \ell=-\frac{N}{2}, \ldots, \frac{N}{2}-1$, by (7.79),

$$
d_{j}, j=-\frac{N}{2}, \ldots, \frac{N}{2}-1, \text { by }(7.80)
$$

1. Compute the values (7.78) by a univariate variant of Algorithm 7.15 with the odd kernel $\cot x$.
2. Compute the values $\hat{f_{k}}$ by the inverse modified DFT (7.77).

Output: $\hat{f}_{k}, k=-\frac{N}{2}, \ldots, \frac{N}{2}-1$.
Computational cost: $\mathscr{O}(N \log N)$.
Remark 7.25 Algorithm 7.24 is part of the NFFT software, see [199, ./matlab/infft1D].

Remark 7.26 Formula (7.78) is closely related to the barycentric formula, see Theorem 3.9. In (7.78) we apply the Lagrange polynomials at the nonequispaced points x_{k}. In Theorem 3.9 we used Lagrange polynomials at the equispaced points $h_{\ell}^{(N)}$. Note that interchanging $w_{N}^{-\ell}$ and z_{n} in (7.81) leads to the second barycentric formula in Theorem 3.9.

7.6.2 Iterative Methods for Inverse NDFT

Now we explain the inversion of the multidimensional NDFT using iterative methods. This approach can be applied to the mentioned NDFT variants as well.

Inversion of the NDFT means the computation of all coefficients $\hat{f_{\mathbf{k}}} \in \mathbb{C}, \mathbf{k} \in I_{N}^{d}$, of the d-variate, 2π-periodic trigonometric polynomial

$$
f(\mathbf{x})=\sum_{\mathbf{k} \in I_{N}^{d}} \hat{f}_{\mathbf{k}} \mathrm{e}^{\mathrm{i} \mathbf{k} \cdot \mathbf{x}}
$$

if function samples $f_{j}=f\left(\mathbf{x}_{j}\right), j=0, \ldots, M-1$, at arbitrary knots $\mathbf{x}_{j} \in$ $[-\pi, \pi)^{d}$ are given, see (7.2). In matrix-vector notation, this problem is equivalent to solving the linear system

$$
\begin{equation*}
\mathbf{A} \hat{\mathbf{f}}=\mathbf{f} \tag{7.82}
\end{equation*}
$$

with the given vector $\mathbf{f}=\left(f_{j}\right)_{j=0}^{M-1} \in \mathbb{C}^{M}$ and the unknown vector $\hat{\mathbf{f}}=\left(\hat{f}_{\mathbf{k}}\right)_{\mathbf{k} \in I_{N}^{d}} \in$ $\mathbb{C}^{N^{d}}$, where the nonequispaced Fourier matrix \mathbf{A} is given in (7.19). This linear system can be either overdetermined, if $N^{d} \leq M$ (this includes the quadratic case), or underdetermined, if $N^{d}>M$. Generally, this forces us to look for a pseudo-inverse solution $\hat{\mathbf{f}}^{+}$(see, e.g., [35, p. 15]). For this, we also require that the nonequispaced Fourier matrix \mathbf{A} has full rank. Eigenvalue estimates in [14, 106, 213] indeed assert that this condition is satisfied, if the sampling set is uniformly dense or uniformly separated with respect to the inverse bandwidth.

In the overdetermined case, we consider a weighted least squares problem, while for the consistent underdetermined case, we look for a solution of an interpolation problem. Both problems can be iteratively solved using NFFT (see Algorithm 7.1) and adjoint NFFT (see Algorithm 7.3) to realize fast matrix-vector multiplications involving \mathbf{A} or \mathbf{A}^{H}.

If $N^{d} \leq M$, the linear system (7.82) is overdetermined which typically implies that the given data $f_{j} \in \mathbb{C}, j=0, \ldots, M-1$, can only be approximated up to a residual $\mathbf{r}:=\mathbf{f}-\mathbf{A} \hat{\mathbf{f}}$. Therefore, we consider the weighted least squares problem

$$
\min _{\hat{\mathbf{f}}} \sum_{j=0}^{M-1} w_{j}\left|f_{j}-f\left(\mathbf{x}_{j}\right)\right|^{2}
$$

with weights $w_{j}>0$. The weights might be used to compensate for clusters in the sampling set. The weighted least squares problem is equivalent to solving the weighted normal equations of first kind

$$
\mathbf{A}^{\mathrm{H}} \mathbf{W} \mathbf{A} \hat{\mathbf{f}}=\mathbf{A}^{\mathrm{H}} \mathbf{W} \mathbf{f}
$$

with the diagonal matrix $\mathbf{W}:=\operatorname{diag}\left(w_{j}\right)_{j=0}^{M-1}$. This linear system can be solved using the Landweber (or Richardson) iteration, the steepest descent method, or the conjugate gradient method for least squares problems. In the NFFT library [199] all three algorithms are implemented.

If $N^{d}>M$, and if the linear system (7.82) is consistent, then the data $f_{j} \in$ $\mathbb{C}, j=0, \ldots, M-1$, can be interpolated exactly. But since there exist multiple solutions, we consider the constrained minimization problem

$$
\min _{\hat{\mathbf{f}}} \sum_{\mathbf{k} \in I_{N}^{d}} \frac{\left|\hat{\mathbf{f}}_{\mathbf{k}}\right|^{2}}{\hat{w}_{\mathbf{k}}} \quad \text { subject to } \quad \mathbf{A} \hat{\mathbf{f}}=\mathbf{f}
$$

which incorporates "damping factors" $\hat{w}_{\mathbf{k}}>0$. A smooth solution, i.e., a solution with rapid decay of Fourier coefficients $\hat{f}_{\mathbf{k}}$, is favored, if the damping factors $\hat{w}_{\mathbf{k}}$ are decreasing. The interpolation problem is equivalent to the damped normal equations of second kind

$$
\mathbf{A} \hat{\mathbf{W}} \mathbf{A}^{\mathrm{H}} \tilde{\mathbf{f}}=\mathbf{f}, \quad \hat{\mathbf{f}}=\hat{\mathbf{W}} \mathbf{A}^{\mathrm{H}} \tilde{\mathbf{f}}
$$

with the diagonal matrix $\hat{\mathbf{W}}:=\operatorname{diag}\left(\hat{w}_{\mathbf{k}}\right)_{\mathbf{k} \in I_{N}^{d}}$. The NFFT library [199] also contains this scheme.

We summarize the inverse d-dimensional NFFT in the overdetermined case:

Algorithm 7.27 (Inverse Iterative NDFT Using the Conjugate Gradient Method for Normal Equations of First Kind (CGNR))

Input: $N \in 2 \mathbb{N}, \mathbf{x}_{j} \in[-\pi, \pi)^{d}, \mathbf{f} \in \mathbb{C}^{M}, \hat{\mathbf{f}}_{0} \in \mathbb{C}^{N^{d}}$.

1. Set $\mathbf{r}_{0}:=\mathbf{f}-\mathbf{A} \hat{\mathbf{f}}_{0}$.
2. Compute $\hat{\mathbf{z}}_{0}:=\mathbf{A}^{\mathrm{H}} \mathbf{W} \mathbf{r}_{0}$.
3. $\operatorname{Set} \hat{\mathbf{p}}_{0}=\hat{\mathbf{z}}_{0}$.
4. For $\ell=0,1, \ldots$ compute

$$
\mathbf{v}_{\ell}=\mathbf{A} \hat{\mathbf{W}} \hat{\mathbf{p}}_{\ell}
$$

$$
\alpha_{\ell}=\left(\mathbf{v}_{\ell}^{\mathrm{H}} \mathbf{W} \mathbf{v}_{\ell}\right)^{-1}\left(\hat{\mathbf{z}}_{\ell}^{\mathrm{H}} \hat{\mathbf{W}} \hat{\mathbf{z}}_{\ell}\right)
$$

$$
\hat{\mathbf{f}}_{\ell+1}=\hat{\mathbf{f}}_{\ell}+\alpha_{\ell} \hat{\mathbf{W}} \hat{\mathbf{p}}_{\ell}
$$

$$
\mathbf{r}_{\ell+1}=\mathbf{r}_{\ell}-\alpha_{\ell} \mathbf{v}_{\ell}
$$

$$
\hat{\mathbf{z}}_{\ell+1}=\mathbf{A}^{\mathrm{H}} \mathbf{W} \mathbf{r}_{\ell+1}
$$

$$
\beta_{\ell}=\left(\hat{\mathbf{z}}_{\ell+1}^{\mathrm{H}} \hat{\mathbf{W}} \hat{\mathbf{z}}_{\ell+1}\right)^{-1}\left(\hat{\mathbf{z}}_{\ell}^{\mathrm{H}} \hat{\mathbf{W}} \hat{\mathbf{z}}_{\ell}\right)
$$

$$
\hat{\mathbf{p}}_{\ell+1}=\beta_{\ell} \hat{\mathbf{p}}_{\ell}+\hat{\mathbf{z}}_{\ell+1}
$$

Output: $\hat{\mathbf{f}}_{\ell} \in \mathbb{C}^{N^{d}}$ eth approximation of the solution vector $\hat{\mathbf{f}}$.

Remark 7.28 The algorithms presented in this chapter are part of the NFFT software [199]. The algorithmic details are described in [198]. The proposed algorithms have been implemented on top of the well-optimized FFTW software library [122, 123]. The implementation and numerical results of the multi-threaded NFFT based on OpenMP are described in [365]. Furthermore there exist MATLAB and Octave interfaces. We provide also windows binaries as DLL.

Implementations on GPU are presented in [211, 385]. Parallel NFFT algorithms are developed in [272] and have been published in the PNFFT software library [270]. The implementation of these algorithms is part of the publicly available ScaFaCoS software library [9].

Chapter 8
 High-Dimensional FFT

In this chapter, we discuss methods for the approximation of d-variate functions in high dimension $d \in \mathbb{N}$ based on sampling along rank-1 lattices and we derive the corresponding fast algorithms. In contrast to Chap.4, our approach to compute the Fourier coefficients of d-variate functions is no longer based on tensor product methods. In Sect. 8.1, we introduce weighted subspaces of $L_{1}\left(\mathbb{T}^{d}\right)$ which are characterized by the decay properties of the Fourier coefficients. We show that functions in these spaces can already be approximated well by d-variate trigonometric polynomials on special frequency index sets. In Sect. 8.2, we study the fast evaluation of d-variate trigonometric polynomials on finite frequency index sets. We introduce the so-called rank-1 lattices and derive an algorithm for the fast evaluation of these trigonometric polynomials at the lattice points. The special structure of the rank-1 lattice enables us to perform this computation using only a one-dimensional FFT. In order to reconstruct the Fourier coefficients of the d-variate trigonometric polynomials from the polynomial values at the lattice points exactly, the used rank-1 lattice needs to satisfy a special condition. Using the so-called reconstructing rank-1 lattices, the stable computation of the Fourier coefficients of a d-variate trigonometric polynomial can again be performed by employing only a one-dimensional FFT, where the numerical effort depends on the lattice size. In Sect.8.3, we come back to the approximation of periodic functions in weighted subspaces of $L_{1}\left(\mathbb{T}^{d}\right)$ on rank-1 lattices. Section 8.4 considers the construction of rank-1 lattices. We present a constructive component-by-component algorithm with less than $|I|^{2}$ lattice points, where I denotes the finite index set of nonzero Fourier coefficients that have to be computed. In particular, this means that the computational effort to reconstruct the Fourier coefficients depends only linearly on the dimension and mainly on the size of the frequency index sets of the considered trigonometric polynomials. In order to overcome the limitations of the single rank-1 lattice approach, we generalize the proposed methods to multiple rank-1 lattices in Sect. 8.5.

8.1 Fourier Partial Sums of Smooth Multivariate Functions

In order to ensure a good quality of the obtained approximations of d-variate periodic functions, we need to assume that these functions satisfy certain smoothness conditions, which are closely related to the decay properties of their Fourier coefficients. As we have already seen for $d=1$, the smoothness properties of a function strongly influence the quality of a specific approximation method, for example, see Theorem 1.39 of Bernstein.

We consider a d-variate periodic function $f: \mathbb{T}^{d} \rightarrow \mathbb{C}$ with the Fourier series

$$
\begin{equation*}
f(\mathbf{x})=\sum_{\mathbf{k} \in \mathbb{Z}^{d}} c_{\mathbf{k}}(f) \mathrm{e}^{\mathrm{i} \mathbf{k} \cdot \mathbf{x}} \tag{8.1}
\end{equation*}
$$

We will always assume that $f \in L_{1}\left(\mathbb{T}^{d}\right)$ in order to guarantee the existence of all Fourier coefficients $c_{\mathbf{k}}(f), \mathbf{k} \in \mathbb{Z}^{d}$. For the definition of function spaces $L_{p}\left(\mathbb{T}^{d}\right)$, $1 \leq p<\infty$, we refer to Sect.4.1.

The decay properties of Fourier coefficients can also be used to characterize the smoothness of the function f, see Theorem 1.37 for $d=1$ or Theorem 4.9 for $d>1$. For a detailed characterization of periodic functions and suitable function spaces, in particular with respect to the decay properties of the Fourier coefficients, we refer to [322, Chapter 3].

In this section, we consider the approximation of a d-variate periodic function $f \in L_{1}\left(\mathbb{T}^{d}\right)$ using Fourier partial sums $S_{I} f$,

$$
\begin{equation*}
\left(S_{I} f\right)(\mathbf{x}):=\sum_{\mathbf{k} \in I} c_{\mathbf{k}}(f) \mathrm{e}^{\mathrm{i} \mathbf{k} \cdot \mathbf{x}} \tag{8.2}
\end{equation*}
$$

where the finite index set $I \subset \mathbb{Z}^{d}$ needs to be carefully chosen with respect to the properties of the sequence of the Fourier coefficients $\left(c_{\mathbf{k}}(f)\right)_{\mathbf{k} \in \mathbb{Z}^{d}}$. The set I is called frequency index set of the Fourier partial sum. The operator $S_{I}: L_{1}\left(\mathbb{T}^{d}\right) \rightarrow$ $C\left(\mathbb{T}^{d}\right)$ maps f to a trigonometric polynomial with frequencies supported on the finite index set I. We call

$$
\Pi_{I}:=\operatorname{span}\left\{\mathrm{e}^{\mathrm{i} \mathbf{k} \cdot \mathbf{x}}: \mathbf{k} \in I\right\}
$$

the space of trigonometric polynomials supported on I. We will be interested in frequency index sets of type

$$
\begin{equation*}
I=I_{p, N}^{d}:=\left\{\mathbf{k}=\left(k_{s}\right)_{s=1}^{d} \in \mathbb{Z}^{d}:\|\mathbf{k}\|_{p} \leq N\right\} \tag{8.3}
\end{equation*}
$$

Fig. 8.1 Two-dimensional frequency index sets $I_{p, 16}^{2}$ for $p \in\left\{\frac{1}{2}, 1,2, \infty\right\}$. (a) $I_{\frac{1}{2}, 16}^{2}$. (b) $I_{1,16}^{2}$. (c) $I_{2,16}^{2}$. (d) $I_{\infty, 16}^{2}$
where $\|\mathbf{k}\|_{p}$ is the usual p-(quasi-)norm

$$
\|\mathbf{k}\|_{p}:= \begin{cases}\left(\sum_{s=1}^{d}\left|k_{s}\right|^{p}\right)^{1 / p} & 0<p<\infty \\ \max _{s=1, \ldots, d}\left|k_{s}\right| & p=\infty\end{cases}
$$

Figure 8.1 illustrates the two-dimensional frequency index sets $I_{p, 16}^{2}$ for $p \in$ $\left\{\frac{1}{2}, 1,2, \infty\right\}$, see also $[185,371,372]$.

If the absolute values of the Fourier coefficients decrease sufficiently fast for growing frequency index \mathbf{k}, we can very well approximate the function f using only a few terms $c_{\mathbf{k}}(f) \mathrm{e}^{\mathrm{i} \mathbf{k} \cdot \mathbf{x}}, \mathbf{k} \in I \subset \mathbb{Z}^{d}$ with cardinality $|I|<\infty$. In particular, we will consider a periodic function $f \in L_{1}\left(\mathbb{T}^{d}\right)$ whose sequence of Fourier coefficients is absolutely summable. This implies by Theorem 4.9 that f has a continuous representative within $L_{1}\left(\mathbb{T}^{d}\right)$. We introduce the weighted subspace $\mathscr{A}_{\omega}\left(\mathbb{T}^{d}\right)$ of $L_{1}\left(\mathbb{T}^{d}\right)$ of functions $f: \mathbb{T}^{d} \rightarrow \mathbb{C}$ equipped with the norm

$$
\begin{equation*}
\|f\|_{\mathscr{A}_{\omega}\left(\mathbb{T}^{d}\right)}:=\sum_{\mathbf{k} \in \mathbb{Z}^{d}} \omega(\mathbf{k})\left|c_{\mathbf{k}}(f)\right|, \tag{8.4}
\end{equation*}
$$

if f has the Fourier expansion (8.1). Here $\omega: \mathbb{Z}^{d} \rightarrow[1, \infty)$ is called weight function and characterizes the decay of the Fourier coefficients. If ω is increasing for $\|\mathbf{k}\|_{p} \rightarrow$ ∞, then the Fourier coefficients $c_{\mathbf{k}}(f)$ of $f \in \mathscr{A}_{\omega}\left(\mathbb{T}^{d}\right)$ have to decrease faster than the weight function ω increases with respect to $\mathbf{k}=\left(k_{s}\right)_{s=1}^{d} \in \mathbb{Z}^{d}$.

Example 8.1 Important examples for a weight function ω are

$$
\omega(\mathbf{k})=\omega_{p}^{d}(\mathbf{k}):=\max \left\{1,\|\mathbf{k}\|_{p}\right\}
$$

for $0<p \leq \infty$. Instead of the p-norm, one can also consider a weighted p-norm. To characterize function spaces with dominating smoothness, also weight functions of the form

$$
\omega(\mathbf{k})=\prod_{s=1}^{d} \max \left\{1,\left|k_{s}\right|\right\}
$$

have been considered, see, e.g., [94, 184, 353].
Observe that $\omega(\mathbf{k}) \geq 1$ for all $\mathbf{k} \in \mathbb{Z}^{d}$. Let ω_{1} be the special weight function with $\omega_{1}(\mathbf{k})=1$ for all $\mathbf{k} \in \mathbb{Z}^{d}$ and $\mathscr{A}\left(\mathbb{T}^{d}\right):=\mathscr{A}_{\omega_{1}}\left(\mathbb{T}^{d}\right)$. The space $\mathscr{A}\left(\mathbb{T}^{d}\right)$ is called Wiener algebra. Further, we recall that $C\left(\mathbb{T}^{d}\right)$ denotes the Banach space of continuous d-variate 2π-periodic functions. The norm of $C\left(\mathbb{T}^{d}\right)$ coincides with the norm of $L_{\infty}\left(\mathbb{T}^{d}\right)$. The next lemma, see [184, Lemma 2.1], states that the embeddings $\mathscr{A}_{\omega}\left(\mathbb{T}^{d}\right) \subset \mathscr{A}\left(\mathbb{T}^{d}\right) \subset C\left(\mathbb{T}^{d}\right)$ are true .

Lemma 8.2 Each function $f \in \mathscr{A}\left(\mathbb{T}^{d}\right)$ has a continuous representative. In particular, we obtain $\mathscr{A}_{\omega}\left(\mathbb{T}^{d}\right) \subset \mathscr{A}\left(\mathbb{T}^{d}\right) \subset C\left(\mathbb{T}^{d}\right)$ with the usual interpretation.
Proof Let $f \in \mathscr{A}_{\omega}\left(\mathbb{T}^{d}\right)$ be given. Then the function f belongs to $\mathscr{A}\left(\mathbb{T}^{d}\right)$, since the following estimate holds:

$$
\sum_{\mathbf{k} \in \mathbb{Z}^{d}}\left|c_{\mathbf{k}}(f)\right| \leq \sum_{\mathbf{k} \in \mathbb{Z}^{d}} \omega(\mathbf{k})\left|c_{\mathbf{k}}(f)\right|<\infty .
$$

Now let $f \in \mathscr{A}\left(\mathbb{T}^{d}\right)$ be given. The summability of the sequence $\left(\left|c_{\mathbf{k}}(f)\right|\right)_{\mathbf{k} \in \mathbb{Z}^{d}}$ of the absolute values of the Fourier coefficients implies the summability of the sequence $\left(\left|c_{\mathbf{k}}(f)\right|^{2}\right)_{\mathbf{k} \in \mathbb{Z}^{d}}$ of the squared absolute values of the Fourier coefficients and, thus, the embedding $\mathscr{A}\left(\mathbb{T}^{d}\right) \subset L_{2}\left(\mathbb{T}^{d}\right)$ is proved using Parseval equation (4.4).

Clearly, the function $g(\mathbf{x})=\sum_{\mathbf{k} \in \mathbb{Z}^{d}} c_{\mathbf{k}}(f) \mathrm{e}^{\mathrm{i} \cdot \mathbf{x}}$ is a representative of f in $L_{2}\left(\mathbb{T}^{d}\right)$ and also in $\mathscr{A}\left(\mathbb{T}^{d}\right)$. We show that g is the continuous representative of f. The absolute values of the Fourier coefficients of $f \in \mathscr{A}\left(\mathbb{T}^{d}\right)$ are summable. So, for each $\varepsilon>0$ there exists a finite index set $I \subset \mathbb{Z}^{d}$ with $\sum_{\mathbf{k} \in \mathbb{Z}^{d} \backslash I}\left|c_{\mathbf{k}}(f)\right|<\frac{\varepsilon}{4}$. For a fixed $\mathbf{x}_{0} \in \mathbb{T}^{d}$, we estimate

$$
\begin{aligned}
\left|g\left(\mathbf{x}_{0}\right)-g(\mathbf{x})\right| & =\left|\sum_{\mathbf{k} \in \mathbb{Z}^{d}} c_{\mathbf{k}}(f) \mathrm{e}^{\mathrm{i} \mathbf{k} \cdot \mathbf{x}_{0}}-\sum_{\mathbf{k} \in \mathbb{Z}^{d}} c_{\mathbf{k}}(f) \mathrm{e}^{\mathrm{i} \mathbf{k} \cdot \mathbf{x}}\right| \\
& \leq\left|\sum_{\mathbf{k} \in I} c_{\mathbf{k}}(f) \mathrm{e}^{\mathrm{i} \mathbf{k} \cdot \mathbf{x}_{0}}-\sum_{\mathbf{k} \in I} c_{\mathbf{k}}(f) \mathrm{e}^{\mathrm{i} \mathbf{k} \cdot \mathbf{x}}\right|+\frac{\varepsilon}{2} .
\end{aligned}
$$

The trigonometric polynomial $\left(S_{I} f\right)(\mathbf{x})=\sum_{\mathbf{k} \in I} c_{\mathbf{k}} \mathrm{e}^{\mathrm{i} \mathbf{k} \cdot \mathbf{x}}$ is a continuous function. Accordingly, for $\varepsilon>0$ and $\mathbf{x}_{0} \in \mathbb{T}^{d}$ there exists a $\delta_{0}>0$ such that $\left\|\mathbf{x}_{0}-\mathbf{x}\right\|_{1}<\delta_{0}$ implies $\left|\left(S_{I} f\right)\left(\mathbf{x}_{0}\right)-\left(S_{I} f\right)(\mathbf{x})\right|<\frac{\varepsilon}{2}$. Then we obtain $\left|g\left(\mathbf{x}_{0}\right)-g(\mathbf{x})\right|<\varepsilon$ for all \mathbf{x} with $\left\|\mathbf{x}_{0}-\mathbf{x}\right\|_{1}<\delta_{0}$.

In particular for our further considerations on sampling methods, it is essential that we identify each function $f \in \mathscr{A}\left(\mathbb{T}^{d}\right)$ with its continuous representative in the following. Note that the definition of $\mathscr{A}_{\omega}\left(\mathbb{T}^{d}\right)$ in (8.4) using the Fourier series representation of f already comprises the continuity of the contained functions.

Considering Fourier partial sums, we will always call them exact Fourier partial sums in contrast to approximate partial Fourier sums that will be introduced later.
Lemma 8.3 Let $I_{N}=\left\{\mathbf{k} \in \mathbb{Z}^{d}: \omega(\mathbf{k}) \leq N\right\}, N \in \mathbb{R}$, be a frequency index set defined by the weight function ω. Assume that the cardinality $\left|I_{N}\right|$ is finite.

Then the exact Fourier partial sum

$$
\begin{equation*}
\left(S_{I_{N}} f\right)(\mathbf{x}):=\sum_{\mathbf{k} \in I_{N}} c_{\mathbf{k}}(f) \mathrm{e}^{\mathrm{i} \mathbf{k} \cdot \mathbf{x}} \tag{8.5}
\end{equation*}
$$

approximates the function $f \in \mathscr{A}_{\omega}\left(\mathbb{T}^{d}\right)$ and we have

$$
\left\|f-S_{I_{N}} f\right\|_{L_{\infty}\left(\mathbb{T}^{d}\right)} \leq N^{-1}\|f\|_{\mathscr{A}_{\omega}\left(\mathbb{T}^{d}\right)}
$$

Proof We follow the ideas of [184, Lemma 2.2]. Let $f \in \mathscr{A}_{\omega}\left(\mathbb{T}^{d}\right)$. Obviously, $S_{I_{N}} f \in \mathscr{A}_{\omega}\left(\mathbb{T}^{d}\right) \subset C\left(\mathbb{T}^{d}\right)$ and we obtain

$$
\begin{aligned}
\left\|f-S_{I_{N}} f\right\|_{L_{\infty}\left(\mathbb{T}^{d}\right)} & =\underset{\mathbf{x} \in \mathbb{T}^{d}}{\operatorname{ess} \sup }\left|\left(f-S_{I_{N}} f\right)(\mathbf{x})\right|=\underset{\mathbf{x} \in \mathbb{T}^{d}}{\operatorname{ess} \sup }\left|\sum_{\mathbf{k} \in \mathbb{Z}^{d} \backslash I_{N}} c_{\mathbf{k}}(f) \mathrm{e}^{\mathrm{i} \mathbf{k} \cdot \mathbf{x}}\right| \\
& \leq \sum_{\mathbf{k} \in \mathbb{Z}^{d} \backslash I_{N}}\left|c_{\mathbf{k}}(f)\right| \leq \frac{1}{\inf _{\mathbf{k} \in \mathbb{Z}^{d} \backslash I_{N}} \omega(\mathbf{k})} \sum_{\mathbf{k} \in \mathbb{Z}^{d} \backslash I_{N}} \omega(\mathbf{k})\left|c_{\mathbf{k}}(f)\right| \\
& \leq \frac{1}{N} \sum_{\mathbf{k} \in \mathbb{Z}^{d}} \omega(\mathbf{k})\left|c_{\mathbf{k}}(f)\right|=N^{-1}\|f\|_{\mathscr{\mathscr { L } _ { \omega } (\mathbb { T } ^ { d })}}
\end{aligned}
$$

Remark 8.4 For the weight function $\omega(\mathbf{k})=\left(\max \left\{1,\|\mathbf{k}\|_{p}\right\}\right)^{\alpha / 2}$ with $0<p \leq \infty$ and $\alpha>0$ we similarly obtain for the index set $I_{N}=I_{p, N}^{d}$ given in (8.3)

$$
\begin{aligned}
\left\|f-S_{I_{p, N}^{d}} f\right\|_{L_{\infty}\left(\mathbb{T}^{d}\right)} & \leq N^{-\alpha / 2} \sum_{\mathbf{k} \in \mathbb{Z}^{d} \backslash I_{p, N}^{d}}\left(\max \left\{1,\|\mathbf{k}\|_{p}\right\}\right)^{\alpha / 2}\left|c_{\mathbf{k}}(f)\right| \\
& \leq N^{-\alpha / 2}\|f\|_{\mathscr{A} \omega}\left(\mathbb{T}^{d}\right)
\end{aligned}
$$

The error estimates can be also transferred to other norms. Let $H^{\alpha, p}\left(\mathbb{T}^{d}\right)$ denote the periodic Sobolev space of isotropic smoothness consisting of all $f \in L_{2}\left(\mathbb{T}^{d}\right)$ with finite norm

$$
\begin{equation*}
\|f\|_{H^{\alpha, p}\left(\mathbb{T}^{d}\right)}:=\sum_{\mathbf{k} \in \mathbb{Z}^{d}}\left(\max \left\{1,\|\mathbf{k}\|_{p}\right\}\right)^{\alpha}\left|c_{\mathbf{k}}(f)\right|^{2}, \tag{8.6}
\end{equation*}
$$

where f possesses the Fourier expansion (8.1) and where $\alpha>0$ is the smoothness parameter. Using the Cauchy-Schwarz inequality, we obtain here

$$
\begin{aligned}
\left\|f-S_{I_{p, N}^{d}} f\right\|_{L_{\infty}\left(\mathbb{T}^{d}\right)} & \leq \sum_{\mathbf{k} \in \mathbb{Z}^{d} \backslash I_{p, N}^{d}}\left|c_{\mathbf{k}}(f)\right| \\
& \leq\left(\sum_{\mathbf{k} \in \mathbb{Z}^{d} \backslash I_{p, N}^{d}}\|\mathbf{k}\|_{p}^{-\alpha}\right)^{1 / 2}\left(\sum_{\mathbf{k} \in \mathbb{Z}^{d} \backslash I_{p, N}^{d}}\|\mathbf{k}\|_{p}^{\alpha}\left|c_{\mathbf{k}}(f)\right|^{2}\right)^{1 / 2} \\
& \leq\left(\sum_{\mathbf{k} \in \mathbb{Z}^{d} \backslash I_{p, N}^{d}}\|\mathbf{k}\|_{p}^{-\alpha}\right)^{1 / 2}\|f\|_{H^{\alpha, p}\left(\mathbb{T}^{d}\right)} .
\end{aligned}
$$

Note that this estimate is related to the estimates on the decay of Fourier coefficients for functions $f \in C^{r}\left(\mathbb{T}^{d}\right)$ in (4.1) and Theorem 4.9. For detailed estimates of the approximation error of Fourier partial sums in these spaces, we refer to [210].

As we will see later, for efficient approximation, other frequency index sets, as, e.g., frequency index sets related to the hyperbolic crosses, are of special interest. The corresponding approximation errors have been studied in [59, 190, 191].
Lemma 8.5 Let $N \in \mathbb{N}$ and the frequency index set $I_{N}:=\left\{\mathbf{k} \in \mathbb{Z}^{d}: 1 \leq \omega(\mathbf{k}) \leq\right.$ $N\}$ with the cardinality $0<\left|I_{N}\right|<\infty$ be given.

Then the norm of the operator $S_{I_{N}}$ that maps $f \in \mathscr{A}_{\omega}\left(\mathbb{T}^{d}\right)$ to its Fourier partial sum $S_{I_{N}} f$ on the index set I_{N} is bounded by

$$
\frac{1}{\min _{\mathbf{k} \in \mathbb{Z}^{d}} \omega(\mathbf{k})} \leq\left\|S_{I_{N}}\right\|_{\mathscr{A} \omega\left(\mathbb{T}^{d}\right) \rightarrow C\left(\mathbb{T}^{d}\right)} \leq \frac{1}{\min _{\mathbf{k} \in \mathbb{Z}^{d}} \omega(\mathbf{k})}+\frac{1}{N} .
$$

Proof

1. Since $\left|I_{N}\right|$ is finite, there exists $\min _{\mathbf{k} \in I_{N}} \omega(\mathbf{k})$. The definition of I_{N} implies that $\min _{\mathbf{k} \in \mathbb{Z}^{d}} \omega(\mathbf{k})=\min _{\mathbf{k} \in I_{N}} \omega(\mathbf{k})$. To obtain the upper bound for the operator norm we apply the triangle inequality and Lemma 8.3,

$$
\begin{aligned}
& \left\|S_{I_{N}}\right\|_{\mathscr{A}_{\omega}\left(\mathbb{T}^{d}\right) \rightarrow C\left(\mathbb{T}^{d}\right)}=\sup _{\substack{f \in \mathscr{A}_{\omega}\left(\mathbb{T}^{d}\right) \\
\|f\|_{\mathscr{A}_{\omega}\left(\mathbb{T}^{d}\right)}=1}}\left\|S_{I_{N}} f\right\|_{C\left(\mathbb{T}^{d}\right)} \\
& \leq \sup _{\substack{f \in \mathscr{A}_{\omega}\left(\mathbb{T}^{d}\right) \\
\|f\|_{\mathscr{A}_{\omega}\left(\mathbb{T}^{d}\right)}=1}}\left\|S_{I_{N}} f-f\right\|_{C\left(\mathbb{T}^{d}\right)}+\sup _{\substack{f \in \mathscr{A}_{\omega}\left(\mathbb{T}^{d}\right) \\
\|f\|_{\mathscr{A}_{\omega}\left(\mathbb{T}^{d}\right)}=1}}\|f\|_{C\left(\mathbb{T}^{d}\right)} \\
& \leq \sup _{\substack{\left.f \in \mathscr{A}_{\omega}\left(\mathbb{T}^{d}\right) \\
\|f\|_{\mathscr{A}_{\omega}\left(\mathbb{T}^{d}\right)}\right)}}\left(\sum_{\mathbf{k} \in \mathbb{Z}^{d}}\left|c_{\mathbf{k}}(f)\right|+N^{-1}\|f\|_{\mathscr{A}_{\omega}\left(\mathbb{T}^{d}\right)}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \leq \sup _{\substack{f \in \mathscr{A}_{\omega}\left(\mathbb{T}^{d}\right) \\
\|f\|_{\mathscr{A} \omega}\left(\mathbb{T}^{d}\right)}}\left(\sum_{\mathbf{k} \in \mathbb{Z}^{d}} \frac{\omega(\mathbf{k})}{\min _{\tilde{\mathbf{k}} \in \mathbb{Z}^{d}} \omega(\tilde{\mathbf{k}})}\left|c_{\mathbf{k}}(f)\right|+N^{-1}\|f\|_{\mathscr{A}_{\omega}\left(\mathbb{T}^{d}\right)}\right) \\
& \leq \frac{1}{\min _{\mathbf{k} \in \mathbb{Z}^{d}} \omega(\mathbf{k})}+\frac{1}{N} .
\end{aligned}
$$

2. To prove the lower bound we construct a suitable example. Let $\mathbf{k}^{\prime} \in I_{N}$ be a frequency index with $\omega\left(\mathbf{k}^{\prime}\right)=\min _{\mathbf{k} \in \mathbb{Z}^{d}} \omega(\mathbf{k})$. We choose the trigonometric polynomial $g(\mathbf{x})=\frac{1}{\omega\left(\mathbf{k}^{\prime}\right)} \mathrm{e}^{\mathrm{i} \mathbf{k}^{\prime} \cdot \mathbf{x}}$ which is an element of $\mathscr{A}_{\omega}\left(\mathbb{T}^{d}\right)$ with $\|g\|_{\mathscr{A}_{\omega}\left(\mathbb{T}^{d}\right)}=$ 1. Since $S_{I_{N}} g=g$, we find

$$
\left\|S_{I_{N}}\right\|_{\mathscr{A} \omega\left(\mathbb{T}^{d}\right) \rightarrow C\left(\mathbb{T}^{d}\right)} \geq\left\|S_{I_{N}} g\right\|_{C\left(\mathbb{T}^{d}\right)}=\|g\|_{C\left(\mathbb{T}^{d}\right)}=g(\mathbf{0})=\frac{1}{\omega\left(\mathbf{k}^{\prime}\right)}=\frac{1}{\min _{\mathbf{k} \in I_{N}} \omega(\mathbf{k})} .
$$

Our observations in this section imply that smooth functions with special decay of their Fourier coefficients can be well approximated by d-variate trigonometric polynomials on special index sets. In the next section we will therefore study the efficient evaluation of d-variate trigonometric polynomials on special grids, as well as the corresponding efficient computation of their Fourier coefficients.

8.2 Fast Evaluation of Multivariate Trigonometric Polynomials

As we have seen in the last section, smooth functions in $\mathscr{A}_{\omega}\left(\mathbb{T}^{d}\right)$ can be already well approximated by d-variate trigonometric polynomials on index sets $I_{N}=\left\{\mathbf{k} \in \mathbb{Z}^{d}\right.$: $\omega(\mathbf{k}) \leq N\}$. In Fig. 8.1, we have seen possible two-dimensional index sets, where $\omega(\mathbf{k})=\max \left\{1,\|\mathbf{k}\|_{p}\right\}$. Therefore we study trigonometric polynomials $p \in \Pi_{I}$ on the d-dimensional torus $\mathbb{T}^{d} \cong[0,2 \pi)^{d}$ of the form

$$
\begin{equation*}
p(\mathbf{x})=\sum_{\mathbf{k} \in I} \hat{p}_{\mathbf{k}} \mathrm{e}^{\mathrm{i} \mathbf{k} \cdot \mathbf{x}} \tag{8.7}
\end{equation*}
$$

with Fourier coefficients $\hat{p}_{\mathbf{k}} \in \mathbb{C}$ and with a fixed finite frequency index set $I \subset \mathbb{Z}^{d}$ of cardinality $|I|$.

Let $X \subset[0,2 \pi)^{d}$ be a finite set of sampling points with $|X|$ elements. Now we are interested in solving the following two problems:
(i) Evaluation of trigonometric polynomials. For given Fourier coefficients $\hat{p}_{\mathbf{k}}$, $\mathbf{k} \in I$, how to compute the polynomial values $p(\mathbf{x})$ for all $\mathbf{x} \in X$ efficiently?
(ii) Evaluation of the Fourier coefficients. For given polynomial values $p(\mathbf{x}), \mathbf{x} \in$ X, how to compute $\hat{p}_{\mathbf{k}}$ for all $\mathbf{k} \in I$ efficiently?

The second problem also involves the question, how the sampling set X has to be chosen such that $\hat{p}_{\mathbf{k}}$ for all $\mathbf{k} \in I$ can be uniquely computed in a stable way.

Let us consider the $|X|$-by- $|I|$ Fourier matrix $\mathbf{A}=\mathbf{A}(X, I)$ defined by

$$
\mathbf{A}=\mathbf{A}(X, I):=\left(\mathrm{e}^{\mathrm{i} \mathbf{k} \cdot \mathbf{x}}\right)_{\mathbf{x} \in X, \mathbf{k} \in I} \in \mathbb{C}^{|X| \times|I|}
$$

as well as the two vectors $\mathbf{p}:=(p(\mathbf{x}))_{\mathbf{x} \in X} \in \mathbb{C}^{|X|}$ and $\hat{\mathbf{p}}:=(\hat{p}(\mathbf{k}))_{\mathbf{k} \in I} \in \mathbb{C}^{|I|}$. To solve problem (i), we need to perform the matrix-vector multiplication

$$
\begin{equation*}
\mathbf{p}=\mathbf{A} \hat{\mathbf{p}} \tag{8.8}
\end{equation*}
$$

To compute $\hat{\mathbf{p}}$ from \mathbf{p}, we have to solve the inverse problem. For arbitrary polynomial $p \in \Pi_{I}$ this problem is only uniquely solvable, if $|X| \geq|I|$ and if A possesses full rank $|I|$. In other words, the sampling set X needs to be large enough and the obtained samples need to contain "enough information" about p. Then $\mathbf{A}^{\mathrm{H}} \mathbf{A} \in \mathbb{C}^{|I| \times|I|}$ is invertible, and we have

$$
\begin{equation*}
\hat{\mathbf{p}}=\left(\mathbf{A}^{\mathrm{H}} \mathbf{A}\right)^{-1} \mathbf{A}^{\mathrm{H}} \mathbf{p} \tag{8.9}
\end{equation*}
$$

In order to ensure stability of this procedure, we want to assume that the columns of \mathbf{A} are orthogonal, i.e., $\mathbf{A}^{\mathrm{H}} \mathbf{A}=M \mathbf{I}_{|I|}$, where $\mathbf{I}_{|I|}$ is the $|I|$-by- $|I|$ unit matrix and $M=|X|$. Then (8.9) simplifies to

$$
\hat{\mathbf{p}}=\frac{1}{M} \mathbf{A}^{\mathrm{H}} \mathbf{p}
$$

In the following, we will consider very special sampling sets X, so-called rank-1 lattices.

8.2.1 Rank-1 Lattices

Initially, rank-1 lattices were introduced as sampling schemes for (equally weighted) cubature formulas in the late 1950 s and 1960s, see [206]. A summary of the early work on cubature rules based on rank-1 lattice sampling can be found in [255]. The recent increased interest in rank-1 lattices is particularly caused by new approaches to describe lattice rules that allow optimal theoretical error estimates for cubature formulas for specific function classes, see, e.g., [334]. We also refer to [332] for a survey on lattice methods for numerical integration. Note that lattice rules are a powerful and popular form of quasi-Monte Carlo rules [86].

In contrast to general lattices which are spanned by several vectors, we consider only sampling on the so-called rank-1 lattices. This simplifies the evaluation of trigonometric polynomials essentially and allows to derive necessary and sufficient conditions for unique or stable reconstruction.

For a given nonzero vector $\mathbf{z} \in \mathbb{Z}^{d}$ and a positive integer $M \in \mathbb{N}$ we define the rank-1 lattice

$$
\begin{equation*}
X=\Lambda(\mathbf{z}, M):=\left\{\mathbf{x}_{j}:=\frac{2 \pi}{M}(j \mathbf{z} \bmod M \mathbf{1}) \in[0,2 \pi)^{d}: j=0, \ldots, M-1\right\} \tag{8.10}
\end{equation*}
$$

as spatial discretization in $[0,2 \pi)^{d}$. Here, $\mathbf{1}:=(1)_{s=1}^{d} \in \mathbb{Z}^{d}$ and for $\mathbf{z}=$ $\left(z_{s}\right)_{s=1}^{d} \in \mathbb{Z}^{d}$ the term $j \mathbf{z} \bmod M \mathbf{1}$ denotes the vector $\left(j z_{s} \bmod M\right)_{s=1}^{d}$. We call \mathbf{z} the generating vector and M the lattice size of the rank-1 lattice $\Lambda(\mathbf{z}, M)$. To ensure that $\Lambda(\mathbf{z}, M)$ has exactly M distinct elements, we assume that M is coprime with at least one component of \mathbf{z}. Further, for a given rank-1 lattice $\Lambda(\mathbf{z}, M)$ with generating vector $\mathbf{z} \in \mathbb{Z}^{d}$ we call the set

$$
\begin{equation*}
\Lambda^{\perp}(\mathbf{z}, M):=\left\{\mathbf{k} \in \mathbb{Z}^{d}: \mathbf{k} \cdot \mathbf{z} \equiv 0 \bmod M\right\} \tag{8.11}
\end{equation*}
$$

the integer dual lattice of $\Lambda(\mathbf{z}, M)$. The integer dual lattice $\Lambda^{\perp}(\mathbf{z}, M)$ will play an important role, when we approximate the Fourier coefficients of a function f using only samples of f on the rank-1 lattice $\Lambda(\mathbf{z}, M)$.
Example 8.6 Let $d=2, \mathbf{z}=(1,3)^{\top}$ and $M=11$, then we obtain

$$
\begin{aligned}
\Lambda(\mathbf{z}, M)= & \frac{2 \pi}{11}\left\{\binom{0}{0},\binom{1}{3},\binom{2}{6},\binom{3}{9},\binom{4}{1},\binom{5}{4},\binom{6}{7},\right. \\
& \left.\binom{7}{10},\binom{8}{2},\binom{9}{5},\binom{10}{8}\right\},
\end{aligned}
$$

and $\Lambda^{\perp}(\mathbf{z}, M)$ contains all vectors $\mathbf{k}=\left(k_{1}, k_{2}\right)^{\top} \in \mathbb{Z}^{2}$ with $k_{1}+3 k_{2} \equiv 0 \bmod 11$. Figure 8.2 illustrates the construction of this two-dimensional rank-1 lattice.

A rank-1 lattice possesses the following important property:
Lemma 8.7 Let a frequency index set $I \subset \mathbb{Z}^{d}$ of finite cardinality and a rank-1 lattice $X=\Lambda(\mathbf{z}, M)$ be given.

Then two distinct columns of the corresponding M-by- $|I|$ Fourier matrix \mathbf{A} are either orthogonal or equal, i.e., the (\mathbf{h}, \mathbf{k}) th entry $\left(\mathbf{A}^{\mathrm{H}} \mathbf{A}\right)_{\mathbf{h}, \mathbf{k}} \in\{0, M\}$ for all \mathbf{h}, $\mathbf{k} \in I$.

Fig. 8.2 Rank-1 lattice
$\Lambda(\mathbf{z}, M)$ of Example 8.6

Proof The matrix $\mathbf{A}^{\mathrm{H}} \mathbf{A}$ contains all inner products of two columns of the Fourier matrix \mathbf{A}, i.e., the (\mathbf{h}, \mathbf{k}) th entry $\left(\mathbf{A}^{\mathrm{H}} \mathbf{A}\right)_{\mathbf{h}, \mathbf{k}}$ is equal to the inner product of the \mathbf{k} th column and the $\mathbf{h t h}$ column of \mathbf{A}. For $\mathbf{k} \cdot \mathbf{z} \not \equiv \mathbf{h} \cdot \mathbf{z} \bmod M$ we obtain

$$
\left(\mathbf{A}^{\mathrm{H}} \mathbf{A}\right)_{\mathbf{h}, \mathbf{k}}=\sum_{j=0}^{M-1}\left(\mathrm{e}^{2 \pi \mathrm{i}[(\mathbf{k}-\mathbf{h}) \cdot \mathbf{z}] / M}\right)^{j}=\frac{\mathrm{e}^{2 \pi \mathrm{i}(\mathbf{k}-\mathbf{h}) \cdot \mathbf{z}}-1}{\mathrm{e}^{2 \pi \mathrm{i}[(\mathbf{k}-\mathbf{h}) \cdot \mathbf{z}] / M}-1}=0,
$$

since $\mathbf{k}-\mathbf{h} \in \mathbb{Z}^{d}$.
For $\mathbf{k} \cdot \mathbf{z} \equiv \mathbf{h} \cdot \mathbf{z} \bmod M$ it follows immediately that the \mathbf{k} th and \mathbf{h} th column of \mathbf{A} are equal and that $\left(\mathbf{A}^{\mathrm{H}} \mathbf{A}\right)_{\mathbf{h}, \mathbf{k}}=M$.

8.2.2 Evaluation of Trigonometric Polynomials on Rank-1 Lattice

Let us now consider the efficient evaluation of a d-variate trigonometric polynomial p supported on I on the sampling set X being a rank- 1 lattice $X=\Lambda(\mathbf{z}, M)$. We have to compute $p\left(\mathbf{x}_{j}\right)$ for all M nodes $\mathbf{x}_{j} \in \Lambda(\mathbf{z}, M)$, i.e.,

$$
p\left(\mathbf{x}_{j}\right)=\sum_{\mathbf{k} \in I} \hat{p}_{\mathbf{k}} \mathrm{e}^{\mathrm{i} \mathbf{k} \cdot \mathbf{x}_{j}}=\sum_{\mathbf{k} \in I} \hat{p}_{\mathbf{k}} \mathrm{e}^{2 \pi \mathrm{i} j(\mathbf{k} \cdot \mathbf{z}) / M}, \quad j=0, \ldots, M-1 .
$$

We observe that $\{\mathbf{k} \cdot \mathbf{z} \bmod M: \mathbf{k} \in I\} \subset\{0, \ldots, M-1\}$ and consider the values

$$
\begin{equation*}
\hat{g}_{\ell}=\sum_{\substack{\mathbf{k} \in I \\ \ell \equiv \mathbf{k} \cdot \mathbf{\operatorname { m o d } M}}} \hat{p}_{\mathbf{k}}, \quad \ell=0, \ldots, M-1 . \tag{8.12}
\end{equation*}
$$

Then, we can write

$$
\begin{align*}
p\left(\mathbf{x}_{j}\right) & =\sum_{\mathbf{k} \in I} \hat{p}_{\mathbf{k}} \mathrm{e}^{2 \pi \mathrm{i} j(\mathbf{k} \cdot \mathbf{z}) / M}=\sum_{\ell=0}^{M-1} \sum_{\substack{\mathbf{k} \in I \\
\ell=\mathbf{k} \cdot \mathbf{z} \bmod M}} \hat{p}_{\mathbf{k}} \mathrm{e}^{2 \pi \mathrm{i} j \ell / M} \\
& =\sum_{\ell=0}^{M-1} \hat{g}_{\ell} \mathrm{e}^{2 \pi \mathrm{i} j \ell / M} \tag{8.13}
\end{align*}
$$

for $j=0, \ldots, M-1$. Therefore, the right-hand side of (8.13) can be evaluated using a one-dimensional FFT of length M with at most $C \cdot(M \log M+d|I|)$ arithmetic operations, where the constant C does not depend on the dimension d. Here we assume that $\hat{g}_{\ell}, \ell=0, \ldots, M$, can be computed with $C d|I|$ arithmetic operations. The fast realization of the matrix-vector product in (8.8) or equivalently of (8.13) is presented in the following

Algorithm 8.8 (Lattice-Based FFT (LFFT))

Input: $M \in \mathbb{N}$ lattice size of rank-1 lattice $\Lambda(\mathbf{z}, M)$, $\mathbf{z} \in \mathbb{Z}^{d}$ generating vector of $\Lambda(\mathbf{z}, M)$, $I \subset \mathbb{Z}^{d}$ finite frequency index set, $\hat{\mathbf{p}}=\left(\hat{p}_{\mathbf{k}}\right)_{\mathbf{k} \in I}$ Fourier coefficients of $p \in \Pi_{I}$.

1. Set $\hat{\mathbf{g}}:=(0)_{\ell=0}^{M-1}$.
2. For each $\mathbf{k} \in I$ do $\hat{g}_{\mathbf{k} \cdot \mathbf{z} \bmod M}:=\hat{g}_{\mathbf{k} \cdot \mathbf{z} \bmod M}+\hat{p}_{\mathbf{k}}$.
3. Apply a one-dimensional FFT of length M in order to compute $\mathbf{p}:=$ $\mathbf{F}_{M}^{-1}\left(\left(\hat{g}_{\ell}\right)_{\ell=0}^{M-1}\right)$.
4. Compute $\mathbf{p}:=M \mathbf{p}$.

Output: $\mathbf{p}=\mathbf{A} \hat{\mathbf{p}}$ vector of values of the trigonometric polynomial $p \in \Pi_{I}$. Computational cost: $\mathscr{O}(M \log M+d|I|)$.

We immediately obtain also a fast algorithm for the matrix-vector multiplication with the adjoint Fourier matrix \mathbf{A}^{H}.

Algorithm 8.9 (Adjoint Single Lattice-Based FFT (aLFFT))

Input: $M \in \mathbb{N}$ lattice size of rank-1 lattice $\Lambda(\mathbf{z}, M)$,
$\mathbf{z} \in \mathbb{Z}^{d}$ generating vector of $\Lambda(\mathbf{z}, M)$,
$I \subset \mathbb{Z}^{d}$ finite frequency index set,
$\mathbf{p}=\left(p\left(\frac{j}{M} \mathbf{z}\right)\right)_{j=0}^{M-1}$ values of the trigonometric polynomial $p \in \Pi_{I}$.

1. Apply a one-dimensional FFT of length M in order to compute $\hat{\mathbf{g}}:=\mathbf{F}_{M} \mathbf{p}$.
2. Set $\hat{\mathbf{a}}:=(0)_{\mathbf{k} \in I}$.
3. For each $\mathbf{k} \in I$ do $\hat{a}_{\mathbf{k}}:=\hat{a}_{\mathbf{k}}+\hat{g}_{\mathbf{k} \cdot \mathbf{z} \bmod M}$.

Output: $\hat{\mathbf{a}}=\mathbf{A}^{\mathrm{H}} \mathbf{p}$ with the adjoint Fourier matrix \mathbf{A}^{H}.
Computational cost: $\mathscr{O}(M \log M+d|I|)$.

8.2.3 Evaluation of the Fourier Coefficients

Our considerations of the Fourier matrix $\mathbf{A}=\mathbf{A}(X, I)$ in (8.8) and (8.9) show that a unique evaluation of all Fourier coefficients of an arbitrary d-variate trigonometric polynomial $p \in \Pi_{I}$ is only possible, if the $|X|$-by- $|I|$ matrix \mathbf{A} has full rank $|I|$. By Lemma 8.7 we have seen that for a given frequency index set I and a rank-1 lattice $\Lambda(\mathbf{z}, M)$, two distinct columns of \mathbf{A} are either orthogonal or equal. Therefore, \mathbf{A} has full rank if and only if for all distinct $\mathbf{k}, \mathbf{h} \in I$,

$$
\begin{equation*}
\mathbf{k} \cdot \mathbf{z} \not \equiv \mathbf{h} \cdot \mathbf{z} \bmod M . \tag{8.14}
\end{equation*}
$$

If (8.14) holds, then the sums determining \hat{g}_{ℓ} in (8.12) contain only one term for each ℓ and no aliasing occurs. We define the difference set of the frequency index set I as

$$
\begin{equation*}
\mathscr{D}(I):=\{\mathbf{k}-\mathbf{l}: \mathbf{k}, \mathbf{l} \in I\} . \tag{8.15}
\end{equation*}
$$

Then the condition (8.14) is equivalent to

$$
\begin{equation*}
\mathbf{k} \cdot \mathbf{z} \not \equiv 0 \bmod M \quad \text { for all } \mathbf{k} \in \mathscr{D}(I) \backslash\{\mathbf{0}\} . \tag{8.16}
\end{equation*}
$$

Therefore, we define a reconstructing rank-1 lattice to a given frequency index set I as a rank-1 lattice satisfying (8.14) or equivalently (8.16) and denote it by

$$
\Lambda(\mathbf{z}, M, I):=\{\mathbf{x} \in \Lambda(\mathbf{z}, M): \mathbf{k} \in \mathscr{D}(I) \backslash\{\mathbf{0}\} \text { with } \mathbf{k} \cdot \mathbf{z} \not \equiv 0 \bmod M\} .
$$

The condition (8.16) ensures that the mapping of $\mathbf{k} \in I$ to $\mathbf{k} \cdot \mathbf{z} \bmod M \in$ $\{0, \ldots, M-1\}$ is injective. Assuming that we have a reconstructing rank-1 lattice, we will be able to evaluate the Fourier coefficients of $p \in \Pi_{I}$ uniquely.

If condition (8.16) is satisfied, then Lemma 8.7 implies $\mathbf{A}^{\mathrm{H}} \mathbf{A}=M \mathbf{I}_{M}$ for the Fourier matrix \mathbf{A} such that $\hat{\mathbf{p}}=\left(\hat{p}_{\mathbf{k}}\right)_{\mathbf{k} \in I}=\frac{1}{M} \mathbf{A}^{\mathrm{H}} \mathbf{p}$. Equivalently, for each Fourier coefficient we have

$$
\hat{p}_{\mathbf{k}}=\frac{1}{M} \sum_{j=0}^{M-1} p\left(\mathbf{x}_{j}\right) \mathrm{e}^{-2 \pi \mathrm{i} j(\mathbf{k} \cdot \mathbf{z}) / M}=\frac{1}{M} \sum_{j=0}^{M-1} p\left(\mathbf{x}_{j}\right) \mathrm{e}^{-2 \pi \mathrm{i} j \ell / M}
$$

for all $\mathbf{k} \in I$ and $\ell=\mathbf{k} \cdot \mathbf{z} \bmod M$. Algorithm 8.10 computes all Fourier coefficients $\hat{f}_{\mathbf{k}}$ using only a one-dimensional FFT of length M and the inverse mapping of $\mathbf{k} \mapsto$ $\mathbf{k} \cdot \mathbf{z} \bmod M$, see also [184, Algorithm 3.2].

Algorithm 8.10 (Reconstruction via Reconstructing Rank-1 Lattice)

Input: $I \subset \mathbb{Z}^{d}$ finite frequency index set,
$M \in \mathbb{N}$ lattice size of reconstructing rank-1 lattice $\Lambda(\mathbf{z}, M, I)$,
$\mathbf{z} \in \mathbb{Z}^{d}$ generating vector of reconstructing rank-1 lattice $\Lambda(\mathbf{z}, M, I)$,
$\mathbf{p}=\left(p\left(\frac{2 \pi}{M}(j \mathbf{z} \bmod M \mathbf{1})\right)\right)_{j=0}^{M-1}$ values of $p \in \Pi_{I}$.

1. Compute $\hat{\mathbf{a}}:=\mathbf{A}^{\mathrm{H}} \mathbf{p}$ using Algorithm 8.9.
2. Set $\hat{\mathbf{p}}:=M^{-1} \hat{\mathbf{a}}$.

Output: $\hat{\mathbf{p}}=M^{-1} \mathbf{A}^{\mathrm{H}} \mathbf{p}=\left(\hat{p}_{\mathbf{k}}\right)_{\mathbf{k} \in I}$ Fourier coefficients supported on I.
Computational cost: $\mathscr{O}(M \log M+d|I|)$.
Example 8.11 Let $I_{\infty, N}^{d}$ be the full grid defined by (8.3). Then straightforward calculation shows that the rank-1 lattice $\Lambda(\mathbf{z}, M)$ with the generating vector $\mathbf{z}=$ $\left(1,2 N+2, \ldots,(2 N+2)^{d-1}\right)^{\top}$ and the lattice size $M=(2 N+2)^{d}$ is a reconstructing rank-1 lattice to the full grid $I_{\infty, N}^{d}$. It provides a perfectly stable spatial discretization. The resulting reconstruction algorithm is based on a onedimensional FFT of size $(2 N+2)^{d}$, and has similar computational cost as the usual d-dimensional tensor product FFT, see Sect. 5.3.5. Our goal is to construct smaller reconstructing rank-1 lattices for special index sets, such that the computational cost for the reconstruction of Fourier coefficients can be significantly reduced.

As a corollary of the observations above we show that a reconstructing rank-1 lattice implies the following important quadrature rule, see [333].

Theorem 8.12 For a given finite frequency index set I and a corresponding reconstructing rank-1 lattice $\Lambda(\mathbf{z}, M, I)$ we have

$$
\int_{[0,2 \pi]^{d}} p(\mathbf{x}) \mathrm{d} \mathbf{x}=\frac{1}{M} \sum_{j=0}^{M-1} p\left(\mathbf{x}_{j}\right)
$$

for all trigonometric polynomials $p \in \Pi_{\mathscr{D}(I)}$, where $\mathscr{D}(I)$ is defined by (8.15).
Proof For $\mathbf{x}_{j}=\frac{2 \pi}{M}(j \mathbf{z} \bmod M \mathbf{1}) \in \Lambda(\mathbf{z}, M, I)$ it follows that

$$
\begin{aligned}
\sum_{j=0}^{M-1} p\left(\mathbf{x}_{j}\right) & =\sum_{j=0}^{M-1}\left(\sum_{\mathbf{k} \in \mathscr{D}(I)} \hat{p}_{\mathbf{k}} \mathrm{e}^{2 \pi \mathrm{i} j(\mathbf{k} \cdot \mathbf{z}) / M}\right) \\
& =\sum_{\mathbf{k} \in \mathscr{D}(I)} \hat{p}_{\mathbf{k}}\left(\sum_{j=0}^{M-1} \mathrm{e}^{2 \pi \mathrm{i} j(\mathbf{k} \cdot \mathbf{z}) / M}\right) .
\end{aligned}
$$

According to (8.16) we have $\mathbf{k} \cdot \mathbf{z} \not \equiv 0 \bmod M$ for all $\mathbf{k} \in \mathscr{D}(I) \backslash\{\mathbf{0}\}$. Therefore

$$
\sum_{j=0}^{M-1} \mathrm{e}^{2 \pi \mathrm{i} j(\mathbf{k} \cdot \mathbf{z}) / M}= \begin{cases}0 & \mathbf{k} \in \mathscr{D}(I) \backslash\{\mathbf{0}\} \\ M & \mathbf{k}=\mathbf{0}\end{cases}
$$

and the equation above simplifies to

$$
\sum_{j=0}^{M-1} p\left(\mathbf{x}_{j}\right)=M \hat{p}(\mathbf{0})=M \int_{[0,2 \pi]^{d}} p(\mathbf{x}) \mathrm{d} \mathbf{x}
$$

8.3 Efficient Function Approximation on Rank-1 Lattices

Now we come back to the problem of approximation of a smooth d-variate periodic function f by a Fourier series (8.1) or by a Fourier partial sum (8.2). Let f be an arbitrary continuous function in $\mathscr{A}\left(\mathbb{T}^{d}\right) \cap C\left(\mathbb{T}^{d}\right)$. Then we determine approximate values $\hat{f}_{\mathbf{k}}$ of the Fourier coefficients $c_{\mathbf{k}}(f)$ using only the sampling values on a rank-1 lattice $\Lambda(\mathbf{z}, M)$ as given in (8.10) and obtain

$$
\begin{align*}
\hat{f}_{\mathbf{k}} & :=\frac{1}{M} \sum_{j=0}^{M-1} f\left(\frac{2 \pi}{M}(j \mathbf{z} \bmod M \mathbf{1})\right) \mathrm{e}^{-2 \pi \mathrm{i} j(\mathbf{k} \cdot \mathbf{z}) / M} \tag{8.17}\\
& =\frac{1}{M} \sum_{j=0}^{M-1} \sum_{\mathbf{h} \in \mathbb{Z}^{d}} c_{\mathbf{h}}(f) \mathrm{e}^{2 \pi \mathrm{i} j[(\mathbf{h}-\mathbf{k}) \cdot \mathbf{z}] / M} \\
& =\sum_{\mathbf{h} \in \mathbb{Z}^{d}} c_{\mathbf{k}+\mathbf{h}}(f) \frac{1}{M} \sum_{j=0}^{M-1} \mathrm{e}^{2 \pi \mathrm{i} j(\mathbf{h} \cdot \mathbf{z}) / M}=\sum_{\mathbf{h} \in \Lambda^{\perp}(\mathbf{z}, M)} c_{\mathbf{k}+\mathbf{h}}(f),
\end{align*}
$$

where the integer dual lattice $\Lambda^{\perp}(\mathbf{z}, M)$ is defined by (8.11). Obviously we have $\mathbf{0} \in \Lambda^{\perp}(\mathbf{z}, M)$ and hence

$$
\begin{equation*}
\hat{f}_{\mathbf{k}}=c_{\mathbf{k}}(f)+\sum_{\mathbf{h} \in \Lambda^{\perp}(\mathbf{z}, M) \backslash\{\mathbf{0}\}} c_{\mathbf{k}+\mathbf{h}}(f) \tag{8.18}
\end{equation*}
$$

The absolute convergence of the series of the Fourier coefficients of f ensures that all terms in the calculation above are well-defined. We call $\hat{f}_{\mathbf{k}}$ the approximate Fourier coefficients of f. The formula (8.18) can be understood as an aliasing formula for the rank-1 lattice $\Lambda(\mathbf{z}, M)$. If the sum

$$
\sum_{\mathbf{h} \in \Lambda^{\perp}(\mathbf{z}, M) \backslash\{\mathbf{0}\}}\left|c_{\mathbf{k}+\mathbf{h}}(f)\right|
$$

is sufficiently small, then $\hat{f}_{\mathbf{k}}$ is a convenient approximate value of $c_{\mathbf{k}}(f)$.
Assume that f can be already well approximated by a trigonometric polynomial p on a frequency index set I. Further, assume that we have a corresponding reconstructing rank-1 lattice $X=\Lambda(\mathbf{z}, M, I)$. Then we can compute the approximative Fourier coefficients $\hat{f}_{\mathbf{k}}$ with $\mathbf{k} \in I$ using Algorithm 8.10 by employing M sample values $f\left(\frac{2 \pi}{M}(j \mathbf{z} \bmod M \mathbf{1})\right)$ instead of the corresponding polynomial values. In this way, we obtain $\hat{f_{\mathbf{k}}}, \mathbf{k} \in I$, with computational cost of $\mathscr{O}(M \log M+d|I|)$ flops.

Now we want to study the approximation error that occurs if the exact Fourier coefficients $c_{\mathbf{k}}(f)$ are replaced by the approximate Fourier coefficients $\hat{f_{\mathbf{k}}}$ in (8.18). We consider the corresponding approximate Fourier partial sum on the frequency index set $I_{N}=\left\{\mathbf{k} \in \mathbb{Z}^{d}: \omega(\mathbf{k}) \leq N\right\}$. Let $\Lambda\left(\mathbf{z}, M, I_{N}\right)$ be a reconstructing rank-1
lattice for I_{N} and $\Lambda^{\perp}\left(\mathbf{z}, M, I_{N}\right)$ the corresponding integer dual lattice (8.11). By definition of the reconstructing rank-1 lattice it follows that $I_{N} \cap \Lambda^{\perp}\left(\mathbf{z}, M, I_{N}\right)=$ $\{\mathbf{0}\}$. Generally we can show the following result:

Lemma 8.13 Let $I \subset \mathbb{Z}^{d}$ be an arbitrary finite frequency index set and let $\Lambda(\mathbf{z}, M, I)$ be a reconstructing rank-1 lattice with the integer dual lattice $\Lambda^{\perp}(\mathbf{z}, M, I)$.

Then we have

$$
\left\{\mathbf{k}+\mathbf{h}: \mathbf{k} \in I, \mathbf{h} \in \Lambda^{\perp}(\mathbf{z}, M, I) \backslash\{\mathbf{0}\}\right\} \subset \mathbb{Z}^{d} \backslash I .
$$

Proof Assume to the contrary that there exist $\mathbf{k} \in I$ and $\mathbf{h} \in \Lambda^{\perp}(\mathbf{z}, M, I) \backslash\{\mathbf{0}\}$ such that $\mathbf{k}+\mathbf{h} \in I$. Since $\Lambda(\mathbf{z}, M, I)$ is a reconstructing rank-1 lattice for I, it follows that $\mathbf{0} \neq \mathbf{h}=(\mathbf{k}+\mathbf{h})-\mathbf{k} \in \mathscr{D}(I)$. Thus, $\mathbf{h} \in \mathscr{D}(I) \cap \Lambda^{\perp}(\mathbf{z}, M, I) \backslash\{\mathbf{0}\}$. But this is a contradiction, since on the one hand (8.16) implies that $\mathbf{h} \cdot \mathbf{z} \not \equiv 0 \bmod M$, and on the other hand $\mathbf{h} \cdot \mathbf{z} \equiv 0 \bmod M$ by definition of $\Lambda^{\perp}(\mathbf{z}, M, I)$.

Now we can estimate the error of the approximate Fourier sum of f as follows, see [184, Theorem 3.11].

Theorem 8.14 Let $f \in \mathscr{A}_{\omega}\left(\mathbb{T}^{d}\right)$ and let a frequency index set $I_{N}=\{\mathbf{k} \in$ $\left.\mathbb{Z}^{d}: \omega(\mathbf{k}) \leq N\right\}$ of finite cardinality be given. Further, let $\Lambda\left(\mathbf{z}, M, I_{N}\right)$ be a reconstructing rank-1 lattice for I_{N}. Moreover, let the approximate Fourier partial sum

$$
\begin{equation*}
\left(S_{I_{N}}^{\Lambda} f\right)(\mathbf{x}):=\sum_{\mathbf{k} \in I_{N}} \hat{f}_{\mathbf{k}} \mathrm{e}^{\mathrm{i} \mathbf{k} \cdot \mathbf{x}} \tag{8.19}
\end{equation*}
$$

of f be determined by

$$
\begin{equation*}
\hat{f}_{\mathbf{k}}:=\frac{1}{M} \sum_{j=0}^{M-1} f\left(\frac{2 \pi}{M}(j \mathbf{z} \bmod M \mathbf{1})\right) \mathrm{e}^{-\mathrm{i} j(\mathbf{k} \cdot \mathbf{z}) / M}, \quad \mathbf{k} \in I_{N}, \tag{8.20}
\end{equation*}
$$

that are computed using the values on the rank-1 lattice $\Lambda\left(\mathbf{z}, M, I_{N}\right)$.
Then we have

$$
\begin{equation*}
\left\|f-S_{I_{N}}^{\Lambda} f\right\|_{L_{\infty}\left(\mathbb{T}^{d}\right)} \leq 2 N^{-1}\|f\|_{\mathscr{A}_{\omega}\left(\mathbb{T}^{d}\right)} \tag{8.21}
\end{equation*}
$$

Proof Using the triangle inequality, we find

$$
\left\|f-S_{I_{N}}^{\Lambda} f\right\|_{L_{\infty}\left(\mathbb{T}^{d}\right)} \leq\left\|f-S_{I_{N}} f\right\|_{L_{\infty}\left(\mathbb{T}^{d}\right)}+\left\|S_{I_{N}}^{\Lambda} f-S_{I_{N}} f\right\|_{L_{\infty}\left(\mathbb{T}^{d}\right)} .
$$

For the first term, Lemma 8.3 yields

$$
\left\|f-S_{I_{N}} f\right\|_{L_{\infty}\left(\mathbb{T}^{d}\right)} \leq N^{-1}\|f\|_{\mathscr{\mathscr { A } _ { \omega } (\mathbb { T } ^ { d })}}
$$

For the second term we obtain by using (8.18)

$$
\begin{aligned}
\left\|S_{I_{N}}^{\Lambda} f-S_{I_{N}} f\right\|_{L_{\infty}\left(\mathbb{T}^{d}\right)} & =\underset{\mathbf{x} \in \mathbb{T}^{d}}{\operatorname{ess} \sup }\left|\sum_{\mathbf{k} \in I_{N}}\left(\hat{f_{\mathbf{k}}}-c_{\mathbf{k}}(f)\right) \mathrm{e}^{\mathrm{i} \mathbf{k} \cdot \mathbf{x}}\right| \\
& \leq \sum_{\mathbf{k} \in I_{N}}\left|\sum_{\mathbf{h} \in \Lambda^{\perp}(\mathbf{z}, M) \backslash\{\mathbf{0}\}} c_{\mathbf{k}+\mathbf{h}}(f)\right| \\
& \leq \sum_{\mathbf{k} \in I_{N}} \sum_{\mathbf{h} \in \Lambda^{\perp}(\mathbf{z}, M) \backslash\{\mathbf{0}\}}\left|c_{\mathbf{k}+\mathbf{h}}(f)\right|
\end{aligned}
$$

By Lemma 8.13 it follows that

$$
\begin{aligned}
\left\|S_{I_{N}}^{\Lambda} f-S_{I_{N}} f\right\|_{L_{\infty}\left(\mathbb{T}^{d}\right)} & \leq \sum_{\mathbf{k} \in \mathbb{Z}^{d} \backslash I_{N}}\left|c_{\mathbf{k}}(f)\right| \leq \frac{1}{\inf _{\mathbf{h} \in \mathbb{Z}^{d} \backslash I_{N}} \omega(\mathbf{h})} \sum_{\mathbf{k} \in \mathbb{Z}^{d}} \omega(\mathbf{k})\left|c_{\mathbf{k}}(f)\right| \\
& \leq N^{-1}\|f\|_{\mathscr{A}_{\omega}\left(\mathbb{T}^{d}\right)}
\end{aligned}
$$

and hence the assertion.
Theorem 8.14 states that the worst case error of the approximation $S_{I_{N}}^{\Lambda} f$ in (8.19) given by the approximate Fourier coefficients computed from samples on the reconstructing rank-1 lattice $\Lambda\left(\mathbf{z}, M, I_{N}\right)$ is qualitatively as good as the worst case error of the approximation $S_{I_{N}} f$, see (8.5). Improved error estimates for the approximation of functions in $\mathscr{A}_{\omega}\left(\mathbb{T}^{d}\right)$ with a special weight function ω as in Remark 8.4 can be similarly derived. The approximation error essentially depends on the considered norms. In particular, we have focused on the $L_{\infty}\left(\mathbb{T}^{d}\right)$-norm on the left-hand side and the weighted $\ell_{1}\left(\mathbb{Z}^{d}\right)$-norm of the Fourier coefficients on the right-hand side. Further results with different norms are given in [184, 366].

Remark 8.15 The idea to use special rank-1 lattices $\Lambda(\mathbf{z}, M)$ of Korobov type as sampling schemes to approximate functions by trigonometric polynomials has already been considered by Temlyakov [352]. Later, Li and Hickernell studied a more general setting in [227]. They presented an approximation error using an aliasing formula as (8.18) for the given rank-1 lattice $\Lambda(\mathbf{z}, M)$. But both approaches did not lead to a constructive way to determine rank-1 lattices of high quality. In contrast to their approach, we have constructed the frequency index set $I_{N}:=\left\{\mathbf{k} \in \mathbb{Z}^{d}: \omega(\mathbf{k}) \leq N\right\}$ with $\left|I_{N}\right|<\infty$ depending on the arbitrary weight function ω. The problem to find a reconstructing rank-1 lattice $\Lambda\left(\mathbf{z}, M, I_{N}\right)$ which is well adapted to the frequency index set I_{N} will be studied in the next section. Approximation properties of rank-1 lattices have been also investigated in information-based complexity and applied analysis, see, e.g., [218, 248, 390].

8.4 Reconstructing Rank-1 Lattices

As shown in the two last sections, we can use the so-called reconstructing rank-1 lattices in order to compute the Fourier coefficients of a d-variate trigonometric polynomial in Π_{I} in a stable way by applying a one-dimensional FFT. The reconstructing rank-1 lattice $\Lambda(\mathbf{z}, M, I)$ for a frequency index set I is determined as a rank-1 lattice $\Lambda(\mathbf{z}, M)$ in (8.10) satisfying the condition (8.14). The computational cost to reconstruct the Fourier coefficients of the d-variate trigonometric polynomial p from its sampling values of the given rank-1 lattice mainly depends on the number M of needed sampling values. In this section we will present a deterministic procedure to obtain reconstructing rank-1 lattices using a component-by-component approach.

We start with considering the problem, how large the number M of sampling values in $\Lambda(\mathbf{z}, M, I)$ needs to be, see also [185, 189]. For simplicity, we consider only a symmetric frequency index set $I \subset \mathbb{Z}^{d}$ satisfying the condition that for each $\mathbf{k} \in I$ also $-\mathbf{k} \in I$. For example, all frequency index sets in Example 8.6 and Fig. 8.1 are symmetric.

Theorem 8.16 Let I be a symmetric frequency index set with finite cardinality $|I|$ such that $I \subset\left[-\frac{|I|}{2}, \frac{|I|}{2}\right]^{d} \cap \mathbb{Z}^{d}$.

Then there exists a reconstructing rank-1 lattice $X=\Lambda(\mathbf{z}, M, I)$ with prime cardinality M, such that

$$
\begin{equation*}
|I| \leq M \leq|\mathscr{D}(I)| \leq|I|^{2}-|I|+1, \tag{8.22}
\end{equation*}
$$

where $\mathscr{D}(I)$ denotes the difference set (8.15).

Proof

1. The lower bound $|I| \leq M$ is obvious, since we need a Fourier matrix $\mathbf{A}=$ $\mathbf{A}(X, I) \in \mathbb{C}^{|X| \times|I|}$ of full rank $|I|$ in (8.9) to reconstruct $\hat{\mathbf{p}}$, and this property follows from (8.14).

Recall that $|\mathscr{D}(I)|$ is the number of all pairwise distinct vectors $\mathbf{k}-\mathbf{l}$ with \mathbf{k}, $\mathbf{l} \in I$. We can form at most $|I|(|I|-1)+1$ pairwise distinct vectors in $\mathscr{D}(I)$. Therefore we obtain the upper bound $|\mathscr{D}(I)| \leq|I|^{2}-|I|+1$.
2. In order to show that there exists a reconstructing rank-1 lattice with $M \leq$ $|\mathscr{D}(I)|$, we choose M as a prime number satisfying $|\mathscr{D}(I)| / 2<M \leq|\mathscr{D}(I)|$ and show that there exists a generating vector \mathbf{z} such that the condition (8.16) is satisfied for $X=\Lambda(\mathbf{z}, M, I)$. The prime number M can be always chosen in $(|\mathscr{D}(I)| / 2,|\mathscr{D}(I)|]$ by Bertrand's postulate.

For the special case $d=1$ we have $I \subset\left[-\frac{|I|}{2}, \frac{|I|}{2}\right] \cap \mathbb{Z}$. Taking $z=z_{1}=1$, each $M \geq|I|+1$ satisfies the assumption $k \cdot z=k \not \equiv 0 \bmod M$ for $k \in \mathscr{D}(I) \subset[-|I|,|I|]$. In particular, we can take M as a prime number in $(|\mathscr{D}(I)| / 2,|\mathscr{D}(I)|]$, since we have $|\mathscr{D}(I)| \geq 2|I|$ in this case.

Let us now assume that $d \geq 2$. We need to show that there exists a generating vector \mathbf{z} such that

$$
\mathbf{k} \cdot \mathbf{z} \not \equiv 0 \bmod M \quad \text { for all } \mathbf{k} \in \mathscr{D}(I) \backslash\{\mathbf{0}\},
$$

and want to use an induction argument with respect to the dimension d. We consider the projection of $\mathscr{D}(I)$ on the index set

$$
\mathscr{D}\left(I_{d-1}\right):=\left\{\tilde{\mathbf{k}}=\left(k_{j}\right)_{j=1}^{d-1}: \mathbf{k}=\left(k_{j}\right)_{j=1}^{d} \in \mathscr{D}(I)\right\},
$$

such that each $\mathbf{k} \in \mathscr{D}(I)$ can be written as $\left(\tilde{\mathbf{k}}^{\top}, k_{d}\right)^{\top}$ with $\tilde{\mathbf{k}} \in \mathscr{D}\left(I_{d-1}\right)$. Assume that we have found already a vector $\tilde{\mathbf{z}} \in \mathbb{Z}^{d-1}$ such that the condition

$$
\begin{equation*}
\tilde{\mathbf{k}} \cdot \tilde{\mathbf{z}} \not \equiv 0 \bmod M \quad \text { for all } \tilde{\mathbf{k}} \in \mathscr{D}\left(I_{d-1}\right) \backslash\{\mathbf{0}\} \tag{8.23}
\end{equation*}
$$

is satisfied. We show now that there exists a vector $\mathbf{z}=\left(\tilde{\mathbf{z}}^{\top}, z_{d}\right)^{\top}$ with $z_{d} \in$ $\{1, \ldots, M-1\}$ such that

$$
\begin{equation*}
\mathbf{k} \cdot \mathbf{z}=\tilde{\mathbf{k}} \cdot \tilde{\mathbf{z}}+k_{d} z_{d} \not \equiv 0 \bmod M \quad \text { for all } \mathbf{k} \in \mathscr{D}(I) \backslash\{\boldsymbol{0}\} . \tag{8.24}
\end{equation*}
$$

For that purpose we will use a counting argument. We show that there are at most $\left(\left|\mathscr{D}\left(I_{d-1}\right)\right|-1\right) / 2$ integers $z_{d} \in\{1, \ldots, M-1\}$ with the property

$$
\begin{equation*}
\mathbf{k} \cdot \mathbf{z}=\tilde{\mathbf{k}} \cdot \tilde{\mathbf{z}}+k_{d} z_{d} \equiv 0 \bmod M \quad \text { for at least one } \mathbf{k} \in \mathscr{D}(I) \backslash\{\mathbf{0}\} \tag{8.25}
\end{equation*}
$$

Since $\left(\left|\mathscr{D}\left(I_{d-1}\right)\right|-1\right) / 2 \leq(|\mathscr{D}(I)|-1) / 2<M-1$, we always find a z_{d} satisfying the desired condition (8.24).
3. We show now that for each pair of elements \mathbf{k}, $-\mathbf{k}$ with $\mathbf{k}=\left(\tilde{\mathbf{k}}^{\top}, k_{d}\right)^{\top} \in$ $\mathscr{D}(I) \backslash\{\mathbf{0}\}$ and given $\tilde{\mathbf{z}}$ satisfying (8.23), there is at most one z_{d} such that (8.25) is satisfied.

If $k_{d}=0$, then (8.25) yields $\tilde{\mathbf{k}} \cdot \tilde{\mathbf{z}} \equiv 0 \bmod M$ contradicting (8.23). Thus in this case no z_{d} is found to satisfy (8.25).

If $\tilde{\mathbf{k}}=\mathbf{0}$ and $k_{d} \neq 0$, then (8.25) yields $k_{d} z_{d} \equiv 0 \bmod M$. Since $\left|k_{d}\right| \leq|I|<$ M and $z_{d} \in\{1, \ldots, M-1\}$, it follows that $k_{d} z_{d}$ and M are coprime such that no z_{d} is found to satisfy (8.25).

If $\tilde{\mathbf{k}} \neq \mathbf{0}$ and $k_{d} \neq 0$, then (8.25) yields $\tilde{\mathbf{k}} \cdot \tilde{\mathbf{z}} \equiv-k_{d} z_{d} \bmod M$. Since $\tilde{\mathbf{k}} \cdot \tilde{\mathbf{z}} \neq 0$ by assumption (8.23) and k_{d} and M are coprime, there exists one unique solution z_{d} of this equation. The same unique solution z_{d} is found, if we replace $\mathbf{k}=$ $\left(\tilde{\mathbf{k}}^{\top}, k_{d}\right)^{\top}$ by $-\mathbf{k}=\left(-\tilde{\mathbf{k}}^{\top},-k_{d}\right)^{\top}$ in (8.25).

Taking into account that $\mathscr{D}\left(I_{d-1}\right)$ and $\mathscr{D}(I)$ always contain the corresponding zero vector, it follows that at most $\left(\left|\mathscr{D}\left(I_{d-1}\right)\right|-1\right) / 2$ integers satisfy (8.25). Thus the assertion is proved.

The idea of the proof of Theorem 8.16 leads us also to an algorithm, the socalled component-by-component Algorithm 8.17. This algorithm computes for a
known lattice size M the generating vector \mathbf{z} of the reconstructing rank- 1 lattice, see also [185]. The component-by-component algorithm for numerical integration was presented in [74, 217].

Algorithm 8.17 (Component-by-Component Lattice Search)

Input: $M \in \mathbb{N}$ prime, cardinality of rank-1 lattice,
$I \subset \mathbb{Z}^{d}$ finite frequency index set.

1. Set $z_{1}:=1$.
2. For $s=2, \ldots, d$ do
form the set $I_{s}:=\left\{\left(k_{j}\right)_{j=1}^{s}: \mathbf{k}=\left(k_{j}\right)_{j=1}^{d} \in I\right\}$
search for one $z_{s} \in[1, M-1] \cap \mathbb{Z}$ with

$$
\left|\left\{\left(z_{1}, \ldots, z_{s}\right)^{\top} \cdot \mathbf{k} \bmod M: \mathbf{k} \in I_{s}\right\}\right|=\left|I_{s}\right|
$$

Output: $\mathbf{z}=\left(z_{j}\right)_{j=1}^{d} \in \mathbb{N}^{d}$ generating vector.
The construction of the generating vector $\mathbf{z} \in \mathbb{N}^{d}$ in Algorithm 8.17 requires at most $2 d|I| M \leq 2 d|I|^{3}$ arithmetic operations. For each component $z_{s}, s \in$ $\{2, \ldots, d\}$, of the generating vector \mathbf{z} in the component-by-component step s, the tests for the reconstruction property (8.13) for a given component z_{s} in step 2 of Algorithm 8.17 require at most $s|I|$ multiplications, $(s-1)|I|$ additions, and $|I|$ modulo operations. Since each component $z_{s}, s \in\{2, \ldots, d\}$, of the generating vector \mathbf{z} can only take $M-1$ possible values, the construction requires at most $d|I|(M-1) \leq 2 d|I| M$ arithmetic operations in total.

Remark 8.18 The lower bound for the number M in Theorem 8.16 can be improved for arbitrary frequency index sets, if we employ the exact cardinalities of the projected index sets $I_{s}:=\left\{\left(k_{j}\right)_{j=1}^{s}: \mathbf{k}=\left(k_{j}\right)_{j=1}^{d} \in I\right\}$, see also [185].

The assumption on the index set can be also relaxed. In particular, the complete index set can be shifted in \mathbb{Z}^{d} without changing the results.

A drawback of Algorithm 8.17 is that the cardinality M needs to be known in advance. As we have shown in Theorem $8.16, M$ can be always taken as a prime number satisfying $|\mathscr{D}(I)| / 2<M \leq|\mathscr{D}(I)|$. But this may be far away from an optimal choice. Once we have discovered a reconstructing rank-1 lattice $\Lambda(\mathbf{z}, M, I)$ satisfying for all distinct $\mathbf{k}, \mathbf{h} \in I$,

$$
\mathbf{k} \cdot \mathbf{z} \not \equiv \mathbf{h} \cdot \mathbf{z} \bmod M,
$$

we can ask for $M^{\prime}<M$ such that for all distinct $\mathbf{k}, \mathbf{h} \in I$,

$$
\mathbf{k} \cdot \mathbf{z} \not \equiv \mathbf{h} \cdot \mathbf{z} \bmod M^{\prime}
$$

is still true for the computed generating vector \mathbf{z}. This leads to the following simple algorithm for lattice size decreasing, see also [185].

```
Algorithm 8.19 (Lattice Size Decreasing)
Input: \(M \in \mathbb{N}\) cardinality of rank-1 lattice, \(I \subset \mathbb{Z}^{d}\) finite frequency index set, \(\mathbf{z} \in \mathbb{N}^{d}\) generating vector of reconstructing rank-1 lattice \(\Lambda(\mathbf{z}, M, I)\).
```

$$
\begin{aligned}
& \text { 1. For } j=|I|, \ldots, M \text { do } \\
& \text { if }|\{\mathbf{k} \cdot \mathbf{z} \bmod j: \mathbf{k} \in I\}|=|I| \text { then } M_{\min }:=j \text {. }
\end{aligned}
$$

Output: $M_{\min }$ reduced lattice size.

There exist also other strategies to determine reconstructing rank-1 lattices for given frequency index sets, where the lattice size M needs not to be known a priori, see, e.g., [185, Algorithms 4 and 5]. These algorithms are also component-by-component algorithms and compute complete reconstructing rank-1 lattices, i.e., the generating vectors $\mathbf{z} \in \mathbb{N}^{d}$ and the lattice sizes $M \in \mathbb{N}$, for a given frequency index set I. The algorithms are applicable for arbitrary frequency index sets of finite cardinality $|I|$.

As we have seen in Theorem 8.16 the sampling size M can be bounded by the cardinality of the difference set $\mathscr{D}(I)$. Interestingly, this cardinality strongly depends on the structure of I.

Example 8.20 Let $I=I_{p, N}^{d}:=\left\{\mathbf{k} \in \mathbb{Z}^{d}:\|\mathbf{k}\|_{p} \leq N\right\}, N \in \mathbb{N}$, be the $\ell_{p}\left(\mathbb{Z}^{d}\right)$ ball with $0<p \leq \infty$ and the size $N \in \mathbb{N}$, see Fig. 8.1. The cardinality of the frequency index set $I_{p, N}^{d}$ is bounded by $c_{p, d} N^{d} \leq\left|I_{p, N}^{d}\right| \leq C_{d, p} N^{d}$, while the cardinality of the difference set satisfies $c_{p, d} N^{d} \leq\left|\mathscr{D}\left(I_{p, N}^{d}\right)\right| \leq C_{d, p} 2^{d} N^{d}$ with the some constants $0<c_{p, d} \leq C_{d, p}$. Consequently, we can find a reconstructing rank-1 lattice of size $M \leq \tilde{C}_{d, p}\left|I_{p, N}^{d}\right|$ using a component-by-component strategy, where the constant $\tilde{C}_{d, p}>0$ only depends on p and d.

On the other hand, we obtain for $p \rightarrow 0$ the frequency index set $I:=\{\mathbf{k} \in$ $\left.\mathbb{Z}^{d}:\|\mathbf{k}\|_{1}=\|\mathbf{k}\|_{\infty} \leq N\right\}$ with $N \in \mathbb{N}$, which is supported on the coordinate axes. In this case we have $|I|=2 d N+1$, while we obtain $(2 N+1)^{2} \leq|\mathscr{D}(I)| \leq$ $d(2 N+1)^{2}$. Hence, there exists a positive constant $\tilde{c}_{d} \in \mathbb{R}$ with $\tilde{c}_{d}|I|^{2} \leq|\mathscr{D}(I)|$ and the theoretical upper bound on M is quadratic in $|I|$ for each fixed dimension d. In fact, reconstructing rank-1 lattices for these specific frequency index sets need at least $\mathscr{O}\left(N^{2}\right)$ nodes, see [188, Theorem 3.5] and [189].

Example 8.21 Important frequency index sets in higher dimensions $d>2$ are the so-called (energy-norm-based) hyperbolic crosses, see, e.g., [15, 55, 56, 389]. In particular, we can consider a frequency index set of the form

$$
I_{N}^{d, T}:=\left\{\mathbf{k} \in \mathbb{Z}^{d}:\left(\max \left\{1,\|\mathbf{k}\|_{1}\right\}\right)^{T /(T-1)} \prod_{s=1}^{d}\left(\max \left\{1,\left|k_{s}\right|\right\}\right)^{1 /(1-T)} \leq N\right\},
$$

with parameters $T \in[0,1)$ and $N \in \mathbb{N}$, see Fig. 8.3 for illustration. The frequency index set $I_{N}^{d, 0}$ for $T=0$ is a symmetric hyperbolic cross, and the frequency index

Fig. 8.3 Two-dimensional frequency index sets $I_{32}^{2, T}$ for $T \in\left\{0, \frac{1}{4}, \frac{1}{2}\right\}$
set $I_{N}^{d, T}, T \in(0,1)$, is called energy-norm-based hyperbolic cross. The cardinality of $I_{N}^{d, T}$ can be estimated by

$$
\begin{aligned}
c_{d, 0} N(\log N)^{d-1} & \leq\left|I_{N}^{d, T}\right| \leq C_{d, 0} N(\log N)^{d-1}, \quad \text { for } T=0, \\
c_{d, T} N & \leq\left|I_{N}^{d, T}\right| \leq C_{d, T} N, \quad \text { for } T \in(0,1)
\end{aligned}
$$

with some constants $0<c_{d, T} \leq C_{d, T}$, depending only on d and T, see [190, Lemma 2.6]. Since the axis cross is a subset of the considered frequency index sets, i.e., $\left\{\mathbf{k} \in \mathbb{Z}^{d}:\|\mathbf{k}\|_{1}=\|\mathbf{k}\|_{\infty} \leq N\right\} \subset I_{N}^{d, T}$ for $T \in[0,1)$, it follows that $(2 N+$ $1)^{2} \leq\left|\mathscr{D}\left(I_{N}^{d, T}\right)\right|$. On the other hand, we obtain upper bounds of the cardinality of the difference set $\mathscr{D}\left(I_{N}^{d, T}\right)$ of the form

$$
\left|\mathscr{D}\left(I_{N}^{d, T}\right)\right| \leq \begin{cases}\tilde{C}_{d, 0} N^{2}(\log N)^{d-2} & T=0, \\ \left|I_{N}^{d, T}\right|^{2} \leq C_{d, T}^{2} N^{2} & T \in(0,1)\end{cases}
$$

see, e.g., [183, Theorem 4.8]. Theorem 8.16 offers a constructive strategy to find reconstructing rank-1 lattices for $I_{N}^{d, T}$ of cardinality $M \leq\left|\mathscr{D}\left(I_{N}^{d, T}\right)\right|$. For $T \in$ $(0,1)$, these rank-1 lattices are of optimal order in N, see [183, Lemmata 2.1 and 2.3, and Corollary 2.4] and [184]. Reconstructing rank-1 lattices for these frequency index sets are discussed in more detail in [184].

Summarizing, we can construct a reconstructing rank-1 lattice $\Lambda(\mathbf{z}, M, I)$ for arbitrary finite frequency index set I. The choice of the frequency index set I always depends on the approximation properties of the considered function space. The positive statement is that the size M of the reconstructing rank- 1 lattice can be always bounded by $|I|^{2}$ being independent of the dimension d. However for important index sets, such as the hyperbolic cross or thinner index sets, the lattice size M is bounded from below by $M \geq C N^{2}$. We overcome this disadvantage in the following Sect. 8.5 by considering the union of several rank-1 lattices.

Remark 8.22 In [288, 290] a fast method for the evaluation of an arbitrary highdimensional multivariate algebraic polynomial in Chebyshev form at the nodes of
an arbitrary rank-1 Chebyshev lattice is suggested. An algorithm for constructing a suitable rank-1 Chebyshev lattice based on a component-by-component approach is suggested. In the two-dimensional case, the sampling points of special rank-1 Chebyshev lattice coincide with Padua points, see [40].

8.5 Multiple Rank-1 Lattices

To overcome the limitations of the single rank-1 lattice approach, we consider now multiple rank-1 lattices which are obtained by taking a union of rank-1 lattices. For s rank-1 lattices $\Lambda\left(\mathbf{z}_{r}, M_{r}\right), r=1, \ldots, s$ as given in (8.10) we call the union

$$
X=\Lambda\left(\mathbf{z}_{1}, M_{1}, \mathbf{z}_{2}, M_{2}, \ldots, \mathbf{z}_{s}, M_{s}\right):=\bigcup_{r=1}^{s} \Lambda\left(\mathbf{z}_{r}, M_{r}\right)
$$

multiple rank-1 lattice.
In order to work with this multiple rank-1 lattices, we need to consider the question, how many distinct points are contained in X. Assuming that for each r the lattice size M_{r} is coprime with at least one component of \mathbf{z}_{r}, the single rank1 lattice $\Lambda\left(\mathbf{z}_{r}, M_{r}\right)$ possesses exactly M_{r} distinct points in $[0,2 \pi)^{d}$ including $\mathbf{0}$. Consequently, the number of distinct points in $\Lambda\left(\mathbf{z}_{1}, M_{1}, \mathbf{z}_{2}, M_{2}, \ldots, \mathbf{z}_{s}, M_{s}\right)$ is bounded from above by

$$
\left|\Lambda\left(\mathbf{z}_{1}, M_{1}, \mathbf{z}_{2}, M_{2}, \ldots, \mathbf{z}_{s}, M_{s}\right)\right| \leq 1-s+\sum_{r=1}^{s} M_{r}
$$

In the special case $s=2$, we obtain the following result, see also [187, Lemma 2.1].

Lemma 8.23 Let $\Lambda\left(\mathbf{z}_{1}, M_{1}\right)$ and $\Lambda\left(\mathbf{z}_{2}, M_{2}\right)$ be two rank-1 lattices with coprime lattice sizes M_{1} and M_{2}.

Then the multiple rank-1 lattice $\Lambda\left(\mathbf{z}_{1}, M_{1}, \mathbf{z}_{2}, M_{2}\right)$ is a subset of the rank-1 lattice $\Lambda\left(M_{2} \mathbf{z}_{1}+M_{1} \mathbf{z}_{2}, M_{1} M_{2}\right)$. Furthermore, if the cardinalities of the single rank1 lattices $\Lambda\left(\mathbf{z}_{1}, M_{1}\right)$ and $\Lambda\left(\mathbf{z}_{2}, M_{2}\right)$ are M_{1} and M_{2}, then

$$
\left|\Lambda\left(\mathbf{z}_{1}, M_{1}, \mathbf{z}_{2}, M_{2}\right)\right|=M_{1}+M_{2}-1 .
$$

Proof

1. We show that $\Lambda\left(\mathbf{z}_{1}, M_{1}\right)$ is a subset of $\Lambda\left(M_{2} \mathbf{z}_{1}+M_{1} \mathbf{z}_{2}, M_{1} M_{2}\right)$. Let

$$
\mathbf{x}_{j}:=\frac{2 \pi}{M_{1}}\left(j \mathbf{z}_{1} \bmod M_{1} \mathbf{1}\right)
$$

be an arbitrary point of $\Lambda\left(\mathbf{z}_{1}, M_{1}\right)$. Since M_{1} and M_{2} are coprime, there exists a $k \in\left\{0, \ldots, M_{1}-1\right\}$ such that $k M_{2} \equiv j \bmod M_{1}$. Choose now $\ell=k M_{2}$, then

$$
\mathbf{y}_{\ell}:=\frac{2 \pi}{M_{1} M_{2}}\left(\ell\left(M_{2} \mathbf{z}_{1}+M_{1} \mathbf{z}_{2}\right) \bmod M_{1} M_{2} \mathbf{1}\right)
$$

is a point of $\Lambda\left(M_{2} \mathbf{z}_{1}+M_{1} \mathbf{z}_{2}, M_{1} M_{2}\right)$. Further we find by

$$
\begin{aligned}
& \ell\left(M_{2} \mathbf{z}_{1}+M_{1} \mathbf{z}_{2}\right) \bmod M_{1} M_{2} \mathbf{1}=k\left(M_{2}^{2} \mathbf{z}_{1}+M_{1} M_{2} \mathbf{z}_{2}\right) \bmod M_{1} M_{2} \mathbf{1} \\
& =k M_{2}^{2} \mathbf{z}_{1} \bmod M_{1} M_{2} \mathbf{1}=k M_{2} \mathbf{z}_{1} \bmod M_{1} \mathbf{1}=j \mathbf{z}_{1} \bmod M_{1} \mathbf{1}
\end{aligned}
$$

that $\mathbf{x}_{j}=\mathbf{y}_{\ell}$. Analogously, we conclude that $\Lambda\left(\mathbf{z}_{2}, M_{2}\right) \subset \Lambda\left(M_{2} \mathbf{z}_{1}+\right.$ $\left.M_{1} \mathbf{z}_{2}, M_{1} M_{2}\right)$.
2. Now we prove that $\Lambda\left(\mathbf{z}_{1}, M_{1}\right) \cap \Lambda\left(\mathbf{z}_{2}, M_{2}\right)=\{\mathbf{0}\}$. For this purpose it is sufficient to show that the $M_{1} M_{2}$ points of $\Lambda\left(M_{2} \mathbf{z}_{1}+M_{1} \mathbf{z}_{2}, M_{1} M_{2}\right)$ are distinct. Suppose that there is an $\ell \in\left\{0, \ldots, M_{1} M_{2}-1\right\}$ such that

$$
\ell\left(M_{2} \mathbf{z}_{1}+M_{1} \mathbf{z}_{2}\right) \equiv \mathbf{0} \bmod M_{1} M_{2} \mathbf{1} .
$$

Then there exist $j_{1}, k_{1} \in\left\{0, \ldots, M_{1}-1\right\}$ and $j_{2}, k_{2} \in\left\{0, \ldots, M_{2}-1\right\}$ with $\ell=j_{2} M_{1}+j_{1}=k_{1} M_{2}+k_{2}$, and we find

$$
\ell\left(M_{2} \mathbf{z}_{1}+M_{1} \mathbf{z}_{2}\right) \bmod M_{1} M_{2} \mathbf{1}=j_{1} M_{2} \mathbf{z}_{1}+k_{2} M_{1} \mathbf{z}_{2} \bmod M_{1} M_{2} \mathbf{1}
$$

Thus, we arrive at

$$
j_{1} M_{2} \mathbf{z}_{1} \equiv-k_{2} M_{1} \mathbf{z}_{2} \bmod M_{1} M_{2} \mathbf{1}
$$

Since M_{1} and M_{2} are coprime, it follows that M_{1} is a divisor of each component of $j_{1} \mathbf{z}_{1}$, and that M_{2} is a divisor of each component of $-k_{2} \mathbf{z}_{2}$. But this can be only true for $j_{1}=k_{2}=0$, since we had assumed that $\Lambda\left(\mathbf{z}_{1}, M_{1}\right)$ and $\Lambda\left(\mathbf{z}_{2}, M_{2}\right)$ have the cardinalities M_{1} and M_{2}. This observation implies now $\ell=j_{2} M_{1}=$ $k_{1} M_{2}$ which is only possible for $j_{2}=k_{1}=0$, since M_{1} and M_{2} are coprime. Thus $\ell=0$, and the assertion is proven.

Lemma 8.23 can be simply generalized to the union of more than two rank-1 lattices.

Corollary 8.24 Let the multiple rank-1 lattice $\Lambda\left(\mathbf{z}_{1}, M_{1}, \ldots, \mathbf{z}_{s}, M_{s}\right)$ with pairwise coprime lattice sizes M_{1}, \ldots, M_{s} be given. Assume that $\left|\Lambda\left(\mathbf{z}_{r}, M_{r}\right)\right|=M_{r}$ for each $r=1, \ldots, s$.

Then we have

$$
\left|\Lambda\left(\mathbf{z}_{1}, M_{1}, \ldots, \mathbf{z}_{s}, M_{s}\right)\right|=1-s+\sum_{r=1}^{s} M_{r} .
$$

Further, let $\Lambda(\mathbf{z}, M)$ be the rank-1 lattice with the generating vector \mathbf{z} and lattice size M given by

$$
\mathbf{z}:=\sum_{r=1}^{s}\left(\prod_{\substack{\ell=1 \\ \ell \neq r}}^{s} M_{\ell}\right) \mathbf{z}_{r}, \quad M:=\prod_{r=1}^{s} M_{r} .
$$

Then

$$
\Lambda\left(\mathbf{z}_{1}, M_{1}, \ldots, \mathbf{z}_{s}, M_{s}\right) \subset \Lambda(\mathbf{z}, M) .
$$

Proof The proof follows similarly as for Lemma 8.23.
As in Sect. 8.2 we define now the Fourier matrix for the sampling set $X=$ $\Lambda\left(\mathbf{z}_{1}, M_{1}, \mathbf{z}_{2}, M_{2}, \ldots, \mathbf{z}_{s}, M_{s}\right)$ and the frequency index set I,

$$
\begin{align*}
\mathbf{A}= & \mathbf{A}\left(\Lambda\left(\mathbf{z}_{1}, M_{1}, \mathbf{z}_{2}, M_{2}, \ldots, \mathbf{z}_{s}, M_{s}\right), I\right) \\
& =\left(\begin{array}{c}
\left(\mathrm{e}^{2 \pi \mathrm{i} j\left(\mathbf{k} \cdot \mathbf{z}_{1}\right) / M_{1}}\right)_{j=0, \ldots, M_{1}-1, \mathbf{k} \in I} \\
\left(\mathrm{e}^{2 \pi \mathrm{i} j\left(\mathbf{k} \cdot \mathbf{z}_{2}\right) / M_{2}}\right)_{j=0, \ldots, M_{2}-1, \mathbf{k} \in I} \\
\vdots \\
\left(\mathrm{e}^{2 \pi \mathrm{i} j\left(\mathbf{k} \cdot \mathbf{z}_{s}\right) / M_{s}}\right)_{j=0, \ldots, M_{s}-1, \mathbf{k} \in I}
\end{array}\right), \tag{8.26}
\end{align*}
$$

where we assume that the frequency indices $\mathbf{k} \in I$ are arranged in a fixed order. Thus A has $\sum_{r=1}^{s} M_{r}$ rows and $|I|$ columns, where the first rows of the s partial Fourier matrices coincide. We also introduce the reduced Fourier matrix

$$
\widetilde{\mathbf{A}}:=\left(\begin{array}{c}
\left(\mathrm{e}^{2 \pi \mathrm{i} j\left(\mathbf{k} \cdot \mathbf{z}_{1}\right) / M_{1}}\right)_{j=0, \ldots, M_{1}-1, \mathbf{k} \in I} \\
\left(\mathrm{e}^{2 \pi \mathrm{i} j\left(\mathbf{k} \cdot \mathbf{z}_{2}\right) / M_{2}}\right)_{j=1, \ldots, M_{2}-1, \mathbf{k} \in I} \\
\vdots \\
\left(\mathrm{e}^{2 \pi \mathrm{i} j\left(\mathbf{k} \cdot \mathbf{z}_{s}\right) / M_{s}}\right)_{j=1, \ldots, M_{s}-1, \mathbf{k} \in I}
\end{array}\right),
$$

where we use beside $\left(\mathrm{e}^{2 \pi \mathrm{i} j\left(\mathbf{k} \cdot \mathbf{z}_{1}\right) / M_{1}}\right)_{j=0, \ldots, M_{1}-1, \mathbf{k} \in I}$ only the partial matrices

$$
\left(\mathrm{e}^{2 \pi \mathrm{i} j\left(\mathbf{k} \cdot \mathbf{z}_{r}\right) / M_{r}}\right)_{j=1, \ldots, M_{r}-1, \mathbf{k} \in I}, \quad r=2, \ldots, s,
$$

such that $\tilde{\mathbf{A}}$ has $\sum_{r=1}^{s} M_{r}-s+1$ rows and $|I|$ columns. Obviously, \mathbf{A} and $\tilde{\mathbf{A}}$ have the same rank, since we have only removed redundant rows.

As in Sect. 8.2, we consider the fast evaluation of trigonometric polynomials on multiple rank-1 lattices on the one hand and the evaluation of their Fourier coefficients from samples on multiple rank-1 lattices on the other hand.
(i) Evaluation of trigonometric polynomials. To evaluate a trigonometric polynomial at all nodes of a multiple rank-1 lattice $\Lambda\left(\mathbf{z}_{1}, M_{1}, \ldots, \mathbf{z}_{s}, M_{s}\right)$, we can apply the ideas from Sect. 8.2 and compute the trigonometric polynomial on s different rank-1 lattices $\Lambda\left(\mathbf{z}_{1}, M_{1}\right), \ldots, \Lambda\left(\mathbf{z}_{s}, M_{s}\right)$ separately. The corresponding Algorithm 8.25 applies the known Algorithm $8.8 s$-times, once for each single rank-1 lattice. The computational cost of the fast evaluation at all nodes of the whole multiple rank-1 lattice $\Lambda\left(\mathbf{z}_{1}, M_{1}, \ldots, \mathbf{z}_{s}, M_{s}\right)$ is therefore $\mathscr{O}\left(\sum_{r=1}^{s} M_{r} \log M_{r}+s d|I|\right)$.

Algorithm 8.25 (Evaluation at Multiple Rank-1 Lattices)

Input: $M_{1}, \ldots, M_{s} \in \mathbb{N}$ lattice sizes of rank-1 lattices $\Lambda\left(\mathbf{z}_{\ell}, M_{\ell}\right), \ell=1, \ldots, s$, $\mathbf{z}_{1}, \ldots, \mathbf{z}_{s} \in \mathbb{Z}^{d}$ generating vectors of $\Lambda\left(\mathbf{z}_{\ell}, M_{\ell}\right), \ell=1, \ldots, s$, $I \subset \mathbb{Z}^{d}$ finite frequency index set, $\hat{\mathbf{p}}=\left(\hat{p}_{\mathbf{k}}\right)_{\mathbf{k} \in I}$ Fourier coefficients of $p \in \Pi_{I}$ in (8.7).

1. For $\ell=1, \ldots$, s do by Algorithm 8.8

$$
\mathbf{p}_{\ell}:=\operatorname{LFFT}\left(M_{\ell}, \mathbf{z}_{\ell}, I, \hat{\mathbf{p}}\right) .
$$

2. $\operatorname{Set} \mathbf{p}:=\left(\mathbf{p}_{1}(1), \ldots, \mathbf{p}_{1}\left(M_{1}\right), \mathbf{p}_{2}(2), \ldots, \mathbf{p}_{2}\left(M_{2}\right), \ldots, \mathbf{p}_{s}(2), \ldots \mathbf{p}_{s}\left(M_{s}\right)\right)^{\top}$.

Output: $\mathbf{p}=\widetilde{\mathbf{A}} \hat{\mathbf{p}}$ polynomial values of $p \in \Pi_{I}$.
Computational cost: $\mathscr{O}\left(\sum_{\ell=1}^{s} M_{\ell} \log M_{\ell}+s d|I|\right)$.
The algorithm is a fast realization of the matrix-vector product with the Fourier matrix $\widetilde{\mathbf{A}}$ in (8.26). The fast computation of the matrix-vector product with the adjoint Fourier matrix \mathbf{A}^{H} can be realized by employing Algorithm 8.9 separately to each rank-1 lattice with a numerical effort of $\mathscr{O}\left(\sum_{\ell=1}^{s} M_{\ell} \log M_{\ell}+s d|I|\right)$.
(ii) Evaluation of the Fourier coefficients. To solve the inverse problem, i.e., to compute the Fourier coefficients of an arbitrary trigonometric polynomial $p \in$ Π_{I} as given in (8.7), we need to ensure that our Fourier matrix \mathbf{A} in (8.26) has full rank $|I|$. This means that p needs to be already completely determined by the sampling set $\Lambda\left(\mathbf{z}_{1}, M_{1}, \ldots, \mathbf{z}_{s}, M_{s}\right)$. Then we can apply formula (8.9) for reconstruction. We are especially interested in a fast and stable reconstruction method.

We define a reconstructing multiple rank-1 lattice to a given frequency index set I as a multiple rank-1 lattice satisfying that
$\mathbf{A}^{\mathrm{H}} \mathbf{A}=\mathbf{A}\left(\Lambda\left(\mathbf{z}_{1}, M_{1}, \mathbf{z}_{2}, M_{2}, \ldots, \mathbf{z}_{s}, M_{s}\right), I\right)^{\mathrm{H}} \mathbf{A}\left(\Lambda\left(\mathbf{z}_{1}, M_{1}, \mathbf{z}_{2}, M_{2}, \ldots, \mathbf{z}_{s}, M_{s}\right), I\right)$
has full rank |I|.
In order to keep the needed number of sampling points $\left|\Lambda\left(\mathbf{z}_{1}, M_{1}, \ldots, \mathbf{z}_{s}, M_{s}\right)\right|$ $=\sum_{r=1}^{s} M_{r}-s+1$ small, we do not longer assume that each single rank-1 lattice is a reconstructing rank-1 lattice. But still, we can use Lemma 8.7 in order to compute the matrix $\mathbf{A}^{\mathrm{H}} \mathbf{A}$ in an efficient way.

Lemma 8.26 Let \mathbf{A} be the $\left(\sum_{r=1}^{s} M_{r}\right)$-by- $|I|$ Fourier matrix (8.26) for a frequency index set $|I|$ and a multiple rank-1 lattice $\Lambda\left(\mathbf{z}_{1}, M_{1}, \mathbf{z}_{2}, M_{2}, \ldots, \mathbf{z}_{s}, M_{s}\right)$ with cardinality $1-s+\sum_{r=1}^{s} M_{r}$.

Then the entries of $\mathbf{A}^{\mathrm{H}} \mathbf{A} \in \mathbb{C}^{|I| \times|I|}$ have the form

$$
\left(\mathbf{A}^{\mathrm{H}} \mathbf{A}\right)_{\mathbf{h}, \mathbf{k}}=\sum_{r=1}^{s} M_{r} \delta_{(\mathbf{k}-\mathbf{h}) \cdot \mathbf{z}_{r} \bmod M_{r}},
$$

where

$$
\delta_{(\mathbf{k}-\mathbf{h}) \cdot \mathbf{z}_{r} \bmod M_{r}}:= \begin{cases}1 & \mathbf{k} \cdot \mathbf{z}_{r} \equiv \mathbf{h} \cdot \mathbf{z}_{r} \bmod M_{r}, \\ 0 & \mathbf{k} \cdot \mathbf{z}_{r} \not \equiv \mathbf{h} \cdot \mathbf{z}_{r} \bmod M_{r}\end{cases}
$$

Proof The assertion follows directly from Lemma 8.7. The entry $\left(\mathbf{A}^{\mathrm{H}} \mathbf{A}\right)_{\mathbf{h}, \mathbf{k}}$ is the inner product of the \mathbf{k} th and the hth column of \mathbf{A}. Thus we find

$$
\left(\mathbf{A}^{\mathrm{H}} \mathbf{A}\right)_{\mathbf{h}, \mathbf{k}}=\sum_{r=1}^{s} \sum_{j=0}^{M_{r}-1}\left(\mathrm{e}^{2 \pi \mathrm{i}\left[(\mathbf{k}-\mathbf{h}) \cdot \mathbf{z}_{r}\right] / M_{r}}\right)^{j},
$$

where the sums

$$
\sum_{j=0}^{M_{r}-1}\left(\mathrm{e}^{2 \pi \mathrm{i}\left[(\mathbf{k}-\mathbf{h}) \cdot \mathbf{z}_{r}\right] / M_{r}}\right)^{j}
$$

can be simply computed as in Lemma 8.7.
Lemma 8.26 also shows that $\mathbf{A}^{\mathrm{H}} \mathbf{A}$ can be sparse for suitably chosen rank-1 lattices. If the single rank-1 lattices are already reconstructing rank-1 lattices, then it directly follows that $\mathbf{A}^{\mathrm{H}} \mathbf{A}$ is a multiple of the identity matrix.

Now the question remains, how to choose the parameters s as well as \mathbf{z}_{r} and $M_{r}, r=1, \ldots s$, to ensure that $\mathbf{A}^{\mathrm{H}} \mathbf{A}$ indeed possesses full rank $|I|$. The following strategy given in Algorithm 8.27, see [186, Algorithm 1], yields with high probability such a multiple rank-1 lattice. Here we take the lattice sizes $M_{r}:=M$ for all $r=1, \ldots, s$ as a prime number and choose the generating vectors \mathbf{z}_{r} randomly in the set $[0, M-1]^{d} \cap \mathbb{Z}^{d}$. In order to determine the lattice size M large enough for the index set I, we define the expansion of the frequency set I by

$$
\begin{equation*}
N_{I}:=\max _{j=1, \ldots, d}\left\{\max _{\mathbf{k} \in I} k_{j}-\min _{\mathbf{l} \in I} \ell_{j}\right\}, \tag{8.27}
\end{equation*}
$$

where $\mathbf{k}=\left(k_{j}\right)_{j=1}^{d}$ and $\mathbf{l}=\left(\ell_{j}\right)_{j=1}^{d}$ belong to I. The expansion N_{I} can be interpreted as the size of a d-dimensional cube we need to cover the index set I.

```
Algorithm 8.27 (Determining Reconstructing Multiple Rank-1 Lattices)
Input: \(T \in \mathbb{N}\) upper bound of the cardinality of a frequency set \(I\),
    \(d \in \mathbb{N}\) dimension of the frequency set \(I\),
    \(N \in \mathbb{N}\) upper bound of the expansion \(N_{I}\) of the frequency set \(I\),
    \(\delta \in(0,1)\) upper bound of failure probability,
    \(c>1\) minimal oversampling factor.
```

1. Set $c:=\max \left\{c, \frac{N}{T-1}\right\}$ and $\lambda:=c(T-1)$.
2. Set $s:=\left\lceil\left(\frac{c}{c-1}\right)^{2} \frac{\ln T-\ln \delta}{2}\right\rceil$.
3. Set $M=\operatorname{argmin}\{p>\lambda: p \in \mathbb{N}$ prime $\}$.
4. For $r=1, \ldots$, shoose \mathbf{z}_{r} from $[0, M-1]^{d} \cap \mathbb{Z}^{d}$ uniformly at random.

Output: M lattice size of all rank-1 lattices,
$\mathbf{z}_{1}, \ldots, \mathbf{z}_{s}$ generating vectors of rank-1 lattices such that
$\Lambda\left(\mathbf{z}_{1}, M, \ldots, \mathbf{z}_{s}, M\right)$ is a reconstructing multiple rank-1 lattice for I with probability at least $1-\delta$.
Computational cost: $\mathscr{O}(\lambda \ln \ln \lambda+d s)$ for $c>1, \lambda \sim \max \{T, N\}$, and $s \sim \ln T-$ $\ln \delta$.

Due to [186, Theorem 3.4] the Algorithm 8.27 determines a reconstructing sampling set for trigonometric polynomials supported on the given frequency set I with probability at least $1-\delta_{s}$, where

$$
\begin{equation*}
\delta_{s}=T \mathrm{e}^{-2 s(c-1)^{2} / c^{2}} \tag{8.28}
\end{equation*}
$$

is an upper bound on the probability that the approach fails. There are several other strategies in the literature to find appropriate reconstructing multiple rank-1 lattices, see [186, 187, 192]. Finally, if a reconstructing multiple rank-1 lattice is found, then the Fourier coefficients of the trigonometric polynomial $p \in \Pi_{I}$ in (8.7) can be efficiently computed by solving the system

$$
\mathbf{A}^{\mathrm{H}} \mathbf{A} \hat{\mathbf{p}}=\mathbf{A}^{\mathrm{H}} \mathbf{p}
$$

where $\mathbf{p}:=\left(p\left(\mathbf{x}_{j}\right)_{\mathbf{x}_{j} \in \Lambda\left(\mathbf{z}_{1}, M_{1}\right)}, \ldots, p\left(\mathbf{x}_{j}\right)_{\mathbf{x}_{j} \in \Lambda\left(\mathbf{z}_{s}, M_{s}\right)}\right)^{\top}$ and $\mathbf{A}^{\mathrm{H}} \mathbf{p}$ can be computed using Algorithm 8.9 for the s partial vectors.

Remark 8.28 In $[192,289]$ the authors suggest approximate algorithms for the reconstruction of sparse high-dimensional trigonometric polynomials, where the support in frequency domain is unknown. The main idea is the construction of the index set of frequencies belonging to the nonzero Fourier coefficients in a dimension incremental way in combination with the approximation based on rank1 lattices. When one restricts the search space in frequency domain to a full grid $[-N, N]^{d} \cap \mathbb{Z}^{d}$ of refinement $N \in \mathbb{N}$ and assumes that the cardinality of the support of the trigonometric polynomial in frequency domain is bounded by the sparsity
$s \in \mathbb{N}$, the method requires $\mathscr{O}\left(d s^{2} N\right)$ samples and $\mathscr{O}\left(d s^{3}+d s^{2} N \log (s N)\right)$ arithmetic operations in the case $c_{1} \sqrt{N}<s<c_{2} N^{d}$. The number of samples is reduced to $\mathscr{O}(d s+d N)$ and the number of arithmetic operations is $\mathscr{O}\left(d s^{3}\right)$ by using a version of the Prony method.

Chapter 9
 Numerical Applications of DFT

This chapter addresses numerical applications of DFTs. In Sect. 9.1, we describe a powerful multidimensional approximation method, the so-called cardinal interpolation by translates $\varphi(\cdot-\mathbf{k})$ with $\mathbf{k} \in \mathbb{Z}^{d}$, where $\varphi \in C_{c}\left(\mathbb{R}^{d}\right)$ is a compactly supported, continuous function. In this approximation method, the cardinal Lagrange function is of main interest. Applying this technique, we compute the multidimensional Fourier transform by the method of attenuation factors. Then, in Sect. 9.2, we investigate the periodic interpolation by translates on a uniform mesh, where we use the close connection between periodic and cardinal interpolation by translates. The central notion is the periodic Lagrange function. Using the periodic Lagrange function, we calculate the Fourier coefficients of a multivariate periodic function by the method of attenuation factors.

Starting with the Euler-Maclaurin summation formula, we discuss the quadrature of univariate periodic functions in Sect. 9.3. In Sect. 9.4, we present two methods for accelerating the convergence of Fourier series, namely the Krylov-Lanczos method and the Fourier extension. Finally, in Sect. 9.5, we deal with fast Poisson solvers, more precisely, we solve the homogeneous Dirichlet boundary problem of the Poisson equation on the unit square by a finite difference method, where the related linear system is solved by a fast algorithm of the two-dimensional DST-I.

9.1 Cardinal Interpolation by Translates

In this section, we describe a powerful approximation method of d-variate functions which can be efficiently solved by Fourier technique. The dimension $d \in \mathbb{N}$ is fixed. Let $\varphi \in C_{c}\left(\mathbb{R}^{d}\right)$ be a given complex-valued continuous basis function with compact support

$$
\operatorname{supp} \varphi:=\overline{\left\{\mathbf{x} \in \mathbb{R}^{d}: \varphi(\mathbf{x}) \neq 0\right\}} .
$$

Further we assume that the d-dimensional Fourier transform

$$
\hat{\varphi}(\boldsymbol{\omega}):=\int_{\mathbb{R}^{d}} \varphi(\mathbf{x}) \mathrm{e}^{-\mathrm{i} \mathbf{x} \cdot \boldsymbol{\omega}} \mathrm{~d} \mathbf{x}
$$

belongs to $L_{1}\left(\mathbb{R}^{d}\right)$. Note that $\mathbf{x} \cdot \boldsymbol{\omega}:=\sum_{\ell=1}^{d} x_{\ell} \omega_{\ell}$ denotes the inner product of vectors $\mathbf{x}=\left(x_{\ell}\right)_{\ell=1}^{d}, \omega=\left(\omega_{\ell}\right)_{\ell=1}^{d} \in \mathbb{R}^{d}$. Often used basis functions are cardinal B-splines and box splines. Note that B-splines (i.e., basis splines) are splines with the smallest possible support. Cardinal B-splines are B-splines with integer knots.
Example 9.1 In the univariate case $d=1$, let $m \in \mathbb{N} \backslash\{1\}$ be given. We choose $\varphi=N_{m}$ as the cardinal B-spline of order m which can be recursively defined by

$$
\begin{equation*}
N_{m}(x):=\left(N_{m-1} * N_{1}\right)(x)=\int_{0}^{1} N_{m-1}(x-t) \mathrm{d} t, \quad x \in \mathbb{R} \tag{9.1}
\end{equation*}
$$

with

$$
N_{1}(x):=\frac{1}{2}\left(\chi_{(0,1]}(x)+\chi_{[0,1)}(x)\right),
$$

where $\chi_{(0,1]}$ denotes the characteristic function of $(0,1]$. Then N_{m} is contained in $C_{c}^{m-2}(\mathbb{R})$ and has the compact support supp $N_{m}=[0, m]$. In the cases $m=2,3,4$ we obtain the cardinal B-splines

$$
\begin{aligned}
& N_{2}(x)= \begin{cases}x & x \in[0,1), \\
2-x & x \in[1,2), \\
0 & x \in \mathbb{R} \backslash[0,2),\end{cases} \\
& N_{3}(x)= \begin{cases}x^{2} / 2 & x \in[0,1), \\
\left(-2 x^{2}+6 x-3\right) / 2 & x \in[1,2), \\
(3-x)^{2} / 2 & x \in[2,3), \\
0 & x \in \mathbb{R} \backslash[0,3),\end{cases} \\
& N_{4}(x)= \begin{cases}x^{3} / 6 & x \in[0,1), \\
\left(-3 x^{3}+12 x^{2}-12 x+4\right) / 6 & x \in[1,2), \\
\left(3 x^{3}-24 x^{2}+60 x-44\right) / 6 & x \in[2,3), \\
(4-x)^{3} / 6 & x \in[3,4), \\
0 & x \in \mathbb{R} \backslash[0,4) .\end{cases}
\end{aligned}
$$

Further we have $N_{m} \mid[k, k+1) \in \mathscr{P}_{m-1}$ for each $k \in \mathbb{Z}$ and $m>1$, where $\in \mathscr{P}_{m-1}$ denotes the set of all algebraic polynomials up to degree $m-1$. These B-splines were introduced in [75]. The cardinal B-splines can be computed by the
recurrence formula

$$
N_{m}(x)=\frac{x}{m-1} N_{m-1}(x)+\frac{m-x}{x-1} N_{m-1}(x-1), \quad m=2,3, \ldots .
$$

Obviously, we have

$$
\hat{N}_{1}(\omega)=\int_{0}^{1} \mathrm{e}^{-\mathrm{i} x \omega} \mathrm{~d} x=\mathrm{e}^{-\mathrm{i} \omega / 2} \operatorname{sinc} \frac{\omega}{2}, \quad \omega \in \mathbb{R} .
$$

By the convolution property of the Fourier transform (see Theorem 2.5) and by (9.1) we obtain for all $\omega \in \mathbb{R}$ and $m \in \mathbb{N}$ that

$$
\begin{equation*}
\hat{N}_{m}(\omega)=\left(\hat{N}_{1}(\omega)\right)^{m}=\mathrm{e}^{-\mathrm{i} m \omega / 2}\left(\operatorname{sinc} \frac{\omega}{2}\right)^{m} \tag{9.2}
\end{equation*}
$$

The centered cardinal B-spline of order $m \in \mathbb{N}$ is defined by

$$
M_{m}(x):=N_{m}\left(x+\frac{m}{2}\right), \quad x \in \mathbb{R}
$$

Then M_{m} is an even function with supp $M_{m}=[-m / 2, m / 2]$. For $m=2,3,4$, the centered cardinal B-splines read as follows:

$$
\begin{aligned}
& M_{2}(x)= \begin{cases}1+x & x \in[-1,0), \\
1-x & x \in[0,1), \\
0 & x \in \mathbb{R} \backslash[-1,1),\end{cases} \\
& M_{3}(x)= \begin{cases}(3+2 x)^{2} / 8 & x \in[-3 / 2,-1 / 2), \\
\left(3-4 x^{2}\right) / 4 & x \in[-1 / 2,1 / 2), \\
(3-2 x)^{2} / 8 & x \in[1 / 2,3 / 2), \\
0 & x \in \mathbb{R} \backslash[-3 / 2,3 / 2)\end{cases} \\
& M_{4}(x)= \begin{cases}(x+2)^{3} / 6 & x \in[-2,-1), \\
\left(-3 x^{3}-6 x^{2}+4\right) / 6 & x \in[-1,0) \\
\left(3 x^{3}-6 x^{2}+4\right) / 6 & x \in[0,1) \\
(2-x)^{3} / 6 & x \in[1,2), \\
0 & x \in \mathbb{R} \backslash[-2,2) .\end{cases}
\end{aligned}
$$

Figure 9.1 shows the centered cardinal B-splines M_{2}, M_{3}, and M_{4}. Note that M_{m} is a spline on an integer grid if m is even and on a half integer grid if m is odd. The centered cardinal B-splines M_{m} satisfy the recurrence formula

$$
\begin{equation*}
M_{m}(x)=\left(M_{m-1} * M_{1}\right)(x)=\int_{-1 / 2}^{1 / 2} M_{m-1}(x-t) \mathrm{d} t, \quad m=2,3, \ldots \tag{9.3}
\end{equation*}
$$

Fig. 9.1 Centered cardinal B-splines (a) M_{2}, (b) M_{3}, and (c) M_{4}

By the convolution property of the Fourier transform and by (9.3), the Fourier transform of M_{m} reads as follows:

$$
\hat{M}_{m}(\omega)=\left(\operatorname{sinc} \frac{\omega}{2}\right)^{m}, \quad \omega \in \mathbb{R}
$$

For further details see [79] or [68, pp. 1-13].
Example 9.2 A natural multivariate generalization of the univariate centered cardinal B-spline is the so-called box spline introduced in [80]. For the theory of box splines we refer to [81] and [68, pp. 15-25]. For simplicity, we restrict us to the bivariate case $d=2$. We choose the directions $\mathbf{d}_{1}:=(1,0)^{\top}$ and $\mathbf{d}_{2}:=(0,1)^{\top}$ with corresponding multiplicities $k, \ell \in \mathbb{N}$. The tensor product B -spline $M^{(k, \ell)}$ is defined as the tensor product of the centered cardinal B-splines M_{k} and M_{ℓ}, i.e.

$$
M^{(k, \ell)}(\mathbf{x}):=M_{k}\left(x_{1}\right) M_{\ell}\left(x_{2}\right), \quad \mathbf{x}=\left(x_{1}, x_{2}\right)^{\top} \in \mathbb{R}^{2}
$$

Obviously, $M^{(k, \ell)}$ is supported on $[-k / 2, k / 2] \times[-\ell / 2, \ell / 2]$ and is a piecewise polynomial whose polynomial pieces are separated by a rectangular mesh. Figure 9.2 shows the rectangular partitions of the supports of $M^{(2,2)}$ and $M^{(3,3)}$. The Fourier transform of $M^{(k, \ell)}$ reads as follows:

$$
\hat{M}^{(k, \ell)}(\boldsymbol{\omega})=\left(\operatorname{sinc} \frac{\omega_{1}}{2}\right)^{m}\left(\operatorname{sinc} \frac{\omega_{2}}{2}\right)^{\ell}, \quad \boldsymbol{\omega}=\left(\omega_{1}, \omega_{2}\right)^{\top} \in \mathbb{R}^{2} .
$$

The tensor product B-spline can be generalized by addition of the third direction $\mathbf{d}_{3}:=(1,1)^{\top}$. Then for $k, \ell, m \in \mathbb{N}$, we define the three-direction box spline

$$
M^{(k, \ell, m)}(\mathbf{x}):=\int_{-1 / 2}^{1 / 2} M^{(k, \ell, m-1)}\left(x_{1}-t, x_{2}-t\right) \mathrm{d} t, \quad \mathbf{x}=\left(x_{1}, x_{2}\right)^{\top} \in \mathbb{R}^{2}
$$

where we set $M^{(k, \ell, 0)}:=M^{(k, \ell)}$. Then the support of $M^{(k, \ell, m)}$ is

$$
\operatorname{supp} M^{(k, \ell, m)}=\left\{\mathbf{x}=t_{1} k \mathbf{d}_{1}+t_{2} \ell \mathbf{d}_{2}+t_{3} m \mathbf{d}_{3}: t_{1}, t_{2}, t_{3} \in[-1 / 2,1 / 2]\right\}
$$

which forms a hexagon with the center $(0,0)^{\top}$ whose sides are k, ℓ, and $\sqrt{2} m$ long in direction $\mathbf{d}_{1}, \mathbf{d}_{2}$, and \mathbf{d}_{3}, respectively. The three-direction box spline $M^{(k, \ell, m)}$ is a piecewise polynomial, whose polynomial pieces are separated by a three-direction mesh or type-1 triangulation. Each polynomial piece is a bivariate polynomial of

Fig. 9.2 Rectangular partitions of the supports of (a) $M^{(2,2)}$ and (b) $M^{(4,4)}$

Fig. 9.3 Three-direction meshes of the supports of (a) $M^{(1,1,1)}$ and (b) $M^{(2,2,2)}$
total degree up to $k+\ell+m-2$. Figure 9.3 shows the three-direction meshes of the supports of $M^{(1,1,1)}$ and $M^{(2,2,2)}$. Further $M^{(k, \ell, m)}$ possesses continuous partial derivatives up to order $r-2$ with

$$
r:=k+\ell+m-\max \{k, \ell, m\} .
$$

For example, $M^{(1,1,1)} \in C_{c}\left(\mathbb{R}^{2}\right)$ is the piecewise linear hat function with $M^{(1,1,1)}(0,0)=1$. The three-direction box spline $M^{(2,2,1)} \in C_{c}^{1}\left(\mathbb{R}^{2}\right)$ consists of piecewise polynomials up to total degree 3 and $M^{(2,2,2)} \in C_{c}^{2}\left(\mathbb{R}^{2}\right)$ consists of piecewise polynomials up to total degree 4 . For multivariate box splines we refer to the literature $[68,81]$.

9.1.1 Cardinal Lagrange Function

Now we introduce some additional notations. Let $N \in \mathbb{N} \backslash\{1\}$ be fixed. By J_{N} and B_{N} we denote the following sets of grid points

$$
\begin{aligned}
J_{N} & :=\left\{\mathbf{j}=\left(j_{\ell}\right)_{\ell=1}^{d} \in \mathbb{Z}^{d}: 0 \leq j_{\ell} \leq N-1 \text { for } \ell=1, \ldots, d\right\} \\
B_{N} & :=\left\{\mathbf{j}=\left(j_{\ell}\right)_{\ell=1}^{d} \in \mathbb{Z}^{d}:-\left\lfloor\frac{N-1}{2}\right\rfloor \leq j_{\ell} \leq\left\lfloor\frac{N}{2}\right\rfloor \text { for } \ell=1, \ldots, d\right\}
\end{aligned}
$$

Further we set

$$
Q_{N}:=[0, N)^{d}, \quad Q_{2 \pi}:=[0,2 \pi)^{d}
$$

By $\ell_{1}\left(\mathbb{Z}^{d}\right)$ we denote the Banach space of all complex, absolutely summable sequences $\mathbf{a}=\left(a_{\mathbf{k}}\right)_{\mathbf{k} \in \mathbb{Z}^{d}}$ with the norm

$$
\|\mathbf{a}\|_{\ell_{1}\left(\mathbb{Z}^{d}\right)}:=\sum_{\mathbf{k} \in \mathbb{Z}^{d}}\left|a_{\mathbf{k}}\right|
$$

As usual we agree the sum of such a series by

$$
\sum_{\mathbf{k} \in \mathbb{Z}^{d}} a_{\mathbf{k}}:=\lim _{N \rightarrow \infty} \sum_{\mathbf{k} \in B_{N}} a_{\mathbf{k}}
$$

Let $\varphi \in C_{c}\left(\mathbb{R}^{d}\right)$ be a fixed basis function. Then we form integer translates $\varphi(\cdot \mathbf{k})$ for $\mathbf{k} \in \mathbb{Z}^{d}$. A linear subspace \mathscr{L} of $L_{1}\left(\mathbb{R}^{d}\right)$ is called shift-invariant, if for each $f \in \mathscr{L}$ all integer translates $f(\cdot-\mathbf{k}), \mathbf{k} \in \mathbb{Z}^{d}$, are also contained in \mathscr{L}. A special shift-invariant space is the space $\mathscr{L}(\varphi)$ of all functions s of the form

$$
s=\sum_{\mathbf{k} \in \mathbb{Z}^{d}} a_{\mathbf{k}} \varphi(\cdot-\mathbf{k})
$$

with $\left(a_{\mathbf{k}}\right)_{\mathbf{k} \in \mathbb{Z}^{d}} \in \ell_{1}\left(\mathbb{Z}^{d}\right)$. Obviously, the above series converges absolutely and uniformly on \mathbb{R}^{d}. Hence we have $s \in L_{1}\left(\mathbb{R}^{d}\right) \cap C\left(\mathbb{R}^{d}\right)$, because

$$
\|s\|_{L_{1}\left(\mathbb{R}^{d}\right)} \leq \sum_{\mathbf{k} \in \mathbb{Z}^{d}}\left|a_{\mathbf{k}}\right|\|\varphi\|_{L_{1}\left(\mathbb{R}^{d}\right)}<\infty
$$

Now we study the cardinal interpolation problem in $\mathscr{L}(\varphi)$ and the cardinal interpolation by translates, respectively. For given data $\mathbf{f}:=\left(f_{\mathbf{j}}\right)_{\mathbf{j} \in \mathbb{Z}^{d}} \in \ell_{1}\left(\mathbb{Z}^{d}\right)$, we determine a function $s \in \mathscr{L}(\varphi)$ with

$$
\begin{equation*}
s(\mathbf{j})=f_{\mathbf{j}} \quad \text { for all } \mathbf{j} \in \mathbb{Z}^{d} \tag{9.4}
\end{equation*}
$$

In applications, one assumes often that $f_{\mathbf{j}}=0$ for all $\mathbf{j} \in \mathbb{Z}^{d} \backslash J_{N}$ and $\mathbf{j} \in \mathbb{Z}^{d} \backslash B_{N}$, respectively. Thus for $\mathbf{x}=\mathbf{j} \in \mathbb{Z}^{d}$ we obtain the convolution-like equation

$$
s(\mathbf{j})=f_{\mathbf{j}}=\sum_{\mathbf{k} \in \mathbb{Z}^{d}} s_{\mathbf{k}} \varphi(\mathbf{j}-\mathbf{k}), \quad \mathbf{x} \in \mathbb{R}^{d}
$$

We are interested in an efficient solution of this interpolation problem by using multidimensional DFTs.

A key role in the cardinal interpolation in $\mathscr{L}(\varphi)$ plays the symbol σ_{φ} which is defined by

$$
\begin{equation*}
\sigma_{\varphi}(\omega):=\sum_{\mathbf{k} \in \mathbb{Z}^{d}} \varphi(\mathbf{k}) \mathrm{e}^{-\mathrm{i} \mathbf{k} \cdot \boldsymbol{\omega}}, \quad \omega \in \mathbb{R}^{d} \tag{9.5}
\end{equation*}
$$

Since the basis function $\varphi \in C_{c}\left(\mathbb{R}^{d}\right)$ is compactly supported, the symbol σ_{φ} is a 2π periodic, d-variate trigonometric polynomial. For the symbol we show a property which is closely related to the Poisson summation formula (see Theorem 4.27).
Lemma 9.3 Let $\varphi \in C_{c}\left(\mathbb{R}^{d}\right)$ be a given basis function. Assume that $\hat{\varphi}$ fulfills the condition

$$
\begin{equation*}
\sum_{\mathbf{k} \in \mathbb{Z}^{d}} \sup \left\{|\hat{\varphi}(\boldsymbol{\omega}+2 \mathbf{k} \pi)|: \omega \in Q_{2 \pi}\right\}<\infty \tag{9.6}
\end{equation*}
$$

Then the symbol σ_{φ} can be represented in the form

$$
\sigma_{\varphi}(\omega)=\sum_{\mathbf{k} \in \mathbb{Z}^{d}} \hat{\varphi}(\boldsymbol{\omega}+2 \mathbf{k} \pi)
$$

Proof By condition (9.6) we see that

$$
\begin{aligned}
\|\hat{\varphi}\|_{L_{1}\left(\mathbb{R}^{d}\right)} & =\sum_{\mathbf{k} \in \mathbb{Z}^{d}} \int_{Q_{2 \pi}}|\hat{\varphi}(\omega+2 \mathbf{k} \pi)| \mathrm{d} \boldsymbol{\omega} \\
& \leq(2 \pi)^{d} \sum_{\mathbf{k} \in \mathbb{Z}^{d}} \sup \left\{|\hat{\varphi}(\boldsymbol{\omega}+2 \mathbf{k} \pi)|: \omega \in Q_{2 \pi}\right\}<\infty
\end{aligned}
$$

such that $\hat{\varphi} \in L_{1}\left(\mathbb{R}^{d}\right)$. By Theorem 4.21 we know that $\hat{\varphi} \in C_{0}\left(\mathbb{R}^{d}\right)$. Thus by (9.6) the series of continuous functions

$$
\sum_{\mathbf{k} \in \mathbb{Z}^{d}} \hat{\varphi}(\boldsymbol{\omega}+2 \mathbf{k} \pi)
$$

converges uniformly on \mathbb{R}^{d} to a 2π-periodic function $\psi \in C\left(\mathbb{T}^{d}\right)$. The Fourier coefficients $c_{\mathbf{j}}(\psi), \mathbf{j} \in \mathbb{Z}^{d}$, read by Theorem 4.22 as follows:

$$
\begin{aligned}
c_{\mathbf{j}}(\psi) & :=\frac{1}{(2 \pi)^{d}} \int_{Q_{2 \pi}} \psi(\boldsymbol{\omega}) \mathrm{e}^{-\mathrm{i} \mathbf{j} \cdot \boldsymbol{\omega}} \mathrm{~d} \boldsymbol{\omega}=\frac{1}{(2 \pi)^{d}} \sum_{\mathbf{k} \in \mathbb{Z}^{d}} \int_{Q_{2 \pi}} \hat{\varphi}(\boldsymbol{\omega}+2 \mathbf{k} \pi) \mathrm{e}^{-\mathrm{i} \mathbf{j} \cdot \boldsymbol{\omega}} \mathrm{~d} \boldsymbol{\omega} \\
& =\frac{1}{(2 \pi)^{d}} \int_{\mathbb{R}^{d}} \hat{\varphi}(\boldsymbol{\omega}) \mathrm{e}^{-\mathrm{i} \mathbf{j} \cdot \omega} \mathrm{~d} \boldsymbol{\omega}=\varphi(-\mathbf{j})
\end{aligned}
$$

Since φ is compactly supported, the Fourier series of ψ has only finitely many nonzero summands such that

$$
\psi(\boldsymbol{\omega})=\sum_{\mathbf{j} \in \mathbb{Z}^{d}} \varphi(-\mathbf{j}) \mathrm{e}^{\mathrm{i} \mathbf{j} \cdot \boldsymbol{\omega}}=\sum_{\mathbf{k} \in \mathbb{Z}^{d}} \varphi(\mathbf{k}) \mathrm{e}^{-\mathrm{i} \mathbf{k} \cdot \boldsymbol{\omega}}=\sigma_{\varphi}(\boldsymbol{\omega})
$$

for all $\omega \in \mathbb{R}^{d}$.
Example 9.4 In the case $d=1$, the B-splines N_{m} and M_{m} are contained in $C_{c}(\mathbb{R})$ for $m \in \mathbb{N} \backslash\{1\}$ and they fulfill the condition (9.6).

For the cardinal B-spline $\varphi=N_{m}$, the corresponding symbol reads as follows:

$$
\sigma_{\varphi}(\omega)= \begin{cases}\mathrm{e}^{-\mathrm{i} \omega} & m=2, \\ \mathrm{e}^{-3 \mathrm{i} \omega / 2} \cos \frac{\omega}{2} & m=3, \\ \mathrm{e}^{-\mathrm{i} \mathrm{i} \omega}(2+\cos \omega) / 3 & m=4\end{cases}
$$

For the centered cardinal B-spline $\varphi=M_{m}$, the corresponding symbol reads as follows:

$$
\sigma_{\varphi}(\omega)= \begin{cases}1 & m=2 \\ (3+\cos \omega) / 4 & m=3 \\ (2+\cos \omega) / 3 & m=4\end{cases}
$$

Thus the symbols of important (centered) cardinal B-splines are quite simple.
Example 9.5 In the case $d=2$, the three-direction box spline $\varphi=M^{(k, \ell, m)}$ with $k, \ell, m \in \mathbb{N}$ fulfills the condition (9.6). The corresponding symbol reads for $\omega=$ $\left(\omega_{1}, \omega_{2}\right)^{\top} \in \mathbb{R}^{2}$ as follows:
$\sigma_{\varphi}(\boldsymbol{\omega})= \begin{cases}1 & (k, \ell, m)=(1,1,1), \\ \left(7+2 \cos \omega_{1}+2 \cos \omega_{2}+\cos \left(\omega_{1}+\omega_{2}\right)\right) / 12 & (k, \ell, m)=(2,2,1), \\ \left(3+\cos \omega_{1}+\cos \omega_{2}+\cos \left(\omega_{1}+\omega_{2}\right)\right) / 6 & (k, \ell, m)=(2,2,2) .\end{cases}$
The symbols of often used three-direction box splines are simple trigonometric polynomials.

A function $\lambda \in \mathscr{L}(\varphi)$ which interpolates the Kronecker data $\left(\delta_{\mathbf{k}}\right)_{\mathbf{k} \in \mathbb{Z}^{d}}$ on the integer grid \mathbb{Z}^{d}, i.e.

$$
\lambda(\mathbf{k})=\delta_{\mathbf{k}}:= \begin{cases}1 & \mathbf{k}=\mathbf{0}, \\ 0 & \mathbf{k} \in \mathbb{Z}^{d} \backslash\{\mathbf{0}\},\end{cases}
$$

is called cardinal Lagrange function. For a given basis function $\varphi \in C_{c}\left(\mathbb{R}^{d}\right)$ with corresponding nonvanishing symbol σ_{φ}, we can construct a cardinal Lagrange function as follows:

Theorem 9.6 Let $\varphi \in C_{c}\left(\mathbb{R}^{d}\right)$ be a given basis function. Assume that $\hat{\varphi}$ fulfills the condition (9.6) and that $\sigma_{\varphi}(\omega) \neq 0$ for all $\omega \in Q_{2 \pi}$.

Then the function $\lambda \in \mathscr{L}(\varphi)$ defined as

$$
\begin{equation*}
\lambda(\mathbf{x}):=\frac{1}{(2 \pi)^{d}} \int_{\mathbb{R}^{d}} \frac{\hat{\varphi}(\boldsymbol{\omega})}{\sigma_{\varphi}(\boldsymbol{\omega})} \mathrm{e}^{\mathrm{i} \boldsymbol{\omega} \cdot \mathbf{x}} \mathrm{~d} \boldsymbol{\omega}, \quad \mathbf{x} \in \mathbb{R}^{d} \tag{9.7}
\end{equation*}
$$

is a cardinal Lagrange function of the form

$$
\begin{equation*}
\lambda(\mathbf{x})=\sum_{\mathbf{k} \in \mathbb{Z}^{d}} \lambda_{\mathbf{k}} \varphi(\mathbf{x}-\mathbf{k}), \quad \mathbf{x} \in \mathbb{R}^{d} \tag{9.8}
\end{equation*}
$$

with the coefficients

$$
\begin{equation*}
\lambda_{\mathbf{k}}:=\frac{1}{(2 \pi)^{d}} \int_{Q_{2 \pi}} \frac{\mathrm{e}^{\mathrm{i} \omega \cdot \mathbf{k}}}{\sigma_{\varphi}(\omega)} \mathrm{d} \boldsymbol{\omega}, \quad \mathbf{k} \in \mathbb{Z}^{d} \tag{9.9}
\end{equation*}
$$

where $\left(\lambda_{\mathbf{k}}\right)_{\mathbf{k} \in \mathbb{Z}^{d}} \in \ell_{1}\left(\mathbb{Z}^{d}\right)$. The series (9.8) converges absolutely and uniformly on \mathbb{R}^{d}.

Proof

1. By Lemma 9.3 we know that for all $\omega \in \mathbb{R}^{d}$

$$
\sigma_{\varphi}(\boldsymbol{\omega})=\sum_{\mathbf{n} \in \mathbb{Z}^{d}} \hat{\varphi}(\boldsymbol{\omega}+2 \mathbf{n} \pi) \neq 0
$$

Here the series

$$
\sum_{\mathbf{n} \in \mathbb{Z}^{d}} \hat{\varphi}(\omega+2 \mathbf{n} \pi)
$$

converges uniformly on \mathbb{R}^{d} by condition (9.6). By (9.7) we obtain for each $\mathbf{k} \in$ \mathbb{Z}^{d} that

$$
\begin{aligned}
& \lambda(\mathbf{k})=\frac{1}{(2 \pi)^{d}} \int_{\mathbb{R}^{d}} \frac{\hat{\varphi}(\boldsymbol{\omega})}{\sigma_{\varphi}(\boldsymbol{\omega})} \mathrm{e}^{\mathrm{i} \omega \cdot \mathbf{k}} \mathrm{~d} \boldsymbol{\omega} \\
& =\frac{1}{(2 \pi)^{d}} \sum_{\mathbf{j} \in \mathbb{Z}^{d}} \int_{Q_{2 \pi}} \frac{\hat{\varphi}(\boldsymbol{\omega}+2 \pi \mathbf{j})}{\sum_{\mathbf{n} \in \mathbb{Z}^{d}} \hat{\varphi}(\boldsymbol{\omega}+2 \pi \mathbf{n})} \mathrm{e}^{\mathrm{i} \omega \cdot \mathbf{k}} \mathrm{~d} \boldsymbol{\omega}=\frac{1}{(2 \pi)^{d}} \int_{Q_{2 \pi}} \mathrm{e}^{\mathrm{i} \boldsymbol{\omega} \cdot \mathbf{k}} \mathrm{~d} \boldsymbol{\omega}=\delta_{\mathbf{k}} .
\end{aligned}
$$

2. Applying Lemma 9.3 to the shifted function $\psi:=\varphi(\cdot+\mathbf{x})$ for arbitrary fixed $\mathbf{x} \in \mathbb{R}^{d}$, we obtain by Theorem 4.20

$$
\hat{\psi}(\boldsymbol{\omega})=\mathrm{e}^{\mathrm{i} \boldsymbol{\omega} \cdot \mathbf{x}} \hat{\varphi}(\boldsymbol{\omega}), \quad \boldsymbol{\omega} \in \mathbb{R}^{d}
$$

such that for all $\omega \in \mathbb{R}^{d}$

$$
\sigma_{\psi}(\boldsymbol{\omega})=\sum_{\mathbf{k} \in \mathbb{Z}^{d}} \varphi(\mathbf{k}+\mathbf{x}) \mathrm{e}^{-\mathrm{i} \mathbf{k} \cdot \boldsymbol{\omega}}=\sum_{\mathbf{j} \in \mathbb{Z}^{d}} \hat{\varphi}(\boldsymbol{\omega}+2 \pi \mathbf{j}) \mathrm{e}^{\mathrm{i} \boldsymbol{\omega} \cdot \mathbf{x}} \mathrm{e}^{2 \pi \mathrm{i} \mathbf{j} \cdot \mathbf{x}}
$$

By condition (9.6) the above series on the right-hand side converges uniformly on \mathbb{R}^{d}. By definition (9.7) of the cardinal Lagrange function λ we see that

$$
\begin{aligned}
& \lambda(\mathbf{x})=\frac{1}{(2 \pi)^{d}} \int_{\mathbb{R}^{d}} \frac{\hat{\varphi}(\boldsymbol{\omega})}{\sigma_{\varphi}(\boldsymbol{\omega})} \mathrm{e}^{\mathrm{i} \omega \cdot \mathbf{x}} \mathrm{~d} \boldsymbol{\omega} \\
& =\frac{1}{(2 \pi)^{d}} \int_{Q_{2 \pi}} \frac{1}{\sigma_{\varphi}(\boldsymbol{\omega})} \sum_{\mathbf{j} \in \mathbb{Z}^{d}} \hat{\varphi}(\boldsymbol{\omega}+2 \pi \mathbf{j}) \mathrm{e}^{\mathrm{i} \boldsymbol{\omega} \cdot \mathbf{x}} \mathrm{e}^{2 \pi \mathrm{i} \cdot \mathbf{x}} \mathrm{~d} \boldsymbol{\omega} \\
& =\frac{1}{(2 \pi)^{d}} \int_{Q_{2 \pi}} \frac{1}{\sigma_{\varphi}(\boldsymbol{\omega})} \sum_{\mathbf{k} \in \mathbb{Z}^{d}} \varphi(\mathbf{k}+\mathbf{x}) \mathrm{e}^{-\mathrm{i} \omega \cdot \mathbf{k}} \mathrm{~d} \boldsymbol{\omega}=\sum_{\mathbf{k} \in \mathbb{Z}^{d}} \lambda_{\mathbf{k}} \varphi(\mathbf{x}-\mathbf{k}),
\end{aligned}
$$

where $\lambda_{\mathbf{k}}$ is given by (9.9).
3. Since $\sigma_{\varphi} \neq 0$ is a 2π-periodic, trigonometric polynomial, the 2π-periodic function $1 / \sigma_{\varphi} \in C^{\infty}\left(\mathbb{T}^{d}\right)$ possesses rapidly decreasing Fourier coefficients $\lambda_{\mathbf{k}}$ by Lemma 4.6 , i.e., for each $m \in \mathbb{N}_{0}$ it holds

$$
\lim _{\|\mathbf{k}\|_{2} \rightarrow \infty}\left(1+\|\mathbf{k}\|_{2}\right)^{m}\left|\lambda_{\mathbf{k}}\right|=0 .
$$

Since by Lemma 4.8 we have

$$
\sum_{\mathbf{k} \in \mathbb{Z}^{d}}\left(1+\|\mathbf{k}\|_{2}\right)^{-d-1}<\infty
$$

we obtain that

$$
\sum_{\mathbf{k} \in \mathbb{Z}^{d}}\left|\lambda_{\mathbf{k}}\right|<\infty
$$

Hence the series (9.8) converges absolutely and uniformly on \mathbb{R}^{d} and $\lambda \in \mathscr{L}(\varphi)$.

Theorem 9.7 Let $\varphi \in C_{c}\left(\mathbb{R}^{d}\right)$ be a given basis function. Assume that $\hat{\varphi}$ fulfills the condition (9.6).

The cardinal interpolation problem (9.4) in $\mathscr{L}(\varphi)$ is uniquely solvable for arbitrary given data $\mathbf{f}=\left(f_{\mathbf{k}}\right)_{\mathbf{k} \in \mathbb{Z}^{d}} \in \ell_{1}\left(\mathbb{Z}^{d}\right)$ if and only if the symbol σ_{φ} satisfies the condition $\sigma_{\varphi}(\omega) \neq 0$ for all $\omega \in Q_{2 \pi}$.

Proof

1. Assume that the cardinal interpolation problem (9.4) in $\mathscr{L}(\varphi)$ is uniquely solvable for each data $\mathbf{f}=\left(f_{\mathbf{k}}\right)_{\mathbf{k} \in \mathbb{Z}^{d}} \in \ell_{1}\left(\mathbb{Z}^{d}\right)$. Especially for the Kronecker data $\left(\delta_{\mathbf{j}}\right)_{\mathbf{j} \in \mathbb{Z}^{d}}$ there exists a function $\lambda \in \mathscr{L}(\varphi)$ of the form

$$
\lambda=\sum_{\mathbf{k} \in \mathbb{Z}^{d}} \lambda_{\mathbf{k}} \varphi(\cdot-\mathbf{k})
$$

with $\left(\lambda_{\mathbf{k}}\right)_{\mathbf{k} \in \mathbb{Z}^{d}} \in \ell_{1}\left(\mathbb{Z}^{d}\right)$ and

$$
\begin{equation*}
\delta_{\mathbf{j}}=\lambda(\mathbf{j})=\sum_{\mathbf{k} \in \mathbb{Z}^{d}} \lambda_{\mathbf{k}} \varphi(\mathbf{j}-\mathbf{k}), \quad \mathbf{j} \in \mathbb{Z}^{d} \tag{9.10}
\end{equation*}
$$

Multiplying (9.10) by $\mathrm{e}^{-\mathrm{i} \mathbf{j} \cdot \omega}$ and summing then all equations over \mathbf{j}, we obtain with $\mathbf{n}:=\mathbf{j}-\mathbf{k}$ that

$$
1=\tau(\boldsymbol{\omega}) \sum_{\mathbf{n} \in \mathbb{Z}^{d}} \varphi_{\mathbf{n}} \mathrm{e}^{-\mathrm{i} \mathbf{n} \cdot \boldsymbol{\omega}}=\tau(\boldsymbol{\omega}) \sigma_{\varphi}(\boldsymbol{\omega})
$$

with

$$
\tau(\boldsymbol{\omega}):=\sum_{\mathbf{k} \in \mathbb{Z}^{d}} \lambda_{\mathbf{k}} \mathrm{e}^{-\mathrm{i} \mathbf{k} \cdot \boldsymbol{\omega}}
$$

Using Theorem 4.7, τ is a 2π-periodic, continuous function by $\left(\lambda_{\mathbf{k}}\right)_{\mathbf{k} \in \mathbb{Z}^{d}} \in$ $\ell_{1}\left(\mathbb{Z}^{d}\right)$. Hence the symbol σ_{φ} cannot vanish.
2. Suppose that $\sigma_{\varphi} \neq 0$. By Theorem 9.6 there exists a cardinal Lagrange function $\lambda \in \mathscr{L}(\varphi)$ with the property $\lambda(\mathbf{j})=\delta_{\mathbf{j}}$ for all $\mathbf{j} \in \mathbb{Z}^{d}$. For arbitrary data
$\mathbf{f}=\left(f_{\mathbf{k}}\right)_{\mathbf{k} \in \mathbb{Z}^{d}} \in \ell_{1}\left(\mathbb{Z}^{d}\right)$ we form the function

$$
\begin{equation*}
s:=\sum_{\mathbf{k} \in \mathbb{Z}^{d}} f_{\mathbf{k}} \lambda(\cdot-\mathbf{k}) . \tag{9.11}
\end{equation*}
$$

By

$$
\left|f_{\mathbf{k}} \lambda(\mathbf{x}-\mathbf{k})\right| \leq\left|f_{\mathbf{k}}\right| \sup \left\{|\lambda(\mathbf{u})|: \mathbf{u} \in \mathbb{R}^{d}\right\}
$$

and by $\mathbf{f} \in \ell_{1}\left(\mathbb{Z}^{d}\right)$, the series in (9.11) converges absolutely and uniformly on \mathbb{R}^{d}. Further it holds

$$
\|s\|_{L_{1}\left(\mathbb{R}^{d}\right)} \leq\|\mathbf{f}\|_{\ell_{1}\left(\mathbb{Z}^{d}\right)}\|\lambda\|_{L_{1}\left(\mathbb{R}^{d}\right)}<\infty .
$$

Thus $s \in L_{1}\left(\mathbb{R}^{d}\right) \cap C\left(\mathbb{R}^{d}\right)$ fulfills the interpolation condition $s(\mathbf{j})=f_{\mathbf{j}}$ for all $\mathbf{j} \in \mathbb{Z}^{d}$.

Now we show that $s \in \mathscr{L}(\varphi)$. By Theorem 9.6, the cardinal Lagrange function λ can be represented in the form

$$
\lambda=\sum_{\mathbf{j} \in \mathbb{Z}^{d}} \lambda_{\mathbf{j}} \varphi(\cdot-\mathbf{j})
$$

with $\left(\lambda_{\mathbf{j}}\right)_{\mathbf{j} \in \mathbb{Z}^{d}} \in \ell_{1}\left(\mathbb{Z}^{d}\right)$. Then it follows that for all $\mathbf{k} \in \mathbb{Z}^{d}$

$$
\lambda(\cdot-\mathbf{k})=\sum_{\mathbf{j} \in \mathbb{Z}^{d}} \lambda_{\mathbf{j}-\mathbf{k}} \varphi(\cdot-\mathbf{j}) .
$$

Thus by (9.11) we obtain that

$$
s:=\sum_{\mathbf{j} \in \mathbb{Z}^{d}} a_{\mathbf{j}} \lambda(\cdot-\mathbf{j})
$$

with the coefficients

$$
a_{\mathbf{j}}:=\sum_{\mathbf{k} \in \mathbb{Z}^{d}} f_{\mathbf{k}} \lambda_{\mathbf{j}-\mathbf{k}}, \quad \mathbf{j} \in \mathbb{Z}^{d} .
$$

By

$$
\sum_{\mathbf{j} \in \mathbb{Z}^{d}}\left|a_{\mathbf{j}}\right| \leq\|\mathbf{f}\|_{\ell_{1}\left(\mathbb{Z}^{d}\right)}\|\lambda\|_{\ell_{1}\left(\mathbb{Z}^{d}\right)}<\infty
$$

we see that $\left(a_{\mathbf{j}}\right)_{\mathbf{j} \in \mathbb{Z}^{d}} \in \ell_{1}\left(\mathbb{Z}^{d}\right)$. Hence $s \in \mathscr{L}(\varphi)$ is a solution of the cardinal interpolation problem (9.4).
3. Finally we prove the unique solvability of the cardinal interpolation problem (9.4). Assume that $t \in \mathscr{L}(\varphi)$ is also a solution of (9.4), where t has the form

$$
t:=\sum_{\mathbf{j} \in \mathbb{Z}^{d}} b_{\mathbf{j}} \lambda(\cdot-\mathbf{j})
$$

with $\left(b_{\mathbf{j}}\right)_{\mathbf{j} \in \mathbb{Z}^{d}} \in \ell_{1}\left(\mathbb{Z}^{d}\right)$. Then the coefficients $c_{\mathbf{j}}:=a_{\mathbf{j}}-b_{\mathbf{j}}, \mathbf{j} \in \mathbb{Z}^{d}$, with the property $\left(c_{\mathbf{j}}\right)_{\mathbf{j} \in \mathbb{Z}^{d}} \in \ell_{1}\left(\mathbb{Z}^{d}\right)$ fulfill the equation

$$
0=\sum_{\mathbf{k} \in \mathbb{Z}^{d}} c_{\mathbf{k}} \varphi(\mathbf{j}-\mathbf{k})
$$

for each $\mathbf{j} \in \mathbb{Z}^{d}$. Multiplying the above equation by $\mathrm{e}^{-\mathrm{i} \mathbf{j} \cdot \boldsymbol{\omega}}, \boldsymbol{\omega} \in \mathbb{R}^{d}$, and summing all equations over $\mathbf{j} \in \mathbb{Z}^{d}$, we obtain

$$
0=c(\boldsymbol{\omega}) \sigma_{\varphi}(\boldsymbol{\omega}), \quad \boldsymbol{\omega} \in \mathbb{R}^{d}
$$

with the 2π-periodic continuous function

$$
c(\boldsymbol{\omega}):=\sum_{\mathbf{k} \in \mathbb{Z}^{d}} c_{\mathbf{k}} \mathrm{e}^{-\mathrm{i} \mathbf{k} \cdot \boldsymbol{\omega}}, \quad \boldsymbol{\omega} \in \mathbb{R}^{d} .
$$

Since $\sigma_{\varphi}(\omega) \neq 0$ for all $\omega \in Q_{2 \pi}$ by assumption, the function $c \in C\left(\mathbb{T}^{d}\right)$ vanishes such that its Fourier coefficients $c_{\mathbf{k}}$ vanish too. Thus it holds $a_{\mathbf{k}}=b_{\mathbf{k}}$ for all $\mathbf{k} \in \mathbb{Z}^{d}$ and hence $s=t$.

Remark 9.8 The proof of Theorem 9.7 is mainly based on a convolution in $\ell_{1}\left(\mathbb{Z}^{d}\right)$. For arbitrary $\mathbf{a}=\left(a_{\mathbf{k}}\right)_{\mathbf{k} \in \mathbb{Z}^{d}}, \mathbf{b}=\left(b_{\mathbf{k}}\right)_{\mathbf{k} \in \mathbb{Z}^{d}} \in \ell_{1}\left(\mathbb{Z}^{d}\right)$, the convolution in $\ell_{1}\left(\mathbb{Z}^{d}\right)$ is defined as $\mathbf{a} * \mathbf{b}:=\left(c_{\mathbf{j}}\right)_{\mathbf{j} \in \mathbb{Z}^{d}}$ with

$$
c_{\mathbf{j}}:=\sum_{\mathbf{k} \in \mathbb{Z}^{d}} a_{\mathbf{k}} b_{\mathbf{j}-\mathbf{k}}, \quad \mathbf{j} \in \mathbb{Z}^{d}
$$

By

$$
\|\mathbf{a} * \mathbf{b}\|_{\ell_{1}\left(\mathbb{Z}^{d}\right)} \leq\|\mathbf{a}\|_{\ell_{1}\left(\mathbb{Z}^{d}\right)}\|\mathbf{b}\|_{\ell_{1}\left(\mathbb{Z}^{d}\right)}<\infty
$$

we see that $\mathbf{a} * \mathbf{b} \in \ell_{1}\left(\mathbb{Z}^{d}\right)$. One can easily show that the convolution in $\ell_{1}\left(\mathbb{Z}^{d}\right)$ is a commutative, associative, and distributive operation with the unity $\left(\delta_{\mathbf{j}}\right)_{\mathbf{j} \in \mathbb{Z}^{d}}$. Forming the corresponding functions $a, b \in C\left(\mathbb{T}^{d}\right)$ by

$$
a(\omega):=\sum_{\mathbf{k} \in \mathbb{Z}^{d}} a_{\mathbf{k}} \mathrm{e}^{-\mathrm{i} \mathbf{k} \cdot \boldsymbol{\omega}}, \quad b(\boldsymbol{\omega}):=\sum_{\mathbf{k} \in \mathbb{Z}^{d}} b_{\mathbf{k}} \mathrm{e}^{-\mathrm{i} \mathbf{k} \cdot \omega},
$$

then the convolution $\mathbf{a} * \mathbf{b}:=\left(c_{\mathbf{j}}\right)_{\mathbf{j} \in \mathbb{Z}^{d}} \in \ell_{1}\left(\mathbb{Z}^{d}\right)$ correlates to the product $a b \in$ $C\left(\mathbb{T}^{d}\right)$, i.e.

$$
a(\boldsymbol{\omega}) b(\boldsymbol{\omega})=\sum_{\mathbf{j} \in \mathbb{Z}^{d}} c_{\mathbf{j}} \mathrm{e}^{-\mathrm{i} \mathbf{j} \cdot \boldsymbol{\omega}}
$$

Now we show that the cardinal interpolation problem (9.4) in $\mathscr{L}(\varphi)$ can be numerically solved by multidimensional DFTs. From (9.11) and from the translation property of the d-dimensional Fourier transform (see Theorem 4.20) it follows that the Fourier transform \hat{s} has the form

$$
\hat{s}(\boldsymbol{\omega})=\hat{\lambda}(\boldsymbol{\omega}) \sum_{\mathbf{k} \in \mathbb{Z}^{d}} f_{\mathbf{k}} \mathrm{e}^{-\mathrm{i} \mathbf{k} \cdot \boldsymbol{\omega}}
$$

Thus we can estimate

$$
|\hat{s}(\boldsymbol{\omega})| \leq|\hat{\lambda}(\boldsymbol{\omega})| \sum_{\mathbf{k} \in \mathbb{Z}^{d}}\left|f_{\mathbf{k}}\right|=|\hat{\lambda}(\boldsymbol{\omega})|\|\mathbf{f}\|_{\ell_{1}\left(\mathbb{Z}^{d}\right)}
$$

such that

$$
\|\hat{s}\|_{L_{1}\left(\mathbb{R}^{d}\right)} \leq\|\hat{\lambda}\|_{L_{1}\left(\mathbb{R}^{d}\right)}\|\mathbf{f}\|_{\ell_{1}\left(\mathbb{Z}^{d}\right)}
$$

i.e., $\hat{s} \in L_{1}\left(\mathbb{R}^{d}\right)$. Using the d-dimensional inverse Fourier transform of Theorem 4.22, we obtain the formula

$$
\begin{equation*}
s(\mathbf{x})=\frac{1}{(2 \pi)^{d}} \int_{\mathbb{R}^{d}} \hat{\lambda}(\omega)\left(\sum_{\mathbf{k} \in \mathbb{Z}^{d}} f_{\mathbf{k}} \mathrm{e}^{-\mathrm{i} \mathbf{k} \cdot \boldsymbol{\omega}}\right) \mathrm{e}^{\mathrm{i} \mathbf{x} \cdot \boldsymbol{\omega}} \mathrm{~d} \boldsymbol{\omega} \tag{9.12}
\end{equation*}
$$

We suppose again that the basis function φ fulfills the assumptions of Theorem 9.6 and that $f_{\mathbf{k}}=0$ for all $\mathbf{k} \in \mathbb{Z}^{d} \backslash J_{N}$ with certain $N \in \mathbb{N}$. Replacing the domain of integration in (9.12) by the hypercube $[-n \pi, n \pi]^{d}$ with certain $n \in \mathbb{N}$, instead of (9.12) we compute the expression

$$
\frac{1}{(2 \pi)^{d}} \int_{[-n \pi, n \pi]^{d}} \hat{\lambda}(\boldsymbol{\omega})\left(\sum_{\mathbf{k} \in J_{N}} f_{\mathbf{k}} \mathrm{e}^{-\mathrm{i} \mathbf{k} \cdot \boldsymbol{\omega}}\right) \mathrm{e}^{\mathrm{i} \mathbf{x} \cdot \boldsymbol{\omega}} \mathrm{~d} \boldsymbol{\omega}
$$

by a simple d-dimensional quadrature rule with step size $\frac{2 \pi}{N}$, i.e., we approximate the integral (9.12) by the finite sum

$$
\frac{1}{N^{d}} \sum_{\mathbf{m} \in B_{n N}} \hat{\lambda}\left(\frac{2 \pi \mathbf{m}}{N}\right)\left(\sum_{\mathbf{k} \in J_{N}} f_{\mathbf{k}} w_{N}^{\mathbf{k} \cdot \mathbf{m}}\right) \mathrm{e}^{2 \pi \mathrm{i} \mathbf{x} \cdot \mathbf{m} / N}
$$

with the complex N th root of unity $w_{N}:=\mathrm{e}^{2 \pi \mathrm{i} / N}$. By Theorem 9.6 we know that $\hat{\lambda}=\hat{\varphi} / \sigma_{\varphi}$. Since the symbol $\sigma_{\varphi} \neq 0$ is 2π-periodic, it holds

$$
\hat{\lambda}\left(\frac{2 \pi \mathbf{m}}{N}\right)=\frac{\hat{\varphi}\left(\frac{2 \pi \mathbf{m}}{N}\right)}{\sigma_{\varphi}\left(\frac{2 \pi \mathbf{m}^{\prime}}{N}\right)}, \quad \mathbf{m} \in \mathbb{Z}^{d}
$$

where $\mathbf{m}^{\prime}=\left(m_{\ell}^{\prime}\right)_{\ell=1}^{d} \in J_{N}$ denotes the nonnegative residue of $\mathbf{m}=\left(m_{\ell}\right)_{\ell=1}^{d} \in \mathbb{Z}^{d}$ modulo N, i.e., it holds $m_{\ell}^{\prime} \equiv m_{\ell}(\bmod N)$ and $0 \leq m_{\ell}^{\prime}<N$ for each $\ell=1, \ldots, d$. We will use the notation $\mathbf{m}^{\prime}=\mathbf{m} \bmod N$.

Instead of the exact value $s\left(\frac{\mathbf{j}}{n}\right), \mathbf{j} \in J_{n N}$, on the uniform grid $\frac{1}{n} J_{n N}$ we obtain the approximate value

$$
\begin{equation*}
s_{\mathbf{j}}:=\frac{1}{N^{d}} \sum_{\mathbf{m} \in B_{n N}} \hat{\lambda}\left(\frac{2 \pi \mathbf{m}}{N}\right) w_{n N}^{-\mathbf{m} \cdot \mathbf{j}}\left(\sum_{\mathbf{k} \in J_{N}} f_{\mathbf{k}} w_{N}^{\mathbf{k} \cdot \mathbf{m}}\right), \quad \mathbf{j} \in J_{n N} \tag{9.13}
\end{equation*}
$$

Now we summarize this method, where we repeat that the given basis function $\varphi \in L_{1}\left(\mathbb{R}^{d}\right) \cap C\left(\mathbb{R}^{d}\right)$ with the corresponding symbol σ_{φ} fulfills the assumptions of Theorem 9.6.

Algorithm 9.9 (Cardinal Interpolation by Translates)

Input: $n, N \in \mathbb{N} \backslash\{1\}, f_{\mathbf{k}} \in \mathbb{C}$ with $\mathbf{k} \in J_{N}$ given data.

1. For all $\mathbf{j} \in J_{N}$ compute the d-dimensional $\mathrm{DFT}(N \times \ldots \times N)$

$$
\hat{f_{\mathbf{j}}}:=\sum_{\mathbf{k} \in J_{N}} f_{\mathbf{k}} w_{N}^{\mathbf{j} \cdot \mathbf{k}}
$$

2. For all $\mathbf{m} \in B_{n N}$ determine

$$
t_{\mathbf{m}}:=\frac{\hat{\varphi}\left(\frac{2 \pi \mathbf{m}}{N}\right)}{\sigma_{\varphi}\left(\frac{2 \pi \mathbf{m}^{\prime}}{N}\right)} \hat{f}_{\mathbf{m}^{\prime}}
$$

with $\mathbf{m}^{\prime}=\mathbf{m} \bmod N$.
3. For all $\mathbf{m} \in B_{n N}$ set $u_{\mathbf{k}}:=t_{\mathbf{m}}$, where $\mathbf{k}:=\mathbf{m} \bmod n N \in J_{n N}$.
4. For all $\mathbf{j} \in J_{n N}$ compute by d-dimensional $\mathrm{DFT}(n N \times \ldots \times n N)$

$$
s_{\mathbf{j}}:=\frac{1}{N^{d}} \sum_{\mathbf{k} \in J_{n N}} u_{\mathbf{k}} w_{n N}^{-\mathbf{j} \cdot \mathbf{k}}
$$

Output: $s_{\mathbf{j}}, \mathbf{j} \in J_{n N}$, approximate value of $s\left(\frac{\mathbf{j}}{n}\right)$ on the uniform grid $\frac{1}{n} J_{n N}$.
Computational cost: $\mathscr{O}\left((n N)^{d} \log (n N)\right)$.

9.1.2 Computation of Fourier Transforms

This subsection is devoted to the computation of the d-dimensional Fourier transform \hat{f} of a given function $f \in L_{1}\left(\mathbb{R}^{d}\right) \cap C\left(\mathbb{R}^{d}\right)$, i.e.

$$
\begin{equation*}
\hat{f}(\boldsymbol{\omega}):=\int_{\mathbb{R}^{d}} f(\mathbf{x}) \mathrm{e}^{-\mathrm{i} \mathbf{x} \cdot \boldsymbol{\omega}} \mathrm{~d} \boldsymbol{\omega}, \quad \omega \in \mathbb{R}^{d} \tag{9.14}
\end{equation*}
$$

We show that the standard method for computing of (9.14) can be essentially improved without big additional work. The so-called method of attenuation factors is based on the cardinal Lagrange function in the shift-invariant space $\mathscr{L}(\varphi)$, where the basis function $\varphi \in C_{c}\left(\mathbb{R}^{d}\right)$ with the symbol σ_{φ} fulfills the assumptions of Theorem 9.6.

Assume that $|f(\mathbf{x})| \ll 1$ for all $\mathbf{x} \in \mathbb{R}^{d} \backslash[-n \pi, n \pi]^{d}$ with certain $n \in \mathbb{N}$. Replacing the domain of integration in (9.14) by the hypercube $[-n \pi, n \pi]^{d}$, we calculate the integral

$$
\int_{[-n \pi, n \pi]^{d}} f(\mathbf{x}) \mathrm{e}^{-\mathrm{i} \mathbf{x} \cdot \boldsymbol{\omega}} \mathrm{~d} \boldsymbol{\omega}
$$

by the simple tensor product quadrature rule with uniform step size $\frac{2 \pi}{N}$ for certain sufficiently large $N \in \mathbb{N}$. Then as approximate value of $\hat{f}(\boldsymbol{\omega})$ we preserve

$$
\left(\frac{2 \pi}{N}\right)^{d} \sum_{\mathbf{j} \in B_{n N}} f\left(\frac{2 \pi \mathbf{j}}{N}\right) \mathrm{e}^{-2 \pi \mathrm{i} \mathbf{j} \cdot \omega / N}, \quad \omega \in \mathbb{R}^{d}
$$

where the index set $B_{n N}$ is equal to

$$
\begin{equation*}
B_{n N}=\left\{\mathbf{j}=\left(j_{\ell}\right)_{\ell=1}^{d} \in \mathbb{Z}^{d}:-\left\lfloor\frac{n N-1}{2}\right\rfloor \leq j_{\ell} \leq\left\lfloor\frac{n N}{2}\right\rfloor \text { for } \ell=1, \ldots, d\right\} \tag{9.15}
\end{equation*}
$$

Especially for $\boldsymbol{\omega}=\frac{\mathbf{k}}{n}$ with $\mathbf{k} \in \mathbb{Z}^{d}$ we get

$$
\begin{equation*}
\tilde{f}_{\mathbf{k}}:=\left(\frac{2 \pi}{N}\right)^{d} \sum_{\mathbf{j} \in B_{n N}} f\left(\frac{2 \pi \mathbf{j}}{N}\right) w_{n N}^{\mathbf{j} \cdot \mathbf{k}} \tag{9.16}
\end{equation*}
$$

as approximate value of $\hat{f}\left(\frac{\mathbf{k}}{n}\right)$, where $w_{n N}=\mathrm{e}^{-2 \pi \mathrm{i} /(n N)}$. Up to the factor $\left(\frac{2 \pi}{N}\right)^{d}$, the expression (9.16) is a d-dimensional $\operatorname{DFT}(n N \times \ldots \times n N)$. Obviously, the values $\tilde{f}_{\mathbf{k}}, \mathbf{k} \in \mathbb{Z}^{d}$, are $n N$-periodic, i.e., $\tilde{f}_{\mathbf{k}}=\tilde{f}_{\mathbf{k}+n N \mathbf{j}}$ for all $\mathbf{j}, \mathbf{k} \in \mathbb{Z}^{d}$. Otherwise, the Fourier transform \hat{f} possesses the property (see Lemma 4.21)

$$
\lim _{\|\mathbf{k}\|_{2} \rightarrow \infty} \hat{f}\left(\frac{\mathbf{k}}{n}\right)=0 .
$$

Thus only for $\mathbf{k}=\left(k_{\ell}\right)_{\ell=1}^{d} \in \mathbb{Z}^{d}$ with $\left|k_{\ell}\right|<\frac{n N}{2}, \ell=1, \ldots, d$, the value $\tilde{f_{\mathbf{k}}}$ can be accepted as approximation of $\hat{f}\left(\frac{\mathbf{k}}{n}\right)$. Better approximations of $\hat{f}\left(\frac{\mathbf{k}}{n}\right)$ can be obtained by the following method of attenuation factors which is mainly based on the cardinal Lagrange function $\lambda \in \mathscr{L}(\varphi)$, where $\varphi \in C_{c}\left(\mathbb{R}^{d}\right)$ is a convenient compactly supported basis function and $\mathscr{L}(\varphi)$ is the related shift-invariant space.
Theorem 9.10 (Method of Attenuation Factors for Fourier Transform) Let n, $N \in \mathbb{N}$ be given. For $f \in L_{1}\left(\mathbb{R}^{d}\right) \cap C\left(\mathbb{R}^{d}\right)$ set

$$
f_{\mathbf{j}}:= \begin{cases}f\left(\frac{2 \pi \mathbf{j}}{N}\right) & \mathbf{j} \in B_{n N}, \\ 0 & \mathbf{j} \in \mathbb{Z}^{d} \backslash B_{n N}\end{cases}
$$

Let $\varphi \in C_{c}\left(\mathbb{R}^{d}\right)$ be a given compactly supported basis function. Assume that $\hat{\varphi}$ fulfills the condition (9.6) and that $\sigma_{\varphi}(\boldsymbol{\omega}) \neq 0$ for all $\boldsymbol{\omega} \in Q_{2 \pi}$. Let $\lambda \in \mathscr{L}(\varphi)$ denote the cardinal Lagrange function (9.7).

Then the values of the Fourier transform of the function

$$
\begin{equation*}
s(\mathbf{x}):=\sum_{\mathbf{j} \in B_{n N}} f_{\mathbf{j}} \lambda\left(\frac{N \mathbf{x}}{2 \pi}-\mathbf{j}\right), \quad \mathbf{x} \in \mathbb{R}^{d} \tag{9.17}
\end{equation*}
$$

read as follows:

$$
\hat{s}\left(\frac{\mathbf{k}}{n}\right)=\hat{\lambda}\left(\frac{2 \pi \mathbf{k}}{n N}\right) \tilde{f}_{\mathbf{k}^{\prime}}, \quad \mathbf{k} \in \mathbb{Z}^{d}
$$

where $\mathbf{k}^{\prime}:=\mathbf{k} \bmod n N$ and where $\tilde{f_{\mathbf{k}}}$ is defined by (9.16). The values

$$
\begin{equation*}
\hat{\lambda}\left(\frac{2 \pi \mathbf{k}}{n N}\right)=\frac{\hat{\varphi}\left(\frac{2 \pi \mathbf{k}}{n N}\right)}{\sigma_{\varphi}\left(\frac{2 \pi \mathbf{k}^{\prime}}{n N}\right)}, \quad \mathbf{k} \in \mathbb{Z}^{d} \tag{9.18}
\end{equation*}
$$

are called attenuation factors of Fourier transform.
Proof By Theorem 9.6 there exists the cardinal Lagrange function $\lambda \in \mathscr{L}(\varphi)$. Obviously, the function (9.17) interpolates the given data $f_{\mathbf{j}}$ on the uniform grid $\frac{2 \pi}{N} \mathbb{Z}^{d}$, i.e.,

$$
s\left(\frac{2 \pi \mathbf{j}}{N}\right)=f_{\mathbf{j}}, \quad \mathbf{j} \in \mathbb{Z}^{d}
$$

Further by Theorem 9.7 we know that $s \in L_{1}\left(\mathbb{R}^{d}\right) \cap C\left(\mathbb{R}^{d}\right)$. Applying the d dimensional Fourier transform, we obtain

$$
\hat{s}(\omega)=\left(\frac{2 \pi}{N}\right)^{d} \sum_{\mathbf{j} \in B_{n N}} f_{\mathbf{j}} \mathrm{e}^{-2 \pi \mathrm{i} \mathbf{j} \cdot \boldsymbol{\omega} / N} \hat{\lambda}\left(\frac{2 \pi \omega}{N}\right), \quad \omega \in \mathbb{R}^{d} .
$$

By Theorem 9.6 it holds $\hat{\lambda}=\hat{\varphi} / \sigma_{\varphi}$. For $\omega=\frac{\mathbf{k}}{n}, \mathbf{k} \in \mathbb{Z}^{d}$, it follows that

$$
\hat{s}\left(\frac{\mathbf{k}}{n}\right)=\hat{\lambda}\left(\frac{2 \pi \mathbf{k}}{n N}\right) \tilde{f}_{\mathbf{k}}=\hat{\lambda}\left(\frac{2 \pi \mathbf{k}}{n N}\right) \tilde{f}_{\mathbf{k}^{\prime}},
$$

where $\tilde{f}_{\mathbf{k}}$ is defined by (9.16) and where $\mathbf{k}^{\prime}=\mathbf{k} \bmod n N$. Since the symbol σ_{φ} is 2π-periodic, we obtain the formula (9.18).

Thus we can use $\hat{s}\left(\frac{\mathbf{k}}{n}\right)$ as approximate value of $\hat{f}\left(\frac{\mathbf{k}}{n}\right)$ for $\mathbf{k} \in \mathbb{Z}^{d}$. The method of attenuation factors performs two tasks. The computed values $\hat{s}\left(\frac{\mathbf{k}}{n}\right)$ correct the $(n N)^{d}$ coarse approximate values $\tilde{f}_{\mathbf{k}}$ for $\mathbf{k} \in B_{n N}$. Further the approximate values $\tilde{f}_{\mathbf{k}}$ for $\mathbf{k} \in B_{n N}$ are continued to whole \mathbb{Z}^{d} by the values $\hat{s}\left(\frac{\mathbf{k}}{n}\right)$.

The essential step for computing the Fourier transform \hat{f} on a uniform grid is the d-dimensional DFT $(n N \times \ldots \times n N)$ in formula (9.16) so that we recommend to choose the positive integers n and N as powers of two.

Example 9.11 For the cardinal B-spline $\varphi=N_{m}$ with certain $m \in \mathbb{N} \backslash\{1\}$ the attenuation factors result from

$$
\hat{\lambda}(\omega)= \begin{cases}\left(\operatorname{sinc} \frac{\omega}{2}\right)^{2} & m=2 \\ 3\left(\operatorname{sinc} \frac{\omega}{2}\right)^{4}(2+\cos \omega)^{-1} & m=4 \\ 60\left(\operatorname{sinc} \frac{\omega}{2}\right)^{6}(33+26 \cos \omega+\cos 2 \omega)^{-1} & m=6\end{cases}
$$

with $\omega=\frac{2 \pi k}{n N}, k \in \mathbb{Z}$. Note that N_{3} and N_{5} don't fulfill the assumptions of Theorem 9.10, because the related symbols can vanish.

For the centered cardinal B-spline $\varphi=M_{m}$ with certain $m \in \mathbb{N} \backslash\{1\}$ the attenuation factors account for

$$
\hat{\lambda}(\omega)= \begin{cases}\left(\operatorname{sinc} \frac{\omega}{2}\right)^{2} & m=2, \\ 4\left(\operatorname{sinc} \frac{\omega}{2}\right)^{3}(3+\cos \omega)^{-1} & m=3, \\ 3\left(\operatorname{sinc} \frac{\omega}{2}\right)^{4}(2+\cos \omega)^{-1} & m=4\end{cases}
$$

with $\omega=\frac{2 \pi k}{n N}, k \in \mathbb{Z}$.
Example 9.12 For the three-direction box spline $\varphi=M^{(k, \ell, m)}$ with $k, \ell, m \in \mathbb{N}$ one obtains the attenuation factors by

$$
\hat{\lambda}(\boldsymbol{\omega})= \begin{cases}\left(\operatorname{sinc} \frac{\omega_{1}}{2}\right)\left(\operatorname{sinc} \frac{\omega_{2}}{2}\right)\left(\operatorname{sinc} \frac{\omega_{1}+\omega_{2}}{2}\right) & (k, \ell, m)=(1,1,1), \\ \frac{12\left(\operatorname{sinc} \frac{\omega_{1}}{2}\right)^{2}\left(\operatorname{sinc} \frac{\omega_{2}}{2}\right)^{2}\left(\operatorname{sinc} \frac{\omega_{1}+\omega_{2}}{2}\right)}{7+2 \cos \omega_{1}+2 \cos \omega_{2}+\cos \left(\omega_{1}+\omega_{2}\right)} & (k, \ell, m)=(2,2,1), \\ \frac{6\left(\operatorname{sinc} \frac{\omega_{1}}{2}\right)^{2}\left(\operatorname{sinc} \frac{\omega_{2}}{2}\right)^{2}\left(\operatorname{sinc} \frac{\omega_{1}+\omega_{2}}{2}\right)^{2}}{3+\cos \omega_{1}+\cos \omega_{2}+\cos \left(\omega_{1}+\omega_{2}\right)} & (k, \ell, m)=(2,2,2)\end{cases}
$$

with $\boldsymbol{\omega}=\left(\omega_{1}, \omega_{2}\right)^{\top}=\frac{2 \pi \mathbf{k}}{n N}, \mathbf{k} \in \mathbb{Z}^{2}$.

In the univariate case with $\varphi=N_{4}$, we obtain the following algorithm for computing the Fourier transform of a function $f \in L_{1}(\mathbb{R}) \cap C(\mathbb{R})$ which fulfills the condition $|f(x)| \ll 1$ for all $|x| \geq n \pi$ with certain $n \in \mathbb{N}$. Note that the Fourier transform of the related cardinal Lagrange function $\lambda \in \mathscr{L}(\varphi)$ reads as follows:

$$
\hat{\lambda}(\omega)=3\left(\operatorname{sinc} \frac{\omega}{2}\right)^{4}(2+\cos \omega)^{-1} .
$$

Algorithm 9.13 (Computation of One-Dimensional Fourier Transform via Attenuation Factors)

Input: $n, N \in \mathbb{N}$ powers of two, $f_{j}=f\left(\frac{2 \pi j}{N}\right)$ for $j=-\left\lfloor\frac{n N-1}{2}\right\rfloor, \ldots,\left\lfloor\frac{n N}{2}\right\rfloor$ given data of $f \in L_{1}(\mathbb{R}) \cap C(\mathbb{R})$.

1. Form

$$
g_{j}:= \begin{cases}f_{j} & j=0, \ldots,\left\lfloor\frac{n N}{2}\right\rfloor, \\ f_{j-n N} & j=\left\lfloor\frac{n N}{2}\right\rfloor+1, \ldots, n N-1 .\end{cases}
$$

2. For $k=0, \ldots, n N-1$ compute the $\operatorname{DFT}(n N)$

$$
\hat{g}_{k}:=\sum_{j=0}^{n N-1} g_{j} w_{n N}^{j k}
$$

3. With $h:=\frac{2 \pi}{N}$ form

$$
\tilde{f}_{k}:= \begin{cases}h \hat{g}_{k} & k=0, \ldots,\left\lfloor\frac{n N}{2}\right\rfloor \\ h \hat{g}_{k+n N} & k=-\left\lfloor\frac{n N-1}{2}\right\rfloor, \ldots,-1\end{cases}
$$

4. For $k=-\left\lfloor\frac{n N-1}{2}\right\rfloor, \ldots,\left\lfloor\frac{n N}{2}\right\rfloor$ calculate

$$
\hat{s}\left(\frac{k}{n}\right):=\hat{\lambda}\left(\frac{2 \pi k}{n N}\right) \tilde{f}_{k} .
$$

Output: $\hat{s}\left(\frac{k}{n}\right)$ approximate value of $\hat{f}\left(\frac{k}{n}\right)$ for $k=-\left\lfloor\frac{n N-1}{2}\right\rfloor, \ldots,\left\lfloor\frac{n N}{2}\right\rfloor$.
Computational cost: $\mathscr{O}(n N \log (n N))$.
The following example shows the performance of this method of attenuation factors.

Example 9.14 We consider the even function $f \in L_{1}(\mathbb{R}) \cap C(\mathbb{R})$ given by $f(x)=$ $\mathrm{e}^{-|x|}$ for $x \in \mathbb{R}$. Then the related Fourier transform reads as follows:

$$
\hat{f}(\omega)=\int_{\mathbb{R}} \mathrm{e}^{-|x|} \mathrm{e}^{-\mathrm{i} x \omega} \mathrm{~d} \omega=\frac{2}{1+\omega^{2}}, \quad \omega \in \mathbb{R}
$$

Fig. 9.4 The crosses $\left(k,\left|\tilde{f}_{k}-\hat{f}(k)\right|\right)$ for $k=-20, \ldots, 20$ illustrate the behavior for the classical computation of $\hat{f}(k)$ in Example 9.14

We choose $N=16, n=1$, and $\varphi=N_{4}$. Instead of the exact values $\hat{f}(k)$ we obtain the coarse approximate values

$$
\tilde{f}_{k}=\frac{\pi}{8} \sum_{j=-7}^{8} f\left(\frac{j \pi}{8}\right) w_{16}^{j k}
$$

The method of attenuation factors creates the improved approximate values

$$
\hat{s}(k)=\hat{\lambda}\left(\frac{\pi k}{8}\right) \tilde{f}_{k}=\frac{3\left(\operatorname{sinc} \frac{\pi k}{16}\right)^{4}}{2+\cos \frac{\pi k}{8}} \tilde{f}_{k} .
$$

Figure 9.4 illustrates the errors for the classical computation of the values $\hat{f}(k)$. On the other hand, the method of attenuation factors produces the small maximal error

$$
\max _{|k| \leq 20}|\hat{s}(k)-\hat{f}(k)|=0.070127 .
$$

9.2 Periodic Interpolation by Translates

In this section, we investigate the periodic interpolation by translates on a uniform mesh. Our approach is mainly based on Sect. 9.1, since there exists a close connection between periodic and cardinal interpolation by translates.

In the following, let $N \in \mathbb{N}$ be fixed chosen. Let $\varphi \in C_{c}\left(\mathbb{R}^{d}\right)$ be a compactly supported basis function with the property (9.6). By

$$
\begin{equation*}
\varphi^{*}(\mathbf{x}):=\sum_{\mathbf{k} \in \mathbb{Z}^{d}} \varphi(\mathbf{x}+N \mathbf{k}), \quad \mathbf{x} \in \mathbb{R}^{d}, \tag{9.19}
\end{equation*}
$$

we form an N-periodic function $\varphi^{*} \in C_{N}\left(\mathbb{R}^{d}\right)$, where $C_{N}\left(\mathbb{R}^{d}\right)$ denotes the Banach space of all N-periodic continuous functions $f: \mathbb{R}^{d} \rightarrow \mathbb{C}$ with the uniform norm

$$
\|f\|_{C_{N}\left(\mathbb{R}^{d}\right)}:=\sup \left\{|f(\mathbf{x})|: \mathbf{x} \in Q_{N}:=[0, N)^{d}\right\}
$$

Analogously, we can periodize the Fourier transform $\hat{\varphi}$, since condition (9.6) is fulfilled. Thus we obtain the 2π-periodized Fourier transform

$$
\begin{equation*}
\tilde{\varphi}(\boldsymbol{\omega}):=\sum_{\mathbf{k} \in \mathbb{Z}^{d}} \hat{\varphi}(\boldsymbol{\omega}+2 \pi \mathbf{k}), \quad \omega \in \mathbb{R}^{d} \tag{9.20}
\end{equation*}
$$

By (9.6) it holds $\tilde{\varphi} \in C\left(\mathbb{T}^{d}\right)$.
By $\mathscr{L}_{N}\left(\varphi^{*}\right)$ we denote the space of all N-periodic continuous functions s : $\mathbb{R}^{d} \rightarrow \mathbb{C}$ of the form

$$
s(\mathbf{x}):=\sum_{\mathbf{j} \in J_{N}} c_{\mathbf{j}} \varphi^{*}(\mathbf{x}-\mathbf{j}), \quad \mathbf{x} \in \mathbb{R}^{d}
$$

with arbitrary coefficients $c_{\mathbf{j}} \in \mathbb{C}$ and the index set

$$
J_{N}=\left\{\mathbf{j}=\left(j_{\ell}\right)_{\ell=1}^{d} \in \mathbb{Z}^{d}: 0 \leq j_{\ell} \leq N-1 \text { for } \ell=1, \ldots, d\right\}
$$

If we continue the coefficients $c_{\mathbf{j}}$ by $c_{\mathbf{j}+N \mathbf{k}}:=c_{\mathbf{j}}$ for all $\mathbf{j} \in J_{N}$ and $\mathbf{k} \in \mathbb{Z}^{d}$, then we get the equation

$$
s(\mathbf{x})=\sum_{\mathbf{n} \in \mathbb{Z}^{d}} c_{\mathbf{n}} \varphi(\mathbf{x}-\mathbf{n})
$$

where for each $\mathbf{x} \in \mathbb{R}^{d}$ the above sum contains only finitely many nonzero summands.

9.2.1 Periodic Lagrange Function

The N-periodic interpolation in $\mathscr{L}_{N}\left(\varphi^{*}\right)$ on the uniform mesh J_{N} means that one has to determine a function $s \in \mathscr{L}_{N}\left(\varphi^{*}\right)$ which fulfills the interpolation condition

$$
\begin{equation*}
s(\mathbf{j})=f_{\mathbf{j}} \quad \text { for all } \mathbf{j} \in J_{N} \tag{9.21}
\end{equation*}
$$

where $f_{\mathbf{j}} \in \mathbb{C}, \mathbf{j} \in J_{N}$, are arbitrary given data. A function $\lambda^{*} \in C_{N}\left(\mathbb{R}^{d}\right)$ which interpolates the N-periodic Kronecker data $\delta_{\mathbf{k}}^{(N)}$ on the uniform mesh J_{N}, i.e.,

$$
\lambda^{*}(\mathbf{k})=\delta_{\mathbf{k}}^{(N)}= \begin{cases}1 & \mathbf{k}=\mathbf{0}, \\ 0 & \mathbf{k} \in J_{N} \backslash\{\mathbf{0}\}\end{cases}
$$

is called an N-periodic Lagrange function. Now we construct an N-periodic Lagrange function in the space $\mathscr{L}_{N}\left(\varphi^{*}\right)$. Similarly as in Theorem 9.6 , the construction
of N-periodic Lagrange function in $\mathscr{L}_{N}\left(\varphi^{*}\right)$ is based on properties of the symbol

$$
\sigma_{\varphi}(\boldsymbol{\omega})=\sum_{\mathbf{k} \in \mathbb{Z}^{d}} \varphi(\mathbf{k}) \mathrm{e}^{-\mathrm{i} \mathbf{k} \cdot \boldsymbol{\omega}}
$$

Since φ is compactly supported, we observe that σ_{φ} is a 2π-periodic trigonometric polynomial. The symbol of the shifted function $\varphi(\cdot+\mathbf{t})$ with fixed $\mathbf{t} \in \mathbb{R}^{d}$ is denoted by

$$
\begin{equation*}
\sigma_{\varphi}(\mathbf{t}, \omega):=\sum_{\mathbf{k} \in \mathbb{Z}^{d}} \varphi(\mathbf{k}+\mathbf{t}) \mathrm{e}^{-\mathrm{i} \mathbf{k} \cdot \omega}, \quad \omega \in \mathbb{R}^{d} \tag{9.22}
\end{equation*}
$$

Obviously we have $\sigma_{\varphi}(\mathbf{0}, \boldsymbol{\omega})=\sigma_{\varphi}(\boldsymbol{\omega})$.
Lemma 9.15 For each $\mathbf{t} \in \mathbb{R}^{d}$ and all $\mathbf{j} \in J_{N}$ it holds

$$
\begin{equation*}
\sigma_{\varphi}\left(\mathbf{t}, \frac{2 \pi \mathbf{j}}{N}\right)=\sum_{\mathbf{n} \in J_{N}} \varphi^{*}(\mathbf{n}+\mathbf{t}) w_{N}^{\mathbf{j} \cdot \mathbf{n}}=\sum_{\mathbf{k} \in \mathbb{Z}^{d}} \hat{\varphi}\left(\frac{2 \pi \mathbf{j}}{N}+2 \pi \mathbf{k}\right) \mathrm{e}^{2 \pi \mathrm{i} \mathbf{j} \cdot \mathbf{t} / N} \mathrm{e}^{2 \pi \mathbf{i} \mathbf{k} \cdot \mathbf{t}} \tag{9.23}
\end{equation*}
$$

Proof By Poisson summation formula (see Theorem 4.27) and by the translation property of the d-dimensional Fourier transform (see Theorem 4.20) we conclude that

$$
\sigma_{\varphi}(\mathbf{t}, \boldsymbol{\omega})=\sum_{\mathbf{k} \in \mathbb{Z}^{d}} \hat{\varphi}(\boldsymbol{\omega}+2 \pi \mathbf{k}) \mathrm{e}^{\mathrm{i} \boldsymbol{\omega} \cdot \mathbf{t}} \mathrm{e}^{2 \pi \mathrm{i} \mathbf{k} \cdot \mathbf{t}}
$$

The convergence of above series is ensured by condition (9.6). Especially for $\omega=$ $\frac{2 \pi \mathbf{j}}{N}$ with $\mathbf{j} \in J_{N}$ we get one equation of (9.23).

Substituting $\mathbf{k}=\mathbf{n}+N \mathbf{m}$ with $\mathbf{n} \in J_{N}$ and $\mathbf{m} \in \mathbb{Z}^{d}$ in (9.22), we see that

$$
\sigma_{\varphi}\left(\mathbf{t}, \frac{2 \pi \mathbf{j}}{N}\right)=\sum_{\mathbf{n} \in J_{N}} \sum_{\mathbf{m} \in \mathbb{Z}^{d}} \varphi(\mathbf{n}+\mathbf{t}+N \mathbf{m}) w_{N}^{\mathbf{j} \cdot \mathbf{n}}=\sum_{\mathbf{n} \in J_{N}} \varphi^{*}(\mathbf{n}+\mathbf{t}) w_{N}^{\mathbf{j} \cdot \mathbf{n}}
$$

Now we construct an N-periodic Lagrange function in $\mathscr{L}_{N}\left(\varphi^{*}\right)$.
Theorem 9.16 Let $N \in \mathbb{N}$ be fixed. Let $\varphi \in C_{c}\left(\mathbb{R}^{d}\right)$ be a given basis function with the property (9.6). Assume that the related symbol σ_{φ} fulfills the condition

$$
\begin{equation*}
\sigma_{\varphi}\left(\frac{2 \pi \mathbf{j}}{N}\right) \neq 0, \quad \mathbf{j} \in J_{N} \tag{9.24}
\end{equation*}
$$

Then the N-periodic function $\lambda^{*} \in C_{N}\left(\mathbb{R}^{d}\right)$ defined by the Fourier series

$$
\begin{equation*}
\lambda^{*}(\mathbf{x}):=\sum_{\mathbf{k} \in \mathbb{Z}^{d}} c_{\mathbf{k}}^{(N)}\left(\lambda^{*}\right) \mathrm{e}^{2 \pi \mathrm{i} \mathbf{k} \cdot \mathbf{x} / N} \tag{9.25}
\end{equation*}
$$

with the corresponding Fourier coefficients

$$
\begin{equation*}
c_{\mathbf{k}}^{(N)}\left(\lambda^{*}\right)=\frac{\hat{\varphi}\left(\frac{2 \pi \mathbf{k}}{N}\right)}{N^{d} \sigma_{\varphi}\left(\frac{2 \pi \mathbf{k}}{N}\right)}, \quad \mathbf{k} \in \mathbb{Z}^{d} \tag{9.26}
\end{equation*}
$$

is an N-periodic Lagrange function in $\mathscr{L}_{N}\left(\varphi^{*}\right)$ which can be represented in the form

$$
\begin{align*}
\lambda^{*}(\mathbf{x}) & =\frac{1}{N^{d}} \sum_{\mathbf{n} \in J_{N}} \frac{\sigma_{\varphi}\left(\mathbf{x}, \frac{2 \pi \mathbf{n}}{N}\right)}{\sigma_{\varphi}\left(\frac{2 \pi \mathbf{n}}{N}\right)} \tag{9.27}\\
& =\sum_{\mathbf{j} \in J_{N}} \lambda_{\mathbf{j}}^{*} \varphi^{*}(\mathbf{x}-\mathbf{j}), \quad \mathbf{x} \in \mathbb{R}^{d} \tag{9.28}
\end{align*}
$$

with the coefficients

$$
\begin{equation*}
\lambda_{\mathbf{j}}^{*}=\frac{1}{N^{d}} \sum_{\mathbf{n} \in J_{N}} \frac{w_{N}^{-\mathbf{j} \cdot \mathbf{n}}}{\sigma_{\varphi}\left(\frac{2 \pi \mathbf{n}}{N}\right)}, \quad \mathbf{j} \in J_{N} \tag{9.29}
\end{equation*}
$$

Under the condition (9.24), the N-periodic Lagrange function in $\mathscr{L}_{N}\left(\varphi^{*}\right)$ is uniquely determined.
Proof

1. By (9.6), (9.24), and (9.26) we see that

$$
\sum_{\mathbf{k} \in \mathbb{Z}^{d}}\left|c_{\mathbf{k}}^{(N)}\left(\lambda^{*}\right)\right|<\infty
$$

Hence the Fourier series (9.25) converges absolutely and uniformly on \mathbb{R}^{d} such that $\lambda^{*} \in C_{N}\left(\mathbb{R}^{d}\right)$ (see Theorem 4.7). Especially for $\mathbf{x}=\mathbf{j} \in J_{N}$ we obtain by (9.25) and (9.26) that

$$
\lambda^{*}(\mathbf{j})=\frac{1}{N^{d}} \sum_{\mathbf{k} \in \mathbb{Z}^{d}} \frac{\hat{\varphi}\left(\frac{2 \pi \mathbf{k}}{N}\right)}{\sigma_{\varphi}\left(\frac{2 \pi \mathbf{k}}{N}\right)} w_{N}^{-\mathbf{k} \cdot \mathbf{j}}
$$

with $w_{N}=\mathrm{e}^{-2 \pi \mathrm{i} / N}$. Substituting $\mathbf{k}=\mathbf{n}+N \mathbf{m}$ with $\mathbf{n} \in J_{N}$ and $\mathbf{m} \in \mathbb{Z}^{d}$ in the above series, it follows from Lemma 9.3 that

$$
\begin{aligned}
\lambda^{*}(\mathbf{j}) & =\frac{1}{N^{d}} \sum_{\mathbf{n} \in J_{N}} \frac{w_{N}^{-\mathbf{n} \cdot \mathbf{j}}}{\sigma_{\varphi}\left(\frac{2 \pi \mathbf{n}}{N}\right)} \sum_{\mathbf{m} \in \mathbb{Z}^{d}} \hat{\varphi}\left(\frac{2 \pi \mathbf{n}}{N}+2 \pi \mathbf{m}\right) \\
& =\frac{1}{N^{d}} \sum_{\mathbf{n} \in J_{N}} w_{N}^{-\mathbf{n} \cdot \mathbf{j}}=\delta_{\mathbf{j}}^{(N)}, \quad \mathbf{j} \in J_{N} .
\end{aligned}
$$

Thus λ^{*} is an N-periodic Lagrange function on the uniform mesh J_{N}.
2. Substituting $\mathbf{k}=\mathbf{n}+N \mathbf{m}$ with $\mathbf{n} \in J_{N}$ and $\mathbf{m} \in \mathbb{Z}^{d}$ in the Fourier series (9.25), we receive the representation (9.27) from Lemma 9.15, since

$$
\begin{aligned}
\lambda^{*}(\mathbf{x}) & =\frac{1}{N^{d}} \sum_{\mathbf{n} \in J_{N}} \frac{1}{\sigma_{\varphi}\left(\frac{2 \pi \mathbf{n}}{N}\right)}\left(\sum_{\mathbf{m} \in \mathbb{Z}^{d}} \hat{\varphi}\left(\frac{2 \pi \mathbf{n}}{N}+2 \pi \mathbf{m}\right) \mathrm{e}^{2 \pi \mathbf{i} \mathbf{n} \cdot \mathbf{x} / N} \mathrm{e}^{2 \pi \mathbf{i} \mathbf{m} \cdot \mathbf{x}}\right) \\
& =\frac{1}{N^{d}} \sum_{\mathbf{n} \in J_{N}} \frac{\sigma_{\varphi}\left(\mathbf{x}, \frac{2 \pi \mathbf{n}}{N}\right)}{\sigma_{\varphi}\left(\frac{2 \pi \mathbf{n}}{N}\right)}
\end{aligned}
$$

Using Lemma 9.15, we preserve the formula (9.28) with the coefficients (9.29) such that $\lambda^{*} \in \mathscr{L}_{N}\left(\varphi^{*}\right)$.
3. Finally we show the uniqueness of the N-periodic Lagrange function λ^{*} in $\mathscr{L}_{N}\left(\varphi^{*}\right)$. Assume that

$$
\mu^{*}(\mathbf{x})=\sum_{\mathbf{k} \in J_{N}} \mu_{\mathbf{k}}^{*} \varphi^{*}(\mathbf{x}-\mathbf{k}), \quad \mathbf{x} \in \mathbb{R}^{d}
$$

is another N-periodic Lagrange function in $\mathscr{L}_{N}\left(\varphi^{*}\right)$. Then for all $\mathbf{j} \in J_{N}$ we find

$$
\sum_{\mathbf{k} \in J_{N}}\left(\lambda_{k}^{*}-\mu_{k}^{*}\right) \varphi^{*}(\mathbf{j}-\mathbf{k})=0
$$

Multiplying the above equation by $w_{N}^{\mathbf{j} \cdot \mathbf{n}}$ with $\mathbf{n} \in J_{N}$ and adding all equations over $\mathbf{j} \in J_{N}$, we obtain for each $\mathbf{n} \in J_{N}$

$$
\left(\sum_{\mathbf{k} \in J_{N}}\left(\lambda_{k}^{*}-\mu_{k}^{*}\right) w_{N}^{\mathbf{k} \cdot \mathbf{n}}\right)\left(\sum_{\mathbf{m} \in J_{N}} \varphi^{*}(\mathbf{m}) w_{N}^{\mathbf{m} \cdot \mathbf{n}}\right)=0
$$

Thus from (9.23) it follows that

$$
\left(\sum_{\mathbf{k} \in J_{N}}\left(\lambda_{k}^{*}-\mu_{k}^{*}\right) w_{N}^{\mathbf{k} \cdot \mathbf{n}}\right) \sigma_{\varphi}\left(\frac{2 \pi \mathbf{n}}{N}\right)=0
$$

and hence by (9.24)

$$
\sum_{\mathbf{k} \in J_{N}}\left(\lambda_{k}^{*}-\mu_{k}^{*}\right) w_{N}^{\mathbf{k} \cdot \mathbf{n}}=0, \quad \mathbf{n} \in J_{N}
$$

Since the d-dimensional $\operatorname{DFT}(N \times \ldots \times N)$ is invertible (see Theorem 4.77), we get $\lambda_{k}^{*}=\mu_{k}^{*}$ for all $\mathbf{k} \in J_{N}$, i.e., both N-periodic Lagrange functions coincide.

The cardinal Lagrange function λ in $\mathscr{L}(\varphi)$ and the N-periodic Lagrange function λ^{*} in $\mathscr{L}_{N}\left(\varphi^{*}\right)$ are closely related.

Lemma 9.17 Let $N \in \mathbb{N}$ be fixed. Let $\varphi \in C_{c}\left(\mathbb{R}^{d}\right)$ be a given basis function with the property (9.6). Assume that the related symbol σ_{φ} fulfills the condition

$$
\begin{equation*}
\sigma_{\varphi}(\omega) \neq 0, \quad \omega \in Q_{2 \pi} \tag{9.30}
\end{equation*}
$$

Then the N-periodic function λ^{*} in $\mathscr{L}_{N}\left(\varphi^{*}\right)$ coincides with the N-periodized cardinal Lagrange function λ, i.e.,

$$
\begin{equation*}
\lambda^{*}(\mathbf{x})=\sum_{\mathbf{k} \in \mathbb{Z}^{d}} \lambda(\mathbf{x}+N \mathbf{k}), \quad \mathbf{x} \in \mathbb{R}^{d} \tag{9.31}
\end{equation*}
$$

For the coefficients $\lambda_{\mathbf{j}}^{*}, \mathbf{j} \in J_{N}$, of the N-periodic Lagrange function λ^{*} it holds

$$
\begin{equation*}
\lambda_{\mathbf{j}}^{*}=\sum_{\mathbf{n} \in \mathbb{Z}^{d}} \lambda_{\mathbf{j}+N \mathbf{n}}, \quad \mathbf{j} \in J_{N}, \tag{9.32}
\end{equation*}
$$

where $\lambda_{\mathbf{j}}$ denote the coefficients (9.9) of the cardinal Lagrange function $\lambda \in \mathscr{L}(\varphi)$.

Proof

1. From the assumption (9.30) it follows that $\left(\sigma_{\varphi}\right)^{-1} \in C^{\infty}\left(\mathbb{T}^{d}\right)$. By (9.9), one can interpret $\lambda_{\mathbf{j}}$ with $\mathbf{j} \in \mathbb{Z}^{d}$ as $(-\mathbf{j})$ th Fourier coefficient of $\left(\sigma_{\varphi}\right)^{-1}$. As shown in Theorem 9.6 it holds

$$
\sum_{\mathbf{j} \in \mathbb{Z}^{d}}\left|\lambda_{\mathbf{j}}\right|<\infty .
$$

The coefficients $\lambda_{\mathbf{j}}^{*}, \mathbf{j} \in J_{N}$, can be represented in the form (9.29). Using the aliasing formula (see Theorem 4.67), we conclude that (9.32) for each $\mathbf{j} \in J_{N}$.
2. For arbitrary $\mathbf{x} \in \mathbb{R}^{d}$, the N-periodic Lagrange function λ^{*} can be written by (9.28) and (9.32) as

$$
\lambda^{*}(\mathbf{x})=\sum_{\mathbf{j} \in J_{N}} \sum_{\mathbf{n} \in \mathbb{Z}^{d}} \lambda_{\mathbf{j}+N \mathbf{n}} \varphi^{*}(\mathbf{x}-\mathbf{j})
$$

and hence by (9.19)

$$
\lambda^{*}(\mathbf{x})=\sum_{\mathbf{j} \in J_{N}} \sum_{\mathbf{n} \in \mathbb{Z}^{d}} \sum_{\mathbf{m} \in \mathbb{Z}^{d}} \lambda_{\mathbf{j}+N \mathbf{n}} \varphi(\mathbf{x}-\mathbf{j}+N \mathbf{m})
$$

Interchanging the order of summations and substituting $\mathbf{p}:=\mathbf{j}+N \mathbf{n}$ with $\mathbf{j} \in J_{N}$ and $\mathbf{n} \in \mathbb{Z}^{d}$, we obtain (9.31). Note that the order of summations can be changed, since only finitely many summands don't vanish by the compact support of φ.

Theorem 9.18 Let $N \in \mathbb{N}$ be fixed. Let $\varphi \in C_{c}\left(\mathbb{R}^{d}\right)$ be a given basis function with the property (9.6). The N-periodic interpolation problem (9.21) is uniquely solvable in $\mathscr{L}_{N}\left(\varphi^{*}\right)$ if and only if the symbol σ_{φ} fulfills the condition (9.24).
Proof For given data $f_{\mathbf{j}} \in \mathbb{C}$ with $\mathbf{j} \in J_{N}$, the N-periodic interpolation problem (9.21) possesses a unique solution $s \in \mathscr{L}_{N}\left(\varphi^{*}\right)$ of the form

$$
s(\mathbf{x})=\sum_{\mathbf{k} \in J_{N}} c_{\mathbf{k}} \varphi^{*}(\mathbf{x}-\mathbf{k}), \quad \mathbf{x} \in \mathbb{R}^{d}
$$

with certain coefficients $c_{\mathbf{k}} \in \mathbb{C}$ if and only if the system of linear equations

$$
\begin{equation*}
f_{\mathbf{j}}=\sum_{\mathbf{k} \in J_{N}} c_{\mathbf{k}} \varphi^{*}(\mathbf{j}-\mathbf{k}), \quad \mathbf{j} \in J_{N}, \tag{9.33}
\end{equation*}
$$

is uniquely solvable. Note that the right-hand side of (9.33) is equal to the jth component of a d-dimensional cyclic convolution. Therefore we determine the coefficients $c_{\mathbf{k}}, \mathbf{k} \in J_{N}$, using d-dimensional $\operatorname{DFT}(N \times \ldots \times N)$. By the definition (9.5) of the symbol σ_{φ} and by (9.19) it holds for each $\mathbf{n} \in J_{N}$

$$
\begin{aligned}
\sigma_{\varphi}\left(\frac{2 \pi \mathbf{n}}{N}\right) & =\sum_{\mathbf{j} \in \mathbb{Z}^{d}} \varphi(\mathbf{j}) w_{N}^{\mathbf{j} \cdot \mathbf{n}}=\sum_{\mathbf{k} \in J_{N}} \sum_{\mathbf{m} \in \mathbb{Z}^{d}} \varphi(\mathbf{k}+N \mathbf{m}) w_{N}^{\mathbf{k} \cdot \mathbf{n}} \\
& =\sum_{\mathbf{k} \in J_{N}} \varphi^{*}(\mathbf{k}) w_{N}^{\mathbf{k} \cdot \mathbf{n}}
\end{aligned}
$$

Thus we preserve by the convolution property of the d-dimensional DFT $(N \times \ldots \times$ N) in Theorem 4.77 that

$$
\begin{equation*}
\hat{f}_{\mathbf{n}}=\hat{c}_{\mathbf{n}} \sigma_{\varphi}\left(\frac{2 \pi \mathbf{n}}{N}\right), \quad \mathbf{n} \in J_{N} \tag{9.34}
\end{equation*}
$$

with

$$
\hat{c}_{\mathbf{n}}:=\sum_{\mathbf{k} \in J_{N}} c_{\mathbf{k}} w_{N}^{\mathbf{k} \cdot \mathbf{n}}, \quad \hat{f}_{\mathbf{n}}:=\sum_{\mathbf{k} \in J_{N}} f_{\mathbf{k}} w_{N}^{\mathbf{k} \cdot \mathbf{n}} .
$$

Thus the unique solvability of the linear system (9.33) is equivalent to the unique solvability of (9.34). Obviously, (9.34) is uniquely solvable under the assumption (9.24).

Finally we ask for an algorithm for N-periodic interpolation by translates. As before let $\varphi \in C_{c}\left(\mathbb{R}^{d}\right)$ be a given basis function which possesses the properties (9.6)
and (9.24). Then the N-periodic interpolation problem (9.21) has the unique solution

$$
\begin{equation*}
s(\mathbf{x})=\sum_{\mathbf{k} \in J_{N}} f_{\mathbf{k}} \lambda^{*}(\mathbf{x}-\mathbf{k}) \in \mathscr{L}_{N}\left(\varphi^{*}\right) \tag{9.35}
\end{equation*}
$$

for arbitrary given data $f_{\mathbf{k}} \in \mathbb{C}, \mathbf{k} \in J_{N}$. Restricting the summation in the Fourier series (9.25) to the finite index set (9.15) with certain $n \in \mathbb{N}$, then in (9.35) we replace $\lambda^{*}(\mathbf{x}-\mathbf{k})$ for $\mathbf{k} \in J_{N}$ by its approximation

$$
\frac{1}{N^{d}} \sum_{\mathbf{m} \in B_{n N}} \frac{\hat{\varphi}\left(\frac{2 \pi \mathbf{m}}{N}\right)}{\sigma_{\varphi}\left(\frac{2 \pi \mathbf{m}}{N}\right)} w_{N}^{\mathbf{m} \cdot \mathbf{k}} \mathrm{e}^{2 \pi \mathrm{i} \mathbf{m} \cdot \mathbf{x} / N}
$$

Thus for $\mathbf{x}=\frac{\mathbf{j}}{n}$ with $\mathbf{j} \in J_{n N}$ we obtain the approximate value

$$
s_{\mathbf{j}}:=\frac{1}{N^{d}} \sum_{\mathbf{m} \in B_{n N}} \frac{\hat{\varphi}\left(\frac{2 \pi \mathbf{m}}{N}\right)}{\sigma_{\varphi}\left(\frac{2 \pi \mathbf{m}}{N}\right)} w_{n N}^{-\mathbf{m} \cdot \mathbf{j}}\left(\sum_{\mathbf{k} \in J_{N}} f_{\mathbf{k}} w_{N}^{\mathbf{m} \cdot \mathbf{k}}\right)
$$

of the exact value $s\left(\frac{\mathbf{j}}{n}\right)$. Note that this value coincides with the approximate value (9.13) for the related cardinal interpolation problem. Thus we can use the corresponding Algorithm 9.9 for N -periodic interpolation by translates too.

9.2.2 Computation of Fourier Coefficients

For fixed $N \in \mathbb{N}$, we calculate the Fourier coefficients

$$
\begin{equation*}
c_{\mathbf{k}}^{(N)}(f):=\frac{1}{N^{d}} \int_{Q_{N}} f(\mathbf{x}) \mathrm{e}^{-2 \pi \mathrm{i} \mathbf{x} \cdot \mathbf{k} / N} \mathrm{~d} \mathbf{x}, \quad \mathbf{k} \in \mathbb{Z}^{d} \tag{9.36}
\end{equation*}
$$

of an N-periodic function $f \in C_{N}\left(\mathbb{R}^{d}\right)$, where $Q_{N}=[0, N)^{d}$ denotes the d dimensional hypercube. Assume that the values $f_{\mathbf{j}}:=f(\mathbf{j})$ on the uniform grid J_{N} are given. For a coarse computation of $c_{\mathbf{k}}^{(N)}(f)$ one can use the simple tensor product quadrature rule. Then one obtains the approximate value

$$
\tilde{c}_{\mathbf{k}}:=\frac{1}{N^{d}} \hat{f}_{\mathbf{k}}
$$

with the d-dimensional DFT $(N \times \ldots \times N)$

$$
\begin{equation*}
\hat{f_{\mathbf{k}}}:=\sum_{\mathbf{j} \in J_{N}} f_{\mathbf{j}} w_{N}^{\mathbf{j} \cdot \mathbf{k}}, \quad \mathbf{k} \in J_{N} \tag{9.37}
\end{equation*}
$$

where $w_{N}=\mathrm{e}^{-2 \pi \mathrm{i} / N}$ means a primitive N-th root of unity. Extending $\hat{f}_{\mathbf{k}}$ onto \mathbb{Z}^{d} by $\hat{f}_{\mathbf{k}+N \mathbf{j}}:=\hat{f}_{\mathbf{k}}$ for all $\mathbf{k} \in J_{N}$ and $\mathbf{j} \in \mathbb{Z}^{d}$, we see that the sequence $\left(\tilde{c}_{\mathbf{k}}\right)_{\mathbf{k} \in \mathbb{Z}^{d}}$ is N-periodically. Otherwise as shown in Lemma 4.6, we know that

$$
\begin{equation*}
\lim _{\|\mathbf{k}\|_{2} \rightarrow \infty} c_{\mathbf{k}}^{(N)}(f)=0 \tag{9.38}
\end{equation*}
$$

Hence only in the case $\|\mathbf{k}\|_{2}<\frac{N}{2}$, we can expect that $\tilde{c}_{\mathbf{k}}$ is a convenient approximation of $c_{\mathbf{k}}^{(N)}(f)$ (see Corollary 3.4 for $d=1$).

A better approximate value of $c_{\mathbf{k}}^{(N)}(f)$ with the correct asymptotic behavior for $\|\mathbf{k}\|_{2} \rightarrow \infty$ can be preserved by the so-called method of attenuation factors for Fourier coefficients. We choose a convenient compactly supported basis function $\varphi \in C_{c}\left(\mathbb{R}^{d}\right)$ and form the N-periodized function (9.19). Instead to calculate the integral (9.36) directly, first we determine the N-periodic interpolating function $s \in$ $\mathscr{L}_{N}\left(\varphi^{*}\right)$ interpolating the given data $f_{\mathbf{j}}$ on the uniform grid J_{N}. Then we obtain the exact Fourier coefficients $c_{\mathbf{k}}^{(N)}(s)$ which are excellent approximations of the wanted Fourier coefficients (9.36).

Theorem 9.19 (Method of Attenuation Factors for Fourier Coefficients) Let $N \in \mathbb{N}$ be fixed. Let $\varphi \in C_{c}\left(\mathbb{R}^{d}\right)$ be a given basis function with the property (9.6). Assume that the related symbol σ_{φ} fulfills the condition (9.30). For arbitrary given function $f \in C_{N}\left(\mathbb{R}^{d}\right)$ let $s \in \mathscr{L}_{N}\left(\varphi^{*}\right)$ be the N-periodic function interpolating $s(\mathbf{j})=f_{\mathbf{j}}=f(\mathbf{j})$ for all $\mathbf{j} \in J_{N}$.

Then the Fourier coefficients of s read as follows:

$$
\begin{equation*}
c_{\mathbf{k}}^{(N)}(s)=\frac{1}{N^{d}} \hat{\lambda}\left(\frac{2 \pi \mathbf{k}}{N}\right) \hat{f}_{\mathbf{k}^{\prime}}, \quad \mathbf{k} \in \mathbb{Z}^{d} \tag{9.39}
\end{equation*}
$$

where $\hat{f}_{\mathbf{k}^{\prime}}$ is equal to (9.37) and where $\mathbf{k}^{\prime}:=\mathbf{k} \bmod N \in J_{N}$ is the nonnegative residue of $\mathbf{k} \in \mathbb{Z}^{d}$ modulo N. The values

$$
\hat{\lambda}\left(\frac{2 \pi \mathbf{k}}{N}\right)=\frac{\hat{\varphi}\left(\frac{2 \pi \mathbf{k}}{N}\right)}{\sigma_{\varphi}\left(\frac{2 \pi \mathbf{k}^{*}}{N}\right)}
$$

are called attenuation factors of the Fourier coefficients.
Proof By (9.35) the given data $f_{\mathbf{j}} \in \mathbb{C}$ on the uniform grid J_{N} will be interpolated by the N-periodic function $s \in \mathscr{L}_{N}\left(\varphi^{*}\right)$ in the form

$$
s(\mathbf{x})=\sum_{\mathbf{j} \in J_{N}} f_{\mathbf{j}} \lambda^{*}(\mathbf{x}-\mathbf{j}), \quad \mathbf{x} \in \mathbb{R}^{d}
$$

where $\lambda^{*} \in \mathscr{L}_{N}\left(\varphi^{*}\right)$ denotes the N-periodic Lagrange function. By the translation property of the Fourier coefficients (cf. Lemma 4.1 for the period 2π) we obtain for
the \mathbf{k} th Fourier coefficient of the N-periodic function s

$$
c_{\mathbf{k}}^{(N)}(s)=c_{\mathbf{k}}^{(N)}\left(\lambda^{*}\right) \sum_{\mathbf{j} \in J_{N}} f_{\mathbf{j}} w_{N}^{\mathbf{j} \cdot \mathbf{k}}=c_{\mathbf{k}}^{(N)}\left(\lambda^{*}\right) \hat{f}_{\mathbf{k}}
$$

From Theorem 9.16 it follows that

$$
c_{\mathbf{k}}^{(N)}\left(\lambda^{*}\right)=\frac{1}{N^{d}} \hat{\lambda}\left(\frac{2 \pi \mathbf{k}}{N}\right)=\frac{1}{N^{d}} \frac{\hat{\varphi}\left(\frac{2 \pi \mathbf{k}}{N}\right)}{\sigma_{\varphi}\left(\frac{2 \pi \mathbf{k}}{N}\right)},
$$

where $\hat{\lambda}$ denotes the Fourier transform of the cardinal Lagrange function.
We emphasize that the attenuation factors are independent of the given data $f_{\mathbf{j}}$ on the uniform grid J_{N}, they are only special values of the Fourier transform of the cardinal Lagrange function. Thus we can use $c_{\mathbf{k}}^{(N)}(s)$ as approximate values of $c_{\mathbf{k}}^{(N)}(f)$ for all $\mathbf{k} \in \mathbb{Z}^{d}$. The method of attenuation factors for Fourier coefficients performs two tasks. The computed Fourier coefficients $c_{\mathbf{k}}^{(N)}(s)$ correct the coarse approximate values $N^{-d} \hat{f_{\mathbf{k}}}$ for $\mathbf{k} \in J_{N}$. Further the approximate values $N^{-d} \hat{f_{\mathbf{k}}}$ for $\mathbf{k} \in J_{N}$ are continued to whole \mathbb{Z}^{d} by the values $c_{\mathbf{k}}^{(N)}(s)$.

The following example shows the performance of this method of attenuation factors.

Example 9.20 We consider the even 2π-periodic function $f \in C(\mathbb{T})$ given by $f(x):=x^{2}$ for $x \in[-\pi, \pi)$. Then the related Fourier series

$$
f(x)=\frac{\pi^{2}}{3}-4 \cos x+\cos (2 x)-\frac{4}{9} \cos (3 x)+\ldots
$$

converges uniformly on \mathbb{R}. We choose $N=16$ and $\varphi=N_{4}$. Instead of the exact Fourier coefficients

$$
c_{k}(f)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} x^{2} \mathrm{e}^{-\mathrm{i} k x} \mathrm{~d} x= \begin{cases}\frac{\pi^{2}}{3} & k=0 \\ \frac{2(-1)^{k}}{k^{2}} & k \in \mathbb{Z} \backslash\{0\}\end{cases}
$$

we obtain the coarse approximate values

$$
\frac{1}{16} \hat{f}_{k}=\frac{1}{16} \sum_{j=0}^{15} f\left(\frac{j \pi}{8}\right) w_{16}^{j k}, \quad k=0, \ldots, 15
$$

The method of attenuation factors creates the improved approximate values

$$
c_{k}:=\frac{1}{16} \hat{\lambda}\left(\frac{\pi k}{8}\right) \hat{f}_{k}
$$

Fig. 9.5 The crosses $\left(k,\left|\frac{1}{16} \hat{f}_{k}-c_{k}(f)\right|\right)$ for $k=-15, \ldots, 15$ illustrate the error behavior for the classical computation of $c_{k}(f)$ in Example 9.20
with the attenuation factors

$$
\hat{\lambda}\left(\frac{\pi k}{8}\right)=\frac{3\left(\operatorname{sinc} \frac{\pi k}{16}\right)^{4}}{2+\cos \frac{\pi k}{8}} .
$$

Figure 9.5 illustrates the errors for the classical computation of the Fourier coefficients $c_{k}(f)$. On the other hand, the method of attenuation factors produces the small maximal error

$$
\max _{|k| \leq 15}\left|c_{k}-c_{k}(f)\right|=0.026982
$$

Remark 9.21 The method of attenuation factors has a long history. Using a polynomial spline φ, the attenuation factors of Fourier coefficients were calculated first by Eagle [97] and later by Quade and Collatz [301], see also [100, 133]. Gautschi [126] presented a general theory of attenuation factors for Fourier coefficients. He used a linear and translation invariant approximation process in order to interpolate the given data on a uniform mesh, see also [230]. Later, Gutknecht [153] extended Gautschi's approach to multivariate periodic functions.

9.3 Quadrature of Periodic Functions

Now we consider the quadrature of univariate periodic functions. First we derive the so-called Euler-Maclaurin summation formula, which is based on an expansion into Bernoulli polynomials. The Bernoulli polynomial B_{n} of degree n is recursively defined by $B_{0}(x):=1$ and

$$
\begin{equation*}
B_{n}^{\prime}(x)=n B_{n-1}(x), \quad n \in \mathbb{N}, \tag{9.40}
\end{equation*}
$$

with the condition

$$
\begin{equation*}
\int_{0}^{1} B_{n}(x) \mathrm{d} x=0, \quad n \in \mathbb{N} \tag{9.41}
\end{equation*}
$$

The numbers $B_{n}(0)$ are called Bernoulli numbers. Thus the first Bernoulli polynomials read as follows:

$$
\begin{aligned}
& B_{0}(x)=1, \quad B_{1}(x)=x-\frac{1}{2}, \quad B_{2}(x)=x^{2}-x+\frac{1}{6} \\
& B_{3}(x)=x^{3}-\frac{3}{2} x^{2}+\frac{1}{2} x, \quad B_{4}(x)=x^{4}-2 x^{3}+x^{2}-\frac{1}{30}
\end{aligned}
$$

Note that by (9.40) and (9.41) it holds $B_{n}(0)=B_{n}(1)$ for all $n \in \mathbb{N} \backslash\{1\}$, since

$$
\begin{equation*}
B_{n}(1)-B_{n}(0)=\int_{0}^{1} B_{n}^{\prime}(x) \mathrm{d} x=n \int_{0}^{1} B_{n-1}(x) \mathrm{d} x=0 \tag{9.42}
\end{equation*}
$$

Each Bernoulli polynomial B_{n} has the following symmetry property

$$
\begin{equation*}
B_{n}(x)=(-1)^{n} B_{n}(1-x), \tag{9.43}
\end{equation*}
$$

since the polynomial $(-1)^{n} B_{n}(1-x)$ has the same properties (9.40) and (9.41) as B_{n}. For $n=2 k+1, k \in \mathbb{N}$, and $x=0$ it follows that $B_{2 k+1}(0)=-B_{2 k+1}(1)$. Hence by (9.42) we conclude that

$$
\begin{equation*}
B_{2 k+1}(0)=B_{2 k+1}(1)=0, \quad k \in \mathbb{N} . \tag{9.44}
\end{equation*}
$$

By $b_{n}, n \in \mathbb{N} \backslash\{1\}$, we denote the 1-periodic Bernoulli function which is defined as the 1-periodic continuation of Bernoulli polynomial B_{n} restricted on $[0,1)$. Hence it holds

$$
\begin{equation*}
b_{n}(x)=B_{n}(x-\lfloor x\rfloor), \quad x \in \mathbb{R}, \tag{9.45}
\end{equation*}
$$

where $\lfloor x\rfloor$ denotes the largest integer smaller than or equal to $x \in \mathbb{R}$. Further b_{1} is defined as the 1 -periodic continuation of B_{1} restricted on $(0,1)$ with $b_{1}(0)=$ $b_{1}(1):=0$. Obviously, b_{1} is a 1-periodic sawtooth function.

Lemma 9.22 For each $n \in \mathbb{N}$, the 1-periodic Bernoulli function b_{n} can be represented as a convergent Fourier series

$$
\begin{equation*}
b_{n}(x)=-n!\sum_{k \in \mathbb{Z} \backslash\{0\}} \frac{1}{(2 \pi \mathrm{i} k)^{n}} \mathrm{e}^{2 \pi \mathrm{i} k x} \tag{9.46}
\end{equation*}
$$

Proof First we remark that for all $k \in \mathbb{Z}$ and $n \in \mathbb{N}$

$$
c_{k}^{(1)}\left(b_{n}\right)=c_{k}^{(1)}\left(B_{n}\right)=\int_{0}^{1} B_{n}(t) \mathrm{e}^{-2 \pi \mathrm{i} k t} \mathrm{~d} t .
$$

The condition (9.41) leads to $c_{0}^{(1)}\left(B_{n}\right)=0$ for each $n \in \mathbb{N}$. Now we calculate the Fourier coefficients $c_{k}^{(1)}\left(B_{n}\right)$ for $k \in \mathbb{Z} \backslash\{0\}$. For $n=1$ we obtain

$$
\begin{equation*}
c_{k}^{(1)}\left(B_{1}\right)=\int_{0}^{1}\left(t-\frac{1}{2}\right) \mathrm{e}^{-2 \pi \mathrm{i} k t} \mathrm{~d} t=-\frac{1}{2 \pi \mathrm{i} k} . \tag{9.47}
\end{equation*}
$$

By Lemma 1.6 and (9.40) we receive for $n \in \mathbb{N} \backslash\{0\}$

$$
c_{k}^{(1)}\left(b_{n}^{\prime}\right)=2 \pi \mathrm{i} k c_{k}^{(1)}\left(B_{n}\right)=n c_{k}^{(1)}\left(B_{n-1}\right)
$$

and hence the recursion

$$
c_{k}^{(1)}\left(B_{n}\right)=\frac{n}{2 \pi \mathrm{i} k} c_{k}^{(1)}\left(B_{n-1}\right)
$$

such that by (9.47)

$$
c_{k}^{(1)}\left(B_{n}\right)=-\frac{n!}{(2 \pi \mathrm{i} k)^{n}} .
$$

For $n \in \mathbb{N} \backslash\{1\}$, the 1-periodic Bernoulli function b_{n} is contained in $C_{1}^{(n-2)}(\mathbb{R})$ and its Fourier series (9.46) converges uniformly by Theorem 1.37. For $n=1$, the 1-periodic Bernoulli function b_{1} is piecewise linear. By the Theorem 1.34 of Dirichlet-Jordan, the related Fourier series converges pointwise and uniformly on each closed interval contained in $\mathbb{R} \backslash \mathbb{Z}$.

Lemma 9.23 For $n \in \mathbb{N}$ and $x \in[0,1]$ it holds the inequality

$$
\begin{equation*}
(-1)^{n}\left(B_{2 n}(x)-B_{2 n}(0)\right) \geq 0 . \tag{9.48}
\end{equation*}
$$

Proof By Lemma 9.22 we know that for each $n \in \mathbb{N}$ and $x \in[0,1]$

$$
B_{2 n}(x)=(-1)^{n+1}(2 n)!\sum_{k=1}^{\infty} \frac{2 \cos (2 \pi k x)}{(2 \pi k)^{2 n}}
$$

and hence

$$
B_{2 n}(0)=(-1)^{n+1}(2 n)!\sum_{k=1}^{\infty} \frac{2}{(2 \pi k)^{2 n}} .
$$

Thus it follows that

$$
(-1)^{n}\left(B_{2 n}(x)-B_{2 n}(0)\right)=2(2 n)!\sum_{k=1}^{\infty} \frac{1-\cos (2 \pi k x)}{(2 \pi k)^{2 n}} \geq 0 .
$$

This completes the proof.
Lemma 9.24 Let $h \in C^{m}[0,1], m \in \mathbb{N}$, be given. Then h can be represented in the Bernoulli polynomial expansion

$$
\begin{align*}
& h(x)=\sum_{j=0}^{m} \frac{B_{j}(x)}{j!} \int_{0}^{1} h^{(j)}(t) \mathrm{d} t-\frac{1}{m!} \int_{0}^{1} b_{m}(x-t) h^{(m)}(t) \mathrm{d} t \\
& =\int_{0}^{1} h(t) \mathrm{d} t+\sum_{j=1}^{m} \frac{B_{j}(x)}{j!}\left(h^{(j-1)}(1)-h^{(j-1)}(0)\right)-\frac{1}{m!} \int_{0}^{1} b_{m}(x-t) h^{(m)}(t) \mathrm{d} t . \tag{9.49}
\end{align*}
$$

In the case $m=2 n+2, n \in \mathbb{N}_{0}$, it holds for certain $\tau \in(0,1)$

$$
\begin{align*}
\int_{0}^{1} h(t) \mathrm{d} t= & \frac{1}{2}(h(0)+h(1))-\sum_{j=1}^{n} \frac{B_{2 j}(0)}{(2 j)!}\left(h^{(2 j-1)}(1)-h^{(2 j-1)}(0)\right) \\
& -\frac{B_{2 n+2}(0)}{(2 n+2)!} h^{(2 n+2)}(\tau) \tag{9.50}
\end{align*}
$$

Proof

1. We show the Bernoulli polynomial expansion (9.49) by induction with respect to m. By (9.45) for b_{1} we get

$$
\int_{0}^{1} b_{1}(x-t) h^{\prime}(t) \mathrm{d} t=\int_{0}^{x}\left(x-t-\frac{1}{2}\right) h^{\prime}(t) \mathrm{d} t+\int_{x}^{1}\left(x-t+\frac{1}{2}\right) h^{\prime}(t) \mathrm{d} t .
$$

Then integration by parts leads to

$$
\int_{0}^{1} b_{1}(x-t) h^{\prime}(t) \mathrm{d} t=\int_{0}^{1} h(t) \mathrm{d} t+(h(1)-h(0)) B_{1}(x)-h(x)
$$

such that (9.49) is shown for $m=1$.
Assume that (9.49) is valid for some $m \in \mathbb{N}$. Let $h \in C^{(m+1)}[0,1]$ be given. By the definition of the 1-periodic Bernoulli function b_{m} we obtain for the integral term in (9.49) that

$$
\int_{0}^{1} b_{m}(x-t) h^{(m)}(t) \mathrm{d} t=\int_{0}^{x} B_{m}(x-t) h^{(m)}(t) \mathrm{d} t+\int_{x}^{1} B_{m}(x-t+1) h^{(m)}(t) \mathrm{d} t .
$$

Applying integration by parts, it follows by (9.40) and (9.42) that

$$
\begin{aligned}
\frac{1}{m!} \int_{0}^{1} b_{m}(x-t) h^{(m)}(t) \mathrm{d} t= & -\frac{B_{m+1}(x)}{(m+1)!}\left(h^{(m)}(1)-h^{(m)}(0)\right) \\
& +\frac{1}{(m+1)!} \int_{0}^{1} b_{m+1}(x-t) h^{(m+1)}(t) \mathrm{d} t
\end{aligned}
$$

i.e., (9.49) is also true for $m+1$.
2. For $x=0$ and $m=2 n+2, n \in \mathbb{N}_{0}$, in (9.49) it follows by (9.44) and (9.43) that

$$
\begin{aligned}
& \int_{0}^{1} h(t) \mathrm{d} t=\frac{1}{2}(h(0)+h(1))-\sum_{j=1}^{n+1} \frac{B_{2 j}(0)}{(2 j)!}\left(h^{(2 j-1)}(1)-h^{(2 j-1)}(0)\right) \\
& \quad+\frac{1}{(2 n+2)!} \int_{0}^{1} B_{2 n+2}(t) h^{(2 n+2)}(t) \mathrm{d} t \\
& =\frac{1}{2}(h(0)+h(1))-\sum_{j=1}^{n} \frac{B_{2 j}(0)}{(2 j)!}\left(h^{(2 j-1)}(1)-h^{(2 j-1)}(0)\right) \\
& \quad+\frac{1}{(2 n+2)!} \int_{0}^{1}\left(B_{2 n+2}(t)-B_{2 n+2}(0)\right) h^{(2 n+2)}(t) \mathrm{d} t
\end{aligned}
$$

From $h^{(2 n+2)} \in C[0,1]$, (9.48), and (9.41) it follows by the extended mean value theorem for integrals that there exists one $\tau \in(0,1)$ with

$$
\begin{aligned}
\int_{0}^{1}\left(B_{2 n+2}(t)-B_{2 n+2}(0)\right) h^{(2 n+2)}(t) \mathrm{d} t & =h^{(2 n+2)}(\tau) \int_{0}^{1}\left(B_{2 n+2}(t)-B_{2 n+2}(0)\right) \mathrm{d} t \\
& =-B_{2 n+2}(0) h^{(2 n+2)}(\tau)
\end{aligned}
$$

Thus (9.50) is shown.
Corollary 9.25 (Euler-Maclaurin Summation Formula) Let $n \in \mathbb{N}_{0}$ and $N \in$ $\mathbb{N} \backslash\{1\}$ be given. Then for $h \in C^{2 n+2}[0, N]$ it holds the Euler-Maclaurin summation formula

$$
\begin{align*}
\int_{0}^{N} h(t) \mathrm{d} t= & \frac{1}{2}(h(0)+h(N))+\sum_{k=1}^{N-1} h(k)-\sum_{j=1}^{n} \frac{B_{2 j}(0)}{(2 j)!}\left(h^{(2 j-1)}(N)-h^{(2 j-1)}(0)\right) \\
& -\frac{N B_{2 n+2}(0)}{(2 n+2)!} h^{(2 n+2)}(\sigma) \tag{9.51}
\end{align*}
$$

with one $\sigma \in(0, N)$.

Proof Repeated application of Lemma 9.24 to the integrals

$$
\int_{k}^{k+1} h(t) \mathrm{d} t, \quad k=0, \ldots, N-1
$$

leads to

$$
\begin{aligned}
& \int_{0}^{N} h(t) \mathrm{d} t=\sum_{k=0}^{N-1} \int_{k}^{k+1} h(t) \mathrm{d} t \\
& =\frac{1}{2}(h(0)+h(N))+\sum_{k=1}^{N-1} h(k)-\sum_{j=1}^{n} \frac{B_{2 j}(0)}{(2 j)!}\left(h^{(2 j-1)}(N)-h^{(2 j-1)}(0)\right) \\
& \quad-\frac{B_{2 n+2}(0)}{(2 n+2)!} \sum_{k=0}^{N-1} h^{(2 n+2)}\left(\tau_{k}\right)
\end{aligned}
$$

with $\tau_{k} \in(k, k+1)$. By the intermediate value theorem of $h^{(2 n+2)} \in C[0, N]$ there exists one $\sigma \in(0, N)$ with

$$
\frac{1}{N} \sum_{k=0}^{N-1} h^{(2 n+2)}\left(\tau_{k}\right)=h^{(2 n+2)}(\sigma)
$$

The Euler-Maclaurin summation formula (9.51) describes a powerful connection between integrals and finite sums. By this formula, one can evaluate finite sums by integrals which can be seen as follows:

Example 9.26 For arbitrary $N \in \mathbb{N} \backslash\{1\}$, we consider the function $h(t):=t^{2}$ for $t \in[0, N]$. From (9.51) it follows that

$$
\int_{0}^{N} t^{2} \mathrm{~d} t=\frac{1}{2} N^{2}+\sum_{k=1}^{N-1} k^{2}-\frac{1}{6} N
$$

and hence

$$
\sum_{k=1}^{N} k^{2}=\frac{1}{3} N^{3}+\frac{1}{2} N^{2}+\frac{1}{6} N=\frac{1}{6} N(N+1)(2 N+1)
$$

Now we apply the Euler-Maclaurin summation formula (9.51) to the quadrature of a 2π-periodic smooth function g. Obviously, the trapezoidal rule with equidistant nodes $\frac{2 \pi k}{N}, k=0, \ldots, N-1$, coincides with the related rectangular rule

$$
\frac{2 \pi}{N} \sum_{k=0}^{N-1} g\left(\frac{2 \pi k}{N}\right)
$$

We estimate the quadrature error for the rectangular rule with equidistant nodes. The following lemma indicates that the simple rectangular rule with equidistant nodes is very convenient for the quadrature of 2π-periodic, $(2 n+2)$-times continuously differentiable functions.
Lemma 9.27 Let $g \in C^{(2 n+2)}(\mathbb{T})$ with $n \in \mathbb{N}_{0}$ be given. Further let $N \in \mathbb{N} \backslash\{1\}$ be fixed.

Then the quadrature error in the rectangular rule with equidistant nodes $\frac{2 \pi k}{N}$, $k=0, \ldots, N-1$, can be estimated by

$$
\left|\int_{0}^{2 \pi} g(x) \mathrm{d} x-\frac{2 \pi}{N} \sum_{k=0}^{N-1} g\left(\frac{2 \pi k}{N}\right)\right| \leq \frac{(2 \pi)^{2 n+3} B_{2 n+2}(0)}{(2 n+2)!N^{2 n+2}}\left\|g^{(2 n+2)}\right\|_{C(\mathbb{T})}
$$

Proof We apply the Euler-Maclaurin formula (9.51). The substitution $x=\frac{2 \pi}{N} t \in$ $[0,2 \pi]$ for $t \in[0, N]$ leads to $h(t):=g\left(\frac{2 \pi}{N} t\right)$ for $t \in[0, N]$. From the assumption $g \in C^{(2 n+2)}(\mathbb{T})$ it follows that $h \in C^{(2 n+2)}[0, N]$ fulfills the conditions $h^{(j)}(0)=$ $h^{(j)}(N), j=0, \ldots, 2 n+2$. Thus by (9.51) we obtain that for certain $\xi \in(0,2 \pi)$

$$
\int_{0}^{2 \pi} g(x) \mathrm{d} x-\frac{2 \pi}{N} \sum_{k=0}^{N-1} g\left(\frac{2 \pi k}{N}\right)=-\frac{(2 \pi)^{2 n+3} B_{2 n+2}(0)}{(2 n+2)!N^{2 n+2}} g^{(2 n+2)}(\xi)
$$

For $n=0$, Lemma 9.27 provides:
Corollary 9.28 For $g \in C^{2}(\mathbb{T})$ the quadrature error in the rectangular rule with equidistant nodes $\frac{2 \pi k}{N}, k=0, \ldots, N-1$, can be estimated by

$$
\left|\int_{0}^{2 \pi} g(x) \mathrm{d} x-\frac{2 \pi}{N} \sum_{k=0}^{N-1} g\left(\frac{2 \pi k}{N}\right)\right| \leq \frac{(2 \pi)^{3}}{12 N^{2}}\left\|g^{\prime \prime}\right\|_{C(\mathbb{T})}
$$

This result will now be used to estimate the error in the computation of the Fourier coefficients

$$
c_{\ell}(f)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(x) \mathrm{e}^{-\mathrm{i} \ell x} \mathrm{~d} x, \quad \ell \in \mathbb{Z}
$$

of a given function $f \in C^{2}(\mathbb{T})$. Setting $g(x):=\frac{1}{2 \pi} f(x) \mathrm{e}^{-\mathrm{i} \ell x}$, we obtain

$$
g^{\prime \prime}(x)=\frac{1}{2 \pi} \mathrm{e}^{-\mathrm{i} \ell x}\left(f^{\prime \prime}(x)-2 \mathrm{i} \ell f^{\prime}(x)-\ell^{2} f(x)\right)
$$

Denoting

$$
\hat{f_{\ell}}:=\frac{1}{N} \sum_{k=0}^{N-1} f\left(\frac{2 \pi k}{N}\right) w_{N}^{k \ell}
$$

with $w_{N}=\mathrm{e}^{-2 \pi \mathrm{i} / N}$, Corollary 9.28 leads to the estimate

$$
\begin{equation*}
\left|c_{\ell}(f)-\hat{f}_{\ell}\right| \leq \frac{(2 \pi)^{3}}{12 N^{2}} \max _{x \in[0,2 \pi]}\left(\left|f^{\prime \prime}(x)\right|+2\left|\ell f^{\prime}(x)\right|+\ell^{2}|f(x)|\right) . \tag{9.52}
\end{equation*}
$$

Note that for $\ell=-\frac{N}{2}$ the upper bound of the quadrature error (9.52) is essentially independent of N.

As known the Fourier coefficients $c_{\ell}(f)$ are well approximated by $\hat{f_{\ell}}$ only for $\ell=-\frac{N}{2}, \ldots, \frac{N}{2}-1$. This follows from the aliasing formula (3.6) and Corollary 3.4. Summarizing we can say that both 2π-periodicity and smoothness of the given function f are essentially for small quadrature errors $\left|c_{\ell}(f)-\hat{f_{\ell}}\right|$ for all $\ell=-\frac{N}{2}, \ldots, \frac{N}{2}-1$.

9.4 Accelerating Convergence of Fourier Series

If a 2π-periodic function f is sufficiently smooth, then its Fourier series converges rapidly to f and the related Fourier coefficients $c_{k}(f)$ tend to zero as $|k| \rightarrow \infty$ (see Theorem 1.39). In this case, a Fourier partial sum $S_{n} f$ of low order n approximates f quite accurately, since the approximation error

$$
\left\|f-S_{n} f\right\|_{C[0,2 \pi]} \leq \sum_{|k|>n}\left|c_{k}(f)\right|
$$

will be small if the Fourier coefficients tend to zero rapidly enough. Otherwise, if a 2π-periodic function f is only piecewise smooth, then its Fourier partial sums $S_{n} f$ oscillate near a jump discontinuity of f by the Gibbs phenomenon (see Theorem 1.42) and converge very slowly to f. Can one find a rapidly convergent Fourier expansion of f, if f is only piecewise smooth?

In this section we describe two methods to accelerate the convergence of a Fourier series. In the first method we represent a 2π-periodic, piecewise smooth function f as a sum of a polynomial trend $T_{m} f$ and a fast convergent Fourier series of $f-T_{m} f$, since $f-T_{m} f$ is sufficiently smooth by construction.

In the second method we consider a smooth function $\varphi \in C^{\infty}(I)$ defined on the interval $I:=[-1,1]$. Note that the 2-periodic extension of $\left.\varphi\right|_{[-1,1)}$ is only piecewise smooth in general. Therefore we extend φ to a $2 T$-periodic, sufficiently smooth function f with certain $T>1$ such that f possesses a $2 T$-periodic, rapidly convergent Fourier expansion.

9.4.1 Krylov-Lanczos Method

First we consider 2π-periodic, piecewise smooth functions. A 2π-periodic function f is called piecewise r-times continuously differentiable or piecewise C^{r}-smooth with $r \in \mathbb{N}$, if there exist finitely many nodes $x_{j}, j=1, \ldots, n$, with $0 \leq x_{1}<x_{2}<$ $\ldots<x_{n}<2 \pi$ and $x_{n+1}:=x_{1}+2 \pi$ so that f restricted to $\left(x_{j}, x_{j+1}\right)$ belongs to $C^{r}\left[x_{j}, x_{j+1}\right]$ for each $j=1, \ldots, n$. By $C^{r}\left[x_{j}, x_{j+1}\right]$ we mean the set of all functions f with the properties that $f, f^{\prime}, \ldots, f^{(r)}$ are continuous on $\left(x_{j}, x_{j+1}\right)$ and have continuous extensions on $\left[x_{j}, x_{j+1}\right]$, i.e., there exist all one-sided finite limits $f^{(\ell)}\left(x_{j}+0\right)$ and $f^{(\ell)}\left(x_{j+1}-0\right)$ for $\ell=0, \ldots, r$.

The Fourier series of a 2π-periodic, piecewise smooth function which is smooth on the interval $[0,2 \pi$) has usually slow convergence due to the fact that this function has jumps at each point of $2 \pi \mathbb{Z}$ in general. If a 2π-periodic, piecewise C^{r}-smooth function with $n=1$ and $x_{1}=0$ (see Fig. 9.6) is given, then the asymptotic behavior of its Fourier coefficients

$$
c_{k}(f)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(t) \mathrm{e}^{-\mathrm{i} k t} \mathrm{~d} t, \quad k \in \mathbb{Z}
$$

and the rate of convergence of its Fourier series depends only on the largest positive integer $m \leq r$ which fulfills the condition

$$
\begin{equation*}
f^{(j)}(0+0)=f^{(j)}(2 \pi-0), \quad j=0, \ldots, m-1 \tag{9.53}
\end{equation*}
$$

As known a function f with condition (9.53) possesses a uniformly convergent Fourier expansion.

Unfortunately, a 2π-periodic, piecewise C^{r}-smooth function with $n=1$ and $x_{1}=0$ does not fulfill (9.53) in general. The corresponding Fourier series converges extremely slow. In such a case, it has been proposed by A.N. Krylov and later by Lanczos [219] to determine a 2π-periodic, piecewise polynomial $T_{m} f$ such that $f-T_{m} f$ satisfies the condition (9.53).

Figure 9.6 shows the 2π-periodic, piecewise smooth function f with $f(x):=$ $\sin \frac{3 x}{4}$ for $x \in[0,2 \pi)$ as well as its 2π-periodic trend $T_{1} f$ with $\left(T_{1} f\right)(x):=$ $\frac{1}{2}-\frac{x}{2 \pi}$ for $x \in(0,2 \pi)$ and $\left(T_{1} f\right)(0):=0$. Then we have $f-T_{1} f \in C(\mathbb{T})$ and $f-T_{1} f \notin C^{1}(\mathbb{T})$.

Fig. 9.6 Linear trend $T_{1} f(x)=-b_{1}\left(\frac{x}{2 \pi}\right)$ (red) of the 2π-periodic, piecewise smooth function f (blue) defined by $f(x)=\sin \frac{3 x}{4}$ for $x \in[0,2 \pi)$

Theorem 9.29 (Krylov-Lanczos Method of Convergence Acceleration) For r, $m \in \mathbb{N}$ with $m \leq r$, let f be a 2π-periodic, piecewise C^{r}-smooth function with only one node $x_{1}=0$ within $[0,2 \pi)$. Then f can be split into the sum $f=T_{m} f+R_{m} f$ on $\mathbb{R} \backslash 2 \pi \mathbb{Z}$, where

$$
\begin{align*}
\left(T_{m} f\right)(x) & :=\sum_{\ell=1}^{m} c_{0}\left(f^{(\ell)}\right) \frac{(2 \pi)^{\ell}}{\ell!} b_{\ell}\left(\frac{x}{2 \pi}\right) \tag{9.54}\\
& =\sum_{\ell=0}^{m-1}\left(f^{(\ell)}(2 \pi-0)-f^{(\ell)}(0+0)\right) \frac{(2 \pi)^{\ell}}{(\ell+1)!} b_{\ell+1}\left(\frac{x}{2 \pi}\right) \tag{9.55}\\
& =\sum_{\ell=0}^{m-1}\left(f^{(\ell)}(0-0)-f^{(\ell)}(0+0)\right) \frac{(2 \pi)^{\ell}}{(\ell+1)!} b_{\ell+1}\left(\frac{x}{2 \pi}\right) \tag{9.56}
\end{align*}
$$

is the 2π-periodic trend of f and where

$$
\begin{equation*}
\left(R_{m} f\right)(x):=c_{0}(f)-\frac{(2 \pi)^{m-1}}{m!} \int_{0}^{2 \pi} b_{m}\left(\frac{x-t}{2 \pi}\right) f^{(m)}(t) \mathrm{d} t \in C^{m-1}(\mathbb{T}) \tag{9.57}
\end{equation*}
$$

possesses the uniformly convergent Fourier series

$$
\begin{equation*}
\left(R_{m} f\right)(x)=c_{0}(f)+\sum_{k \in \mathbb{Z} \backslash\{0\}} \frac{1}{(\mathrm{i} k)^{m}} c_{k}\left(f^{(m)}\right) \mathrm{e}^{\mathrm{i} k x} \tag{9.58}
\end{equation*}
$$

Proof

1. The Krylov-Lanczos method is mainly based on the Bernoulli polynomial expansion (9.49). Let $g \in C^{r}[0,2 \pi]$ denote the r-times continuously differentiable continuation of f restricted on ($0,2 \pi$). By substitution it follows from (9.49) that g can be decomposed in the form $g=\tilde{T}_{m} g+\tilde{R}_{m} g$ with

$$
\begin{aligned}
\left(\tilde{T}_{m} g\right)(x):= & \sum_{\ell=1}^{m} c_{0}\left(g^{(\ell)}\right) \frac{(2 \pi)^{\ell}}{\ell!} B_{\ell}\left(\frac{x}{2 \pi}\right) \\
\left(\tilde{R}_{m} g\right)(x):= & c_{0}(g)-\frac{(2 \pi)^{m-1}}{m!}\left(\int_{0}^{x} B_{m}\left(\frac{x-t}{2 \pi}\right) g^{(m)}(t) \mathrm{d} t\right. \\
& \left.+\int_{x}^{2 \pi} B_{m}\left(\frac{x-t+2 \pi}{2 \pi}\right) g^{(m)}(t) \mathrm{d} t\right)
\end{aligned}
$$

Note that it holds $c_{0}(g)=c_{0}(f), g^{(j)}(0)=f^{(j)}(0+0)$ and $g^{(j)}(2 \pi)=$ $f^{(j)}(2 \pi-0)=f^{(j)}(0-0)$ for $j=0, \ldots, m$. By 2π-periodic extension of $g=\tilde{T}_{m} g+\tilde{R}_{m} g$ restricted on $(0,2 \pi)$ we preserve the decomposition
$f=T_{m} f+R_{m} f$ on $\mathbb{R} \backslash 2 \pi \mathbb{Z}$, where $T_{m} f$ and $R_{m} f$ are defined by (9.54) and (9.57), respectively.

Obviously, $T_{m} f$ is a 2π-periodic, piecewise polynomial and $R_{m} f$ is equal to the sum of $c_{0}(f)$ and a convolution of 2π-periodic functions

$$
\begin{equation*}
R_{m} f=c_{0}(f)-\frac{(2 \pi)^{m-1}}{m!} b_{m}\left(\frac{\cdot}{2 \pi}\right) * f^{(m)} \tag{9.59}
\end{equation*}
$$

2. Now we show that $h:=f-T_{m} f$ restricted to $(0,2 \pi)$ fulfills the conditions

$$
h^{(j)}(0+0)=h^{(j)}(2 \pi-0), \quad j=0, \ldots, m-1
$$

Since $h=R_{m} f$, simple calculation shows that

$$
h(0+0)=h(2 \pi-0)=c_{0}(f)-\frac{(2 \pi)^{m-1}}{m!} \int_{0}^{2 \pi} B_{m}\left(\frac{t}{2 \pi}\right) f^{(m)}(t) \mathrm{d} t
$$

Differentiation of $T_{m} f$ yields by (9.40) that

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} x}\left(T_{m} f\right)(x) & =\sum_{\ell=0}^{m-1}\left(f^{(\ell)}(2 \pi-0)-f^{(\ell)}(0+0)\right) \frac{(2 \pi)^{\ell-1}}{\ell!} B_{\ell}\left(\frac{x}{2 \pi}\right) \\
& =c_{0}\left(f^{\prime}\right)+\left(T_{m-1} f^{\prime}\right)(x) .
\end{aligned}
$$

Thus repeated differentiation provides

$$
\frac{\mathrm{d}^{j}}{\mathrm{~d} x^{j}}\left(T_{m} f\right)(x)=c_{0}\left(f^{(j)}\right)+\left(T_{m-j} f^{(j)}\right)(x), \quad j=2, \ldots, m-1
$$

Therefore we obtain that

$$
h^{(j)}(x)=f^{(j)}(x)-\left(T_{m-j} f^{(j)}\right)(x)=\left(R_{m-j} f^{(j)}\right)(x), \quad j=0, \ldots, m-1
$$

and hence for each $j=0, \ldots, m-1$
$h^{(j)}(0+0)=h^{(j)}(2 \pi-0)=c_{0}\left(f^{(j)}\right)-\frac{(2 \pi)^{m-j-1}}{(m-j)!} \int_{0}^{2 \pi} B_{m-j}\left(\frac{2 \pi-t}{2 \pi}\right) f^{(m-j)}(t) \mathrm{d} t$.
This shows that $h=R_{m} f \in C^{m-1}(\mathbb{T})$.
3. By the convolution property of the Fourier series (see Lemma 1.13) it follows from (9.59) that

$$
c_{k}\left(R_{m} f\right)-c_{0}(f)=-\frac{(2 \pi)^{m}}{m!} c_{k}\left(b_{m}\left(\frac{\cdot}{2 \pi}\right)\right) c_{k}\left(f^{(m)}\right) \quad k \in \mathbb{Z} \backslash\{0\} .
$$

By Lemma 9.22 we know that

$$
c_{k}\left(b_{m}\left(\frac{\cdot}{2 \pi}\right)\right)=-\frac{m!}{(2 \pi \mathrm{i} k)^{m}}, \quad k \in \mathbb{Z} \backslash\{0\},
$$

with $c_{0}\left(b_{m}\left(\frac{\dot{\sigma}}{2 \pi}\right)\right)=0$. Thus we receive the Fourier expansion (9.58) of $R_{m} f$. Since $f-T_{m} f$ is piecewise C^{r}-smooth by assumption and since $R_{m} f \in$ $C^{m-1}(\mathbb{T})$ by step 2 , the Fourier series (9.58) of $R_{m} f$ converges uniformly on \mathbb{R} by the Theorem 1.34 von Dirichlet-Jordan.

Example 9.30 For $m=1$

$$
\left(T_{1} f\right)(x)=(f(2 \pi-0)-f(0+0)) b_{1}\left(\frac{x}{2 \pi}\right)
$$

is the 2π-periodic linear trend of f. For $m=2$ we preserve the 2π-periodic quadratic trend

$$
\left(T_{2} f\right)(x)=\sum_{\ell=0}^{1}\left(f^{(\ell)}(2 \pi-0)-f^{(\ell)}(0+0)\right) b_{\ell+1}\left(\frac{x}{2 \pi}\right) .
$$

Remark 9.31 Using the Krylov-Lanczos method, one can eliminate the influence of the Gibbs phenomenon, since the jumps of f are correctly represented by $T_{m} f+R_{m} f$. This idea has been widely studied for modified Fourier expansions and the rate of uniform convergence is estimated too (see [17, 349] and the references therein). The same procedure can be also applied to a highly correct computation of Fourier coefficients of a piecewise smooth function f, see [349]. The KrylovLanczos method is readily adapted to multivariate Fourier series in [1, 349].

Theorem 9.29 can be extended to an arbitrary 2π-periodic, piecewise C^{r}-smooth function.

Theorem 9.32 For $r, m \in \mathbb{N}$ with $m \leq r$, let f be a 2π-periodic, piecewise C^{r} smooth function with n distinct nodes $x_{j} \in[0,2 \pi), j=1, \ldots, n$. Then f can be split into the sum $f=T_{m, n} f+R_{m} f$ on $\mathbb{R} \backslash \bigcup_{j=1}^{n}\left(\left\{x_{j}\right\}+2 \pi \mathbb{Z}\right)$, where

$$
\begin{equation*}
\left(T_{m, n} f\right)(x):=\sum_{j=1}^{n} \sum_{\ell=0}^{m-1}\left(f^{(\ell)}\left(x_{j}-0\right)-f^{(\ell)}\left(x_{j}+0\right)\right) \frac{(2 \pi)^{\ell}}{(\ell+1)!} b_{\ell+1}\left(\frac{x-x_{j}}{2 \pi}\right) \tag{9.60}
\end{equation*}
$$

is the 2π-periodic trend of f and where $R_{m} f \in C^{m-1}(\mathbb{T})$ defined by (9.57) possesses the uniformly convergent Fourier series (9.58).

For a proof see [19, 98].
Remark 9.33 The Krylov-Lanczos method is also closely related to the reconstruction of a 2π-periodic, piecewise C^{r}-smooth function f from given Fourier
coefficients $c_{k}(f)$ (see $\left.[19,98]\right)$. This recovery is based on the fact that $c_{k}(f) \approx$ $c_{k}\left(T_{m, n} f\right)$ for large $|k|$, since the contribution of $c_{k}\left(R_{m} f\right)$ to $c_{k}(f)$ is negligible for large $|k|$ by the smoothness of $R_{m} f$. Using

$$
c_{k}\left(b_{\ell+1}\left(\frac{-x_{j}}{2 \pi}\right)\right)= \begin{cases}-\frac{(\ell+1)!}{(2 \pi \mathrm{i} k)^{\ell+1}} \mathrm{e}^{-\mathrm{i} k x_{j}} & k \in \mathbb{Z} \backslash\{0\}, \\ 0 & k=0,\end{cases}
$$

the Fourier coefficients $c_{k}\left(T_{m, n} f\right)$ fulfill the equations

$$
2 \pi(\mathrm{i} k)^{m} c_{k}\left(T_{m, n} f\right)=\sum_{j=1}^{n} \mathrm{e}^{-\mathrm{i} k x_{j}} \sum_{\ell=0}^{m-1}(\mathrm{i} k)^{m-\ell-1}\left(f^{(\ell)}\left(x_{j}+0\right)-f^{(\ell)}\left(x_{j}-0\right)\right) .
$$

Hence the distinct nodes x_{j} and the associated jump magnitudes can be determined by a Prony-like method (see Sect. 10.2).

9.4.2 Fourier Extension

Now we describe the second method for accelerating convergence of Fourier series. Let $\varphi \in C^{\infty}(I)$ with $I:=[-1,1]$ be given, i.e., φ is infinitely differentiable in $(-1,1)$ and all one-sided limits

$$
\varphi^{(j)}(-1+0)=\lim _{x \rightarrow-1+0} \varphi^{(j)}(x), \quad \varphi^{(j)}(1-0)=\lim _{x \rightarrow 1-0} \varphi^{(j)}(x)
$$

for each $j \in \mathbb{N}_{0}$ exist and are finite. In general, such a function does not fulfill the property

$$
\varphi^{(j)}(-1+0)=\varphi^{(j)}(1-0), \quad j=0, \ldots, r-1,
$$

for certain $r \in \mathbb{N}$. If $\varphi(-1+0) \neq \varphi(1-0)$, then the 2-periodic extension of the function φ restricted on $[-1,1)$ is piecewise continuously differentiable with jump discontinuities at odd points. Then by the Gibbs phenomenon (see Theorem 1.42) the partial sums of the 2-periodic Fourier series oscillate near each odd point. Further we observe a slow decay of the related Fourier coefficients and a slow convergence of the 2-periodic Fourier series.

Remark 9.34 A simple method for accelerating convergence of Fourier series is often used. Let $f: \mathbb{R} \rightarrow \mathbb{C}$ be the 4-periodic function defined on $[-1,3$) by

$$
f(x):= \begin{cases}\varphi(x) & x \in[-1,1] \\ \varphi(2-x) & x \in(1,3) .\end{cases}
$$

Then f is continuous on whole \mathbb{R} and piecewise continuously differentiable on [-1, 3]. By Theorem 1.34 of Dirichlet-Jordan, the extended function f possesses a uniformly convergent, 4-periodic Fourier series. The drawback of this method is the fact that f is not continuously differentiable in general.

For fixed $T>1$, let $\mathscr{T}_{n}^{(2 T)}$ denote the linear span of the $2 T$-periodic exponentials

$$
\mathrm{e}^{\mathrm{i} k \pi \cdot / T}, \quad k=-n, \ldots, n .
$$

In the Fourier extension, one has to approximate a given function $\varphi \in C^{\infty}[-1,1]$ by a $2 T$-periodic trigonometric polynomial of $\mathscr{T}_{n}^{(2 T)}$. This Fourier extension problem was studied in [171] and the references therein. We propose the following fast Fourier extension.

In the first step we approximate the one-sided finite derivatives $\varphi^{(j)}(-1+0)$, $\varphi^{(j)}(1-0)$ for $j=0, \ldots, r-1$. Since these one-sided derivatives are very often unknown, we compute these values by interpolation at Chebyshev extreme points. Let $N \in \mathbb{N}$ be a sufficiently large power of two. Using the Chebyshev polynomials (6.1),we interpolate the given function $\varphi \in C^{\infty}(I)$ at the Chebyshev extreme points $x_{j}^{(N)}=\cos \frac{j \pi}{N}, j=0, \ldots, N$. Then the interpolation polynomial $\psi \in \mathscr{P}_{N}$ can be expressed as

$$
\begin{equation*}
\psi=\frac{1}{2} c_{0}+\sum_{k=1}^{N-1} c_{k} T_{k}+\frac{1}{2} c_{N} T_{N} \tag{9.61}
\end{equation*}
$$

with the coefficients

$$
c_{k}=\frac{2}{N}\left(\frac{1}{2} \varphi(1)+\sum_{j=1}^{N-1} \varphi\left(x_{j}^{(N)}\right) \cos \frac{j k \pi}{N}+\frac{1}{2} \varphi(-1)\right), \quad k=0, \ldots, N .
$$

Since N is a power of two, the coefficients c_{k} can be calculated by a fast algorithm of DCT-I $(N+1)$ (by means of Algorithm 6.28 or 6.35). Then we set $c_{N}:=2 c_{N}$. By Theorem 6.26, the coefficients d_{k} of the derivative

$$
\psi^{\prime}=\frac{1}{2} d_{0}+\sum_{k=1}^{N-1} d_{k} T_{k}
$$

can be recursively determined as

$$
d_{N-1-k}:=d_{N+1-k}+2(N-k) c_{N-k}, \quad k=0, \ldots, N-1,
$$

with $d_{N+1}=d_{N}:=0$. Then

$$
\psi^{\prime}(1-0)=\frac{1}{2} d_{0}+\sum_{k=1}^{N-1} d_{k}, \quad \psi^{\prime}(-1+0)=\frac{1}{2} d_{0}+\sum_{k=1}^{N-1}(-1)^{k} d_{k}
$$

are approximate one-sided derivatives of φ at the endpoints ± 1. Analogously, one can calculate the higher order one-sided derivatives $\psi^{(j)}, j=2, \ldots, r-1$, at the endpoints ± 1.

In the second step we use two-point Taylor interpolation and we compute the unique polynomial $p \in \mathscr{P}_{2 r-1}$ which fulfills the interpolation conditions

$$
p^{(j)}(1)=\psi^{(j)}(1-0), \quad p^{(j)}(2 T-1)=\psi^{(j)}(-1+0), \quad j=0, \ldots, r-1
$$

Now we describe briefly the two-point Taylor interpolation. Let $a, b \in \mathbb{R}$ be given distinct points. Further let $a_{j}, b_{j} \in \mathbb{R}, j=0, \ldots, r-1$, be given values for fixed $r \in \mathbb{N}$. We consider the special Hermite interpolation problem

$$
\begin{equation*}
p^{(j)}(a)=a_{j}, \quad p^{(j)}(b)=b_{j}, \quad j=0, \ldots, r-1 \tag{9.62}
\end{equation*}
$$

for a polynomial $p \in \mathscr{P}_{2 r-1}$. Then p is called two-point Taylor interpolation polynomial, see [226, pp. 62-67].

Lemma 9.35 The two-point Taylor interpolation polynomial of (9.62) is uniquely determined and can be expressed as

$$
\begin{equation*}
p=\sum_{j=0}^{r-1}\left(a_{j} h_{j}^{(a, b, r)}+b_{j} h_{j}^{(b, a, r)}\right) \in \mathscr{P}_{2 r-1}, \tag{9.63}
\end{equation*}
$$

where

$$
h_{j}^{(a, b, r)}(x):=\frac{(x-a)^{j}}{j!}\left(\frac{x-b}{a-b}\right)^{r} \sum_{k=0}^{r-1-j}\binom{r-1+k}{k}\left(\frac{x-a}{b-a}\right)^{k}, \quad j=0, \ldots, r-1,
$$

denote the two-point Taylor basis polynomials which fulfill the conditions

$$
\begin{equation*}
\left(\frac{\mathrm{d}^{\ell}}{\mathrm{d} x^{\ell}} h_{j}^{(a, b, r)}\right)(a)=\delta_{j-\ell}, \quad\left(\frac{\mathrm{d}^{\ell}}{\mathrm{d} x^{\ell}} h_{j}^{(a, b, r)}\right)(b)=0, \quad j, \ell=0, \ldots, r-1 \tag{9.64}
\end{equation*}
$$

Proof First we show the uniqueness of the two-point Taylor interpolation polynomial. Assume that $q \in \mathscr{P}_{2 r-1}$ is another solution of the two-point Taylor interpolation problem (9.62). Then $p-q \in \mathscr{P}_{2 r-1}$ has two distinct zeros of order r. By the fundamental theorem of algebra this implies that $p=q$.

From the structure of $h_{j}^{(a, b, r)}$ it follows immediately that

$$
\left(\frac{\mathrm{d}^{\ell}}{\mathrm{d} x^{\ell}} h_{j}^{(a, b, r)}\right)(b)=0, \quad j, \ell=0, \ldots, r-1
$$

By simple, but long calculations one can show that

$$
\left(\frac{\mathrm{d}^{\ell}}{\mathrm{d} x^{\ell}} h_{j}^{(a, b, r)}\right)(a)=\delta_{j-\ell}, \quad j, \ell=0, \ldots, r-1
$$

By (9.64) the polynomial (9.63) satisfies the interpolation conditions (9.62).
Example 9.36 For $r=1$ we obtain that

$$
h_{0}^{(a, b, 1)}(x)=\frac{x-b}{a-b}
$$

and hence

$$
p(x)=a_{0} \frac{x-b}{a-b}+b_{0} \frac{x-a}{b-a} \in \mathscr{P}_{1}
$$

In the case $r=2$, we receive the two-point Taylor basis polynomials

$$
h_{0}^{(a, b, 2)}(x)=\left(\frac{x-b}{a-b}\right)^{2}\left(1+2 \frac{x-a}{b-a}\right), \quad h_{1}^{(a, b, 2)}(x)=\left(\frac{x-b}{a-b}\right)^{2}(x-a)
$$

such that the two-point Taylor interpolation polynomial reads as follows:

$$
\begin{aligned}
p(x)= & a_{0}\left(\frac{x-b}{a-b}\right)^{2}\left(1+2 \frac{x-a}{b-a}\right)+a_{1}\left(\frac{x-b}{a-b}\right)^{2}(x-a) \\
& +b_{0}\left(\frac{x-a}{b-a}\right)^{2}\left(1+2 \frac{x-b}{a-b}\right)+b_{1}\left(\frac{x-a}{b-a}\right)^{2}(x-b) \in \mathscr{P}_{3} .
\end{aligned}
$$

We apply the two-point Taylor interpolation in the case $a:=1, b:=2 T-1$ with certain $T>1$, and

$$
a_{j}:=\psi^{(j)}(1-0), \quad b_{j}:=\psi^{(j)}(-1+0), \quad j=0, \ldots, r-1
$$

Then we introduce the $2 T$-periodic extension of the function ψ as

$$
f(x):= \begin{cases}\psi(x) & x \in[-1,1] \tag{9.65}\\ p(x) & x \in(1,2 T-1)\end{cases}
$$

Obviously, the $2 T$-periodic function f is contained in $C^{r-1}(\mathbb{R})$. For $r>1, f$ can be expressed by a rapidly convergent Fourier series.

In the third step we choose $n \geq N$ as a power of two and use $2 T$-periodic trigonometric interpolation at equidistant nodes $y_{\ell}:=-1+\frac{T \ell}{n}, \ell=0, \ldots, 2 n-1$, (see Lemma 3.7) in order to approximate f by a trigonometric polynomial

$$
s_{n}(x)=\sum_{k=1-n}^{n-1} s_{k}^{(n)} \mathrm{e}^{\mathrm{i} k \pi x / T}+s_{n}^{(n)} \cos \frac{n \pi x}{T} \in \mathscr{T}_{n}^{(2 T)}
$$

with the coefficients

$$
s_{k}^{(n)}:=\frac{1}{2 n} \sum_{\ell=0}^{2 n-1} f\left(y_{\ell}\right) \mathrm{e}^{-\pi \mathrm{i} k \ell / n}, \quad k=1-n \ldots, n
$$

We summarize this method:

Algorithm 9.37 (Fast Fourier Extension)

Input: $N \in \mathbb{N} \backslash\{1\}, n \in \mathbb{N}$ power of two with $n \geq N, r \in \mathbb{N}, T>1, \varphi \in C^{\infty}(I)$.

1. By interpolation at Chebyshev extreme points $x_{j}^{(N)}, j=0, \ldots, N$, determine the interpolation polynomial $\psi \in \mathscr{P}_{N}$ in the form (9.61) by a fast algorithm of DCT- $\mathrm{I}(N+1)$, set $c_{N}:=2 c_{N}$, and calculate the one-sided derivatives $\psi^{(j)}(-1+0)$ and $\psi^{(j)}(1-0)$ for $j=0, \ldots, r-1$ recursively by Theorem 6.26 .
2. Using two-point Taylor interpolation with the interpolation conditions

$$
p^{(j)}(1)=\psi^{(j)}(1-0), \quad p^{(j)}(2 T-1)=\psi^{(j)}(-1+0), \quad j=0, \ldots, r-1
$$

calculate the interpolation polynomial $p \in \mathscr{P}_{2 r-1}$ defined on the interval [1, 2T-1].
3. Form the $2 T$-periodic function (9.65) and use $2 T$-periodic trigonometric interpolation at equidistant nodes $y_{\ell}=-1+\frac{T \ell}{n}, \ell=0, \ldots, 2 n-1$. Compute the trigonometric polynomial $s_{n} \in \mathscr{T}_{n}^{(2 T)}$ with the coefficients $s_{k}^{(n)}, k=1-n, \ldots, n$, by a fast algorithm of DFT (2n).

Output: $s_{n} \in \mathscr{T}_{n}^{(2 T)}$ with the coefficients $s_{k}^{(n)}, k=1-n, \ldots, n$. Computational cost: $\mathscr{O}(n \log n)$.

If we apply fast algorithms of DCT-I $(N+1)$ and $\operatorname{DFT}(2 n)$, then Algorithm 9.37 requires only $\mathscr{O}(n \log n)$ arithmetic operations for the computation of $2 n$ coefficients $s_{k}^{(n)}$. The following example shows the performance of this fast Fourier extension.
Example 9.38 We consider the smooth function $\varphi(x):=x$ for $x \in I$. Note that the 2-periodic extension of φ is a piecewise linear sawtooth function. Choosing $T=2$, $N=10$, and $r=5$, the constructed 4-periodic Fourier extension f is contained in $C^{4}(\mathbb{R})$. For $n=2^{t}, t=5, \ldots, 13$, we measure the error

$$
\left\|\varphi-s_{n}\right\|_{C(I)} \approx \mathscr{O}\left(\frac{\log n}{n^{4}}\right)
$$

Figure 9.7 illustrates this method.

Fig. 9.7 Left: $\varphi(x)=x$ for $x \in I:=[-1,1]$ in blue and the two-point Taylor interpolation polynomial $p \in \mathscr{P}_{9}$ on [1,3] in red. Right: Maximum error $\left\|\varphi-s_{n}\right\|_{C(I)}$. The observed maximum error (with oversampling of 10) is in blue. The black dotted line illustrates the theoretical convergence rate $\mathscr{O}\left(\frac{\log n}{n^{4}}\right)$

9.5 Fast Poisson Solvers

Numerous problems of mathematical physics can be described by partial differential equations. Here we consider only elliptic partial differential equations for a bivariate function $u(x, y)$. If Δ denotes the Laplace operator or Laplacian

$$
(\Delta u)(x, y):=u_{x x}(x, y)+u_{y y}(x, y),
$$

then an important example is the Poisson equation

$$
-(\Delta u)(x, y)=f(x, y)
$$

with given function $f(x, y)$. The Poisson equation governs the steady state in diffusion processes, electrostatics, and ideal fluid flow. In electrostatics, solving the Poisson equation amounts to finding the electric potential u for a given charge density distribution f.

In the following, we want to solve the Dirichlet boundary value problem of the Poisson equation in the open unit square $Q:=(0,1)^{2}$. Thus we seek a function $u \in C^{2}(Q) \cap C(\bar{Q})$ with

$$
\begin{align*}
-(\Delta u)(x, y) & =f(x, y), \quad(x, y) \in Q \\
u(x, y) & =\varphi(x, y), \quad(x, y) \in \partial Q:=\bar{Q} \backslash Q \tag{9.66}
\end{align*}
$$

where $f \in C(\bar{Q})$ and $\varphi \in C(\partial Q)$ are given functions.

We start our considerations with the one-dimensional boundary value problem

$$
\begin{equation*}
-u^{\prime \prime}(x)=f(x), \quad x \in(0,1) \tag{9.67}
\end{equation*}
$$

with the boundary conditions $u(0)=\alpha, u(1)=\beta$ for given $f \in C[0,1]$ and α, $\beta \in \mathbb{R}$. For $N \in \mathbb{N} \backslash\{1\}$, we form the uniform $\operatorname{grid}\left\{x_{j}: j=0, \ldots, N+1\right\}$ with the grid points $x_{j}:=j h$ and the grid width $h:=(N+1)^{-1}$. Instead of (9.67) we consider the discretization

$$
\begin{equation*}
-u^{\prime \prime}\left(x_{j}\right)=f\left(x_{j}\right), \quad j=1, \ldots, N \tag{9.68}
\end{equation*}
$$

with $u(0)=\alpha, u(1)=\beta$. Setting $f_{k}:=f\left(x_{k}\right)$ and $u_{k}:=u\left(x_{k}\right)$ for $k=$ $0, \ldots, N+1$, we approximate $u^{\prime \prime}\left(x_{j}\right), j=1, \ldots, N$, by the central difference quotient of second order

$$
\frac{1}{h^{2}}\left(u_{j-1}-2 u_{j}+u_{j+1}\right) .
$$

Then the corresponding discretization error can be estimated as follows:
Lemma 9.39 Let $u \in C^{4}[0,1]$ be given. Then for each interior grid point x_{j}, $j=1, \ldots, N$, we have

$$
\begin{equation*}
\left|u^{\prime \prime}\left(x_{j}\right)-\frac{1}{h^{2}}\left(u_{j-1}-2 u_{j}+u_{j+1}\right)\right| \leq \frac{h^{2}}{12}\left\|u^{(4)}\right\|_{C[0,1]} . \tag{9.69}
\end{equation*}
$$

Proof By Taylor's formula there exist $\xi_{j}, \eta_{j} \in(0,1)$ such that
$u_{j-1}=u\left(x_{j}-h\right)=u_{j}-h u^{\prime}\left(x_{j}\right)+\frac{h^{2}}{2} u^{\prime \prime}\left(x_{j}\right)-\frac{h^{3}}{6} u^{(3)}\left(x_{j}\right)+\frac{h^{4}}{24} u^{(4)}\left(x_{j}-\xi_{j} h\right)$,
$u_{j+1}=u\left(x_{j}+h\right)=u_{j}+h u^{\prime}\left(x_{j}\right)+\frac{h^{2}}{2} u^{\prime \prime}\left(x_{j}\right)+\frac{h^{3}}{6} u^{(3)}\left(x_{j}\right)+\frac{h^{4}}{24} u^{(4)}\left(x_{j}+\eta_{j} h\right)$.
Using the intermediate value theorem of $u^{(4)} \in C[0,1]$, we obtain

$$
\frac{1}{2}\left(u^{(4)}\left(x_{j}-\xi_{j} h\right)+u^{(4)}\left(x_{j}+\eta_{j} h\right)\right)=u^{(4)}\left(x_{j}+\theta_{j} h\right)
$$

with some $\theta_{j} \in(-1,1)$. Summation of above expressions of u_{j-1} and u_{j+1} yields

$$
u_{j-1}+u_{j+1}=2 u_{j}+h^{2} u^{\prime \prime}\left(x_{j}\right)+\frac{h^{4}}{12} u^{(4)}\left(x_{j}+\theta_{j} h\right)
$$

and hence (9.69).

If we replace each second derivative $u^{\prime \prime}\left(x_{j}\right)$ by the corresponding central difference quotient, we get the following system of linear difference equations

$$
-u_{j-1}+2 u_{j}-u_{j+1}=h^{2} f_{j}, \quad j=1, \ldots, N
$$

with $u_{0}=\alpha, u_{N+1}=\beta$. This is the so-called finite difference method. Introducing the vectors $\mathbf{u}:=\left(u_{j}\right)_{j=1}^{N}$ and $\mathbf{g}:=\left(h^{2} f_{j}+\alpha \delta_{j-1}+\beta \delta_{N-j}\right)_{j=1}^{N}$ as well as the tridiagonal symmetric matrix

$$
\mathbf{A}_{N}:=\left(\begin{array}{ccccc}
2 & -1 & & & \\
-1 & 2 & -1 & & \\
& \ddots & \ddots & \ddots & \\
& & -1 & 2 & -1 \\
& & & -1 & 2
\end{array}\right) \in \mathbb{R}^{N \times N},
$$

we obtain the linear system

$$
\begin{equation*}
\mathbf{A}_{N} \mathbf{u}=\mathbf{g} \tag{9.70}
\end{equation*}
$$

Obviously, \mathbf{A}_{N} is weak diagonally dominant. Now we show that \mathbf{A}_{N} is positive definite and therefore invertible.
Lemma 9.40 Let $N \in \mathbf{N} \backslash\{1\}$ be given. Then for all $x \in \mathbb{R}$ we have

$$
\begin{align*}
& \mathbf{A}_{N} \mathbf{s}(x)=4\left(\sin \frac{x}{2}\right)^{2} \mathbf{s}(x)+\left(\begin{array}{c}
0 \\
\vdots \\
0 \\
\sin (N+1) x
\end{array}\right) \tag{9.71}\\
& \mathbf{A}_{N} \mathbf{c}(x)=4\left(\sin \frac{x}{2}\right)^{2} \mathbf{c}(x)+\left(\begin{array}{c}
\cos x \\
0 \\
\vdots \\
0 \\
\cos (N x)
\end{array}\right) \tag{9.72}
\end{align*}
$$

with the vectors $\mathbf{s}(x):=(\sin (j x))_{j=1}^{N}$ and $\mathbf{c}(x):=(\cos (k x))_{k=0}^{N-1}$.
Proof Let $x \in \mathbb{R}$ and $j \in\{1, \ldots, N\}$ be given. From

$$
\begin{aligned}
& \sin (j-1) x=(\cos x) \sin (j x)-(\sin x) \cos (j x), \\
& \sin (j+1) x=(\cos x) \sin (j x)+(\sin x) \cos (j x)
\end{aligned}
$$

it follows that

$$
-\sin (j-1) x+2(\cos x) \sin (j x)-\sin (j+1) x=0
$$

and hence

$$
\begin{align*}
-\sin (j-1) x+2 \sin (j x)-\sin (j+1) x & =2(1-\cos x) \sin (j x) \\
& =4\left(\sin \frac{x}{2}\right)^{2} \sin (j x) \tag{9.73}
\end{align*}
$$

Especially for $j=1$ and $j=N$, we obtain

$$
\begin{aligned}
2 \sin x-\sin (2 x) & =4\left(\sin \frac{x}{2}\right)^{2} \sin x \\
-\sin (N-1) x+2 \sin (N x) & =4\left(\sin \frac{x}{2}\right)^{2} \sin (N x)+\sin (N+1) x
\end{aligned}
$$

Thus (9.73) indicates (9.71). Analogously, (9.72) can be shown.
Lemma 9.41 For $N \in \mathbf{N} \backslash\{1\}$, the tridiagonal matrix \mathbf{A}_{N} is positive definite and possesses the simple positive eigenvalues

$$
\begin{equation*}
\sigma_{j}:=4\left(\sin \frac{j \pi}{2(N+1)}\right)^{2}, \quad j=1, \ldots, N \tag{9.74}
\end{equation*}
$$

which are ordered in the form $0<\sigma_{1}<\ldots<\sigma_{N}<4$. An eigenvector related to σ_{j} is

$$
\mathbf{s}_{j}:=\mathbf{s}\left(\frac{j \pi}{N+1}\right), \quad j=1, \ldots, N
$$

Proof For $x=\frac{j \pi}{N+1}, j=1, \ldots, N$, it follows from (9.71) that

$$
\mathbf{A}_{N} \mathbf{s}_{j}=\sigma_{j} \mathbf{s}_{j}
$$

This completes the proof.
Since $\mathbf{A}_{N} \in \mathbb{R}^{N \times N}$ is symmetric and since the eigenvalues of \mathbf{A}_{N} are simple, the eigenvectors $\mathbf{s}_{j} \in \mathbb{R}^{N}$ are orthogonal. By

$$
\sum_{k=1}^{N}(\sin (k x))^{2}=\frac{N}{2}-\frac{(\cos (N+1) x) \sin (N x)}{2 \sin x}, \quad x \in \mathbb{R} \backslash \pi \mathbb{Z}
$$

we obtain for $x=\frac{j \pi}{N+1}$ the equation

$$
\mathbf{s}_{j}^{\top} \mathbf{s}_{j}=\sum_{k=1}^{N}\left(\sin \frac{j k \pi}{N+1}\right)^{2}=\frac{N+1}{2}, \quad j=1, \ldots, N
$$

such that

$$
\begin{equation*}
\mathbf{s}_{j}^{\top} \mathbf{s}_{k}=\frac{N+1}{2} \delta_{j-k}, \quad j, k=1, \ldots, N \tag{9.75}
\end{equation*}
$$

where δ_{j} denotes the Kronecker symbol. With the eigenvectors $\mathbf{s}_{j}, j=1, \ldots, N$, we form the orthogonal sine matrix of type I

$$
\mathbf{S}_{N}^{\mathrm{I}}:=\sqrt{\frac{2}{N+1}}\left(\mathbf{s}_{1}\left|\mathbf{s}_{2}\right| \ldots \mid \mathbf{s}_{N}\right)=\sqrt{\frac{2}{N+1}}\left(\sin \frac{j k \pi}{N+1}\right)_{j, k=1}^{N} \in \mathbb{R}^{N \times N} .
$$

This matrix is symmetric and has by (9.75) the property

$$
\begin{equation*}
\left(\mathbf{S}_{N}^{\mathrm{I}}\right)^{2}=\mathbf{I}_{N} \tag{9.76}
\end{equation*}
$$

such that $\left(\mathbf{S}_{N}^{\mathrm{I}}\right)^{-1}=\mathbf{S}_{N}^{\mathrm{I}}$. We summarize:
Lemma 9.42 For $N \in \mathbf{N} \backslash\{1\}$, the tridiagonal matrix \mathbf{A}_{N} can be diagonalized by the sine matrix $\mathbf{S}_{N}^{\mathrm{I}}$ of type I in the form

$$
\mathbf{S}_{N}^{\mathrm{I}} \mathbf{A}_{N} \mathbf{S}_{N}^{\mathrm{I}}=\mathbf{D}_{N}
$$

with the invertible diagonal matrix $\mathbf{D}_{N}:=\operatorname{diag}\left(\sigma_{j}\right)_{j=1}^{N}$.
Applying Lemma 9.42 to the linear system (9.70), we obtain:
Theorem 9.43 The finite difference method of the boundary value problem (9.67) leads to the linear system (9.70) which has the unique solution

$$
\begin{equation*}
\mathbf{u}=\mathbf{S}_{N}^{\mathrm{I}} \mathbf{D}_{N}^{-1} \mathbf{S}_{N}^{\mathrm{I}} \mathbf{g} . \tag{9.77}
\end{equation*}
$$

Remark 9.44 For a real input vector $\mathbf{f}=\left(f_{j}\right)_{j=1}^{N} \in \mathbb{R}^{N}$, the DST-I of length N can be computed by DFT $(2 N+2)$, see also Table 6.1 for a similar realisation. We want to compute the vector $\hat{\mathbf{f}}=\left(\hat{f}_{k}\right)_{k=1}^{N}=\mathbf{S}_{N}^{\mathrm{I}} \mathbf{f}$, i.e.

$$
\hat{f}_{k}=\sqrt{\frac{2}{N+1}} \sum_{j=1}^{N} f_{j} \sin \frac{j k \pi}{N+1}, \quad k=1, \ldots, N .
$$

For this purpose, we form the odd vector $\mathbf{a}=\left(a_{j}\right)_{j=0}^{2 N-1} \in \mathbb{R}^{2 N}$ by

$$
a_{j}:=\left\{\begin{array}{cl}
0 & j=0, N+1, \\
f_{j} & j=1, \ldots, N, \\
-f_{2 N+2-j} & j=N+2, \ldots, 2 N-1
\end{array}\right.
$$

and calculate $\hat{\mathbf{a}}=\left(\hat{a}_{k}\right)_{k=0}^{2 N+1}=\mathbf{F}_{2 N+2} \mathbf{a}$. Simple calculation shows that $\operatorname{Re} \hat{a}_{k}=0$, $k=1, \ldots, N$, and

$$
\hat{f}_{k}=-\frac{1}{\sqrt{2 N+2}} \operatorname{Im} \hat{a}_{k}, \quad k=1, \ldots, N .
$$

Remark 9.45 The linear system (9.70) can be solved in $\mathscr{O}(N)$ arithmetic operations using the Cholesky factorization of the tridiagonal matrix \mathbf{A}_{N}. Otherwise, the solution \mathbf{u} of (9.70) can be calculated by two DST-I of length N and scaling. The DST-I of length N can be realized by FFT of length $2 N+2$. Thus we need $\mathscr{O}(N \log N)$ arithmetic operations for the computation of (9.77).

A similar approach can be used for other boundary value problems of (9.67) (see [362, pp. 247-253] and [346]).

After these preliminaries, we present a numerical solution of the boundary value problem of the Poisson equation (9.66) in the open unit square $Q=(0,1)^{2}$.
Example 9.46 The Poisson equation $-(\Delta u)(x, y)=x^{2}+y^{2}$ for $(x, y) \in Q$ with the boundary conditions $u(x, 0)=0, u(x, 1)=-\frac{1}{2} x^{2}, u(0, y)=\sin y, u(1, y)=$ $\mathrm{e} \sin y-\frac{1}{2} y^{2}$ for $x, y \in[0,1]$ has the solution $u(x, y)=\mathrm{e}^{x} \sin y-\frac{1}{2} x^{2} y^{2}$.

We use a uniform grid of \bar{Q} with the grid points $\left(x_{j}, y_{k}\right), j, k=0, \ldots, N+1$, where $x_{j}:=j h, y_{k}:=k h$, and $h:=(N+1)^{-1}$. In the case $j, k \in\{1, \ldots, N\}$, we say that $\left(x_{j}, y_{k}\right) \in Q$ is an interior grid point. Figure 9.8 shows the (interior) grid points in the unit square for $N=5$. Now we discretize the problem (9.66) and consider

$$
\begin{array}{rlrl}
-(\Delta u)\left(x_{j}, y_{k}\right) & =f\left(x_{j}, y_{k}\right), \quad j, k=1, \ldots, N, \\
u\left(0, y_{k}\right) & =\alpha_{k}:=\varphi\left(0, y_{k}\right), & u\left(1, y_{k}\right)=\beta_{k}:=\varphi\left(1, y_{k}\right), \quad k=0, \ldots, N+1, \\
u\left(x_{j}, 0\right) & =\mu_{j}:=\varphi\left(x_{j}, 0\right), \quad u\left(x_{j}, 1\right)=v_{j}:=\varphi\left(x_{j}, 1\right), \quad j, k=0, \ldots, N+1 .
\end{array}
$$

Fig. 9.8 Grid points and interior grid points in the unit square

Setting $u_{j, k}:=u\left(x_{j}, y_{k}\right)$ and $f_{j, k}:=f\left(x_{j}, y_{k}\right)$, we approximate $(\Delta u)\left(x_{j}, y_{k}\right)$ at each interior grid point $\left(x_{j}, y_{k}\right)$ by the discrete Laplacian

$$
\begin{align*}
\left(\Delta_{h} u\right)\left(x_{j}, y_{k}\right) & :=\frac{1}{h^{2}}\left(u_{j-1, k}+u_{j+1, k}-2 u_{j, k}\right)+\frac{1}{h^{2}}\left(u_{j, k-1}+u_{j, k+1}-2 u_{j, k}\right) \\
& =\frac{1}{h^{2}}\left(u_{j-1, k}+u_{j+1, k}+u_{j, k-1}+u_{j, k+1}-4 u_{j, k}\right) \tag{9.78}
\end{align*}
$$

Obviously, the discrete Laplacian is the sum of two central partial difference quotients of second order.
Lemma 9.47 If $u \in C^{4}(\bar{Q})$, then for each interior grid point $\left(x_{j}, y_{k}\right)$ we have the estimate

$$
\left|(\Delta u)\left(x_{j}, y_{k}\right)-\left(\Delta_{h} u\right)\left(x_{j}, y_{k}\right)\right| \leq \frac{h^{2}}{12}\left(\left\|\frac{\partial^{4} u}{\partial x^{4}}\right\|_{C(\bar{Q})}+\left\|\frac{\partial^{4} u}{\partial y^{4}}\right\|_{C(\bar{Q})}\right) .
$$

Similarly to the proof of Lemma 9.39, the above estimate can be shown by using two-dimensional Taylor's formula and intermediate value theorem. For shortness, the proof is omitted here.

If we replace the Laplacian $(\Delta u)\left(x_{j}, y_{k}\right)$ by the discrete Laplacian (9.78), we obtain the following equation at each interior grid point

$$
\begin{equation*}
4 u_{j, k}-u_{j-1, k}-u_{j+1, k}-u_{j, k-1}-u_{j, k+1}=h^{2} f_{j, k}, \quad j, k=1, \ldots, N \tag{9.79}
\end{equation*}
$$

where we include the boundary conditions. For the interior grid point $\left(x_{1}, y_{1}\right)$ this means that

$$
4 u_{1,1}-u_{2,1}-u_{1,2}=h^{2} f_{1,1}+\alpha_{1}+\mu_{1}
$$

Setting

$$
g_{j, k}:=h^{2} f_{j, k}+\alpha_{k} \delta_{j-1}+\beta_{k} \delta_{N-j}+\mu_{j} \delta_{k-1}+v_{j} \delta_{N-k}, \quad j, k=1, \ldots, N
$$

and introducing the vectors

$$
\begin{aligned}
& \mathbf{u}:=\left(u_{1,1}, \ldots, u_{1, N}, \ldots, u_{N, 1}, \ldots, u_{N, N}\right)^{\top} \in \mathbb{R}^{N^{2}} \\
& \mathbf{g}:=\left(g_{1,1}, \ldots, g_{1, N}, \ldots, g_{N, 1}, \ldots, g_{N, N}\right)^{\top} \in \mathbb{R}^{N^{2}},
\end{aligned}
$$

and the Kronecker sum

$$
\mathbf{M}_{N^{2}}:=\left(\mathbf{A}_{N} \otimes \mathbf{I}_{N}\right)+\left(\mathbf{I}_{N} \otimes \mathbf{A}_{N}\right) \in \mathbb{R}^{N^{2} \times N^{2}}
$$

where \otimes denotes the Kronecker product of matrices (see Sect. 3.4), from (9.79) we obtain the linear system

$$
\begin{equation*}
\mathbf{M}_{N^{2}} \mathbf{u}=\mathbf{g} . \tag{9.80}
\end{equation*}
$$

Then $\mathbf{M}_{N^{2}}$ is a symmetric, weak diagonally dominant band matrix with bandwidth $2 N-1$, where at most five nonzero entries are in each row. The fast Poisson solver is mainly based on the diagonalization of $\mathbf{M}_{N^{2}}$ by the Kronecker product $\mathbf{S}_{N}^{\mathrm{I}} \otimes \mathbf{S}_{N}^{\mathrm{I}}$.
Lemma 9.48 The Kronecker sum $\mathbf{M}_{N^{2}}$ can be diagonalized by the Kronecker product $\mathbf{S}_{N}^{\mathrm{I}} \otimes \mathbf{S}_{N}^{\mathrm{I}}$, i.e.

$$
\begin{equation*}
\left(\mathbf{S}_{N}^{\mathrm{I}} \otimes \mathbf{S}_{N}^{\mathrm{I}}\right) \mathbf{M}_{N^{2}}\left(\mathbf{S}_{N}^{\mathrm{I}} \otimes \mathbf{S}_{N}^{\mathrm{I}}\right)=\left(\left(\mathbf{D}_{N} \otimes \mathbf{I}_{N}\right)+\left(\mathbf{I}_{N} \otimes \mathbf{D}_{N}\right)\right), \tag{9.81}
\end{equation*}
$$

where

$$
\left(\mathbf{D}_{N} \otimes \mathbf{I}_{N}\right)+\left(\mathbf{I}_{N} \otimes \mathbf{D}_{N}\right)=\operatorname{diag}\left(\mu_{1,1}, \ldots, \mu_{1, N}, \ldots, \mu_{N, 1}, \ldots, \mu_{N, N}\right)^{\top}
$$

is an invertible diagonal matrix with the main diagonal elements

$$
\mu_{j, k}=4\left(\sin \frac{j \pi}{2(N+1)}\right)^{2}+4\left(\sin \frac{j \pi}{2(N+1)}\right)^{2}, \quad j, k=1, \ldots, N .
$$

Proof Using the properties of the Kronecker product (see Theorem 3.42) and Lemma 9.42, we obtain by (9.76) that

$$
\left(\mathbf{S}_{N}^{\mathrm{I}} \otimes \mathbf{S}_{N}^{\mathrm{I}}\right)\left(\mathbf{A}_{N} \otimes \mathbf{I}_{N}\right)\left(\mathbf{S}_{N}^{\mathrm{I}} \otimes \mathbf{S}_{N}^{\mathrm{I}}\right)=\left(\mathbf{S}_{N}^{\mathrm{I}} \mathbf{A}_{N} \mathbf{S}_{N}^{\mathrm{I}}\right) \otimes \mathbf{I}_{N}=\mathbf{D}_{N} \otimes \mathbf{I}_{N}
$$

Analogously, we see that

$$
\left(\mathbf{S}_{N}^{\mathrm{I}} \otimes \mathbf{S}_{N}^{\mathrm{I}}\right)\left(\mathbf{I}_{N} \otimes \mathbf{A}_{N}\right)\left(\mathbf{S}_{N}^{\mathrm{I}} \otimes \mathbf{S}_{N}^{\mathrm{I}}\right)=\mathbf{I}_{N} \otimes \mathbf{D}_{N}
$$

Hence the formula (9.81) is shown. By Lemma 9.42 we know that

$$
\mathbf{D}_{N}=\operatorname{diag}\left(\sigma_{j}\right)_{j=1}^{N}
$$

From (9.74) we conclude that

$$
\mu_{j, k}=\sigma_{j}+\sigma_{k}=4\left(\sin \frac{j \pi}{2(N+1)}\right)^{2}+4\left(\sin \frac{k \pi}{2(N+1)}\right)^{2}, \quad j, k=1, \ldots, N
$$

Obviously, all $\mu_{j, k}$ positive and fulfill $0<\mu_{1,1} \leq \mu_{j, k}<8$.
By Lemma 9.48, the matrix $\mathbf{M}_{N^{2}}$ is invertible and its inverse reads by (9.81) as follows:

$$
\begin{equation*}
\mathbf{M}_{N^{2}}^{-1}=\left(\mathbf{S}_{N}^{\mathrm{I}} \otimes \mathbf{S}_{N}^{\mathrm{I}}\right) \operatorname{diag}\left(\mu_{1,1}^{-1}, \ldots, \mu_{N, N}^{-1}\right)^{\top}\left(\mathbf{S}_{N}^{\mathrm{I}} \otimes \mathbf{S}_{N}^{\mathrm{I}}\right) \tag{9.82}
\end{equation*}
$$

Thus the linear system (9.80) is uniquely solvable.

Theorem 9.49 The finite difference method of the boundary value problem (9.66) leads to the linear system (9.80) which has the unique solution

$$
\begin{equation*}
\mathbf{u}=\mathbf{M}_{N^{2}}^{-1} \mathbf{g}=\left(\mathbf{S}_{N}^{\mathrm{I}} \otimes \mathbf{S}_{N}^{\mathrm{I}}\right) \operatorname{diag}\left(\mu_{1,1}^{-1}, \ldots, \mu_{N, N}^{-1}\right)^{\top}\left(\mathbf{S}_{N}^{\mathrm{I}} \otimes \mathbf{S}_{N}^{\mathrm{I}}\right) \mathbf{g} \tag{9.83}
\end{equation*}
$$

Remark 9.50 The vector \mathbf{u} can be computed by two transforms with $\mathbf{S}_{N}^{\mathrm{I}} \otimes \mathbf{S}_{N}^{\mathrm{I}}$ and scaling. We consider the transform

$$
\mathbf{h}:=\left(\mathbf{S}_{N}^{\mathrm{I}} \otimes \mathbf{S}_{N}^{\mathrm{I}}\right) \mathbf{g}=\left(h_{1,1}, \ldots, h_{1, N}, \ldots, h_{N, 1}, \ldots, h_{N, N}\right)^{\top} \in \mathbb{R}^{N^{2}}
$$

Then we receive by the definition of the Kronecker product $\mathbf{S}_{N}^{\mathrm{I}} \otimes \mathbf{S}_{N}^{\mathrm{I}}$ in Sect. 3.4

$$
h_{m, n}=\frac{2}{N+1} \sum_{j=1}^{N} \sum_{k=1}^{N} g_{j, k} \sin \frac{j m \pi}{N+1} \sin \frac{k n \pi}{N+1}, \quad m, n=1, \ldots, N
$$

i.e., the matrix $\left(h_{m, n}\right)_{m, n=1}^{N}$ is equal to the two-dimensional DST-I with size $N \times$ N which can be realized by a fast algorithm of the two-dimensional DFT of size $(2 N+2) \times(2 N+2)$, if $N+1$ is a power of two. Thus the computation requires only $\mathscr{O}\left(N^{2} \log N\right)$ arithmetic operations. This is now the fastest way to solve the linear system (9.80).

We summarize:

Algorithm 9.51 (Fast Poisson Solver)

Input: $N \in \mathbb{N} \backslash\{1\}, N+1$ power of two, $h=(N+1)^{-1}$,
$x_{j}=j h, y_{k}=k h, f_{j, k}:=f\left(x_{j}, y_{k}\right)$ for $j, k=1, \ldots, N$,
$\alpha_{k}:=\varphi\left(0, y_{k}\right), \beta_{k}:=\varphi\left(1, y_{k}\right)$ for $k=1, \ldots, N$,
$\mu_{j}:=\varphi\left(x_{j}, 0\right), v_{j}:=\varphi\left(x_{j}, 1\right)$ for $j=1, \ldots, N$, where $f \in C(\bar{Q})$ and $\varphi \in$ $C(\partial Q)$.

1. Precompute the values

$$
\mu_{m, n}^{-1}:=\left(4\left(\sin \frac{m \pi}{2(N+1)}\right)^{2}+4\left(\sin \frac{n \pi}{2(N+1)}\right)^{2}\right)^{-1}, \quad m, n=1, \ldots, N
$$

2 Form the values

$$
g_{j, k}:=h^{2} f_{j, k}+\alpha_{k} \delta_{j-1}+\beta_{k} \delta_{N-j}+\mu_{j} \delta_{k-1}+v_{j} \delta_{N-k}, \quad j, k=1, \ldots, N
$$

3. Using a fast algorithm of the two-dimensional DST-I with size $N \times N$, compute

$$
\tilde{g}_{m, n}:=\frac{2}{N+1} \sum_{j=1}^{N} \sum_{k=1}^{N} g_{j, k} \sin \frac{j m \pi}{N+1} \sin \frac{k n \pi}{N+1}, \quad m, n=1, \ldots, N
$$

4. Calculate

$$
h_{m, n}:=\mu_{m, n}^{-1} \tilde{g}_{m, n}, \quad m, n=1, \ldots, N
$$

5. Using a fast algorithm of the two-dimensional DST-I with size $N \times N$, compute

$$
\tilde{u}_{j, k}:=\frac{2}{N+1} \sum_{m=1}^{N} \sum_{n=1}^{N} h_{m, n} \sin \frac{j m \pi}{N+1} \sin \frac{k n \pi}{N+1}, \quad j, k=1, \ldots, N
$$

Output: $\tilde{u}_{j, k}$ approximate value of $u\left(x_{j}, y_{k}\right)$ for $j, k=1, \ldots, N$.
Computational cost: $\mathscr{O}\left(N^{2} \log N\right)$.
Remark 9.52 This method can be extended to a rectangular domain with different step sizes in x - and y-direction. A similar approach can be used for other boundary value problems of (9.66), see [346] and [362, pp. 247-253].

Under the assumption $u \in C^{4}(\bar{Q})$, we present an error analysis for this method. The local discretization error at an interior grid point $\left(x_{j}, y_{k}\right), j, k=1, \ldots, N$, is defined as

$$
d_{j, k}:=-\left(\Delta_{h} u\right)\left(x_{j}, y_{k}\right)-f_{j, k}
$$

By Lemma 9.47, the local discretization error $d_{j, k}$ can be estimated by

$$
\begin{equation*}
\left|d_{j, k}\right| \leq c h^{2}, \quad j, k=1, \ldots, N \tag{9.84}
\end{equation*}
$$

with the constant

$$
c:=\frac{1}{12}\left(\left\|\frac{\partial^{4} u}{\partial x^{4}}\right\|_{C(\bar{Q})}+\left\|\frac{\partial^{4} u}{\partial y^{4}}\right\|_{C(\bar{Q})}\right) .
$$

Now we explore the error

$$
e_{j, k}:=u\left(x_{j}, y_{k}\right)-\tilde{u}_{j, k}, \quad j, k=0, \ldots, N+1,
$$

where $\tilde{u}_{j, k}$ means the approximate value of $u\left(x_{j}, y_{k}\right)$. By the boundary conditions in (9.66) we have

$$
e_{0, k}=e_{N+1, k}=e_{j, 0}=e_{j, N+1}=0, \quad j, k=0, \ldots, N+1
$$

From the definition of $d_{j, k}$ it follows that

$$
-h^{2}\left(\Delta_{h} u\right)\left(x_{j}, y_{k}\right)-h^{2} f_{j, k}=h^{2} d_{j, k}, \quad j, k=1, \ldots, N
$$

Further we have by (9.79) that

$$
4 \tilde{u}_{j, k}-\tilde{u}_{j-1, k}-\tilde{u}_{j+1, k}-\tilde{u}_{j, k-1}-\tilde{u}_{j, k+1}-h^{2} f_{j, k}=0, \quad j, k=1, \ldots, N .
$$

Subtracting of both equations yields

$$
4 e_{j, k}-e_{j-1, k}-e_{j+1, k}-e_{j, k-1}-e_{j, k+1}=h^{2} d_{j, k}, \quad j, k=1, \ldots, N
$$

Introducing the error vectors

$$
\begin{aligned}
& \mathbf{e}:=\left(e_{1,1}, \ldots, e_{1, N}, \ldots, e_{N, 1}, \ldots, e_{N, N}\right)^{\top} \in \mathbb{R}^{N^{2}} \\
& \mathbf{d}:=\left(d_{1,1}, \ldots, d_{1, N}, \ldots, d_{N, 1}, \ldots, d_{N, N}\right)^{\top} \in \mathbb{R}^{N^{2}}
\end{aligned}
$$

we obtain the linear system

$$
\begin{equation*}
\mathbf{M}_{N^{2}} \mathbf{e}=h^{2} \mathbf{d} \tag{9.85}
\end{equation*}
$$

which has the unique solution

$$
\begin{align*}
\mathbf{e} & =h^{2} \mathbf{M}_{N^{2}}^{-1} \mathbf{d} \tag{9.86}\\
& =h^{2}\left(\mathbf{S}_{N}^{\mathrm{I}} \otimes \mathbf{S}_{N}^{\mathrm{I}}\right) \operatorname{diag}\left(\mu_{1,1}^{-1}, \ldots, \mu_{N, N}^{-1}\right)^{\top}\left(\mathbf{S}_{N}^{\mathrm{I}} \otimes \mathbf{S}_{N}^{\mathrm{I}}\right) \mathbf{d}
\end{align*}
$$

Theorem 9.53 For a solution $u \in C^{4}(\bar{Q})$ of the boundary value problem (9.66), the weighted Euclidean norm of the error vector \mathbf{e} can be estimated by

$$
\frac{1}{N}\|\mathbf{e}\|_{2} \leq \frac{h^{2}}{96}\left(\left\|\frac{\partial^{4} u}{\partial x^{4}}\right\|_{C(\bar{Q})}+\left\|\frac{\partial^{4} u}{\partial y^{4}}\right\|_{C(\bar{Q})}\right)
$$

Proof If $\left\|\mathbf{M}_{N^{2}}^{-1}\right\|_{2}$ denotes the spectral norm of $\mathbf{M}_{N^{2}}^{-1}$, we receive by (9.86) that

$$
\|\mathbf{e}\|_{2} \leq h^{2}\left\|\mathbf{M}_{N^{2}}^{-1}\right\|_{2}\|\mathbf{d}\|_{2} .
$$

Since $\mathbf{S}_{N}^{\mathrm{I}}$ is orthogonal and since $0<\mu_{1,1} \leq \mu_{j, k}$ for all $j, k=1, \ldots, N$, we conclude that

$$
\left\|\mathbf{M}_{N^{2}}^{-1}\right\|_{2}=\mu_{1,1}^{-1}=\frac{1}{8}\left(\sin \frac{\pi}{2(N+1)}\right)^{-2} \leq \frac{1}{8}(N+1)^{2}=\frac{1}{8} h^{-2} .
$$

By (9.84) we have $\|\mathbf{d}\|_{2} \leq N c h^{2}$ and thus we obtain that

$$
\frac{1}{N}\|\mathbf{e}\|_{2} \leq \frac{c}{8} h^{2}
$$

Remark 9.54 The fast Poisson solver of Algorithm 9.51 was derived from the finite difference method. A different approach to an efficient numerical solution of (9.66) with homogeneous boundary conditions, i.e., $\varphi=0$, follows from the spectral
method, since the functions $\sin (\pi j x) \sin (\pi k y)$ for $j, k \in \mathbb{N}$ are eigenfunctions of the eigenvalue problem

$$
\begin{aligned}
-(\Delta u)(x, y) & =\lambda u(x, y) \quad(x, y) \in Q, \\
u(x, y) & =0, \quad(x, y) \in \partial Q .
\end{aligned}
$$

Thus we construct a numerical solution u of (9.66) with $\varphi=0$ in the form

$$
u(x, y)=\sum_{j=1}^{N} \sum_{k=1}^{N} \hat{u}_{j, k} \sin (\pi j x) \sin (\pi k y)
$$

such that

$$
\begin{equation*}
-(\Delta u)(x, y)=\sum_{j=1}^{N} \sum_{k=1}^{N} \hat{u}_{j, k} \pi^{2}\left(j^{2}+k^{2}\right) \sin (\pi j x) \sin (\pi k y) . \tag{9.87}
\end{equation*}
$$

Assume that $f \in C(\bar{Q})$ with vanishing values on ∂Q is approximated by

$$
\begin{equation*}
\sum_{j=1}^{N} \sum_{k=1}^{N} \hat{f}_{j, k} \sin (\pi j x) \sin (\pi k y), \tag{9.88}
\end{equation*}
$$

where the coefficients $\hat{f}_{j, k}$ are determined by the interpolation conditions

$$
f\left(x_{m}, y_{n}\right)=f_{m, n}=\sum_{j=1}^{N} \sum_{k=1}^{N} \hat{f}_{j, k} \sin \frac{\pi j m}{N+1} \sin \frac{\pi k n}{N+1}, \quad m, n=1, \ldots, N .
$$

Using the orthogonal sine matrix $\mathbf{S}_{N}^{\mathrm{I}}=\sqrt{\frac{2}{N+1}}\left(\sin \frac{j m \pi}{N+1}\right)_{j, m=1}^{N}$, we obtain

$$
\left(f_{m, n}\right)_{m, n=1}^{N}=\frac{N+1}{2} \mathbf{S}_{N}^{\mathrm{I}}\left(\hat{f}_{j, k}\right)_{j, k=1}^{N} \mathbf{S}_{N}^{\mathrm{I}}
$$

and hence

$$
\left(\hat{f}_{j, k}\right)_{j, k=1}^{N}=\frac{2}{N+1} \mathbf{S}_{N}^{\mathrm{I}}\left(f_{m, n}\right)_{m, n=1}^{N} \mathbf{S}_{N}^{\mathrm{I}}
$$

Comparing (9.87) and (9.88), we set

$$
\hat{u}_{j, k}:=\frac{\hat{f}_{j, k}}{\pi^{2}\left(j^{2}+k^{2}\right)}, \quad j, k=1, \ldots, N
$$

Finally we obtain the values $u_{m, n}$ at all interior grid points $\left(x_{m}, y_{n}\right)$ as

$$
\left(u_{m, n}\right)_{m, n=1}^{N}=\frac{N+1}{2 \pi^{2}} \mathbf{S}_{N}^{\mathrm{I}}\left(\frac{\hat{f}_{j, k}}{j^{2}+k^{2}}\right)_{j, k=1}^{N} \mathbf{S}_{N}^{\mathrm{I}}
$$

See [369] for a discussion of the different eigenvalue solution.
A similar method based on a pseudospectral Fourier approximation and a polynomial subtraction technique is presented in [12]. Fast Poisson solvers for spectral methods based on the alternating direction implicit method are given in [116].

9.6 Spherical Fourier Transforms

The Fourier analysis on the unit sphere $\mathbb{S}^{2}:=\left\{\mathbf{x} \in \mathbb{R}^{3}:\|\mathbf{x}\|_{2}=1\right\}$ has practical significance, for example in tomography, geophysics, seismology, meteorology, and crystallography. Spherical Fourier series are often used for numerical computations. They have similar remarkable properties as the Fourier series on the torus \mathbb{T}. Many solution methods used in numerical meteorology for partial differential equations are based on Fourier methods. The major part of the computation time is required by the calculation of the partial sums of spherical Fourier series [43, p. 402]. Numerically stable, fast algorithms for discrete spherical Fourier transforms are therefore of great interest.

Using spherical coordinates, each point $\mathbf{x} \in \mathbb{S}^{2}$ can be represented as

$$
\mathbf{x}=(\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta)^{\top}
$$

where $\theta \in[0, \pi]$ is the polar angle and $\phi \in[0,2 \pi)$ is the azimuthal angle of \mathbf{x}. In other words, θ is the angle between the unit vectors $(0,0,1)^{\top}$ and $\mathbf{x}=$ $\left(x_{1}, x_{2}, x_{3}\right)^{\top}$ and ϕ is the angle between the vectors $(1,0,0)^{\top}$ and $\left(x_{1}, x_{2}, 0\right)^{\top}$. Thus any function $f: \mathbb{S}^{2} \rightarrow \mathbb{C}$ can be written in the form $f(\theta, \phi)$ with $(\theta, \phi) \in$ $[0, \pi] \times[0,2 \pi)$. By $L_{2}\left(\mathbb{S}^{2}\right)$ we denote the Hilbert space of square integrable functions f defined on \mathbb{S}^{2}, with

$$
\|f\|_{L_{2}\left(\mathbb{S}^{2}\right)}^{2}:=\frac{1}{4 \pi} \int_{0}^{2 \pi}\left(\int_{0}^{\pi}|f(\theta, \phi)|^{2} \sin \theta \mathrm{~d} \theta\right) \mathrm{d} \phi<\infty .
$$

The inner product of $f, g \in L_{2}\left(\mathbb{S}^{2}\right)$ is given by

$$
\langle f, g\rangle_{L_{2}\left(\mathbb{S}^{2}\right)}:=\frac{1}{4 \pi} \int_{0}^{2 \pi}\left(\int_{0}^{\pi} f(\theta, \phi) \overline{g(\theta, \phi)} \sin \theta \mathrm{d} \theta\right) \mathrm{d} \phi
$$

First we introduce some special functions. For $k \in \mathbb{N}_{0}$, the k th Legendre polynomial is defined as

$$
P_{k}(x):=\frac{1}{2^{k} k!} \frac{\mathrm{d}^{k}}{\mathrm{~d} x^{k}}\left(x^{2}-1\right)^{k}, \quad x \in[-1,1] .
$$

Further the associated Legendre function P_{k}^{n} for $n \in \mathbb{N}_{0}$ and $k \geq n$ is given by

$$
\begin{equation*}
P_{k}^{n}(x):=\sqrt{\frac{(k-n)!}{(k+n)!}}\left(1-x^{2}\right)^{n / 2} \frac{\mathrm{~d}^{n}}{\mathrm{~d} x^{n}} P_{k}(x), \quad x \in[-1,1] . \tag{9.89}
\end{equation*}
$$

Then the spherical harmonics Y_{k}^{n} of degree $k \in \mathbb{N}_{0}$ and order $n \in[-k, k] \cap \mathbb{Z}$ are of the form

$$
\begin{equation*}
Y_{k}^{n}(\theta, \phi):=P_{k}^{|n|}(\cos \theta) \mathrm{e}^{\mathrm{i} n \phi} \tag{9.90}
\end{equation*}
$$

Note that associated Legendre functions and spherical harmonics are not uniformly defined in the literature. The set $\left\{Y_{k}^{n}: k \in \mathbb{N}_{0}, n \in[-k, k] \cap \mathbb{Z}\right\}$ forms an orthogonal basis of $L_{2}\left(\mathbb{S}^{2}\right)$, where we have

$$
\left\langle Y_{k}^{n}, Y_{\ell}^{m}\right\rangle_{L_{2}\left(\mathbb{S}^{2}\right)}=\frac{1}{2 k+1} \delta_{k-\ell} \delta_{n-m} .
$$

An expansion of $f \in L_{2}\left(\mathbb{S}^{2}\right)$ into a Fourier series with respect to the orthogonal basis of spherical harmonics is called a spherical Fourier series. We say that a function $f \in L_{2}\left(\mathbb{S}^{2}\right)$ has the bandwidth $N \in \mathbb{N}$, if f is equal to the partial sum of the spherical Fourier series

$$
\begin{equation*}
f(\theta, \phi)=\sum_{k=0}^{N} \sum_{n=-k}^{k} a_{k}^{n}(f) Y_{k}^{n}(\theta, \phi) . \tag{9.91}
\end{equation*}
$$

The spherical Fourier coefficients of f are given by

$$
\begin{align*}
a_{k}^{n}(f) & :=\left\langle f, Y_{k}^{n}\right\rangle_{L_{2}\left(\mathbb{S}^{2}\right)}\left(\left\langle Y_{k}^{n}, Y_{k}^{n}\right\rangle_{L_{2}\left(\mathbb{S}^{2}\right)}\right)^{-1} \\
& =\frac{2 k+1}{4 \pi} \int_{0}^{2 \pi}\left(\int_{0}^{\pi} f(\theta, \phi) \overline{Y_{k}^{n}(\theta, \phi)} \sin \theta \mathrm{d} \theta\right) \mathrm{d} \phi \tag{9.92}
\end{align*}
$$

with respect to the orthogonal basis of the spherical harmonics. Sometimes, the finite expansion in (9.91) is called a spherical polynomial of degree N.

We assume that f is given in the form (9.91). We are interested in a fast and numerically stable algorithm for the evaluation of

$$
\begin{equation*}
f\left(\theta_{\ell}, \phi_{\ell}\right)=\sum_{k=0}^{N} \sum_{n=-k}^{k} a_{k}^{n}(f) Y_{k}^{n}\left(\theta_{\ell}, \phi_{\ell}\right), \quad \ell=0, \ldots, M-1, \tag{9.93}
\end{equation*}
$$

at arbitrary points $\left(\theta_{\ell}, \phi_{\ell}\right) \in[0, \pi] \times[0,2 \pi)$ with given spherical Fourier coefficients $a_{k}^{n}(f) \in \mathbb{C}$. Furthermore we are interested in the "adjoint problem," in the computation of

$$
\begin{equation*}
\check{a}_{k}^{n}:=\sum_{\ell=0}^{M-1} f_{\ell} \overline{Y_{k}^{n}\left(\theta_{\ell}, \phi_{\ell}\right)}, \quad k=0, \ldots, N ; n=-k, \ldots, k \tag{9.94}
\end{equation*}
$$

for given data $f_{\ell} \in \mathbb{C}$.
First, we develop a fast algorithm for the problem (9.93). Then we obtain immediately a fast algorithm for the adjoint problem (9.94) by writing the algorithm in matrix-vector form and forming the conjugate transpose of this matrix product. A fast algorithm for the adjoint problem will be needed for computing the spherical Fourier coefficients (9.92) of the function f by a quadrature rule, see Sect. 9.6.4.

The direct computation of the M function values $f\left(\theta_{\ell}, \phi_{\ell}\right)$ in (9.93) at arbitrarily distributed points $\left(\theta_{\ell}, \phi_{\ell}\right)$ on the unit sphere \mathbb{S}^{2} needs $\mathscr{O}\left(N^{2} M\right)$ arithmetical operations and is denoted by discrete spherical Fourier transform, abbreviated as DSFT. For special grids of the form

$$
\begin{equation*}
\left(\frac{s \pi}{T}, \frac{t \pi}{T}\right) \in[0, \pi] \times[0,2 \pi), \quad s=0, \ldots, T ; t=0, \ldots, 2 T-1 \tag{9.95}
\end{equation*}
$$

with $2 N+1 \leq T \leq 2^{\left\lceil\log _{2}(N+1)\right\rceil}$, there exist fast realizations of the DSFT, which we denote by fast spherical Fourier transforms, abbreviated as FSFT. The first FSFT has been developed by Driscoll and Healy [88], where the computational cost has been reduced from $\mathscr{O}\left(N^{3}\right)$ to $\mathscr{O}\left(N^{2} \log ^{2} N\right)$ flops. Further fast algorithms for that purpose can be found in [43, 161, 242, 292, 345].

Remark 9.55 The essential drawback of the grid in (9.95) is the fact that the corresponding points on \mathbb{S}^{2} are clustered near the north pole $(0,0,1)^{\top}$ and the south pole $(0,0,-1)^{\top}$. For many applications, such a restriction is not realistic. Therefore it is necessary to develop algorithms for arbitrarily distributed points on the unit sphere.

In the essential case of arbitrarily distributed points $\left(\theta_{\ell}, \phi_{\ell}\right) \in[0, \pi] \times[0,2 \pi)$, $\ell=0, \ldots, M-1$, we speak about a nonequispaced discrete spherical Fourier transform, abbreviated as NDSFT. The main idea is to combine the computation of NDSFT with the NFFT, see Chap. 7. We will suggest a fast algorithm for NDSFT, where the computational cost amounts to $\mathscr{O}\left(N^{2}(\log N)^{2}+M\right)$ flops. We denote such an algorithm as nonequispaced fast spherical Fourier transform, abbreviated as NFSFT. We have the following relations to the transforms and algorithms on the torus:

Torus \mathbb{T}	Unit sphere \mathbb{S}^{2}
DFT (see Chap. 3)	DSFT
FFT (see Chap. 5)	FSFT
NDFT (see Chap. 7)	NDSFT
NFFT (see Chap. 7)	NFSFT

The fundamental idea is the fast realization of a basis exchange, such that the function in (9.91) can be approximately written in the form

$$
\begin{equation*}
f(\theta, \phi) \approx \sum_{n=-N}^{N} \sum_{k=-N}^{N} c_{k}^{n} \mathrm{e}^{2 \mathrm{i} k \theta} \mathrm{e}^{\mathrm{i} n \phi} \tag{9.96}
\end{equation*}
$$

with certain coefficients $c_{k}^{n} \in \mathbb{C}$. In the second step we compute f at arbitrary points $\left(\theta_{\ell}, \phi_{\ell}\right) \in[0, \pi] \times[0,2 \pi), \ell=0, \ldots, M-1$, by using a two-dimensional NFFT, see Algorithm 7.1.

In the following Sect.9.6.1 we sketch a simple realization for an NDSFT. In Sect. 9.6.2 we present an FSFT on a special grid. Then we describe an algorithm for the fast and approximate evaluation of an NDSFT in Sect.9.6.3. Finally in Sect.9.6.4, some results of fast quadrature and approximation on the unit sphere are sketched.

9.6.1 Discrete Spherical Fourier Transforms

We follow the same lines as in [212]. For given spherical Fourier coefficients $a_{k}^{n}(f) \in \mathbb{C}$ with $k=0, \ldots, N$ and $n=-k, \ldots, k$ in (9.91), we are interested in the computation of M function values $f\left(\theta_{\ell}, \phi_{\ell}\right), \ell=0, \ldots, M-1$. To this end, we interchange the order of summation in (9.91). Using (9.90) and the function

$$
\begin{equation*}
h_{n}(x):=\sum_{k=|n|}^{N} a_{k}^{n}(f) P_{k}^{|n|}(x), \quad n=-N, \ldots, N \tag{9.97}
\end{equation*}
$$

we obtain the sum

$$
\begin{equation*}
f\left(\theta_{\ell}, \phi_{\ell}\right)=\sum_{k=0}^{N} \sum_{n=-k}^{k} a_{k}^{n}(f) Y_{k}^{n}\left(\theta_{\ell}, \phi_{\ell}\right)=\sum_{n=-N}^{N} h_{n}\left(\cos \theta_{\ell}\right) \mathrm{e}^{\mathrm{i} n \phi_{\ell}} . \tag{9.98}
\end{equation*}
$$

We immediately find a first algorithm for an NDSFT, i.e., for the evaluation of f in (9.91) at arbitrarily distributed points $\left(\theta_{\ell}, \phi_{\ell}\right)$ on the unit sphere \mathbb{S}^{2}.

Algorithm 9.56 (NDSFT)

Input: $N, M \in \mathbb{N}, a_{k}^{n}(f) \in \mathbb{C}$ for $k=0, \ldots, N$ and $n=-k, \ldots, k$,
$\left(\theta_{l}, \phi_{l}\right) \in[0, \pi] \times[0,2 \pi)$ for $\ell=0, \ldots, M-1$.

1. Compute the values

$$
h_{n}\left(\cos \theta_{\ell}\right):=\sum_{k=|n|}^{N} a_{k}^{n}(f) P_{k}^{|n|}\left(\cos \theta_{\ell}\right), \quad \ell=0, \ldots, M-1,
$$

for all $n=-N, \ldots, N$ by the Clenshaw Algorithm 6.19.
2. Compute the values

$$
f\left(\theta_{\ell}, \phi_{\ell}\right):=\sum_{n=-N}^{N} h_{n}\left(\cos \theta_{\ell}\right) \mathrm{e}^{\mathrm{i} n \phi_{\ell}}, \quad \ell=0, \ldots, M-1 .
$$

Output: $f\left(\theta_{\ell}, \phi_{\ell}\right) \in \mathbb{C}, \ell=0, \ldots, M-1$, function values of (9.91).
Computational cost: $\mathscr{O}\left(M N^{2}\right)$.

9.6.2 Fast Spherical Fourier Transforms

In order to use the tensor product structure of the spherical harmonics $Y_{k}^{n}(\theta, \phi)$ in (9.90), we develop a fast method for the computation of the discrete spherical Fourier transform on special grid (DSFT). If we apply fast one-dimensional algorithms with respect to θ and ϕ and the row-column method (see Algorithm 5.23), then we obtain an FSFT.

We start with the task to compute the function in (9.91) for given spherical Fourier coefficients $a_{k}^{n}(f)$ for $k=0, \ldots, N$ and $n=-k, \ldots, k$ on the special grid in (9.95). Considering h_{n} in (9.97) we compute the values

$$
\begin{equation*}
h_{s, n}:=h_{n}\left(\cos \frac{s \pi}{T}\right), \quad s=0, \ldots, T, \tag{9.99}
\end{equation*}
$$

for $n=-N, \ldots, N$ and rewrite f in (9.91) as

$$
\begin{equation*}
f\left(\frac{s \pi}{T}, \frac{t \pi}{2 T}\right)=\sum_{n=-N}^{N} h_{s, n} \mathrm{e}^{\mathrm{i} n t /(2 T)}, \quad t=0, \ldots, 2 T-1 . \tag{9.100}
\end{equation*}
$$

for all $s=0, \ldots, T$. The computation of the function values in (9.100) can be realized by $T+1 \mathrm{DFT}(2 T)$, and the obtained DSFT has a computational cost of $\mathscr{O}\left(N^{3}\right)$.

In order to speed up the computation for the DSFT, we compute for each $n=-N, \ldots, N$ the sum in (9.99) with a fast Legendre function transform, abbreviated as FLT. The idea for an FLT was proposed by Driscoll and Healy [88].

The associated Legendre functions P_{k}^{n} fulfill the three-term recurrence relation

$$
\begin{equation*}
P_{k+1}^{n}(x)=v_{k}^{n} x P_{k}^{n}(x)+w_{k}^{n} P_{k-1}^{n}(x), \quad k=n, n+1, \ldots, \tag{9.101}
\end{equation*}
$$

with the initial conditions

$$
P_{n-1}^{n}(x):=0, \quad P_{n}^{n}(x)=\lambda_{n}\left(1-x^{2}\right)^{n / 2}, \quad \lambda_{n}:=\frac{\sqrt{(2 n)!}}{2^{n} n!},
$$

and with the coefficients

$$
\begin{equation*}
v_{k}^{n}:=\frac{2 k+1}{\sqrt{(k-n+1)(k+n+1)}}, \quad w_{k}^{n}:=-\frac{\sqrt{(k-n)(k+n)}}{\sqrt{(k-n+1)(k+n+1)}} . \tag{9.102}
\end{equation*}
$$

A useful idea is to define the associated Legendre functions P_{k}^{n} also for $k=0, \ldots, n$ by means of the modified three-term recurrence relation

$$
\begin{equation*}
P_{k+1}^{n}(x)=\left(\alpha_{k}^{n} x+\beta_{k}^{n}\right) P_{k}^{n}(x)+\gamma_{k}^{n} P_{k-1}^{n}(x) \tag{9.103}
\end{equation*}
$$

for $k \in \mathbb{N}_{0}$ with

$$
\begin{align*}
& \alpha_{0}^{n}:=\left\{\begin{array}{ll}
1 & n=0, \\
0 & n \text { odd, } \\
-1 & n \neq 0 \text { even },
\end{array} \quad \alpha_{k}^{n}:= \begin{cases}(-1)^{k+1} & k=1, \ldots, n-1, \\
v_{k}^{n} & k=n, n+1, \ldots,\end{cases} \right. \\
& \beta_{k}^{n}:=\left\{\begin{array}{ll}
1 & k=0, \ldots, n-1, \\
0 & k=n, n+1, \ldots,
\end{array} \gamma_{k}^{n}:= \begin{cases}0 & k=0, \ldots, n-1, \\
w_{k}^{n} & k=n, n+1, \ldots\end{cases} \right. \tag{9.104}
\end{align*}
$$

Here we set $P_{-1}^{n}(x):=0$, and $P_{0}^{n}(x):=\lambda_{n}$ for even n and $P_{0}^{n}(x):=\lambda_{n}\left(1-x^{2}\right)^{1 / 2}$ for odd n. For $k \geq n$, this definition coincides with the recurrence (9.101). It can be easily verified by (9.89) that P_{k}^{n} is a polynomial of degree k, if n is even. Further, $\left(1-x^{2}\right)^{-1 / 2} P_{k}^{n}$ is a polynomial of degree $k-1$, if n is odd. Using the recurrence coefficients from (9.104) and introducing a shift parameter $c \in \mathbb{N}_{0}$, we define the associated Legendre polynomials $P_{k}^{n}(x, c)$, see (6.88), by

$$
\begin{align*}
& P_{-1}^{n}(x, c):=0, \quad P_{0}^{n}(x, c):=1, \\
& P_{k+1}^{n}(x, c)=\left(\alpha_{k+c}^{n} x+\beta_{k+c}^{n}\right) P_{k}^{n}(x, c)+\gamma_{k+c}^{n} P_{k-1}^{n}(x, c), \quad k \in \mathbb{N}_{0} . \tag{9.105}
\end{align*}
$$

Now we can apply the discrete polynomial transform, see Sect. 6.5 and Algorithm 6.61. Note that a straightforward implementation of this transform is numerically unstable for large bandwidth. Therefore some stabilization steps are necessary. Stabilized versions have been suggested in [195, 292, 293]. For further approaches see $[4,155,161,173,194,242,311,345,358,359]$.

The stabilization method presented in [293] requires $\mathscr{O}\left(N^{2}(\log N)^{2}\right)$ arithmetical operations. For the computation of the sum in (9.100) we need for each $s=0, \ldots, T$ an FFT of length $2 T$. The proposed method is summarized in the following algorithm.

Algorithm 9.57 (FSFT on the Special Grid in (9.95))
 Input: $N \in \mathbb{N}, a_{k}^{n}(f) \in \mathbb{C}$ for $k=0, \ldots, N$ and $n=-k, \ldots, k$,
 $$
2 N+1 \leq T \leq 2^{\left\lceil\log _{2}(N+1)\right\rceil}
$$

1. Using FLT, compute the values

$$
h_{s, n}=\sum_{k=|n|}^{N} a_{k}^{n}(f) P_{k}^{|n|}\left(\cos \frac{s \pi}{T}\right)
$$

for all $s=0, \ldots, T$ and $n=-N, \ldots, N$.
2. Applying FFT, compute for all $s=0, \ldots, T-1$ the values

$$
f\left(\frac{s \pi}{T}, \frac{t \pi}{2 T}\right)=\sum_{n=-N}^{N} h_{s, n} \mathrm{e}^{\mathrm{i} n t \pi /(2 T)}, \quad t=0, \ldots, 2 T-1 .
$$

Output: $f\left(\frac{s \pi}{T}, \frac{t \pi}{2 T}\right)$ for $s=0, \ldots, T$ and $t=0, \ldots, 2 T-1$ function values of f in (9.91) on the grid in (9.95).
Computational cost: $\mathscr{O}\left(N^{2}(\log N)^{2}\right)$.

9.6.3 Fast Spherical Fourier Transforms for Nonequispaced Data

In this subsection we develop a fast algorithm for the NDSFT improving Algorithm 9.56. The fast algorithm is denoted by NFSFT. We will start again with the fast Legendre transform (FLT) in order to compute the basis exchange. Then we will apply the two-dimensional NFFT, see Algorithm 7.1, in order to evaluate the trigonometric polynomial at arbitrarily distributed points $\left(\theta_{\ell}, \phi_{\ell}\right) \in[0, \pi] \times$ $[0,2 \pi), \ell=0, \ldots, M-1$.

The spherical polynomial in (9.91) can be written for arbitrary $(\theta, \phi) \in[0, \pi] \times$ $[0,2 \pi)$ in the form

$$
\begin{equation*}
f(\theta, \phi)=\sum_{n=-N}^{N} h_{n}(\cos \theta) \mathrm{e}^{\mathrm{i} n \phi}, \tag{9.106}
\end{equation*}
$$

where h_{n} is given in (9.97). For even $|n|$, we define the polynomial g_{n} of degree N by

$$
\begin{equation*}
g_{n}(x):=\sum_{k=|n|}^{N} a_{k}^{n}(f) P_{k}^{|n|}(x) \in \mathscr{P}_{N} \tag{9.107}
\end{equation*}
$$

For odd $|n|$, we introduce the polynomial g_{n} of degree $N-1$ by

$$
\begin{equation*}
g_{n}(x):=\frac{1}{\sqrt{1-x^{2}}} \sum_{k=|n|}^{N} a_{k}^{n}(f) P_{k}^{|n|}(x) \in \mathscr{P}_{N-1} \tag{9.108}
\end{equation*}
$$

As usual, we denote by \mathscr{P}_{N} the set of all polynomials of degree less or equal to N. The relation to h_{n} in (9.97) is given by

$$
h_{n}(\cos \theta)= \begin{cases}g_{n}(\cos \theta) & n \text { even }, \tag{9.109}\\ (\sin \theta) g_{n}(\cos \theta) & n \text { odd }\end{cases}
$$

As in step 1 of Algorithm 9.57, we compute the data

$$
\begin{equation*}
g_{s, n}:=g_{n}\left(\cos \frac{s \pi}{T}\right), \quad s=0, \ldots, T ; n=-N, \ldots, N \tag{9.110}
\end{equation*}
$$

with $2 N+1 \leq T \leq 2^{\left\lceil\log _{2}(N+1)\right\rceil}$ using an FLT. Then we compute the Chebyshev coefficients $\tilde{a}_{k}^{n} \in \mathbb{C}$ in

$$
g_{n}(\cos \theta)= \begin{cases}\sum_{k=0}^{N} \tilde{a}_{k}^{n} T_{k}(\cos \theta) & n \text { even } \tag{9.111}\\ \sum_{k=0}^{N-1} \tilde{a}_{k}^{n} T_{k}(\cos \theta) & n \text { odd }\end{cases}
$$

using the DCT-I Algorithm 6.28. We take into account that g_{n} are trigonometric polynomials of degree N or rather $N-1$.

Applying the known relation

$$
T_{k}(\cos \theta)=\cos (k \theta)=\frac{1}{2}\left(\mathrm{e}^{\mathrm{i} k \theta}+\mathrm{e}^{-\mathrm{i} k \theta}\right),
$$

for even n we obtain the trigonometric polynomial

$$
g_{n}(\cos \theta)=\sum_{k=-N}^{N} b_{k}^{n} \mathrm{e}^{\mathrm{i} k \theta}
$$

with the Fourier coefficients

$$
b_{k}^{n}:= \begin{cases}\tilde{a}_{0}^{n} & k=0 \tag{9.112}\\ \frac{1}{2} \tilde{a}_{|k|}^{n} & k \neq 0\end{cases}
$$

For odd n it follows that $g_{n}(\cos \theta)$ is a trigonometric polynomial of degree $N-1$, since

$$
\begin{aligned}
h_{n}(\cos \theta) & =(\sin \theta) \sum_{k=-N+1}^{N-1} b_{k}^{n} \mathrm{e}^{\mathrm{i} k \theta} \\
& =\frac{1}{2 \mathrm{i}}\left(\mathrm{e}^{\mathrm{i} \theta}-\mathrm{e}^{-\mathrm{i} \theta}\right) \sum_{k=-N+1}^{N-1} b_{k}^{n} \mathrm{e}^{\mathrm{i} k \theta}=\sum_{k=-N}^{N} \tilde{b}_{k}^{n} \mathrm{e}^{\mathrm{i} k \theta}
\end{aligned}
$$

with

$$
2 \mathrm{i} \tilde{b}_{k}^{n}:= \begin{cases}-b_{k+1}^{n} & k=-N,-N+1 \tag{9.113}\\ b_{k-1}^{n} & k=N-1, N \\ b_{k-1}^{n}-b_{k+1}^{n} & k=-N+2, \ldots, N-2\end{cases}
$$

Then we can write the trigonometric polynomial in (9.109) in the form

$$
\begin{equation*}
h_{n}(\cos \theta)=\sum_{k=-N}^{N} c_{k}^{n} \mathrm{e}^{\mathrm{i} k \theta} \tag{9.114}
\end{equation*}
$$

with the Fourier coefficients

$$
c_{k}^{n}:= \begin{cases}b_{k}^{n} & n \text { even } \tag{9.115}\\ \tilde{b}_{k}^{n} & n \text { odd }\end{cases}
$$

Inserting the sum in (9.114) into (9.106), we arrive at the representation

$$
\begin{equation*}
f(\theta, \phi)=\sum_{n=-N}^{N} \sum_{k=-N}^{N} c_{k}^{n} \mathrm{e}^{\mathrm{i} k \theta} \mathrm{e}^{\mathrm{i} n \phi} \tag{9.116}
\end{equation*}
$$

with complex coefficients $c_{k}^{n} \in \mathbb{C}$. We stress again that we have computed the discrete Fourier coefficients c_{k}^{n} in (9.116) from the given spherical Fourier coefficients $a_{k}^{n}(f)$ in (9.91) with an exact algorithm that requires $\mathscr{O}\left(N^{2}(\log N)^{2}\right)$ arithmetic operations independently of the chosen points $\left(\theta_{\ell}, \phi_{\ell}\right) \in[0, \pi] \times[0,2 \pi)$.

Geometrically, this transform maps the sphere \mathbb{S} to the "outer half" of the ring torus given by

$$
\mathbf{x}=((r+\sin \theta) \cos \phi,(r+\sin \theta) \sin \phi, \cos \theta)^{\top}, \quad(\theta, \phi) \in[0, \pi] \times[0,2 \pi)
$$

with fixed $r>1$. The "inner half" of the ring torus with the parameters $(\theta, \phi) \in$ $[\pi, 2 \pi) \times[0,2 \pi)$ is continued smoothly, see Fig.9.9. We decompose f into an even and odd function and construct the even-odd continuation, see Fig. 9.10 for

Fig. 9.9 Topography of the earth (left) and the "outer half" of the ring torus (right), cf. Figure 5.1 in [212]

Fig. 9.10 The normalized spherical harmonic $Y_{3}^{-2}(\theta, \phi)$, top: real part (left) and imaginary part (right) of this normalized spherical harmonic on \mathbb{S}^{2}, down: Normalized spherical harmonic $Y_{3}^{-2}(\theta, \phi)$ on a ring torus
the normalized spherical harmonic

$$
\sqrt{7} Y_{3}^{-2}(\theta, \phi)=\sqrt{\frac{105}{8}}(\sin \theta)^{2}(\cos \theta) \mathrm{e}^{-2 \mathrm{i} \phi}
$$

On the ring torus we illustrate this normalized spherical harmonic for $(\theta, \phi) \in$ $[0,2 \pi)^{2}$.

In the final step we compute f at arbitrary points by using a two-dimensional NFFT, see Algorithm 7.1. We summarize:

Algorithm 9.58 (NFSFT)

Input: $N, M \in \mathbb{N}, a_{k}^{n}(f) \in \mathbb{C}$ for $k=0, \ldots, N$ and $n=-k, \ldots, k$, $\left(\theta_{\ell}, \phi_{\ell}\right) \in[0, \pi] \times[0,2 \pi)$ for $\ell=0, \ldots, M-1$, $2 N+1 \leq T \leq 2^{\left\lceil\log _{2}(N+1)\right\rceil}$.

1. Using FLT, compute the data

$$
g_{n}\left(\cos \frac{s \pi}{T}\right):= \begin{cases}\sum_{k=|n|}^{N} a_{k}^{n}(f) P_{k}^{|n|}\left(\cos \frac{s \pi}{T}\right) & n \text { even } \\ \frac{1}{\sin \frac{s \pi}{T}} \sum_{k=|n|}^{N} a_{k}^{n}(f) P_{k}^{|n|}\left(\cos \frac{s \pi}{T}\right) & n \text { odd }\end{cases}
$$

for all $n=-N, \ldots, N$ and $s=0, \ldots, T$.
2. Compute the Chebyshev coefficients \tilde{a}_{k}^{n} in (9.111) for $n=-N, \ldots, N$, by a fast DCT-I algorithm, see Algorithm 6.28 or 6.35 .
3. Determine the Fourier coefficients c_{k}^{n} by (9.112), (9.113), and (9.115) for $k=$ $-N, \ldots, N$ and $n=-N, \ldots, N$.
4. Compute the function values

$$
f\left(\theta_{\ell}, \phi_{\ell}\right):=\sum_{n=-N}^{N} \sum_{k=-N}^{N} c_{k}^{n} \mathrm{e}^{\mathrm{i}\left(k \theta_{\ell}+n \phi_{\ell}\right)}
$$

using a two-dimensional NFFT, see Algorithm 7.1.
Output: $f\left(\theta_{\ell}, \phi_{\ell}\right)$ for $\ell=0, \ldots, M-1$.
Computational cost: $\mathscr{O}\left(N^{2}(\log N)^{2}+M\right)$.
Remark 9.59

1. Often we are interested in a real representation of real-valued function $f \in$ $L_{2}\left(\mathbb{S}^{2}\right)$ instead of (9.91). The real spherical Fourier series of a real-valued function $f \in L_{2}\left(\mathbb{S}^{2}\right)$ with bandwidth N is given by

$$
f(\theta, \phi)=\sum_{k=0}^{N}\left(a_{k}^{0} P_{k}(\cos \theta)+\sum_{n=1}^{k}\left(a_{k}^{n} \cos (n \phi)+b_{k}^{n} \sin (n \phi)\right) P_{k}^{n}(\cos \theta)\right)
$$

with real coefficients a_{k}^{n} and b_{k}^{n}. For the fast evaluation for this function in real arithmetic one can develop similar algorithms. Instead of the NFFT one can use the NFCT, see Algorithm 7.10 and the NFST, see Algorithm 7.12.
2. The algorithms of this section are part of the NFFT software, see [199, .../nfsft]. Furthermore there exists a MATLAB interface, see [199, . . . matlab/nfsft].

9.6.4 Fast Quadrature and Approximation on \mathbb{S}^{2}

Finally we sketch some methods for the fast quadrature and approximation of functions defined on the unit sphere \mathbb{S}^{2} being relevant for solving partial differential equations on the sphere, [43, Section 18.7]. In particular, partial sums (9.91) of spherical Fourier series are used in applications. The bandwidth grows by manipulating these series, e.g. by integration or multiplication.

An important subproblem is the projection onto a space of spherical polynomials of smaller bandwidth. This task is known as spherical filtering, see [178]. Since the computational cost of spherical filtering amounts to $\mathscr{O}\left(N^{3}\right)$ flops for $\mathscr{O}\left(N^{2}\right)$ points on \mathbb{S}^{2}, fast algorithms are of great interest. Jakob-Chien and Alpert [178] presented a first fast algorithm for spherical filtering based on the fast multipole method, which requires $\mathscr{O}\left(N^{2} \log N\right)$ flops. Later this approach was improved by Yarvin and Rokhlin [386]. Böhme and Potts suggested a method for spherical filtering based on the fast summation method, see Algorithm 7.15 with the kernel $1 / x$, see [37, 38]. This approach is easy to implement, it is based on the NFFT and requires $\mathscr{O}\left(N^{2} \log N\right)$ arithmetic operations. Furthermore, this method can be used for the fast calculation of wavelet decompositions on \mathbb{S}^{2}, see [37, 38].

In order to compute the spherical Fourier coefficients (9.92) by a quadrature rule on \mathbb{S}^{2}, we need to solve the adjoint problem, i.e., the fast evaluation of sums in (9.94) for given function values $f_{\ell}=f\left(\theta_{\ell}, \phi_{\ell}\right) \in \mathbb{C}, \ell=0, \ldots, M-1$. Note that the obtained values \check{a}_{k}^{n} in (9.94) do not exactly coincide with the spherical Fourier coefficients $a_{k}^{n}(f)$ from (9.91) which are given in (9.92). Good approximations of the spherical Fourier coefficients $a_{k}^{n}(f)$ can be obtained from sampled function values $f\left(\theta_{\ell}, \phi_{\ell}\right), \ell=0, \ldots, M-1$, at points $\left(\theta_{\ell}, \phi_{\ell}\right) \in[0, \pi] \times[0,2 \pi)$ provided that a quadrature rule with weights w_{ℓ} and sufficiently high degree of exactness is available, see also [121, 240, 241]. Then the sum (9.94) changes to

$$
\begin{equation*}
a_{k}^{n}(f)=\sum_{\ell=1}^{M} w_{\ell} f\left(\theta_{\ell}, \phi_{\ell}\right) \overline{Y_{k}^{n}\left(\theta_{\ell}, \phi_{\ell}\right)} . \tag{9.117}
\end{equation*}
$$

The computation of spherical Fourier coefficients from discrete sampled data has major importance in the field of data analysis on the sphere \mathbb{S}^{2}. For special grids on the sphere one can use the Clenshaw-Curtis quadrature with respect to $\cos \theta$, see Sect. 6.4.2, and equidistant points with respect to ϕ. Such quadrature rules have been suggested in [88, 292].

Theorem 9.60 Let $f \in L_{2}\left(\mathbb{S}^{2}\right)$ be a bandlimited function of the form (9.91). Then we can compute the spherical Fourier coefficients $a_{k}^{n}(f)$ for $k=0, \ldots, N$ and $n=-k, \ldots, k$ by the quadrature rule

$$
\begin{equation*}
a_{k}^{n}(f)=\frac{1}{2^{j+1}} \sum_{s=0}^{T} \sum_{t=0}^{T-1} \varepsilon_{s} w_{s} f\left(\frac{\pi s}{T}, \frac{2 \pi t}{T}\right) Y_{k}^{-n}\left(\frac{\pi s}{T}, \frac{2 \pi t}{T}\right) \tag{9.118}
\end{equation*}
$$

with $2 N \leq T, \varepsilon_{0}=\varepsilon_{T}:=2^{-1}, \varepsilon_{s}:=1 ; s=1, \ldots, T-1$, and with the ClenshawCurtis weights, see Sect. 6.4.2,

$$
w_{s}:=\frac{1}{T} \sum_{u=0}^{T / 2} \varepsilon_{u} \frac{-2}{4 u^{2}-1} \cos \frac{2 s u \pi}{T}, \quad s=0, \ldots, T
$$

Proof By definition of f in (9.91), it suffices to consider the basis functions $f(\theta, \phi)=Y_{l}^{m}(\theta, \phi), l=0, \ldots, N ; m=-l, \ldots, l$. Their Fourier coefficients can be written as

$$
\begin{equation*}
a_{k}^{n}(f)=\frac{1}{2} \int_{-1}^{1} P_{l}^{|m|}(x) P_{k}^{|n|}(x) \mathrm{d} x \cdot \frac{1}{2 \pi} \int_{0}^{2 \pi} \mathrm{e}^{\mathrm{i}(m-n) \phi} \mathrm{d} \phi \tag{9.119}
\end{equation*}
$$

Now it follows for $m, n=-N, \ldots, N$ that

$$
\begin{equation*}
\delta_{m, n}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \mathrm{e}^{\mathrm{i}(m-n) \phi} \mathrm{d} \phi=\frac{1}{T} \sum_{t=0}^{T-1} \mathrm{e}^{2 \pi \mathrm{i}(m-n) t / T} . \tag{9.120}
\end{equation*}
$$

Hence, for $m \neq n$, the Fourier coefficients $a_{k}^{n}(f)$ vanish. For $m=n$, we verify that $P_{l}^{|n|} P_{k}^{|n|}$ is an algebraic polynomial of degree $\leq 2 N \leq T$ such that Clenshaw-Curtis quadrature gives

$$
\frac{1}{2} \int_{-1}^{1} P_{l}^{|n|}(x) P_{k}^{|n|}(x) \mathrm{d} x=\sum_{s=0}^{T} \varepsilon_{s} w_{s} P_{l}^{|n|}\left(\cos \frac{\pi s}{T}\right) P_{k}^{|n|}\left(\cos \frac{\pi s}{T}\right)
$$

with the Chebyshev nodes $\cos \frac{\pi s}{T}$. Together with (9.119) and (9.120) this completes the proof.

In many applications however, the distribution of the available data on the sphere is predetermined by the underlying measurement process or by data storage and access considerations. This often requires the use of techniques like spherical hyperinterpolation, see [335], or approximate quadrature rules that differ from classical quadrature formulas.

The implementation of the algorithm for computing $a_{k}^{n}(f)$ in (9.118), which is the adjoint problem of the NFSFT in Algorithm 9.58, follows by writing the steps of

Algorithm 9.58 in matrix-vector form and forming the conjugate transpose of this matrix product, see [195]. In this way, one obtains a fast algorithm for the adjoint problem which allows the efficient use of new quadrature schemes, see also [144].
Spherical t-Designs A spherical t-design is a finite point set on \mathbb{S}^{2} which provides a quadrature rule on \mathbb{S}^{2} with equal weights being exact for spherical polynomials up to degree t. Note that quadrature rules with equal weights are also known as quasi-Monte Carlo rules. Based on the NFSFT and the algorithm of the adjoint problem, we are able to evaluate spherical t-designs on \mathbb{S}^{2} for high polynomial degree $t \in \mathbb{N}$, see [140, 143]. The approach is based on computing local minimizers of a certain quadrature error. This quadrature error was also used for a variational characterization of spherical t-designs in [336].

It is commonly conjectured that there exist spherical t-designs with $M \approx \frac{1}{2} t^{2}$ points, but a proof is unknown up to now. Recently, a weaker conjecture was proved in [39], where the authors showed the existence of spherical t-designs with $M>c t^{2}$ points for some unknown constant $c>0$. Moreover, in [64] it was verified that for $t=1, \ldots, 100$, spherical t-designs with $(t+1)^{2}$ points exist, using the characterization of fundamental spherical t-designs and interval arithmetic. For further recent developments regarding spherical t-designs and related topics, we refer to the very nice survey article [13].

The construction of spherical t-designs is a serious challenge even for small polynomial degrees t. For the minimization problem one can use several nonlinear optimization methods on manifolds, like Newton and conjugate gradient methods. By means of the NFSFT, evaluations of the approximate gradient and Hessian can be performed by $\mathscr{O}\left(t^{2} \log t+M(\log \epsilon)^{2}\right)$ arithmetic operations, where $\epsilon>0$ is a prescribed accuracy. Using these approaches, approximate spherical t-designs for $t \leq 1000$, even in the case $M \approx \frac{1}{2} t^{2}$ have been presented in [141]. This method has been also generalized to Gauss-type quadratures on \mathbb{S}^{2}, where one does not require a quadrature with equal weights, but can optimize the weights as well. In this way, quadrature rules with a higher degree of exactness have been obtained using the same number of sampling points. These nonlinear optimization methods have been further generalized in order to approximate global extrema, see [142] and to halftoning and dithering, see [145].

Scattered Data Approximation on \mathbb{S}^{2} Since the data collected on the surface of the earth are available as scattered nodes only, least squares approximations and interpolation of such data have attracted much attention, see, e.g., [43, 105, 121]. If we reconstruct a spherical polynomial of degree $N \in \mathbb{N}$ from sample values, we can set up a linear system with $M=(N+1)^{2}$ interpolation constraints which has to be solved for the unknown vector of Fourier coefficients of length $(N+1)^{2}$. If the nodes for interpolation are chosen such that the interpolation problem has always a unique solution, the sampling set is called a fundamental system. We can relax the condition that the number of equations M coincides with the number of unknowns $(N+1)^{2}$. Considering the overdetermined case $M>(N+1)^{2}$ or the underdetermined case $M<(N+1)^{2}$ leads to better distributed singular values of
the system matrix. Results using fast algorithms in combination with an iterative solver were presented in [197]. For stability results see also [41, 249]. Scattered data approximation using kernels is described in [121]. Employing radial kernels in combination with the presented fast algorithms leads to a fast summation method on the sphere as well, see [196].

FFT on the Rotation Group The theory of spherical Fourier transforms can be extended to fast Fourier transforms on the rotation group $\mathrm{SO}(3)$. As known, SO (3) is the group of all rotations about the origin of \mathbb{R}^{3}. During the past years, several different techniques have been proposed for computing Fourier transforms on the rotation group $\mathrm{SO}(3)$ motivated by a variety of applications, like protein-protein docking [62] or texture analysis [57, 232, 320]. The spherical Fourier methods can be generalized to Fourier methods on $\mathrm{SO}(3)$, see [207]. The algorithm to compute an $\mathrm{SO}(3)$ Fourier synthesis is based on evaluating the Wigner-D functions $D_{\ell}^{m, n}$, which yield an orthogonal basis of $L_{2}(\mathrm{SO}(3))$. Using these Wigner-D functions, we expand N-bandlimited functions $f \in L_{2}(\mathrm{SO}(3))$ into the sum

$$
\begin{equation*}
f=\sum_{k=0}^{N} \sum_{m=-k}^{k} \sum_{n=-\ell}^{\ell} a_{k}^{m, n} D_{k}^{m, n} . \tag{9.121}
\end{equation*}
$$

An algorithm for efficient and accurate evaluation of such N-bandlimited function $f \in L_{2}(\mathrm{SO}(3))$ at arbitrary samples in $\mathrm{SO}(3)$ has been presented in [297]. For the scattered data approximation see [139] and for quadrature rules see [140, 141]. These algorithms are also part of the freely available NFFT software [199, ./examples/nfsoft]. Furthermore there exists a MATLAB interface, see [199, ./matlab/nfsoft].

Chapter 10
 Prony Method for Reconstruction of Structured Functions

The recovery of a structured function from sampled data is a fundamental problem in applied mathematics and signal processing. In Sect. 10.1, we consider the parameter estimation problem, where the classical Prony method and its relatives are described. In Sect. 10.2, we study frequently used methods for solving the parameter estimation problem, namely MUSIC (MUltiple SIgnal Classification), APM (Approximate Prony Method), and ESPRIT (Estimation of Signal Parameters by Rotational Invariance Technique). The algorithms for reconstructing exponential sums will be derived for noiseless data and then extended to the case of noisy data. The effectiveness the algorithms for noisy data depends in particular on the condition of the involved Vandermonde matrices. We will deal with these stability issues in Sect. 10.3.

In Sects. 10.4 and 10.5, we consider different applications of the Prony method. We present an algorithm to recover spline functions from given samples of its Fourier transform. Finally, we study a phase retrieval problem and investigate the question whether a complex-valued function f can be reconstructed from the modulus $|\hat{f}|$ of its Fourier transform.

10.1 Prony Method

The following problem arises quite often in electrical engineering, signal processing, and mathematical physics and is known as parameter estimation problem (see [264, 284] or [235, Chapter 9]):

Recover the positive integer M, distinct parameters $\phi_{j} \in \mathbb{C}$ with $\operatorname{Im} \phi_{j} \in$ $[-\pi, \pi)$, and complex coefficients $c_{j} \neq 0, j=1, \ldots, M$, in the exponential sum
of order M

$$
\begin{equation*}
h(x):=\sum_{j=1}^{M} c_{j} \mathrm{e}^{\phi_{j} x}, \quad x \in \mathbb{R} \tag{10.1}
\end{equation*}
$$

if noisy sampled data $h_{k}:=h(k)+e_{k}, k=0, \ldots, N-1$, with $N \geq 2 M$ are given, where $e_{k} \in \mathbb{C}$ are small error terms. If $\operatorname{Re} \phi_{j}=0$ for all j, then this problem is called frequency analysis problem. In many applications, $h(x)$ is an expansion into damped exponentials, where $\operatorname{Re} \phi_{j} \in[-\alpha, 0]$ for small $\alpha>0$. Then the negative real part of f_{j} is the damping factor and the imaginary part of ϕ_{j} is the angular frequency of the exponential $\mathrm{e}^{\phi_{j} x}$.

In this problem, we have to detect the significant exponentials $\mathrm{e}^{\phi_{j}}$ of the signal h. The classical Prony method works for noiseless sampled data of the exponential sum (10.1) in the case of known order M. Following an idea of G.R. de Prony from 1795 (see [82]), we recover all parameters of the exponential sum (10.1), if sampled data

$$
\begin{equation*}
h(k):=\sum_{j=1}^{M} c_{j} \mathrm{e}^{\phi_{j} k}=\sum_{j=1}^{M} c_{j} z_{j}^{k}, \quad k=0, \ldots, 2 M-1 \tag{10.2}
\end{equation*}
$$

are given, where $z_{j}:=\mathrm{e}^{\phi_{j}}$ are distinct points in \mathbb{C}. We introduce the Prony polynomial

$$
\begin{equation*}
p(z):=\prod_{j=1}^{M}\left(z-z_{j}\right)=\sum_{k=0}^{M-1} p_{k} z^{k}+z^{M}, \quad z \in \mathbb{C} \tag{10.3}
\end{equation*}
$$

with corresponding coefficients $p_{k} \in \mathbb{C}$. Further we define the companion matrix $\mathbf{C}_{M}(p) \in \mathbb{C}^{M \times M}$ of the Prony polynomial (10.3) by

$$
\mathbf{C}_{M}(p):=\left(\begin{array}{ccccc}
0 & 0 & \ldots & 0 & -p_{0} \tag{10.4}\\
1 & 0 & \ldots & 0 & -p_{1} \\
0 & 1 & \ldots & 0 & -p_{2} \\
\vdots & \vdots & & \vdots & \vdots \\
0 & 0 & \ldots & 1 & -p_{M-1}
\end{array}\right)
$$

It is known that the companion matrix $\mathbf{C}_{M}(p)$ has the property

$$
\operatorname{det}\left(z \mathbf{I}_{M}-\mathbf{C}_{M}(p)\right)=p(z)
$$

where $\mathbf{I}_{M} \in \mathbb{C}^{M \times M}$ denotes the identity matrix. Hence the zeros of the Prony polynomial (10.3) coincide with the eigenvalues of the companion matrix $\mathbf{C}_{M}(p)$.

Setting $p_{M}:=1$, we observe the following relation for all $m \in \mathbb{N}_{0}$,

$$
\begin{align*}
\sum_{k=0}^{M} p_{k} h(k+m) & =\sum_{k=0}^{M} p_{k}\left(\sum_{j=1}^{M} c_{j} z_{j}^{k+m}\right) \\
& =\sum_{j=1}^{M} c_{j} z_{j}^{m}\left(\sum_{k=0}^{M} p_{k} z_{j}^{k}\right)=\sum_{j=1}^{M} c_{j} z_{j}^{m} p\left(z_{j}\right)=0 . \tag{10.5}
\end{align*}
$$

Using the known values $h(k), k=0, \ldots, 2 M-1$, the formula (10.5) implies that the homogeneous linear difference equation

$$
\begin{equation*}
\sum_{k=0}^{M-1} p_{k} h(k+m)=-h(M+m), \quad m=0, \ldots, M-1, \tag{10.6}
\end{equation*}
$$

is satisfied. In matrix-vector notation, we obtain the linear system

$$
\begin{equation*}
\mathbf{H}_{M}(0)\left(p_{k}\right)_{k=0}^{M-1}=-(h(M+m))_{m=0}^{M-1} \tag{10.7}
\end{equation*}
$$

with the square Hankel matrix

$$
\mathbf{H}_{M}(0):=\left(\begin{array}{cccc}
h(0) & h(1) & \ldots & h(M-1) \tag{10.8}\\
h(1) & h(2) & \ldots & h(M) \\
\vdots & \vdots & & \vdots \\
h(M-1) & h(M) & \ldots & h(2 M-2)
\end{array}\right)=(h(k+m))_{k, m=0}^{M-1} .
$$

The matrix $\mathbf{H}_{M}(0)$ is invertible, since the special structure (10.2) of the values $h(k)$ leads to the factorization

$$
\mathbf{H}_{M}(0)=\mathbf{V}_{M}(\mathbf{z})(\operatorname{diag} \mathbf{c}) \mathbf{V}_{M}(\mathbf{z})^{\top},
$$

where the diagonal matrix diag \mathbf{c} with $\mathbf{c}:=\left(c_{j}\right)_{j=1}^{M}$ contains the nonzero coefficients of (10.1) in the main diagonal, and where

$$
\mathbf{V}_{M}(\mathbf{z}):=\left(z_{k}^{j-1}\right)_{j, k=1}^{M}=\left(\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
z_{1} & z_{2} & \ldots & z_{M} \\
\vdots & \vdots & & \vdots \\
z_{1}^{M-1} & z_{2}^{M-1} & \ldots & z_{M}^{M-1}
\end{array}\right)
$$

denotes the Vandermonde matrix generated by the vector $\mathbf{z}:=\left(z_{j}\right)_{j=1}^{M}$. Since all z_{j}, $j=1, \ldots, M$, are distinct, the Vandermonde matrix $\mathbf{V}_{M}(\mathbf{z})$ is invertible. Note that
by (10.2) we have

$$
\begin{equation*}
\mathbf{V}_{M}(\mathbf{z}) \mathbf{c}=(h(k))_{k=0}^{M-1} \tag{10.9}
\end{equation*}
$$

We summarize:

Algorithm 10.1 (Classical Prony Method)

Input: $M \in \mathbb{N}$, sampled values $h(k), k=0, \ldots, 2 M-1$.

1. Solve the linear system (10.7).
2. Compute all zeros $z_{j} \in \mathbb{C}, j=1, \ldots, M$, of the Prony polynomial (10.3), i.e., calculate all eigenvalues z_{j} of the associated companion matrix (10.4). Form $r_{j}:=z_{j} /\left|z_{j}\right|$ and $\operatorname{Re} \phi_{j}:=\ln \left|z_{j}\right|, \operatorname{Im} \phi_{j}:=\operatorname{Im}\left(\log r_{j}\right) \in[-\pi, \pi), j=$ $1, \ldots, M$, where \log is the principal value of the complex logarithm.
3. Solve the Vandermonde system (10.9).

Output: $\phi_{j} \in \mathbb{R}+\mathrm{i}[-\pi, \pi), \mathbf{c}=\left(c_{j}\right)_{j=1}^{M} \in \mathbb{C}^{M}, j=1, \ldots, M$.
As shown, Prony's idea is mainly based on the separation of the unknown parameters ϕ_{j} from the unknown coefficients c_{j}. The main problem is the determination of ϕ_{j}, since the coefficients c_{j} are uniquely determined by the linear system (10.9). The following remarks explain some extensions of the Prony method and connections to related methods.

Remark 10.2 The Prony method can be also applied to the recovery of an extended exponential sum

$$
h(x):=\sum_{j=1}^{M} c_{j}(x) \mathrm{e}^{\phi_{j} x}, \quad x \geq 0
$$

where $c_{j}(x)$ are polynomials of low degree. For simplicity, we sketch only the case of linear polynomials $c_{j}(x)=c_{j, 0}+c_{j, 1} x$. With distinct $z_{j}=\mathrm{e}^{\phi_{j}}, j=1, \ldots, M$, the corresponding Prony polynomial reads as follows:

$$
\begin{equation*}
p(z):=\prod_{j=1}^{M}\left(z-z_{j}\right)^{2}=\sum_{k=0}^{2 M-1} p_{k} z^{k}+z^{2 M} . \tag{10.10}
\end{equation*}
$$

Assuming that the sampled values $h(k), k=0, \ldots, 4 M-1$, are given, we can again derive a relation

$$
\sum_{k=0}^{2 M} p_{k} h(k+m)=0
$$

for $m \in \mathbb{Z}$ using that $p\left(z_{j}\right)=p^{\prime}\left(z_{j}\right)=0$ for $z_{j}=\mathrm{e}^{\phi_{j}}$. Thus, we have to solve the linear system

$$
\sum_{k=0}^{2 M-1} p_{k} h(k+\ell)=-h(2 M+\ell), \quad \ell=0, \ldots, 2 M-1,
$$

and to compute all double zeros z_{j} of the corresponding Prony polynomial in (10.10). Introducing the confluent Vandermonde matrix

$$
\mathbf{V}_{2 M}^{c}(\mathbf{z}):=\left(\begin{array}{ccccc}
1 & 0 & \ldots & 1 & 0 \\
z_{1} & 1 & \ldots & z_{M} & 1 \\
z_{1}^{2} & 2 z_{1} & \ldots & z_{M}^{2} & 2 z_{M} \\
\vdots & \vdots & & \vdots & \vdots \\
z_{1}^{2 M-1} & (2 M-1) z_{1}^{2 M-2} & \ldots & z_{M}^{2 M-1} & (2 M-1) z_{M}^{2 M-2}
\end{array}\right)
$$

we finally have to solve the confluent Vandermonde system

$$
\mathbf{V}_{2 M}^{c}(\mathbf{z})\left(c_{0,1}, z_{1} c_{1,1}, \ldots, c_{M, 0}, z_{1} c_{M, 1}\right)^{\top}=(h(k))_{k=0}^{2 M-1}
$$

Remark 10.3 The Prony method is closely related to Padé approximation (see [370]). Let $\left(f_{k}\right)_{k \in \mathbb{N}_{0}}$ be a complex sequence with $\rho:=\lim \sup _{k \rightarrow \infty}\left|f_{k}\right|^{1 / k}<\infty$. The z-transform of such a sequence is the Laurent series $\sum_{k=0}^{\infty} f_{k} z^{-k}$ which converges in the neighborhood $\{z \in \mathbb{C}:|z|>\rho\}$ of $z=\infty$. Thus the z-transform of each sequence $\left(z_{j}^{k}\right)_{k \in \mathbb{N}_{0}}$ is equal to $\frac{z}{z-z_{j}}, j=1, \ldots, M$. Since the z-transform is linear, the z-transform maps the data sequence $(h(k))_{k \in \mathbb{N}_{0}}$ satisfying (10.2) for all $k \in \mathbb{N}_{0}$ into the rational function

$$
\begin{equation*}
\sum_{k=0}^{\infty} h(k) z^{-k}=\sum_{j=1}^{M} c_{j} \frac{z}{z-z_{j}}=\frac{a(z)}{p(z)} \tag{10.11}
\end{equation*}
$$

where p is the Prony polynomial (10.3) and $a(z):=a_{M} z^{M}+\ldots+a_{1} z$. Now we substitute z for z^{-1} in (10.11) and form the reverse Prony polynomial rev $p(z):=$ $z^{M} p\left(z^{-1}\right)$ of degree M with rev $p(0)=1$ as well as the reverse polynomial $\operatorname{rev} a(z):=z^{M} a\left(z^{-1}\right)$ of degree at least $M-1$. Then we obtain

$$
\begin{equation*}
\sum_{k=0}^{\infty} h(k) z^{k}=\frac{\operatorname{rev} a(z)}{\operatorname{rev} p(z)} \tag{10.12}
\end{equation*}
$$

converging in a neighborhood of $z=0$. In other words, the rational function on the right-hand side of (10.12) is an $(M-1, M)$ Padé approximant of the power series
$\sum_{k=0}^{\infty} h(k) z^{k}$ with vanishing $\mathscr{O}\left(z^{M}\right)$ term and we have

$$
\left(\sum_{k=0}^{\infty} h(k) z^{k}\right) \operatorname{rev} p(z)=\operatorname{rev} a(z)
$$

in a neighborhood of $z=0$. Comparison of the coefficients of powers of z yields

$$
\begin{gather*}
\sum_{k=M-m}^{M} p_{k} h(k+m-M)=a_{M-m}, \quad m=0, \ldots, M-1, \\
\sum_{k=0}^{M} p_{k} h(k+m)=0, \quad m \in \mathbb{N}_{0} . \tag{10.13}
\end{gather*}
$$

Now Eq. (10.13) for $m=0, \ldots, M-1$ coincide with (10.6). Hence the Prony method may also be regarded as a Padé approximation.

Remark 10.4 In signal processing, the Prony method is also known as the annihilating filter method, or a method to recover signals with finite rate of innovation (FRI), see, e.g., [87, 364]. For distinct $z_{j}=\mathrm{e}^{\phi_{j}}$ and complex coefficients $c_{j} \neq 0$, $j=1, \ldots, M$, we consider the discrete signal $\mathbf{h}=\left(h_{n}\right)_{n \in \mathbb{Z}}$ with

$$
\begin{equation*}
h_{n}:=\sum_{j=1}^{M} c_{j} z_{j}^{n}, \quad n \in \mathbb{Z} . \tag{10.14}
\end{equation*}
$$

For simplicity, we assume that M is known. Then a discrete signal $\mathbf{a}=\left(a_{n}\right)_{n \in \mathbb{Z}}$ is called an annihilating filter of the signal \mathbf{h}, if the discrete convolution of the signals \mathbf{a} and \mathbf{h} vanishes, i.e.,

$$
(\mathbf{a} * \mathbf{h})_{n}:=\sum_{\ell \in \mathbb{Z}} a_{\ell} h_{n-\ell}=0, \quad n \in \mathbb{Z} .
$$

For the construction of an annihilating filter a we consider

$$
a(z):=\prod_{j=1}^{M}\left(1-z_{j} z^{-1}\right)=\sum_{n=0}^{M} a_{n} z^{-n}, \quad z \in \mathbb{C} \backslash\{0\},
$$

then $\mathbf{a}=\left(a_{n}\right)_{n \in \mathbb{Z}}$ with $a_{n}=0, n \in \mathbb{Z} \backslash\{0, \ldots, M\}$ is an annihilating filter of \mathbf{h} in (10.14). Note that $a(z)$ is the z-transform of the annihilating filter a. Furthermore, $a(z)$ and the Prony polynomial (10.3) have the same zeros $z_{j} \in \mathbb{D}, j=1, \ldots, M$, since $z^{M} a(z)=p(z)$ for all $z \in \mathbb{C} \backslash\{0\}$. Hence the Prony method and the method of annihilating filters are equivalent. For details, see, e.g., [364]. Within the last years, finite rate of innovation methods have found many applications, see, e.g., [29, 261].

Remark 10.5 Prony methods arise also from problems of science and engineering, where one is interested in predicting future information from previous ones using a linear model. Let $\mathbf{h}=\left(h_{n}\right)_{n \in \mathbb{N}_{0}}$ be a discrete signal. The linear prediction method, see, e.g., [22], aims at finding suitable predictor parameters $p_{j} \in \mathbb{C}$ such that the signal value $h_{\ell+M}$ can be expressed as a linear combination of the previous signal values $h_{j}, j=\ell, \ldots, \ell+M-1$, i.e.

$$
h_{\ell+M}=\sum_{j=0}^{M-1}\left(-p_{j}\right) h_{\ell+j}, \quad \ell \in \mathbb{N}_{0}
$$

Therefore these equations are also called linear prediction equations. Setting $p_{M}:=1$, we observe that this representation is equivalent to the homogeneous linear difference equation (10.6). Assuming that

$$
h_{k}=\sum_{j=1}^{M} c_{j} z_{j}^{k}, \quad k \in \mathbb{N}_{0},
$$

we obtain the parameter estimation problem, i.e., the Prony polynomial (10.3) coincides with the negative value of the forward predictor polynomial. The associated companion matrix $\mathbf{C}_{M}(p)$ in (10.4) is hence equal to the forward predictor matrix. Thus the linear prediction method can also be considered as a Prony method.

Unfortunately, the classical Prony method has some numerical drawbacks. Often the order M of the exponential sum (10.1) is unknown. Further the classical Prony method is known to perform poorly, when noisy sampled data are given, since the Hankel matrix $\mathbf{H}_{M}(0)$ and the Vandermonde matrix $\mathbf{V}_{M}(\mathbf{z})$ are usually badly conditioned. We will see that one can attenuate these problems by using more sampled data. But then one has to deal with rectangular matrices.

10.2 Recovery of Exponential Sums

In this section, we present three efficient algorithms to solve the parameter estimation problem. Let $N \in \mathbb{N}$ with $N \geq 2 M$ be given, where $M \in \mathbb{N}$ denotes the (unknown) order of the exponential sum in (10.1). For simplicity, we restrict ourselves to the frequency analysis problem, where $\phi_{j}=\mathrm{i} \varphi_{j}$ with $\varphi_{j} \in[-\pi, \pi)$. We introduce the nonequispaced Fourier matrix, see Chap. 7,

$$
\mathbf{A}_{N, M}^{\top}:=\left(\mathrm{e}^{\mathrm{i} \varphi_{j}(k-1)}\right)_{k, j=1}^{N, M} .
$$

Note that $\mathbf{A}_{N, M}^{\top}$ coincides with the rectangular Vandermonde matrix

$$
\mathbf{V}_{N, M}(\mathbf{z}):=\left(z_{j}^{k-1}\right)_{k, j=1}^{N, M}
$$

with the vector $\mathbf{z}:=\left(z_{j}\right)_{j=1}^{M}$, where $z_{j}=\mathrm{e}^{\mathrm{i} \varphi_{j}}, j=1, \ldots, M$, are distinct nodes on the unit circle. Then the equations in (10.1) can be formulated in the following matrix-vector form

$$
\begin{equation*}
\mathbf{V}_{N, M}(\mathbf{z}) \mathbf{c}=\left(h_{k}\right)_{k=0}^{N-1}, \tag{10.15}
\end{equation*}
$$

where $\mathbf{c}=\left(c_{j}\right)_{j=1}^{M}$ is the vector of complex coefficients.
In practice, the order M of the exponential sum (10.1) is often unknown. Assume that $L \in \mathbb{N}$ is a convenient upper bound of M and $M \leq L \leq N-M+1$. In applications, such an upper bound L of M is usually known a priori. If this is not the case, then one can choose $L \approx \frac{N}{2}$. Later we will see that the choice $L \approx \frac{N}{2}$ is optimal in some sense. Often the sequence $\left\{h_{0}, h_{1}, \ldots, h_{N-1}\right\}$ of (noisy) sampled data is called a time series of length N. We form the L-trajectory matrix of this time series

$$
\begin{equation*}
\mathbf{H}_{L, N-L+1}:=\left(h_{\ell+m}\right)_{\ell, m=0}^{L-1, N-L} \in \mathbb{C}^{L \times(N-L+1)} \tag{10.16}
\end{equation*}
$$

with window length $L \in\{M, \ldots, N-M+1\}$. Obviously $\mathbf{H}_{L, N-L+1}$ is a rectangular Hankel matrix.

We consider this rectangular Hankel matrix first for noiseless data $h_{k}=h(k)$, $k=0, \ldots, N-1$, i.e.,

$$
\begin{equation*}
\mathbf{H}_{L, N-L+1}=(h(\ell+m))_{\ell, m=0}^{L-1, N-L} \in \mathbb{C}^{L \times(N-L+1)} \tag{10.17}
\end{equation*}
$$

The main step in the solution of the parameter estimation problem is to determine the order M and to compute the parameters φ_{j} or alternatively the pairwise distinct nodes $z_{j}=\mathrm{e}^{\mathrm{i} \varphi_{j}}, j=1, \ldots, M$. Afterwards one can calculate the coefficient vector $\mathbf{c} \in \mathbb{C}^{M}$ as the solution of the least squares problem

$$
\min _{\mathbf{c} \in \mathbb{C}^{M}}\left\|\mathbf{V}_{N, M}(\mathbf{z}) \mathbf{c}-\left(h_{k}\right)_{k=0}^{N-1}\right\|_{2} .
$$

By (10.2) the L-trajectory matrix (10.17) can be factorized in the following form:

$$
\begin{equation*}
\mathbf{H}_{L, N-L+1}=\mathbf{V}_{L, M}(\mathbf{z})(\operatorname{diag} \mathbf{c}) \mathbf{V}_{N-L+1, M}(\mathbf{z})^{\top} \tag{10.18}
\end{equation*}
$$

We denote square matrices with only one index. Additionally we introduce the rectangular Hankel matrices

$$
\begin{equation*}
\mathbf{H}_{L, N-L}(s)=\left(h_{s+\ell+m}\right)_{\ell, m=0}^{L-1, N-L-1}, \quad s \in\{0,1\} \tag{10.19}
\end{equation*}
$$

for $L \in\{M, \ldots, N-M\}$, i.e., $\mathbf{H}_{L, N-L}(0)$ is obtained by removing the last column of $\mathbf{H}_{L, N-L+1}$ and $\mathbf{H}_{L, N-L}(1)$ by removing the first column of $\mathbf{H}_{L, N-L+1}$.

Lemma 10.6 Let $N \geq 2 M$ be given. For each window length $L \in\{M, \ldots, N-$ $M+1\}$, the rank of the L-trajectory matrix (10.17) of noiseless data is M. The related Hankel matrices $\mathbf{H}_{L, N-L}(s), s \in\{0,1\}$, possess the same rank M for each window length $L \in\{M, \ldots, N-M\}$.

Proof

1. As known, the square Vandermonde matrix $\mathbf{V}_{M}(\mathbf{z})$ is invertible. Further we have

$$
\begin{equation*}
\operatorname{rank} \mathbf{V}_{L, M}(\mathbf{z})=M, \quad L \in\{M, \ldots, N-M+1\} \tag{10.20}
\end{equation*}
$$

since rank $\mathbf{V}_{L, M}(\mathbf{z}) \leq \min \{L, M\}=M$ and since the submatrix $\left(z_{k}^{j-1}\right)_{j, k=1}^{M}$ of $\mathbf{V}_{L, M}(\mathbf{z})$ is invertible.

For $L \in\{M, \ldots, N-M+1\}$, we see by (10.20) that

$$
\operatorname{rank} \mathbf{V}_{L, M}(\mathbf{z})=\operatorname{rank} \mathbf{V}_{N-L+1, M}(\mathbf{z})=M
$$

Thus the rank of the matrix $(\operatorname{diag} \mathbf{c}) \mathbf{V}_{N-L+1, M}(\mathbf{z})^{\top}$ is equal to M. Hence we conclude that

$$
\begin{aligned}
\operatorname{rank} \mathbf{H}_{L, N-L+1} & =\operatorname{rank}\left(\mathbf{V}_{L, M}(\mathbf{z})\left((\operatorname{diag} \mathbf{c}) \mathbf{V}_{N-L+1, M}(\mathbf{z})^{\top}\right)\right) \\
& =\operatorname{rank} \mathbf{V}_{L, M}(\mathbf{z})=M
\end{aligned}
$$

2. By construction of the matrices $\mathbf{H}_{L, N-L}(s)$ for $s=0,1$, the assumption follows now from the corresponding factorizations

$$
\begin{aligned}
& \mathbf{H}_{L, N-L}(0)=\mathbf{V}_{L, M}(\mathbf{z})(\operatorname{diag} \mathbf{c}) \mathbf{V}_{N-L, M}(\mathbf{z})^{\top}, \\
& \mathbf{H}_{L, N-L}(1)=\mathbf{V}_{L, M}(\mathbf{z})(\operatorname{diag} \mathbf{c})(\operatorname{diag} \mathbf{z}) \mathbf{V}_{N-L, M}(\mathbf{z})^{\top} .
\end{aligned}
$$

Consequently, the order M of the exponential sum (10.1) coincides with the rank of the Hankel matrices in (10.17) and (10.19). Therefore, M can be computed as the numerical rank of $\mathbf{H}_{L, N-L+1}$ if it is not known beforehand.

In the next two subsections, we will derive the most well-known methods to solve the parameter estimation problem, MUSIC, approximate Prony method, and ESPRIT.

10.2.1 MUSIC and Approximate Prony Method

MUSIC [323] and the approximate Prony method [282] are both based on a singular value decomposition of the given Hankel matrix $\mathbf{H}_{L, N-L+1}$. The following observations also show the close connections between these approaches.

The ranges of $\mathbf{H}_{L, N-L+1}$ and $\mathbf{V}_{L, M}(\mathbf{z})$ coincide in the noiseless case with $M \leq$ $L \leq N-M+1$ by (10.18). If $L>M$, then the range of $\mathbf{V}_{L, M}(\mathbf{z})$ is a proper subspace of \mathbb{C}^{L}. This subspace is called signal space \mathscr{S}_{L}. The signal space \mathscr{S}_{L} is of dimension M and is generated by the M columns $\mathbf{e}_{L}\left(\varphi_{j}\right), j=1, \ldots, M$, where

$$
\mathbf{e}_{L}(\varphi):=\left(\mathrm{e}^{\mathrm{i} \ell \varphi}\right)_{\ell=0}^{L-1}, \quad \varphi \in[-\pi, \pi) .
$$

Note that $\left\|\mathbf{e}_{L}(\varphi)\right\|_{2}=\sqrt{L}$ for each $\varphi \in[-\pi, \pi)$. The noise space \mathscr{N}_{L} is defined as the orthogonal complement of \mathscr{S}_{L} in \mathbb{C}^{L}. The dimension of \mathscr{N}_{L} is equal to $L-M$.

By \mathbf{Q}_{L} we denote the orthogonal projection of \mathbb{C}^{L} onto the noise space \mathscr{N}_{L}. Since $\mathbf{e}_{L}\left(\varphi_{j}\right) \in \mathscr{S}_{L}, j=1, \ldots, M$, and $\mathscr{N}_{L} \perp \mathscr{S}_{L}$, we obtain that

$$
\mathbf{Q}_{L} \mathbf{e}_{L}\left(\varphi_{j}\right)=\mathbf{0}, \quad j=1, \ldots, M
$$

For $\varphi \in[-\pi, \pi) \backslash\left\{\varphi_{1}, \ldots, \varphi_{M}\right\}$, the vectors $\mathbf{e}_{L}\left(\varphi_{1}\right), \ldots, \mathbf{e}_{L}\left(\varphi_{M}\right), \mathbf{e}_{L}(\varphi) \in \mathbb{C}^{L}$ are linearly independent, since the $(M+1) \times(M+1)$ Vandermonde matrix obtained by taking the first $M+1$ rows of

$$
\left(\mathbf{e}_{L}\left(\varphi_{1}\right)|\ldots| \mathbf{e}_{L}\left(\varphi_{M}\right) \mid \mathbf{e}_{L}(\varphi)\right)
$$

is invertible for each $L \geq M+1$. Hence $\mathbf{e}_{L}(\varphi) \notin \mathscr{S}_{L}=\operatorname{span}\left\{\mathbf{e}_{L}\left(\varphi_{1}\right), \ldots, \mathbf{e}_{L}\left(\varphi_{M}\right)\right\}$, i.e., $\mathbf{Q}_{L} \mathbf{e}_{L}(\varphi) \neq \mathbf{0}$.

Thus, once the orthogonal projection \mathbf{Q}_{L} is known, the parameters φ_{j} can be determined via the zeros of the noise-space correlation function

$$
N_{L}(\varphi):=\frac{1}{\sqrt{L}}\left\|\mathbf{Q}_{L} \mathbf{e}_{L}(\varphi)\right\|_{2}, \quad \varphi \in[-\pi, \pi)
$$

since $N_{L}\left(\varphi_{j}\right)=0$ for each $j=1, \ldots, M$ and $0<N_{L}(\varphi) \leq 1$ for all $\varphi \in[-\pi, \pi) \backslash$ $\left\{\varphi_{1}, \ldots, \varphi_{M}\right\}$. Alternatively, one can seek the peaks of the imaging function

$$
J_{L}(\varphi):=\sqrt{L}\left\|\mathbf{Q}_{L} \mathbf{e}_{L}(\varphi)\right\|_{2}^{-1}, \quad \varphi \in[-\pi, \pi)
$$

In this approach, we prefer the zeros or rather the lowest local minima of the noisespace correlation function $N_{L}(\varphi)$.

We determine the orthogonal projection \mathbf{Q}_{L} of \mathbb{C}^{L} onto the noise space \mathscr{N}_{L} using the singular value decomposition (SVD) of the L-trajectory matrix $\mathbf{H}_{L, N-L+1}$, i.e.,

$$
\begin{equation*}
\mathbf{H}_{L, N-L+1}=\mathbf{U}_{L} \mathbf{D}_{L, N-L+1} \mathbf{W}_{N-L+1}^{\mathrm{H}}, \tag{10.21}
\end{equation*}
$$

where

$$
\begin{aligned}
\mathbf{U}_{L} & =\left(\mathbf{u}_{1}|\ldots| \mathbf{u}_{L}\right) \in \mathbb{C}^{L \times L}, \\
\mathbf{W}_{N-L+1} & =\left(\mathbf{w}_{1}|\ldots| \mathbf{w}_{N-L+1}\right) \in \mathbb{C}^{(N-L+1) \times(N-L+1)}
\end{aligned}
$$

are unitary and where

$$
\mathbf{D}_{L, N-L+1}=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{\min \{L, N-L+1\}}\right) \in \mathbb{R}^{L \times(N-L+1)}
$$

is a rectangular diagonal matrix. The diagonal entries of $\mathbf{D}_{L, N-L+1}$ are arranged in nonincreasing order

$$
\sigma_{1} \geq \ldots \geq \sigma_{M}>\sigma_{M+1}=\ldots=\sigma_{\min \{L, N-L+1\}}=0
$$

The columns of \mathbf{U}_{L} are the left singular vectors of $\mathbf{H}_{L, N-L+1}$, the columns of \mathbf{W}_{N-L+1} are the right singular vectors of $\mathbf{H}_{L, N-L+1}$. The nonnegative numbers σ_{k} are called singular values of $\mathbf{H}_{L, N-L+1}$. The rank of $\mathbf{H}_{L, N-L+1}$ is equal to the number of positive singular values. Thus we can determine the order M of the exponential sum (10.1) by the number of positive singular values σ_{j}. Practically, for noisy input data we will have to determine the numerical rank M of $\mathbf{H}_{L, N-L+1}$.

From (10.21) it follows that

$$
\mathbf{H}_{L, N-L+1} \mathbf{W}_{N-L+1}=\mathbf{U}_{L} \mathbf{D}_{L, N-L+1}, \quad \mathbf{H}_{L, N-L+1}^{\mathrm{H}} \mathbf{U}_{L}=\mathbf{W}_{N-L+1} \mathbf{D}_{L, N-L+1}^{\top} .
$$

Comparing the columns in above equations, for each $k=1, \ldots, \min \{L, N-L+1\}$ we obtain

$$
\mathbf{H}_{L, N-L+1} \mathbf{w}_{k}=\sigma_{k} \mathbf{u}_{k}, \quad \mathbf{H}_{L, N-L+1}^{\mathrm{H}} \mathbf{u}_{k}=\sigma_{k} \mathbf{w}_{k} .
$$

Introducing the matrices

$$
\begin{aligned}
\mathbf{U}_{L, M}^{(1)} & :=\left(\mathbf{u}_{1}|\ldots| \mathbf{u}_{M}\right) \in \mathbb{C}^{L \times M}, \\
\mathbf{U}_{L, L-M}^{(2)} & :=\left(\mathbf{u}_{M+1}|\ldots| \mathbf{u}_{L}\right) \in \mathbb{C}^{L \times(L-M)},
\end{aligned}
$$

we see that the columns of $\mathbf{U}_{L, M}^{(1)}$ form an orthonormal basis of \mathscr{S}_{L} and that the columns of $\mathbf{U}_{L, L-M}^{(2)}$ form an orthonormal basis of \mathscr{N}_{L}. Hence the orthogonal projection onto the noise space \mathscr{N}_{L} has the form

$$
\mathbf{Q}_{L}=\mathbf{U}_{L, L-M}^{(2)}\left(\mathbf{U}_{L, L-M}^{(2)}\right)^{\mathrm{H}} .
$$

Consequently, we obtain

$$
\begin{aligned}
\left\|\mathbf{Q}_{L} \mathbf{e}_{L}(\varphi)\right\|_{2}^{2} & =\left\langle\mathbf{Q}_{L} \mathbf{e}_{L}(\varphi), \mathbf{Q}_{L} \mathbf{e}_{L}(\varphi)\right\rangle=\left\langle\left(\mathbf{Q}_{L}\right)^{2} \mathbf{e}_{L}(\varphi), \mathbf{e}_{L}(\varphi)\right\rangle \\
& =\left\langle\mathbf{Q}_{L} \mathbf{e}_{L}(\varphi), \mathbf{e}_{L}(\varphi)\right\rangle=\left\langle\mathbf{U}_{L, L-M}^{(2)}\left(\mathbf{U}_{L, L-M}^{(2)}\right)^{\mathrm{H}} \mathbf{e}_{L}(\varphi), \mathbf{e}_{L}(\varphi)\right\rangle \\
& =\left\langle\left(\mathbf{U}_{L, L-M}^{(2)}\right)^{\mathrm{H}} \mathbf{e}_{L}(\varphi),\left(\mathbf{U}_{L, L-M}^{(2)}\right)^{\mathrm{H}} \mathbf{e}_{L}(\varphi)\right\rangle=\left\|\left(\mathbf{U}_{L, L-M}^{(2)}\right)^{\mathrm{H}} \mathbf{e}_{L}(\varphi)\right\|_{2}^{2} .
\end{aligned}
$$

Hence the noise-space correlation function can be represented by

$$
\begin{aligned}
N_{L}(\varphi) & =\frac{1}{\sqrt{L}}\left\|\left(\mathbf{U}_{L, L-M}^{(2)}\right)^{\mathrm{H}} \mathbf{e}_{L}(\varphi)\right\|_{2} \\
& =\frac{1}{\sqrt{L}}\left(\sum_{k=M+1}^{L}\left|\mathbf{u}_{k}^{\mathrm{H}} \mathbf{e}_{L}(\varphi)\right|^{2}\right)^{1 / 2}, \quad \varphi \in[-\pi, \pi) .
\end{aligned}
$$

In MUSIC, one determines the locations of the lowest local minima of the noisespace correlation function to achieve approximations of the parameters φ_{j}, see, e.g., [104, 202, 235, 323].

Algorithm 10.7 (MUSIC via SVD)

Input: $N \in \mathbb{N}$ with $N \geq 2 M, L \approx \frac{N}{2}$ window length,
$\tilde{h}_{k}=h(k)+e_{k} \in \mathbb{C}, k=0, \ldots, N-1$, noisy sampled values in (10.1),
$0<\varepsilon \ll 1$ tolerance.

1. Compute the singular value decomposition

$$
\mathbf{H}_{L, N-L+1}=\tilde{\mathbf{U}}_{L} \tilde{\mathbf{D}}_{L, N-L+1} \tilde{\mathbf{W}}_{N-L+1}^{\mathrm{H}}
$$

of the rectangular Hankel matrix (10.16), where the singular values $\tilde{\sigma}_{\ell}$ are arranged in nonincreasing order. Determine the numerical rank M of (10.16) such that $\tilde{\sigma}_{M} \geq \varepsilon \tilde{\sigma}_{1}$ and $\tilde{\sigma}_{M+1}<\varepsilon \tilde{\sigma}_{1}$. Form the matrix

$$
\tilde{\mathbf{U}}_{L, L-M}^{(2)}=\left(\tilde{\mathbf{u}}_{M+1}|\ldots| \tilde{\mathbf{u}}_{L}\right)
$$

from the last $L-M$ columns of $\tilde{\mathbf{U}}_{L}$.
2. Calculate the squared noise-space correlation function

$$
\tilde{N}_{L}(\varphi)^{2}:=\frac{1}{L} \sum_{k=M+1}^{L}\left|\tilde{\mathbf{u}}_{k}^{\mathrm{H}} \mathbf{e}_{L}(\varphi)\right|^{2}
$$

on the equispaced grid $\left\{\frac{(2 k-S) \pi}{S}: k=0, \ldots, S-1\right\}$ for sufficiently large $S \in \mathbb{N}$ by FFT.
3. The M lowest local minima of $\tilde{N}_{L}\left(\frac{(2 k-S) \pi}{S}\right), k=0, \ldots, S-1$, yield the frequencies $\tilde{\varphi}_{1}, \ldots, \tilde{\varphi}_{M}$. Set $\tilde{z}_{j}:=\mathrm{e}^{\mathrm{i} \tilde{\varphi}_{j}}, j=1, \ldots, M$.
4. Compute the coefficient vector $\tilde{\mathbf{c}}:=\left(\tilde{c}_{j}\right)_{j=1}^{M} \in \mathbb{C}^{M}$ as solution of the least squares problem

$$
\min _{\tilde{\mathbf{c}} \in \mathbb{C}^{M}}\left\|\mathbf{V}_{N, M}(\tilde{\mathbf{z}}) \tilde{\mathbf{c}}-\left(\tilde{h}_{k}\right)_{k=0}^{N-1}\right\|_{2},
$$

where $\tilde{\mathbf{z}}:=\left(\tilde{z}_{j}\right)_{j=1}^{M}$ denotes the vector of computed nodes.
Output: $M \in \mathbb{N}, \tilde{\varphi}_{j} \in[-\pi, \pi), \tilde{c}_{j} \in \mathbb{C}, j=1, \ldots, M$.
The approximate Prony method (APM) can be immediately derived from the MUSIC method. We start with the squared noise-space correlation function

$$
\begin{aligned}
N_{L}(\varphi)^{2} & =\frac{1}{L}\left\|\left(\mathbf{U}_{L, L-M}^{(2)}\right)^{\mathrm{H}} \mathbf{e}_{L}(\varphi)\right\|_{2}^{2} \\
& =\frac{1}{L} \sum_{k=M+1}^{L}\left|\mathbf{u}_{k}^{\mathrm{H}} \mathbf{e}_{L}(\varphi)\right|^{2}, \quad \varphi \in[-\pi, \pi)
\end{aligned}
$$

For noiseless data, all frequencies $\varphi_{j}, j=1, \ldots, M$, are zeros of $N_{L}(\varphi)^{2}$ and hence especially zeros of

$$
\left|\mathbf{u}_{L}^{\mathrm{H}} \mathbf{e}_{L}(\varphi)\right|^{2} .
$$

Thus we obtain $\mathbf{u}_{L}^{\mathrm{H}} \mathbf{e}_{L}\left(\varphi_{j}\right)=0$ for $j=1, \ldots, M$. Note that $\mathbf{u}_{L}^{\mathrm{H}} \mathbf{e}_{L}(\varphi)$ can have additional zeros. For noisy data we observe small values $\left|\mathbf{u}_{L}^{\mathrm{H}} \mathbf{e}_{L}(\varphi)\right|^{2}$ near φ_{j}. Finally we determine the order M of the exponential sum (10.1) by the number of sufficiently large coefficients in the reconstructed exponential sum.

Algorithm 10.8 (Approximate Prony Method (APM))

Input: $\underset{\tilde{h}}{N} \in \mathbb{N}$ with $N \geq 2 M, L \approx \frac{N}{2}$ window length,
$\tilde{h}_{k}=h(k)+e_{k} \in \mathbb{C}, k=0, \ldots, N-1$, noisy sampled values of (10.1),
$\varepsilon>0$ lower bound with $\left|c_{j}\right| \geq 2 \varepsilon, j=1, \ldots, M$.

1. Compute the singular vector $\mathbf{u}_{L}=\left(u_{\ell}\right)_{\ell=0}^{L-1} \in \mathbb{C}^{L}$ of the rectangular Hankel matrix (10.16).
2. Calculate

$$
\mathbf{u}_{L}^{\mathrm{H}} \mathbf{e}_{L}(\varphi)=\sum_{\ell=0}^{L-1} \bar{u}_{\ell} \mathrm{e}^{\mathrm{i} \ell \varphi}
$$

on the equispaced grid $\left\{\frac{(2 k-S) \pi}{S}: k=0, \ldots, S-1\right\}$ for sufficiently large $S \in \mathbb{N}$ by FFT.
3. Determine the lowest local minima $\psi_{j}, j=1, \ldots, \tilde{M}$, of $\left|\mathbf{u}_{L}^{*} \mathbf{e}_{L}\left(\frac{(2 k-S) \pi}{S}\right)\right|^{2}$, $k=0, \ldots, S-1 . \operatorname{Set} \tilde{w}_{j}:=\mathrm{e}^{\mathrm{i} \tilde{\psi}_{j}}, j=1, \ldots, \tilde{M}$.
4. Compute the coefficients $\tilde{d}_{j} \in \mathbb{C}$ as least squares solution of the overdetermined linear system

$$
\sum_{j=1}^{\tilde{M}} \tilde{d}_{j} \tilde{w}_{j}=h_{k}, \quad k=0, \ldots, N-1
$$

Delete all the \tilde{w}_{k} with $\left|\tilde{d}_{k}\right| \leq \varepsilon$ and denote the remaining nodes by $\tilde{z}_{j}, j=$ $1, \ldots, M$.
5. Compute the coefficients $\tilde{c}_{j} \in \mathbb{C}$ as least squares solution of the overdetermined linear system

$$
\sum_{j=1}^{M} \tilde{c}_{j} \tilde{z}_{j}=h_{k}, \quad k=0, \ldots, N-1 .
$$

Output: $M \in \mathbb{N}, \tilde{\varphi}_{j} \in[-\pi, \pi), \tilde{c}_{j} \in \mathbb{C}, j=1, \ldots, M$.

10.2.2 ESPRIT

Finally we sketch the frequently used ESPRIT method (see [284, 312]) which is also based on singular value decomposition of the rectangular Hankel matrix. First we assume that noiseless data $\tilde{h}_{k}=h(k), k=0, \ldots, N-1$, of (10.1) are given. The set of all matrices of the form

$$
\begin{equation*}
z \mathbf{H}_{L, N-L}(0)-\mathbf{H}_{L, N-L}(1), \quad z \in \mathbb{C}, \tag{10.22}
\end{equation*}
$$

with $\mathbf{H}_{L, N-L}(0)$ and $\mathbf{H}_{L, N-L}(1)$ in (10.19) is called a rectangular matrix pencil. If a scalar $z_{0} \in \mathbb{C}$ and a nonzero vector $\mathbf{v} \in \mathbb{C}^{N-L}$ satisfy

$$
z_{0} \mathbf{H}_{L, N-L}(0) \mathbf{v}=\mathbf{H}_{L, N-L}(1) \mathbf{v}
$$

then z_{0} is called an eigenvalue of the matrix pencil and \mathbf{v} is called eigenvector. Note that a rectangular matrix pencil may not have eigenvalues in general. The ESPRIT method is based on the following result:

Lemma 10.9 Assume that $N \in \mathbb{N}$ with $N \geq 2 M$ and $L \in\{M, \ldots, N-M\}$ are given. In the case of noiseless data, the matrix pencil (10.22) has the nodes $z_{j}=\mathrm{e}^{\mathrm{i} \varphi_{j}}, j=1, \ldots, M$, as eigenvalues. Further, zero is an eigenvalue of (10.22) with $N-L-M$ linearly independent eigenvectors.

Proof Let p denote the Prony polynomial (10.3) and let $q(z):=z^{N-L-M} p(z)$. Then the companion matrix of q reads

$$
\mathbf{C}_{N-L}(q)=\left(\mathbf{e}_{1}\left|\mathbf{e}_{2}\right| \ldots\left|\mathbf{e}_{N-L-1}\right|-\mathbf{q}\right)
$$

with $\mathbf{q}:=\left(0, \ldots, 0, p_{0}, p_{1}, \ldots, p_{M-1}\right)^{\top}$, where p_{k} are the coefficients of $p(z)$ in (10.3). Here $\mathbf{e}_{k}=\left(\delta_{k-\ell}\right)_{\ell=0}^{N-L-1}$ denote the canonical basis vectors of \mathbb{C}^{N-L}. By (10.5) and (10.19) we obtain that

$$
\mathbf{H}_{L, N-L}(0) \mathbf{q}=-(h(\ell))_{\ell=N-L}^{N-1}
$$

and hence

$$
\begin{equation*}
\mathbf{H}_{L, N-L}(0) \mathbf{C}_{N-L}(q)=\mathbf{H}_{L, N-L}(1) . \tag{10.23}
\end{equation*}
$$

Thus it follows by (10.23) that the rectangular matrix pencil in (10.22) coincides with the square matrix pencil $z \mathbf{I}_{N-L}-\mathbf{C}_{N-L}(q)$ up to a matrix factor,

$$
z \mathbf{H}_{L, N-L}(0)-\mathbf{H}_{L, N-L}(1)=\mathbf{H}_{L, N-L}(0)\left(z \mathbf{I}_{N-L}-\mathbf{C}_{N-L}(q)\right) .
$$

Now we have to determine the eigenvalues of the companion matrix $\mathbf{C}_{N-L}(q)$. By

$$
\operatorname{det}\left(z \mathbf{I}_{N-L}-\mathbf{C}_{N-L}(q)\right)=q(z)=z^{N-L-M} \prod_{j=1}^{M}\left(z-z_{j}\right)
$$

the eigenvalues of $\mathbf{C}_{N-L}(q)$ are zero and $z_{j}, j=1, \ldots, M$. Obviously, $z=0$ is an eigenvalue of the rectangular matrix pencil (10.22), which has $L-M$ linearly independent eigenvectors, since $\operatorname{rank} \mathbf{H}_{L, N-L}(0)=M$ by Lemma 10.6. For each $z=z_{j}, j=1, \ldots, M$, we can compute an eigenvector $\mathbf{v}=\left(v_{k}\right)_{k=0}^{N-L-1}$ of $\mathbf{C}_{N-L}(q)$, if we set $v_{N-L-1}=z_{j}$. Thus we obtain

$$
\left(z_{j} \mathbf{H}_{L, N-L}(0)-\mathbf{H}_{L, N-L}(1)\right) \mathbf{v}=\mathbf{0} .
$$

We have shown that the generalized eigenvalue problem of the rectangular matrix pencil (10.22) can be reduced to the classical eigenvalue problem of the square matrix $\mathbf{C}_{N-L}(q)$.

We start the ESPRIT method by taking the singular value decomposition (10.21) of the L-trajectory matrix $\mathbf{H}_{L, N-L+1}$ with a window length $L \in\{M, \ldots, N-M\}$. Restricting the matrices \mathbf{U}_{L} and \mathbf{W}_{N-L+1} to

$$
\mathbf{U}_{L, M}:=\left(\mathbf{u}_{1}|\ldots| \mathbf{u}_{M}\right) \in \mathbb{C}^{L \times M}, \quad \mathbf{W}_{N-L+1, M}:=\left(\mathbf{w}_{1}|\ldots| \mathbf{w}_{M}\right) \in \mathbf{C}^{(N-L+1) \times M}
$$

with orthonormal columns as well as the diagonal matrix $\mathbf{D}_{M}:=\operatorname{diag}\left(\sigma_{j}\right)_{j=1}^{M}$, we obtain

$$
\mathbf{H}_{L, N-L+1}=\mathbf{U}_{L, M} \mathbf{D}_{M} \mathbf{W}_{N-L+1, M}^{\mathrm{H}} .
$$

Let now $\mathbf{W}_{N-L, M}(0)$ be obtained by removing the last row, and $\mathbf{W}_{N-L, M}(1)$ by removing the first row of $\mathbf{W}_{N-L+1, M}$. Then, by (10.19), the two Hankel matrices $\mathbf{H}_{L, N-L}(0)$ and $\mathbf{H}_{L, N-L}(1)$ in (10.19) can be simultaneously factorized in the form

$$
\begin{equation*}
\mathbf{H}_{L, N-L}(s)=\mathbf{U}_{L, M} \mathbf{D}_{M} \mathbf{W}_{N-L, M}(s)^{\mathrm{H}}, \quad s \in\{0,1\} . \tag{10.24}
\end{equation*}
$$

Since $\mathbf{U}_{L, M}$ has orthonormal columns and since \mathbf{D}_{M} is invertible, the generalized eigenvalue problem of the matrix pencil

$$
\begin{equation*}
z \mathbf{W}_{N-L, M}(0)^{\mathrm{H}}-\mathbf{W}_{N-L, M}(1)^{\mathrm{H}}, \quad z \in \mathbb{C} \tag{10.25}
\end{equation*}
$$

has the same nonzero eigenvalues $z_{j}, j=1, \ldots, M$, as the matrix pencil in (10.22) except for additional zero eigenvalues. Therefore, we determine the nodes $z_{j}, j=$ $1, \ldots, M$, as eigenvalues of the matrix

$$
\begin{equation*}
\mathbf{F}_{M}^{\mathrm{SVD}}:=\mathbf{W}_{N-L, M}(1)^{\mathrm{H}}\left(\mathbf{W}_{N-L, M}(0)^{\mathrm{H}}\right)^{+} \in \mathbb{C}^{M \times M}, \tag{10.26}
\end{equation*}
$$

where $\left(\mathbf{W}_{N-L, M}(0)^{\mathrm{H}}\right)^{+}$denotes the Moore-Penrose pseudoinverse of the matrix $\mathbf{W}_{N-L, M}(0)^{\mathrm{H}}$.

Analogously, we can handle the general case of noisy data $\tilde{h}_{k}=h(k)+e_{k} \in \mathbb{C}$, $k=0, \ldots, N-1$, with small error terms $e_{k} \in \mathbb{C}$, where $\left|e_{k}\right| \leq \varepsilon_{1}$ and $0<$ $\varepsilon_{1} \ll 1$. For the Hankel matrix in (10.21) with the singular values $\tilde{\sigma}_{1} \geq \ldots \geq$ $\tilde{\sigma}_{\min \{L, N-L+1\}} \geq 0$, we calculate the numerical rank M of $\mathbf{H}_{L, N-L+1}$ in (10.16) taking $\tilde{\sigma}_{M} \geq \varepsilon \tilde{\sigma}_{1}$ and $\tilde{\sigma}_{M+1}<\varepsilon \tilde{\sigma}_{1}$ with convenient chosen tolerance ε. Using the IEEE double precision arithmetic, one can choose $\varepsilon=10^{-10}$ for given noiseless data. In the case of noisy data, one has to use a larger tolerance $\varepsilon>0$.

For the rectangular Hankel matrix in (10.16) with noisy entries, we use its singular value decomposition

$$
\mathbf{H}_{L, N-L+1}=\tilde{\mathbf{U}}_{L} \tilde{\mathbf{D}}_{L, N-L+1} \tilde{\mathbf{W}}_{N-L+1}^{\mathrm{H}}
$$

and define as above the matrices $\tilde{\mathbf{U}}_{L, M}, \tilde{\mathbf{D}}_{M}:=\operatorname{diag}\left(\tilde{\sigma}_{j}\right)_{j=1}^{M}$, and $\tilde{\mathbf{W}}_{N-L+1, M}$. Then

$$
\tilde{\mathbf{U}}_{L, M} \tilde{\mathbf{D}}_{M} \tilde{\mathbf{W}}_{N-L+1, M}^{\mathrm{H}}
$$

is a low-rank approximation of (10.16). Analogously to $\mathbf{W}_{N-L, M}(0), \mathbf{W}_{N-L, M}(1)$ and (10.26), we introduce corresponding matrices $\tilde{\mathbf{W}}_{N-L, M}(s), s \in\{0,1\}$ and
$\tilde{\mathbf{F}}_{M}^{\text {SVD }}$. Note that

$$
\begin{equation*}
\tilde{\mathbf{K}}_{L, N-L}(s):=\tilde{\mathbf{U}}_{L, M} \tilde{\mathbf{D}}_{M} \tilde{\mathbf{W}}_{N-L, M}(s)^{\mathrm{H}}, \quad s \in\{0,1\} \tag{10.27}
\end{equation*}
$$

is a low-rank approximation of $\tilde{\mathbf{H}}_{L, N-L}(s)$. Thus the SVD-based ESPRIT algorithm reads as follows:

Algorithm 10.10 (ESPRIT via SVD)

Input: $N \in \mathbb{N}$ with $N \gg 1, M \leq L \leq N-M, L \approx \frac{N}{2}, M$ unknown order of (10.1), $h_{k}=h(k)+e_{k} \in \mathbb{C}, k=0, \ldots, N-1$, noisy sampled values of (10.1), $0<\varepsilon \ll 1$ tolerance.

1. Compute the singular value decomposition of the rectangular Hankel matrix $\mathbf{H}_{L, N-L+1}$ in (10.16). Determine the numerical rank M of $\mathbf{H}_{L, N-L+1}$ such that $\tilde{\sigma}_{M} \geq \varepsilon \tilde{\sigma}_{1}$ and $\tilde{\sigma}_{M+1}<\varepsilon \tilde{\sigma}_{1}$. Form the matrices $\tilde{\mathbf{W}}_{N-L, M}(s), s \in\{0,1\}$.
2. Calculate the square matrix $\tilde{\mathbf{F}}_{M}^{\text {SVD }}$ as in (10.26) and compute all eigenvalues \tilde{z}_{j}, $j=1, \ldots, M$, of $\tilde{\mathbf{F}}_{M}^{\mathrm{SVD}}$. Replace \tilde{z}_{j} by the corrected value $\frac{\tilde{z}_{j}}{\left|\tilde{z}_{j}\right|}, j=1, \ldots, M$, and set $\tilde{\varphi}_{j}:=\log \tilde{z}_{j}, j=1, \ldots, M$, where \log denotes the principal value of the complex logarithm.
3. Compute the coefficient vector $\tilde{\mathbf{c}}:=\left(\tilde{c}_{j}\right)_{j=1}^{M} \in \mathbb{C}^{M}$ as solution of the least squares problem

$$
\min _{\tilde{\mathbf{c}} \in \mathbb{C}^{M}}\left\|\mathbf{V}_{N, M}(\tilde{\mathbf{z}}) \tilde{\mathbf{c}}-\left(\tilde{h}_{k}\right)_{k=0}^{N-1}\right\|_{2},
$$

where $\tilde{\mathbf{z}}:=\left(\tilde{z}_{j}\right)_{j=1}^{M}$ denotes the vector of computed nodes.
Output: $M \in \mathbb{N}, \tilde{\varphi}_{j} \in[-\pi, \pi), \tilde{c}_{j} \in \mathbb{C}$ for $j=1, \ldots, M$.
Remark 10.11 One can avoid the computation of the Moore-Penrose pseudoinverse in (10.26). Then the second step of Algorithm 10.10 reads as follows (see [286, Algorithm 4.2]):
2^{\prime}. Calculate the matrix products

$$
\tilde{\mathbf{A}}_{M}:=\tilde{\mathbf{W}}_{N-L, M}(0)^{\mathrm{H}} \tilde{\mathbf{W}}_{N-L, M}(0), \quad \tilde{\mathbf{B}}_{M}:=\tilde{\mathbf{W}}_{N-L, M}(1)^{\mathrm{H}} \tilde{\mathbf{W}}_{N-L, M}(0)
$$

and compute all eigenvalues $\tilde{z}_{j}, j=1, \ldots, M$, of the square matrix pencil $z \tilde{\mathbf{A}}_{M}-$ $\tilde{\mathbf{B}}_{M}, z \in \mathbb{C}$, by the QZ-Algorithm (see [134, pp. 384-385]). Set $\tilde{\varphi}_{j}:=\log \tilde{z}_{j}$, $j=1, \ldots, M$.

The computational cost of ESPRIT is governed by the SVD of the Hankel matrix in the first step. For $L \approx \frac{N}{2}$, the SVD costs about $\frac{21}{8} N^{3}+M^{2}\left(21 N+\frac{91}{3} M\right)$ operations. In [286], a partial singular value decomposition of the Hankel matrix based on Lanczos bidiagonalization is proposed that reduces the computational cost to $18 S N \log _{2} N+S^{2}(20 N+30 S)+M^{2}\left(N+\frac{1}{3} M\right)$ operations. Here S denotes the number of bidiagonalization steps.

Remark 10.12 For various numerical examples as well as for a comparison between Algorithm 10.10 and a further Prony-like method, see [266]. Algorithm 10.10 is very similar to the Algorithm 3.2 in [285]. Note that one can also use the QR decomposition of the rectangular Hankel matrix (10.16) instead of the singular value decomposition. In that case one obtains an algorithm that is similar to the matrix pencil method [170, 318], see also Algorithm 3.1 in [285]. The matrix pencil method has been also applied to reconstruction of shapes from moments, see, e.g., [135]. In order to obtain a consistent estimation method, one can rewrite the problem of parameter estimation in exponential sums as a nonlinear eigenvalue problem, see, e.g., $[45,259]$ or the survey [391] and the references therein. The obtained modification of the Prony method aims at solving the minimization problem

$$
\arg \min \left\{\sum_{k=0}^{N-1}\left|h_{k}-\sum_{j=1}^{M} c_{j} \mathrm{e}^{\mathrm{i} \varphi_{j}}\right|^{2}: c_{j} \in \mathbb{C}, \varphi_{j} \in[-\pi, \pi), j=1, \ldots, M\right\} .
$$

A slightly different approach has been taken in [331], where the 1-norm of errors $\sum_{k=0}^{N-1}\left|h_{k}-\sum_{j=1}^{M} c_{j} \mathrm{e}^{\mathrm{i} \varphi_{j}}\right|$ is minimized instead of the Euclidean norm.

Remark 10.13 The numerical stability of the considered numerical methods strongly depends on the condition number of the involved Vandermonde matrix $V_{N, M}(\mathbf{z})=\left(z_{j}^{k-1}\right)_{k, j=1}^{N, M}$ with $z_{j}=\mathrm{e}^{\mathrm{i} \varphi_{j}}$ that appears in the factorization of the rectangular Hankel matrices $H_{L, N-L+1}$ in (10.18). Moreover $V_{N, M}$ also occurs as the coefficient matrix in the overdetermined equation system to compute the coefficient vector, see Step 4 in Algorithm 10.7, Step 5 in Algorithm 10.8 or Step 3 in Algorithm 10.10. In [21, 244, 287], the condition number of a rectangular Vandermonde matrix with nodes on the unit circle is estimated. It has been shown that this matrix is well conditioned, provided that the nodes z_{j} are not extremely close to each other and provided N is large enough. Stability issues are discussed in a more detailed manner in Sect. 10.3.

Remark 10.14 The algorithms given in this section can be simply transferred to the general parameter estimation problem (10.1), where we only assume that $\varphi_{j} \in \mathbb{C}$ with $\operatorname{Im} \varphi_{j} \in[-C \pi, C \pi)$ with some constant $C>0$. Often, one has $\operatorname{Re} \varphi_{j} \in$ $[-\alpha, 0]$ with small $\alpha>0$. Rescaling of $h(x)$ in (10.1) leads to $h_{C}(x):=h\left(\frac{x}{C}\right)$, where the wanted parameters $\tilde{\varphi}_{j}=\varphi_{j} / C$ satisfy $\operatorname{Im} \tilde{\varphi}_{j} \in[-\pi, \pi)$. This implies that one has to change the sampling stepsize, i.e., we have to employ the data $h_{k}=$ $h_{C}(k)=h(k / C), k=0, \ldots, N-1$.

Remark 10.15 The given data sequence $\left\{h_{0}, h_{1}, \ldots, h_{N-1}\right\}$ can be also interpreted as time series. A powerful tool of time series analysis is the singular spectrum analysis (see [136, 137]). Similarly as step 1 of Algorithm 10.10, this technique is based on the singular value decomposition of a rectangular Hankel matrix constructed upon the given time series h_{k}. By this method, the original time series can be decomposed into a sum of interpretable components such as trend,
oscillatory components, and noise. For further details and numerous applications, see [136, 137].

Remark 10.16 The considered Prony-like method can also be interpreted as a model reduction based on low-rank approximation of Hankel matrices, see [236, 237]. The structured low-rank approximation problem reads as follows: For a given structure specification $\mathscr{S}: \mathbb{C}^{K} \rightarrow \mathbb{C}^{L \times N}$ with $L<N$, a parameter vector $\mathbf{h} \in \mathbb{C}^{K}$ and an integer M with $0<M<L$, find a vector

$$
\hat{\mathbf{h}}^{*}=\arg \min \left\{\|\mathbf{h}-\hat{\mathbf{h}}\|: \hat{\mathbf{h}} \in \mathbb{C}^{K} \text { with } \operatorname{rank} \mathscr{S}(\hat{\mathbf{h}}) \leq M\right\}
$$

where $\|\cdot\|$ denotes a suitable norm in \mathbb{C}^{K}. In the special case of a Hankel matrix structure, the Hankel matrix $\mathscr{S}(\mathbf{h})=\left(h_{\ell+k}\right)_{\ell, k=0}^{L-1, N-1}$ is rank-deficient of order M if there exists a nonzero vector $\mathbf{p}=\left(p_{k}\right)_{k=0}^{M-1}$ so that

$$
\sum_{k=0}^{M-1} p_{k} h(m+k)=-h(M+m)
$$

for all $m=0, \ldots, N+L-M-1$. Equivalently, the values $h(k)$ can be interpreted as function values of an exponential sum of order M in (10.1). The special kernel structure of rank-deficient Hankel matrices can already be found in [165].

Remark 10.17 The d-dimensional parameter estimation problem with fixed $d \in$ $\mathbb{N} \backslash\{1\}$ reads as follows:

Recover the positive integer M, distinct parameter vector $\boldsymbol{\varphi}_{j} \in[-\pi, \pi)^{d}$, and complex coefficients $c_{j} \neq 0, j=0, \ldots, M$, in the d-variate exponential sum of order M

$$
h(\mathbf{x}):=\sum_{j=1}^{M} c_{j} \mathrm{e}^{\mathrm{i} \boldsymbol{\varphi}_{j} \cdot \mathbf{x}},
$$

if noisy sampling values $h_{\mathbf{k}}:=h(\mathbf{k})+e_{\mathbf{k}}, \mathbf{k} \in I$, are given, where $e_{\mathbf{k}} \in \mathbb{C}$ are small error terms and I is a suitable finite subset of \mathbb{Z}^{d}.

Up to now, there exist different approaches to the numerical solution of the d dimensional parameter estimation problem. In [76, 276, 283, 330], this problem is reduced by projections to several one-dimensional frequency analysis problems. The reconstruction of multivariate trigonometric polynomials of large sparsity is described in [298], where sampling data are given on a convenient rank-1 lattice. Direct numerical methods to solve the multivariate Prony problem are subject of very active ongoing research, see, e.g., [5, 99, 215, 216, 267, 316, 319, 330]. These approaches are, for example, based on a direct generalization of the Prony method leading to the problem of finding intersections of zero sets of multivariate polynomials, see [215, 267], or exploit the relationship between polynomial interpolation,
normal forms modulo ideals and H -bases [216, 319]. Other ideas can be understood as direct generalization of ESPRIT or matrix pencil methods [5, 99], or are related to low-rank decomposition of Hankel matrices [316].

10.3 Stability of Exponentials

In the last section we have derived three methods for recovery of exponential sums, namely MUSIC, approximate Prony method, and ESPRIT. These methods work exactly for noiseless data. Fortunately, they can be also applied for noisy data $h_{k}=$ $h(k)+e_{k}, k=0, \ldots, N-1$, with error terms $e_{k} \in \mathbb{C}$ provided that the bound $\varepsilon_{1}>0$ of all $\left|e_{k}\right|$ is small enough. This property is based on the perturbation theory of the singular value decomposition of a rectangular Hankel matrix. Here we have to assume that the frequencies $\varphi_{j} \in[-\pi, \pi), j=1, \ldots, M$, are not too close to each other, that the number N of given samples is sufficiently large with $N \geq 2 M$, and that the window length $L \approx \frac{N}{2}$. We start with the following stability result, see [172], [388, pp. 162-164] or [204, pp. 59-66].
Lemma 10.18 Let $M \in \mathbb{N}$ and $T>0$ be given. If the ordered frequencies $\varphi_{j} \in \mathbb{R}$, $j=1, \ldots, M$, satisfy the gap condition

$$
\begin{equation*}
\varphi_{j+1}-\varphi_{j} \geq q>\frac{\pi}{T}, \quad j=1, \ldots, M-1 \tag{10.28}
\end{equation*}
$$

then the exponentials $\mathrm{e}^{\mathrm{i} \varphi_{j}}, j=1, \ldots, M$, are Riesz stable in $L_{2}[0,2 T]$, i.e., for all vectors $\mathbf{c}=\left(c_{j}\right)_{j=1}^{M} \in \mathbb{C}^{M}$ we have the Ingham inequalities

$$
\begin{equation*}
\alpha(T)\|\mathbf{c}\|_{2}^{2} \leq\left\|\sum_{j=1}^{M} c_{j} \mathrm{e}^{\mathrm{i} \varphi_{j} \cdot}\right\|_{L_{2}[0,2 T]}^{2} \leq \beta(T)\|\mathbf{c}\|_{2}^{2} \tag{10.29}
\end{equation*}
$$

with positive constants

$$
\alpha(T):=\frac{2}{\pi}\left(1-\frac{\pi^{2}}{T^{2} q^{2}}\right), \quad \beta(T):=\frac{4 \sqrt{2}}{\pi}\left(1+\frac{\pi^{2}}{4 T^{2} q^{2}}\right),
$$

where $\|f\|_{L_{2}[0,2 T]}$ is given by

$$
\|f\|_{L_{2}[0,2 T]}:=\left(\frac{1}{2 T} \int_{0}^{2 T}|f(t)|^{2} \mathrm{~d} t\right)^{1 / 2}, \quad f \in L^{2}[0,2 T] .
$$

Proof

1. For arbitrary $\mathbf{c}=\left(c_{j}\right)_{j=1}^{M} \in \mathbb{C}^{M}$ let

$$
\begin{equation*}
h(x):=\sum_{j=1}^{M} c_{j} \mathrm{e}^{\mathrm{i} \varphi_{j} x}, \quad x \in[0,2 T] . \tag{10.30}
\end{equation*}
$$

Substituting $t=x-T \in[-T, T]$, we obtain

$$
f(t)=\sum_{j=1}^{M} d_{j} \mathrm{e}^{\mathrm{i} \varphi_{j} t}, \quad t \in[-T, T]
$$

with $d_{j}:=c_{j} \mathrm{e}^{\mathrm{i} \varphi_{j} T}, j=1, \ldots, M$. Note that $\left|d_{j}\right|=\left|c_{j}\right|$ and

$$
\|f\|_{L_{2}[-T, T]}=\|h\|_{L_{2}[0,2 T]}
$$

For simplicity, we assume that $T=\pi$. If $T \neq \pi$, then we substitute $s=\frac{\pi}{T} t \in$ $[-\pi, \pi]$ for $t \in[-T, T]$ such that

$$
f(t)=f\left(\frac{T}{\pi} s\right)=\sum_{j=1}^{M} d_{j} \mathrm{e}^{\mathrm{i} \psi_{j} s}, \quad s \in[-\pi, \pi]
$$

with $\psi_{j}:=\frac{T}{\pi} \varphi_{j}$ and conclude from the gap condition (10.28) that

$$
\psi_{j+1}-\psi_{j}=\frac{T}{\pi}\left(\varphi_{j+1}-\varphi_{j}\right) \geq \frac{T}{\pi} q>1 .
$$

2. For a fixed function $k \in L_{1}(\mathbb{R})$ and its Fourier transform

$$
\hat{k}(\omega):=\int_{\mathbb{R}} k(t) \mathrm{e}^{-\mathrm{i} \omega t} \mathrm{~d} t, \quad \omega \in \mathbb{R}
$$

we see that

$$
\begin{aligned}
\int_{\mathbb{R}} k(t)|f(t)|^{2} \mathrm{~d} t & =\sum_{j=1}^{M} \sum_{\ell=1}^{M} d_{j} \bar{d}_{\ell} \int_{\mathbb{R}} k(t) \mathrm{e}^{-\mathrm{i}\left(\psi_{\ell}-\psi_{j}\right) t} \mathrm{~d} t \\
& =\sum_{j=1}^{M} \sum_{\ell=1}^{M} d_{j} \bar{d}_{\ell} \hat{k}\left(\psi_{\ell}-\psi_{j}\right)
\end{aligned}
$$

If we choose

$$
k(t):= \begin{cases}\cos \frac{t}{2} & t \in[-\pi, \pi], \\ 0 & t \in \mathbb{R} \backslash[-\pi, \pi],\end{cases}
$$

then we obtain the Fourier transform

$$
\begin{equation*}
\hat{k}(\omega)=\frac{4 \cos (\pi \omega)}{1-4 \omega^{2}}, \quad \omega \in \mathbb{R} \backslash\left\{-\frac{1}{2}, \frac{1}{2}\right\}, \tag{10.31}
\end{equation*}
$$

with $\hat{k}\left(\pm \frac{1}{2}\right)=\pi$ and hence

$$
\begin{equation*}
\int_{-\pi}^{\pi} \cos \frac{t}{2}|f(t)|^{2} \mathrm{~d} t=\sum_{j=1}^{M} \sum_{\ell=1}^{M} d_{j} \bar{d}_{\ell} \hat{k}\left(\psi_{\ell}-\psi_{j}\right) \tag{10.32}
\end{equation*}
$$

3. From (10.32) it follows immediately that

$$
\int_{-\pi}^{\pi}|f(t)|^{2} \mathrm{~d} t \geq \sum_{j=1}^{M} \sum_{\ell=1}^{M} d_{j} \bar{d}_{\ell} \hat{k}\left(\psi_{\ell}-\psi_{j}\right) .
$$

Let S_{1} denote that part of the above double sum for which $j=\ell$ and let S_{2} be the remaining part. Clearly, by $\hat{k}(0)=4$ we get

$$
\begin{equation*}
S_{1}=4 \sum_{j=1}^{M}\left|d_{j}\right|^{2} \tag{10.33}
\end{equation*}
$$

Since \hat{k} is even and since $2\left|d_{j} \bar{d}_{\ell}\right| \leq\left|d_{j}\right|^{2}+\left|d_{\ell}\right|^{2}$, there are constants $\theta_{j, \ell} \in \mathbb{C}$ with $\left|\theta_{j, \ell}\right| \leq 1$ and $\theta_{j, \ell}=\bar{\theta}_{\ell, j}$ such that

$$
S_{2}=\sum_{j=1}^{M} \sum_{\substack{=1 \\ \ell \neq j}}^{M} \frac{\left|d_{j}\right|^{2}+\left|d_{\ell}\right|^{2}}{2} \theta_{j, \ell}\left|\hat{k}\left(\psi_{\ell}-\psi_{j}\right)\right|=\sum_{j=1}^{M}\left|d_{j}\right|^{2}\left(\sum_{\substack{\ell=1 \\ \ell \neq j}}^{M} \operatorname{Re} \theta_{j, \ell}\left|\hat{k}\left(\psi_{\ell}-\psi_{j}\right)\right|\right) .
$$

Consequently, there exists a constant $\theta \in[-1,1]$ such that

$$
\begin{equation*}
S_{2}=\theta \sum_{j=1}^{M}\left|d_{j}\right|^{2}\left(\sum_{\substack{\ell=1 \\ \ell \neq j}}^{M}\left|\hat{k}\left(\psi_{\ell}-\psi_{j}\right)\right|\right) . \tag{10.34}
\end{equation*}
$$

Since $\left|\psi_{\ell}-\psi_{j}\right| \geq|\ell-j| q>1$ for $\ell \neq j$ by (10.28), we obtain by (10.31) that

$$
\begin{align*}
\sum_{\substack{\ell=1 \\
\ell \neq j}}^{M}\left|\hat{k}\left(\psi_{\ell}-\psi_{j}\right)\right| & \leq \sum_{\substack{\ell=1 \\
\ell \neq j}}^{M} \frac{4}{4(\ell-j)^{2} q^{2}-1}<\frac{8}{q^{2}} \sum_{n=1}^{\infty} \frac{1}{4 n^{2}-1} \\
& =\frac{4}{q^{2}} \sum_{n=1}^{\infty}\left(\frac{1}{2 n-1}-\frac{1}{2 n+1}\right)=\frac{4}{q^{2}} \tag{10.35}
\end{align*}
$$

Hence from (10.33)-(10.35) it follows that

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(t)|^{2} \mathrm{~d} t \geq \alpha(\pi) \sum_{j=1}^{M}\left|d_{j}\right|^{2}
$$

with $\alpha(\pi)=\frac{2}{\pi}\left(1-\frac{1}{q^{2}}\right)$. In the case $T \neq \pi$, we obtain $\alpha(T)=\frac{2}{\pi}\left(1-\frac{\pi^{2}}{T^{2} q^{2}}\right)$ by the substitution in step 1 and hence

$$
\|h\|_{L_{2}[0,2 T]}^{2} \geq \alpha(T) \sum_{j=1}^{M}\left|c_{j}\right|^{2}=\alpha(T)\|\mathbf{c}\|_{2}^{2} .
$$

4. From (10.32)-(10.35) we conclude on the one hand

$$
\int_{-\pi}^{\pi} \cos \frac{t}{2}|f(t)|^{2} \mathrm{~d} t \geq \int_{-\pi / 2}^{\pi / 2} \cos \frac{t}{2}|f(t)|^{2} \mathrm{~d} t \geq \frac{\sqrt{2}}{2} \int_{-\pi / 2}^{\pi / 2}|f(t)|^{2} \mathrm{~d} t
$$

and on the other hand

$$
\begin{aligned}
\int_{-\pi}^{\pi} \cos \frac{t}{2}|f(t)|^{2} \mathrm{~d} t & =\sum_{j=1}^{M} \sum_{\ell=1}^{M} \hat{k}\left(\psi_{\ell}-\psi_{j}\right) d_{j} \bar{d}_{\ell} \\
& \leq 4 \sum_{j=1}^{M}\left|d_{j}\right|^{2}+\frac{4}{q^{2}} \sum_{j=1}^{M}\left|d_{j}\right|^{2}=4\left(1+\frac{1}{q^{2}}\right) \sum_{j=1}^{M}\left|d_{j}\right|^{2}
\end{aligned}
$$

Thus we obtain

$$
\begin{equation*}
\frac{1}{\pi} \int_{-\pi / 2}^{\pi / 2}|f(t)|^{2} \mathrm{~d} t \leq \frac{4 \sqrt{2}}{\pi}\left(1+\frac{1}{q^{2}}\right) \sum_{j=1}^{M}\left|d_{j}\right|^{2} \tag{10.36}
\end{equation*}
$$

5. Now we consider the function

$$
g(t):=f(2 t)=\sum_{j=1}^{M} d_{j} \mathrm{e}^{2 \mathrm{i} \psi_{j} t}, \quad t \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]
$$

where the ordered frequencies $2 \psi_{j}$ satisfy the gap condition

$$
2 \psi_{j+1}-2 \psi_{j} \geq 2 q, \quad j=1, \ldots, M-1 .
$$

Applying (10.36) to the function g, we receive

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi}|f(t)|^{2} \mathrm{~d} t=\frac{1}{\pi} \int_{-\pi / 2}^{\pi / 2}|g(t)|^{2} \mathrm{~d} t \leq \frac{4 \sqrt{2}}{\pi}\left(1+\frac{1}{4 q^{2}}\right) \sum_{j=1}^{M}\left|d_{j}\right|^{2} .
$$

Hence $\beta(\pi)=\frac{4 \sqrt{2}}{\pi}\left(1+\frac{1}{4 q^{2}}\right)$ and $\beta(T)=\frac{4 \sqrt{2}}{\pi}\left(1+\frac{\pi^{2}}{4 T^{2} q^{2}}\right)$ by the substitution in step 1. Thus we obtain

$$
\|h\|_{L_{2}[0,2 T]}^{2} \leq \beta(T) \sum_{j=1}^{M}\left|d_{j}\right|^{2}=\beta(T)\|\mathbf{c}\|_{2}^{2} .
$$

This completes the proof.
Remark 10.19 The Ingham inequalities (10.29) can be considered as far-reaching generalization of the Parseval equality for Fourier series. The constants $\alpha(T)$ and $\beta(T)$ are not optimal in general. Note that these constants do not depend on M. The assumption $q>\frac{\pi}{T}$ is necessary for the existence of positive $\alpha(T)$. Compare also with [66, Theorems 9.8.5 and 9.8.6] and [216].

In the following, we present a discrete version of the Ingham inequalities (10.29) (see [11, 228, 243]). For sufficiently large integer $P>M$, we consider the rectangular Vandermonde matrix

$$
\mathbf{V}_{P, M}(\mathbf{z}):=\left(z_{j}^{k-1}\right)_{k, j=1}^{P, M}=\left(\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
z_{1} & z_{2} & \ldots & z_{M} \\
\vdots & \vdots & & \vdots \\
z_{1}^{P-1} & z_{2}^{P-1} & \ldots & z_{M}^{P-1}
\end{array}\right)
$$

with $\mathbf{z}=\left(z_{j}\right)_{j=1}^{M}$, where $z_{j}=\mathrm{e}^{\mathrm{i} \varphi_{j}}, j=1, \ldots, M$, are distinct nodes on the unit circle. Setting $\varphi_{j}=2 \pi \psi_{j}, j=1, \ldots, M$, we measure the distance between distinct frequencies ψ_{j}, ψ_{ℓ} by $d\left(\psi_{j}-\psi_{\ell}\right)$, where $d(x)$ denotes the distance of $x \in \mathbb{R}$ to the nearest integer, i.e.,

$$
d(x):=\min _{n \in \mathbb{Z}}|x-n| \in\left[0, \frac{1}{2}\right] .
$$

Our aim is a good estimation of the spectral condition number of $\mathbf{V}_{P, M}(\mathbf{z})$. Therefore we assume that $\psi_{j}, j=1, \ldots, M$, satisfy the gap condition

$$
\begin{equation*}
\min \left\{d\left(\psi_{j}-\psi_{\ell}\right): j, \ell=1, \ldots, M, j \neq \ell\right\} \geq \Delta>0 . \tag{10.37}
\end{equation*}
$$

The following discussion is mainly based on a generalization of Hilbert's inequality (see [11, 243]). Note that the Hilbert's inequality reads originally as follows:
Lemma 10.20 For all $\mathbf{x}=\left(x_{j}\right)_{j=1}^{M} \in \mathbb{C}^{M}$ we have Hilbert's inequality

$$
\left|\sum_{\substack{j, \ell=1 \\ j \neq \ell}}^{M} \frac{x_{j} \bar{x}_{\ell}}{j-\ell}\right| \leq \pi\|\mathbf{x}\|_{2}^{2}
$$

Proof For an arbitrary vector $\mathbf{x}=\left(x_{j}\right)_{j=1}^{M} \in \mathbb{C}^{M}$, we form the trigonometric polynomial

$$
p(t):=\sum_{k=1}^{M} x_{k} \mathrm{e}^{\mathrm{i} k t}
$$

such that

$$
|p(t)|^{2}=\sum_{k, \ell=1}^{M} x_{k} \bar{x}_{\ell} \mathrm{e}^{\mathrm{i}(k-\ell) t}
$$

Using

$$
\frac{1}{2 \pi \mathrm{i}} \int_{0}^{2 \pi}(\pi-t) \mathrm{e}^{\mathrm{i} n t} \mathrm{~d} t= \begin{cases}0 & n=0 \\ \frac{1}{n} & n \in \mathbb{Z} \backslash\{0\},\end{cases}
$$

we obtain

$$
\frac{1}{2 \pi \mathrm{i}} \int_{0}^{2 \pi}(\pi-t)|p(t)|^{2} \mathrm{~d} t=\sum_{\substack{k, \ell=1 \\ k \neq \ell}}^{M} \frac{x_{k} \bar{x}_{\ell}}{k-\ell}
$$

Note that $|\pi-t| \leq \pi$ for $t \in[0,2 \pi]$. From the triangle inequality and the Parseval equality in $L_{2}(\mathbb{T})$ it follows that

$$
\left.\left.\frac{1}{2 \pi}\left|\int_{0}^{2 \pi}(\pi-t)\right| p(t)\right|^{2} \mathrm{~d} t\left|\leq \frac{1}{2} \int_{0}^{2 \pi}\right| p(t)\right|^{2} \mathrm{~d} t=\pi \sum_{j=1}^{M}\left|x_{j}\right|^{2}=\pi\|\mathbf{x}\|_{2}^{2}
$$

The proof of generalized Hilbert's inequality applies the following result:
Lemma 10.21 For all $x \in \mathbb{R} \backslash \mathbb{Z}$ we have

$$
\begin{equation*}
(\sin (\pi x))^{-2}+2\left|\frac{\cot (\pi x)}{\sin (\pi x)}\right| \leq \frac{3}{\pi^{2} d(x)^{2}} \tag{10.38}
\end{equation*}
$$

Proof It suffices to show (10.38) for all $x \in\left(0, \frac{1}{2}\right]$. Substituting $t=\pi x \in\left(0, \frac{\pi}{2}\right]$, (10.38) means

$$
3(\sin t)^{2} \geq t^{2}(1+2 \cos t)
$$

This inequality is equivalent to

$$
3(\operatorname{sinc} t)^{2} \geq 1+2 \cos t, \quad t \in\left[0, \frac{\pi}{2}\right]
$$

which is true by the behaviors of the concave functions $3(\operatorname{sinc} t)^{2}$ and $1+2 \cos t$ on the interval $\left[0, \frac{\pi}{2}\right]$.
Theorem 10.22 (See [245, Theorem 1]) Assume that the distinct values $\psi_{j} \in \mathbb{R}$, $j=1, \ldots, M$, satisfy the gap condition (10.37) with a constant $\Delta>0$.

Then the generalized Hilbert inequality

$$
\begin{equation*}
\left|\sum_{\substack{j, \ell=1 \\ j \neq \ell}}^{M} \frac{x_{j} \bar{x}_{\ell}}{\sin \left(\pi\left(\psi_{j}-\psi_{\ell}\right)\right)}\right| \leq \frac{1}{\Delta}\|\mathbf{x}\|_{2}^{2} \tag{10.39}
\end{equation*}
$$

holds for all $\mathbf{x}=\left(x_{j}\right)_{j=1}^{M} \in \mathbb{C}^{M}$.
Proof

1. Setting

$$
s_{j, \ell}:= \begin{cases}{\left[\sin \left(\pi\left(\psi_{j}-\psi_{\ell}\right)\right)\right]^{-1}} & j \neq \ell \\ 0 & j=\ell\end{cases}
$$

for all $j, \ell=1, \ldots, M$, we form the matrix $\mathbf{S}:=-\mathrm{i}\left(s_{j, \ell}\right)_{j, \ell=1}^{M}$ which is Hermitian. Let the eigenvalues of \mathbf{S} be arranged in increasing order $-\infty<\lambda_{1} \leq$ $\ldots \leq \lambda_{M}<\infty$. By the Rayleigh-Ritz theorem (see [169, pp. 234-235]) we have for all $\mathbf{x} \in \mathbb{C}^{M}$ with $\|\mathbf{x}\|_{2}=1$,

$$
\lambda_{1} \leq \mathbf{x}^{\mathrm{H}} \mathbf{S} \mathbf{x} \leq \lambda_{M}
$$

Suppose that $\lambda \in \mathbb{R}$ is such an eigenvalue of \mathbf{S} with $|\lambda|=\max \left\{\left|\lambda_{1}\right|,\left|\lambda_{M}\right|\right\}$. Then we have the sharp inequality

$$
\left|\mathbf{x}^{\mathrm{H}} \mathbf{S} \mathbf{x}\right|=\left|\sum_{j, \ell=1}^{M} x_{j} \bar{x}_{\ell} s_{j, \ell}\right| \leq|\lambda|
$$

for all normed vectors $\mathbf{x}=\left(x_{j}\right)_{j=1}^{M} \in \mathbb{C}^{M}$. Now we show that $|\lambda| \leq \frac{1}{\Delta}$.
2. Related to the eigenvalue λ of \mathbf{S}, there exists a normed eigenvector $\mathbf{y}=\left(y_{j}\right)_{j=1}^{M} \in$ \mathbb{C}^{M} with $\mathbf{S} \mathbf{y}=\lambda \mathbf{y}$, i.e.,

$$
\begin{equation*}
\sum_{j=1}^{M} y_{j} s_{j, \ell}=\mathrm{i} \lambda y_{\ell}, \quad \ell=1, \ldots, M \tag{10.40}
\end{equation*}
$$

Thus we have $\mathbf{y}^{\mathrm{H}} \mathbf{S} \mathbf{y}=\lambda \mathbf{y}^{\mathrm{H}} \mathbf{y}=\lambda$. Applying the Cauchy-Schwarz inequality, we estimate

$$
\begin{aligned}
\left|\mathbf{y}^{\mathrm{H}} \mathbf{S} \mathbf{y}\right|^{2} & =\left|\sum_{j=1}^{M} y_{j}\left(\sum_{\ell=1}^{M} \bar{y}_{\ell} s_{j, \ell}\right)\right|^{2} \leq\|\mathbf{y}\|_{2}^{2}\left(\sum_{j=1}^{M}\left|\sum_{\ell=1}^{M} \bar{y}_{\ell} s_{j, \ell}\right|^{2}\right) \\
& =\sum_{j=1}^{M}\left|\sum_{\ell=1}^{M} \bar{y}_{\ell} s_{j, \ell}\right|^{2}=\sum_{j=1}^{M} \sum_{\ell, m=1}^{M} \bar{y}_{\ell} y_{m} s_{j, \ell} s_{j, m} \\
& =\sum_{\ell, m=1}^{M} \bar{y}_{\ell} y_{m} \sum_{j=1}^{M} s_{j, \ell} s_{j, m}=S_{1}+S_{2}
\end{aligned}
$$

with the partial sums

$$
S_{1}:=\sum_{\ell=1}^{M}\left|y_{\ell}\right|^{2} \sum_{j=1}^{M} s_{j, \ell}^{2}, \quad S_{2}:=\sum_{\substack{\ell, m=1 \\ \ell \neq m}}^{M} \bar{y}_{\ell} y_{m} \sum_{j=1}^{M} s_{j, \ell} s_{j, m} .
$$

3. For distinct $\alpha, \beta \in \mathbb{R} \backslash(\pi \mathbb{Z})$ we have

$$
\frac{1}{(\sin \alpha)(\sin \beta)}=\frac{\cot \alpha-\cot \beta}{\sin (\beta-\alpha)}
$$

such that for all indices with $j \neq \ell, j \neq m$, and $\ell \neq m$ we find

$$
s_{j, \ell} s_{j, m}=s_{\ell, m}\left[\cot \left(\pi\left(\psi_{j}-\psi_{\ell}\right)\right)-\cot \left(\pi\left(\psi_{j}-\psi_{m}\right)\right)\right] .
$$

Now we split the sum S_{2} in the following way:

$$
\begin{aligned}
S_{2} & =\sum_{\substack{\ell, m=1 \\
\ell \neq m}}^{M} \bar{y}_{\ell} y_{m} \sum_{\substack{j=1 \\
j \neq \ell, j \neq m}}^{M} s_{\ell, m}\left[\cot \left(\pi\left(\psi_{j}-\psi_{\ell}\right)\right)-\cot \left(\pi\left(\psi_{j}-\psi_{m}\right)\right)\right] \\
& =S_{3}-S_{4}+2 \operatorname{Re} S_{5}
\end{aligned}
$$

with

$$
\begin{aligned}
& S_{3}:=\sum_{\substack{\ell, m=1 \\
\ell \neq m}}^{M} \sum_{\substack{j=1 \\
j \neq \ell}}^{M} \bar{y}_{\ell} y_{m} s_{\ell, m} \cot \left(\pi\left(\psi_{j}-\psi_{\ell}\right)\right) \\
& S_{4}:=\sum_{\substack{\ell, m=1 \\
\ell \neq m}}^{M} \sum_{\substack{j=1 \\
j \neq m}}^{M} \bar{y}_{\ell} y_{m} s_{\ell, m} \cot \left(\pi\left(\psi_{j}-\psi_{m}\right)\right), \\
& S_{5}:=\sum_{\substack{j, \ell=1 \\
j \neq \ell}}^{M} \bar{y}_{\ell} y_{j} s_{j, \ell} \cot \left(\pi\left(\psi_{j}-\psi_{\ell}\right)\right)
\end{aligned}
$$

Note that $2 \operatorname{Re} S_{5}$ is the correction sum, since S_{3} contains the additional terms for $j=m$ and S_{4} contains the additional terms for $j=\ell$.
4. First we show that $S_{3}=S_{4}$. From (10.40) it follows that

$$
S_{3}=\sum_{\substack{\ell, j=1 \\ \ell \neq j}}^{M} \bar{y}_{\ell}\left(\sum_{m=1}^{M} y_{m} s_{\ell, m}\right) \cot \left(\pi\left(\psi_{j}-\psi_{\ell}\right)\right)=-i \lambda \sum_{\substack{\ell, j=1 \\ \ell \neq j}}^{M}\left|y_{\ell}\right|^{2} \cot \left(\pi\left(\psi_{j}-\psi_{\ell}\right)\right) .
$$

Analogously, we see that

$$
S_{4}=\sum_{\substack{j, m=1 \\ j \neq m}}^{M} y_{m}\left(\sum_{\ell=1}^{M} \bar{y}_{\ell} s_{\ell, m}\right) \cot \left(\pi\left(\psi_{j}-\psi_{m}\right)\right)=-\mathrm{i} \lambda \sum_{\substack{j, m=1 \\ j \neq m}}^{M}\left|y_{m}\right|^{2} \cot \left(\pi\left(\psi_{j}-\psi_{m}\right)\right) .
$$

Hence we obtain the estimate

$$
|\lambda|^{2}=\left|\mathbf{y}^{\mathrm{H}} \mathbf{S} \mathbf{y}\right|^{2}=S_{1}+S_{2}=S_{1}+2 \operatorname{Re} S_{5} \leq S_{1}+2\left|S_{5}\right|
$$

Using $2\left|\bar{y}_{\ell} y_{j}\right| \leq\left|y_{\ell}\right|^{2}+\left|y_{j}\right|^{2}$, we estimate

$$
\begin{aligned}
2\left|S_{5}\right| & \leq \sum_{\substack{j, \ell=1 \\
j \neq \ell}}^{M} 2\left|\bar{y}_{\ell} y_{j}\right|\left|s_{j, \ell} \cot \left(\pi\left(\psi_{j}-\psi_{\ell}\right)\right)\right| \\
& \leq 2 \sum_{\substack{j, \ell=1 \\
j \neq \ell}}^{M}\left|y_{\ell}\right|^{2}\left|s_{j, \ell} \cot \left(\pi\left(\psi_{j}-\psi_{\ell}\right)\right)\right|
\end{aligned}
$$

such that

$$
S_{1}+2\left|S_{5}\right| \leq \sum_{\substack{j, \ell=1 \\ j \neq \ell}}^{M}\left|y_{\ell}\right|^{2}\left[s_{j, \ell}^{2}+2\left|s_{j, \ell} \cot \left(\pi\left(\psi_{j}-\psi_{\ell}\right)\right)\right|\right]
$$

By Lemma 10.21 we obtain

$$
S_{1}+2\left|S_{5}\right| \leq \frac{3}{\pi^{2}} \sum_{\ell=1}^{M}\left|y_{\ell}\right|^{2} \sum_{\substack{j=1 \\ j \neq \ell}}^{M} d\left(\psi_{j}-\psi_{\ell}\right)^{-2}=\frac{3}{\pi^{2}} \sum_{\substack{j, \ell=1 \\ j \neq \ell}}^{M} d\left(\psi_{j}-\psi_{\ell}\right)^{-2}
$$

By assumption, the values $\psi_{j}, j=1, \ldots, M$, are spaced from each other by at least Δ, so that

$$
\sum_{\substack{j=1 \\ j \neq \ell}}^{M} d\left(\psi_{j}-\psi_{\ell}\right)^{-2}<2 \sum_{k=1}^{\infty}(k \Delta)^{-2}=\frac{\pi^{2}}{3 \Delta^{2}}
$$

and hence

$$
|\lambda|^{2}=S_{1}+S_{2} \leq S_{1}+2\left|S_{5}\right|<\frac{1}{\Delta^{2}}
$$

With the natural assumption that the nodes $z_{j}=\mathrm{e}^{2 \pi \mathrm{i} \psi_{j}}, j=1, \ldots, M$, are well-separated on the unit circle, it can be shown that the rectangular Vandermonde matrix $\mathbf{V}_{P, M}(\mathbf{z})$ is well conditioned for sufficiently large $P>M$.

Theorem 10.23 (See [11, 228, 243, 278]) Let $P \in \mathbb{N}$ with $P>\max \left\{M, \frac{1}{\Delta}\right\}$ be given. Assume that the frequencies $\psi_{j} \in \mathbb{R}, j=1, \ldots, M$, satisfy the gap condition (10.37) with a constant $\Delta>0$.

Then for all $\mathbf{c} \in \mathbb{C}^{M}$, the rectangular Vandermonde matrix $\mathbf{V}_{P, M}(\mathbf{z})$ with $\mathbf{z}=$ $\left(z_{j}\right)_{j=1}^{M}$ satisfies the inequalities

$$
\begin{equation*}
\left(P-\frac{1}{\Delta}\right)\|\mathbf{c}\|_{2}^{2} \leq\left\|\mathbf{V}_{P, M}(\mathbf{z}) \mathbf{c}\right\|_{2}^{2} \leq\left(P+\frac{1}{\Delta}\right)\|\mathbf{c}\|_{2}^{2} . \tag{10.41}
\end{equation*}
$$

Further the rectangular Vandermonde matrix $\mathbf{V}_{P, M}(\mathbf{z})$ has a uniformly bounded spectral norm condition number

$$
\operatorname{cond}_{2} \mathbf{V}_{P, M}(\mathbf{z}) \leq \sqrt{\frac{P \Delta+1}{P \Delta-1}}
$$

Proof

1. Simple computation shows that

$$
\begin{aligned}
& \left\|\mathbf{V}_{P, M}(\mathbf{z}) \mathbf{c}\right\|_{2}^{2}=\sum_{k=0}^{P-1}\left|\sum_{j=1}^{M} c_{j} z_{j}^{k}\right|^{2}=\sum_{k=0}^{P-1} \sum_{j, \ell=1}^{M} c_{j} \bar{c}_{\ell} \mathrm{e}^{2 \pi \mathrm{i}\left(\psi_{j}-\psi_{\ell}\right) k} \\
& =\sum_{k=0}^{P-1}\left(\sum_{j=1}^{M}\left|c_{j}\right|^{2}+\sum_{\substack{j, \ell=1 \\
j \neq \ell}}^{M} c_{j} \bar{c}_{\ell} \mathrm{e}^{2 \pi \mathrm{i}\left(\psi_{j}-\psi_{\ell}\right) k}\right) \\
& =P\|\mathbf{c}\|_{2}^{2}+\sum_{\substack{j, \ell=1 \\
j \neq \ell}}^{M} c_{j} \bar{c}_{\ell}\left(\sum_{k=0}^{P-1} \mathrm{e}^{2 \pi \mathrm{i}\left(\psi_{j}-\psi_{\ell}\right) k}\right)
\end{aligned}
$$

Determining the sum

$$
\begin{aligned}
& \sum_{k=0}^{P-1} \mathrm{e}^{2 \pi \mathrm{i}\left(\psi_{j}-\psi_{\ell}\right) k}=\frac{1-\mathrm{e}^{2 \pi \mathrm{i}\left(\psi_{j}-\psi_{\ell}\right) P}}{1-\mathrm{e}^{2 \pi \mathrm{i}\left(\psi_{j}-\psi_{\ell}\right)}} \\
& =\frac{1-\mathrm{e}^{2 \pi \mathrm{i}\left(\psi_{j}-\psi_{\ell}\right) P}}{2 \mathrm{i}^{\pi \mathrm{i}\left(\psi_{j}-\psi_{\ell}\right)} \sin \left(\pi\left(\psi_{j}-\psi_{\ell}\right)\right)}=-\frac{\mathrm{e}^{-\pi \mathrm{i}\left(\psi_{j}-\psi_{\ell}\right)}-\mathrm{e}^{\pi \mathrm{i}\left(\psi_{j}-\psi_{\ell}\right)(2 P-1)}}{2 \mathrm{i} \sin \left(\pi\left(\psi_{j}-\psi_{\ell}\right)\right)}
\end{aligned}
$$

we obtain

$$
\begin{equation*}
\left\|\mathbf{V}_{P, M}(\mathbf{z}) \mathbf{c}\right\|_{2}^{2}=P\|\mathbf{c}\|_{2}^{2}-\Sigma_{1}+\Sigma_{2} \tag{10.42}
\end{equation*}
$$

with the sums

$$
\Sigma_{1}:=\sum_{\substack{j, \ell=1 \\ j \neq \ell}}^{M} \frac{c_{j} \bar{c}_{\ell} \mathrm{e}^{-\pi \mathrm{i}\left(\psi_{j}-\psi_{\ell}\right)}}{2 \mathrm{i} \sin \left(\pi\left(\psi_{j}-\psi_{\ell}\right)\right)}, \quad \Sigma_{2}:=\sum_{\substack{j, \ell=1 \\ j \neq \ell}}^{M} \frac{c_{j} \bar{c}_{\ell} \mathrm{e}^{\pi \mathrm{i}\left(\psi_{j}-\psi_{\ell}\right)(2 P-1)}}{2 \mathrm{i} \sin \left(\pi\left(\psi_{j}-\psi_{\ell}\right)\right)} .
$$

The nodes $z_{j}=\mathrm{e}^{2 \pi \mathrm{i} \psi_{j}}, j=1, \ldots, M$, are distinct, since we have (10.37) by assumption. Applying the generalized Hilbert inequality in (10.39) first with $x_{k}:=c_{k} \mathrm{e}^{-\pi \mathrm{i} \psi_{k}}, k=1, \ldots, M$, yields

$$
\begin{equation*}
\left|\Sigma_{1}\right| \leq \frac{1}{2 \Delta} \sum_{k=1}^{M}\left|c_{k} \mathrm{e}^{-\pi \mathrm{i} \psi_{k}}\right|^{2}=\frac{1}{2 \Delta}\|\mathbf{c}\|_{2}^{2} \tag{10.43}
\end{equation*}
$$

and then with $x_{k}:=c_{k} \mathrm{e}^{\pi \mathrm{i} \psi_{k}(2 P-1)}, k=1, \ldots, M$, results in

$$
\begin{equation*}
\left|\Sigma_{2}\right| \leq \frac{1}{2 \Delta} \sum_{k=1}^{M}\left|c_{k} \mathrm{e}^{\pi \mathrm{i} \psi_{k}(2 P-1)}\right|^{2}=\frac{1}{2 \Delta}\|\mathbf{c}\|_{2}^{2} \tag{10.44}
\end{equation*}
$$

From (10.42)-(10.44) the assertion (10.41) follows by the triangle inequality.
2. Let $\mu_{1} \geq \ldots \geq \mu_{M}>0$ be the ordered eigenvalues of $\mathbf{V}_{P, M}(\mathbf{z})^{\mathrm{H}} \mathbf{V}_{P, M}(\mathbf{z}) \in$ $\mathbf{C}^{M \times M}$. Using the Raleigh-Ritz theorem (see [169, pp. 234-235]) and (10.41), we obtain that for all $\mathbf{c} \in \mathbb{C}^{M}$

$$
\left(P-\frac{1}{\Delta}\right)\|\mathbf{c}\|_{2}^{2} \leq \mu_{M}\|\mathbf{c}\|_{2}^{2} \leq\left\|\mathbf{V}_{P, M}(\mathbf{z}) \mathbf{c}\right\|_{2}^{2} \leq \mu_{1}\|\mathbf{c}\|_{2}^{2} \leq\left(P+\frac{1}{\Delta}\right)\|\mathbf{c}\|_{2}^{2}
$$

and hence

$$
\begin{equation*}
0<P-\frac{1}{\Delta} \leq \lambda_{M} \leq \lambda_{1} \leq P+\frac{1}{\Delta}<\infty . \tag{10.45}
\end{equation*}
$$

Thus $\mathbf{V}_{P, M}(\mathbf{z})^{\mathrm{H}} \mathbf{V}_{P, M}(\mathbf{z})$ is positive definite and

$$
\operatorname{cond}_{2} \mathbf{V}_{P, M}(\mathbf{z})=\sqrt{\frac{\mu_{1}}{\mu_{M}}} \leq \sqrt{\frac{P \Delta+1}{P \Delta-1}} .
$$

The inequalities (10.41) can be interpreted as discrete versions of the Ingham inequalities (10.29). Now the exponentials $\mathrm{e}^{2 \pi \mathrm{i} \psi_{j}}$ are replaced by their discretizations

$$
\mathbf{e}_{P}\left(\psi_{j}\right)=\left(\mathrm{e}^{2 \pi \mathrm{i} \psi_{j} k}\right)_{k=0}^{P-1}, \quad j=1, \ldots, M,
$$

with sufficiently large integer $P>\max \left\{M, \frac{1}{\Delta}\right\}$. Thus the rectangular Vandermonde matrix can be written as

$$
\mathbf{V}_{P, M}(\mathbf{z})=\left(\mathbf{e}_{P}\left(\psi_{1}\right)\left|\mathbf{e}_{P}\left(\psi_{2}\right)\right| \ldots \mid \mathbf{e}_{P}\left(\psi_{M}\right)\right)
$$

with $\mathbf{z}=\left(z_{j}\right)_{j=1}^{M}$, where $z_{j}=\mathrm{e}^{2 \pi \mathrm{i} \psi_{j}}, j=1, \ldots, M$, are distinct nodes on the unit circle. Then (10.41) provides the discrete Ingham inequalities

$$
\begin{equation*}
\left(P-\frac{1}{\Delta}\right)\|\mathbf{c}\|_{2}^{2} \leq\left\|\sum_{j=1}^{M} c_{j} \mathbf{e}_{P}\left(\varphi_{j}\right)\right\|_{2}^{2} \leq\left(P+\frac{1}{\Delta}\right)\|\mathbf{c}\|_{2}^{2} \tag{10.46}
\end{equation*}
$$

for all $\mathbf{c}=\left(c_{j}\right)_{j=1}^{M} \in \mathbb{C}^{M}$. In other words, (10.46) means that the vectors $\mathbf{e}_{P}\left(\varphi_{j}\right)$, $j=1, \ldots, M$, are also Riesz stable.

Corollary 10.24 With the assumptions of Theorem 10.23, the inequalities

$$
\begin{equation*}
\left(P-\frac{1}{\Delta}\right)\|\mathbf{d}\|_{2}^{2} \leq\left\|\mathbf{V}_{P, M}(\mathbf{z})^{\top} \mathbf{d}\right\|_{2}^{2} \leq\left(P+\frac{1}{\Delta}\right)\|\mathbf{d}\|_{2}^{2} \tag{10.47}
\end{equation*}
$$

hold for all $\mathbf{d} \in \mathbb{C}^{P}$.
Proof The matrices $\mathbf{V}_{P, M}(\mathbf{z})$ and $\mathbf{V}_{P, M}(\mathbf{z})^{\top}$ possess the same singular values μ_{j}, $j=1, \ldots, M$. By the Rayleigh-Ritz theorem we obtain that

$$
\lambda_{M}\|\mathbf{d}\|_{2}^{2} \leq\left\|\mathbf{V}_{P, M}(\mathbf{z})^{\top} \mathbf{d}\right\|_{2}^{2} \leq \lambda_{1}\|\mathbf{d}\|_{2}^{2}
$$

for all $\mathbf{d} \in \mathbb{C}^{P}$. Applying (10.45), we obtain the inequalities in (10.47).
Remark 10.25 In [11,21], the authors derive bounds on the extremal singular values and the condition number of the rectangular Vandermonde matrix $\mathbf{V}_{P, M}(\mathbf{z})$ with $P \geq M$ and $\mathbf{z}=\left(z_{j}\right)_{j=1}^{M} \in \mathbb{C}^{M}$, where the nodes are inside the unit disk, i.e., $\left|z_{j}\right| \leq 1$ for $j=1, \ldots, M$. In [278] it is investigated how the condition of the Vandermonde matrix can be improved using a single shift parameter σ that transfers ψ_{j} to $\sigma \psi_{j}$ for $j=1, \ldots, M$. This result is in turn applied to improve the stability of an algorithm for the fast sparse Fourier transform.

Employing the Vandermonde decomposition of the Hankel matrix $\mathbf{H}_{L, N-L+1}$ we obtain

$$
\begin{equation*}
\mathbf{H}_{L, N-L+1}=\mathbf{V}_{L, M}(\mathbf{z})(\operatorname{diag} \mathbf{c})\left(\mathbf{V}_{N-L+1, M}(\mathbf{z})\right)^{\top} \tag{10.48}
\end{equation*}
$$

Therefore, we can also derive the condition of the Hankel matrix $\mathbf{H}_{L, N-L+1}$.
Theorem 10.26 Let $L, N \in \mathbb{N}$ with $M \leq L \leq N-M+1$ and $\min \{L, N-L+1\}>$ $\frac{1}{\Delta}$ be given. Assume that the frequencies $\psi_{j} \in \mathbb{R}, j=1, \ldots, M$, are well-separated at least by a constant $\Delta>0$ and that the nonzero coefficients $c_{j}, j=1, \ldots, M$, of the exponential sum (10.1) satisfy the condition

$$
\begin{equation*}
0<\gamma_{1} \leq\left|c_{j}\right| \leq \gamma_{2}<\infty, \quad j=1, \ldots, M \tag{10.49}
\end{equation*}
$$

Then for all $\mathbf{y} \in \mathbb{C}^{N-L+1}$ we have

$$
\begin{equation*}
\gamma_{1}^{2} \alpha_{1}(L, N, \Delta)\|\mathbf{y}\|_{2}^{2} \leq\left\|\mathbf{H}_{L, N-L+1} \mathbf{y}\right\|_{2}^{2} \leq \gamma_{2}^{2} \alpha_{2}(L, N, \Delta)\|\mathbf{y}\|_{2}^{2} \tag{10.50}
\end{equation*}
$$

with

$$
\begin{aligned}
& \alpha_{1}(L, N, \Delta):=\left(L-\frac{1}{\Delta}\right)\left(N-L+1-\frac{1}{\Delta}\right), \\
& \alpha_{2}(L, N, \Delta):=\left(L+\frac{1}{\Delta}\right)\left(N-L+1+\frac{1}{\Delta}\right) .
\end{aligned}
$$

Further, the lowest (nonzero), respectively, largest singular value of $\mathbf{H}_{L, N-L+1}$ can be estimated by

$$
\begin{equation*}
0<\gamma_{1} \sqrt{\alpha_{1}(L, N, \Delta)} \leq \sigma_{M} \leq \sigma_{1} \leq \gamma_{2} \sqrt{\alpha_{2}(L, N, \Delta)} \tag{10.51}
\end{equation*}
$$

The spectral norm condition number of $\mathbf{H}_{L, N-L+1}$ is bounded by

$$
\begin{equation*}
\operatorname{cond}_{2} \mathbf{H}_{L, N-L+1} \leq \frac{\gamma_{2}}{\gamma_{1}} \sqrt{\frac{\alpha_{2}(L, N, \Delta)}{\alpha_{1}(L, N, \Delta)}} \tag{10.52}
\end{equation*}
$$

Proof By the Vandermonde decomposition (10.48) of the Hankel matrix $\mathbf{H}_{L, N-L+1}$, we obtain that for all $\mathbf{y} \in \mathbb{C}^{N-L+1}$

$$
\left\|\mathbf{H}_{L, N-L+1} \mathbf{y}\right\|_{2}^{2}=\left\|\mathbf{V}_{L, M}(\mathbf{z})(\operatorname{diag} \mathbf{c}) \mathbf{V}_{N-L+1, M}(\mathbf{z})^{\top} \mathbf{y}\right\|_{2}^{2} .
$$

The estimates in (10.41) and the assumption (10.49) imply

$$
\begin{aligned}
\gamma_{1}^{2}\left(L-\frac{1}{\Delta}\right)\left\|\mathbf{V}_{N-L+1, M}(\mathbf{z})^{\top} \mathbf{y}\right\|_{2}^{2} & \leq\left\|\mathbf{H}_{L, N-L+1} \mathbf{y}\right\|_{2}^{2} \\
& \leq \gamma_{2}^{2}\left(L+\frac{1}{\Delta}\right)\left\|\mathbf{V}_{N-L+1, M}(\mathbf{z})^{\top} \mathbf{y}\right\|_{2}^{2} .
\end{aligned}
$$

Using the inequalities in (10.47), we obtain (10.50). Finally, the estimates of the extremal singular values and the spectral norm condition number of $\mathbf{H}_{L, N-L+1}$ are a consequence of (10.50) and the Rayleigh-Ritz theorem.

Remark 10.27 For fixed N, the positive singular values as well as the spectral norm condition number of the Hankel matrix $\mathbf{H}_{L, N-L+1}$ depend strongly on $L \in$ $\{M, \ldots, N-M+1\}$. A good criterion for the choice of an optimal window length L is to maximize the lowest positive singular value σ_{M} of $\mathbf{H}_{L, N-L+1}$. It was shown in [287, Lemma 3.1 and Remark 3.3] that the squared singular values increase almost monotonously for $L=M, \ldots,\left\lceil\frac{N}{2}\right\rceil$ and decrease almost monotonously for $L=\left\lceil\frac{N}{2}\right\rceil, \ldots, N-M+1$. Note that the lower bound (10.51) of the lowest positive singular value σ_{M} is maximal for $L \approx \frac{N}{2}$. Further the upper bound (10.52) of the spectral norm condition number of the exact Hankel matrix $\mathbf{H}_{L, N-L+1}$ is minimal for $L \approx \frac{N}{2}$. Therefore we prefer to choose $L \approx \frac{N}{2}$ as optimal window length. Then we can ensure that $\sigma_{M}>0$ is not too small. This observation is essential for the correct detection of the order M in the first step of the MUSIC Algorithm and ESPRIT Algorithm.

10.4 Recovery of Structured Functions

The reconstruction of a compactly supported, structured function from the knowledge of samples of its Fourier transform is a common problem in several scientific areas such as radio astronomy, computerized tomography, and magnetic resonance imaging.

10.4.1 Recovery from Fourier Data

Let us start with the problem of reconstruction of spline functions with arbitrary knots.

For given $m, n \in \mathbb{N}$, let $t_{j} \in \mathbb{R}, j=1, \ldots, m+n$, be distinct knots with $-\infty<t_{1}<t_{2}<\ldots<t_{m+n}<\infty$. A function $s: \mathbb{R} \rightarrow \mathbb{R}$ with compact support supp $s \subseteq\left[t_{1}, t_{m+n}\right]$ is a spline of order m, if s restricted on $\left[t_{j}, t_{j+1}\right)$ is a polynomial of degree $m-1$ for each $j=1, \ldots, m+n-1$, if $s(x)=0$ for all $x \in \mathbb{R} \backslash\left[t_{1}, t_{m+n}\right]$, and if $s \in C^{m-2}(\mathbb{R})$. The points t_{j} are called spline knots. Note that $C^{0}(\mathbb{R}):=C(\mathbb{R})$ and that $C^{-1}(\mathbb{R})$ is the set of piecewise continuous functions. Denoting with $\mathscr{S}_{m}\left[t_{1}, \ldots, t_{m+n}\right]$ the linear space of all splines of order m relative to the fixed spline knots t_{j}, then $\operatorname{dim} \mathscr{S}_{m}\left[t_{1}, \ldots, t_{m+n}\right]=n$. For $m=1$, splines of $\mathscr{S}_{1}\left[t_{1}, \ldots, t_{n+1}\right]$ are step functions of the form

$$
\begin{equation*}
s(x):=\sum_{j=1}^{n} c_{j} \chi_{\left[t_{j}, t_{j+1}\right)}(x), \quad x \in \mathbb{R} \tag{10.53}
\end{equation*}
$$

where c_{j} are real coefficients with $c_{j} \neq c_{j+1}, j=1, \ldots, n-1$, and where $\chi_{\left[t_{j}, t_{j+1}\right)}$ denotes the characteristic function of the interval $\left[t_{j}, t_{j+1}\right)$. Obviously, the piecewise constant splines

$$
B_{j}^{1}(x)=\chi_{\left[t_{j}, t_{j+1}\right)}(x), \quad j=1, \ldots, n
$$

have minimal support in $\mathscr{S}_{1}\left[t_{1}, \ldots, t_{n+1}\right]$ and form a basis of the spline space $\mathscr{S}_{1}\left[t_{1}, \ldots, t_{n+1}\right]$. Therefore B_{j}^{1} are called B-spline or basis spline of order 1 .

Forming the Fourier transform

$$
\hat{s}(\omega):=\int_{\mathbb{R}} s(x) \mathrm{e}^{-\mathrm{i} x \omega} \mathrm{~d} x, \quad \omega \in \mathbb{R} \backslash\{0\}
$$

of $s(x)$ in (10.53) we obtain the exponential sum

$$
\begin{align*}
h(\omega) & :=\mathrm{i} \omega \hat{s}(\omega)=\sum_{j=1}^{n+1}\left(c_{j}-c_{j-1}\right) \mathrm{e}^{-\mathrm{i} \omega t_{j}} \\
& =\sum_{j=1}^{n+1} c_{j}^{1} \mathrm{e}^{-\mathrm{i} \omega t_{j}}, \quad \omega \in \mathbb{R} \backslash\{0\}, \tag{10.54}
\end{align*}
$$

with $c_{0}=c_{n+1}:=0, c_{j}^{1}:=c_{j}-c_{j-1}, j=1, \ldots, n+1$, and $h(0):=0$. First we consider the recovery of a real step function (10.53) by given Fourier samples (see [276]).

Lemma 10.28 Assume that a constant $\tau>0$ satisfies the condition $t_{j} \tau \in[-\pi, \pi)$ for $j=1, \ldots, n+1$. Then the real step function (10.53) can be completely recovered by given Fourier samples $\hat{s}(\ell \tau), \ell=1, \ldots, N$ with $N \geq n+1$.

Proof By (10.54), the function h is an exponential sum of order $n+1$. Since s is real, we have $h(\omega)=\overline{h(-\omega)}$. For given samples $\hat{s}(\ell \tau), \ell=1, \ldots, N$ with $N \geq n+1$, we can apply the reconstruction methods for the exponential sum h as described in Sect. 9.2, where the $2 N+1$ values

$$
h(\ell \tau)= \begin{cases}\mathrm{i} \ell \tau \hat{s}(\ell \tau) & \ell=1, \ldots, N \\ \hat{h}(-\ell \tau) & \ell=-N, \ldots,-1 \\ 0 & \ell=0\end{cases}
$$

are given. In this way, we determine all spline knots t_{j} and coefficients $c_{j}^{1}, j=$ $1, \ldots, n+1$. Finally, the coefficients c_{j} of the step function (10.53) are obtained by the recursion $c_{j}=c_{j-1}+c_{j}^{1}, j=2, \ldots, n$, with $c_{1}=c_{1}^{1}$. Hence, the step function in (10.53) can be completely reconstructed.

Remark 10.29 A similar technique can be applied, if the support $\left[t_{1}, t_{n+1}\right]$ of the step function (10.53) is contained in $[-\pi, \pi]$ and some Fourier coefficients

$$
c_{k}(s):=\frac{1}{2 \pi} \int_{-\pi}^{\pi} s(x) \mathrm{e}^{-\mathrm{i} k x} \mathrm{~d} x, \quad k \in \mathbb{Z}
$$

are given. For the step function (10.53) we obtain

$$
\begin{aligned}
2 \pi \mathrm{i} c_{k}(s) & =\sum_{j=1}^{n+1}\left(c_{j}-c_{j-1}\right) \mathrm{e}^{-\mathrm{i} t_{j} k}, \quad k \in \mathbb{Z} \backslash\{0\} \\
2 \pi c_{0}(s) & =\sum_{j=1}^{n} c_{j}\left(t_{j+1}-t_{j}\right) .
\end{aligned}
$$

Thus one can determine the breakpoints t_{j} and the coefficients c_{j} by a method of Sect. 10.2 using only the Fourier coefficients $c_{k}(s), k=0, \ldots, n+1$.

This approach can be easily transferred to higher order spline functions of the form

$$
\begin{equation*}
s(x):=\sum_{j=1}^{n} c_{j} B_{j}^{m}(x), \quad x \in \mathbb{R} \tag{10.55}
\end{equation*}
$$

where $B_{j}^{m}, j=1, \ldots, n$, is the B -spline of order m with arbitrary knots t_{j}, \ldots, t_{j+m}. The B-splines B_{j}^{m}, see [79, p. 90], satisfy the recurrence relation

$$
B_{j}^{m}(x)=\frac{x-t_{j}}{t_{j+m-1}-t_{j}} B_{j}^{m-1}(x)+\frac{t_{j+1}-x}{t_{j+m}-t_{j+1}} B_{j+1}^{m-1}(x)
$$

with initial condition $B_{j}^{1}(x)=\chi_{\left[t_{j}, t_{j+1}\right)}(x)$. The support of B_{j}^{m} is the interval [t_{j}, t_{j+m}]. In the case $m=2$, we obtain the hat function as the linear B-spline

$$
B_{j}^{2}(x)= \begin{cases}\frac{x-t_{j}}{t_{j+1}-t_{j}} & x \in\left[t_{j}, t_{j+1}\right) \\ \frac{t_{j+1}-x}{t_{j+2}-t_{j+1}} & x \in\left[t_{j+1}, t_{j+2}\right) \\ 0 & x \in \mathbb{R} \backslash\left[t_{j}, t_{j+2}\right)\end{cases}
$$

As known, the linear B-splines $B_{j}^{2}, j=1, \ldots, n$ form a basis of the spline space $\mathscr{S}_{2}\left[t_{1}, \ldots, t_{n+2}\right]$. For $m \geq 3$, the first derivative of B_{j}^{m} can be computed by

$$
\begin{equation*}
\left(B_{j}^{m}\right)^{\prime}(x)=(m-1)\left(\frac{B_{j}^{m-1}(x)}{t_{j+m-1}-t_{j}}-\frac{B_{j+1}^{m-1}(x)}{t_{j+m}-t_{j+1}}\right), \tag{10.56}
\end{equation*}
$$

see [79, p. 115]. The formula (10.56) can be also applied for $m=2$, if we replace the derivative by the right-hand derivative. Then we obtain for the k th derivative of $s(x)$ in (10.55) with $k=1, \ldots, m-1$

$$
\begin{equation*}
s^{(k)}(x)=\sum_{j=1}^{n} c_{j}\left(B_{j}^{m}\right)^{(k)}(x)=\sum_{j=1}^{n+k} c_{j}^{m-k} B_{j}^{m-k}(x), \tag{10.57}
\end{equation*}
$$

where the real coefficients c_{j}^{m-k} can be recursively evaluated from c_{j} using (10.56). Hence the $(m-1)$ th derivative of $s(x)$ in (10.55) is a real step function

$$
s^{(m-1)}(x)=\sum_{j=1}^{n+m-1} c_{j}^{1} B_{j}^{1}(x)=\sum_{j=1}^{n+m-1} c_{j}^{1} \chi_{\left[t_{j}, t_{j+1}\right)}(x) .
$$

Application of the Fourier transform yields

$$
\begin{align*}
(\mathrm{i} \omega)^{m-1} \hat{s}(\omega) & =\sum_{j=1}^{n+m-1} \frac{c_{j}^{1}}{\mathrm{i} \omega}\left(\mathrm{e}^{-\mathrm{i} \omega t_{j}}-\mathrm{e}^{-\mathrm{i} \omega t_{j+1}}\right) \tag{10.58}\\
& =\frac{1}{\mathrm{i} \omega} \sum_{j=1}^{n+m} c_{j}^{0} \mathrm{e}^{-\mathrm{i} \omega t_{j}} \tag{10.59}
\end{align*}
$$

where $c_{j}^{0}:=c_{j}^{1}-c_{j-1}^{1}, j=1, \ldots, n+m$, with the convention $c_{0}^{1}=c_{n+m}^{1}:=0$. Thus we obtain the exponential sum of order $n+m$

$$
\begin{equation*}
(\mathrm{i} \omega)^{m} \hat{s}(\omega)=\sum_{j=1}^{n+m} c_{j}^{0} \mathrm{e}^{-\mathrm{i} \omega t_{j}} \tag{10.60}
\end{equation*}
$$

Hence we can recover a real spline function (10.55) by given Fourier samples.
Theorem 10.30 Assume that $s(x)$ possesses the form (10.55) with unknown coefficients $c_{j} \in \mathbb{R} \backslash\{0\}$ and an unknown knot sequence $-\infty<t_{1}<t_{2}<\ldots<$ $t_{n+m}<\infty$. Assume that there is a given constant $\tau>0$ satisfying the condition $t_{j} \tau \in[-\pi, \pi)$ for $j=1, \ldots, n+m$.

Then the real spline function $s(x)$ in (10.55) of order m can be completely recovered by given Fourier samples $\hat{s}(\ell \tau), \ell=1, \ldots, N$ with $N \geq n+m$.

Proof The Fourier transform of (10.55) satisfies Eq. (10.60) such that $h(\omega):=$ $(\mathrm{i} \omega)^{m} \hat{s}(\omega)$ is an exponential sum of order $n+m$. Using a reconstruction method of Sect. 10.2, we compute the knots t_{j} and the coefficients c_{j}^{0} for $j=1, \ldots, n+m$. Applying the formulas (10.56) and (10.57), we obtain the following recursion for the coefficients c_{j}^{k}

$$
c_{j}^{k+1}:= \begin{cases}c_{j}^{0}+c_{j-1}^{1} & k=0, j=1, \ldots, n+m-1, \\ \frac{t_{m+1-k}-t_{j}}{m-k} c_{j}^{k}+c_{j-1}^{k+1} & k=1, \ldots, m-1, j=1, \ldots, n+m-k-1\end{cases}
$$

with the convention $c_{0}^{k}:=0, k=1, \ldots, m$. Then $c_{j}^{m}, j=1, \ldots, n$, are the reconstructed coefficients c_{j} of (10.55).

Remark 10.31 The above proof of Theorem 10.30 is constructive. In particular, if n is unknown, but we have an upper bound of n, then the reconstruction method in Sect. 10.2 will also find the correct knots t_{j} and the corresponding coefficients c_{j} from N Fourier samples with $N \geq n+m$, and the numerical procedure will be more stable, see, e.g., [112, 266, 282].

In the above proof we rely on the fact that $c_{j}^{0} \neq 0$ for $j=1, \ldots, n+m$. If we have the situation that $c_{j_{0}}^{0}=0$ for an index $j_{0} \in\{1, \ldots, n+m\}$, then we will not be able to reconstruct the knot $t_{j_{0}}$. But this situation will only occur, if the representation
(10.55) is redundant, i.e., if the spline in (10.55) can be represented by less than n summands, so we will still be able to recover the exact function s. Observe that the above recovery procedure always results in the simplest representation of s so that the reconstructed representation of s of the form (10.55) does not possess redundant terms.

Now we generalize this method and recover linear combinations of translates of a fixed real function $\Phi \in C(\mathbb{R}) \cap L_{1}(\mathbb{R})$

$$
\begin{equation*}
f(x):=\sum_{j=1}^{n} c_{j} \Phi\left(x+t_{j}\right), \quad x \in \mathbb{R} \tag{10.61}
\end{equation*}
$$

with real coefficients $c_{j} \neq 0, j=1, \ldots, n$, and shift parameters t_{j} with $-\infty<$ $t_{1}<\ldots<t_{n}<\infty$. Assume that Φ is a low-pass filter function with a Fourier transform $\widehat{\Phi}$ that is bounded away from zero, i.e. $|\widehat{\Phi}(\omega)|>C_{0}$ for $\omega \in(-T, T)$ for some positive constants C_{0} and T.

Example 10.32 As a low-pass filter function Φ we can take the centered cardinal B-spline $\Phi=M_{m}$ of order m, see Example 9.1 with

$$
\widehat{M}_{m}(\omega)=\left(\operatorname{sinc} \frac{\omega}{2}\right)^{m} \neq 0, \quad \omega \in(-2 \pi, 2 \pi)
$$

the Gaussian function $\Phi(x)=\mathrm{e}^{-x^{2} / \sigma^{2}}, x \in \mathbb{R}$, with $\sigma>0$, where the Fourier transform reads as follows:

$$
\widehat{\Phi}(\omega)=\sqrt{\pi} \sigma \mathrm{e}^{-\sigma^{2} \omega^{2} / 4}>0, \quad \omega \in \mathbb{R}
$$

the Meyer window Φ with $T=\frac{2}{3}$ and the corresponding Fourier transform

$$
\widehat{\Phi}(\omega)= \begin{cases}1 & |\omega| \leq \frac{1}{3} \\ \cos \left(\frac{\pi}{2}(3|\omega|-1)\right) & \frac{1}{3}<|\omega| \leq \frac{2}{3} \\ 0 & \omega \in \mathbb{R} \backslash\left[-\frac{2}{3}, \frac{2}{3}\right]\end{cases}
$$

or a real-valued Gabor function $\Phi(x)=\mathrm{e}^{-\alpha x^{2}} \cos (\beta x)$ with positive constants α and β, where

$$
\widehat{\Phi}(\omega)=\sqrt{\frac{\pi}{4 \alpha}}\left(\mathrm{e}^{-(\beta-\omega)^{2} /(4 \alpha)}+\mathrm{e}^{-(\omega+\beta)^{2} /(4 \alpha)}\right)>0, \quad \omega \in \mathbb{R}
$$

The Fourier transform of (10.61) yields

$$
\begin{equation*}
\hat{f}(\omega)=\widehat{\Phi}(\omega) \sum_{j=1}^{n} c_{j} \mathrm{e}^{\mathrm{i} \omega t_{j}}, \quad \omega \in \mathbb{R} \tag{10.62}
\end{equation*}
$$

Theorem 10.33 Let $\Phi \in C(\mathbb{R}) \cap L_{1}(\mathbb{R})$ be a given function with $|\widehat{\Phi}(\omega)|>C_{0}$ for all $\omega \in(-T, T)$ with some $C_{0}>0$ Assume that $f(x)$ is of the form (10.61) with unknown coefficients $c_{j} \in \mathbb{R} \backslash\{0\}, j=1, \ldots, n$ and unknown shift parameters $-\infty<t_{1}<\ldots<t_{n}<\infty$. Let $h>0$ be a given constant satisfying $\left|h t_{j}\right|<$ $\min \{\pi, T\}$ for all $j=1, \ldots, n$.

Then the function f can be uniquely recovered by the Fourier samples $\hat{f}(\ell h)$, $\ell=0, \ldots, N$ with $N \geq n$.

Proof Using the assumption on $\widehat{\Phi}$, it follows from (10.62) that the function

$$
h(\omega):=\frac{\hat{f}(\omega)}{\widehat{\Phi}(\omega)}=\sum_{j=1}^{n} c_{j} \mathrm{e}^{\mathrm{i} \omega t_{j}}, \quad \omega \in(-T, T),
$$

is an exponential sum of order n. Hence we can compute all shift parameters t_{j} and coefficients $c_{j}, j=1, \ldots, n$, by a reconstruction method given in Sect. 10.2.

10.4.2 Recovery from Function Samples

In this section we want to study the question, how to recover periodic structured functions directly from given function values.

Let $\varphi \in C(\mathbb{T})$ be an even, nonnegative function with uniformly convergent Fourier expansion. Assume that all Fourier coefficients

$$
c_{k}(\varphi)=\frac{1}{2 \pi} \int_{-\pi}^{\pi} \varphi(x) \mathrm{e}^{-\mathrm{i} k x} \mathrm{~d} x=\frac{1}{\pi} \int_{0}^{\pi} \varphi(x) \cos (k x) \mathrm{d} x, \quad k \in \mathbb{Z},
$$

are nonnegative and that $c_{k}(\varphi)>0$ for $k=0, \ldots, \frac{N}{2}$, where $N \in 2 \mathbb{N}$ is fixed. Such a function φ is called a 2π-periodic window function.

Example 10.34 A well-known 2π-periodic window function is the 2π periodization

$$
\begin{equation*}
\varphi(x):=\sum_{k \in \mathbb{Z}} \Phi(x+2 \pi k), \quad x \in \mathbb{R}, \tag{10.63}
\end{equation*}
$$

of the Gaussian function

$$
\Phi(x):=\frac{1}{\sqrt{\pi b}} \mathrm{e}^{-(n x)^{2} / b}, \quad x \in \mathbb{R}
$$

with some $n \in \mathbb{N}$ and $b \geq 1$, where the Fourier coefficients are

$$
c_{k}(\varphi)=\frac{1}{2 \pi n} \mathrm{e}^{-b k^{2} /\left(4 n^{2}\right)}, \quad k \in \mathbb{Z} .
$$

Another window function is the 2π-periodization (10.63) of the centered cardinal B-spline of order $2 m$

$$
\Phi(x)=M_{2 m}(n x), \quad x \in \mathbb{R},
$$

with some $m, n \in \mathbb{N}$, where the Fourier coefficients are

$$
c_{k}(\varphi)=\frac{1}{2 \pi n}\left(\operatorname{sinc} \frac{k}{2 n}\right)^{2 m}, \quad k \in \mathbb{Z} .
$$

Further, a possible 2π-periodic window function is the 2π-periodization (10.63) of the Kaiser-Bessel function, see [250, p. 80].

$$
\Phi(x)= \begin{cases}\frac{\sinh \left(b \sqrt{m^{2}-n^{2} x^{2}}\right)}{\pi \sqrt{m^{2}-n^{2} x^{2}}} & |x|<\frac{m}{n}, \\ \frac{b}{\pi} & x= \pm \frac{m}{n}, \\ \frac{\sin \left(b \sqrt{n^{2} x^{2}-m^{2}}\right)}{\pi \sqrt{n^{2} x^{2}-m^{2}}} & |x|>\frac{m}{n}\end{cases}
$$

with fixed $m, n \in \mathbb{N}$ and $b=1-\frac{1}{2 \alpha}, \alpha>1$, where the Fourier coefficients read as follows:

$$
c_{k}(\varphi)= \begin{cases}\frac{1}{2 \pi n} I_{0}\left(m \sqrt{b^{2}-k^{2} / n^{2}}\right) & |k| \leq n b \\ 0 & |k|>n b\end{cases}
$$

Here I_{0} denotes the modified Bessel function of order zero defined by

$$
I_{0}(x):=\sum_{k=0}^{\infty} \frac{x^{2 k}}{4^{k}(k!)^{2}}, \quad x \in \mathbb{R} .
$$

Now we consider a linear combination

$$
\begin{equation*}
f(x):=\sum_{j=1}^{M} c_{j} \varphi\left(x+t_{j}\right) \tag{10.64}
\end{equation*}
$$

of translates $\varphi\left(\cdot+t_{j}\right)$ with nonzero coefficients $c_{j} \in \mathbb{C}$ and distinct shift parameters

$$
-\pi \leq t_{1}<t_{2}<\ldots<t_{M} \leq \pi .
$$

Then we have $f \in C(\mathbb{T})$. Let $N \in 2 \mathbb{N}$ with $N>2 M+1$ be given. We introduce an oversampling factor $\alpha>1$ such that $n=\alpha N$ is a power of two. Assume that perturbed, uniformly sampled data of (10.64)

$$
\begin{equation*}
f_{\ell}=f\left(\frac{2 \pi \ell}{n}\right)+e_{\ell}, \quad \ell=0, \ldots, n-1 \tag{10.65}
\end{equation*}
$$

are given, where the error terms $e_{\ell} \in \mathbb{C}$ are bounded by $\left|e_{\ell}\right| \leq \varepsilon_{1}$ with $0<\varepsilon_{1} \ll 1$. Further we suppose that $\left|c_{j}\right| \gg \varepsilon_{1}$ for all $j=1, \ldots, M$.

Then we consider the following reconstruction problem, see [266]:
Determine the shift parameters $t_{j} \in[-\pi, \pi)$, the complex coefficients $c_{j} \neq 0$, and the number M of translates in such a way that

$$
f_{\ell} \approx \sum_{j=1}^{M} c_{j} \varphi\left(\frac{2 \pi \ell}{n}+t_{j}\right), \quad \ell=0, \ldots, n-1
$$

Note that all reconstructed values of t_{j}, c_{j}, and M depend on ε_{1} and n.
This problem can be numerically solved in two steps. First we convert the given problem into a frequency analysis problem (10.2) for an exponential sum by using Fourier technique. Then the parameters of the exponential sum are recovered by the methods of Sect. 10.2.

For the 2π-periodic function in (10.64), we compute the corresponding Fourier coefficients

$$
\begin{equation*}
c_{k}(f)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(x) \mathrm{e}^{-\mathrm{i} k x} \mathrm{~d} x=\left(\sum_{j=1}^{M} c_{j} \mathrm{e}^{\mathrm{i} k t_{j}}\right) c_{k}(\varphi)=h(k) c_{k}(\varphi) \tag{10.66}
\end{equation*}
$$

with the exponential sum

$$
\begin{equation*}
h(x):=\sum_{j=1}^{M} c_{j} \mathrm{e}^{\mathrm{i} x t_{j}}, \quad x \in \mathbb{R} . \tag{10.67}
\end{equation*}
$$

In applications, the Fourier coefficients $c_{k}(\varphi)$ of the chosen 2π-periodic window function φ are often explicitly known (see Example 10.34), where $c_{k}(\varphi)>0$ for all $k=0, \ldots, \frac{N}{2}$. Further the function (10.64) is sampled on a fine grid, i.e., we are given noisy sampled data (10.65) on the fine grid $\left\{\frac{2 \pi \ell}{n}: \ell=0, \ldots, n-1\right\}$ of $[0,2 \pi]$. Then we can approximately compute the Fourier coefficients $c_{k}(f), k=$ $-\frac{N}{2}, \ldots, \frac{N}{2}$, by discrete Fourier transform

$$
\begin{aligned}
c_{k}(f) & \approx \frac{1}{n} \sum_{\ell=0}^{n-1} f\left(\frac{2 \pi \ell}{n}\right) \mathrm{e}^{-2 \pi \mathrm{i} k \ell / n} \\
& \approx \tilde{c}_{k}:=\frac{1}{n} \sum_{\ell=0}^{n-1} f_{\ell} \mathrm{e}^{-2 \pi \mathrm{i} k \ell / n} .
\end{aligned}
$$

For shortness we set

$$
\begin{equation*}
\tilde{h}_{k}:=\frac{\tilde{c}_{k}}{c_{k}(\varphi)}, \quad k=-\frac{N}{2}, \ldots, \frac{N}{2} . \tag{10.68}
\end{equation*}
$$

Then we obtain the following estimate of the error $\left|\tilde{h}_{k}-h(k)\right|$:
Lemma 10.35 Let φ be a 2π-periodic window function. Further let $\mathbf{c}=\left(c_{j}\right)_{j=1}^{M} \in$ \mathbb{C}^{M} and let (10.65) be the given noisy sampled data.

For each $k=-\frac{N}{2}, \ldots, \frac{N}{2}$, the computed approximate value \tilde{h}_{k} of $h(k)$ satisfies the error estimate

$$
\left|\tilde{h}_{k}-h(k)\right| \leq \frac{\varepsilon_{1}}{c_{k}(\varphi)}+\|\mathbf{c}\|_{1} \max _{j=0, \ldots, N / 2} \sum_{\substack{\ell \in \mathbb{Z} \\ \ell \neq 0}} \frac{c_{j+\ell n}(\varphi)}{c_{j}(\varphi)}
$$

Proof The 2π-periodic function (10.64) has a uniformly convergent Fourier expansion. Let $k \in\left\{-\frac{N}{2}, \ldots, \frac{N}{2}\right\}$ be an arbitrary fixed index. By the aliasing formula (3.6) or the discrete Poisson summation formula (see [46, pp. 181-182]) we have

$$
\frac{1}{n} \sum_{j=0}^{n-1} f\left(\frac{2 \pi j}{n}\right) \mathrm{e}^{-2 \pi \mathrm{i} k j / n}-c_{k}(f)=\sum_{\substack{\ell \in \mathbb{Z} \\ \ell \neq 0}} c_{k+\ell n}(f)
$$

Using the simple estimate

$$
\frac{1}{n}\left|\sum_{j=0}^{n-1} e_{j} \mathrm{e}^{-2 \pi \mathrm{i} k j / n}\right| \leq \frac{1}{n} \sum_{j=0}^{n-1}\left|e_{j}\right| \leq \varepsilon_{1}
$$

we conclude

$$
\left|\tilde{c}_{k}-c_{k}(f)\right| \leq \varepsilon_{1}+\sum_{\ell \in \mathbb{Z} \backslash\{0\}}\left|c_{k+\ell n}(f)\right|
$$

From (10.66) and (10.68) it follows that

$$
\tilde{h}_{k}-h(k)=\frac{1}{c_{k}(\varphi)}\left(\tilde{c}_{k}-c_{k}(f)\right)
$$

and hence

$$
\left|\tilde{h}_{k}-h(k)\right|=\frac{1}{c_{k}(\varphi)}\left(\varepsilon_{1}+\sum_{\substack{\ell \in \mathbb{Z} \\ \ell \neq 0}}\left|c_{k+\ell n}(f)\right|\right) .
$$

With (10.66) and

$$
|h(k+\ell n)| \leq \sum_{j=1}^{M}\left|c_{j}\right|=\|\mathbf{c}\|_{1}, \quad \ell \in \mathbb{Z}
$$

we obtain for all $\ell \in \mathbb{Z}$ that

$$
\left|c_{k+\ell n}(f)\right|=|h(k+\ell n)| c_{k+\ell n}(\varphi) \leq\|\mathbf{c}\|_{1} c_{k+\ell n}(\varphi) .
$$

Thus we receive the estimates

$$
\begin{aligned}
\left|\tilde{h}_{k}-h(k)\right| & \leq \frac{\varepsilon_{1}}{c_{k}(\varphi)}+\|\mathbf{c}\|_{1} \sum_{\substack{\ell \in \mathbb{Z} \\
\ell \neq 0}} \frac{c_{k+\ell n}(\varphi)}{c_{k}(\varphi)} \\
& \leq \frac{\varepsilon_{1}}{c_{k}(\varphi)}+\|\mathbf{c}\|_{1} \max _{j=-N / 2, \ldots, N / 2} \sum_{\substack{\ell \in \mathbb{Z} \\
\ell \neq 0}} \frac{c_{j+\ell n}(\varphi)}{c_{j}(\varphi)} .
\end{aligned}
$$

Since the Fourier coefficients of φ are even, we obtain the error estimate of Lemma 10.35.

Example 10.36 For a fixed 2π-periodic window function φ of Example 10.34, one can estimate the expression

$$
\begin{equation*}
\max _{j=0, \ldots, N / 2} \sum_{\substack{\ell \in \mathbb{Z} \\ \ell \neq 0}} \frac{c_{j+\ell n}(\varphi)}{c_{j}(\varphi)} \tag{10.69}
\end{equation*}
$$

more precisely. Let $n=\alpha N$ be a power of two, where $\alpha>1$ is the oversampling factor. For the 2π-periodized Gaussian function of Example 10.34,

$$
\mathrm{e}^{-b \pi^{2}(1-1 / \alpha)}\left[1+\frac{\alpha}{(2 \alpha-1) b \pi^{2}}+\mathrm{e}^{-2 b \pi^{2} / \alpha}\left(1+\frac{\alpha}{(2 \alpha+1) b \pi^{2}}\right)\right]
$$

is an upper bound of (10.69), see [338]. For the 2π-periodized centered cardinal B-spline of Example 10.34,

$$
\frac{4 m}{(2 m-1)(2 \alpha-1)^{2 m}}
$$

is an upper bound of (10.69) (see [338]).
For the 2π-periodized Kaiser-Bessel function of Example 10.34, the expression (10.69) vanishes, since $c_{k}(\varphi)=0$ for all $|k| \geq n$.

Starting from the given noisy sampled data $f_{\ell}, \ell=0, \ldots, n-1$, we calculate approximate values $\tilde{h}_{k}, k=-\frac{N}{2}, \ldots, \frac{N}{2}$, of the exponential sum (10.67). In the next step we use the ESPRIT Algorithm 10.10 in order to determine the "frequencies" t_{j} (which coincide with the shift parameters of (10.64)) and the coefficients c_{j} of (10.67).

Algorithm 10.37 (Recovery of Linear Combination of Translates)

Input: $N \in 2 \mathbb{N}$ with $N>2 M+1, M$ unknown number of translates in (10.64),
$L \approx \frac{N}{2}, n=\alpha N$ power of two with $\alpha>1$,
$f_{\ell} \in \mathbb{C}, \ell=0, \ldots, n-1$, noisy sampled data (10.65),
2π-periodic window function φ with $c_{k}(\varphi)>0, k=0, \ldots, \frac{N}{2}$.

1. Apply FFT to compute for $k=-\frac{N}{2}, \ldots, \frac{N}{2}$

$$
\tilde{c}_{k}:=\frac{1}{n} \sum_{\ell=0}^{n-1} f_{\ell} \mathrm{e}^{2 \pi \mathrm{i} k \ell / n}, \quad \tilde{h}_{k}:=\frac{\tilde{c}_{k}}{c_{k}(\varphi)} .
$$

2. Apply Algorithm 10.10 to the rectangular Hankel matrix

$$
\tilde{\mathbf{H}}_{L, N-L+1}:=\left(\tilde{h}_{k+\ell-N / 2}\right)_{k, \ell=0}^{L-1, N-L},
$$

compute $M \in \mathbb{N}, t_{j} \in[-\pi, \pi)$, and $c_{j} \in \mathbb{C}$ for $j=0, \ldots, M$.
Output: $M \in \mathbb{N}, t_{j} \in[-\pi, \pi), c_{j} \in \mathbb{C}, j=0, \ldots, M$.
Remark 10.38 If the 2π-periodic window function φ is well-localized, i.e., if there exists $m \in \mathbb{N}$ with $2 m \ll n$ such that the values $\varphi(x)$ are very small for all $x \in$ $\mathbb{R} \backslash\left(I_{m}+2 \pi \mathbb{Z}\right)$ with $I_{m}:=[-2 \pi m / n, 2 \pi m / n]$, then φ can be approximated by a 2π-periodic function ψ which is supported on $I_{m}+2 \pi \mathbb{Z}$. For a 2π-periodic window function of Example 10.34, we form its truncated version

$$
\psi(x):=\sum_{k \in \mathbb{Z}} \Phi(x+2 \pi k) \chi_{I_{m}}(x+2 \pi k), \quad x \in \mathbb{R},
$$

where $\chi_{I_{m}}$ denotes the characteristic function of I_{m}. For the 2π-periodized centered cardinal B-spline of Example 10.34, we see that $\varphi=\psi$. For each $\ell \in\{0, \ldots, n-1\}$, we define the index set

$$
J_{m, n}(\ell):=\left\{j \in\{1, \ldots, M\}: 2 \pi(\ell-m) \leq n t_{j} \leq 2 \pi(\ell+m)\right\} .
$$

Thus we can replace the 2π-periodic window function φ by its truncated version ψ in Algorithm 10.37. Consequently we have only to solve the sparse linear system

$$
\sum_{j \in J_{m, n}(\ell)} c_{j} \psi\left(\frac{2 \pi \ell}{n}+t_{j}\right)=f_{\ell}, \quad \ell=0, \ldots, n-1
$$

in order to determine the coefficients c_{j}. For further details and examples, see [266].
For other approaches to recover special structured functions by a small number of function values, we refer to [265, 277].

10.5 Phase Reconstruction

In this last section, we consider the following one-dimensional phase retrieval problem. We assume that a signal f is either of the form

$$
\begin{equation*}
f(t)=\sum_{j=1}^{N} c_{j} \delta\left(t-t_{j}\right), \quad t \in \mathbb{R} \tag{10.70}
\end{equation*}
$$

with $c_{j} \in \mathbb{C}$ for $j=1, \ldots, N$ and real knots $t_{1}<t_{2}<\ldots<t_{N}$, where δ denotes the Dirac distribution (see Example 4.36), or

$$
\begin{equation*}
f(t)=\sum_{j=1}^{N} c_{j} \Phi\left(t-t_{j}\right), \quad t \in \mathbb{R} \tag{10.71}
\end{equation*}
$$

as in (10.64), where Φ is a known piecewise continuous function in $L_{1}(\mathbb{R})$. Observe that a spline function of the form (10.55) with $m \geq 1$ can also be written in the form (10.71) with $N+m$ instead of N terms using the truncated power function.

We want to study the question whether f can be reconstructed from the modulus of its Fourier transform. In other words, for given $|\mathscr{F}(f)(\omega)|=|\hat{f}(\omega)|, \omega \in \mathbb{R}$, we aim at reconstructing all parameters t_{j} and $c_{j}, j=1, \ldots, N$, determining f. Applications of the phase retrieval problem occur in electron microscopy, wave front sensing, laser optics $[326,327]$ as well as in crystallography and speckle imaging [305].

Unfortunately, the recovery of f is hampered by the well-known ambiguousness of the phase retrieval problem. We summarize the trivial, always occurring ambiguities, see also [25, 26].

Lemma 10.39 Let f be a signal of the form (10.70) or (10.71). Then
(i) the rotated signal $\mathrm{e}^{\mathrm{i} \alpha} f$ for $\alpha \in \mathbb{R}$,
(ii) the time shifted signal $f\left(\cdot-t_{0}\right)$ for $t_{0} \in \mathbb{R}$, and
(iii) the conjugated and reflected signal $\overline{f(-\cdot)}$
have the same Fourier intensity $|\mathscr{F}(f)|$ as f.
Proof For (i) we observe

$$
\left|\mathscr{F}\left(\mathrm{e}^{\mathrm{i} \alpha} f\right)(\omega)\right|=\left|\mathrm{e}^{\mathrm{i} \alpha}\right||\hat{f}(\omega)|=|\hat{f}(\omega)| .
$$

Assertion (ii) follows from Theorem 2.5, since

$$
\left|\mathscr{F}\left(f\left(\cdot-t_{0}\right)\right)(\omega)\right|=\left|\mathrm{e}^{-\mathrm{i} t_{0} \omega}\right||\hat{f}(\omega)|=|\hat{f}(\omega)| .
$$

Finally,

$$
|\mathscr{F}(\overline{f(-\cdot)})(\omega)|=\left|\int_{\mathbb{R}} \overline{f(-t)} \mathrm{e}^{-\mathrm{i} \omega t} \mathrm{~d} t\right|=|\hat{f}(\omega)|
$$

implies (iii).
We want to derive a constructive procedure to recover f from $|\hat{f}|$ up to the trivial ambiguities mentioned in Lemma 10.39. We observe that f in (10.70) has the Fourier transform

$$
\hat{f}(\omega)=\sum_{j=1}^{N} c_{j} \mathrm{e}^{-\mathrm{i} \omega t_{j}}, \quad \omega \in \mathbb{R}
$$

and the known squared Fourier intensity $|\hat{f}|$ is of the form

$$
\begin{equation*}
|\hat{f}(\omega)|^{2}=\sum_{j=1}^{N} \sum_{k=1}^{N} c_{j} \bar{c}_{k} \mathrm{e}^{-\mathrm{i} \omega\left(t_{j}-t_{k}\right)} \tag{10.72}
\end{equation*}
$$

Similarly, for f in (10.71), the squared Fourier intensity is a product of the exponential sum in (10.72) and $|\hat{\Phi}(\omega)|^{2}$.

The recovery procedure consists now of two steps. First, we will employ the Prony method to determine the parameters of the exponential sum $|\hat{f}(\omega)|^{2}$, i.e., the knot differences $t_{j}-t_{k}$ and the corresponding products $c_{j} \bar{c}_{k}$. Then, in the second step, we recover the parameters t_{j} and $c_{j}, j=1, \ldots, N$, to obtain f. In order to be able to solve this problem uniquely, we need to assume that all knot differences $t_{j}-t_{k}$ are pairwise different for $j \neq k$ and that $\left|c_{1}\right| \neq\left|c_{N}\right|$.

First Step: Recovery of the Autocorrelation Function $|\hat{f}(\omega)|^{2}$.
Since $t_{j}-t_{k}$ are distinct for $j \neq k$, the function $|\hat{f}(\omega)|^{2}$ can be written in the form

$$
\begin{equation*}
|\hat{f}(\omega)|^{2}=\sum_{\ell=-N(N-1) / 2}^{N(N-1) / 2} \gamma_{\ell} \mathrm{e}^{-\mathrm{i} \omega \tau_{\ell}}=\gamma_{0}+\sum_{\ell=1}^{N(N-1) / 2}\left(\gamma_{\ell} \mathrm{e}^{-\mathrm{i} \omega \tau_{\ell}}+\bar{\gamma}_{\ell} \mathrm{e}^{\mathrm{i} \omega \tau_{\ell}}\right), \tag{10.73}
\end{equation*}
$$

where $0<\tau_{1}<\tau_{2}<\ldots<\tau_{N(N-1) / 2}$ and $\tau_{-\ell}=-\tau_{\ell}$. Then, each $\tau_{\ell}, \ell>0$, corresponds to one difference $t_{j}-t_{k}$ for $j>k$ and $\gamma \ell=c_{j} \bar{c}_{k}$. For $\ell=0$ we have $\tau_{0}=0$ and $\gamma_{0}=\sum_{j=1}^{N}\left|c_{j}\right|^{2}$. Thus, $|\hat{f}(\omega)|^{2}$ is an exponential sum with $N(N-1)+1$ terms, and all parameters $\tau_{\ell}, \gamma_{\ell}$ can be reconstructed from the equidistant samples $|\hat{f}(k h)|, k=0, \ldots, 2(N-1) N+1$, with sampling step $0<h<\frac{\pi}{\tau_{N(N-1) / 2}}$ using one of the algorithms in Sect. 10.2.

As shown in [26], we can exploit the knowledge that $\tau_{0}=0, \tau_{\ell}=-\tau_{-\ell}$ and that $\gamma_{\ell}=\bar{\gamma}_{-\ell}$ for $\ell=1, \ldots, N(N-1) / 2$. Therefore, instead of $N(N-1)+1$ real values τ_{ℓ} and $N(N-1)+1$ complex values γ_{ℓ}, we only need to recover $N(N-1) / 2$ real values τ_{ℓ} and complex values γ_{ℓ} for $\ell=1, \ldots, N(N-1) / 2$ as well as the real value γ_{0}. This can be already done using only the $3 N(N-1) / 2+1$ intensity values $|\hat{f}(k h)|, k=0, \ldots, 3(N-1) N / 2$. However, if more intensity values are available, these should be used to stabilize the Prony method.

Second Step: Unique Signal Recovery.
Having determined the knot differences τ_{ℓ} as well as the corresponding coefficients γ_{ℓ} in (10.73), we aim at reconstructing the parameters t_{j} and $c_{j}, j=1, \ldots, N$ in the second step, see [26].

Theorem 10.40 Let f be a signal of the form (10.70) or (10.71). Assume that the knot differences $t_{j}-t_{k}$ are distinct for $j \neq k$ and that the coefficients satisfy $\left|c_{1}\right| \neq$ $\left|c_{N}\right|$. Further, let h be a step size satisfying $0<h<\pi /\left(t_{j}-t_{k}\right)$ for all $j \neq k$.

Then f can be uniquely recovered from its Fourier intensities $|\hat{f}(k h)|$ for all $k=0, \ldots, 2(N-1) N+1$ up to trivial ambiguities.

Proof We follow the idea in [26]. In the first step described above, we already have obtained all parameters τ_{ℓ} and $\gamma_{\ell}, \ell=0, \ldots, N(N-1) / 2$, to represent $|\hat{f}(\omega)|^{2}$ in (10.73). We denote by $\mathscr{T}:=\left\{\tau_{\ell}: \ell=1, \ldots, N(N-1) / 2\right\}$ the list of positive differences ordered by size. We need to recover the mapping $\ell \rightarrow(j, k)$ such that $\tau_{\ell}=t_{j}-t_{k}$ and $\gamma_{\ell}=c_{j} \bar{c}_{k}$ and then extract the wanted parameters t_{j} and c_{j}, $j=1, \ldots, N$. This is done iteratively. Obviously, the maximal distance $\tau_{N(N-1) / 2}$ equals to $t_{N}-t_{1}$. Due to the shift ambiguity in Lemma 10.39 (ii), we can assume that $t_{1}=0$ and $t_{N}=\tau_{N(N-1) / 2}$. Next, the second largest distance $\tau_{N(N-1) / 2-1}$ corresponds either to $t_{N}-t_{2}$ or to $t_{N-1}-t_{1}$. Due to the trivial reflection and conjugation ambiguity in Lemma 10.39 (iii), we can just fix $t_{N-1}-t_{1}=t_{N-1}=$ $\tau_{N(N-1) / 2-1}$. Thus, there exist a value $\tau_{\ell^{*}}=t_{N}-t_{N-1}>0$ in \mathscr{T} such that $\tau_{\ell^{*}}+\tau_{N(N-1) / 2-1}=\tau_{N(N-1) / 2}$. Considering the corresponding coefficients, we obtain

$$
c_{N} \bar{c}_{1}=\gamma_{N(N-1) / 2}, \quad c_{N-1} \bar{c}_{1}=\gamma_{N(N-1) / 2-1}, \quad c_{N} \bar{c}_{N-1}=\gamma_{\ell}{ }^{*}
$$

and thus

$$
\left|c_{1}\right|^{2}=\frac{\gamma_{N(N-1) / 2} \bar{\gamma}_{N(N-1) / 2-1}}{\gamma_{\ell^{*}}}, \quad c_{N}=\frac{\gamma_{N(N-1) / 2}}{\bar{c}_{1}}, \quad c_{N-1}=\frac{\gamma_{N(N-1) / 2-1}}{\bar{c}_{1}} .
$$

By Lemma 10.39 (i), f can be only recovered up to multiplication with a factor with modulus 1 . Therefore, we can assume that c_{1} is real and positive, then the above equations allow us to recover c_{1}, c_{N-1}, and c_{N} in a unique way.

We proceed by considering the next largest distance $\tau_{N(N-1) / 2-2}$ and notice that it corresponds either to $t_{N}-t_{2}$ or to $t_{N-2}-t_{1}=t_{N-2}$. In any case there exists a
$\tau_{\ell^{*}}$ such that $\tau_{\ell^{*}}+\tau_{N(N-1) / 2-2}=\tau_{N(N-1) / 2}=t_{N}$. We study the two cases more closely and show that they cannot be true both at the same time.

Case 1 If $\tau_{N(N-1)-2}=t_{N}-t_{2}$, then $\tau_{\ell^{*}}=t_{2}-t_{1}$ and $\gamma_{\ell^{*}}=c_{2} \bar{c}_{1}$. Further, using $\gamma_{N(N-1) / 2-2}=c_{N} \bar{c}_{2}$ we arrive at the condition

$$
\begin{equation*}
c_{2}=\frac{\gamma_{\ell^{*}}}{\bar{c}_{1}}=\frac{\bar{\gamma}_{N(N-1) / 2-2}}{\bar{c}_{N}} \tag{10.74}
\end{equation*}
$$

Case 2 If $\tau_{N(N-1)-2}=t_{N-2}-t_{1}$, then $\tau_{\ell^{*}}=t_{N}-t_{N-2}$ with coefficient $\gamma_{\ell^{*}}=$ $c_{N} \bar{c}_{N-2}$. With $\gamma_{N(N-1) / 2-2}=c_{N-2} \bar{c}_{1}$ we thus find the condition

$$
\begin{equation*}
c_{N-2}=\frac{\gamma_{\ell *}}{\bar{c}_{N}}=\frac{\bar{\gamma}_{N(N-1) / 2-2}}{\bar{c}_{1}} . \tag{10.75}
\end{equation*}
$$

If both conditions (10.74) and (10.75) were true, then it follows that

$$
\left|\frac{c_{N}}{c_{1}}\right|=\left|\frac{\gamma_{N(N-1) / 2-2}}{\gamma_{\ell^{*}}}\right|=\left|\frac{c_{1}}{c_{N}}\right|
$$

contradicting the assumption $\left|c_{1}\right| \neq\left|c_{N}\right|$. Therefore, only one of the equalities (10.74) and (10.75) can be true, and we can determine either t_{2} and c_{2} or t_{N-2} and c_{N-2}.

We remove now all differences τ_{ℓ} from the set \mathscr{T} that correspond to recovered knots and repeat the approach to determine the remaining knots and coefficients.

Remark 10.41

1. The assumptions needed for unique recovery can be checked during the algorithm. If the number N of terms in f is known beforehand, then the assumption that $t_{j}-t_{k}$ are pairwise different for $j \neq k$ is not satisfied, if the Prony method yields $|\widehat{f}(\omega)|^{2}$ with less than $N(N-1)+1$ terms. The second assumption $\left|c_{1}\right| \neq\left|c_{N}\right|$ can be simply checked after having determined these two values.
2. The problem of recovery of the sequence of knots t_{j} from an unlabeled set of differences is the so-called turnpike problem that requires a backtracking algorithm with exponential complexity in worst case [225] and is not always uniquely solvable, see [305].

We summarize the recovery of f from its Fourier intensities as follows:

Algorithm 10.42 (Phase Recovery from Fourier Intensities)

Input: Upper bound $L \in \mathbb{N}$ of the number N of terms, step size $h>0$,
Fourier intensities $f_{k}=|\hat{f}(h k)| \in[0, \infty)$ for $k=0, \ldots, 2 M$, $M>N(N-1)$, accuracy $\epsilon>0$.

1. Set $h_{k}=|\hat{f}(h k)|^{2}$, if f is of the form (10.70) and $h_{k}=|\hat{f}(h k) / \hat{\Phi}(h k)|^{2}$, if f is of the form (10.71). Apply Algorithm 10.8 to determine the knot distances τ_{ℓ}
for $\ell=-N(N-1) / 2, \ldots N(N-1) / 2$ in (10.73) in increasing order and the corresponding coefficients $\gamma \ell$.

Update the reconstructed distances and coefficients by

$$
\tau_{\ell}:=\frac{1}{2}\left(\tau_{\ell}-\tau_{-\ell}\right), \quad \gamma_{\ell}:=\frac{1}{2}\left(\gamma_{\ell}+\bar{\gamma}_{-\ell}\right), \quad \ell=0, \ldots, N(N-1) / 2 .
$$

2. Set $t_{1}:=0, t_{N}:=\tau_{N(N-1) / 2}, t_{N-1}:=\tau_{N(N-1) / 2-1}$. Find the index ℓ^{*} with $\left|\tau_{\ell^{*}}-t_{N}+t_{N-1}\right| \leq \epsilon$ and compute

$$
\begin{aligned}
c_{1} & :=\left|\frac{\gamma_{N(N-1) / 2} \bar{\gamma}_{N(N-1) / 2-1}}{\gamma_{\ell^{*}}}\right|^{1 / 2} \\
c_{N} & :=\frac{\gamma_{N(N-1) / 2}}{\bar{c}_{1}}, \quad c_{N-1}:=\frac{\gamma_{N(N-1) / 2-1}}{\bar{c}_{1}} .
\end{aligned}
$$

Initialize the list of recovered knots and coefficients $T:=\left\{t_{1}, t_{N-1}, t_{N}\right\}$ and $C:=\left\{c_{1}, c_{N-1}, c_{N}\right\}$ and remove the used distances from $\mathscr{T}:=\left\{\tau_{\ell}: \ell=\right.$ $1, \ldots, N(N-1) / 2\}$.
3. For the maximal remaining distance $\tau_{k^{*}} \in \mathscr{T}$ determine ℓ^{*} with $\left|\tau_{k^{*}}+\tau_{\ell^{*}}-t_{N}\right|$ $\leq \epsilon$.
3.1. If $\left|\tau_{k^{*}}-\tau_{\ell^{*}}\right|>\epsilon$, then compute $d_{1}=\gamma_{k^{*}} / \bar{c}_{1}, d_{2}=\gamma_{\ell^{*}} / \bar{c}_{1}$. If

$$
\left|c_{N} \bar{d}_{1}-\gamma_{\ell^{*}}\right|<\left|c_{N} \bar{d}_{2}-\gamma_{k^{*}}\right|
$$

then $T:=T \cup\left\{\frac{1}{2}\left(\tau_{k^{*}}+t_{N}-\tau_{\ell^{*}}\right)\right\}$ and $C:=C \cup\left\{d_{1}\right\}$ else $T:=T \cup$ $\left\{\frac{1}{2}\left(\tau_{\ell^{*}}+t_{N}-\tau_{k^{*}}\right)\right\}$ and $C:=C \cup\left\{d_{2}\right\}$.
3.2. If $\left|\tau_{k^{*}}-\tau_{\ell^{*}}\right| \leq \epsilon$, then the knot distance belongs to the center of the interval. Set $T:=T \cup\left\{t_{N} / 2\right\}, C:=C \cup\left\{\gamma_{k^{*}} / \bar{c}_{1}\right\}$.

Remove all distances between the new knot and the knots being recovered already from \mathscr{T} and repeat step 3 until \mathscr{T} is empty.
Output: knots t_{j} and coefficients c_{j} of the signal f in (10.70) or (10.71).
Note that this algorithm is very expensive for larger N. The computational costs are governed by Algorithm 10.8 in Step 1, which is here applied to an exponential sum of the form (10.73) with $N(N-1)+1$ terms.

Example 10.43 We consider a toy example to illustrate the method. We want to recover the signal

$$
f(t)=2 \delta(t)+(5-\text { i) } \delta(t-3)+(7+\text { i) } \delta(t-5)
$$

with the Fourier transform $\hat{f}(\omega)=2+(5-\mathrm{i}) \mathrm{e}^{-3 \mathrm{i} \omega}+(7+\mathrm{i}) \mathrm{e}^{-5 \mathrm{i} \omega}$, i.e., we have to recover the knots $t_{1}=0, t_{2}=3, t_{3}=5$ and the coefficients $c_{1}=2, c_{2}=5-\mathrm{i}$, and $c_{3}=7+\mathrm{i}$. Thus $N=3$ and $\max \left|t_{j}-t_{k}\right|=5$. We can choose a step size $h<\pi / 5$.

Let us take here $h=\pi / 6$. Note the considered signal is already "normalized" in sense that $t_{1}=0$ and c_{1} is positive. Each other signal of the form $\mathrm{e}^{\mathrm{i} \alpha} f\left(t-t_{0}\right)$ with $\alpha, t_{0} \in \mathbb{R}$ has the same Fourier intensity.

We assume that the Fourier intensities $|\hat{f}(k \pi / 6)|$ for $k=0, \ldots, L$ with $L \geq 13$ are given. Exploiting symmetry properties, also the intensities $|\hat{f}(k \pi / 6)|$ for $k=$ $0, \ldots, 9$ would be sufficient. The autocorrelation function $|\hat{f}(\omega)|^{2}$ is of the form

$$
\begin{aligned}
|\hat{f}(\omega)|^{2}= & (14-2 \mathrm{i}) \mathrm{e}^{5 \mathrm{i} \omega}+(10+2 \mathrm{i}) \mathrm{e}^{3 \mathrm{i} \omega}+(34-12 \mathrm{i}) \mathrm{e}^{2 \mathrm{i} \omega} \\
& +18+(34+12 \mathrm{i}) \mathrm{e}^{-2 \mathrm{i} \omega}+(10-2 \mathrm{i}) \mathrm{e}^{-3 \mathrm{i} \omega}+(14+2 \mathrm{i}) \mathrm{e}^{-5 \mathrm{i} \omega}
\end{aligned}
$$

In the first step, we recover the frequencies $\tau_{0}=0, \tau_{1}=2, \tau_{2}=3$ and $\tau_{3}=5$ as well as the coefficients $\gamma_{0}=18, \gamma_{1}=34+12 \mathrm{i}, \gamma_{2}=10-2 \mathrm{i}, \gamma_{3}=14+2 \mathrm{i}$ from the given samples using the Prony method.

In the second step, we conclude from the largest difference $\tau_{3}=5$ that $t_{1}=0$ and $t_{3}=5$. Here, we have already fixed the support of f. Indeed, any other solution with $t_{1}=t_{0}, t_{3}=t_{0}+5$ is also correct by Lemma 10.39 (ii). Next, from $\tau_{2}=3$ we conclude that t_{2} is either 3 or 2 . Both solutions are possible, and indeed $\tau_{1}+\tau_{2}=$ $\tau_{3}=t_{3}-t_{1}$. For $t_{2}=3$, we find

$$
\begin{aligned}
& c_{1}:=\left|\frac{\gamma_{3} \bar{\gamma}_{2}}{\gamma_{1}}\right|^{1 / 2}=\left|\frac{(14+2 \mathrm{i})(10+2 \mathrm{i})}{34+12 \mathrm{i}}\right|^{1 / 2}=2, \\
& c_{3}:=\frac{\gamma_{3}}{\bar{c}_{1}}=\frac{14+2 \mathrm{i}}{2}=7+\mathrm{i}, \quad c_{2}:=\frac{\gamma_{2}}{\bar{c}_{1}}=\frac{10-2 \mathrm{i}}{2}=5-\mathrm{i} .
\end{aligned}
$$

This solution recovers f.
For $t_{2}=2$, we find $c_{3} \bar{c}_{1}=\gamma_{3}, c_{2} \bar{c}_{1}=\gamma_{1}$, and $c_{3} \bar{c}_{2}=\gamma_{2}$, and thus

$$
\left|c_{1}\right|^{2}=\left|\frac{\gamma_{3} \bar{\gamma}_{1}}{\gamma_{2}}\right|=\left|\frac{(14+2 \mathrm{i})(34-12 \mathrm{i})}{10-2 \mathrm{i}}\right|=50 .
$$

Thus we find in this case

$$
c_{1}=\sqrt{50}, \quad c_{2}=\frac{\gamma_{1}}{\bar{c}_{1}}=\frac{34+12 \mathrm{i}}{\sqrt{50}}, \quad c_{3}=\frac{\gamma_{3}}{\bar{c}_{1}}=\frac{14+2 \mathrm{i}}{\sqrt{50}} .
$$

However, this second solution

$$
f_{2}(t)=\sqrt{50} \delta(t)+\frac{34+12 \mathrm{i}}{\sqrt{50}} \delta(t-2)+\frac{14+2 \mathrm{i}}{\sqrt{50}} \delta(t-5)
$$

is indeed the conjugated and reflected signal of f, translated by 5 and multiplied with the factor $\mathrm{e}^{\mathrm{i} \alpha}=\frac{7-\mathrm{i}}{\sqrt{50}}$, i.e.,

$$
f_{2}(t)=\frac{7-\mathrm{i}}{\sqrt{50}} \overline{f(-t+5)}
$$

Remark 10.44 Within the last years, phase retrieval problems have been extensively studied. There exist many very different problem statements that are summarized under the term "phase retrieval" but may be quite different in nature. The applications in physics usually require a signal or image recovery from Fourier or Fresnel intensities. The problem is ill-posed because of many ambiguities and can only be solved with a suitable amount of a priori knowledge about the solution signal. Often, support properties, positivity or interference measurements can be used to reduce the solution set. For the one-dimensional discrete phase retrieval problem, we refer to the recent survey [25]. The two-dimensional case remains to be not completely understood in general. Numerically, iterative projection algorithms are mainly applied in practice, see [20, 231].

Appendix A
 List of Symbols and Abbreviations

A. 1 Table of Some Fourier Series

In this table all functions $f: \mathbb{T} \rightarrow \mathbb{R}$ are piecewise continuously differentiable. In the left column, the 2π-periodic functions f are defined either on $(-\pi, \pi)$ or $(0,2 \pi)$. If x_{0} is a point of jump discontinuity of f, then $f\left(x_{0}\right):=\frac{1}{2}\left(f\left(x_{0}+0\right)+\right.$ $f\left(x_{0}-0\right)$). In the right column the related Fourier series of f are listed. For the main properties of Fourier series, see Lemmas 1.6 and 1.13. For the convergence of the Fourier series, we refer to Theorem 1.34 of Dirichlet-Jordan.

Function $f: \mathbb{T} \rightarrow \mathbb{R}$	Fourier series of f
$f(x)=x, x \in(-\pi, \pi)$	$2 \sum_{n=1}^{\infty}(-1)^{n+1} \frac{\sin (n x)}{n}$
$f(x)=\|x\|, x \in(-\pi, \pi)$	$\frac{\pi}{2}-\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\cos (2 n-1) x}{(2 n-1)^{2}}$
$f(x)= \begin{cases}0 & x \in(-\pi, 0), \\ x & x \in(0, \pi)\end{cases}$	$\frac{\pi}{4}-\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{\cos (2 n-1) x}{(2 n-1)^{2}}+\sum_{n=1}^{\infty}(-1)^{n+1} \frac{\sin (n x)}{n}$
$f(x)=x, x \in(0,2 \pi)$	$\pi-2 \sum_{n=1}^{\infty} \frac{\sin (n x)}{n}$
$f(x)=x^{2}, x \in(-\pi, \pi)$	$\frac{\pi^{2}}{3}+4 \sum_{n=1}^{\infty}(-1)^{n} \frac{\cos (n x)}{n^{2}}$
$f(x)=x(\pi-\|x\|), x \in(-\pi, \pi)$	$\frac{8}{\pi} \sum_{n=1}^{\infty} \frac{\sin (2 n-1) x}{(2 n-1)^{3}}$
$f(x)= \begin{cases}-1 & x \in(-\pi, 0), \\ 1 & x \in(0, \pi)\end{cases}$	$\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\sin (2 n-1) x}{2 n-1}$
$f(x)= \begin{cases}0 & x \in(-\pi, 0), \\ 1 & x \in(0, \pi)\end{cases}$	$\frac{1}{2}+\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{\sin (2 n-1) x}{2 n-1}$
$f(x)=\frac{\pi-x}{2 \pi}, x \in(0,2 \pi)$	$\frac{1}{\pi} \sum_{n=1}^{\infty} \frac{\sin (n x)}{n}$
$f(x)=\mathrm{e}^{a x}, x \in(-\pi, \pi)$	$\frac{\sinh (a \pi)}{\pi} \sum_{n=-\infty}^{\infty} \frac{(-1)^{n}}{a-\mathrm{i} n} \mathrm{e}^{\mathrm{i} n x}, \quad a \in \mathbb{R} \backslash\{0\}$

(continued)

Function $f: \mathbb{T} \rightarrow \mathbb{R}$	Fourier series of f
$f(x)=\mathrm{e}^{a x}, x \in(0,2 \pi)$	$\frac{\mathrm{e}^{2 a \pi}-1}{2 \pi} \sum_{n=-\infty}^{\infty} \frac{1}{a-\mathrm{i} n} \mathrm{e}^{\mathrm{i} n x}, \quad a \in \mathbb{R} \backslash\{0\}$
$f(x)=\|\sin x\|, x \in(-\pi, \pi)$	$\frac{2}{\pi}-\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{\cos (2 n x)}{4 n^{2}-1}$
$f(x)=\|\cos x\|, x \in(-\pi, \pi)$	$\frac{2}{\pi}-\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n} \cos (2 n x)}{4 n^{2}-1}$
$f(x)= \begin{cases}0 & x \in(-\pi, 0), \\ \sin x & x \in(0, \pi)\end{cases}$	$\frac{1}{\pi}-\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{\cos (2 n x)}{4 n^{2}-1}+\frac{1}{2} \sin x$
$f(x)=x \cos x, x \in(-\pi, \pi)$	$-\frac{1}{2} \sin x+\sum_{n=2}^{\infty}(-1)^{n} \frac{2 n}{n^{2}-1} \sin (n x)$
$f(x)=x \sin x, x \in(-\pi, \pi)$	$1-\frac{1}{2} \cos x-2 \sum_{n=2}^{\infty}(-1)^{n} \frac{1}{n^{2}-1} \cos (n x)$

A. 2 Table of Some Chebyshev Series

In this table all functions $f: I \rightarrow \mathbb{R}$ are contained in $L_{2, w}(I)$, where $I:=[-1,1]$ and $w(x):=\left(1-x^{2}\right)^{-1 / 2}$ for $x \in(-1,1)$. In the left column, the functions f are listed. In the right column the related Chebyshev series are listed. The basic properties of Chebyshev coefficients are described in Theorem 6.15. For the uniform convergence of Chebyshev series, see Theorems 6.12 and 6.16. Note that for $m \in$ \mathbb{N}_{0}, the m th Bessel function and the m th modified Bessel function of first kind are defined on \mathbb{R} by

$$
J_{m}(x):=\sum_{k=0}^{\infty} \frac{(-1)^{k}}{k!(m+k)!}\left(\frac{x}{2}\right)^{m+2 k}, \quad I_{m}(x):=\sum_{k=0}^{\infty} \frac{1}{k!(m+k)!}\left(\frac{x}{2}\right)^{m+2 k} .
$$

Further $a \in \mathbb{R} \backslash\{0\}$ and $b \in \mathbb{R}$ are arbitrary constants.

Function $f: I \rightarrow \mathbb{R}$	Chebyshev series $\frac{1}{2} a_{0}[f]+\sum_{n=1}^{\infty} a_{n}[f] T_{n}(x)$
$f(x)=\|x\|$	$\frac{2}{\pi}-\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{4 n^{2}-1} T_{2 n}(x)$
$f(x)=\operatorname{sgn} x$	$\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2 n-1} T_{2 n-1}(x)$
$f(x)=\sqrt{1+x}$	$\frac{2 \sqrt{2}}{\pi}-\frac{4 \sqrt{2}}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{4 n^{2}-1} T_{n}(x)$
$f(x)=\sqrt{1-x}$	$\frac{2 \sqrt{2}}{\pi}-\frac{4 \sqrt{2}}{\pi} \sum_{n=1}^{\infty} \frac{1}{4 n^{2}-1} T_{n}(x)$
$f(x)=\sqrt{1-x^{2}}$	$\frac{2}{\pi}-\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{4 n^{2}-1} T_{2 n}(x)$
$f(x)=\arcsin x$	$\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{1}{(2 n-1)^{2}} T_{2 n-1}(x)$
$f(x)=\cos (a x)$	$J_{0}(a)+2 \sum_{n=1}^{\infty}(-1)^{n} J_{2 n}(a) T_{2 n}(x)$
$f(x)=\sin (a x)$	$2 \sum_{n=1}^{\infty}(-1)^{n-1} J_{2 n-1}(a) T_{2 n-1}(x)$
$f(x)=\cos (a x+b)$	$J_{0}(a) \cos b+2 \sum_{n=1}^{\infty} \cos \left(b+\frac{n \pi}{2}\right) J_{n}(a) T_{n}(x)$
$f(x)=\sin (a x+b)$	$J_{0}(a) \sin b+2 \sum_{n=1}^{\infty} \sin \left(b+\frac{n \pi}{2}\right) J_{n}(a) T_{n}(x)$

Function $f: I \rightarrow \mathbb{R}$	Chebyshev series $\frac{1}{2} a_{0}[f]+\sum_{n=1}^{\infty} a_{n}[f] T_{n}(x)$
$f(x)=\mathrm{e}^{a x}$	$I_{0}(a)+2 \sum_{n=1}^{\infty} I_{n}(a) T_{n}(x)$
$f(x)=\cosh (a x)$	$I_{0}(a)+2 \sum_{n=1}^{\infty} I_{2 n}(a) T_{2 n}(x)$
$f(x)=\sinh (a x)$	$2 \sum_{n=1}^{\infty} I_{2 n-1}(a) T_{2 n-1}(x)$
$f(x)=\mathrm{e}^{a x^{2}}$	$\mathrm{e}^{a / 2} I_{0}\left(\frac{a}{2}\right)+2 \mathrm{e}^{a / 2} \sum_{n=1}^{\infty} I_{n}\left(\frac{a}{2}\right) T_{2 n}(x)$
$f(x)=\cos \left(a \sqrt{1-x^{2}}\right)$	$J_{0}(a)+2 \sum_{n=1}^{\infty} J_{2 n}(a) T_{2 n}(x)$
$f(x)=\left(1+a^{2} x^{2}\right)^{-1}$	$\frac{1}{\sqrt{1+a^{2}}}+\frac{2}{\sqrt{1+a^{2}}} \sum_{n=1}^{\infty} \frac{(-1)^{n} a^{2 n}}{\left(1+\sqrt{1+a^{2}}\right)^{2 n}} T_{2 n}(x)$

A. 3 Table of Some Fourier Transforms

In this table all functions $f: \mathbb{R} \rightarrow \mathbb{C}$ are contained either in $L_{1}(\mathbb{R})$ or in $L_{2}(\mathbb{R})$. In the left column, the functions f are listed. In the right column the related Fourier transforms are listed. For the main properties of Fourier transforms, see Theorems 2.5 and 2.15. See Theorems 2.10 and 2.23 for Fourier inversion formulas of functions in $L_{1}(\mathbb{R})$ and $L_{2}(\mathbb{R})$, respectively. By N_{m}, H_{n}, and h_{n} we denote the cardinal B-spline of order m, the Hermite polynomial of degree n, and the nth Hermite function, respectively.

Function $f: \mathbb{R} \rightarrow \mathbb{C}$	Fourier transform $\hat{f}(\omega)=\int_{\mathbb{R}} f(x) \mathrm{e}^{-\mathrm{i} \omega x} \mathrm{~d} x$
$f(x)= \begin{cases}1 & x \in(-L, L), \\ 0 & \text { otherwise }\end{cases}$	$2 L \operatorname{sinc}(L \omega), \quad L>0$
$f(x)= \begin{cases}1-\frac{\|x\|}{L} & x \in(-L, L) \\ 0 & \text { otherwise }\end{cases}$	$L\left(\operatorname{sinc} \frac{L \omega}{2}\right)^{2}, \quad L>0$
$f(x)=\mathrm{e}^{-x^{2} / 2}$	$\sqrt{2 \pi} \mathrm{e}^{-\omega^{2} / 2}$
$f(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \mathrm{e}^{-x^{2} /\left(2 \sigma^{2}\right)}$	$\mathrm{e}^{-\sigma^{2} \omega^{2} / 2}, \quad \sigma>0$
$f(x)=\mathrm{e}^{-(a-\mathrm{i} b) x^{2}}$	$\sqrt{\frac{\pi}{a-\mathrm{i} b}} \exp \frac{-(a-\mathrm{i} b) \omega^{2}}{4\left(a^{2}+b^{2}\right)}, \quad a>0, b \in \mathbb{R} \backslash\{0\}$
$f(x)=\mathrm{e}^{-a\|x\|}$	$\frac{2 a}{a^{2}+\omega^{2}}, \quad a>0$
$N_{1}(x)= \begin{cases}1 & x \in(0,1), \\ 0 & \text { otherwise }\end{cases}$	$\mathrm{e}^{-\mathrm{i} \omega / 2} \operatorname{sinc} \frac{\omega}{2}$
$N_{m}(x)=\left(N_{m-1} * N_{1}\right)(x)$	$\mathrm{e}^{-\mathrm{i} m \omega / 2}\left(\operatorname{sinc} \frac{\omega}{2}\right)^{m}, \quad m \in \mathbb{N} \backslash\{1\}$
$M_{m}(x)=N_{m}\left(x+\frac{m}{2}\right)$	$\left(\operatorname{sinc} \frac{\omega}{2}\right)^{m}, \quad m \in \mathbb{N}$
$h_{n}(x)=H_{n}(x) \mathrm{e}^{-x^{2} / 2}$	$\sqrt{2 \pi}(-\mathrm{i})^{n} h_{n}(\omega), \quad n \in \mathbb{N}_{0}$

(continued)

Function $f: \mathbb{R} \rightarrow \mathbb{C}$	Fourier transform $\hat{f}(\omega)=\int_{\mathbb{R}} f(x) \mathrm{e}^{-\mathrm{i} \omega x} \mathrm{~d} x$
$f(x)=\frac{L}{\pi} \operatorname{sinc}(L x)$	$\hat{f}(\omega)= \begin{cases}1 & \omega \in(-L, L), \\ 0 & \text { otherwise }\end{cases}$
$f(x)= \begin{cases}\mathrm{e}^{-a x} \cos (b x) & x>0, \\ 0 & \text { otherwise }\end{cases}$	$\frac{a+\mathrm{i} \omega}{(a+\mathrm{i} \omega)^{2}+b^{2}}, \quad a>0, b \geq 0$
$f(x)=\frac{a}{\pi\left(x^{2}+a^{2}\right)}$	$\mathrm{e}^{-a\|\omega\|}$

A. 4 Table of Some Discrete Fourier Transforms

In the left column of this table, the components of N-dimensional vectors a $=$ $\left(a_{j}\right)_{j=0}^{N-1} \in \mathbb{C}^{N}$ are presented. In the right column the components of the related discrete Fourier transforms $\hat{\mathbf{a}}=\left(\hat{a}_{k}\right)_{k=0}^{N-1}=\mathbf{F}_{N}$ a of even length $N \in 2 \mathbb{N}$ are listed, where

$$
\hat{a}_{k}=\sum_{j=0}^{N-1} a_{j} w_{N}^{j k}, \quad k=0, \ldots, N-1
$$

For the main properties of DFTs, see Theorem 3.26. By Remark 3.12 the DFT (N) of the N-periodic sequences $\left(a_{j}\right)_{j \in \mathbb{Z}}$ is equal to the N-periodic sequences $\left(\hat{a}_{k}\right)_{k \in \mathbb{Z}}$. In this table, $n \in \mathbb{Z}$ denotes an arbitrary fixed integer.

j th component $a_{j} \in \mathbb{C}$	k th component \hat{a}_{k} of related $\operatorname{DFT}(N)$
$a_{j}=\delta_{j \bmod N}$	$\hat{a}_{k}=1$
$a_{j}=1$	$\hat{a}_{k}=N \delta_{k \bmod N}$
$a_{j}=\delta_{(j-n) \bmod N}$	$\hat{a}_{k}=w_{N}^{k n}=\mathrm{e}^{-2 \pi \mathrm{i} k n / N}$
$a_{j}=\frac{1}{2}\left(\delta_{(j+n) \bmod N}+\delta_{(j-n) \bmod N}\right)$	$\hat{a}_{k}=\cos \frac{2 \pi n k}{N}$
$a_{j}=\frac{1}{2}\left(\delta_{(j+n) \bmod N}-\delta_{(j-n) \bmod N)}\right)$	$\hat{a}_{k}=\mathrm{i} \sin \frac{2 \pi n k}{N}$
$a_{j}=w_{N}^{j n}$	$\hat{a}_{k}=N \delta_{(k+n) \bmod N}$
$a_{j}=(-1)^{j}$	$\hat{a}_{k}=N \delta_{(k+N / 2) \bmod N}$
$a_{j}=\cos \frac{2 \pi j n}{N}$	$\hat{a}_{k}=\frac{N}{2}\left(\delta_{(k+n) \bmod N}+\delta_{(k-n) \bmod N}\right)$
$a_{j}=\sin \frac{2 \pi j n}{N}$	$\hat{a}_{k}=\frac{\mathrm{i} N}{2}\left(\delta_{(k+n) \bmod N}-\delta_{(k-n) \bmod N)}\right)$
$a_{j}=\left\{\begin{array}{lll}0 & j=0, & \hat{a}_{k}= \begin{cases}0 & k=0, \\ \frac{1}{2}-\frac{j}{N} & j=1, \ldots, N-1 \\ \operatorname{lit} \frac{\pi k}{N} & k=1, \ldots, N-1\end{cases} \\ \hline\end{array}\right.$	

j th component $a_{j} \in \mathbb{C}$	k th component \hat{a}_{k} of related DFT (N)
$a_{j}= \begin{cases}\frac{1}{2} & j=0, \\ \frac{j}{N} & j=1, \ldots, N-1\end{cases}$	$\hat{a}_{k}= \begin{cases}\frac{N}{2} & k=0, \\ \frac{i}{2} \cot \frac{\pi k}{N} & k=1, \ldots, N-1\end{cases}$
$a_{j}= \begin{cases}\frac{j}{N} & j=0, \ldots, \frac{N}{2}-1, \\ 0 & j=\frac{N}{2}, \\ \frac{j}{N}-1 & j=\frac{N}{2}+1, \ldots, N-1\end{cases}$	$\hat{a}_{k}= \begin{cases}0 & k=0, \\ \frac{i}{2}(-1)^{k} \cot \frac{\pi k}{N} & k=1, \ldots, N-1\end{cases}$
$a_{j}= \begin{cases}0 & j \in\left\{0, \frac{N}{2}\right\}, \\ 1 & j=1, \ldots, \frac{N}{2}-1, \\ -1 & j=\frac{N}{2}+1, \ldots, N-1\end{cases}$	$\hat{a}_{k}= \begin{cases}0 & k=0,2, \ldots, N-2, \\ -2 \mathrm{i} \cot \frac{\pi k}{N} & k=1,3, \ldots, N-1\end{cases}$

A. 5 Table of Some Fourier Transforms of Tempered Distributions

In the left column, some tempered distributions $T \in \mathscr{S}^{\prime}\left(\mathbb{R}^{d}\right)$ are listed. In the right column, one can see the related Fourier transforms $\hat{T}=\mathscr{F} T \in \mathscr{S}^{\prime}\left(\mathbb{R}^{d}\right)$. The main properties of the Fourier transforms of tempered distributions are described in Theorem 4.49. For the inverse Fourier transform $\mathscr{F}^{-1} T \in \mathscr{S}^{\prime}\left(\mathbb{R}^{d}\right)$, see Theorem 4.47. In this table we use the following notations $\mathbf{x}_{0} \in \mathbb{R}^{d}$, $\omega_{0} \in \mathbb{R}^{d}$, and $\boldsymbol{\alpha} \in \mathbb{N}_{0}^{d}$. If the Dirac distribution δ acts on functions with variable \mathbf{x}, then we write $\delta(\mathbf{x}) \in \mathbb{R}^{d}$. Analogously, $\delta(\boldsymbol{\omega})$ acts on functions with variable $\omega \in \mathbb{R}^{d}$.

Tempered distribution $T \in \mathscr{S}^{\prime}\left(\mathbb{R}^{d}\right)$	Fourier transform $\mathscr{F} T \in \mathscr{S}^{\prime}\left(\mathbb{R}^{d}\right)$				
$\delta(\mathbf{x})$	1				
$\delta_{\mathbf{x}_{0}}(\mathbf{x}):=\delta\left(\mathbf{x}-\mathbf{x}_{0}\right)$	$\mathrm{e}^{-\mathrm{i} \boldsymbol{\omega} \cdot \mathbf{x}_{0}}$				
$\left(D^{\alpha} \delta\right)(\mathbf{x})$	$\mathrm{i}^{\|\alpha\|} \boldsymbol{\omega}^{\alpha}$				
$\left(D^{\alpha} \delta\right)\left(\mathbf{x}-\mathbf{x}_{0}\right)$	$\mathrm{i}^{\|\boldsymbol{\alpha}\|} \boldsymbol{\omega}^{\alpha} \mathrm{e}^{-\mathrm{i} \omega \cdot \mathbf{x}_{0}}$				
1	$(2 \pi)^{d} \delta(\boldsymbol{\omega})$				
x^{α}	$(2 \pi)^{d} \mathrm{i}^{\|\alpha\|}\left(D^{\alpha} \delta\right)(\boldsymbol{\omega})$				
$\mathrm{e}^{\mathrm{i} \omega_{0} \cdot \mathbf{x}}$	$(2 \pi)^{d} \delta\left(\boldsymbol{\omega}-\omega_{0}\right)$				
$\mathbf{x}^{\alpha} \mathrm{e}^{\mathrm{i} \omega_{0} \cdot \mathbf{x}}$	$(2 \pi)^{d} \mathrm{i}^{\|\boldsymbol{\alpha}\|}\left(D^{\alpha} \delta\right)\left(\boldsymbol{\omega}-\omega_{0}\right)$				
$\cos \left(\boldsymbol{\omega}_{0} \cdot \mathbf{x}\right)$	$\frac{(2 \pi)^{d}}{2}\left(\delta\left(\boldsymbol{\omega}-\omega_{0}\right)+\delta\left(\boldsymbol{\omega}+\omega_{0}\right)\right)$				
$\sin \left(\boldsymbol{\omega}_{0} \cdot \mathbf{x}\right)$	$\frac{(2 \pi)^{d}}{2 \mathrm{i}}\left(\delta\left(\boldsymbol{\omega}-\omega_{0}\right)-\delta\left(\boldsymbol{\omega}+\omega_{0}\right)\right)$				
$\mathrm{e}^{-\\|\mathbf{x}\\|_{2}^{2} / 2}$	$(2 \pi)^{d / 2} \mathrm{e}^{-\\|\boldsymbol{\omega}\\|_{2}^{2} / 2}$				
$\mathrm{e}^{-a\\|\mathbf{x}\\|_{2}^{2}}$	$\left(\frac{\pi}{a}\right)^{d / 2} \mathrm{e}^{-\\|\boldsymbol{\omega}\\|_{2}^{2} /(4 a)}, \quad a>0$				

Numbers and Related Notations

\mathbb{N}	Set of positive integers
\mathbb{N}_{0}	Set of nonnegative integers
\mathbb{Z}	Set of integers
\mathbb{R}	Set of real numbers
\mathbb{R}_{+}	Set of nonnegative numbers
\mathbb{C}	Set of complex numbers
T	Torus of length 2π
\mathbb{T}^{d}	d-Dimensional torus of length 2π
[a, b]	Closed interval in \mathbb{R}
$\lfloor x\rfloor$	Largest integer $\leq x$ for given $x \in \mathbb{R}$
-	Euler's number
i	Imaginary unit
$\arg a$	Argument of $a \in \mathbb{C} \backslash\{0\}$
$\|a\|$	Magnitude of $a \in \mathbb{C}$
\bar{a}	Conjugate complex number of $a \in \mathbb{C}$
Re a	Real part of $a \in \mathbb{C}$
$\operatorname{Im} a$	Imaginary part of $a \in \mathbb{C}$
$w_{N}:=\mathrm{e}^{-2 \pi \mathrm{i} / N}$	Primitive N-th root of unity
$\varphi(n)$	Euler totient function of $n \in \mathbb{N}$
δ_{j}	Kronecker symbol with $\delta_{0}=1$ and $\delta_{j}=0, j \in \mathbb{Z} \backslash\{0\}$
$j \bmod N$	Nonnegative residue modulo N
$\delta_{j \bmod N}$	N-periodic Kronecker symbol
\mathscr{O}	Landau symbol
$(\mathbb{Z} / p \mathbb{Z})^{*}$	Multiplicative group of integers modulo a prime p
\mathbb{F}	Set of binary floating point numbers
$\mathrm{fl}(a)$	Floating point number of a
u	Unit roundoff in \mathbb{F}
\tilde{w}_{N}^{k}	Precomputed value of w_{N}^{k}
$\ln a$	Natural logarithm of $a>0$ to the base e
$\log _{2} N$	Binary logarithm of $N>0$ to the base 2
$\varepsilon_{N}(k)$	Scaling factors with $\varepsilon_{N}(0)=\varepsilon_{N}(N)=\frac{\sqrt{2}}{2}$ and $\varepsilon_{N}(k)=1$ for $k=1, \ldots, N-1$
$\operatorname{sgn} a$	Sign of $a \in \mathbb{R}$
$\alpha(t)$	Number of real additions required for an FFT for DFT (2^{t})
$\mu(t)$	Number of nontrivial real multiplications required for an FFT for DFT(2^{t})
I_{N}, J_{N}	Index set $\{0, \ldots, N-1\}$ if not defined differently
$k=\left(k_{t-1}, \ldots, k_{0}\right)_{2}$	t-Digit binary number $k \in J_{N}$ with $N=2^{t}$ and $k_{j} \in\{0,1\}$
$\rho(k)$	Bit-reversed number of $k \in J_{N}$ with $N=2^{t}$
π_{N}	Perfect shuffle of J_{N} with $N=2^{t}$
I_{N}^{d}	Multivariate index set $\left\{\mathbf{n}=\left(n_{j}\right)_{j=1}^{d}: n_{j} \in I_{N}, j=\right.$ $1, \ldots, d\}$

$\mathbf{n}:=\left(n_{j}\right)_{j=1}^{d} \quad$ Multivariate index
1^{d}
$\mathbf{k} \bmod \mathbf{N}$
$\mathbf{k} \circ \mathbf{N}$
$\Lambda(\mathbf{z}, M)$
$\Lambda^{\perp}(\mathbf{z}, M)$

Vector of ones, $\mathbf{1}^{d}=(1, \ldots, 1)^{\top} \in \mathbb{Z}^{d}$
Nonnegative residue modulo \mathbf{N} defined entrywise Entrywise multiplication $\mathbf{k} \circ \mathbf{N}=\left(k_{j} N_{j}\right)_{j=1}^{d}$
Rank-1 lattice generated by $\mathbf{z} \in \mathbb{Z}^{d}$ and $M \in \mathbb{Z}$ Integer dual lattice of $\Lambda(\mathbf{z}, M)$

Periodic Functions and Related Notations

$f: \mathbb{T} \rightarrow \mathbb{C} \quad$ Complex-valued 2π-periodic function
$f^{(r)} \quad r$ th derivative of f
$C(\mathbb{T}) \quad$ Banach space of continuous functions $f: \mathbb{T} \rightarrow \mathbb{C}$
$C^{r}(\mathbb{T}) \quad$ Banach space of r-times continuously differentiable functions $f: \mathbb{T} \rightarrow \mathbb{C}$
$C^{r}\left(\mathbb{T}^{d}\right) \quad$ Banach space of d-variate r-times continuously differentiable functions $f: \mathbb{T}^{d} \rightarrow \mathbb{C}$
$L_{p}(\mathbb{T}) \quad$ Banach space of measurable functions $f: \mathbb{T} \rightarrow \mathbb{C}$ with integrable $|f|^{p}, p \geq 1$
$L_{p}\left(\mathbb{T}^{d}\right) \quad$ Banach space of d-variate measurable functions $f: \mathbb{T}^{d} \rightarrow \mathbb{C}$ with integrable $|f|^{p}, p \geq 1$
$L_{2}(\mathbb{T}) \quad$ Hilbert space of absolutely square-integrable functions $f: \mathbb{T} \rightarrow \mathbb{C}$
$\mathrm{e}^{\mathrm{i} k x} \quad k$ th complex exponential with $k \in \mathbb{Z}$
$\mathscr{T}_{n} \quad$ Set of 2π-periodic trigonometric polynomials up to degree n
$\mathscr{T}_{n}^{(2 T)} \quad$ Set of $2 T$-periodic trigonometric polynomials up to degree n
$c_{k}(f) \quad k$ th Fourier coefficient of $f \in L_{1}(\mathbb{T})$ or $f \in L_{2}(\mathbb{T})$
$c_{\mathbf{k}}(f) \quad \quad \mathbf{k}$ th Fourier coefficient of a d-variate function $f \in L_{1}\left(\mathbb{T}^{d}\right)$ or $f \in$ $L_{2}\left(\mathbb{T}^{d}\right)$
$c_{k}^{(L)}(f) \quad k$ th Fourier coefficient of an L-periodic function f
$\hat{c}_{k}(f) \quad$ Approximate value of $c_{k}(f)$
$S_{n} f \quad n$th partial sum of the Fourier series of $f \in L_{2}(\mathbb{T})$ or $f \in L_{2}\left(\mathbb{T}^{d}\right)$
$a_{k}(f), b_{k}(f) \quad k$ th real Fourier coefficients of $f: \mathbb{T} \rightarrow \mathbb{R}$
$f * g \quad$ Convolution of $f, g \in L_{1}(\mathbb{T})$ or $f, g \in L_{1}\left(\mathbb{T}^{d}\right)$
$D_{n} \quad n$th Dirichlet kernel
$F_{n} \quad n$th Fejér kernel
$\sigma_{n} f \quad n$th Fejér sum
$V_{2 n} \quad n$th de la Vallée Poussin kernel
$\chi_{[a, b]} \quad$ Characteristic function of the interval $[a, b]$
${ }_{a}^{b}(\varphi) \quad$ Total variation of the function $\varphi:[a, b] \rightarrow \mathbb{C}$
$\tilde{S}_{n} f \quad n$th partial sum of the conjugate Fourier series of f
$f\left(x_{0} \pm 0\right) \quad$ One-sided limits of the function $f: \mathbb{T} \rightarrow \mathbb{C}$ at the point x_{0}
cas Cosine-and-sine function $\cos +\sin$
$P_{2 \pi} \quad 2 \pi$-Periodization operator

$S_{I} f$	d-Variate Fourier partial sum of $f \in L_{1}\left(\mathbb{T}^{d}\right)$ with regard to frequency index set I
Π_{I}	span $\left\{\mathrm{e}^{\mathrm{ik} \cdot \mathbf{x}}: \mathbf{k} \in I\right\}$ space of multivariate trigonometric polynomi- als supported on I
$\mathscr{A}\left(\mathbb{T}^{d}\right)$	Weighted subspace of $L_{1}\left(\mathbb{T}^{d}\right)$ $H^{\alpha, p}\left(\mathbb{T}^{d}\right)$
Periodic Sobolev space of isotropic smoothness	

Sequences and Related Notations

$x=\left(x_{k}\right)_{k \in \mathbb{Z}} \quad$ Sequence with complex entries x_{k}
$\ell_{\infty}(\mathbb{Z}) \quad$ Banach space of bounded sequences
$\ell_{p}(\mathbb{Z}) \quad$ Banach space of sequences $x=\left(x_{k}\right)_{k \in \mathbb{Z}}$ with $\sum_{k \in \mathbb{Z}}\left|x_{k}\right|^{p}<\infty$, $p \geq 1$
$\ell_{2}(\mathbb{Z}) \quad$ Hilbert space of sequences $x=\left(x_{k}\right)_{k \in \mathbb{Z}}$ with $\sum_{k \in \mathbb{Z}}\left|x_{k}\right|^{2}<\infty$
$V x \quad$ Forward shift of x
$V^{-1} x \quad$ Backward shift of x
$M \quad$ Modulation filter
$\delta=\left(\delta_{k}\right)_{k \in \mathbb{Z}} \quad$ Pulse sequence
$h=H \delta \quad$ Impulse response of linear, time-invariant filter H
$h * x \quad$ Discrete convolution of sequences h and x
$H(\omega) \quad$ Transfer function of linear, time-invariant filter H

Nonperiodic Functions Defined on \mathbb{R} or \mathbb{R}^{d} and Related Notations

$f: \mathbb{R} \rightarrow \mathbb{C}$	Complex-valued function		
$C_{0}(\mathbb{R})$	Banach space of continuous functions $f: \mathbb{R} \rightarrow \mathbb{C}$ with $\lim _{\|x\| \rightarrow \infty} f(x)=0$		
$C_{0}\left(\mathbb{R}^{d}\right)$	Banach space of d-variate continuous functions $f: \mathbb{R} \rightarrow \mathbb{C}$ with $\lim _{\\|\mathbf{x}\\| \rightarrow \infty} f(\mathbf{x})=0$		
$C_{c}(\mathbb{R})$	Subspace of compactly supported, continuous functions f : $\mathbb{R} \rightarrow \mathbb{C}$		
$C^{r}(\mathbb{R})$	Subspace of r-times continuously differentiable functions f $\mathbb{R} \rightarrow \mathbb{C}$		
$L_{p}(\mathbb{R})$	Banach space of measurable functions $f: \mathbb{R} \rightarrow \mathbb{C}$ such that $\|f\|^{p}$ is integrable over \mathbb{R} for $p \geq 1$		
$L_{p}\left(\mathbb{R}^{d}\right)$	Banach space of d-variate measurable functions $f: \mathbb{R}^{d} \rightarrow \mathbb{C}$ such that $\|f\|^{p}$ is integrable over \mathbb{R}^{d} for $p \geq 1$		
$L_{2}(\mathbb{R})$	Hilbert space of absolutely square integrable functions f : $\mathbb{R} \rightarrow \mathbb{C}$		

$L_{2}\left(\mathbb{R}^{d}\right)$	Hilbert space of d-variate absolutely square integrable functions $f: \mathbb{R}^{d} \rightarrow \mathbb{C}$		
$\mathscr{S}\left(\mathbb{R}^{d}\right)$	Schwartz space of d-variate rapidly decreasing functions		
$\mathscr{S}^{\prime}\left(\mathbb{R}^{d}\right)$	Space of tempered distributions on $\mathscr{S}\left(\mathbb{R}^{d}\right)$		
\mathbb{S}^{2}	Unit sphere $\mathbb{S}^{2}=\left\{\mathbf{x} \in \mathbb{R}^{3}:\\|\mathbf{x}\\|_{2}=1\right\}$		
$L_{2}\left(\mathbb{S}^{2}\right)$	Hilbert space of square integrable functions f on \mathbb{S}^{2}		
$\\|f\\|^{2}$	Energy of $f \in L_{2}(\mathbb{R})$		
$\hat{f}=\mathscr{F} f$	Fourier transform of $f \in L_{1}(\mathbb{R})$ or $f \in L_{2}(\mathbb{R})$ and $f \in L_{1}\left(\mathbb{R}^{d}\right)$ or $f \in L_{2}\left(\mathbb{R}^{d}\right)$		
$(\hat{f})^{2}$	Inverse Fourier transform of $\hat{f} \in L_{1}(\mathbb{R})$ or $\hat{f} \in L_{2}(\mathbb{R})$ and $\hat{f} \in L_{1}\left(\mathbb{R}^{d}\right)$ or $\hat{f} \in L_{2}\left(\mathbb{R}^{d}\right)$		
$f * g$	Convolution of $f, g \in L_{1}(\mathbb{R})$ or $f, g \in L_{1}\left(\mathbb{R}^{d}\right)$		
sinc	Cardinal sine function		
Si	Sine integral		
N_{m}	Cardinal B-spline of order m		
M_{m}	Centered cardinal B-spline of order m		
$M^{(k, \ell)}\left(x_{1}, x_{2}\right)$	Tensor product of B-splines $M^{(k, \ell)}\left(x_{1}, x_{2}\right)=M_{k}\left(x_{1}\right) M_{\ell}\left(x_{2}\right)$		
B_{j}^{m}	B-spline of order m with arbitrary knots $-\infty<t_{j}<\ldots<$ $t_{j+m}<\infty$		
H_{n}	Hermite polynomial of degree n		
h_{n}	nth Hermite function		
P_{k}	k th Legendre polynomial		
P_{k}^{n}	Associated Legendre function		
Y_{k}^{n}	Spherical harmonics		
J_{v}	Bessel function of order v		
δ	Dirac distribution		
$\mathscr{H} f$	Hankel transform of $f \in L_{2}((0, \infty))$		
Δu	Laplace operator applied to a function u		
supp f	Support of $f: \mathbb{R} \rightarrow \mathbb{C}$		
$\Delta_{x_{0}} f$	Dispersion of $f \in L_{2}(\mathbb{R})$ about the time $x_{0} \in \mathbb{R}$		
$\begin{aligned} & \Delta_{\omega_{0}} \hat{f} \\ & \left(\mathscr{F}_{\psi} f\right)(b, \omega) \end{aligned}$	Dispersion of $\hat{f} \in L_{2}(\mathbb{R})$ about the frequency $\omega_{0} \in \mathbb{R}$ Windowed Fourier transform of f with respect to the window function ψ		
$\left\|\left(\mathscr{F}_{\psi}{ }^{\text {d }} f\right)(b, \omega)\right\|^{2}$	Spectrogram of f with respect to the window function ψ		
$\mathscr{F}_{\alpha} f$	Fractional Fourier transform for $f \in L_{2}(\mathbb{R})$ with $\alpha \in \mathbb{R}$		
$\mathscr{L}_{\mathbf{A}} f$	Linear canonical transform for $f \in L_{2}(\mathbb{R})$ with a 2-by-2 matrix \mathbf{A}		

Vectors, Matrices, and Related Notations

\mathbb{C}^{N}
$\mathbf{a}=\left(a_{j}\right)_{j=0}^{N-1}$
\mathbf{a}^{\top}

Vector space of complex column vectors $\mathbf{a}=\left(a_{j}\right)_{j=0}^{N-1}$
Column vector with complex components a_{j}
Transposed vector of a

$\overline{\mathbf{a}}$	Conjugate complex vector of a		
\mathbf{a}^{H}	Transposed conjugate complex vector of a		
$\langle\mathbf{a}, \mathbf{b}\rangle$	Inner products of $\mathbf{a}, \mathbf{b} \in \mathbb{C}^{N}$		
$\\|\mathbf{a}\\|_{2}$	Euclidean norm of $\mathbf{a} \in \mathbb{C}^{N}$		
$\mathbf{b}_{k}=\left(\delta_{j-k}\right)_{j=0}^{N-1}$	Standard basis vectors of \mathbb{C}^{N} for $k=0, \ldots, N-1$		
$\mathbf{e}_{k}=\left(w_{N}^{j k}\right)_{j=0}^{N-1}$	Exponential vectors of \mathbb{C}^{N} for $k=0, \ldots, N-1$		
$\mathbf{A}_{N}=\left(a_{j, k}\right)_{j, k=0}^{N-1}$	N-by- N matrix with complex entries $a_{j, k}$		
$\underline{\mathbf{A}}_{N}^{\top}$	Transposed matrix of \mathbf{A}_{N}		
$\overline{\mathbf{A}}_{N}$	Complex conjugate matrix of \mathbf{A}_{N}		
$\mathbf{A}_{N}^{\mathrm{H}}$	Transposed complex conjugate matrix of \mathbf{A}_{N}		
\mathbf{A}_{N}^{-1}	Inverse matrix of \mathbf{A}_{N}		
\mathbf{A}_{N}^{+}	Moore-Penrose pseudo-inverse of \mathbf{A}_{N}		
\mathbf{I}_{N}	N-by- N identity matrix		
0	Zero vector and zero matrix, respectively		
$\mathbf{F}_{N}=\left(w_{N}^{j k}\right)_{j, k=0}^{N-1}$	N-by- N Fourier matrix with $w_{N}=\mathrm{e}^{-2 \pi \mathrm{i} / N}$		
$\frac{1}{\sqrt{N}} \mathbf{F}_{N}$	Unitary Fourier matrix		
$\hat{\mathbf{a}}=\left(\hat{a}_{k}\right)_{k=0}^{N-1}$ \mathbf{J}_{N}^{\prime}	Discrete Fourier transform of $\mathbf{a} \in \mathbf{C}^{N}$, i.e., $\hat{\mathbf{a}}=\mathbf{F}_{N} \mathbf{a}$ N-by- N flip matrix		
J_{N}	N-by- N counter-diagonal matrix		
$\operatorname{det} \mathbf{A}_{N}$	Determinant of the matrix \mathbf{A}_{N}		
$\operatorname{tr} \mathbf{A}_{N}$	Trace of the matrix \mathbf{A}_{N}		
$\mathbf{a} * \mathbf{b}$	Cyclic convolution of $\mathbf{a}, \mathbf{b} \in \mathbb{C}^{N}$		
$\mathbf{b}_{0}=\left(\delta_{j}\right)_{j=0}^{N-1}$	Pulse vector		
\mathbf{V}_{N}	N-by- N forward-shift matrix		
\mathbf{V}_{N}^{-1}	N-by- N backward-shift matrix		
$\mathbf{I}_{N}-\mathbf{V}_{N}$	N-by- N cyclic difference matrix		
$\mathbf{h}=\mathbf{H}_{N} \mathbf{b}_{0}$	Impulse response vector of a shift-invariant, linear map \mathbf{H}_{N}		
\mathbf{M}_{N}	N-by- N modulation matrix		
$\mathbf{a} \circ \mathbf{b}$	Componentwise product of $\mathbf{a}, \mathbf{b} \in \mathbb{C}^{N}$		
circ a	N-by- N circulant matrix of $\mathbf{a} \in \mathbb{C}^{N}$		
$\left(\mathbf{a}_{0}\|\ldots\| \mathbf{a}_{N-1}\right)$	N-by- N matrix with the columns $\mathbf{a}_{k} \in \mathbb{C}^{N}$		
diag a	N-by- N diagonal matrix with the diagonal entries a_{j}, where $\mathbf{a}=\left(a_{j}\right)_{j=0}^{N-1}$		
$\mathbf{A}_{M, N}=\left(a_{j, k}\right)_{j, k=0}^{M-1, N-1}$	M-by- N matrix with complex entries $a_{j, k}$		
$\mathbf{A}_{M, N} \otimes \mathbf{B}_{P, Q}$	Kronecker product of $\mathbf{A}_{M, N}$ and $\mathbf{B}_{P, Q}$		
$\mathbf{a} \otimes \mathbf{b}$	Kronecker product of $\mathbf{a} \in \mathbb{C}^{M}$ and $\mathbf{b} \in \mathbb{C}^{N}$		
$\mathbf{P}_{N}(L)$	L-stride permutation matrix with $N=L M$ for integers $L, M \geq 2$		
$\mathbf{P}_{N}(2)$	Even-odd permutation matrix for even integer N		
$\operatorname{col} \mathbf{A}_{M, N}$	Vectorization of the matrix $\mathbf{A}_{M, N}$		
$\mathbf{C}_{N+1}^{\mathrm{I}}$	$(N+1)$-by- $(N+1)$ cosine matrix of type I		

$\mathbf{C}_{N}^{\text {II }}, \mathbf{C}_{N}^{\text {III }}, \mathbf{C}_{N}^{\text {IV }}$	N-by- N cosine matrix of type II, III, and IV, respectively		
\mathbf{S}_{N-1}^{1}	($N-1$)-by- $(N-1)$ sine matrix of type I		
$\mathbf{S}_{N}^{\mathrm{II}}, \mathbf{S}_{N}^{\mathrm{III}}, \mathbf{S}_{N}^{\mathrm{IV}}$	N-by- N sine matrix of type II, III, and IV, respectively		
\mathbf{H}_{N}	N-by- N Hartley matrix		
\mathbf{R}_{N}	Bit-reversed permutation matrix for $N=2^{t}$		
\mathbf{P}_{N}	Perfect shuffle permutation matrix with $N=2^{t}$		
\mathbf{D}_{N}	Diagonal sign matrix diag $\left((-1)^{j}\right)_{j=0}^{N-1}$		
$\begin{aligned} & \mathbf{W}_{N / 2} \\ & \operatorname{diag}\left(\mathbf{A}_{N}, \mathbf{B}_{N}\right) \end{aligned}$	Diagonal matrix diag $\left(w_{N}^{j}\right)_{j=0}^{N / 2-1}$ for even integer N $2 N$-by- $2 N$ block diagonal matrix with diagonal entries \mathbf{A}_{N} and \mathbf{B}_{N}		
$\mathbf{a}^{(\ell)}$	Periodization of $\mathbf{a} \in \mathbb{C}^{N}$ with $N=2^{t}$ and $\ell \in\{0, \ldots, t\}$		
$\hat{\mathbf{A}}=\mathbf{F}_{N_{1}} \mathbf{A} \mathbf{F}_{N_{2}}$	Two-dimensional discrete Fourier transform of $\mathbf{A} \in$ $\mathbb{C}^{N_{1} \times N_{2}}$		
$\|\mathbf{x}\|=\left(\left\|x_{j}\right\|\right)_{j=0}^{N-1}$	Modulus of a vector $\mathbf{x} \in \mathbb{C}^{N}$		
$\|\mathbf{A}\|=\left(\left\|a_{j, k}\right\|\right)_{j, k=0}^{N_{1}-1, N_{2}-1}$	Modulus of matrix $\mathbf{A} \in \mathbb{C}^{N_{1} \times N_{2}}$		
$\\|\mathbf{A}\\|_{\mathrm{F}}$	Frobenius norm of matrix A		
$\mathbf{A} * \mathbf{B}$	Cyclic convolution of $\mathbf{A}, \mathbf{B} \in \mathbb{C}^{N_{1} \times N_{2}}$		
$\mathbf{A} \circ \mathbf{B}$	Entrywise product of matrices of $\mathbf{A}, \mathbf{B} \in \mathbb{C}^{N_{1} \times N_{2}}$		
$\mathbf{A} \oplus \mathbf{B}$	Block diagonal matrix diag (A, B)		
$\mathbf{n} \cdot \mathbf{x}$	Inner product of $\mathbf{n} \in \mathbb{Z}^{d}$ and $\mathbf{x} \in \mathbb{R}^{d}$		
\mathbf{F}_{N}^{d}	d-Variate Fourier matrix $\mathbf{F}_{N}^{d}=\left(\mathrm{e}^{-2 \pi \mathrm{i} \mathbf{k} \cdot \mathbf{j} / N}\right)_{j, k \in I_{N}^{d}}$		
A (X, I)	Multivariate Fourier matrix $\mathbf{A}(X, I)=\left(\mathrm{e}^{\mathrm{i} \mathbf{k} \cdot \mathbf{x}}\right)_{\mathbf{x} \in X, \mathbf{k} \in I} \in$ $\mathbb{C}^{\|X\| \times\|I\|}$		
$\|I\|$	Cardinality of finite index set I		
$\mathbf{C}_{M}(p)$	Companion matrix to the polynomial p of degree M		
$\mathbf{V}_{M}(\mathbf{z})$	Vandermonde matrix $\mathbf{V}_{M}(\mathbf{z})=\left(z_{k}^{j-1}\right)_{j, k=1}^{M}$ generated by $\mathbf{z}=\left(z_{k}\right)_{k=1}^{M}$.		
$\mathbf{V}^{c}{ }^{c}(\mathbf{z})$	$2 M$-by- $2 M$ confluent Vandermonde matrix		
$\mathbf{V}_{P, M}(\mathbf{z})$	Rectangular P-by- M Vandermonde matrix $\mathbf{V}_{P, M}(\mathbf{z})=$ $\left(z_{k}^{j-1}\right)_{j, k=1}^{P, M}$		
$\mathbf{H}_{M}(0)$	M-by- M Hankel matrix		
$\mathbf{H}_{L, M}$	Rectangular L-by- M Hankel matrix		
$\operatorname{cond}_{2} \mathbf{A}_{L, M}$	Spectral norm condition of an L-by- M matrix $\mathbf{A}_{L, M}$		

Real-Valued Functions Defined on [-1, 1] and Related Notations

$C(I) \quad$ Banach space of continuous functions $f: I \rightarrow \mathbb{R}$
$C^{r}(I) \quad$ Banach space of r-times continuously differentiable functions f : $I \rightarrow \mathbb{R}$
$C^{\infty}(I) \quad$ Set of infinitely differentiable functions $f: I \rightarrow \mathbb{R}$

I	Closed interval [$-1,1$]
$L_{2, \mathrm{even}}(\mathbb{T})$	Subspace of even, real-valued functions of $L_{2}(\mathbb{T})$
\mathscr{P}_{n}	Set of real algebraic polynomials up to degree n
T_{k}	k th Chebyshev polynomial (of first kind)
U_{k}	k th Chebyshev polynomial of second kind
$w(x)$	Weight function $\left(1-x^{2}\right)^{-1 / 2}$ for $x \in(-1,1)$ (if not defined differently)
$L_{2, w}(I)$	Real weighted Hilbert space of functions $f: I \rightarrow \mathbb{R}$, where $w\|f\|^{2}$ is integrable over I
$a_{k}[f]$	k th Chebyshev coefficient of $f \in L_{2, w}(I)$
$C_{n} f$	nth partial sum of the Chebyshev series of $f \in L_{2, w}(I)$
$T_{k}^{[a, b]}$	k th Chebyshev polynomial with respect to the compact interval [a, b]
$x_{j}^{(N)}$	Chebyshev extreme points for fixed N and $j=0, \ldots, N$
$z_{j}^{(N)}$	Chebyshev zero points for fixed N and $j=0, \ldots, N-1$
ℓ_{k}	k th Lagrange basis polynomial
$a_{k}^{(N)}[f]$	k th coefficient of the interpolating polynomial of $f \in C(I)$ at Chebyshev extreme points $x_{j}^{(N)}$ for $j=0, \ldots, N$
B_{m}	Bernoulli polynomial of degree m
b_{ℓ}	ℓ th 1-periodic Bernoulli function
$h_{j}^{a, b, r}$	Two-point Taylor basis polynomials for the interval $[a, b]$ and $j=$ $0, \ldots, r-1$
λ_{N}	Lebesgue constant for polynomial interpolation at Chebyshev extreme points $x_{j}^{(N)}$ for $j=0, \ldots, N$

[^0]MUSIC Multiple signal classification, 531
NDCT Nonequispaced discrete cosine transform, 397
NDSFT Nonequispaced discrete spherical Fourier transform, 511
NDST Nonequispaced discrete sine transform, 397
NFCT Nonequispaced fast cosine transform, 399
NFFT Nonequispaced fast Fourier transform, 380
NFFT^{\top} Nonequispaced fast Fourier transform transposed, 382
NFSFT Nonequispaced fast spherical Fourier transform, 517
NFST Nonequispaced fast sine transform, 402
NNFFT Nonequispaced FFT with nonequispaced knots in time and frequency domain, 396
$\mathrm{SO}(3) \quad$ Group of all rotations about the origin of $\mathbb{R}^{3}, 521$
STFT Short time Fourier transform, 96
SVD Singular value decomposition, 532

References

1. B. Adcock, Convergence acceleration of modified Fourier series in one or more dimensions. Math. Comput. 80(273), 225-261 (2011) (Cited on page 489)
2. N. Ahmed, T. Natarajan, K.R. Rao, Discrete cosine transform. IEEE Trans. Comput. 23, 9093 (1974) (Cited on page 157)
3. A. Akavia, Deterministic sparse Fourier approximation via approximating arithmetic progressions. IEEE Trans. Inf. Theory 60(3), 1733-1741 (2014) (Cited on page 295)
4. B.K. Alpert, V. Rokhlin, A fast algorithm for the evaluation of Legendre expansions. SIAM J. Sci. Stat. Comput. 12(1), 158-179 (1991) (Cited on page 512)
5. F. Andersson, M. Carlsson, ESPRIT for multidimensional general grids (2017). arXiv e-prints (Cited on pages 541, 542)
6. T.M. Apostol, Introduction to Analytic Number Theory (Springer, New York, 1976) (Cited on page 135)
7. A. Arico, S. Serra-Capizzano, M. Tasche, Fast and numerically stable algorithms for discrete Hartley transforms and applications to preconditioning. Commun. Inf. Syst. 5(1), 21-68 (2005) (Cited on page 157)
8. M. Arioli, H. Munthe-Kaas, L. Valdettaro, Componentwise error analysis for FFTs with applications to fast Helmholtz solvers. Numer. Algorithms 12, 65-88 (1996) (Cited on page 303)
9. A. Arnold, M. Bolten, H. Dachsel, F. Fahrenberger, F. Gähler, R. Halver, F. Heber, M. Hofmann, J. Iseringhausen, I. Kabadshow, O. Lenz, M. Pippig, ScaFaCoS - Scalable fast Coloumb solvers (2013). http://www.scafacos.de (Cited on page 419)
10. K. Atkinson, W. Han, Theoretical Numerical Analysis. A Functional Analysis Framework (Springer, Dordrecht, 2009) (Cited on page 177)
11. C. Aubel, H. Bölcskei, Vandermonde matrices with nodes in the unit disk and the large sieve. Appl. Comput. Harmon. Anal. (to appear, 2019) (Cited on pages 546, 547, 551, 554)
12. A. Averbuch, M. Israeli, L. Vozovoi, A fast Poisson solver of arbitrary order accuracy in rectangular regions. SIAM J. Sci. Comput. 19(3), 933-952 (1998) (Cited on page 507)
13. E. Bannai, E. Bannai, A survey on spherical designs and algebraic combinatorics on spheres. Eur. J. Comb. 30(6), 1392-1425 (2009) (Cited on page 520)
14. R.F. Bass, K. Gröchenig, Random sampling of multivariate trigonometric polynomials. SIAM J. Math. Anal. 36(3), 773-795 (2004) (Cited on page 417)
15. G. Baszenski, F.-J. Delvos, A discrete Fourier transform scheme for Boolean sums of trigonometric operators, in Multivariate Approximation Theory IV (Birkhäuser, Basel, 1989), pp. 15-24 (Cited on page 440)
16. G. Baszenski, M. Tasche, Fast polynomial multiplication and convolution related to the discrete cosine transform. Linear Algebra Appl. 252, 1-25 (1997) (Cited on page 369)
17. G. Baszenski, F.-J. Delvos, M. Tasche, A united approach to accelerating trigonometric expansions. Concrete analysis. Comput. Math. Appl. 30(3-6), 33-49 (1995) (Cited on page 489)
18. G. Baszenski, U. Schreiber, M. Tasche, Numerical stability of fast cosine transforms. Numer. Funct. Anal. Optim. 21(1-2), 25-46 (2000) (Cited on page 347)
19. D. Batenkov, Y. Yomdin, Algebraic Fourier reconstruction of piecewise smooth functions. Math. Comput. 81(277), 277-318 (2012) (Cited on pages 489, 490)
20. H.H. Bauschke, P.L. Combettes, D.R. Luke, Phase retrieval, error reduction algorithm, and Fienup variants: a view from convex optimization. J. Opt. Soc. Am. A 19(7), 1334-1345 (2002) (Cited on page 573)
21. F.S.V. Bazán, Conditioning of rectangular Vandermonde matrices with nodes in the unit disk. SIAM J. Matrix Anal. Appl. 21, 679-693 (2000) (Cited on pages 540, 554)
22. F.S.V. Bazán, P.L. Toint, Error analysis of signal zeros from a related companion matrix eigenvalue problem. Appl. Math. Lett. 14(7), 859-866 (2001) (Cited on page 529)
23. R.K. Beatson, W.A. Light, Fast evaluation of radial basis functions: methods for twodimensional polyharmonic splines. IMA J. Numer. Anal. 17(3), 343-372 (1997) (Cited on page 410)
24. E. Bedrosian, A product theorem for Hilbert transforms. Proc. IEEE 51(5), 868-869 (1963) (Cited on page 210)
25. R. Beinert, G. Plonka, Ambiguities in one-dimensional discrete phase retrieval from Fourier magnitudes. J. Fourier Anal. Appl. 21(6), 1169-1198 (2015) (Cited on pages 567, 573)
26. R. Beinert, G. Plonka, Sparse phase retrieval of one-dimensional signals by Prony's method. Front. Appl. Math. Stat. 3, 5 (2017) (Cited on pages 567, 569)
27. S. Belmehdi, On the associated orthogonal polynomials. J. Comput. Appl. Math. 32(3), 311319 (1990) (Cited on page 370)
28. J.J. Benedetto, Harmonic Analysis and Applications (CRC Press, Boca Raton, 1997) (Cited on page ix)
29. J. Berent, P.L. Dragotti, T. Blu, Sampling piecewise sinusoidal signals with finite rate of innovation methods. IEEE Trans. Signal Process. 58(2), 613-625 (2010) (Cited on page 528)
30. L. Berg, Lineare Gleichungssysteme mit Bandstruktur und ihr asymptotisches Verhalten (Deutscher Verlag der Wissenschaften, Berlin, 1986) (Cited on page 252)
31. J.-P. Berrut, L.N. Trefethen, Barycentric Lagrange interpolation. SIAM Rev. 46(3), 501-517 (2004) (Cited on pages 117, 326, 413)
32. G. Beylkin, On the fast Fourier transform of functions with singularities. Appl. Comput. Harmon. Anal. 2(4), 363-381 (1995) (Cited on pages 377, 388, 393)
33. G. Beylkin, R. Cramer, A multiresolution approach to regularization of singular operators and fast summation. SIAM J. Sci. Comput. 24(1), 81-117 (2002) (Cited on page 393)
34. S. Bittens, Sparse FFT for functions with short frequency support. Dolomites Res. Notes Approx. 10, 43-55 (2017) (Cited on page 295)
35. Å. Björck, Numerical Methods for Least Squares Problems (SIAM, Philadelphia, 1996) (Cited on page 417)
36. R.E. Blahut, Fast Algorithms for Digital Signal Processing (Cambridge University Press, New York, 2010) (Cited on pages ix, 273)
37. M. Böhme, D. Potts, A fast algorithm for filtering and wavelet decomposition on the sphere. Electron. Trans. Numer. Anal. 16, 70-92 (2003) (Cited on page 518)
38. M. Böhme, D. Potts, A fast algorithm for spherical filtering on arbitrary grids, in Proceedings of SPIE. Wavelets: Applications in Signal and Image Processing X, vol. 5207 (2003) (Cited on page 518)
39. A. Bondarenko, D. Radchenko, M. Viazovska, Optimal asymptotic bounds for spherical designs. Ann. Math. 178(2), 443-452 (2013) (Cited on page 520)
40. L. Bos, M. Caliari, S. De Marchi, M. Vianello, Y. Xu, Bivariate Lagrange interpolation at the Padua points: the generating curve approach. J. Approx. Theory 143, 15-25 (2006). Special Issue on Foundations of Computational Mathematics (Cited on page 442)
41. A. Böttcher, S. Kunis, D. Potts, Probabilistic spherical Marcinkiewicz-Zygmund inequalities. J. Approx. Theory 157(2), 113-126 (2009) (Cited on page 521)
42. A. Bovik, Handbook of Image and Video Processing, 2nd edn. (Academic, Burlington, 2010) (Cited on page 217)
43. J.P. Boyd, Chebyshev and Fourier Spectral Methods, 2nd edn. (Dover Press, New York, 2000) (Cited on pages 507, 509, 518, 520)
44. R.N. Bracewell, The Hartley Transform (Clarendon Press/Oxford University Press, New York, 1986) (Cited on page 157)
45. Y. Bresler, A. Macovski, Exact maximum likelihood parameter estimation of superimposed exponential signals in noise. IEEE Trans. Acoust. Speech Signal Process. 34(5), 1081-1089 (1986) (Cited on page 540)
46. W.L. Briggs, V.E. Henson, The DFT. An Owner's Manual for the Discrete Fourier Transform (SIAM, Philadelphia, 1995) (Cited on pages ix, 45, 107, 564)
47. E.O. Brigham, The Fast Fourier Transform (Prentice Hall, Englewood Cliffs, 1974) (Cited on pages ix, 276)
48. M. Broadie, Y. Yamamoto, Application of the fast Gauss transform to option pricing. Manag. Sci. 49, 1071-1088 (2003) (Cited on page 404)
49. J.L. Brown, Analytic signals and product theorems for Hilbert transforms. IEEE Trans. Circuits Syst. 21, 790-792 (1974) (Cited on page 210)
50. G. Bruun, z-Transform DFT filters and FFT's. IEEE Trans. Acoust. Speech Signal Process. 26(1), 56-63 (1978) (Cited on page 276)
51. T. Bülow, G. Sommer, Hypercomplex signals-a novel extension of the analytic signal to the multidimensional case. IEEE Trans. Signal Process. 49(11), 2844-2852 (2001) (Cited on page 210)
52. A. Bultheel, H. Martínez, An introduction to the fractional Fourier transform and friends. Cubo 7(2), 201-221 (2005) (Cited on page 101)
53. A. Bultheel, H. Martínez-Sulbaran, A shattered survey of the fractional Fourier transform. Manuscript (2003) (Cited on page 101)
54. A. Bultheel, H.E. Martínez-Sulbaran, Computation of the fractional Fourier transform. Appl. Comput. Harmon. Anal. 16(3), 182-202 (2004) (Cited on page 101)
55. H.-J. Bungartz, M. Griebel, A note on the complexity of solving Poisson's equation for spaces of bounded mixed derivatives. J. Complexity 15(2), 167-199 (1999) (Cited on page 440)
56. H.-J. Bungartz, M. Griebel, Sparse grids. Acta Numer. 13, 147-269 (2004) (Cited on page 440)
57. H.J. Bunge, Texture Analysis in Material Science (Butterworths, London, 1982) (Cited on page 521)
58. P.L. Butzer, R.J. Nessel, Fourier Analysis and Approximation, vol. 1. One-Dimensional Theory (Academic, New York, 1971) (Cited on page ix)
59. G. Byrenheid, L. Kämmerer, T. Ullrich, T. Volkmer, Tight error bounds for rank-1 lattice sampling in spaces of hybrid mixed smoothness. Numer. Math. 136(4), 993-1034 (2017) (Cited on page 426)
60. D. Calvetti, A stochastic roundoff error analysis for FFT. Math. Comput. 56(194), 755-774 (1991) (Cited on page 303)
61. E.J. Candès, The restricted isometry property and its implications for compressed sensing. C. R. Acad. Sci. Paris 346(9-10), 589-592 (2008) (Cited on page 384)
62. J.E. Castrillon-Candas, V. Siddavanahalli, C. Bajaj, Nonequispaced Fourier transforms for protein-protein docking. ICES Report 05-44. University of Texas (2005) (Cited on page 521)
63. K. Chandrasenkharan, Classical Fourier Transforms (Spinger, Berlin, 1989) (Cited on pages ix, 68)
64. X. Chen, A. Frommer, B. Lang, Computational existence proofs for spherical t-designs. Numer. Math. 117(2), 289-305 (2011) (Cited on page 520)
65. T. Chihara, An Introduction to Orthogonal Polynomials (Gordon and Breach Science Publishers, New York, 1978) (Cited on page 365)
66. O. Christensen, An Introduction to Frames and Riesz Bases, 2nd edn. (Birkhäuser/Springer, Cham, 2016) (Cited on page 546)
67. C.Y. Chu, The fast Fourier transform on the hypercube parallel computers. Ph.D. thesis, Cornell University, Ithaca, 1988 (Cited on pages 296, 297, 303)
68. C.K. Chui, Multivariate Splines (SIAM, Philadelphia, 1988) (Cited on pages 452, 453)
69. C.K. Chui, An Introduction to Wavelets (Academic, Boston, 1992) (Cited on page ix)
70. C.W. Clenshaw, A note on the summation of Chebyshev series. Math. Tables Aids Comput. 9, 118-120 (1955) (Cited on page 322)
71. C. Clenshaw, A. Curtis, A method for numerical integration on an automatic computer. Numer. Math. 2, 197-205 (1960) (Cited on pages 349, 358)
72. A. Constantin, Fourier Analysis. Part I. Theory (Cambridge University Press, Cambridge, 2016) (Cited on page ix)
73. J.W. Cooley, J.W. Tukey, An algorithm for machine calculation of complex Fourier series. Math. Comput. 19, 297-301 (1965) (Cited on pages 232, 234, 235)
74. R. Cools, D. Nuyens, Fast algorithms for component-by-component construction of rank-1 lattice rules in shift-invariant reproducing kernel Hilbert spaces. Math. Comput. 75, 903-920 (2004) (Cited on page 439)
75. H.B. Curry, I.J. Schoenberg, On Pólya frequency functions. IV. The fundamental spline functions and their limits. J. Analyse Math. 17, 71-107 (1966) (Cited on page 450)
76. A. Cuyt, W.-S. Lee, Multivariate exponential analysis from the minimal number of samples. Adv. Comput. Math. 44(4), 987-1002 (2018) (Cited on page 541)
77. I. Daubechies, Ten Lectures on Wavelets (SIAM, Philadelphia, 1992) (Cited on page ix)
78. P.J. Davis, Circulant Matrices (Wiley, New York, 1979) (Cited on page 138)
79. C. de Boor, A Practical Guide to Splines, revised edn. (Springer, New York, 2001) (Cited on pages 452,558)
80. C. de Boor, R. DeVore, Approximation by smooth multivariate splines. Trans. Am. Math. Soc. 276(2), 775-788 (1983) (Cited on page 452)
81. C. de Boor, K. Höllig, S. Riemenschneider, Box Splines (Springer, New York, 1993) (Cited on pages 452,453)
82. G.R. de Prony, Essai éxperimental et analytique: sur les lois de la dilatabilité des fluides élastiques et sur celles de la force expansive de la vapeur de l'eau et de la vapeur de l'alkool, à différentes températures. J. Ecole Polytech. 1, 24-76 (1795) (Cited on page 524)
83. A. Deaño, D. Huybrechs, A. Iserles, Computing Highly Oscillatory Integrals (SIAM, Philadelphia, 2018) (Cited on page 364)
84. C.J. Demeure, Fast $Q R$ factorization of Vandermonde matrices. Linear Algebra Appl. 122124, 165-194 (1989) (Cited on page 294)
85. R.A. DeVore, G.G. Lorentz, Constructive Approximation (Springer, Berlin, 1993) (Cited on page 27)
86. J. Dick, F.Y. Kuo, I.H. Sloan, High-dimensional integration: the quasi-Monte Carlo way. Acta Numer. 22, 133-288 (2013) (Cited on page 428)
87. P.L. Dragotti, M. Vetterli, T. Blu, Sampling moments and reconstructing signals of finite rate of innovation: Shannon meets Strang-Fix. IEEE Trans. Signal Process. 55, 1741-1757 (2007) (Cited on page 528)
88. J.R. Driscoll, D.M. Healy, Computing Fourier transforms and convolutions on the 2-sphere. Adv. Appl. Math. 15(2), 202-250 (1994) (Cited on pages 376, 509, 511, 518)
89. J.R. Driscoll, D.M. Healy, D.N. Rockmore, Fast discrete polynomial transforms with applications to data analysis for distance transitive graphs. SIAM J. Comput. 26(4), 10661099 (1997) (Cited on page 376)
90. J. Duchon, Fonctions splines et vecteurs aleatoires. Technical report, Seminaire d'Analyse Numerique, Universite Scientifique et Medicale, Grenoble, 1975 (Cited on page 404)
91. P. Duhamel, H. Hollmann, Split-radix FFT algorithm. Electron. Lett. 20(1), 14-16 (1984) (Cited on page 265)
92. P. Duhamel, M. Vetterli, Fast Fourier transforms: a tutorial review and a state of the art. Signal Process. 19(4), 259-299 (1990) (Cited on page 276)
93. A.J.W. Duijndam, M.A. Schonewille. Nonuniform fast Fourier transform. Geophysics 64, 539-551 (1999) (Cited on pages 388, 390)
94. D. Dung, V.N. Temlyakov, T. Ullrich, Hyperbolic Cross Approximation. Advanced Courses in Mathematics. CRM Barcelona (Birkhäuser/Springer, New York, 2017) (Cited on page 424)
95. A. Dutt, V. Rokhlin, Fast Fourier transforms for nonequispaced data. SIAM J. Sci. Stat. Comput. 14(6), 1368-1393 (1993) (Cited on pages 377, 390, 393)
96. A. Dutt, V. Rokhlin, Fast Fourier transforms for nonequispaced data II. Appl. Comput. Harmon. Anal. 2(1), 85-100 (1995) (Cited on pages 413, 414)
97. A. Eagle, On the relations between the Fourier constants of a periodic function and the coefficients determined by harmonic analysis. Philos. Mag. VII. Ser. 5, 113-132 (1928) (Cited on page 478)
98. K.S. Eckhoff, Accurate reconstructions of functions of finite regularity from truncated Fourier series expansions. Math. Comput. 64(210), 671-690 (1995) (Cited on pages 489, 490)
99. M. Ehler, S. Kunis, T. Peter, C. Richter, A randomized multivariate matrix pencil method for superresolution microscopy (2018). ArXiv e-prints (Cited on pages 541, 542)
100. H. Ehlich, Untersuchungen zur numerischen Fourieranalyse. Math. Z. 91, 380-420 (1966) (Cited on page 478)
101. B. Elbel, Mehrdimensionale Fouriertransformation für nichtäquidistante Daten. Diplomarbeit, Technische Hochschule Darmstadt, 1998 (Cited on pages 388, 394)
102. B. Elbel, G. Steidl, Fast Fourier transform for nonequispaced data, in Approximation Theory IX (Vanderbilt University Press, Nashville, 1998), pp. 39-46 (Cited on pages 394, 397)
103. A. Elgammal, R. Duraiswami, L.S. Davis, Efficient non-parametric adaptive color modeling using fast Gauss transform. Technical report, University of Maryland, 2001 (Cited on page 404)
104. A.C. Fannjiang, The MUSIC algorithm for sparse objects: a compressed sensing analysis. Inverse Prob. 27(3), 035013 (2011) (Cited on page 534)
105. G.E. Fasshauer, L.L. Schumaker, Scattered data fitting on the sphere, in Mathematical Methods for Curves and Surfaces II (Vanderbilt University Press, Nashville, 1998), pp. 117166 (Cited on page 520)
106. H.G. Feichtinger, K. Gröchenig, T. Strohmer, Efficient numerical methods in non-uniform sampling theory. Numer. Math. 69(4), 423-440 (1995) (Cited on page 417)
107. E. Feig, Fast scaled-dct algorithm, in Proceedings of SPIE 1244, Image Processing Algorithms and Techniques, vol. 2 (1990), pp. 2-13 (Cited on page 347)
108. E. Feig, S. Winograd, Fast algorithms for the discrete cosine transform. IEEE Trans. Signal Process. 40(9), 2174-2193 (1992) (Cited on page 347)
109. M. Felsberg, G. Sommer, The monogenic signal. IEEE Trans. Signal Process. 49(12), 31363144 (2001) (Cited on page 212)
110. J.A. Fessler, B.P. Sutton, Nonuniform fast Fourier transforms using min-max interpolation. IEEE Trans. Signal Process. 51(2), 560-574 (2003) (Cited on page 393)
111. C. Févotte, N. Bertin, J.L. Durrieu, Nonnegative matrix factorization with the Itakura-Saito divergence: with application to music analysis. Neural Comput. 21(3), 793-830 (2009) (Cited on page 101)
112. F. Filbir, H.N. Mhaskar, J. Prestin, On the problem of parameter estimation in exponential sums. Constr. Approx. 35(2), 323-343 (2012) (Cited on page 559)
113. G.B. Folland, Fourier Analysis and Its Applications (Brooks/Cole Publishing Company, Pacific Grove, 1992) (Cited on page ix)
114. G.B. Folland, Real Analysis. Modern Techniques and Their Applications, 2nd edn. (Wiley, New York, 1999) (Cited on page 18)
115. W. Förstner, E. Gülch, A fast operator for detection and precise location of distinct points, corners and centres of circular features, in Proceedings of ISPRS Intercommission Conference on Fast Processing of Photogrammetric Data (1987), pp. 281-305 (Cited on page 213)
116. D. Fortunato, A. Townsend, Fast Poisson solvers for spectral methods (2017). ArXiv e-prints (Cited on page 507)
117. S. Foucart, A note guaranteed sparse recovery via ℓ_{1}-minimization. Appl. Comput. Harmon. Anal. 29(1), 97-103 (2010) (Cited on page 384)
118. S. Foucart, H. Rauhut, A Mathematical Introduction to Compressive Sensing. Applied and Numerical Harmonic Analysis (Birkhäuser/Springer, New York, 2013) (Cited on pages 384, 385)
119. J. Fourier, The Analytical Theory of Heat (Dover, New York, 1955). Translated from the French (Cited on pages ix, 2)
120. K. Fourmont, Schnelle Fourier-Transformation bei nichtäquidistanten Gittern und tomographische Anwendungen. Dissertation, Universität Münster, 1999 (Cited on pages 393, 394)
121. W. Freeden, T. Gervens, M. Schreiner, Constructive Approximation on the Sphere (Clarendon Press/Oxford University Press, New York, 1998) (Cited on pages 518, 520, 521)
122. M. Frigo, S.G. Johnson, The design and implementation of FFTW3. Proc. IEEE 93, 216-231 (2005) (Cited on pages 250, 419)
123. M. Frigo, S.G. Johnson, FFTW, C subroutine library (2009). http://www.fftw.org (Cited on pages 250, 419)
124. D. Gabor, The theory of communication. J. IEE 93, 429-457 (1946) (Cited on pages 86, 96)
125. C. Gasquet, P. Witomski, Fourier Analysis and Applications. Filtering, Numerical Computation, Wavelets (Springer, Berlin, 1999) (Cited on pages ix, 29, 72)
126. W. Gautschi, Attenuation factors in practical Fourier analysis. Numer. Math. 18, 373-400 (1971-1972) (Cited on page 478)
127. W. Gautschi, Orthogonal Polynomials: Computation and Approximation (Oxford University Press, New York, 2004) (Cited on page 365)
128. W. Gentleman, G. Sande, Fast Fourier transform for fun and profit, in Fall Joint Computer Conference AFIPS, vol. 29 (1966), pp. 563-578 (Cited on page 256)
129. J.E. Gilbert, M. Murray, Clifford Algebras and Dirac Operators in Harmonic Analysis (Cambridge University Press, Cambridge, 1991) (Cited on page 205)
130. A.C. Gilbert, M.J. Strauss, J.A. Tropp, A tutorial on fast Fourier sampling. IEEE Signal Process. Mag. 25(2), 57-66 (2008) (Cited on page 295)
131. A. Gilbert, P. Indyk, M. Iwen, L. Schmidt, Recent developments in the sparse Fourier transform: a compressed Fourier transform for big data. IEEE Signal Process. Mag. 31(5), 91-100 (2014) (Cited on page 295)
132. G. Goerzel, An algorithm for the evaluation of finite trigonometric series. Am. Math. Mon. 65(1), 34-35 (1958) (Cited on page 276)
133. M. Golomb, Approximation by periodic spline interpolants on uniform meshes. J. Approx. Theory 1, 26-65 (1968) (Cited on page 478)
134. G.H. Golub, C.F. Van Loan, Matrix Computations, 3rd edn. (Johns Hopkins University Press, Baltimore, 1996) (Cited on pages 295, 539)
135. G.H. Golub, P. Milanfar, J. Varah, A stable numerical method for inverting shape from moments. SIAM J. Sci. Comput. 21(4), 1222-1243 (1999-2000) (Cited on page 540)
136. N. Golyandina, A. Zhigljavsky, Singular Spectrum Analysis for Time Series (Springer, Heidelberg, 2013) (Cited on pages 540, 541)
137. N. Golyandina, V. Nekrutkin, A. Zhigljavsky, Analysis of Time Series Structure. SSA and Related Techniques (Chapman \& Hall/CRC, Boca Raton, 2001) (Cited on pages 540, 541)
138. I.J. Good, The interaction algorithm and practical Fourier analysis. J. R. Stat. Soc. Ser. B 20, 361-372 (1958) (Cited on pages 232, 262)
139. M. Gräf, An unified approach to scattered data approximation on \mathbb{S}^{3} and $\operatorname{SO}(3)$. Adv. Comput. Math. 37(3), 379-392 (2012) (Cited on page 521)
140. M. Gräf, Efficient algorithms for the computation of optimal quadrature points on Riemannian manifolds. Dissertation, Universitätsverlag Chemnitz, 2013 (Cited on pages 520, 521)
141. M. Gräf, Numerical spherical designs on \mathbb{S}^{2}. http://www.tu-chemnitz.de/~potts/workgroup/ graef/quadrature/index.php.en (Cited on pages 520, 521)
142. M. Gräf, R. Hielscher, Fast global optimization on the torus, the sphere and the rotation group. SIAM J. Optim. 25(1), 540-563 (2015) (Cited on page 520)
143. M. Gräf, D. Potts, On the computation of spherical designs by a new optimization approach based on fast spherical Fourier transforms. Numer. Math. 119(4), 699-724 (2011) (Cited on page 520)
144. M. Gräf, S. Kunis, D. Potts, On the computation of nonnegative quadrature weights on the sphere. Appl. Comput. Harmon. Anal. 27(1), 124-132 (2009) (Cited on page 520)
145. M. Gräf, D. Potts, G. Steidl, Quadrature errors, discrepancies and their relations to halftoning on the torus and the sphere. SIAM J. Sci. Comput. 34(5), A2760-A2791 (2012) (Cited on page 520)
146. L. Grafakos, Classical Fourier Analysis, 2nd edn. (Springer, New York, 2008) (Cited on pages ix, 28, $85,161,166$)
147. L. Greengard, The Rapid Evaluation of Potential Fields in Particle Systems (MIT Press, Cambridge, 1988) (Cited on page 404)
148. L. Greengard, P. Lin, Spectral approximation of the free-space heat kernel. Appl. Comput. Harmon. Anal. 9(1), 83-97 (2000) (Cited on page 404)
149. L. Greengard, J. Strain, The fast Gauss transform. SIAM J. Sci. Stat. Comput. 12(1), 79-94 (1991) (Cited on page 410)
150. L. Greengard, X. Sun, A new version of the fast Gauss transform, in Proceedings of the International Congress of Mathematicians (Berlin, 1998), Documenta Mathematica, vol. 3 (1998), pp. 575-584 (Cited on page 410)
151. K. Gröchenig, An uncertainty principle related to the Poisson summation formula. Stud. Math. 121(1), 87-104 (1996) (Cited on page 180)
152. K. Gröchenig, Foundations of Time-Frequency Analysis (Birkhäuser, Boston, 2001) (Cited on page 96)
153. M.H. Gutknecht, Attenuation factors in multivariate Fourier analysis. Numer. Math. 51(6), 615-629 (1987) (Cited on page 478)
154. S.L. Hahn, Hilbert Transforms in Signal Processing (Artech House, Boston, 1996) (Cited on page 205)
155. N. Hale, A. Townsend, A fast, simple, and stable Chebyshev-Legendre transform using an asymptotic formula. SIAM J. Sci. Comput. 36(1), A148-A167 (2014) (Cited on pages 376, 512)
156. H. Hassanieh, The Sparse Fourier Transform: Theory and Practice (ACM Books, New York, 2018) (Cited on page 295)
157. H. Hassanieh, P. Indyk, D. Katabi, E. Price, Simple and practical algorithm for sparse Fourier transform, in Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms (ACM, New York, 2012), pp. 1183-1194 (Cited on page 295)
158. S. Häuser, B. Heise, G. Steidl, Linearized Riesz transform and quasi-monogenic shearlets. Int. J. Wavelets Multiresolut. Inf. Process. 12(3), 1-25 (2014) (Cited on page 213)
159. R. Haverkamp, Approximationsfehler der Ableitungen von Interpolationspolynomen. J. Approx. Theory 30(3), 180-196 (1980) (Cited on page 357)
160. R. Haverkamp, Zur Konvergenz der Ableitungen von Interpolationspolynomen. Computing 32(4), 343-355 (1984) (Cited on page 357)
161. D.M. Healy, P.J. Kostelec, S. Moore, D.N. Rockmore, FFTs for the 2-sphere - improvements and variations. J. Fourier Anal. Appl. 9(4), 341-385 (2003) (Cited on pages 376, 509, 512)
162. J.J. Healy, M.A. Kutay, H.M. Ozaktas, J.T. Sheridan, Linear Canonical Transforms. Theory and Applications (Springer, New York, 2016) (Cited on pages ix, 106)
163. M.T. Heideman, D.H. Johnson, C.S. Burrus, Gauss and the history of the fast Fourier transform. Arch. Hist. Exact Sci. 34(3), 265-277 (1985) (Cited on pages 157, 232, 276)
164. S. Heider, S. Kunis, D. Potts, M. Veit, A sparse Prony FFT, in Proceedings of 10th International Conference on Sampling Theory and Applications, vol. 9 (2013), pp. 11831194 (Cited on page 295)
165. G. Heinig, K. Rost, Algebraic Methods for Toeplitz-Like Matrices and Operators (AkademieVerlag, Berlin, 1984) (Cited on page 541)
166. P. Henrici, Barycentric formulas for interpolating trigonometric polynomials and their conjugates. Numer. Math. 33(2), 225-234 (1979) (Cited on page 117)
167. H. Heuser, Lehrbuch der Analysis. Teil 2, 12th edn. (B. G. Teubner, Stuttgart, 2002) (Cited on page 32)
168. N.J. Higham, Accuracy and Stability of Numerical Algorithms, 2nd edn. (SIAM, Philadelphia, 2002) (Cited on pages 295, 296, 303)
169. R.A. Horn, C.R. Johnson, Matrix Analysis, 2nd edn. (Cambridge University Press, Cambridge, 2013) (Cited on pages 138, 548, 553)
170. Y. Hua, T.K. Sarkar, Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise. IEEE Trans. Acoust. Speech Signal Process. 38(5), 814-824 (1990) (Cited on page 540)
171. D. Huybrechs, On the Fourier extension of nonperiodic functions. SIAM J. Numer. Anal. 47(6), 4326-4355 (2010) (Cited on page 491)
172. A.E. Ingham, Some trigonometrical inequalities with applications to the theory of series. Math. Z. 41(1), 367-379 (1936) (Cited on page 542)
173. A. Iserles, A fast and simple algorithm for the computation of Legendre coefficients. Numer. Math. 117(3), 529-553 (2011) (Cited on pages 376, 512)
174. M.A. Iwen, Combinatorial sublinear-time Fourier algorithms. Found. Comput. Math. 10(3), 303-338 (2010) (Cited on page 295)
175. M.A. Iwen, Improved approximation guarantees for sublinear-time Fourier algorithms. Appl. Comput. Harmon. Anal. 34(1), 57-82 (2013) (Cited on page 295)
176. J.I. Jackson, C.H. Meyer, D.G. Nishimura, A. Macovski, Selection of a convolution function for Fourier inversion using gridding. IEEE Trans. Med. Imag. 10, 473-478 (1991) (Cited on page 393)
177. M. Jacob, Optimized least-square nonuniform fast Fourier transform. IEEE Trans. Signal Process. 57(6), 2165-2177 (2009) (Cited on page 388)
178. R. Jakob-Chien, B.K. Alpert, A fast spherical filter with uniform resolution. J. Comput. Phys. 136, 580-584 (1997) (Cited on page 518)
179. S.G. Johnson, M. Frigo, A modified split radix FFT with fewer arithmetic operations. IEEE Trans. Signal Process. 55(1), 111-119 (2007) (Cited on pages 268, 269)
180. P. Junghanns, R. Kaiser, Collocation for Cauchy singular integral equations. Linear Algebra Appl. 439(3), 729-770 (2013) (Cited on page 357)
181. P. Junghanns, K. Rost, Matrix representations associated with collocation methods for Cauchy singular integral equations. Math. Methods Appl. Sci. 30, 1811-1821 (2007) (Cited on page 357)
182. P. Junghanns, R. Kaiser, D. Potts, Collocation-quadrature methods and fast summation for Cauchy singular integral equations with fixed singularities. Linear Algebra Appl. 491, 187238 (2016) (Cited on page 357)
183. L. Kämmerer, Reconstructing hyperbolic cross trigonometric polynomials by sampling along rank-1 lattices. SIAM J. Numer. Anal. 51(5), 2773-2796 (2013) (Cited on page 441)
184. L. Kämmerer, High dimensional fast Fourier transform based on Rank-1 lattice sampling. Dissertation, Universitätsverlag Chemnitz, 2014 (Cited on pages 424, 425, 432, 435, 436, 441)
185. L. Kämmerer, Reconstructing multivariate trigonometric polynomials from samples along rank-1 lattices, in Approximation Theory XIV: San Antonio 2013 (Springer, Cham, 2014), pp. 255-271 (Cited on pages 423, 437, 439, 440)
186. L. Kämmerer, Constructing spatial discretizations for sparse multivariate trigonometric polynomials that allow for a fast discrete Fourier transform (2017). ArXiv e-prints 1703.07230 (Cited on pages 446, 447)
187. L. Kämmerer, Multiple rank-1 lattices as sampling schemes for multivariate trigonometric polynomials. J. Fourier Anal. Appl. 24(1), 17-44 (2018) (Cited on pages 442, 447)
188. L. Kämmerer, S. Kunis, D. Potts, Interpolation lattices for hyperbolic cross trigonometric polynomials. J. Complexity 28(1), 76-92 (2012) (Cited on page 440)
189. L. Kämmerer, S. Kunis, I. Melzer, D. Potts, T. Volkmer, Computational methods for the Fourier analysis of sparse high-dimensional functions, in Extraction of Quantifiable Information from Complex Systems (Springer, Cham, 2014), pp. 347-363 (Cited on pages 437, 440)
190. L. Kämmerer, D. Potts, T. Volkmer, Approximation of multivariate periodic functions by trigonometric polynomials based on rank-1 lattice sampling. J. Complexity 31(4), 543-576 (2015) (Cited on pages 426, 441)
191. L. Kämmerer, D. Potts, T. Volkmer, Approximation of multivariate periodic functions by trigonometric polynomials based on sampling along rank-1 lattice with generating vector of Korobov form. J. Complexity 31(3), 424-456 (2015) (Cited on page 426)
192. L. Kämmerer, D. Potts, T. Volkmer, High-dimensional sparse FFT based on sampling along multiple rank-1 lattices (2017). ArXiv e-prints 1711.05152 (Cited on page 447)
193. J. Keiner, Gegenbauer polynomials and semiseparable matrices. Electron. Trans. Numer. Anal. 30, 26-53 (2008) (Cited on page 376)
194. J. Keiner, Computing with expansions in Gegenbauer polynomials. SIAM J. Sci. Comput. 31(3), 2151-2171 (2009) (Cited on pages 376, 512)
195. J. Keiner, D. Potts, Fast evaluation of quadrature formulae on the sphere. Math. Comput. 77(261), 397-419 (2008) (Cited on pages 376, 512, 520)
196. J. Keiner, S. Kunis, D. Potts, Fast summation of radial functions on the sphere. Computing 78(1), 1-15 (2006) (Cited on page 521)
197. J. Keiner, S. Kunis, D. Potts, Efficient reconstruction of functions on the sphere from scattered data. J. Fourier Anal. Appl. 13(4), 435-458 (2007) (Cited on page 521)
198. J. Keiner, S. Kunis, D. Potts, Using NFFT3 - a software library for various nonequispaced fast Fourier transforms. ACM Trans. Math. Softw. 36, Article 19, 1-30 (2009) (Cited on pages 381, 419)
199. J. Keiner, S. Kunis, D. Potts, NFFT 3.4, C subroutine library. http://www.tu-chemnitz.de/~ potts/nfft. Contributor: F. Bartel, M. Fenn, T. Görner, M. Kircheis, T. Knopp, M. Quellmalz, T. Volkmer, A. Vollrath (Cited on pages 376, 397, 402, 410, 416, 418, 419, 518, 521)
200. F.W. King, Hilbert Transforms, Volume I (Cambridge University Press, Cambridge, 2008) (Cited on page 205)
201. F.W. King, Hilbert Transforms, Volume II (Cambridge University Press, Cambridge, 2009) (Cited on page 205)
202. A. Kirsch, The MUSIC algorithm and the factorization method in inverse scattering theory for inhomogeneous media. Inverse Prob. 18(4), 1025-1040 (2002) (Cited on page 534)
203. A. Kolmogoroff, Une série de Fourier-Lebesgue divergente partout. C. R. Acad. Sci. Paris 183, 1327-1328 (1926) (Cited on page 28)
204. V. Komornik, P. Loreti, Fourier Series in Control Theory (Springer, New York, 2005) (Cited on page 542)
205. T. Körner, Fourier Analysis, 2nd edn. (Cambridge University Press, Cambridge, 1989) (Cited on page ix)
206. N.M. Korobov, Теоретико-числовые методы в приближённом анализе, 2 nd edn. (Moskovskii Tsentr Nepreryvnogo Matematicheskogo Obrazovaniya, Moscow, 2004) (Cited on page 428)
207. P.J. Kostelec, D.N. Rockmore, FFTs on the rotation group. J. Fourier Anal. Appl. 14(2), 145179 (2008) (Cited on page 521)
208. V.A. Kotelnikov, On the transmission capacity of the "ether" and wire in electrocommunications. Translated from Russian, in Modern Sampling Theory: Mathematics and Application (Birkhäuser, Boston, 2001), pp. 27-45 (Cited on page 86)
209. U. Köthe, M. Felsberg, Riesz-transforms versus derivatives: on the relationship between the boundary tensor and the energy tensor, in Scale Space and PDE Methods in Computer Vision: 5th International Conference, Scale-Space 2005, ed. by R. Kimmel, N.A. Sochen, J. Weickert (Springer, Berlin, 2005), pp. 179-191 (Cited on page 213)
210. T. Kühn, W. Sickel, T. Ullrich, Approximation numbers of Sobolev embeddings - sharp constants and tractability. J. Complexity $\mathbf{3 0}(2)$, 95-116 (2014) (Cited on page 426)
211. S. Kunis, S. Kunis, The nonequispaced FFT on graphics processing units. Proc. Appl. Math. Mech. 12, 7-10 (2012) (Cited on page 419)
212. S. Kunis, D. Potts, Fast spherical Fourier algorithms. J. Comput. Appl. Math. 161(1), 75-98 (2003) (Cited on pages 510, 516)
213. S. Kunis, D. Potts, Stability results for scattered data interpolation by trigonometric polynomials. SIAM J. Sci. Comput. 29(4), 1403-1419 (2007) (Cited on page 417)
214. S. Kunis, D. Potts, G. Steidl, Fast Gauss transforms with complex parameters using NFFTs. J. Numer. Math. 14(4), 295-303 (2006) (Cited on page 410)
215. S. Kunis, T. Peter, T. Römer, U. von der Ohe, A multivariate generalization of Prony's method. Linear Algebra Appl. 490, 31-47 (2016) (Cited on page 541)
216. S. Kunis, H.M. Möller, T. Peter, U. von der Ohe, Prony's method under an almost sharp multivariate Ingham inequality. J. Fourier Anal. Appl. 24(5), 1306-1318 (2018) (Cited on pages 541, 542, 546)
217. F.Y. Kuo, Component-by-component constructions achieve the optimal rate of convergence for multivariate integration in weighted Korobov and Sobolev spaces. J. Complexity 19(3), 301-320 (2003). Oberwolfach Special Issue (Cited on page 439)
218. F.Y. Kuo, I.H. Sloan, H. Woźniakowski, Lattice rule algorithms for multivariate approximation in the average case setting. J. Complexity 24(2), 283-323 (2008) (Cited on page 436)
219. C. Lanczos, Discourse on Fourier Series, reprint of the 1966 edn. (SIAM, Philadelphia, 2016) (Cited on pages ix, 486)
220. K.G. Larkin, D.J. Bone, M.A. Oldfield, Natural demodulation of two-dimensional fringe patterns. I. General background of the spiral phase quadrature transform. J. Opt. Soc. Am. A 18(8), 1862-1870 (2001) (Cited on page 212)
221. R. Lasser, Introduction to Fourier Series (Marcel Dekker, New York, 1996) (Cited on pages ix, 29, 200)
222. D. Lawlor, Y. Wang, A. Christlieb, Adaptive sub-linear time Fourier algorithms. Adv. Adapt. Data Anal. 5(1), 1350003 (2013) (Cited on page 295)
223. N.N. Lebedev, Special Functions and Their Applications, Translated from Russian (Dover, New York, 1972) (Cited on page 103)
224. J.-Y. Lee, L. Greengard, The type 3 nonuniform FFT and its applications. J. Comput. Phys. 206(1), 1-5 (2005) (Cited on page 394)
225. P. Lemke, S.S. Skiena, W.D. Smith, Reconstructing sets from interpoint distances, in Discrete and Computational Geometry (Springer, Berlin, 2003), pp. 597-631 (Cited on page 570)
226. N. Li, 2DECOMP\&FFT - Parallel FFT subroutine library. http://www.2decomp.org (Cited on page 492)
227. D. Li, F.J. Hickernell, Trigonometric spectral collocation methods on lattices, in Recent Advances in Scientific Computing and Partial Differential Equations (American Mathematical Society, Providence, 2003), pp. 121-132 (Cited on page 436)
228. W. Liao, A. Fannjiang, MUSIC for single-snapshot spectral estimation: stability and superresolution. Appl. Comput. Harmon. Anal. 40(1), 33-67 (2016) (Cited on pages 546, 551)
229. E.H. Lieb, M. Loss, Analysis, 2nd edn. (American Mathematical Society, Providence, 2014) (Cited on page 28)
230. F. Locher, Interpolation on uniform meshes by the translates of one function and related attenuation factors. Math. Comput. 37(156), 403-416 (1981) (Cited on page 478)
231. R.D. Luke, Relaxed averaged alternating reflections for diffraction imaging. Inverse Prob. 21(1), 37-50 (2005) (Cited on page 573)
232. D. Mainprice, F. Bachmann, R. Hielscher, H. Schaeben, Descriptive tools for the analysis of texture projects with large datasets using MTEX: strength, symmetry and components. Geol. Soc. Lond. 409(1), 251-271 (2014) (Cited on page 521)
233. H. Majidian, On the decay rate of Chebyshev coefficients. Appl. Numer. Math. 113, 44-53 (2017) (Cited on page 320)
234. S. Mallat, A Wavelet Tour of Signal Processing. The Sparse Way, 3rd edn. (Elsevier/Academic, Amsterdam, 2009) (Cited on pages ix, 209, 210)
235. D.G. Manolakis, V.K. Ingle, S.M. Kogon, Statistical and Adaptive Signal Processing (McGraw-Hill, Boston, 2005) (Cited on pages 523, 534)
236. I. Markovsky, Structured low-rank approximation and its applications. Autom. J. IFAC 44(4), 891-909 (2008) (Cited on page 541)
237. I. Markovsky, Low-Rank Approximation: Algorithms, Implementation, Applications, 2nd edn. (Springer, London, 2018) (Cited on page 541)
238. J.C. Mason, D.C. Handscomb, Chebyshev Polynomials (Chapman \& Hall/CRC, Boca Raton, 2003) (Cited on page 307)
239. J.H. McClellan, T.W. Parks, Eigenvalue and eigenvector decomposition of the discrete Fourier transform. IEEE Trans. Audio Electroacoust. 20(1), 66-74 (1972) (Cited on page 130)
240. H.N. Mhaskar, F.J. Narcowich, J.D. Ward, Spherical Marcinkiewicz-Zygmund inequalities and positive quadrature. Math. Comput. 70(235), 1113-1130 (2001). Corrigendum to this paper in Math. Comput. 71(237), 453-454 (2002) (Cited on page 518)
241. V. Michel, Lectures on Constructive Approximation: Fourier, Spline, and Wavelet Methods on the Real Line, the Sphere, and the Ball (Birkhäuser/Springer, New York, 2013) (Cited on page 518)
242. M.J. Mohlenkamp, A fast transform for spherical harmonics. J. Fourier Anal. Appl. 5(2-3), 159-184 (1999) (Cited on pages 509, 512)
243. A. Moitra, The threshold for super-resolution via extremal functions. Massachusetts Institute of Technology, Cambridge (2014, preprint) (Cited on pages 546, 547, 551)
244. A. Moitra, Super-resolution, extremal functions and the condition number of vandermonde matrices, in Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing (2015), pp. 821-830 (Cited on page 540)
245. H.L. Montgomery, R.C. Vaughan, Hilbert's inequality. J. Lond. Math. Soc. 8, 73-82 (1974) (Cited on page 548)
246. J. Morgenstern, Note on a lower bound of the linear complexity of the fast Fourier transform. J. Assoc. Comput. Mach. 20, 305-306 (1973) (Cited on pages 231, 269)
247. P. Morton, On the eigenvectors of Schur's matrix. J. Number Theory 12(1), 122-127 (1980) (Cited on page 130)
248. H. Munthe-Kaas, T. Sørevik, Multidimensional pseudo-spectral methods on lattice grids. Appl. Numer. Math. 62(3), 155-165 (2012) (Cited on page 436)
249. F.J. Narcowich, X. Sun, J.D. Ward, H. Wendland, Direct and inverse Sobolev error estimates for scattered data interpolation via spherical basis functions. Found. Comput. Math. 7(3), 369-390 (2007) (Cited on page 521)
250. F. Natterer, F. Wübbeling, Mathematical Methods in Image Reconstruction (SIAM, Philadelphia, 2001) (Cited on page 562)
251. F. Nestler, Automated parameter tuning based on RMS errors for nonequispaced FFTs. Adv. Comput. Math. 42(4), 889-919 (2016) (Cited on pages 388, 394)
252. F. Nestler, Parameter tuning for the NFFT based fast Ewald summation. Front. Phys. 4(28), 1-28 (2016) (Cited on page 394)
253. N. Nguyen, Q.H. Liu, The regular Fourier matrices and nonuniform fast Fourier transforms. SIAM J. Sci. Comput. 21(1), 283-293 (1999) (Cited on page 393)
254. H.Q. Nguyen, M. Unser, J.P. Ward, Generalized Poisson summation formulas for continuous functions of polynomial growth. J. Fourier Anal. Appl. 23(2), 442-461 (2017) (Cited on pages 85,198)
255. H. Niederreiter, Quasi-Monte Carlo methods and pseudo-random numbers. Bull. Am. Math. Soc. 84(6), 957-1041 (1978) (Cited on page 428)
256. A. Nieslony, G. Steidl, Approximate factorizations of Fourier matrices with nonequispaced knots. Linear Algebra Appl. 366, 337-351 (2003) (Cited on page 393)
257. H.J. Nussbaumer, Fast Fourier Transform and Convolution Algorithms, revised edn. (Springer, Berlin, 1982) (Cited on pages ix, 262, 273)
258. H. Nyquist, Certain factors affecting telegraph speed. Bell Syst. Tech. J. 3(2), 324-346 (1924) (Cited on page 88)
259. M. Osborne, G. Smyth, A modified Prony algorithm for exponential function fitting. SIAM J. Sci. Comput. 16(1), 119-138 (1995) (Cited on page 540)
260. H.M. Ozaktas, Z. Zalevsky, M.A. Kutay, The Fractional Fourier Transform with Applications in Optics and Signal Processing (Wiley, Chichester, 2001) (Cited on pages ix, 101)
261. H. Pan, T. Blu, M. Vetterli, Towards generalized FRI sampling with an application to source resolution in radioastronomy. IEEE Trans. Signal Process. 65(4), 821-835 (2017) (Cited on page 528)
262. S. Paszkowski, Вычислительные применения многочленов и рядов Чебышева. Translated from Polish (Nauka, Moscow, 1983) (Cited on pages 307, 322)
263. S. Pawar, K. Ramchandran, Computing a k-sparse n-length discrete Fourier transform using at most $4 k$ samples and $o(k \log k)$ complexity, in Proceedings of the IEEE International Symposium on Information Theory (ISIT) (2013), pp. 464-468 (Cited on page 295)
264. V. Pereyra, G. Scherer, Exponential Data Fitting and Its Applications (Bentham Science Publishers, Sharjah, 2010) (Cited on page 523)
265. T. Peter, G. Plonka, A generalized Prony method for reconstruction of sparse sums of eigenfunctions of linear operators. Inverse Prob. 29, 025001 (2013) (Cited on pages 295, 566)
266. T. Peter, D. Potts, M. Tasche, Nonlinear approximation by sums of exponentials and translates. SIAM J. Sci. Comput. 33, 1920-1947 (2011) (Cited on pages 540, 559, 563, 566)
267. T. Peter, G. Plonka, R. Schaback, Prony's method for multivariate signals. Proc. Appl. Math. Mech. 15(1), 665-666 (2015) (Cited on page 541)
268. M.A. Pinsky, Introduction to Fourier Analysis and Wavelets (American Mathematical Society, Providence, 2002) (Cited on page ix)
269. M. Pippig, PFFT, Parallel FFT subroutine library (2011). http://www.tu-chemnitz.de/~potts/ workgroup/pippig/software.php.en (Cited on page 250)
270. M. Pippig, PNFFT, Parallel Nonequispaced FFT subroutine library (2011). http://www.tuchemnitz.de/~potts/workgroup/pippig/software.php.en (Cited on page 419)
271. M. Pippig, PFFT: an extension of FFTW to massively parallel architectures. SIAM J. Sci. Comput. 35(3), C213-C236 (2013) (Cited on page 250)
272. M. Pippig, D. Potts, Parallel three-dimensional nonequispaced fast Fourier transforms and their application to particle simulation. SIAM J. Sci. Comput. 35(4), C411-C437 (2013) (Cited on pages 404, 419)
273. G. Plonka, M. Tasche, Fast and numerically stable algorithms for discrete cosine transforms. Linear Algebra Appl. 394, 309-345 (2005) (Cited on pages 334, 338, 345, 347)
274. G. Plonka, K. Wannenwetsch, A deterministic sparse FFT algorithm for vectors with small support. Numer. Algorithms 71(4), 889-905 (2016) (Cited on page 285)
275. G. Plonka, K. Wannenwetsch, A sparse fast Fourier algorithm for real non-negative vectors. J. Comput. Appl. Math. 321, 532-539 (2017) (Cited on page 294)
276. G. Plonka, M. Wischerhoff, How many Fourier samples are needed for real function reconstruction? J. Appl. Math. Comput. 42(1-2), 117-137 (2013) (Cited on pages 541, 557)
277. G. Plonka, K. Stampfer, I. Keller, Reconstruction of stationary and non-stationary signals by the generalized Prony method. Anal. Appl. (to appear, 2019) (Cited on page 566)
278. G. Plonka, K. Wannenwetsch, A. Cuyt, W.-S. Lee, Deterministic sparse FFT for m-sparse vectors. Numer. Algorithms 78(1), 133-159 (2018) (Cited on pages 288, 289, 293, 551, 554)
279. D. Potts, Fast algorithms for discrete polynomial transforms on arbitrary grids. Linear Algebra Appl. 366, 353-370 (2003) (Cited on page 397)
280. D. Potts, Schnelle Fourier-Transformationen für nichtäquidistante Daten und Anwendungen. Habilitation, Universität zu Lübeck, 2003 (Cited on pages 392, 393, 410)
281. D. Potts, G. Steidl, Fast summation at nonequispaced knots by NFFTs. SIAM J. Sci. Comput. 24(6), 2013-2037 (2003) (Cited on pages 407, 410)
282. D. Potts, M. Tasche, Parameter estimation for exponential sums by approximate Prony method. Signal Process. 90, 1631-1642 (2010) (Cited on pages 531, 559)
283. D. Potts, M. Tasche, Parameter estimation for multivariate exponential sums. Electron. Trans. Numer. Anal. 40, 204-224 (2013) (Cited on page 541)
284. D. Potts, M. Tasche, Parameter estimation for nonincreasing exponential sums by Prony-like methods. Linear Algebra Appl. 439(4), 1024-1039 (2013) (Cited on pages 523, 536)
285. D. Potts, M. Tasche, Sparse polynomial interpolation in Chebyshev bases. Linear Algebra Appl. 441, 61-87 (2014) (Cited on page 540)
286. D. Potts, M. Tasche, Fast ESPRIT algorithms based on partial singular value decompositions. Appl. Numer. Math. 88, 31-45 (2015) (Cited on page 539)
287. D. Potts, M. Tasche, Error estimates for the ESPRIT algorithm, in Large Truncated Toeplitz Matrices, Toeplitz Operators, and Related Topics (Birkhäuser/Springer, Cham, 2017), pp. 621-648 (Cited on pages 540, 555)
288. D. Potts, T. Volkmer, Fast and exact reconstruction of arbitrary multivariate algebraic polynomials in Chebyshev form, in 11th International Conference on Sampling Theory and Applications (SampTA 2015) (2015), pp. 392-396 (Cited on page 441)
289. D. Potts, T. Volkmer, Sparse high-dimensional FFT based on rank-1 lattice sampling. Appl. Comput. Harmon. Anal. 41, 713-748 (2016) (Cited on page 447)
290. D. Potts, T. Volkmer, Multivariate sparse FFT based on rank-1 Chebyshev lattice sampling, in 12th International Conference on Sampling Theory and Applications (SampTA 2017) (2017), pp. 504-508 (Cited on page 441)
291. D. Potts, G. Steidl, M. Tasche, Trigonometric preconditioners for block Toeplitz systems, in Multivariate Approximation and Splines (Mannheim, 1996) (Birkhäuser, Basel, 1997), pp. 219-234 (Cited on page 409)
292. D. Potts, G. Steidl, M. Tasche, Fast and stable algorithms for discrete spherical Fourier transforms. Linear Algebra Appl. 275-276, 433-450 (1998) (Cited on pages 509, 512, 518)
293. D. Potts, G. Steidl, M. Tasche, Fast algorithms for discrete polynomial transforms. Math. Comput. 67(224), 1577-1590 (1998) (Cited on pages 367, 512, 513)
294. D. Potts, G. Steidl, M. Tasche, Fast Fourier transforms for nonequispaced data. A tutorial, in Modern Sampling Theory: Mathematics and Applications (Birkhäuser, Boston, 2001), pp. 247-270 (Cited on page 394)
295. D. Potts, G. Steidl, M. Tasche, Numerical stability of fast trigonometric transforms - a worst case study. J. Concr. Appl. Math. 1(1), 1-36 (2003) (Cited on pages 297, 303)
296. D. Potts, G. Steidl, A. Nieslony, Fast convolution with radial kernels at nonequispaced knots. Numer. Math. 98(2), 329-351 (2004) (Cited on page 407)
297. D. Potts, J. Prestin, A. Vollrath, A fast algorithm for nonequispaced Fourier transforms on the rotation group. Numer. Algorithms 52(3), 355-384 (2009) (Cited on page 521)
298. D. Potts, M. Tasche, T. Volkmer, Efficient spectral estimation by MUSIC and ESPRIT with application to sparse FFT. Front. Appl. Math. Stat. 2, Article 1 (2016) (Cited on pages 295, 541)
299. E. Prestini, The Evolution of Applied Harmonic Analysis. Models of the Real World, 2nd edn. (Birkhäuser/Springer, New York, 2016) (Cited on page 232)
300. M. Püschel, J.M.F. Moura, The algebraic approach to the discrete cosine and sine transforms and their fast algorithms. SIAM J. Comput. 32(5), 1280-1316 (2003) (Cited on page 347)
301. W. Quade, L. Collatz, Zur Interpolationstheorie der reellen periodischen Funktionen. Sitzungsber. Preuß. Akad. Wiss. Phys.-Math. Kl. (Verlag der Akademie der Wissenschaften, 1938), pp. 383-429 (Cited on page 478)
302. C. Rader, Discrete Fourier transforms when the number of data samples is prime. Proc. IEEE 56(6), 1107-1108 (1968) (Cited on page 270)
303. J. Ramanathan, Methods of Applied Fourier Analysis (Birkhäuser, Boston, 1998) (Cited on page ix)
304. G.U. Ramos, Roundoff error analysis of the fast Fourier transform. Math. Comput. 25, 757768 (1971) (Cited on page 303)
305. J. Ranieri, A. Chebira, Y.M. Lu, M. Vetterli, Phase retrieval for sparse signals: uniqueness conditions (2013). arXiv:1308.3058v2 (Cited on pages 567, 570)
306. K.R. Rao, P. Yip, Discrete Cosine Transform: Algorithms, Advantages, Applications (Academic, Boston, 1990) (Cited on page 157)
307. K.R. Rao, D.N. Kim, J.J. Hwang, Fast Fourier Transforms: Algorithms and Applications (Springer, Dordrecht, 2010) (Cited on page ix)
308. H. Rauhut, R. Ward, Sparse Legendre expansions via ℓ_{1}-minimization. J. Approx. Theory 164(5), 517-533 (2012) (Cited on page 403)
309. M. Riesz, Sur les fonctions conjuguées. Math. Z. 27(1), 218-244 (1928) (Cited on page 211)
310. T.J. Rivlin, Chebyshev Polynomials. From Approximation Theory to Algebra and Number Theory, 2nd edn. (Wiley, New York, 1990) (Cited on page 307)
311. V. Rokhlin, M. Tygert, Fast algorithms for spherical harmonic expansions. SIAM J. Sci. Comput. 27(6), 1903-1928 (2006) (Cited on page 512)
312. R. Roy, T. Kailath, ESPRIT - estimation of signal parameters via rotational invariance techniques, in Signal Processing, Part II, IMA Volumes in Mathematics and its Applications, vol. 23 (Springer, New York, 1990), pp. 369-411 (Cited on page 536)
313. C. Runge, Über empirische Funktionen und die Interpolation zwischen äquidistanten Ordinaten. Z. Math. Phys. 46, 224-243 (1901) (Cited on page 352)
314. C. Runge, Über die Zerlegung einer empirisch gegebenen periodischen Funktion in Sinuswellen. Z. Math. Phys. 48, 443-456 (1903) (Cited on page 232)
315. C. Runge, H. König, Vorlesungen über Numerisches Rechnen (Springer, Berlin, 1924) (Cited on page 157)
316. S. Sahnoun, K. Usevich, P. Comon, Multidimensional ESPRIT for damped and undamped signals: algorithm, computations, and perturbation analysis. IEEE Trans. Signal Process. 65(22), 5897-5910 (2017) (Cited on pages 541, 542)
317. H.E. Salzer, Lagrangian interpolation at the Chebyshev points $X_{n, v} \equiv \cos (\nu \pi / n), v=0(1) n$; some unnoted advantages. Comput. J. 15, 156-159 (1972) (Cited on page 326)
318. T.K. Sarkar, O. Pereira, Using the matrix pencil method to estimate the parameters of a sum of complex exponentials. IEEE Antennas Propag. 37, 48-55 (1995) (Cited on page 540)
319. T. Sauer, Prony's method in several variables: symbolic solutions by universal interpolation. J. Symbolic Comput. 84, 95-112 (2018) (Cited on pages 541, 542)
320. H. Schaeben, K.G. van den Boogaart, Spherical harmonics in texture analysis. Tectonophysics 370, 253-268 (2003) (Cited on page 521)
321. J.C. Schatzman, Accuracy of the discrete Fourier transform and the fast Fourier transform. SIAM J. Sci. Comput. 17(5), 1150-1166 (1996) (Cited on page 303)
322. H.-J. Schmeisser, H. Triebel, Topics in Fourier Analysis and Function Spaces (Akademische Verlagsgesellschaft Geest \& Portig, Leipzig, 1987) (Cited on page 422)
323. R. Schmidt, Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 34, 276-280 (1986) (Cited on pages 531, 534)
324. U. Schreiber, Numerische Stabilität von schnellen trigonometrischen Transformationen. Dissertation, Universität Rostock, 2000 (Cited on page 347)
325. L. Schwartz, Théorie des Distributions, (French), nouvelle edn. (Hermann, Paris, 1966) (Cited on pages 183,186)
326. B. Seifert, H. Stolz, M. Tasche, Nontrivial ambiguities for blind frequency-resolved optical gating and the problem of uniqueness. J. Opt. Soc. Am. B 21(5), 1089-1097 (2004) (Cited on page 567)
327. B. Seifert, H. Stolz, M. Donatelli, D. Langemann, M. Tasche, Multilevel Gauss-Newton methods for phase retrieval problems. J. Phys. A 39(16), 4191-4206 (2006) (Cited on page 567)
328. C.E. Shannon, Communication in the presence of noise. Proc. I.R.E. 37, 10-21 (1949) (Cited on page 86)
329. V.L. Shapiro, Fourier Series in Several Variables with Applications to Partial Differential Equations (Chapman \& Hall/CRC, Boca Raton, 2011) (Cited on page 166)
330. P. Shukla, P.L. Dragotti, Sampling schemes for multidimensional signals with finite rate of innovation. IEEE Trans. Signal Process. 55(7, Pt 2), 3670-3686 (2007) (Cited on page 541)
331. M.R. Skrzipek, Signal recovery by discrete approximation and a Prony-like method. J. Comput. Appl. Math. 326, 193-203 (2017) (Cited on page 540)
332. I.H. Sloan, S. Joe, Lattice Methods for Multiple Integration (Clarendon Press, Oxford University Press, New York, 1994) (Cited on page 428)
333. I.H. Sloan, P.J. Kachoyan, Lattice methods for multiple integration: theory, error analysis and examples. SIAM J. Numer. Anal. 24(1), 116-128 (1987) (Cited on page 433)
334. I.H. Sloan, A.V. Reztsov, Component-by-component construction of good lattice rules. Math. Comput. 71(237), 263-273 (2002) (Cited on page 428)
335. I.H. Sloan, R.S. Womersley, Constructive polynomial approximation on the sphere. J. Approx. Theory 103(1), 91-118 (2000) (Cited on page 519)
336. I.H. Sloan, R.S. Womersley, A variational characterisation of spherical designs. J. Approx. Theory 159(2), 308-318 (2009) (Cited on page 520)
337. G. Steidl, Fast radix- p discrete cosine transform. Appl. Algebra Eng. Commun. Comput. 3(1), 39-46 (1992) (Cited on page 347)
338. G. Steidl, A note on fast Fourier transforms for nonequispaced grids. Adv. Comput. Math. 9(3-4), 337-353 (1998) (Cited on pages 377, 388, 389, 390, 565)
339. G. Steidl, M. Tasche, A polynomial approach to fast algorithms for discrete Fourier-cosine and Fourier-sine transforms. Math. Comput. 56(193), 281-296 (1991) (Cited on page 347)
340. E.M. Stein, Singular Integrals and Differentiability Properties of Functions (Princeton University Press, Princeton, 1970) (Cited on pages 205, 208)
341. E.M. Stein, G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces (Princeton University Press, Princeton, 1971) (Cited on pages ix, 85, 166, 182)
342. M. Storath, Directional multiscale amplitude and phase decomposition by the monogenic curvelet transform. SIAM J. Imag. Sci. 4(1), 57-78 (2011) (Cited on page 213)
343. G. Strang, The discrete cosine transform. SIAM Rev. 41(1), 135-147 (1999) (Cited on page 157)
344. K.R. Stromberg, An Introduction to Classical Real Analysis. Corrected reprint of the 1981 original (AMS Chelsea Publishing, Providence, 2015) (Cited on pages 33, 36, 39)
345. R. Suda, M. Takami, A fast spherical harmonics transform algorithm. Math. Comput. 71(238), 703-715 (2002) (Cited on pages 509, 512)
346. P.N. Swarztrauber, The methods of cyclic reduction, Fourier analysis and the FACR algorithm for the discrete solution of Poisson's equation on a rectangle. SIAM Rev. 19(3), 490-501 (1977) (Cited on pages 500, 504)
347. F.J. Swetz, Mathematical Treasure: Collected Works of Chebyshev (MAA Press, Washington, 2016) (Cited on page 306)
348. G. Szegö, Orthogonal Polynomials, 4th edn. (American Mathematical Society, Providence, 1975) (Cited on pages 365, 366)
349. M. Tasche, Accelerating convergence of univariate and bivariate Fourier approximations. Z. Anal. Anwendungen 10(2), 239-250 (1991) (Cited on page 489)
350. M. Tasche, H. Zeuner, Roundoff error analysis for fast trigonometric transforms, in Handbook of Analytic-Computational Methods in Applied Mathematics (Chapman \& Hall/CRC Press, Boca Raton, 2000), pp. 357-406 (Cited on pages 303, 347)
351. M. Tasche, H. Zeuner, Worst and average case roundoff error analysis for FFT. BIT Numer. Math. 41(3), 563-581 (2001) (Cited on page 303)
352. V.N. Temlyakov, Reconstruction of periodic functions of several variables from the values at the nodes of number-theoretic nets (in Russian). Anal. Math. 12(4), 287-305 (1986) (Cited on page 436)
353. V.N. Temlyakov, Approximation of Periodic Functions (Nova Science Publishers, Commack, 1993) (Cited on page 424)
354. A. Townsend, M. Webb, S. Olver, Fast polynomial transforms based on Toeplitz and Hankel matrices. Math. Comput. 87(312), 1913-1934 (2018) (Cited on page 376)
355. L.N. Trefethen, Is Gauss quadrature better than Clenshaw-Curtis? SIAM Rev. 50(1), 67-87 (2008) (Cited on page 361)
356. L.N. Trefethen, Approximation Theory and Approximation Practice (SIAM, Philadelphia, 2013) (Cited on pages $117,307,320,326,361)$
357. H. Triebel, Höhere Analysis (Deutscher Verlag der Wissenschaften, Berlin, 1972) (Cited on page 169)
358. M. Tygert, Fast algorithms for spherical harmonic expansions II. J. Comput. Phys. 227(8), 4260-4279 (2008) (Cited on page 512)
359. M. Tygert, Fast algorithms for spherical harmonic expansions, III. J. Comput. Phys. 229(18), 6181-6192 (2010) (Cited on page 512)
360. M. Unser, Sampling - 50 years after Shannon. Proc. IEEE 88, 569-587 (2000) (Cited on page 86)
361. M. Unser, D. Van De Ville, Wavelet steerability and the higher-order Riesz transform. IEEE Trans. Image Process. 19(3), 636-652 (2010) (Cited on page 213)
362. C.F. Van Loan, Computational Frameworks for the Fast Fourier Transform (SIAM, Philadelphia, 1992) (Cited on pages ix, 276, 500, 504)
363. M. Vetterli, P. Duhamel, Split- radix algorithms for length- p^{m} DFTs. IEEE Trans. Acoust. Speech Signal Process. 37(1), 57-64 (1989) (Cited on page 268)
364. M. Vetterli, P. Marziliano, T. Blu, Sampling signals with finite rate of innovation. IEEE Trans. Signal Process. 50(6), 1417-1428 (2002) (Cited on page 528)
365. T. Volkmer, OpenMP parallelization in the NFFT software library. Preprint 2012-07, Faculty of Mathematics, Technische Universität Chemnitz (2012) (Cited on page 419)
366. T. Volkmer, Multivariate approximation and high-dimensional sparse FFT based on Rank-1 lattice sampling. Dissertation, Universitätsverlag Chemnitz, 2017 (Cited on page 436)
367. Z.D. Wang, Fast algorithms for the discrete W transform and the discrete Fourier transform. IEEE Trans. Acoust. Speech Signal Process. 32(4), 803-816 (1984) (Cited on pages 157, 338)
368. Z.D. Wang, On computing the discrete Fourier and cosine transforms. IEEE Trans. Acoust. Speech Signal Process. 33(5), 1341-1344 (1985) (Cited on page 338)
369. J.A.C. Weideman, L.N. Trefethen, The eigenvalues of second-order spectral differentiation matrices. SIAM J. Numer. Anal. 25(6), 1279-1298 (1988) (Cited on page 507)
370. L. Weiss, R.N. McDonough, Prony's method, Z-transforms, and Padé approximation. SIAM Rev. 5, 145-149 (1963) (Cited on page 527)
371. F. Weisz, Summability of Multi-Dimensional Fourier Series and Hardy Spaces (Kluwer Academic Publishers, Dordrecht, 2002) (Cited on page 423)
372. F. Weisz, Summability of multi-dimensional trigonometric Fourier series. Surv. Approx. Theory 7, 1-179 (2012) (Cited on page 423)
373. H. Wendland, Scattered Data Approximation (Cambridge University Press, Cambridge, 2005) (Cited on page 181)
374. D. Werner, Funktionalanalysis, 3rd edn. (Springer, Berlin, 2000) (Cited on page 28)
375. E.T. Whittaker, On the functions which are represented by the expansions of the interpolationtheory. Proc. R. Soc. Edinb. 35, 181-194 (1914) (Cited on page 86)
376. M.V. Wickerhauser, Adapted Wavelet Analysis from Theory to Software (A K Peters, Wellesley, 1994) (Cited on page 157)
377. S. Winograd, Some bilinear forms whose multiplicative complexity depends on the field of constants. Math. Syst. Theory 10, 169-180 (1977) (Cited on page 276)
378. S. Winograd, On computing the discrete Fourier transform. Math. Comput. 32(141), 175-199 (1978) (Cited on pages 256, 274)
379. S. Winograd, Arithmetic Complexity of Computations (SIAM, Philadelphia, 1980) (Cited on page 276)
380. G.B. Wright, M. Javed, H. Montanelli, L.N. Trefethen, Extension of Chebfun to periodic functions. SIAM J. Sci. Comput. 37(5), C554-C573 (2015) (Cited on page 45)
381. X. Wu, Y. Wang, Z. Yan, On algorithms and complexities of cyclotomic fast Fourier transforms over arbitrary finite fields. IEEE Trans. Signal Process. 60(3), 1149-1158 (2012) (Cited on page 276)
382. S. Xiang, X. Chen, H. Wang, Error bounds for approximation in Chebyshev points. Numer. Math. 116(3), 463-491 (2010) (Cited on pages 357, 361)
383. Y. Xu, D. Yan, The Bedrosian identity for the Hilbert transform of product functions. Proc. Am. Math. Soc. 134(9), 2719-2728 (2006) (Cited on page 210)
384. P.Y. Yalamov, Improvements of some bounds on the stability of fast Helmholtz solvers. Numer. Algorithms 26(1), 11-20 (2001) (Cited on page 303)
385. S.-C. Yang, H.-J. Qian, Z.-Y. Lu, A new theoretical derivation of NFFT and its implementation on GPU. Appl. Comput. Harmon. Anal. 44(2), 273-293 (2018) (Cited on page 419)
386. N. Yarvin, V. Rokhlin, A generalized one-dimensional fast multipole method with application to filtering of spherical harmonics. J. Comput. Phys. 147, 549-609 (1998) (Cited on page 518)
387. R. Yavne, An economical method for calculating the discrete Fourier transform, in Proceedings of AFIPS Fall Joint Computer Conference, vol. 33 (1968), pp. 115-125 (Cited on page 265)
388. R.M. Young, An Introduction to Nonharmonic Fourier Series, revised 1st edn. (Academic, San Diego, 2001) (Cited on pages ix, 542)
389. H. Yserentant, Regularity and Approximability of Electronic Wave Functions (Springer, Berlin, 2010) (Cited on page 440)
390. X. Zeng, K.-T. Leung, F.J. Hickernell, Error analysis of splines for periodic problems using lattice designs, in Monte Carlo and Quasi-Monte Carlo Methods 2004 (Springer, Berlin, 2006), pp. 501-514 (Cited on page 436)
391. R. Zhang, G. Plonka, Optimal approximation with exponential sums by maximum likelihood modification of Prony's method (2018, preprint) (Cited on page 540)
392. A. Zygmund, Trigonometric Series, Vol. I, II, 3rd edn. (Cambridge University Press, Cambridge, 2002) (Cited on pages ix, 41)

Index

Accumulator, 53
Aliasing, 88
Aliasing error, 385
Aliasing formula
for Chebyshev coefficients, 349
for Fourier coefficients, 111
for multivariate Fourier coefficients, 215
Analytic signal, 208
amplitude, 208
instantaneous phase, 208
phase, 208
Annihilating filter method, 528
Approximate identity, 24, 74
Approximate Prony method, 535
Approximation error, 385
Approximation theorem
of Fejér, 25
of Weierstrass, 8, 26
Array
even, 229
odd, 229
Associated Legendre function, 508
Associated orthogonal polynomials, 370
Attenuation factors
of Fourier coefficients, 476
of Fourier transform, 465
Average frequency, 93
Average time, 93
Azimuthal angle, 507

Backward shift, 52
Banach algebra, 74
Bandlimited function, 86
spherical, 508

Bandwidth, 86, 508
Barycentric formula, 117, 413, 417
for interpolating polynomial, 326
for interpolating trigonometric polynomial, 117
Basis function, 449
Bernoulli function
1-periodic, 479
Bernoulli numbers, 479
Bernoulli polynomial expansion, 478, 481
Bernstein inequality, 26
Bessel function
of order $v, 182$
of order zero, 181
Bessel window, 394
Best approximation error, 354
Binary floating point number system, 296
Binary number, 238
Bit reversal permutation, 238
Blackman window sequence, 58
Block circulant matrix with circulant blocks, 148
Block diagonal matrix, 143
Bluestein FFT, 275
Bounded filter, 52
Bounded variation, 32
Box spline, 452
B-spline
of order $m, 558$
of order 1,556

Cardinal B-spline, 73, 388, 450, 560
centered, 451
Cardinal interpolation by translates, 454, 463

Cardinal interpolation problem, 454
Cardinal Lagrange function, 457
Cardinal sine function, 63
Cascade summation, 237
Cauchy principal value, 69
Central difference quotient of second order, 496
Cesàro sum, 23
Characteristic function, 62
Characteristic polynomial, 251
Chebyshev coefficients, 314
decay, 319
Chebyshev extreme points, 310
Chebyshev polynomial
of first kind, 306
of second kind, 310
Chebyshev series, 315
Chebyshev zero points, 310
Chinese remainder theorem, 254, 274, 296
Circulant matrix, 137 basic, 139
Clenshaw algorithm, 322, 323
Clenshaw-Curtis quadrature, 358
Comb filter, 55
Commutation property of the Kronecker product, 146
Companion matrix, 524
Complex exponential
multivariate, 160
univariate, 7
Componentwise product of vectors, 134
Computational cost, 232
Computation of Fourier coefficients via attenuation factors, 476
Computation of Fourier transform via attenuation factors, 467
Computation of two-dimensional DFT
via one-dimensional transforms, 225
Confluent Vandermonde matrix, 527
Constrained minimization problem, 418
Convergence in $\mathscr{S}\left(\mathbb{R}^{d}\right), 167$
Convergence in $\mathscr{S}^{\prime}\left(\mathbb{R}^{d}\right)$, 183
Convergence theorem of Dirichlet-Jordan, 38
Convolution
of functions, 71
in $\ell_{1}\left(\mathbb{Z}^{d}\right), 461$
multivariate, 175
multivariate periodic, 162
at nonequispaced knots, 404
of periodic functions, 16
univariate, 71
univariate periodic, 16
Convolution property
of DFT, 134
of Fourier series, 20
of Fourier transform, 72
Cooley-Tukey FFT, 239
Cosine matrix
nonequispaced, 397
of type I, 151
of type II, 153
of type III, 153
of type IV, 154
Cosine vectors
of type I, 151
of type II, 152
of type III, 153
of type IV, 154
Counter-identity matrix, 125
Cyclic convolution
multidimensional, 228
one-dimensional, 130
two-dimensional, 220
Cyclic convolution property
of multidimensional DFT, 229
of one-dimensional DFT, 134
of two-dimensional DFT, 222
Cyclic correlation
of two vectors, 273

Damped normal equation of second kind, 418
Decimation-in-frequency FFT, 241
Decimation-in-time FFT, 241
Degree of multivariate trigonometric polynomial, 161
Digital filter, 52
Digital image, 217
Dirac comb, 199
Dirac distribution, 185
Dirichlet kernel, 163
modified, 116
Discrete convolution, 53
Discrete cosine transform
nonequispaced, 397
of type I, 152
of type II, 153
of type III, 153
of type IV, 155
Discrete Fourier transform
multidimensional, 214, 227
one-dimensional, 108
spherical, 509
two-dimensional, 217
Discrete Hartley transform, 157
Discrete Ingham inequalities, 553
Discrete Laplacian, 501
Discrete polynomial transform, 368

Discrete signal, 52
Discrete sine transform
nonequispaced, 402
of type I, 156
of type II, 156
of type III, 156
of type IV, 156
Discrete trigonometric transform, 334
Dispersion of a function, 89
Distance of $x \in \mathbb{R}$ to the nearest integer, 546
Distribution
pv $\left(\frac{1}{x}\right), 190,196$
Divide-and-conquer technique, 233

Energy of a signal, 89
Entrywise product
of matrices, 220
multidimensional, 228
Euler-Maclaurin summation formula, 482
Even matrix, 224
Exponential matrix, 220
Exponential sequence, 52
Exponential sum, 394, 524
Extension
of bounded linear operator, 177

Far field sum, 406
Fast Fourier extension, 491, 494
Fast Fourier transform, 231
nonequispaced, 377,380
nonequispaced transposed, 382
on the rotation group, 521
spherical, 513
Fast Gauss transform, 409
Fast Poisson solver, 502, 503
Fejér sum, 23
Fejér summation, 50
Filon-Clenshaw-Curtis quadrature, 364
Filter coefficients, 53
Finite difference method, 497
Finite rate of innovation, 528
FIR filter, 55
Forward shift, 52
Fourier coefficients, 9
approximate, 434
decay, 45
spherical, 508
Fourier extension, 491
Fourier inversion formula, 68, 80, 173, 177
of tempered distribution, 194

Fourier matrix, 119, 428
for multiple rank-1 lattice and index set I, 444
nonequispaced, 383
Fourier partial sum, 9
Fourier-Plancherel transform, 178
Fourier series
of L-periodic function, 11
of 2π-periodic function, 11
real, 14
spherical, 508
Fourier transform, 62, 66, 79, 170, 176
discrete, 120
inverse multivariate, 173
kernel, 102
on $L_{2}\left(\mathbb{R}^{d}\right), 178$
modulus, 62
phase, 62
properties, 64
spectral decomposition, 102
spherical, 507
of tempered distribution, 193
Fractional Fourier transform, 102
properties, 105
Frequency analysis problem, 524
Frequency domain, 62
of two-dimensional DFT, 219
Frequency index set, 422
difference set, 432
$l_{p}\left(\mathbb{Z}^{d}\right)$ ball, 440
Frequency variance, 93
Frobenius norm, 219
Function
of bounded variation, 32
Hölder continuous, 41
Lipschitz continuous, 41
piecewise continuously differentiable, 71
piecewise C^{r}-smooth, 486
piecewise r-times continuously
differentiable, 486
rapidly decreasing, 167
slowly increasing, 184

Gabor function, 560
Gabor transform, 96
Gamma function, 211
Gap condition, 547
Gaussian chirp, 66
Gaussian filter
discrete, 221
Gaussian function, 65, 390, 404, 560

Gaussian window, 95
Gegenbauer polynomial, 366
Gelfand triple, 198
Generating vector of rank-1 lattice, 429
Gentleman-Sande FFT, 257
Gibbs phenomenon, 49
Gram-Schmidt orthogonalization, 365

Hamming window, 96
Hamming window sequence, 58
Hankel matrix, 525, 530
Hankel transform, 182
Hanning window, 95
Hann window sequence, 57
Hartley matrix, 157
Hat function, 64
Heaviside function, 189
Heisenberg box, 98
Heisenberg's uncertainty principle, 91
Hermite function, 81, 101
Hermite interpolation problem, 492
Hermite polynomial, 80
Hilbert's inequality, 547
generalized, 548
Hilbert transform, 206
Horner scheme, 321
Hyperbolic cross
energy-norm based, 441
symmetric, 440

Ideal high-pass filter, 57
Ideal low-pass filter, 56
Imaging function, 532
Impulse response, 53
Inequality
Bernstein, 26
Bessel, 10
generalized Hilbert, 548
Heisenberg, 91
Hilbert, 547
Ingham, 542
Nikolsky, 26
Young, 17, 71
Inner product
in $\mathbb{C}^{N_{1} \times N_{2}}, 219$
of multidimensional arrays, 227
In-place algorithm, 233
Integral
highly oscillatory, 364
Interior grid point, 500
Inverse discrete Fourier transform
multidimensional, 227
Inverse Fourier transform
of tempered distribution, 194
Inverse multiquadrix, 404
Inverse NDCT, 411
Inverse NDFT, 413
Inverse nonequispaced discrete transform, 410

Jacobi polynomial, 311, 365
Jordan's decomposition theorem, 33
Jump discontinuity, 30
Jump sequence, 52

Kaiser-Bessel function, 393
Kernel, 20
de la Vallée Poussin kernel, 23, 25
Dirichlet kernel, 20, 25
Fejér kernel, 22, 25
summation kernel, 24
Kronecker product, 142
Kronecker sum, 148
Kronecker symbol, 110
multidimensional, 214
N-periodic, 110
Krylov-Lanczos method of convergence acceleration, 487

Lagrange basis polynomial, 326
Lanczos smoothing, 50
Laplace operator, 495
Laplacian filter
discrete, 221
Largest integer smaller than or equal to $n, 257$
Lattice
integer dual, 429
Lattice size
of rank-1 lattice, 429
Lebesgue constant, 21
for polynomial interpolation, 355
Left singular vectors, 533
Legendre function transform fast, 511
Legendre polynomial, 366, 508
associated, 512
Leibniz product rule, 172
Lemma of Riemann-Lebesgue, 30
Linear canonical transform, 106
Linear difference equation with constant coefficients, 251
Linear filter, 52
Linear phase, 56

Linear prediction equations, 529
Linear prediction method, 529
Local discretization error, 504
L-periodic function, 11
LTI filter, 53

Magnitude response, 55
Matrix pencil, 536
eigenvalue, 536
eigenvector, 536
Matrix representation of FFT, 234
Mean value of 2π-periodic function, 11
Mehler's formula, 103
Method of attenuation factors
for Fourier coefficients, 476
for Fourier transform, 465
Metric of $\mathscr{S}\left(\mathbb{R}^{d}\right), 169$
Meyer window, 560
Modified Dirichlet kernel, 355
Modulus, 12
Moiré effect, 88
Monic polynomial, 310
Monogenic signal, 212
amplitude, 212
Monte Carlo rule, 428, 520
Moore-Penrose pseudo-inverse, 141
Moving avering, 52
Multiquadrix, 404
Multivariate periodic function, 159
Multivariate trigonometric polynomial, 161
n-cycle, 244
Near field correction, 405
Near field sum, 406
Nesting method for two-dimensional DFT, 279
$\mathrm{NFFT}^{\top}, 382$
Nikolsky inequality, 26
Node polynomial, 326
Noise space, 532
Noise-space correlation function, 532
Nonequispaced FFT spherical, 517
Nonharmonic bandwidth, 394
Nonnegative residue modulo $N, 110,257,463$ of an integer vector, 215
Nonsingular kernel function, 403
Normwise backward stability, 297
Normwise forward stability, 298
Nyquist rate, 88

Odd matrix, 224
Oversampling, 88
Oversampling factor, 562

Padé approximant, 527
Padua points, 442
Parameter estimation problem, 523
multidimensional, 541
Parseval equality, 10, 78, 80, 164, 177
for Chebyshev coefficients, 315
for DFT, 134
for multidimensional DFT, 229
for two-dimensional DFT, 222
Partial sum of conjugate Fourier series, 44
Partition of unity, 116
Perfect shuffle, 242
Periodic function
of bounded variation, 34
piecewise continuously differentiable, 30
Periodic interpolation on uniform mesh, 469
Periodic Lagrange function, 469
Periodic signal, 52
Periodic Sobolev space
of isotropic smoothness, 425
Periodic tempered distribution, 199
Fourier coefficients, 202
Fourier series, 203
Periodic window function, 561
Periodization
of a function, 84
of multivariate function, 178
operator, 197
of a vector, 284
Periodized centered cardinal B-spline, 562
Periodized Gaussian function, 561
Periodized Kaiser-Bessel function, 562
Permutation
bit-reversed, 238
even-odd, 144
L-stride, 144
matrix, 143
2-stride, 144
Phase, 12
Phase recovery, 570
Phase response, 55
Pixel, 217
Poisson equation, 495
Poisson summation formula, $84,179,180$
of Dirac comb, 200
Polar angle, 507
Polynomial representation of FFT, 234

Power of sinc function, 392
Primitive N th root of unity, 108
Principle value, 190
Pulse sequence, 52

Quadratic Gauss sum, 128
Quadrature error, 358, 484
Quadrature rule
on the unit sphere, 518
Quadrature weights, 359
Quasi-Monte Carlo rule, 428, 520

Rader FFT, 271
Radial function, 180
Radix-2 FFT, 235
Radix-4 FFT, 264
Rank-1 Chebyshev lattices, 442
Rank-1 lattice, 429
multiple, 442
reconstructing, 432
Reconstructing multiple rank-1 lattice, 445
Rectangle function, 63
Rectangular pulse function, 16
Rectangular rule, 483
Rectangular window, 95
Rectangular window sequence, 57
Recursion, 233
Regularization procedure, 405
Restricted isometry constant, 384, 403
Restricted isometry property, 384, 403
Reverse Prony polynomial, 527
Riemann's localization principle, 31, 70
Riesz stability
of exponentials, 542
Riesz transform, 211
Right singular vectors, 533
Row-column method
of multidimensional DFT, 281
of two-dimensional DFT, 226, 278

Sampling operator
uniform, 198
Sampling period, 86
Sampling rate, 86
Sampling theorem of Shannon-WhittakerKotelnikov, 86
Sande-Tukey FFT, 236
Sawtooth function, 15
Schwartz space, 167
convergence, 167
metric, 169

Sequence of orthogonal polynomials, 365
Sequence of orthonormal polynomials, 365
Shifted Chebyshev polynomial, 322
Shift-invariant filter, 52
Shift-invariant space, 454
Short-time Fourier transform, 96
Signal compression, 100
Signal flow graph, 234
Signal space, 532
Sign function, 196
Simultaneous approximation, 357
Sinc function, 63, 389
Sine integral, 47
Sine matrix
of type I, 499
of type I, 155
of type II, 156
of type III, 156
of type IV, 156
Sine vectors, 155
Singular kernel function, 403
Singular spectrum analysis, 540
Singular value decomposition, 532
Singular values, 533
Software
discrete polynomial transform, 376
fast Fourier transform on $\mathrm{SO}(3), 521$
fast summation, 410
FFTW, 250
inverse NFFT, 416
NFFT, 419
parallel FFT, 250
parallel NFFT, 419
spherical Fourier transform, 518
Space domain, 62
of two-dimensional DFT, 219
Sparse FFT, 447
Sparse vector, 384
Spectrogram, 96
Spectrum, 12, 62
Spherical design, 520
Spherical filtering, 518
Spherical Fourier transform, 507 fast, 509
nonequispaced discrete, 509
Spherical harmonics, 508
Spherical polynomial, 508
Spline, 556
Split-radix FFT, 266
Step function, 556
Stop band, 56
Sufficiently uniformly distributed points, 406
Sum representation of FFT, 234

Support length of a vector, 286
Symbol of cardinal interpolation, 455

Tempered distribution, 183
derivative, 188
periodic, 199
product with smooth function, 187
reflection, 187
regular, 185
scaling, 186
translation, 186
Temporal variance, 93
Tensor product B-spline, 452
Theorem
aliasing formula, 111
of Banach-Steinhaus, 28
of Bedrosian, 210
of Bernstein, 41
Chinese remainder theorem, 254
of Dirichlet-Jordan, 38
of Fejér, 25
Fourier inversion, 177
Fourier inversion formula, 68
of Gibbs, 49
Heisenberg's uncertainty principle, 91
Jordan decomposition, 33
of Krylov-Lanczos, 487
of Plancherel, 80, 178
Poisson summation formula, 84
of Riemann-Lebesque, 30
Riemann's localization principle, 70
of Shannon-Whittaker-Kotelnikov, 86
of Weierstrass, 26
Thin-plate spline, 404
Three-direction box spline, 452
Three-direction mesh, 452
Three-term recurrence relation, 366
Time domain, 62
of two-dimensional DFT, 219
Time-frequency analysis, 95
Time-frequency atom, 96
Time-invariant filter, 52
Time series, 530, 540
Toeplitz matrix, 137, 141
Torus, 6, 378
Total variation, 32
Trace, 127

Trajectory matrix, 530
Transfer function, 54
Transmission band, 56
Transposed discrete polynomial transform, 368
Triangular window, 95
Trigonometric Lagrange polynomial, 115
Trigonometric polynomial, 8, 378
supported on $I, 422$
Truncation error, 386
2π-periodic function, 6
2π-periodic trend, 487
Two-point Taylor
interpolation, 405
interpolation polynomial, 492
Type- 1 triangulation, 452

Ultraspherical polynomial, 366
Undersampling, 88

Vandermonde-like matrix, 368
Vandermonde matrix, 525, 529
Vector
with frequency band of short support, 286
M-sparse, 289
1-sparse, 283
Vectorization
of a d-dimensional array, 230
of a matrix, 145,226

Weighted least squares problem, 417
Weighted normal equation of first kind, 418
Weight function, 423
Wiener algebra, 424
Windowed Fourier transform, 96
Window function, 95
Window length, 530
Winograd FFT, 275

Young inequality, 17, 71
generalized, 17, 72
z-transform, 527

Applied and Numerical Harmonic Analysis (90 Volumes)

1. A. I. Saichev and W.A. Woyczyński: Distributions in the Physical and Engineering Sciences (ISBN 978-0-8176-3924-2)
2. C.E. D'Attellis and E.M. Femandez-Berdaguer: Wavelet Theory and Harmonic Analysis in Applied Sciences (ISBN 978-0-8176-3953-2)
3. H.G. Feichtinger and T. Strohmer: Gabor Analysis and Algorithms (ISBN 978-0-8176-39594)
4. R. Tolimieri and M. An: Time-Frequency Representations (ISBN 978-0-8176-3918-1)
5. T.M. Peters and J.C. Williams: The Fourier Transform in Biomedical Engineering (ISBN 978-0-8176-3941-9)
6. G.T. Herman: Geometry of Digital Spaces (ISBN 978-0-8176-3897-9)
7. A. Teolis: Computational Signal Processing with Wavelets (ISBN 978-0-8176-3909-9)
8. J. Ramanathan: Methods of Applied Fourier Analysis (ISBN 978-0-8176-3963-1)
9. J.M. Cooper: Introduction to Partial Differential Equations with MATLAB (ISBN 978-0-8176-3967-9)
10. A. Procházka, N.G. Kingsbury, P.J. Payner, and J. Uhlir: Signal Analysis and Prediction (ISBN 978-0-8176-4042-2)
11. W. Bray and C. Stanojevic: Analysis of Divergence (ISBN 978-1-4612-7467-4)
12. G.T. Herman and A. Kuba: Discrete Tomography (ISBN 978-0-8176-4101-6)
13. K. Gröchenig: Foundations of Time-Frequency Analysis (ISBN 978-0-8176-4022-4)
14. L. Debnath: Wavelet Transforms and Time-Frequency Signal Analysis (ISBN 978-0-8176-4104-7)
15. J.J. Benedetto and P.J.S.G. Ferreira: Modern Sampling Theory (ISBN 978-0-8176-4023-1)
16. D.F. Walnut: An Introduction to Wavelet Analysis (ISBN 978-0-8176-3962-4)
17. A. Abbate, C. DeCusatis, and P.K. Das: Wavelets and Subbands (ISBN 978-0-8176-4136-8)
18. O. Bratteli, P. Jorgensen, and B. Treadway: Wavelets Through a Looking Glass (ISBN 978-0-8176-4280-80
19. H.G. Feichtinger and T. Strohmer: Advances in Gabor Analysis (ISBN 978-0-8176-4239-6)
20. O. Christensen: An Introduction to Frames and Riesz Bases (ISBN 978-0-8176-4295-2)
21. L. Debnath: Wavelets and Signal Processing (ISBN 978-0-8176-4235-8)
22. G. Bi and Y. Zeng: Transforms and Fast Algorithms for Signal Analysis and Representations (ISBN 978-0-8176-4279-2)
23. J.H. Davis: Methods of Applied Mathematics with a MATLAB Overview (ISBN 978-0-8176-4331-7)
24. J.J. Benedetto and A.I. Zayed: Sampling, Wavelets, and Tomography (ISBN 978-0-8176-43041)
25. E. Prestini: The Evolution of Applied Harmonic Analysis (ISBN 978-0-8176-4125-2)
26. L. Brandolini, L. Colzani, A. Iosevich, and G. Travaglini: Fourier Analysis and Convexity (ISBN 978-0-8176-3263-2)
27. W. Freeden and V. Michel: Multiscale Potential Theory (ISBN 978-0-8176-4105-4)
28. O. Christensen and K.L. Christensen: Approximation Theory (ISBN 978-0-8176-3600-5)
29. O. Calin and D.-C. Chang: Geometric Mechanics on Riemannian Manifolds (ISBN 978-0-8176-4354-6)
30. J.A. Hogan: Time-Frequency and Time-Scale Methods (ISBN 978-0-8176-4276-1)
31. C. Heil: Harmonic Analysis and Applications (ISBN 978-0-8176-3778-1)
32. K. Borre, D.M. Akos, N. Bertelsen, P. Rinder, and S.H. Jensen: A Software-Deffined GPS and Galileo Receiver (ISBN 978-0-8176-4390-4)
33. T. Qian, M.I. Vai, and Y. Xu: Wavelet Analysis and Applications (ISBN 978-3-7643-7777-9)
34. G.T. Herman and A. Kuba: Advances in Discrete Tomography and Its Applications (ISBN 978-0-8176-3614-2)
35. M.C. Fu, R.A. Jarrow, J.-Y. Yen, and R.J. Elliott: Advances in Mathematical Finance (ISBN 978-0-8176-4544-1)
36. O. Christensen: Frames and Bases (ISBN 978-0-8176-4677-6)
37. P.E.T. Jorgensen, J.D. Merrill, and J.A. Packer: Representations, Wavelets, and Frames (ISBN 978-0-8176-4682-0)
38. M. An, A.K. Brodzik, and R. Tolimieri: Ideal Sequence Design in Time-Frequency Space (ISBN 978-0-8176-4737-7)
39. S.G. Krantz: Explorations in Harmonic Analysis (ISBN 978-0-8176-4668-4)
40. B. Luong: Fourier Analysis on Finite Abelian Groups (ISBN 978-0-8176-4915-9)
41. G.S. Chirikjian: Stochastic Models, Information Theory, and Lie Groups, Volume 1 (ISBN 978-0-8176-4802-2)
42. C. Cabrelli and J.L. Torrea: Recent Developments in Real and Harmonic Analysis (ISBN 978-0-8176-4531-1)
43. M.V. Wickerhauser: Mathematics for Multimedia (ISBN 978-0-8176-4879-4)
44. B. Forster, P. Massopust, O. Christensen, K. Gröchenig, D. Labate, P. Vandergheynst, G. Weiss, and Y. Wiaux: Four Short Courses on Harmonic Analysis (ISBN 978-0-8176-48909)
45. O. Christensen: Functions, Spaces, and Expansions (ISBN 978-0-8176-4979-1)
46. J. Barral and S. Seuret: Recent Developments in Fractals and Related Fields (ISBN 978-0-8176-4887-9)
47. O. Calin, D.-C. Chang, and K. Furutani, and C. Iwasaki: Heat Kernels for Elliptic and Subelliptic Operators (ISBN 978-0-8176-4994-4)
48. C. Heil: A Basis Theory Primer (ISBN 978-0-8176-4686-8)
49. J.R. Klauder: A Modern Approach to Functional Integration (ISBN 978-0-8176-4790-2)
50. J. Cohen and A.I. Zayed: Wavelets and Multiscale Analysis (ISBN 978-0-8176-8094-7)
51. D. Joyner and J.-L. Kim: Selected Unsolved Problems in Coding Theory (ISBN 978-0-8176-8255-2)
52. G.S. Chirikjian: Stochastic Models, Information Theory, and Lie Groups, Volume 2 (ISBN 978-0-8176-4943-2)
53. J.A. Hogan and J.D. Lakey: Duration and Bandwidth Limiting (ISBN 978-0-8176-8306-1)
54. G. Kutyniok and D. Labate: Shearlets (ISBN 978-0-8176-8315-3)
55. P.G. Casazza and P. Kutyniok: Finite Frames (ISBN 978-0-8176-8372-6)
56. V. Michel: Lectures on Constructive Approximation (ISBN 978-0-8176-8402-0)
57. D. Mitrea, I. Mitrea, M. Mitrea, and S. Monniaux: Groupoid Metrization Theory (ISBN 978-0-8176-8396-2)
58. T.D. Andrews, R. Balan, J.J. Benedetto, W. Czaja, and K.A. Okoudjou: Excursions in Harmonic Analysis, Volume 1 (ISBN 978-0-8176-8375-7)
59. T.D. Andrews, R. Balan, J.J. Benedetto, W. Czaja, and K.A. Okoudjou: Excursions in Harmonic Analysis, Volume 2 (ISBN 978-0-8176-8378-8)
60. D.V. Cruz-Uribe and A. Fiorenza: Variable Lebesgue Spaces (ISBN 978-3-0348-0547-6)
61. W. Freeden and M. Gutting: Special Functions of Mathematical (Geo-)Physics (ISBN 978-3-0348-0562-9)
62. A. I. Saichev and W.A. Woyczyński: Distributions in the Physical and Engineering Sciences, Volume 2: Linear and Nonlinear Dynamics of Continuous Media (ISBN 978-0-8176-3942-6)
63. S. Foucart and H. Rauhut: A Mathematical Introduction to Compressive Sensing (ISBN 978-0-8176-4947-0)
64. G.T. Herman and J. Frank: Computational Methods for Three-Dimensional Microscopy Reconstruction (ISBN 978-1-4614-9520-8)
65. A. Paprotny and M. Thess: Realtime Data Mining: Self-Learning Techniques for Recommendation Engines (ISBN 978-3-319-01320-6)
66. A.I. Zayed and G. Schmeisser: New Perspectives on Approximation and Sampling Theory: Festschrift in Honor of Paul Butzer's $85^{\text {th }}$ Birthday (ISBN 978-3-319-08800-6)
67. R. Balan, M. Begue, J. Benedetto, W. Czaja, and K.A Okoudjou: Excursions in Harmonic Analysis, Volume 3 (ISBN 978-3-319-13229-7)
68. H. Boche, R. Calderbank, G. Kutyniok, J. Vybiral: Compressed Sensing and its Applications (ISBN 978-3-319-16041-2)
69. S. Dahlke, F. De Mari, P. Grohs, and D. Labate: Harmonic and Applied Analysis: From Groups to Signals (ISBN 978-3-319-18862-1)
70. A. Aldroubi, New Trends in Applied Harmonic Analysis (ISBN 978-3-319-27871-1)
71. M. Ruzhansky: Methods of Fourier Analysis and Approximation Theory (ISBN 978-3-319-27465-2)
72. G. Pfander: Sampling Theory, a Renaissance (ISBN 978-3-319-19748-7)
73. R. Balan, M. Begue, J. Benedetto, W. Czaja, and K.A Okoudjou: Excursions in Harmonic Analysis, Volume 4 (ISBN 978-3-319-20187-0)
74. O. Christensen: An Introduction to Frames and Riesz Bases, Second Edition (ISBN 978-3-319-25611-5)
75. E. Prestini: The Evolution of Applied Harmonic Analysis: Models of the Real World, Second Edition (ISBN 978-1-4899-7987-2)
76. J.H. Davis: Methods of Applied Mathematics with a Software Overview, Second Edition (ISBN 978-3-319-43369-1)
77. M. Gilman, E. M. Smith, S. M. Tsynkov: Transionospheric Synthetic Aperture Imaging (ISBN 978-3-319-52125-1)
78. S. Chanillo, B. Franchi, G. Lu, C. Perez, E.T. Sawyer: Harmonic Analysis, Partial Differential Equations and Applications (ISBN 978-3-319-52741-3)
79. R. Balan, J. Benedetto, W. Czaja, M. Dellatorre, and K.A Okoudjou: Excursions in Harmonic Analysis, Volume 5 (ISBN 978-3-319-54710-7)
80. I. Pesenson, Q.T. Le Gia, A. Mayeli, H. Mhaskar, D.X. Zhou: Frames and Other Bases in Abstract and Function Spaces: Novel Methods in Harmonic Analysis, Volume 1 (ISBN 978-3-319-55549-2)
81. I. Pesenson, Q.T. Le Gia, A. Mayeli, H. Mhaskar, D.X. Zhou: Recent Applications of Harmonic Analysis to Function Spaces, Differential Equations, and Data Science: Novel Methods in Harmonic Analysis, Volume 2 (ISBN 978-3-319-55555-3)
82. F. Weisz: Convergence and Summability of Fourier Transforms and Hardy Spaces (ISBN 978-3-319-56813-3)
83. C. Heil: Metrics, Norms, Inner Products, and Operator Theory (ISBN 978-3-319-65321-1)
84. S. Waldron: An Introduction to Finite Tight Frames: Theory and Applications. (ISBN: 978-0-8176-4814-5)
85. D. Joyner and C.G. Melles: Adventures in Graph Theory: A Bridge to Advanced Mathematics. (ISBN: 978-3-319-68381-2)
86. B. Han: Framelets and Wavelets: Algorithms, Analysis, and Applications (ISBN: 978-3-319-68529-8)
87. H. Boche, G. Caire, R. Calderbank, M. März, G. Kutyniok, R. Mathar: Compressed Sensing and Its Applications (ISBN: 978-3-319-69801-4)
88. N. Minh Chong: Pseudodifferential Operators and Wavelets over Real and p-adic Fields (ISBN: 978-3-319-77472-5)
89. A. I. Saichev and W.A. Woyczyński: Distributions in the Physical and Engineering Sciences, Volume 3: Random and Fractal Signals and Fields (ISBN: 978-3-319-92584-4)
90. G. Plonka, D. Potts, G. Steidl, M. Tasche: Numerical Fourier Analysis (ISBN 978-3-030-04305-6)

For an up-to-date list of ANHA titles, please visit http://www.springer.com/series/4968

[^0]: Abbreviations

 APM Approximate Prony method, 535
 DCT Discrete cosine transform, 151
 DFT Discrete Fourier transform, 118
 $\operatorname{DFT}(N) \quad$ Discrete Fourier transform of length $N, 120$
 DHT Discrete Hartley transform, 157
 DSFT Discrete spherical Fourier transform, 510
 DST Discrete sine transform, 151
 ESPRIT Estimation of signal parameters via rotational invariance techniques, 536
 FFT Fast Fourier transform, 231
 FIR Finite impulse response system, 55
 FLT Fast Legendre transform, 512
 FRFT Fractional Fourier transform, 101
 FSFT Fast spherical Fourier transform, 513
 LFFT Lattice based FFT, 431
 LTI Linear, time-invariant system, 53

