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ANHA Series Preface

The Applied and Numerical Harmonic Analysis (ANHA) book series aims to
provide the engineering, mathematical, and scientific communities with significant
developments in harmonic analysis, ranging from abstract harmonic analysis to
basic applications. The title of the series reflects the importance of applications
and numerical implementation, but richness and relevance of applications and
implementation depend fundamentally on the structure and depth of theoretical
underpinnings. Thus, from our point of view, the interleaving of theory and
applications and their creative symbiotic evolution is axiomatic.

Harmonic analysis is a wellspring of ideas and applicability that has flourished,
developed, and deepened over time within many disciplines and by means of
creative cross-fertilization with diverse areas. The intricate and fundamental rela-
tionship between harmonic analysis and fields such as signal processing, partial
differential equations (PDEs), and image processing is reflected in our state-of-the-
art ANHA series.

Our vision of modern harmonic analysis includes mathematical areas such as
wavelet theory, Banach algebras, classical Fourier analysis, time-frequency analysis,
and fractal geometry, as well as the diverse topics that impinge on them.

For example, wavelet theory can be considered an appropriate tool to deal with
some basic problems in digital signal processing, speech and image processing,
geophysics, pattern recognition, biomedical engineering, and turbulence. These
areas implement the latest technology from sampling methods on surfaces to fast
algorithms and computer vision methods. The underlying mathematics of wavelet
theory depends not only on classical Fourier analysis, but also on ideas from abstract
harmonic analysis, including von Neumann algebras and the affine group. This leads
to a study of the Heisenberg group and its relationship to Gabor systems, and of the
metaplectic group for a meaningful interaction of signal decomposition methods.
The unifying influence of wavelet theory in the aforementioned topics illustrates the
justification for providing a means for centralizing and disseminating information
from the broader, but still focused, area of harmonic analysis. This will be a key role
of ANHA. We intend to publish with the scope and interaction that such a host of
issues demands.
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vi ANHA Series Preface

Along with our commitment to publish mathematically significant works at the
frontiers of harmonic analysis, we have a comparably strong commitment to publish
major advances in the following applicable topics in which harmonic analysis plays
a substantial role:

Antenna theory Prediction theory

Biomedical signal processing Radar applications

Digital signal processing Sampling theory

Fast algorithms Spectral estimation

Gabor theory and applications Speech processing

Image processing Time-frequency and

Numerical partial differential equations time-scaleanalysis

Wavelet theory

The above point of view for the ANHA book series is inspired by the history of
Fourier analysis itself, whose tentacles reach into so many fields.

In the last two centuries Fourier analysis has had a major impact on the
development of mathematics, on the understanding of many engineering and
scientific phenomena, and on the solution of some of the most important problems
in mathematics and the sciences. Historically, Fourier series were developed in
the analysis of some of the classical PDEs of mathematical physics; these series
were used to solve such equations. In order to understand Fourier series and the
kinds of solutions they could represent, some of the most basic notions of analysis
were defined, e.g., the concept of “function.” Since the coefficients of Fourier
series are integrals, it is no surprise that Riemann integrals were conceived to deal
with uniqueness properties of trigonometric series. Cantor’s set theory was also
developed because of such uniqueness questions.

A basic problem in Fourier analysis is to show how complicated phenomena,
such as sound waves, can be described in terms of elementary harmonics. There are
two aspects of this problem: first, to find, or even define properly, the harmonics or
spectrum of a given phenomenon, e.g., the spectroscopy problem in optics; second,
to determine which phenomena can be constructed from given classes of harmonics,
as done, for example, by the mechanical synthesizers in tidal analysis.

Fourier analysis is also the natural setting for many other problems in engineer-
ing, mathematics, and the sciences. For example, Wiener’s Tauberian theorem in
Fourier analysis not only characterizes the behavior of the prime numbers, but also
provides the proper notion of spectrum for phenomena such as white light; this
latter process leads to the Fourier analysis associated with correlation functions in
filtering and prediction problems, and these problems, in turn, deal naturally with
Hardy spaces in the theory of complex variables.

Nowadays, some of the theory of PDEs has given way to the study of Fourier
integral operators. Problems in antenna theory are studied in terms of unimodular
trigonometric polynomials. Applications of Fourier analysis abound in signal
processing, whether with the fast Fourier transform (FFT), or filter design, or the
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adaptive modeling inherent in time-frequency-scale methods such as wavelet theory.
The coherent states of mathematical physics are translated and modulated Fourier
transforms, and these are used, in conjunction with the uncertainty principle, for
dealing with signal reconstruction in communications theory. We are back to the
raison d’être of the ANHA series!

University of Maryland John J. Benedetto
College Park, MD, USA Series Editor



Preface

Fourier analysis has grown to become an essential mathematical tool with numerous
applications in applied mathematics, engineering, physics, and other sciences. Many
recent technological innovations from spectroscopy and computer tomography to
speech and music signal processing are based on Fourier analysis. Fast Fourier
algorithms are the heart of data processing methods, and their societal impact can
hardly be overestimated.

The field of Fourier analysis is continuously developing toward the needs in
applications, and many topics are part of ongoing intensive research. Due to the
importance of Fourier techniques, there are several books on the market focusing on
different aspects of Fourier theory, as e.g. [28, 58, 72, 113, 119, 125, 146, 205, 219,
221, 260, 268, 303, 341, 388, 392], or on corresponding algorithms of the discrete
Fourier transform, see e.g. [36, 46, 47, 63, 162, 257, 307, 362], not counting further
monographs on special applications and generalizations as wavelets [69, 77, 234].

So, why do we write another book? Examining the existing textbooks in Fourier
analysis, it appears as a shortcoming that the focus is either set only on the
mathematical theory or vice versa only on the corresponding discrete Fourier and
convolution algorithms, while the reader needs to consult additional references on
the numerical techniques in the one case or on the analytical background in the
other.

The urgent need for a unified presentation of Fourier theory and corresponding
algorithms particularly emerges from new developments in function approximation
using Fourier methods. It is important to understand how well a continuous signal
can be approximated by employing the discrete Fourier transform to sampled
spectral data. A deep understanding of function approximation by Fourier rep-
resentations is even more crucial for deriving more advanced transforms as the
nonequispaced fast Fourier transform, which is an approximative algorithm by
nature, or sparse fast Fourier transforms on special lattices in higher dimensions.

This book encompasses the required classical Fourier theory in the first part
in order to give deep insights into the construction and analysis of corresponding
fast Fourier algorithms in the second part, including recent developments on

ix



x Preface

nonequispaced and sparse fast Fourier transforms in higher dimensions. In the third
part of the book, we present a selection of mathematical applications including
recent research results on nonlinear function approximation by exponential sums.

Our book starts with two chapters on classical Fourier analysis and Chap. 3 on the
discrete Fourier transform in one dimension, followed by Chap. 4 on the multivariate
case. This theoretical part provides the background for all further chapters and
makes the book self-contained.

Chapters 5–8 are concerned with the construction and analysis of corresponding
fast algorithms in the one- and multidimensional case. While Chap. 5 covers the
well-known fast Fourier transforms, Chaps. 7 and 8 are concerned with the con-
struction of the nonequispaced fast Fourier transforms and the high-dimensional fast
Fourier transforms on special lattices. Chapter 6 is devoted to discrete trigonometric
transforms and Chebyshev expansions which are closely related to Fourier series.

The last part of the book contains two chapters on applications of numerical
Fourier methods for improved function approximation.

Starting with Sects. 5.4 and 5.5, the book covers many recent well-recognized
developments in numerical Fourier analysis which cannot be found in other books
in this form, including research results of the authors obtained within the last 20
years.
This includes topics such as:

• The analysis of the numerical stability of the radix-2 FFT in Sect. 5.5
• Fast trigonometric transforms based on orthogonal matrix factorizations and fast

discrete polynomial transforms in Chap. 6
• Fast Fourier transforms and fast trigonometric transforms for nonequispaced data

in space and/or frequency in Sects. 7.1–7.4
• Fast summation at nonequispaced knots in Sect. 7.5

More recent research results can be found on:

• Sparse FFT for vectors with presumed sparsity in Sect. 5.4
• High-dimensional sparse fast FFT on rank-1 lattices in Chap. 8
• Applications of multi-exponential analysis and Prony method for recovery of

structured functions in Chap. 10

An introductory course on Fourier analysis at the advanced undergraduate level
can for example be built using Sects. 1.2–1.4, 2.1–2.2, 3.2–3.3, 4.1–4.3, and 5.1–
5.2. We assume that the reader is familiar with basic knowledge on calculus of
univariate and multivariate functions (including basic facts on Lebesgue integration
and functional analysis) and on numerical linear algebra. Focusing a lecture on
discrete fast algorithms and applications, one may consult Chaps. 3, 5, 6, and 9.
Chapters 7, 8, and 10 are at an advanced level and require pre-knowledge from
Chaps. 1, 2, and 4.
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Parts of the book are based on a series of lectures and seminars given by
the authors to students of mathematics, physics, computer science, and electrical
engineering. Chapters 1, 2, 3, 5, and 9 are partially based on teaching material
written by G. Steidl and M. Tasche that was published in 1996 by the University
of Hagen under the title “Fast Fourier Transforms—Theory and Applications” (in
German). The authors wish to express their gratitude to the University of Hagen for
the friendly permission to use this material for this book.

Last but not least, the authors would like to thank Springer/Birkhäuser for
publishing this book.

Göttingen, Germany Gerlind Plonka
Chemnitz, Germany Daniel Potts
Kaiserslautern, Germany Gabriele Steidl
Rostock, Germany Manfred Tasche
October 2018
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Chapter 1
Fourier Series

Chapter 1 covers the classical theory of Fourier series of 2π-periodic functions. In
the introductory section, we sketch Fourier’s theory on heat propagation. Section 1.2
introduces some basic notions such as Fourier coefficients and Fourier series of
a 2π-periodic function. The convolution of 2π-periodic functions is handled in
Sect. 1.3. Section 1.4 presents main results on the pointwise and uniform conver-
gence of Fourier series. For a 2π-periodic, piecewise continuously differentiable
function f , a complete proof of the important convergence theorem of Dirichlet–
Jordan is given. Further we describe the Gibbs phenomenon for partial sums of the
Fourier series of f near a jump discontinuity. Finally, in Sect. 1.5, we apply Fourier
series in digital signal processing and describe the linear filtering of discrete signals.

1.1 Fourier’s Solution of Laplace Equation

In 1804, the French mathematician and egyptologist Jean Baptiste Joseph Fourier
(1768–1830) began his studies on the heat propagation in solid bodies. In 1807, he
finished a first paper about heat propagation. He discovered the fundamental partial
differential equation of heat propagation and developed a new method to solve this
equation. The mathematical core of Fourier’s idea was that each periodic function
can be well approximated by a linear combination of sine and cosine terms. This
theory contradicted the previous views on functions and was met with resistance
by some members of the French Academy of Sciences, so that a publication was
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2 1 Fourier Series

Fig. 1.1 The mathematician
and egyptologist Jean
Baptiste Joseph
Fourier (1768–1830)

initially prevented. Later, Fourier presented these results in the famous book “The
Analytical Theory of Heat” published firstly 1822 in French, cf. [119]. For an image
of Fourier, see Fig. 1.1 (Image source: https://commons.wikimedia.org/wiki/File:
Joseph_Fourier.jpg).

In the following, we describe Fourier’s idea by a simple example. We consider
the open unit disk Ω = {(x, y) ∈ R

2 : x2 + y2 < 1} with the boundary Γ =
{(x, y) ∈ R

2 : x2 + y2 = 1}. Let v(x, y, t) denote the temperature at the point
(x, y) ∈ Ω and the time t ≥ 0. For physical reasons, the temperature fulfills the
heat equation

∂2v

∂x2 +
∂2v

∂y2 = c
∂v

∂t
, (x, y) ∈ Ω, t > 0

with some constant c > 0. At steady state, the temperature is independent of the
time such that v(x, y, t) = v(x, y) satisfies the Laplace equation

∂2v

∂x2
+ ∂2v

∂y2
= 0, (x, y) ∈ Ω.

What is the temperature v(x, y) at any point (x, y) ∈ Ω , if the temperature at each
point of the boundary Γ is known?

Using polar coordinates

x = r cosϕ , y = r sinϕ, 0 < r < 1, 0 ≤ ϕ < 2π,

https://commons.wikimedia.org/wiki/File:Joseph_Fourier.jpg
https://commons.wikimedia.org/wiki/File:Joseph_Fourier.jpg


1.1 Fourier’s Solution of Laplace Equation 3

we obtain for the temperature u(r, ϕ) := v(r cosϕ, r sin ϕ) by chain rule

∂2v

∂x2 +
∂2v

∂y2 =
∂2u

∂r2 +
1

r

∂u

∂r
+ 1

r2

∂2u

∂ϕ2 = 0 .

If we extend the variable ϕ periodically to the real line R, then u(r, ϕ) is 2π-periodic
with respect to ϕ and fulfills

r2 ∂2u

∂r2 + r
∂u

∂r
= − ∂2u

∂ϕ2 , 0 < r < 1, ϕ ∈ R. (1.1)

Since the temperature at the boundary Γ is given, we know the boundary condition

u(1, ϕ) = f (ϕ), ϕ ∈ R, (1.2)

where f is a given continuously differentiable, 2π-periodic function. Applying
separation of variables, we seek nontrivial solutions of (1.1) of the form u(r, ϕ) =
p(r) q(ϕ), where p is bounded on (0, 1) and q is 2π-periodic. From (1.1) it follows

(
r2 p′′(r)+ r p′(r)

)
q(ϕ) = −p(r) q ′′(ϕ)

and hence

r2 p′′(r)+ r p′(r)
p(r)

= −q ′′(ϕ)
q(ϕ)

. (1.3)

The variables r and ϕ can be independently chosen. If ϕ is fixed and r varies, then
the left-hand side of (1.3) is a constant. Analogously, if r is fixed and ϕ varies, then
the right-hand side of (1.3) is a constant. Let λ be the common value of both sides.
Then we obtain two linear differential equations

r2 p′′(r)+ r p′(r)− λp(r) = 0 , (1.4)

q ′′(ϕ)+ λ q(ϕ) = 0 . (1.5)

Since nontrivial solutions of (1.5) must have the period 2π , we obtain the solutions
a0
2 for λ = 0 and an cos(nϕ) + bn sin(nϕ) for λ = n2, n ∈ N, where a0, an, and
bn with n ∈ N are real constants. For λ = 0, the linear differential equation (1.4)
has the linearly independent solutions 1 and ln r , where only 1 is bounded on (0, 1).
For λ = n2, Eq. (1.4) has the linearly independent solutions rn and r−n, where only
rn is bounded on (0, 1). Thus we see that a0

2 and rn (an cos(nϕ) + bn sin(nϕ)),
n ∈ N, are the special solutions of the Laplace equation (1.1). If u1 and u2 are
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solutions of the linear equation (1.1), then u1 + u2 is a solution of (1.1) too. Using
the superposition principle, we obtain a formal solution of (1.1) of the form

u(r, ϕ) = a0

2
+

∞∑

n=1

rn
(
an cos(nϕ)+ bn sin(nϕ)

)
. (1.6)

By the boundary condition (1.2), the coefficients a0, an, and bn with n ∈ N must be
chosen so that

u(1, ϕ) = a0

2
+

∞∑

n=1

(
an cos(nϕ)+ bn sin(nϕ)

) = f (ϕ), ϕ ∈ R. (1.7)

Fourier conjectured that this could be done for an arbitrary 2π-periodic function f .
We will see that this is only the case, if f fulfills some additional conditions. As
shown in the next section, from (1.7) it follows that

an = 1

π

∫ 2π

0
f (ψ) cos(nψ) dψ, n ∈ N0, (1.8)

bn = 1

π

∫ 2π

0
f (ψ) sin(nψ) dψ, n ∈ N. (1.9)

By assumption, f is bounded on R, i.e., |f (ψ)| ≤M . Thus we obtain that

|an| ≤ 1

π

∫ 2π

0
|f (ψ)| dψ ≤ 2M, n ∈ N0.

Analogously, it holds |bn| ≤ 2M for all n ∈ N.
Now we have to show that the constructed function (1.6) with the coeffi-

cients (1.8) and (1.9) is really a solution of (1.1) which fulfills the boundary
condition (1.2). Since the 2π-periodic function f is continuously differentiable, we
will see by Theorem 1.37 that

∞∑

n=1

(|an| + |bn|) <∞ .

Introducing un(r, ϕ) := rn
(
an cos(nϕ)+ bn sin(nϕ)

)
, we can estimate

|un(r, ϕ)| ≤ |an| + |bn|, (r, ϕ) ∈ [0, 1] × R.

From Weierstrass criterion for uniform convergence it follows that the series a0
2 +∑∞

n=1 un converges uniformly on [0, 1] × R. Since each term un is continuous on
[0, 1]×R, the sum u of this uniformly convergent series is continuous on [0, 1]×R,
too. Note that the temperature in the origin of the closed unit disk is equal to the
mean value a0

2 = 1
2π

∫ 2π
0 f (ψ) dψ of the temperature f at the boundary.
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Now we show that u fulfills the Laplace equation in [0, 1)× R. Let 0 < r0 < 1
be arbitrarily fixed. By

∂k

∂ϕk
un(r, ϕ) = rn nk

(
an cos(nϕ + kπ

2
)+ bn sin(nϕ + kπ

2
)
)

for arbitrary k ∈ N, we obtain

| ∂
k

∂ϕk
un(r, ϕ)| ≤ 4 rn nk M ≤ 4 rn0 nk M

for 0 ≤ r ≤ r0. The series 4 M
∑∞

n=1 rn0 nk is convergent. By the Weierstrass

criterion,
∑∞

n=1
∂k

∂ϕk un is uniformly convergent on [0, r0]×R. Consequently, ∂k

∂ϕk u

exists and

∂k

∂ϕk
u =

∞∑

n=1

∂k

∂ϕk
un.

Analogously, one can show that ∂k

∂rk
u exists and

∂k

∂rk
u =

∞∑

n=1

∂k

∂rk
un.

Since all un are solutions of the Laplace equation (1.1) in [0, 1)× R, it follows by
term by term differentiation that u is also a solution of (1.1) in [0, 1)× R.

Finally, we simplify the representation of the solution (1.6) with the coeffi-
cients (1.8) and (1.9). Since the series in (1.6) converges uniformly on [0, 1] × R,
we can change the order of summation and integration such that

u(r, ϕ) = 1

π

∫ 2π

0
f (ψ)

(1

2
+

∞∑

n=1

rn cos
(
n(ϕ − ψ)

))
dψ.

Taking the real part of the geometric series

1+
∞∑

n=1

rn einθ = 1

1− reiθ
.

it follows

1+
∞∑

n=1

rn cos(nθ) = 1− r cos θ

1+ r2 − 2r cos θ
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and hence

1

2
+

∞∑

n=1

rn cos(nθ) = 1

2

1− r2

1+ r2 − 2r cos θ
.

Thus for 0 ≤ r < 1 and ϕ ∈ R, the solution of (1.6) can be represented as Poisson
integral

u(r, ϕ) = 1

2π

∫ 2π

0
f (ψ)

1− r2

1+ r2 − 2r cos(ϕ − ψ)
dψ .

1.2 Fourier Coefficients and Fourier Series

A complex-valued function f : R→ C is 2π-periodic or periodic with period 2π ,
if f (x + 2π) = f (x) for all x ∈ R. In the following, we identify any 2π-periodic
function f : R → C with the corresponding function f : T → C defined on the
torus T of length 2π . The torus T can be considered as quotient space R/(2πZ)
or its representatives, e.g. the interval [0, 2π] with identified endpoints 0 and 2π .
For short, one can also geometrically think of the unit circle with circumference 2π .
Typical examples of 2π-periodic functions are 1, cos(n·), sin(n·) for each angular
frequency n ∈ N and the complex exponentials ei k· for each k ∈ Z.

By C(T) we denote the Banach space of all continuous functions f : T → C

with the norm

‖f ‖C(T) := max
x∈T

|f (x)|

and by Cr(T), r ∈ N the Banach space of r-times continuously differentiable
functions f : T→ C with the norm

‖f ‖Cr(T) := ‖f ‖C(T) + ‖f (r)‖C(T) .

Clearly, we have Cr(T) ⊂ Cs(T) for r > s.
Let Lp(T), 1 ≤ p ≤ ∞ be the Banach space of measurable functions f : T→

C with finite norm

‖f ‖Lp(T) :=
( 1

2π

∫ π

−π

|f (x)|p dx
)1/p

, 1 ≤ p <∞ ,

‖f ‖L∞(T) := ess sup {|f (x)| : x ∈ T} ,
where we identify almost equal functions. If a 2π-periodic function f is integrable
on [−π, π], then we have

∫ π

−π

f (x) dx =
∫ π+a

−π+a

f (x) dx
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for all a ∈ R so that we can integrate over any interval of length 2π .
Using Hölder’s inequality it can be shown that the spaces Lp(T) for 1 ≤ p ≤ ∞

are continuously embedded as

L1(T) ⊃ L2(T) ⊃ . . . ⊃ L∞(T).

In the following we are mainly interested in the Hilbert space L2(T) consisting of
all absolutely square-integrable functions f : T→ C with inner product and norm

〈f, g〉L2(T) := 1

2π

∫ π

−π

f (x) g(x) dx , ‖f ‖L2(T) :=
( 1

2π

∫ π

−π

|f (x)|2 dx
)1/2

.

If it is clear from the context which inner product or norm is addressed, we
abbreviate 〈f, g〉 := 〈f, g〉L2(T) and ‖f ‖ := ‖f ‖L2(T). For all f, g ∈ L2(T) it
holds the Cauchy–Schwarz inequality

|〈f, g〉L2(T)| ≤ ‖f ‖L2(T) ‖g‖L2(T) .

Theorem 1.1 The set of complex exponentials

{
eik· = cos(k·)+ i sin(k·) : k ∈ Z

}
(1.10)

forms an orthonormal basis of L2(T).

Proof

1. By definition, an orthonormal basis is a complete orthonormal system. First we
show the orthonormality of the complex exponentials in (1.10). We have

〈eik·, eij ·〉 = 1

2π

∫ π

−π

ei(k−j)x dx ,

which implies for integers k = j

〈eik·, eik·〉 = 1

2π

∫ π

−π

1 dx = 1.

On the other hand, we obtain for distinct integers j , k

〈eik·, eij ·〉 = 1

2π i(k − j)

(
eπ i(k−j) − e−π i(k−j)

)

= 2i sin π(k − j)

2π i(k − j)
= 0 .

2. Now we prove the completeness of the set (1.10). We have to show that
〈
f, eik·〉 =

0 for all k ∈ Z implies f = 0.



8 1 Fourier Series

First we consider a continuous function f ∈ C(T) having 〈f, eik·〉 = 0 for
all k ∈ Z. Let us denote by

Tn :=
{ n∑

k=−n

ckeik· : ck ∈ C

}
(1.11)

the space of all trigonometric polynomials up to degree n. By the approximation
theorem of Weierstrass, see Theorem 1.21, there exists for any function f ∈
C(T) a sequence (pn)n∈N0 of trigonometric polynomials pn ∈ Tn, which
converges uniformly to f , i.e.,

‖f − pn‖C(T) = max
x∈T

∣
∣f (x)− pn(x)

∣
∣→ 0 for n→∞ .

By assumption we have

〈f, pn〉 = 〈f,
n∑

k=−n

ck ei k·〉 =
n∑

k=−n

ck 〈f, ei k·〉 = 0 .

Hence we conclude

‖f ‖2 = 〈f, f 〉 − 〈f, pn〉 = 〈f, f − pn〉 → 0 (1.12)

as n→∞, so that f = 0.
3. Now let f ∈ L2(T) with 〈f, eik·〉 = 0 for all k ∈ Z be given. Then

h(x) :=
∫ x

0
f (t) dt, x ∈ [0, 2π),

is an absolutely continuous function satisfying h′(x) = f (x) almost everywhere.
We have further h(0) = h(2π) = 0. For k ∈ Z\{0} we obtain

〈h, eik·〉 = 1

2π

∫ 2π

0
h(x) e−ikx dx

= − 1

2π ik
h(x) e−ikx

∣∣∣
2π

0
+ 1

2π ik

∫ 2π

0
h′(x)
︸ ︷︷ ︸
=f (x)

e−ikx dx = 1

2π ik
〈f, eik·〉 = 0 .

Hence the 2π-periodically continued continuous function h − 〈h, 1〉 fulfills
〈
h −

〈h, 1〉, eik·〉 = 0 for all k ∈ Z. Using the first part of this proof, we obtain
h = 〈h, 1〉 = const. Since f (x) = h′(x) = 0 almost everywhere, this yields
the assertion.
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Once we have an orthonormal basis of a Hilbert space, we can represent its elements
with respect to this basis. Let us consider the finite sum

Snf :=
n∑

k=−n

ck(f ) eik· ∈ Tn , ck(f ) := 〈
f, eik·〉 = 1

2π

∫ π

−π

f (x) e−ikx dx ,

called nth Fourier partial sum of f with the Fourier coefficients ck(f ). By definition
Sn : L2(T) → L2(T) is a linear operator which possesses the following important
approximation property.

Lemma 1.2 The Fourier partial sum operator Sn : L2(T) → L2(T) is an
orthogonal projector onto Tn, i.e.

‖f − Snf ‖ = min {‖f − p‖ : p ∈ Tn}

for arbitrary f ∈ L2(T). In particular, it holds

‖f − Snf ‖2 = ‖f ‖2 −
n∑

k=−n

|ck(f )|2. (1.13)

Proof

1. For each trigonometric polynomial

p =
n∑

k=−n

ck eik· (1.14)

with arbitrary ck ∈ C and all f ∈ L2(T) we have

‖f − p‖2 = ‖f ‖2 − 〈p, f 〉 − 〈f, p〉 + ‖p‖2

= ‖f ‖2 +
n∑

k=−n

(− ck ck(f )− ck ck(f )+ |ck|2
)

= ‖f ‖2 −
n∑

k=−n

|ck(f )|2 +
n∑

k=−n

|ck − ck(f )|2.

Thus,

‖f − p‖2 ≥ ‖f ‖2 −
n∑

k=−n

|ck(f )|2,

where equality holds only in the case ck = ck(f ), k = −n, . . . , n, i.e., if and
only if p = Snf .
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2. For p ∈ Tn of the form (1.14), the corresponding Fourier coefficients are
ck(p) = ck for k = −n, . . . , n and ck(p) = 0 for all |k| > n. Thus
we have Snp = p and Sn(Snf ) = Snf for arbitrary f ∈ L2(T). Hence
Sn : L2(T)→ L2(T) is a projection onto Tn. By

〈Snf, g〉 =
n∑

k=−n

ck(f ) ck(g) = 〈f, Sng〉

for all f, g ∈ L2(T), the Fourier partial sum operator Sn is self-adjoint,
i.e., Sn is an orthogonal projection. Moreover, Sn has the operator norm
‖Sn‖L2(T)→L2(T) = 1.

As an immediate consequence of Lemma 1.2 we obtain the following:

Theorem 1.3 Every function f ∈ L2(T) has a unique representation of the form

f =
∑

k∈Z
ck(f ) eik·, ck(f ) := 〈

f, eik·〉 = 1

2π

∫ π

−π

f (x) e−ikx dx , (1.15)

where the series (Snf )∞n=0 converges in L2(T) to f , i.e.

lim
n→∞‖Snf − f ‖ = 0 .

Further the Parseval equality is fulfilled

‖f ‖2 =
∑

k∈Z

∣
∣〈f, eik·〉∣∣2 =

∑

k∈Z
|ck(f )|2 <∞ . (1.16)

Proof By Lemma 1.2, we know that for each n ∈ N0

‖Snf ‖2 =
n∑

k=−n

|ck(f )|2 ≤ ‖f ‖2 <∞ .

For n→∞, we obtain Bessel’s inequality

∞∑

k=−∞
|ck(f )|2 ≤ ‖f ‖2 .

Consequently, for arbitrary ε > 0, there exists an index N(ε) ∈ N such that

∑

|k|>N(ε)

|ck(f )|2 < ε .
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For m > n ≥ N(ε) we obtain

‖Smf − Snf ‖2 =
(−n−1∑

k=−m

+
m∑

k=n+1

)

|ck(f )|2 ≤
∑

|k|>N(ε)

|ck(f )|2 < ε .

Hence (Snf )∞n=0 is a Cauchy sequence. In the Hilbert space L2(T), each Cauchy
sequence is convergent. Assume that limn→∞ Snf = g with g ∈ L2(T). Since

〈g, eik·〉 = lim
n→∞〈Snf, eik·〉 = lim

n→∞〈f, Sneik·〉 = 〈f, eik·〉

for all k ∈ Z, we conclude by Theorem 1.1 that f = g. Letting n → ∞ in (1.13)
we obtain the Parseval equality (1.16).

The representation (1.15) is the so-called Fourier series of f . Figure 1.2 shows
2π-periodic functions as superposition of two 2π-periodic functions.

Clearly, the partial sums of the Fourier series are the Fourier partial sums. The
constant term c0(f ) = 1

2π

∫ π

−π
f (x) dx in the Fourier series of f is the mean value

of f .

Remark 1.4 For fixed L > 0, a function f : R → C is called L-periodic, if
f (x + L) = f (x) for all x ∈ R. By substitution we see that the Fourier series of an
L-periodic function f reads as follows:

f =
∑

k∈Z
c
(L)
k (f ) e2π ik·/L , c

(L)
k (f ) := 1

L

∫ L/2

−L/2
f (x) e−2π ikx/L dx . �

(1.17)

In polar coordinates we can represent the Fourier coefficients in the form

ck(f ) = |ck(f )| ei ϕk , ϕk := atan2
(

Im ck(f ), Re ck(f )
)
, (1.18)

−π −π
2

π
2

π

−1

−0.5

0.5

1

x

y

−π −π
2

π
2

π

−0.5

0.5

1

x

y

−1.5 −1

Fig. 1.2 Two 2π-periodic functions sin x + 1
2 cos(2x) (left) and sin x − 1

10 sin(4x) as superposi-
tions of sine and cosine functions
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where

atan2(y, x) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

arctan y
x

x > 0 ,

arctan y
x
+ π x < 0, y ≥ 0 ,

arctan y
x
− π x < 0, y < 0 ,

π
2 x = 0, y > 0 ,

−π
2 x = 0, y < 0 ,

0 x = y = 0 .

Note that atan2 is a modified inverse tangent. Thus for (x, y) ∈ R
2 \ {(0, 0)},

atan2(y, x) ∈ (−π, π] is defined as the angle between the vectors (1, 0) and
(x, y). The sequence

(|ck(f )|)
k∈Z is called the spectrum or modulus of f and(

ϕk

)
k∈Z the phase of f .

For fixed a ∈ R, the 2π-periodic extension of a function f : [−π+a, π+a)→
C to the whole line R is given by f (x+ 2πn) := f (x) for all x ∈ [−π + a, π + a)

and all n ∈ Z. Often we have a = 0 or a = π .

Example 1.5 Consider the 2π-periodic extension of the real-valued function
f (x) = e−x , x ∈ (−π, π) with f (±π) = coshπ = 1

2 (e
−π + eπ). Then the

Fourier coefficients ck(f ) are given by

ck(f ) = 1

2π

∫ π

−π

e−(1+ik)x dx

= − 1

2π (1+ ik)

(
e−(1+ik)π − e(1+ik)π

)
= (−1)k sinhπ

(1+ i k) π
.

Figure 1.3 shows both the 8th and 16th Fourier partial sums S8f and S16f .

π π
2

π

5

10

15

20

x

y

π π
2

π

5

10

15

20

x

y

−π
2 −π

2

Fig. 1.3 The 2π-periodic function f given by f (x) := e−x , x ∈ (−π, π), with f (±π) =
cosh(π) and its Fourier partial sums S8f (left) and S16f (right)
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For f ∈ L2(T) it holds the Parseval equality (1.16). Thus the Fourier coefficients
ck(f ) converge to zero as |k| → ∞. Since

|ck(f )| ≤ 1

2π

∫ π

−π

|f (x)| dx = ‖f ‖L1(T) ,

the integrals

ck(f ) = 1

2π

∫ π

−π

f (x) e−ikx dx , k ∈ Z

also exist for all functions f ∈ L1(T), i.e., the Fourier coefficients are well-defined
for any function of L1(T). The next lemma contains simple properties of Fourier
coefficients.

Lemma 1.6 The Fourier coefficients of f, g ∈ L1(T) have the following properties
for all k ∈ Z:

1. Linearity: For all α, β ∈ C,

ck(αf + βg) = α ck(f )+ β ck(g) .

2. Translation–Modulation: For all x0 ∈ [0, 2π) and k0 ∈ Z,

ck
(
f (· − x0)

) = e−ikx0 ck(f ) ,

ck(e−ik0· f ) = ck+k0(f ) .

In particular |ck(f (· − x0))| = |ck(f )|, i.e., translation does not change the
spectrum of f .

3. Differentiation–Multiplication: For absolute continuous functions f ∈ L1(T)

with f ′ ∈ L1(T) we have

ck(f
′) = i k ck(f ) .

Proof The first property follows directly from the linearity of the integral. The
translation–modulation property can be seen as

ck
(
f (· − x0)

) = 1

2π

∫ π

−π

f (x − x0) e−ikx dx

= 1

2π

∫ π

−π

f (y) e−ik(y+x0) dy = e−ikx0 ck(f ),

and similarly for the modulation–translation property.
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For the differentiation property recall that an absolute continuous function has a
derivative almost everywhere. Then we obtain by integration by parts

1

2π

∫ π

−π

ik f (x) e−ikx dx = 1

2π

∫ π

−π

f ′(x) e−ikx dx = ck(f
′).

The complex Fourier series

f =
∑

k∈Z
ck(f ) eik·

can be rewritten using Euler’s formula eik· = cos(k·)+ i sin(k·) as

f = 1

2
a0(f )+

∞∑

k=1

(
ak(f ) cos(k·)+ bk(f ) sin(k·)) , (1.19)

where

ak(f ) = ck(f )+ c−k(f ) = 2 〈f, cos(k·)〉 , k ∈ N0 ,

bk(f ) = i
(
ck(f )− c−k(f )

) = 2 〈f, sin(k·)〉 , k ∈ N .

Consequently
{

1,
√

2 cos(k·) : k ∈ N

}
∪

{√
2 sin(k·) : k ∈ N

}
form also an ortho-

normal basis of L2(T). If f : T→ R is a real-valued function, then ck(f ) = c−k(f )

and (1.19) is the real Fourier series of f . Using polar coordinates (1.18), the Fourier
series of a real-valued function f ∈ L2(T) can be written in the form

f = 1

2
a0(f )+

∞∑

k=1

rk sin(k · +π

2
+ ϕk).

with sine oscillations of amplitudes rk = 2 |ck(f )|, angular frequencies k, and phase
shifts π

2 +ϕk. For even/odd functions the Fourier series simplify to pure cosine/sine
series.

Lemma 1.7 If f ∈ L2(T) is even, i.e., f (x) = f (−x) for all x ∈ T, then ck(f ) =
c−k(f ) for all k ∈ Z and f can be represented as a Fourier cosine series

f = c0(f )+ 2
∞∑

k=1

ck(f ) cos(k·) = 1

2
a0(f )+

∞∑

k=1

ak(f ) cos(k·) .

If f ∈ L2(T) is odd, i.e., f (x) = −f (−x) for all x ∈ T, then ck(f ) = −c−k(f )

for all k ∈ Z and f can be represented as a Fourier sine series

f = 2 i
∞∑

k=1

ck(f ) sin(k·) =
∞∑

k=1

bk(f ) sin(k·).
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The simple proof of Lemma 1.7 is left as an exercise.

Example 1.8 The 2π-periodic extension of the function f (x) = x2, x ∈ [−π, π)

is even and has the Fourier cosine series

π2

3
+ 4

∞∑

k=1

(−1)k

k2 cos(k·) .

Example 1.9 The 2π-periodic extension of the function s(x) = π−x
2π , x ∈ (0, 2π),

with s(0) = 0 is odd and has jump discontinuities at 2πk, k ∈ Z, of unit height.
This so-called sawtooth function has the Fourier sine series

∞∑

k=1

1

π k
sin(k·) .

Figure 1.4 illustrates the corresponding Fourier partial sum S8f . Applying the
Parseval equality (1.16) we obtain

∞∑

k=1

1

2π2k2 = ‖s‖2 = 1

12
.

This implies

∞∑

k=1

1

k2
= π2

6
.

π

5
π
2

π 3π
2

2π

−0.5

0.5

x

y

−π

Fig. 1.4 The Fourier partial sums S8f of the even 2π-periodic function f given by f (x) := x2,
x ∈ [−π, π) (left) and of the odd 2π-periodic function f given by f (x) = 1

2 − x
2π , x ∈ (0, 2π),

with f (0) = f (2π) = 0 (right)
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The last equation can be also obtained from the Fourier series in Example 1.8 by
setting x := π and assuming that the series converges in this point.

Example 1.10 We consider the 2π-periodic extension of the rectangular pulse
function f : [−π, π)→ R given by

f (x) =
{

0 x ∈ (−π, 0),
1 x ∈ (0, π)

and f (−π) = f (0) = 1
2 . The function f − 1

2 is odd and the Fourier series of f

reads

1

2
+

∞∑

n=1

2

(2n− 1)π
sin

(
(2n− 1) · ) .

1.3 Convolution of Periodic Functions

The convolution of two 2π-periodic functions f, g ∈ L1(T) is the function h =
f ∗ g given by

h(x) := (f ∗ g)(x) = 1

2π

∫ π

−π

f (y) g(x − y) dy .

Using the substitution y = x − t , we see

(f ∗ g)(x) = 1

2π

∫ π

−π

f (x − t) g(t) dt = (g ∗ f )(x)

so that the convolution is commutative. It is easy to check that it is also associative
and distributive. Furthermore, the convolution is translation invariant

(f (· − t) ∗ g)(x) = (f ∗ g)(x − t) .

If g is an even function, i.e., g(x) = g(−x) for all x ∈ R, then

(f ∗ g)(x) = 1

2π

∫ π

−π

f (y) g(y − x) dy.

Figure 1.5 shows the convolution of two 2π-periodic functions. The following
theorem shows that the convolution is well defined for certain functions.
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π

0.1

π

1

π

1

−π −π −π

Fig. 1.5 Two 2π-periodic functions f (red) and g (green). Right: The corresponding convolution
f ∗ g (blue)

Theorem 1.11

1. Let f ∈ Lp(T), 1 ≤ p ≤ ∞ and g ∈ L1(T) be given. Then f ∗ g exists almost
everywhere and f ∗ g ∈ Lp(T). Further we have the Young inequality

‖f ∗ g‖Lp(T) ≤ ‖f ‖Lp(T)‖g‖L1(T).

2. Let f ∈ Lp(T) and g ∈ Lq(T), where 1 ≤ p, q ≤ ∞ and 1
p
+ 1

q
= 1. Then

(f ∗ g)(x) exists for every x ∈ T and f ∗ g ∈ C(T). It holds

‖f ∗ g‖C(T)≤ ‖f ‖Lp(T)‖g‖Lq(T).

3. Let f ∈ Lp(T) and g ∈ Lq(T) , where 1
p
+ 1

q
= 1

r
+ 1, 1 ≤ p, q, r ≤ ∞.

Then f ∗ g exists almost everywhere and f ∗ g ∈ Lr(T). Further we have the
generalized Young inequality

‖f ∗ g‖Lr (T) ≤ ‖f ‖Lp(T)‖g‖Lq(T).

Proof

1. Let p ∈ (1,∞) and 1
p
+ 1

q
= 1. Then we obtain by Hölder’s inequality

|(f ∗ g)(x)| ≤ 1

2π

∫ π

−π

|f (y)| |g(x − y)|
︸ ︷︷ ︸
=|g|1/p |g|1/q

dy

≤
( 1

2π

∫ π

−π

|f (y)|p|g(x − y)|dy
)1/p( 1

2π

∫ π

−π

|g(x − y)| dx
)1/q

= ‖g‖1/q
L1(T)

( 1

2π

∫ π

−π

|f (y)|p|g(x − y)|dy
)1/p

.
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Note that both sides of the inequality may be infinite. Using this estimate and
Fubini’s theorem, we get

‖f ∗ g‖pLp(T)
≤ ‖g‖p/qL1(T)

( 1

2π

)2
∫ π

−π

∫ π

−π

|f (y)|p|g(x − y)| dy dx

= ‖g‖p/qL1(T)

( 1

2π

)2
∫ π

−π

|f (y)|p
∫ π

−π

|g(x − y)| dx dy

= ‖g‖1+p/q

L1(T)
‖f ‖pLp(T)

= ‖g‖pL1(T)
‖f ‖pLp(T)

.

The cases p = 1 and p = ∞ are straightforward and left as an exercise.
2. Let f ∈ Lp(T) and g ∈ Lq(T) with 1

p
+ 1

q
= 1 and p > 1 be given. By Hölder’s

inequality it follows

|(f ∗ g)(x)| ≤
( 1

2π

π∫

−π

|f (x − y)|p dy
)1/p( 1

2π

π∫

−π

|g(y)|q dy
)1/q

≤ ‖f ‖Lp(T) ‖g‖Lq(T)

and consequently

|(f ∗ g)(x + t)− (f ∗ g)(x)| ≤ ‖f (· + t)− f ‖Lp(T)‖g‖Lq (T).

Now the second assertion follows, since the translation is continuous in the
Lp(T) norm (see [114, Proposition 8.5]), i.e. ‖f (·+ t)−f ‖Lp(T) → 0 as t → 0.
The case p = 1 is straightforward.

3. Finally, let f ∈ Lp(T) and g ∈ Lq(T) with 1
p
+ 1

q
= 1

r
+ 1 for 1 ≤ p, q, r ≤ ∞

be given. The case r = ∞ is described in Part 2 so that it remains to consider 1 ≤
r < ∞. Then p ≤ r and q ≤ r , since otherwise we would get the contradiction
q < 1 or p < 1. Set s := p

(
1 − 1

q

) = 1 − p
r
∈ [0, 1) and t := r

q
∈ [1,∞).

Define q ′ by 1
q
+ 1

q ′ = 1. Then we obtain by Hölder’s inequality

h(x) := 1

2π

∫ π

−π

|f (x − y)g(y)| dy = 1

2π

∫ π

−π

|f (x − y)|1−s |g(y)| |f (x − y)|s dy

≤
( 1

2π

∫ π

−π

|f (x − y)|(1−s)q |g(y)|q dy
)1/q( 1

2π

∫ π

−π

|f (x − y)|sq ′ dy
)1/q ′

.
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Using that by definition sq ′ = p and q/q ′ = (sq)/p, this implies

hq(x) ≤ 1

2π

∫ π

−π

|f (x − y)|(1−s)q |g(y)|q dy
( 1

2π

∫ π

−π

|f (x − y)|p dy
)q/q ′

= 1

2π

∫ π

−π

|f (x − y)|(1−s)q |g(y)|q dy
( 1

2π

∫ π

−π

|f (x − y)|p dy
)(sq)/p

= 1

2π

∫ π

−π

|f (x − y)|(1−s)q |g(y)|q dy ‖f ‖sqLp(T)

such that

‖h‖qLr (T)
=

( 1

2π

∫ π

−π

|h(x)|qt dx
)q/(qt) =

( 1

2π

∫ π

−π

|hq(x)|t dx
)1/t = ‖hq‖Lt (T)

≤ ‖f ‖sq
Lp(T)

( 1

2π

∫ π

−π

( 1

2π

∫ π

−π

|f (x − y)|(1−s)q |g(y)|q dy
)t

dx
)1/t

and further by (1− s)qt = p and generalized Minkowski’s inequality

‖h‖qLr (T)
≤ ‖f ‖sqLp(T)

1

2π

∫ π

−π

( 1

2π

∫ π

−π

|f (x − y)|(1−s)qt |g(y)|qt dx
)1/t

dy

= ‖f ‖sqLp(T)

1

2π

∫ π

−π

|g(y)|q
( 1

2π

∫ π

−π

|f (x − y)|(1−s)qt dx
)1/t

dy

= ‖f ‖sq
Lp(T)

‖f ‖(1−s)q

L(1−s)qt (T)

1

2π

∫ π

−π

|g(y)|q dy = ‖f ‖q
Lp(T)

‖g‖q
Lq (T)

.

Taking the qth root finishes the proof. Alternatively, the third step can be proved
using the Riesz–Thorin theorem.

The convolution of an L1(T) function and an Lp(T) function with 1 ≤ p < ∞
is in general not defined pointwise as the following example shows.

Example 1.12 We consider the 2π-periodic extension of f : [−π, π) → R given
by

f (y) :=
{
|y|−3/4 y ∈ [−π, π) \ {0} ,
0 y = 0 .

(1.20)

The extension denoted by f is even and belongs to L1(T). The convolution
(f ∗ f )(x) is finite for all x ∈ [−π, π) \ {0}. However, for x = 0, this does
not hold true, since

∫ π

−π

f (y) f (−y) dy =
∫ π

−π

|y|−3/2 dy = ∞ .
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The following lemma describes the convolution property of Fourier series.

Lemma 1.13 For f, g ∈ L1(T) it holds

ck(f ∗ g) = ck(f ) ck(g) , k ∈ Z.

Proof Using Fubini’s theorem, we obtain by the 2π-periodicity of g e−i k · that

ck(f ∗ g) = 1

(2π)2

∫ π

−π

( ∫ π

−π

f (y) g(x − y) dy
)

e−i kx dx

= 1

(2π)2

∫ π

−π

f (y) e−i ky
( ∫ π

−π

g(x − y) e−i k(x−y) dx
)

dy

= 1

(2π)2

∫ π

−π

f (y) e−i ky
( ∫ π

−π

g(t) e−i kt dt
)

dy = ck(f ) ck(g) .

The convolution of functions with certain functions, so-called kernels, is of
particular interest.

Example 1.14 The nth Dirichlet kernel for n ∈ N0 is defined by

Dn(x) :=
n∑

k=−n

eikx , x ∈ R . (1.21)

By Euler’s formula it follows

Dn(x) = 1+ 2
n∑

k=1

cos(kx) .

Obviously, Dn ∈ Tn is real-valued and even. For x ∈ (0, π] and n ∈ N, we can
express

(
sin x

2

)
Dn(x) as telescope sum

(
sin

x

2

)
Dn(x) = sin

x

2
+

n∑

k=1

2 cos(kx) sin
x

2

= sin
x

2
+

n∑

k=1

(
sin

(2k + 1)x

2
− sin

(2k − 1)x

2

)
= sin

(2n+ 1)x

2
.

Thus, the nth Dirichlet kernel can be represented as a fraction

Dn(x) = sin (2n+1)x
2

sin x
2

, x ∈ [−π, π)\{0} , (1.22)



1.3 Convolution of Periodic Functions 21

−π −π
2

π
2

π

5

10

15

x

y

5

1

−5 −5

Fig. 1.6 The Dirichlet kernel D8 (left) and its Fourier coefficients ck(D8) (right)

with Dn(0) = 2n + 1. Figure 1.6 depicts the Dirichlet kernel D8. The Fourier
coefficients of Dn are

ck(Dn) =
{

1 k = −n, . . . , n,

0 |k| > n .

For f ∈ L1(T) with Fourier coefficients ck(f ), k ∈ Z, we obtain by Lemma 1.13
that

f ∗Dn =
n∑

k=−n

ck(f ) eik· = Snf , (1.23)

which is just the nth Fourier partial sum of f . By the following calculations, the
Dirichlet kernel fulfills

‖Dn‖L1(T) =
1

2π

∫ π

−π

|Dn(x)| dx ≥ 4

π2
lnn . (1.24)

Note that ‖Dn‖L1(T) are called Lebesgue constants. Since sin x ≤ x for x ∈ [0, π
2 )

we get by (1.22) that

‖Dn‖L1(T) =
1

π

∫ π

0

| sin((2n+ 1)x/2)|
sin(x/2)

dx ≥ 2

π

∫ π

0

| sin((2n+ 1)x/2)|
x

dx.
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Substituting y = 2n+1
2 x results in

‖Dn‖L1(T) ≥
2

π

∫ (n+ 1
2 )π

0

| sin y|
y

dy

≥ 2

π

n∑

k=1

∫ kπ

(k−1)π

| sin y|
y

dy ≥ 2

π

n∑

k=1

∫ kπ

(k−1)π

| sin y|
kπ

dy

= 4

π2

n∑

k=1

1

k
≥ 4

π2

∫ n+1

1

dx

x
≥ 4

π2 ln n.

The Lebesgue constants fulfill

‖Dn‖L1(T) =
4

π2 ln n+ O(1) , n→∞ .

Example 1.15 The nth Fejér kernel for n ∈ N0 is defined by

Fn := 1

n+ 1

n∑

j=0

Dj ∈ Tn . (1.25)

By (1.22) and (1.25) we obtain Fn(0) = n+ 1 and for x ∈ [−π, π) \ {0}

Fn(x) = 1

n+ 1

n∑

j=0

sin
(
(j + 1

2 )x
)

sin x
2

.

Multiplying the numerator and denominator of each right-hand fraction by 2 sin x
2

and replacing the product of sines in the numerator by the differences cos(jx) −
cos

(
(j + 1)x

)
, we find by cascade summation that Fn can be represented in the

form

Fn(x) = 1

2(n+ 1)

1− cos
(
(n+ 1)x

)

(
sin x

2

)2 = 1

n+ 1

( sin (n+1)x
2

sin x
2

)2
. (1.26)

In contrast to the Dirichlet kernel the Fejér kernel is nonnegative. Figure 1.7 shows
the Fejér kernel F8. The Fourier coefficients of Fn are

ck(Fn) =
{

1− |k|
n+1 k = −n, . . . , n ,

0 |k| > n .
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Fig. 1.7 The Fejér kernel F8 (left) and its Fourier coefficients ck(F8) (right)

Using the convolution property, the convolution f ∗ Fn for arbitrary f ∈ L1(T) is
given by

σnf := f ∗ Fn =
n∑

k=−n

(
1− |k|

n+ 1

)
ck(f ) eik· . (1.27)

Then σnf is called the nth Fejér sum or nth Cesàro sum of f . Further, we have

‖Fn‖L1(T) =
1

2π

∫ π

−π

Fn(x) dx = 1.

Figure 1.8 illustrates the convolutions f ∗ D32 and f ∗ F32 of the 2π-periodic
sawtooth function f .

Example 1.16 The nth de la Vallée Poussin kernel V2n for n ∈ N is defined by

V2n = 1

n

2n−1∑

j=n

Dj = 2 F2n−1 − Fn−1 =
2n∑

k=−2n

ck(V2n) eik·

with the Fourier coefficients

ck(V2n) =

⎧
⎪⎪⎨

⎪⎪⎩

2− |k|
n

k = −2n, . . . ,−(n+ 1), n+ 1, . . . , 2n ,

1 k = −n, . . . , n ,

0 |k| > 2n .

By Theorem 1.11 the convolution of two L1(T) functions is again a function
in L1(T). The space L1(T) forms together with the addition and the convolution
a so-called Banach algebra. Unfortunately, there does not exist an identity element
with respect to ∗, i.e., there is no function g ∈ L1(T) such that f ∗ g = f for all
f ∈ L1(T). As a remedy we can define approximate identities.
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Fig. 1.8 The convolution f ∗D32 of the 2π-periodic sawtooth function f and the Dirichlet kernel
D32 approximates f quite good except at the jump discontinuities (left). The convolution f ∗ F32
of f and the Fejér kernel F32 approximates f not as good as f ∗D32, but it does not oscillate near
the jump discontinuities (right)

A sequence (Kn)n∈N of functions Kn ∈ L1(T) is called an approximate identity
or a summation kernel , if it satisfies the following properties:

1. 1
2π

∫ π

−π Kn(x) dx = 1 for all n ∈ N,

2. ‖Kn‖L1(T) = 1
2π

∫ π

−π
|Kn(x)| dx ≤ C <∞ for all n ∈ N,

3. limn→∞
( ∫ −δ

−π
+ ∫ π

δ

)|Kn(x)| dx = 0 for each 0 < δ < π .

Theorem 1.17 For an approximate identity (Kn)n∈N it holds

lim
n→∞‖Kn ∗ f − f ‖C(T) = 0

for all f ∈ C(T).

Proof Since a continuous function is uniformly continuous on a compact interval,
for all ε > 0 there exists a number δ > 0 so that for all |u| < δ

‖f (· − u)− f ‖C(T) < ε . (1.28)

Using the first property of an approximate identity, we obtain

‖Kn ∗ f − f ‖C(T) = sup
x∈T

∣
∣ 1

2π

∫ π

−π

f (x − u)Kn(u) du− f (x)
∣
∣

= sup
x∈T

∣
∣ 1

2π

∫ π

−π

(
f (x − u)− f (x)

)
Kn(u) du|

≤ 1

2π
sup
x∈T

∫ π

−π

|f (x − u)− f (x)| |Kn(u)| du

= 1

2π
sup
x∈T

( ∫ −δ

−π

+
∫ δ

−δ

+
∫ π

δ

)
|f (x − u)− f (x)| |Kn(u)| du .
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By (1.28) the right-hand side can be estimated as

ε

2π

∫ δ

−δ

|Kn(u)| du+ 1

2π
sup
x∈T

( ∫ −δ

−π

+
∫ π

δ

)
|f (x − u)− f (x)| |Kn(u)| du .

By the properties 2 and 3 of the reproducing kernel Kn, we obtain for sufficiently
large n ∈ N that

‖Kn ∗ f − f ‖C(T) ≤ ε C + 1

π
‖f ‖C(T) ε.

Since ε > 0 can be chosen arbitrarily small, this yields the assertion.

Example 1.18 The sequence (Dn)n∈N of Dirichlet kernels defined in Example 1.14
is not an approximate identity, since ‖Dn‖L1(T) is not uniformly bounded for all
n ∈ N by (1.24). Indeed we will see in the next section that Snf = Dn ∗ f does in
general not converge uniformly to f ∈ C(T) for n→∞. A general remedy in such
cases consists in considering the Cesàro mean as shown in the next example.

Example 1.19 The sequence (Fn)n∈N of Fejér kernels defined in Example 1.15
possesses by definition the first two properties of an approximate identity and also
fulfills the third one by (1.26) and

( ∫ −δ

−π

+
∫ π

δ

)
Fn(x) dx = 2

∫ π

δ

Fn(x) dx

= 2

n+ 1

∫ π

δ

( sin((n+ 1)x/2)

sin(x/2)

)2
dx

≤ 2

n+ 1

∫ π

δ

π2

x2 dx = 2π

n+ 1

(π

δ
− 1

)
.

The right-hand side tends to zero as n → ∞ so that (Fn)n∈N is an approximate
identity.

It is not hard to verify that the sequence (V2n)n∈N of de la Vallée Poussin kernels
defined in Example 1.16 is also an approximate identity.

From Theorem 1.17 and Example 1.19 it follows immediately

Theorem 1.20 (Approximation Theorem of Fejér) If f ∈ C(T), then the Fejér
sums σnf converge uniformly to f as n → ∞. If m ≤ f (x) ≤ M for all x ∈ T

with m, M ∈ R, then m ≤ (σnf )(x) ≤ M for all n ∈ N.

Proof Since (Fn)n∈N is an approximate identity, the Fejér sums σnf converge
uniformly to f as n→∞. If a real-valued function f : T→ R fulfills the estimate
m ≤ f (x) ≤ M for all x ∈ T with certain constants m, M ∈ R, then

(σnf )(x) = 1

2π

∫ π

−π

Fn(y) f (x − y) dy
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fulfills also m ≤ (σnf )(x) ≤ M for all x ∈ T, since Fn(y) ≥ 0 and
1

2π

∫ π

−π
Fn(y) dy = c0(Fn) = 1.

Theorem 1.20 of Fejér has many important consequences such as

Theorem 1.21 (Approximation Theorem of Weierstrass) If f ∈ C(T), then for
each ε > 0 there exists a trigonometric polynomial p = σnf ∈ Tn of sufficiently
large degree n such that ‖f − p‖C(T) < ε. Further this trigonometric polynomial
p is a weighted Fourier partial sum given by (1.27).

Finally we present two important inequalities for any trigonometric polynomial
p ∈ Tn with fixed n ∈ N. The inequality of S.M. Nikolsky compares different
norms of any trigonometric polynomial p ∈ Tn. The inequality of S.N. Bernstein
estimates the norm of the derivative p′ by the norm of a trigonometric polynomial
p ∈ Tn.

Theorem 1.22 Assume that 1 ≤ q ≤ r ≤ ∞, where q is finite and s := �q/2�.
Then for all p ∈ Tn, it holds the Nikolsky inequality

‖p‖Lr (T) ≤ (2n s + 1)1/q−1/r ‖p‖Lq (T) (1.29)

and the Bernstein inequality

‖p′‖Lr (T) ≤ n ‖p‖Lr (T) . (1.30)

Proof

1. Setting m := n s, we have ps ∈ Tm and hence ps ∗Dm = ps by (1.23). Using
the Cauchy–Schwarz inequality, we can estimate

|p(x)s | ≤ 1

2π

∫ π

−π

|p(t)|s |Dm(x − t)| dt

≤ ‖p‖s−q/2
C(T)

1

2π

∫ π

−π

|p(t)|q/2 |Dm(x − t)| dt

≤ ‖p‖s−q/2
C(T) ‖ |p|q/2 ‖L2(T) ‖Dm‖L2(T) .

Since

‖ |p|q/2 ‖L2(T) = ‖p‖q/2
Lq(T)

, ‖Dm‖L2(T) = (2m+ 1)1/2 ,

we obtain

‖p‖sC(T) ≤ (2m+ 1)1/2 ‖p‖s−q/2
C(T) ‖p‖q/2

Lq (T)
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and hence the Nikolsky inequality (1.29) for r =∞, i.e.,

‖p‖L∞(T) = ‖p‖C(T) ≤ (2m+ 1)1/q ‖p‖Lq (T) . (1.31)

For finite r > q , we use the inequality

‖p‖Lr (T) =
( 1

2π

∫ π

−π

|p(t)|r−q |p(t)|q dt
)1/r

≤ ‖p‖1−q/r

C(T)

( 1

2π

∫ π

−π

|p(t)|q dt
)1/r = ‖p‖1−q/r

C(T) ‖p‖q/rLq (T)

Then from (1.31) it follows the Nikolsky inequality (1.29).
2. For simplicity, we show the Bernstein inequality (1.30) only for r = 2. An

arbitrary trigonometric polynomial p ∈ Tn has the form

p(x) =
n∑

k=−n

ck ei k x

with certain coefficients ck = ck(p) ∈ C such that

p′(x) =
n∑

k=−n

i k ck ei k x .

Thus by the Parseval equality (1.16) we obtain

‖p‖2
L2(T)

=
n∑

k=−n

|ck|2 , ‖p′‖2
L2(T)

=
n∑

k=−n

k2 |ck|2 ≤ n2 ‖p‖2
L2(T)

.

For a proof in the general case 1 ≤ r ≤ ∞ we refer to [85, pp. 97–102]. The
Bernstein inequality is best possible, since we have equality in (1.30) for p(x) =
ei n x .

1.4 Pointwise and Uniform Convergence of Fourier Series

In Sect. 1.3, it was shown that a Fourier series of an arbitrary function f ∈ L2(T)

converges in the norm of L2(T), i.e.,

lim
n→∞‖Snf − f ‖L2(T) = lim

n→∞‖f ∗Dn − f ‖L2(T) = 0 .
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In general, the pointwise or almost everywhere convergence of a sequence (fn)n∈N
of functions fn ∈ L2(T) does not result the convergence in L2(T).

Example 1.23 Let fn : T→ R be the 2π-extension of

fn(x) :=
{
n x ∈ (0, 1/n) ,
0 x ∈ {0} ∪ [1/n, 2π) .

Obviously, we have limn→∞ fn(x) = 0 for all x ∈ [0, 2π]. But it holds for n→∞,

‖fn‖2
L2(T)

= 1

2π

∫ 1/n

0
n2 dx = n

2π
→∞ .

As known (see, e.g., [229, pp. 52–53]), if a sequence (fn)n∈N, where fn ∈ Lp(T)

with 1 ≤ p ≤ ∞, converges to f ∈ Lp(T) in the norm of Lp(T), then there exists
a subsequence

(
fnk

)
k∈N such that for almost all x ∈ [0, 2π],

lim
k→∞ fnk (x) = f (x) .

In 1966, L. Carleson proved the fundamental result that the Fourier series of an
arbitrary function f ∈ Lp(T), 1 < p < ∞, converges almost everywhere. For a
proof, see, e.g., [146, pp. 232–233]. Kolmogoroff [203] showed that an analog result
for f ∈ L1(T) is false.

A natural question is whether the Fourier series of every function f ∈ C(T)

converges uniformly or at least pointwise to f . From Carleson’s result it follows
that the Fourier series of f ∈ C(T) converges almost everywhere, i.e., in all points
of [0, 2π] except for a set of Lebesgue measure zero. In fact, many mathematicians
like Riemann, Weierstrass, and Dedekind conjectured over long time that the Fourier
series of a function f ∈ C(T) converges pointwise to f . But one has neither
pointwise nor uniform convergence of the Fourier series of a function f ∈ C(T) in
general. A concrete counterexample was constructed by Du Bois–Reymond in 1876
and was a quite remarkable surprise. It was shown that there exists a real-valued
function f ∈ C(T) such that

lim
n→∞ sup |Snf (0)| = ∞.

To see that pointwise convergence fails in general we need the following principle
of uniform boundedness of sequences of linear bounded operators, see, e.g., [374,
Korollar 2.4].

Theorem 1.24 (Theorem of Banach–Steinhaus) Let X be a Banach space with
a dense subset D ⊂ X and let Y be a normed space. Further let Tn : X → Y for
n ∈ N, and T : X→ Y be linear bounded operators. Then it holds

Tf = lim
n→∞ Tnf (1.32)
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for all f ∈ X if and only if

1. ‖Tn‖X→Y ≤ const <∞ for all n ∈ N, and
2. limn→∞ Tnp = Tp for all p ∈ D.

Theorem 1.25 There exists a function f ∈ C(T) whose Fourier series does not
converge pointwise.

Proof Applying Theorem 1.24 of Banach–Steinhaus, we choose X = C(T), Y =
C, and D = ⋃∞

n=0 Tn. By the approximation Theorem 1.21 of Weierstrass, the set
D of all trigonometric polynomials is dense in C(T). Then we consider the linear
bounded functionals Tnf := (Snf )(0) for n ∈ N and Tf := f (0) for f ∈ C(T).
Note that instead of 0 we can choose any fixed x0 ∈ T.

We want to show that the norms ‖Tn‖C(T)→C are not uniformly bounded with
respect to n. More precisely, we will deduce ‖Tn‖C(T)→C = ‖Dn‖L1(T) which are
not uniformly bounded by (1.24). Then by the Banach–Steinhaus Theorem 1.24
there exists a function f ∈ C(T) whose Fourier series does not converge in the
point 0.

Let us determine the norm ‖Tn‖C(T)→C. From

|Tnf | = |(Snf )(0)| = |(Dn ∗ f )(0)| = | 1

2π

∫ π

−π

Dn(x) f (x) dx| ≤ ‖f ‖C(T)‖Dn‖L1(T)

for arbitrary f ∈ C(T) it follows ‖Tn‖C(T)→C ≤ ‖Dn‖L1(T). To verify the opposite
direction consider for an arbitrary ε > 0 the function

fε := Dn

|Dn| + ε
∈ C(T),

which has C(T) norm smaller than 1. Then

|Tnfε | = (Dn ∗ fε)(0) = 1

2π

∫ π

−π

|Dn(x)|2
|Dn(x)| + ε

dx

≥ 1

2π

∫ π

−π

|Dn(x)|2 − ε2

|Dn(x)| + ε
dx

≥
( 1

2π

∫ π

−π

|Dn(x)| dx − ε
)
‖fε‖C(T)

implies ‖Tn‖C(T)→C ≥ ‖Dn‖L1(T) − ε. For ε → 0 we obtain the assertion.

Remark 1.26 Theorem 1.25 indicates that there exists a function f ∈ C(T)

such that
(
Snf

)
n∈N0

is not convergent in C(T). Analogously, one can show by
Theorem 1.24 of Banach–Steinhaus that there exists a function f ∈ L1(T) such
that

(
Snf

)
n∈N0

is not convergent in L1(T) (cf. [221, p. 52]). Later we will see that
the Fourier series of any f ∈ L1(T) converges to f in the weak sense of distribution
theory (see Lemma 4.56 or [125, pp. 336–337]).
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1.4.1 Pointwise Convergence

In the following we will see that for frequently appearing classes of functions
stronger convergence results can be proved. A function f : T → C is called
piecewise continuously differentiable, if there exist finitely many points 0 ≤ x0 <

x1 < . . . < xn−1 < 2π such that f is continuously differentiable on each
subinterval (xj , xj+1), j = 0, . . . , n − 1 with xn = x0 + 2π , and the left and
right limits f (xj ± 0), f ′(xj ± 0) for j = 0, . . . , n exist and are finite. In the
case f (xj − 0) �= f (xj + 0), the piecewise continuously differentiable function
f : T→ C has a jump discontinuity at xj with jump height |f (xj+0)−f (xj−0)|.
Simple examples of piecewise continuously differentiable functions f : T → C

are the sawtooth function and the rectangular pulse function (see Examples 1.9
and 1.10). This definition is illustrated in Fig. 1.9.

The next convergence statements will use the following result of Riemann–
Lebesgue.

Lemma 1.27 (Lemma of Riemann–Lebesgue) Let f ∈ L1
(
(a, b)

)
with −∞ ≤

a < b ≤ ∞ be given. Then the following relations hold:

lim|v|→∞

∫ b

a

f (x) e−ixv dx = 0 ,

lim|v|→∞

∫ b

a

f (x) sin(xv) dx = 0 , lim|v|→∞

∫ b

a

f (x) cos(xv) dx = 0 .

−π π

3

)

)

−π π

−1

1

)

Fig. 1.9 A piecewise continuously differentiable function (left) and a function that is not
piecewise continuously differentiable (right)
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Especially, for f ∈ L1(T) we have

lim|k|→∞ ck(f ) = 1

2π
lim|k|→∞

∫ π

−π

f (x) e−ixk dx = 0 .

Proof We prove only

lim|v|→∞

∫ b

a

f (x) p(vx) dx = 0 (1.33)

for p(t) = e−it . The other cases p(t) = sin t and p(t) = cos t can be shown
analogously.

For the characteristic function χ[α,β] of a finite interval [α, β] ⊆ (a, b) it follows
for v �= 0 that

∣
∣
∫ b

a

χ[α,β](x) e−ixv dx
∣
∣ = ∣

∣− 1

iv
(e−ivβ − e−ivα)

∣
∣ ≤ 2

|v| .

This becomes arbitrarily small as |v| → ∞ so that characteristic functions and also
all linear combinations of characteristic functions (i.e., step functions) fulfill the
assertion.

The set of all step functions is dense in L1
(
(a, b)

)
, i.e., for any ε > 0 and f ∈

L1
(
(a, b)

)
there exists a step function ϕ such that

‖f − ϕ‖L1((a,b))
=

∫ b

a

|f (x)− ϕ(x)| dx < ε.

By

∣
∣
∫ b

a

f (x) e−ixv dx
∣
∣ ≤ ∣

∣
∫ b

a

(f (x)− ϕ(x)) e−ixv dx
∣
∣+ ∣

∣
∫ b

a

ϕ(x) e−ixv dx
∣
∣

≤ ε + ∣
∣
∫ b

a

ϕ(x) e−ixv dx
∣
∣

we obtain the assertion.

Next we formulate a localization principle, which states that the convergence
behavior of a Fourier series of a function f ∈ L1(T) at a point x0 depends merely
on the values of f in some arbitrarily small neighborhood—despite the fact that the
Fourier coefficients are determined by all function values on T.

Theorem 1.28 (Riemann’s Localization Principle) Let f ∈ L1(T) and x0 ∈ R

be given. Then we have

lim
n→∞(Snf )(x0) = c
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for some c ∈ R if and only if for some δ ∈ (0, π)

lim
n→∞

∫ δ

0

(
f (x0 − t)+ f (x0 + t)− 2 c

)
Dn(t) dt = 0 .

Proof Since Dn ∈ C(T) is even, we get

(Snf )(x0) = 1

2π

(∫ 0

−π

+
∫ π

0

)
f (x0 − t) Dn(t) dt

= 1

2π

∫ π

0

(
f (x0 − t)+ f (x0 + t)

)
Dn(t) dt .

Using π = ∫ π

0 Dn(t) dt , we conclude further

(Snf )(x0)− c = 1

2π

∫ π

0

(
f (x0 − t)+ f (x0 + t)− 2 c

)
Dn(t) dt .

By Example 1.14, we have Dn(t) = sin
(
(n + 1

2 )t
)
/ sin t

2 for t ∈ (0, π]. By
Lemma 1.27 of Riemann–Lebesgue we obtain

lim
n→∞

∫ π

δ

f (x0 − t)+ f (x0 + t)− 2 c

sin t
2

sin
(
(n+ 1

2
) t

)
dt = 0

and hence

lim
n→∞(Snf )(x0)− c = lim

n→∞
1

2π

∫ δ

0

(
f (x0 − t)+ f (x0 + t)− 2 c

)
Dn(t) dt ,

if one of the limits exists.

For a complete proof of the main result on the convergence of Fourier series, we
need some additional preliminaries. Here we follow mainly the ideas of [167, p. 137
and pp. 144–148].

Let a compact interval [a, b] ⊂ R with −∞ < a < b < ∞ be given. Then a
function ϕ : [a, b] → C is called a function of bounded variation, if

V b
a (ϕ) := sup

n∑

j=1

|ϕ(xj )− ϕ(xj−1)| <∞ , (1.34)

where the supremum is taken over all partitions a = x0 < x1 < . . . < xn = b of
[a, b]. The nonnegative number V b

a (ϕ) is the total variation of ϕ on [a, b]. We set
V a
a (ϕ) := 0. For instance, each monotone function ϕ : [a, b] → R is a function of
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bounded variation with V b
a (ϕ) = |ϕ(b)− ϕ(a)|. Because

|ϕ(x)| ≤ |ϕ(a)| + |ϕ(x)− ϕ(a)| ≤ |ϕ(a)| + V x
a (ϕ) ≤ |ϕ(a)| + V b

a (ϕ) <∞

for all x ∈ [a, b], each function of bounded variation is bounded on [a, b].
Lemma 1.29 Let ϕ : [a, b] → C and ψ : [a, b] → C be functions of bounded
variation. Then for arbitrary α ∈ C and c ∈ [a, b] it holds

V b
a (α ϕ) = |α|V b

a (ϕ) ,

V b
a (ϕ + ψ) ≤ V b

a (ϕ)+ V b
a (ψ) ,

V b
a (ϕ) = V c

a (ϕ)+ V b
c (ϕ) , (1.35)

max{V b
a (Re ϕ), V b

a (Imϕ)} ≤ V b
a (ϕ) ≤ V b

a (Re ϕ)+ V b
a (Imϕ) . (1.36)

The simple proof is omitted here. For details, see, e.g., [344, pp. 159–162].

Theorem 1.30 (Jordan’s Decomposition Theorem) Let ϕ : [a, b] → C be a
given function of bounded variation. Then there exist four nondecreasing functions
ϕj : [a, b] → R, j = 1, . . . , 4, such that ϕ possesses the Jordan decomposition

ϕ = (ϕ1 − ϕ2)+ i (ϕ3 − ϕ4) ,

where Re ϕ = ϕ1− ϕ2 and Imϕ = ϕ3− ϕ4 are functions of bounded variation. If ϕ
is continuous, then ϕj , j = 1, . . . , 4, are continuous too.

Proof From (1.36) it follows that Re ϕ and Imϕ are functions of bounded variation.
We decompose Re ϕ. Obviously,

ϕ1(x) := V x
a (Re ϕ) , x ∈ [a, b] ,

is nondecreasing by (1.35). Then

ϕ2(x) := ϕ1(x)− Re ϕ(x) , x ∈ [a, b] ,

is nondecreasing too, since for a ≤ x < y ≤ b it holds

∣
∣ Re ϕ(y)− Re ϕ(x)

∣
∣ ≤ V

y
x (Re ϕ) = ϕ1(y)− ϕ1(x)

and hence

ϕ2(y)− ϕ2(x) =
(
ϕ1(y)− ϕ1(x)

)− (
Re ϕ(y)− Re ϕ(x)

) ≥ 0 .

Thus we obtain Re ϕ = ϕ1 − ϕ2. Analogously, we can decompose Imϕ = ϕ3 − ϕ4.
Using ϕ = Re ϕ + i Imϕ, we receive the above Jordan decomposition of ϕ. If ϕ is
continuous at x ∈ [a, b], then, by definition, each ϕj is continuous at x.
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A 2π-periodic function f : T → C with V 2π
0 (f ) < ∞ is called a 2π-

periodic function of bounded variation. By (1.35) a 2π-periodic function of bounded
variation has the property V b

a (f ) <∞ for each compact interval [a, b] ⊂ R.

Example 1.31 Let f : T → C be a piecewise continuously differentiable function
with jump discontinuities at distinct points xj ∈ [0, 2π), j = 1, . . . , n. Assume
that it holds f (x) = 1

2

(
f (x + 0) + f (x − 0)

)
for all x ∈ [0, 2π). Then f is a

2π-periodic function of bounded variation, since

V 2π
0 (f ) =

n∑

j=1

|f (xj + 0)− f (xj − 0)| +
∫ 2π

0
|f ′(t)| dt <∞ .

The functions given in Examples 1.5, 1.8, 1.9, and 1.10 are 2π-periodic functions
of bounded variation.

Lemma 1.32 There exists a constant c0 > 0 such that for all α, β ∈ [0, π] and all
n ∈ N it holds

∣
∣
∫ β

α

Dn(t) dt
∣
∣ ≤ c0 . (1.37)

Proof We introduce the function h ∈ C[0, π] by

h(t) := 1

sin t
2

− 2

t
, t ∈ (0, π] ,

and h(0) := 0. This continuous function h is increasing and we have 0 ≤ h(t) ≤
h(π) < 1

2 for all t ∈ [0, π]. Using (1.22), for arbitrary α, β ∈ [0, π] we estimate

∣
∣
∫ β

α

Dn(t) dt
∣
∣ ≤ ∣

∣
∫ β

α

h(t) sin
(
n+ 1

2

)
t dt

∣
∣+ 2

∣
∣
∫ β

α

sin
(
n+ 1

2

)
t

t
dt

∣
∣

≤ π

2
+ 2

∣
∣
∫ β

α

sin
(
n+ 1

2

)
t

t
dt

∣
∣ .

By the sine integral

Si(x) :=
∫ x

0

sin t

t
dt , x ∈ R ,

it holds for all γ ≥ 0 (see Lemma 1.41)

∣∣
∫ γ

0

sin x

x
dx

∣∣ ≤ Si(π) < 2 .
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From

∫ β

α

sin
(
n+ 1

2

)
t

t
dt =

∫ (n+ 1
2 ) β

0

sin x

x
dx −

∫ (n+ 1
2 ) α

0

sin x

x
dx

it follows that

∣∣
∫ β

α

sin
(
n+ 1

2

)
t

t
dt

∣∣ ≤ 4 ,

i.e., (1.37) is fulfilled for the constant c0 = π
2 + 8.

Lemma 1.33 Assume that 0 < a < b < 2π , δ > 0 and b − a + 2δ < 2π be
given. Let ϕ : [a− δ−π, b+ δ+π] → R be nondecreasing, piecewise continuous
function which is continuous on [a − δ, b + δ].

Then for each ε > 0 there exists an index n0(ε) such that for all n > n0(ε) and
all x ∈ [a, b]

∣
∣
∫ π

0

(
ϕ(x + t)+ ϕ(x − t)− 2 ϕ(x)

)
Dn(t) dt

∣
∣ < ε .

Proof

1. For (x, t) ∈ [a − δ, b + δ] × [0, π] we introduce the functions

g(x, t) := ϕ(x + t)+ ϕ(x − t)− 2 ϕ(x) ,

h1(x, t) := ϕ(x + t)− ϕ(x) ≥ 0 ,

h2(x, t) := ϕ(x)− ϕ(x − t) ≥ 0

such that g = h1 − h2. For fixed x ∈ [a, b], both functions hj (x, ·), j = 1, 2,
are nondecreasing on [0, π]. Since hj (·, π), j = 1, 2, are continuous on [a, b],
there exists a constant c1 > 0 such that for all (x, t) ∈ [a, b] × [0, π]

∣
∣hj (x, t)

∣
∣ ≤ c1 . (1.38)

Since ϕ is continuous on the compact interval [a − δ, b + δ], the function ϕ is
uniformly continuous on [a−δ, b+δ], i.e., for each ε > 0 there exists β ∈ (0, δ)

such that for all y, z ∈ [a − δ, b + δ] with |y − z| ≤ β we have

∣∣ϕ(y)− ϕ(z)
∣∣ <

ε

4 c0
.

By the proof of Lemma 1.32 we can choose c0 = π
2 + 8. Hence we obtain for all

(x, t) ∈ [a, b] × [0, β] and j = 1, 2

0 ≤ hj (x, t) <
ε

4 c0
. (1.39)
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2. Now we split the integral

∫ π

0
g(x, t)Dn(t) dt =

∫ β

0
g(x, t)Dn(t) dt +

∫ π

β

g(x, t)Dn(t) dt (1.40)

into a sum of two integrals, where the first integral can be written in the form

∫ β

0
g(x, t)Dn(t) dt =

∫ β

0
h1(x, t)Dn(t) dt−

∫ β

0
h2(x, t)Dn(t) dt . (1.41)

Observing that hj (x, ·), j = 1, 2, are nondecreasing for fixed x ∈ [a, b], we
obtain by the second mean value theorem for integrals, see, e.g., [344, pp. 328–
329], that for certain αj (x) ∈ [0, β]
∫ β

0
hj (x, t)Dn(t) dt = hj (x, 0)

∫ αj (x)

0
Dn(t) dt + hj (x, β)

∫ β

αj (x)

Dn(t) dt

= 0+ hj (x, β)

∫ β

αj (x)

Dn(t) dt , j = 1, 2 .

By (1.37) and (1.39) this integral can be estimated for all x ∈ [a, b] by

∣∣
∫ β

0
hj (x, t)Dn(t) dt

∣∣ ≤ ε

4 c0
c0 = ε

4

such that by (1.41) for all x ∈ [a, b]
∣
∣
∫ β

0
g(x, t)Dn(t) dt

∣
∣ ≤ ε

4
+ ε

4
= ε

2
. (1.42)

3. Next we consider the second integral in (1.40) which can be written as

∫ π

β

g(x, t)Dn(t) dt =
∫ π

β

h1(x, t)Dn(t) dt −
∫ π

β

h2(x, t)Dn(t) dt .

(1.43)

Since hj (x, ·), j = 1, 2, are nondecreasing for fixed x ∈ [a, b], the second mean
value theorem for integrals provides the existence of certain γj (x) ∈ [β, π] such
that

∫ π

β

hj (x, t)Dn(t) dt = hj (x, β)

∫ γj (x)

β

Dn(t) dt + hj (x, π)

∫ π

γj (x)

Dn(t) dt .

(1.44)
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From (1.22) it follows

∫ γj (x)

β

Dn(t) dt =
∫ γj (x)

β

1

sin t
2

sin
(
n+ 1

2

)
t dt .

Since
(

sin t
2

)−1 is monotone on [β, γj (x)], again by the second mean value
theorem for integrals there exist ηj (x) ∈ [β, γj (x)] with

∫ γj (x)

β

Dn(t) dt = 1

sin β
2

∫ ηj (x)

β

sin
(
n+ 1

2

)
t dt

+ 1

sin
γj (x)

2

∫ γj (x)

ηj (x)

sin
(
n+ 1

2

)
t dt . (1.45)

Now we estimate both integrals in (1.45) such that

∣∣
∫ ηj (x)

β

sin
(
n+ 1

2

)
t dt

∣∣ ≤ 4

2n+ 1
,

∣
∣
∫ γj (x)

ηj (x)

sin
(
n+ 1

2

)
t dt

∣
∣ ≤ 4

2n+ 1
.

Applying the above inequalities, we see by (1.45) for all x ∈ [a, b] and j = 1, 2
that

∣
∣
∫ γj (x)

β

Dn(t) dt
∣
∣ ≤ 8

(2n+ 1) sin β
2

. (1.46)

Analogously, one can show for all x ∈ [a, b] and j = 1, 2 that

∣∣
∫ π

γj (x)

Dn(t) dt
∣∣ ≤ 8

(2n+ 1) sin β
2

. (1.47)

Using (1.38) and (1.44), the inequalities (1.46) and (1.47) yield for all x ∈ [a, b]
and j = 1, 2,

∣
∣
∫ π

β

hj (x, t)Dn(t) dt
∣
∣ ≤ 16 c1

(2n+ 1) sin β
2

and hence by (1.43)

∣
∣
∫ π

β

g(x, t)Dn(t) dt
∣
∣ ≤ 32 c1

(2n+ 1) sin β
2

.
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Therefore for the chosen ε > 0 there exists an index n0(ε) ∈ N such that for all
n > n0(ε) and all x ∈ [a, b],

∣
∣
∫ π

β

g(x, t)Dn(t) dt
∣
∣ <

ε

2
. (1.48)

Together with (1.40), (1.42), and (1.48) it follows for all n > n0(ε) and all x ∈
[a, b],

∣∣
∫ π

0
g(x, t)Dn(t) dt

∣∣ < ε .

This completes the proof.

Based on Riemann’s localization principle and these preliminaries, we can prove
the following important theorem concerning pointwise convergence of the Fourier
series of a piecewise continuously differentiable function f : T→ C.

Theorem 1.34 (Convergence Theorem of Dirichlet–Jordan) Let f : T → C

be a piecewise continuously differentiable function. Then at every point x0 ∈ R, the
Fourier series of f converges as

lim
n→∞(Snf )(x0) = 1

2

(
f (x0 + 0)+ f (x0 − 0)

)
.

In particular, if f is continuous at x0, then

lim
n→∞(Snf )(x0) = f (x0).

Further the Fourier series of f converges uniformly on any closed interval [a, b] ⊂
(0, 2π), if f is continuous on [a − δ, b + δ] with certain δ > 0. Especially, if
f ∈ C(T) is piecewise continuously differentiable, then the Fourier series of f
converges uniformly to f on R.

Proof

1. By assumption there exists δ ∈ (0, π), such that f is continuously differentiable
in [x0 − δ, x0 + δ]\{x0}. Let

M := max
t∈[−π, π]{|f

′(t + 0)|, |f ′(t − 0)|} .

By the mean value theorem we conclude

|f (x0 + t)− f (x0 + 0)| ≤ t M , |f (x0 − t)− f (x0 − 0)| ≤ t M
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for all t ∈ (0, δ]. This implies

∫ δ

0

|f (x0 − t)+ f (x0 + t)− f (x0 + 0)− f (x0 − 0)|
t

dt ≤ 2 Mδ <∞ .

By t
π
≤ sin t

2 for t ∈ [0, π] the function

h(t) := f (x0 − t)+ f (x0 + t)− f (x0 + 0)− f (x0 − 0)

t

t

sin t
2

, t ∈ (0, δ],

is absolutely integrable on [0, δ]. By Lemma 1.27 of Riemann–Lebesgue we get

lim
n→∞

∫ δ

0
h(t) sin

(
(n+ 1

2
) t

)
dt = 0 .

Using Riemann’s localization principle, cf. Theorem 1.28, we obtain the asser-
tion with 2 c = f (x0 + 0)+ f (x0 − 0).

2. By assumption and Example 1.31, the given function f is a 2π-periodic function
of bounded variation. Then it follows that V b+δ+π

a−δ−π (f ) < ∞. By the Jordan
decomposition Theorem 1.30 the function f restricted on [a− δ−π, b+ δ+π]
can be represented in the form

f = (ϕ1 − ϕ2)+ i (ϕ3 − ϕ4) ,

where ϕj : [a − δ − π, b + δ + π] → R, j = 1, . . . , 4, are nondecreasing and
piecewise continuous. Since f is continuous on [a, b], each ϕj , j = 1, . . . , 4, is
continuous on [a, b] too. Applying Lemma 1.33, we obtain that for each ε > 0
there exists an index N(ε) ∈ N such that for n > N(ε) and all x ∈ [a, b],

|(Snf )(x)− f (x)| = 1

2π

∣
∣
∫ π

0

(
f (x + t)+ f (x − t)− 2 f (x)

)
Dn(t) dt

∣
∣ < ε .

This completes the proof.

Example 1.35 The functions f : T→ C given in Examples 1.5, 1.8, 1.9, and 1.10
are piecewise continuously differentiable. If x0 ∈ R is a jump discontinuity of f ,
then the value f (x0) is equal to the mean 1

2

(
f (x0+0)+f (x0−0)

)
of right and left

limits. By the convergence Theorem 1.34 of Dirichlet–Jordan, the Fourier series of
f converges to f in each point of R. On each closed interval, which does not contain
any discontinuity of f , the Fourier series converges uniformly. Since the piecewise
continuously differentiable function of Example 1.8 is contained in C(T), its Fourier
series converges uniformly on R.

Remark 1.36 The convergence Theorem 1.34 of Dirichlet–Jordan is also valid for
each 2π-periodic function f : T → C of bounded variation (see, e.g., [344,
pp. 546–547]).
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1.4.2 Uniform Convergence

A useful criterion for uniform convergence of the Fourier series of a function f ∈
C(T) is the following:

Theorem 1.37 If f ∈ C(T) fulfills the condition

∑

k∈Z
|ck(f )| <∞ , (1.49)

then the Fourier series of f converges uniformly to f . Each function f ∈ C1(T)

has the property (1.49).

Proof By the assumption (1.49) and

|ck(f ) ei k·| = |ck(f )| ,

the uniform convergence of the Fourier series follows from the Weierstrass criterion
of uniform convergence. If g ∈ C(T) is the sum of the Fourier series of f , then we
obtain for all k ∈ Z

ck(g) = 〈g, ei k·〉 =
∑

n∈Z
cn(f ) 〈ei n·, ei k·〉 = ck(f )

such that g = f by Theorem 1.1.
Assume that f ∈ C1(T). By the convergence Theorem 1.34 of Dirichlet–Jordan

we know already that the Fourier series of f converges uniformly to f . This could
be also seen as follows: By the differentiation property of the Fourier coefficients
in Lemma 1.6, we have ck(f ) = (i k)−1 ck(f

′) for all k �= 0 and c0(f
′) = 0. By

Parseval equality of f ′ ∈ L2(T) it follows

‖f ′‖2 =
∑

k∈Z
|ck(f ′)|2 <∞ .

Using Cauchy–Schwarz inequality, we get finally

∑

k∈Z
|ck(f )| = |c0(f )| +

∑

k �=0

1

|k| |ck(f
′)|

≤ |c0(f )| +
(∑

k �=0

1

k2

)1/2 (∑

k �=0

|ck(f ′)|2
)1/2

<∞.

This completes the proof.
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Remark 1.38 If f ∈ C1(T), then by the mean value theorem it follows that

|f (x + h)− f (x)| ≤ |h| max
t∈T

|f ′(t)|

for all x, x + h ∈ T, that means f is Lipschitz continuous on T. More generally, a
function f ∈ C(T) is called Hölder continuous of order α ∈ (0, 1] on T, if

|f (x + h)− f (x)| ≤ c |h|α

for all x, x+ h ∈ T with certain constant c ≥ 0 which depends on f . One can show
that the Fourier series of a function f ∈ C(T) which is Hölder continuous of order
α ∈ (0, 1] converges uniformly to f and it holds

‖Snf − f ‖C(T) = O(n−α logn) , n→∞

(see [392, Vol. I, p. 64]).

In practice, the following convergence result of Fourier series for a sufficiently
smooth, 2π-periodic function is very useful.

Theorem 1.39 (Bernstein) Let f ∈ Cr(T) with fixed r ∈ N be given. Then the
Fourier coefficients ck(f ) have the form

ck(f ) = 1

(i k)r
ck(f

(r)) , k ∈ Z \ {0} . (1.50)

Further the approximation error f − Snf can be estimated for all n ∈ N \ {1} by

‖f − Snf ‖C(T) ≤ c ‖f (r)‖C(T)

lnn

nr
, (1.51)

where the constant c > 0 is independent of f and n.

Proof

1. Repeated integration by parts provides (1.50). By Lemma 1.27 of Riemann–
Lebesgue we know

lim|k|→∞ ck(f
(r)) = 0

such that

lim|k|→∞ kr ck(f ) = 0 .
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2. The nth partial sum of the Fourier series of f (r) ∈ C(T) can be written in the
form

(
Snf

(r)
)
(x) = 1

π

∫ π

0

(
f (r)(x + y)+ f (r)(x − y)

) sin(n+ 1
2 )y

2 sin y
2

dy .

Then we estimate

∣∣(Snf
(r)

)
(x)

∣∣ ≤ 2

π
‖f (r)‖C(T)

∫ π

0

| sin(n+ 1
2 )y|

2 sin y
2

dy

< ‖f (r)‖C(T)

∫ π

0

| sin(n+ 1
2 )y|

y
dy = ‖f (r)‖C(T)

∫ (n+ 1
2 )π

0

| sin u|
u

du

< ‖f (r)‖C(T)

(
1+

∫ (n+ 1
2 )π

1

1

u
du

)
= ‖f (r)‖C(T)

(
1+ ln

(
n+ 1

2

)
π
)
.

For a convenient constant c > 0, we obtain for all n ∈ N \ {1} that

‖Snf
(r)‖C(T) ≤ c ‖f (r)‖C(T) lnn . (1.52)

By Theorem 1.37 the Fourier series of f converges uniformly to f such that
by (1.50)

f − Snf =
∞∑

k=n+1

(
ck(f ) eik· + c−k(f ) e−ik·)

=
∞∑

k=n+1

1

(ik)r
(
ck(f

(r)) eik· + (−1)r c−k(f
(r)) e−ik·) . (1.53)

3. For even smoothness r = 2s, s ∈ N, we obtain by (1.53) that

f − Snf = (−1)s
∞∑

k=n+1

1

kr

(
ck(f

(r)) eik· + c−k(f
(r)) e−ik·)

= (−1)s
∞∑

k=n+1

1

kr

(
Skf

(r) − Sk−1f
(r)

)
.

Obviously, for N > n it holds the identity

N∑

k=n+1

ak (bk − bk−1) = aN bN − an+1 bn +
N−1∑

k=n+1

(ak − ak+1) bk (1.54)
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for arbitrary complex numbers ak and bk . We apply (1.54) to ak = k−r and
bk = Skf

(r). Then for N →∞ we receive

f − Snf = (−1)s+1 1

(n+ 1)r
Snf

(r) + (−1)s
∞∑

k=n+1

( 1

kr
− 1

(k + 1)r
)
Skf

(r) ,

(1.55)
since by (1.52)

1

Nr
‖SNf (r)‖C(T) ≤ c ‖f (r)‖C(T)

lnN

Nr
→ 0 as N →∞ .

Thus we can estimate the approximation error (1.55) by

‖f − Snf ‖C(T) ≤ c ‖f (r)‖C(T)

( lnn

(n+ 1)r
+

∞∑

k=n+1

( 1

kr
− 1

(k + 1)r
)

ln k
)
.

Using the identity (1.54) for ak = ln k and bk = −(k + 1)−r , we see that

∞∑

k=n+1

( 1

kr
− 1

(k + 1)r
)

ln k = ln(n+ 1)

(n+ 1)r
+

∞∑

k=n+1

1

(k + 1)r
ln

(
1+ 1

k

)
,

since (N + 1)−k ln N → 0 as N →∞. From ln(1+ 1
k
) < 1

k
it follows that

∞∑

k=n+1

1

(k + 1)r
ln

(
1+ 1

k

)
<

∞∑

k=n+1

1

k (k + 1)r
<

∞∑

k=n+1

1

kr+1

<

∫ ∞

n

1

xr+1 dx = 1

r nr
.

Hence for convenient constant c1 > 0 we have

‖f − Snf ‖C(T) ≤ c1 ‖f (r)‖C(T)

1

nr
(1+ lnn) .

This inequality implies (1.51) for even r .
4. The case of odd smoothness r = 2s + 1, s ∈ N0, can be handled similarly as the

case of even r . By (1.53) we obtain

f − Snf = (−1)s i
∞∑

k=n+1

1

kr

(
c−k(f

(r)) e−ik· − ck(f
(r)) eik·)

= (−1)s
∞∑

k=n+1

1

kr

(
S̃kf

(r) − S̃k−1f
(r)

)
(1.56)
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with the nth partial sum of the conjugate Fourier series of f (r)

S̃nf
(r) := i

n∑

j=1

(
c−j (f

(r)) e−ij · − cj (f
(r)) eij ·) .

From

i
(
c−j (f

(r)) e−ijx − cj (f
(r)) eijx) = − 1

π

∫ π

−π

f (r)(y) sin j (y − x) dy

= − 1

π

∫ π

−π

f (r)(x + y) sin(jy) dy

= − 1

π

∫ π

0

(
f (r)(x + y)− f (r)(x − y)

)
sin(jy) dy

and

n∑

j=1

sin(jy) = cos y
2 − cos(n+ 1

2 )y

2 sin y
2

, y ∈ R \ 2π Z ,

it follows that

(S̃nf
(r))(x) = − 1

π

∫ π

0

(
f (r)(x + y)− f (r)(x − y)

) cos y
2 − cos(n+ 1

2 )y

2 sin y
2

dy

and hence

|(S̃nf
(r))(x)| ≤ 2

π
‖f (r)‖C(T)

∫ π

0

| cos y
2 − cos(n+ 1

2 )y|
2 sin y

2

dy

= 4

π
‖f (r)‖C(T)

∫ π

0

| sin ny
2 sin (n+1)y

2 |
2 sin y

2

dy

<
4

π
‖f (r)‖C(T)

∫ π

0

| sin (n+1)y
2 |

2 sin y
2

dy .

Similarly as in step 2, we obtain for any n ∈ N \ {1}

‖S̃nf
(r)‖C(T) ≤ c ‖f (r)‖C(T) ln n

with some constant c > 0.
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Now we apply the identity (1.54) to ak = k−r and bk = S̃kf
(r). For N →∞ it

follows from (1.56) that

f − Snf = (−1)s+1 1

(n+ 1)r
S̃nf

(r) + (−1)s
∞∑

k=n+1

( 1

kr
− 1

(k + 1)r
)
S̃kf

(r) .

Thus we obtain the estimate

‖f − Snf ‖C(T) ≤ c ‖f ‖C(T)

( ln n

(n+ 1)r
+

∞∑

k=n+1

( 1

kr
− 1

(k + 1)r
)

ln k
)
.

We proceed as in step 3 and show the estimate (1.51) for odd r .

Roughly speaking we can say by Theorem 1.39 of Bernstein:

The smoother a function f : T→ C is, the faster its Fourier coefficients ck(f ) tend to zero
as |k| → ∞ and the faster its Fourier series converges uniformly to f .

Remark 1.40 Let f ∈ Cr−1(T) with fixed r ∈ N be given. Assume that f (r)

exists in [0, 2π) without finitely many points xj ∈ [0, 2π). Suppose that both one-
sided derivatives f (r)(xj ± 0) exist and are finite for each xj and that f (r)(xj ) :=
1
2

(
f (r)(xj+0)+f (r)(xj−0)

)
. If f (r) is of bounded variation V 2π

0

(
f (r)

)
, c.f. (1.34),

then for all k ∈ Z \ {0} we have

|ck(f )| ≤ V 2π
0

(
f (r)

)

2π |k|r+1 .

This upper bound can be derived by integrating ck(f ) by parts r-times, followed by
partial integration of a Stieltjes integral,

∫ 2π

0
f (r)(x) e−ikx dx=

∫ 2π

0
f (r)(x) dg(x) = f (r)(x) g(x)

∣
∣2π
0 −

∫ 2π

0
g(x) df (r)(x)

with g(x) = 1
−ik e−ikx , see, e.g., [46, pp. 186–188], [380, Theorem 4.3].

1.4.3 Gibbs Phenomenon

Let f : T → C be a piecewise continuously differentiable function with a jump
discontinuity at x0 ∈ R. Then Theorem 1.34 of Dirichlet–Jordan implies

lim
n→∞(Snf )(x0) = f (x0 − 0)+ f (x0 + 0)

2
.
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Clearly, the Fourier series of f cannot converge uniformly in any small neighbor-
hood of x0, because the uniform limit of the continuous functions Snf would be
continuous. The Gibbs phenomenon describes the bad convergence behavior of the
Fourier partial sums Snf in a small neighborhood of x0. If n → ∞, then Snf

overshoots and undershoots f near the jump discontinuity at x0, see the right in
Fig. 1.4.

First we analyze the convergence of the Fourier partial sums Sns of the sawtooth
function s from Example 1.9 which is piecewise linear with s(0) = 0 and therefore
piecewise continuously differentiable. The nth Fourier partial sum Sns reads as

(Sns)(x) =
n∑

k=1

1

πk
sin(kx).

By the Theorem 1.34 of Dirichlet–Jordan, (Sns)(x) converges to s(x) as n→∞ at
each point x ∈ R \ 2π Z such that

s(x) =
∞∑

k=1

1

πk
sin(kx) .

Now we compute Sns in a neighborhood of the jump discontinuity at x0 = 0. By
Example 1.14 we have

1

2
+

n∑

k=1

cos(kt) = 1

2
Dn(t) , t ∈ R ,

and hence by integration

x

2π
+ (Sns)(x) = 1

2π

∫ x

0
Dn(t) dt = 1

π

∫ x/2

0

sin
(
(2n+ 1)t

)

t
dt

+ 1

π

∫ x/2

0
h(t) sin

(
(2n+ 1)t

)
dt , (1.57)

where the function

h(t) :=
{
(sin t)−1 − t−1 t ∈ [−π, π]\{0},
0 t = 0

is continuously differentiable in [−π, π]. Integration by parts yields

1

π

∫ x/2

0
h(t) sin

(
(2n+ 1) t

)
dt = O(n−1) , n→∞ .



1.4 Pointwise and Uniform Convergence of Fourier Series 47

Using the sine integral

Si(y) :=
∫ y

0

sin t

t
dt , y ∈ R ,

we obtain

(Sns)(x) = 1

π
Si

(
(n+ 1

2
) x

)− x

2π
+O(n−1) , n→∞ . (1.58)

Lemma 1.41 The sine integral has the property

lim
y→∞Si(y) =

∫ ∞

0

sin t

t
dt = π

2
.

Further Si(π) is the maximum value of the sine integral.

Proof Introducing

ak :=
∫ (k+1)π

kπ

sin t

t
dt , k ∈ N0 ,

we see that sgn ak = (−1)k , |ak| > |ak+1| and limk→∞|ak| = 0. By the Leibniz
criterion for alternating series we obtain that

∫ ∞

0

sin t

t
dt =

∞∑

k=0

ak <∞ ,

i.e., limy→∞ Si(y) exists. From Eq. (1.57) with x = π it follows that

π

2
=

∫ π/2

0

sin
(
(2n+ 1) t

)

t
dt +

∫ π/2

0
h(t) sin

(
(2n+ 1) t

)
dt .

By Lemma 1.27 of Riemann–Lebesgue we conclude for k →∞ that

π

2
= lim

k→∞

∫ π/2

0

sin
(
(2n+ 1) t

)

t
dt = lim

k→∞

∫ (k+ 1
2 )π

0

sin x

x
dx .

Consequently,

∞∑

k=0

ak = π

2
, Si(nπ) =

n−1∑

k=0

ak , n ∈ N .
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The function Si defined on [0, ∞) is continuous, bounded, and nonnegative. Further
Si increases monotonously on [2kπ, (2k + 1)π] and decreases monotonously on
[(2k + 1)π, (2k + 2)π] for all k ∈ N0. Thus we have

max {Si(y) : y ∈ [0, ∞)} = Si(π) ≈ 1.8519 .

For x = 2π
2n+1 , we obtain by (1.58) and Lemma 1.41 that

(Sns)
( 2π

2n+ 1

) = 1

π
Si(π)− 1

2n+ 1
+O(n−1) , n→∞ ,

where 1
π

Si(π) is the maximum value of 1
π

Si
(
(n+ 1

2 )x) for all x > 0.
Ignoring the term − 1

2n+1 +O(n−1) for large n, we conclude that

lim
n→∞(Sns)

( 2π

2n+ 1

) = 1

π
Si(π) = s(0+0)+ ( 1

π
Si(π)− 1

2

) (
s(0+0)− s(0−0)

)
,

where 1
π

Si(π) − 1
2 ≈ 0.08949. Since the sawtooth function s : T→ C is odd, we

obtain that

lim
n→∞(Sns)

(− 2π

2n+ 1

) = − 1

π
Si(π) = s(0−0)−( 1

π
Si(π)−1

2

) (
s(0+0)−s(0−0)

)
.

Thus for large n, we observe an overshooting and undershooting of Sns at both sides
of the jump discontinuity of approximately 9% of the jump height. This behavior
does not change with growing n and is typical for the convergence of Sns near a
jump discontinuity. Figure 1.10 illustrates this behavior.

−2π −π π 2π

−0.5

0.5

x

y

−2π −π π 2π

−0.5

0.5

x

y

Fig. 1.10 Gibbs phenomenon for the Fourier partial sums S8s (blue, left) and S16s (blue, right),
where s is the 2π-periodic sawtooth function (red)
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A general description of the Gibbs phenomenon is given by the following:

Theorem 1.42 (Gibbs Phenomenon) Let f : T → C be a piecewise contin-
uously differentiable function with a jump discontinuity at x0 ∈ R. Assume that
f (x0) = 1

2

(
f (x0 − 0)+ f (x0 + 0)

)
. Then it holds

lim
n→∞(Snf )(x0 + 2π

2n+ 1
) = f (x0 + 0) + (

1

π
Si(π)− 1

2
)
(
f (x0 + 0)− f (x0 − 0)

)

lim
n→∞(Snf )(x0 − 2π

2n+ 1
) = f (x0 − 0) − (

1

π
Si(π)− 1

2
)
(
f (x0 + 0)− f (x0 − 0)

)
.

Proof Let s : T → C denote the sawtooth function of Example 1.9. We consider
the function

g := f − (
f (x0 + 0)− f (x0 − 0)

)
s(· − x0) .

Then g : T → C is also piecewise continuously differentiable and continuous
in an interval [x0 − δ, x0 + δ] with δ > 0. Further we have g(x0) = f (x0) =
1
2

(
f (x0−0)+f (x0+0)

)
. By Theorem 1.34 of Dirichlet–Jordan, the Fourier series

of g converges uniformly to g in [x0 − δ, x0 + δ]. By

(Snf )(x) = (Sng)(x)+
(
f (x0 + 0)− f (x0 − 0)

) n∑

k=1

1

πk
sin

(
k (x − x0)

)

it follows for x = x0 ± 2π
2n+1 and n→∞ that

lim
n→∞(Snf )(x0 + 2π

2n+ 1
) = g(x0)+ 1

π
Si(π)

(
f (x0 + 0)− f (x0 − 0)

)

lim
n→∞(Snf )(x0 − 2π

2n+ 1
) = g(x0)− 1

π
Si(π)

(
f (x0 + 0)− f (x0 − 0)

)
.

This completes the proof.

For large n, the Fourier partial sum Snf of a piecewise continuously differen-
tiable function f : T → C exhibits the overshoot and undershoot at each point of
jump discontinuity. If f is continuous at x0, then Snf converges uniformly to f as
n→∞ in a certain neighborhood of x0 and the Gibbs phenomenon is absent.

Remark 1.43 Assume that f : T → C is a piecewise continuously differentiable
function. By the Gibbs phenomenon, the truncation of Fourier series to Snf causes
ripples in a neighborhood of each point of jump discontinuity. These ripples can
be removed by the use of properly weighted Fourier coefficients such as by Fejér
summation or Lanczos smoothing.
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By the Fejér summation , we take the arithmetic mean σnf of all Fourier partial
sums Skf , k = 0, . . . , n, i.e.,

σnf = 1

n+ 1

n∑

k=0

Skf ∈ Tn .

Then σnf is the nth Fejér sum of f . With the Fejér kernel

Fn = 1

n+ 1

n∑

k=0

Dk ∈ Tn

of Example 1.15 and by Skf = f ∗Dk , k = 0, . . . , n, we obtain the representation
σnf = f ∗ Fn. Since

Skf =
k∑

j=−k

cj (f ) eij · ,

then it follows that

σnf = 1

n+ 1

n∑

k=0

k∑

j=−k

cj (f ) eij · =
n∑

�=−n

(
1− |�|

n+ 1

)
c�(f ) ei�· .

Note that the positive weights

ω� := 1− |�|
n+ 1

, � = −n, . . . , n

decay linearly from ω0 = 1 to ωn = ω−n = (n+ 1)−1 as |�| increases from 0 to n.
In contrast to the Fejér summation, the Lanczos smoothing uses the means of the

function Snf over the intervals [x − π
n
, x − π

n
] for each x ∈ T, i.e., we form

(Λnf )(x) := n

2π

∫ x+π/n

x−π/n

(Snf )(u) du .

By

Snf =
n∑

k=−n

ck(f ) eik· ,
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we obtain the weighted Fourier partial sum

(Λnf )(x) = n

2π

n∑

k=−n

ck(f )

∫ x+π/n

x−π/n

eiku du

=
n∑

k=−n

(
sinc

kπ

n

)
ck(f ) eikx ,

where the nonnegative weights ωk := sinc kπ
n

, k = −n, . . . , n, decay from ω0 = 1
to ωn = ω−n = 0 as |�| increases from 0 to n. If we arrange that ωk := 0 for all
k ∈ Z with |k| > n, then we obtain a so-called window sequence which will be
considered in the next section.

1.5 Discrete Signals and Linear Filters

In this section we apply Fourier series in the digital signal processing. The set of
all bounded complex sequences x = (

xk
)
k∈Z is denoted by �∞(Z). It turns out that

�∞(Z) is a Banach space under the norm

‖x‖∞ := sup {|xk| : k ∈ Z}.

For 1 ≤ p <∞, we denote by �p(Z) the set of all complex sequences x = (
xk

)
k∈Z

such that

‖x‖p :=
(∑

k∈Z
|xk|p

)1/p
<∞ .

Then �p(Z) is a Banach space. For p = 2, we obtain the Hilbert space �2(Z) with
the inner product and the norm

〈x, y〉 :=
∑

k∈Z
xk yk , ‖x‖2 :=

(∑

k∈Z
|xk|2

)1/2

for x = (
xk

)
k∈Z and y = (

yk
)
k∈Z ∈ �2(Z). Note that

‖x‖2
2 =

∑

k∈Z
|xk|2

is the so-called energy of x. The Cauchy–Schwarz inequality reads for all x, y ∈
�2(Z) as follows:

|〈x, y〉| ≤ ‖x‖2 ‖y‖2 .
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A discrete signal is defined as a bounded complex sequence x = (
xk

)
k∈Z ∈ �∞(Z).

If f : R→ C is a bounded function, then we obtain a discrete signal x = (
xk

)
k∈Z ∈

�∞(Z) by equidistant sampling xk := f (k t0) for all k ∈ Z and fixed t0 > 0.
A discrete signal x = (

xk
)
k∈Z is called N-periodic with N ∈ N, if xk = xk+N

for all k ∈ Z. Obviously, one can identify an N-periodic discrete signal x = (
xk

)
k∈Z

and the vector
(
xk

)N−1
k=0 ∈ C

N . The Fourier analysis in C
N will be handled in

Chap. 3.

Example 1.44 Special discrete signals are the pulse sequence δ := (
δk

)
k∈Z with

the Kronecker symbol δk , the jump sequence
(
uk

)
k∈Z with uk := 1 for k ≥ 0 and

uk := 0 for k < 0, and the exponential sequence
(
eiω0k

)
k∈Z with certain ω0 ∈ R. If

ω0 N ∈ 2π Z with N ∈ N, the exponential sequence is N-periodic.

A digital filter H is an operator from domH ⊆ �∞(Z) into �∞(Z) that converts
input signals of domH into output signals in �∞(Z) by applying a specific rule. In
the following linear filters are of special interest. A linear filter is a linear operator
H : domH → �∞(Z) such that for all x, y ∈ domH and each α ∈ C

H(x + y) = Hx +Hy , H(α x) = α Hx .

A digital filter H : domH → �∞(Z) is called shift-invariant or time-invariant, if
z = Hx = (

zk
)
k∈Z with arbitrary input signal x = (

xk
)
k∈Z ∈ domH implies that

for each � ∈ Z

(
zk−�

)
k∈Z = H

(
xk−�

)
k∈Z .

In other words, a shift-invariant digital filter transforms each shifted input signal to
a shifted output signal.

A digital filter H : domH → �∞(Z) is called bounded on �p(Z) with 1 ≤ p <

∞, if Hx ∈ �p(Z) for any input signal x ∈ �p(Z).

Example 1.45 A simple digital filter is the forward shift V x := (
xk−1

)
k∈Z for any

x = (
xk

)
k∈Z ∈ �∞(Z). Then we obtain that V nx = (

xk−n

)
k∈Z for n ∈ Z. In

particular for n = −1, we have the backward shift V −1x = (
xk+1

)
k∈Z. These filters

are linear, shift-invariant, and bounded on �p(Z), 1 ≤ p ≤ ∞.
Another digital filter is the moving average Ax := (

zk
)
k∈Z which is defined by

zk := 1

M1 +M2 + 1

M2∑

�=−M1

xk−� , k ∈ Z ,

where M1 and M2 are fixed nonnegative integers. This filter is linear, shift-invariant,
and bounded on �p(Z), 1 ≤ p ≤ ∞ too.
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The modulation filter Mx := (
zk

)
k∈Z is defined by

zk := ei (kω0+ϕ0) xk , k ∈ Z ,

for any x = (
xk

)
k∈Z ∈ �∞(Z) and fixed ω0, ϕ0 ∈ R. Obviously, this filter is linear

and bounded on �p(Z), 1 ≤ p ≤ ∞. In the case ω0 ∈ 2π Z, the modulation filter is
shift-invariant, since then zk = eiϕ0 xk .

Finally, the accumulator Sx := (
zk

)
k∈Z is defined on �1(Z) by

zk :=
k∑

�=−∞
x� , k ∈ Z .

This filter is linear and shift-invariant, but not bounded.

A linear, shift-invariant filter or linear time-invariant filter is abbreviated as LTI
filter. If a digital filter H has the output signal h := H δ of the pulse sequence δ =(
δk

)
k∈Z (see Example 1.44) as input signal, then h is called impulse response. The

components hk of the impulse response h = (
hk

)
k∈Z are called filter coefficients.

Theorem 1.46 Let H be an LTI filter with the impulse response h = (
hk

)
k∈Z ∈

�1(Z).
Then for each input signal x = (

xk
)
k∈Z ∈ �p(Z) with 1 ≤ p < ∞ the output

signal z = Hx = (
zk

)
k∈Z can be represented as discrete convolution z = h∗x with

zk :=
∑

j∈Z
hj xk−j .

Proof For the impulse response h ∈ �1(Z) and arbitrary input signal x ∈ �p(Z), the
discrete convolution h∗x is contained in �p(Z), since by Hölder inequality we have

‖h ∗ x‖p ≤ ‖h‖1 ‖x‖p .

Each input signal x = (
xk

)
k∈Z ∈ �p(Z) can be represented in the form

x =
∑

j∈Z
xj V

j δ ,

because the shifted pulse sequences V jδ, j ∈ Z, form a basis of �p(Z). Obviously,
the shift-invariant filter H has the property H V j δ = V j H δ = V j h for each
j ∈ Z.
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Since the LTI filter H is linear and shift-invariant, we obtain following represen-
tation of the output signal

z = H x = H
(∑

j∈Z
xj V

j δ
)
=

∑

j∈Z
xj H V j δ

=
∑

j∈Z
xj V

j Hδ =
∑

j∈Z
xj V

jh

that means

zk =
∑

j∈Z
xj hk−j =

∑

n∈Z
hn xk−n , k ∈ Z .

In particular, the operator H : �p(Z) → �p(Z) is bounded with the operator norm
‖h‖1.

Remark 1.47 In �1(Z) the discrete convolution is a commutative, associative, and
distributive multiplication which has the pulse sequence δ as unit. Further we have
‖x ∗ y‖1 ≤ ‖x‖1 ‖y‖1 for all x, y ∈ �1(Z).

Using Fourier series, we discuss some properties of LTI filters. Applying the
exponential sequence x = (

eiωk
)
k∈Z for ω ∈ R as input signal of the LTI filter

H with the impulse response h ∈ �1(Z), by Theorem 1.46 we obtain the output
signal z = (

zk
)
k∈Z = h ∗ x with

zk =
∑

j∈Z
hj eiω(k−j) = eiωk

∑

j∈Z
hj e−iωj = eiωk H(ω)

with the so-called transfer function of the LTI filter H defined by

H(ω) :=
∑

j∈Z
hj e−iωj . (1.59)

By Theorem 1.37 the Fourier series in (1.59) is uniformly convergent and has the
variable −ω instead of ω. Thus the exponential sequence x = (

eiωk
)
k∈Z for ω ∈ R

has the property

H x = H(ω) x ,

i.e., H(ω) ∈ C is an eigenvalue of the LTI filter H with the corresponding
eigensequence x.

Example 1.48 Let a ∈ C with |a| < 1 be given. We consider the LTI filter H with
the impulse response h = (

hk

)
k∈Z, where hk = ak for k ≥ 0 and hk = 0 for k < 0
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such that h ∈ �1(Z). Then the transfer function of H reads as follows:

H(ω) =
∞∑

k=0

(a e−iω)k = 1

1− a e−iω =
1− a cosω + i a sinω

1+ a2 − 2a cosω
.

With the corresponding magnitude response

|H(ω)| = (
1+ a2 − 2a cosω

)−1/2

and phase response

arg H(ω) = arctan
a sin ω

1− a cosω

we obtain the following representation of the transfer function

H(ω) = |H(ω)| ei arg H(ω) .

An LTI filter H with finitely many nonzero filter coefficients is called FIR filter,
where FIR means finite impulse response. Then the transfer function of an FIR filter
H has the form

H(ω) = ei ωN0

m∑

k=0

hk e−i ω k

with certain m ∈ N and N0 ∈ Z, where h0 hm �= 0. The filter coefficients hk of
an FIR filter can be chosen in a way such that the transfer function H(ω) possesses
special properties with respect to the magnitude response |H(ω)| and the phase
response arg H(ω).

Example 1.49 We consider the so-called comb filter H with the filter coefficients
h0 = hm = 1 for certain m ∈ N and hk = 0 for k ∈ Z \ {0, m}. Then the transfer
function of H is given by H(ω) = 1 + ei mω so that the corresponding magnitude
response is equal to

|H(ω)| =
((

1+ cos(mω)
)2 + (

sin(mω)
)2

)1/2

= √2
(
1+ cos(mω)

)1/2 = 2 | cos
mω

2
| .

For the phase response we find

tan
(

arg H(ω)
) = − sin(mω)

1+ cos(mω)
= − tan arg H(ω)
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so that

arg H(ω) = arctan
(− tan arg H(ω)

)

and hence

arg H(ω) = −mω − 2πk

2

for (2k−1)π
m

< ω <
(2k+1)π

m
and k ∈ Z. Thus the phase response arg H(ω) is

piecewise linearly with respect to ω.

An FIR filter H possesses a linear phase, if its phase response is a linear function
arg H(ω) = γ + c ω with parameters γ ∈ [0, 2π) and c ∈ R.

An ideal low-pass filter HLP with the cutoff frequency ω0 ∈ (0, π) is defined
by its transfer function

HLP (ω) :=
{

1 |ω| ≤ ω0 ,

0 ω0 < |ω| ≤ π .

The interval (−ω0, ω0) is called transmission band and the set [−π, −ω0)∪(ω0, π]
is the so-called stop band of the ideal low-pass filter HLP . The corresponding filter
coefficients hk of the ideal low-pass filter HLP coincide with the Fourier coefficients
of HLP (ω) and read as follows:

hk = 1

2π

∫ π

−π

HLP (ω) eiωk dω = 1

2π

∫ ω0

−ω0

eiωk dω

= ω0

π
sinc (ω0 k)

with

sinc x :=
{ sinx

x
x �= 0 ,

1 x = 0 .

Thus we obtain the Fourier expansion

HLP (ω) =
∑

k∈Z

ω0

π
sinc (ω0 k) e−ikω , (1.60)

i.e., the ideal low-pass filter HLP is not an FIR filter and hk = O(|k|−1) for |k| →
∞.
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An ideal high-pass filter HHP with the cutoff frequency ω0 ∈ (0, π) is defined
by its transfer function

HHP (ω) :=
{

0 |ω| ≤ π − ω0 ,

1 π − ω0 < |ω| ≤ π .

We see immediately that HHP (ω) = HLP (ω + π) and hence by (1.60)

HHP (ω) =
∑

k∈Z
(−1)k

ω0

π
sinc (ω0 k) e−ikω ,

i.e., the ideal high-pass filter is not an FIR filter too.
In the following we consider the construction of low-pass FIR filters. A simple

construction of a low-pass FIR filter can be realized by the nth Fourier partial sum
of (1.60)

HLP,n(ω) :=
n∑

k=−n

ω0

π
sinc (ω0 k) e−ikω (1.61)

with certain n ∈ N. Then HLP,n(ω) oscillates inside the transmission band or rather
the stop band. Further, HLP,n(ω) has the Gibbs phenomenon at ω = ±ω0. In order
to reduce these oscillations of HLP,n(ω), we apply so-called window sequences.
The simplest example is the rectangular window sequence

f R
k,n :=

{
1 k = −n, . . . , n ,

0 |k| > n

such that the related spectral function is the nth Dirichlet function

FR
n (ω) =

n∑

k=−n

1 · e−ikω = Dn(ω)

and hence

HLP,n(ω) = HLP (ω) ∗ FR
n (ω) = HLP (ω) ∗Dn(ω) .

The Hann window sequence is defined by

fHn
k,n :=

{ 1
2 (1+ cos πk

n
) k = −n, . . . , n ,

0 |k| > n
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and has the related spectral function

FHn
n (ω) =

n∑

k=−n

1

2
(1+ cos

πk

n
) e−ikω

= 1

2

n∑

k=−n

e−ikω + 1

4

n∑

k=−n

e−ik(ω+π/n) + 1

4

n∑

k=−n

e−ik(ω−π/n)

= 1

4

(
2 FR

n (ω)+ FR
n (ω + π

n
)+ FR

n (ω − π

n
)
)
.

Thus FHn
n (ω) is the weighted mean of FR

n (ω) and the corresponding shifts FR
n (ω±

π
n
).
The Hamming window sequence generalizes the Hann window sequence and is

defined by

f Hm
k,n :=

{
0.54+ 0.46 cos πk

n
k = −n, . . . , n ,

0 |k| > n

The filter coefficients f Hm
k,n are chosen in a way such that the first overshoot of the

spectral function FR
n (ω) is annihilated as well as possible. Let the spectral function

FHm
n (ω) be of the form

FHm
n (ω) = (1− α) FR

n (ω)+ α

2
FR
n (ω + π

n
)+ α

2
FR
n (ω − π

n
)

with certain α ∈ (0, 1). We calculate the first side lobe of FR
n (ω) = Dn(ω) by

considering the zeros of D′n(ω). By considering

D′n(ω) =
( sin (2n+1)ω

2

sin ω
2

)′ = 0 ,

we obtain the approximate value ω = 5π
2n+1 as first side lobe. From

FHm
n (

5π

2n+ 1
) = (1−α)FR

n (
5π

2n + 1
)+ α

2
FR
n (

5π

2n+ 1
+ π

n
)+ α

2
FR
n (

5π

2n+ 1
− π

n
) = 0

it follows that α = 21
46 ≈ 0.46.

A further generalization of the Hann window sequence is the Blackman window
sequence which is defined by

f Bl
k,n :=

{
0.42+ 0.5 cos πk

n
+ 0.08 cos 2πk

n
k = −n, . . . , n ,

0 |k| > n .
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The corresponding spectral function reads as follows:

FBl
n (ω) =

n∑

k=−n

f Bl
k,n e−ikω .



Chapter 2
Fourier Transforms

Fourier transforms of integrable functions defined on the whole real line R are
studied in Chap. 2. First, in Sect. 2.1, the Fourier transform is defined on the Banach
space L1(R). The main properties of the Fourier transform are handled, such as
the Fourier inversion formula and the convolution property. Then, in Sect. 2.2, the
Fourier transform is introduced as a bijective mapping of the Hilbert space L2(R)

onto itself by the theorem of Plancherel. The Hermite functions, which form an
orthogonal basis of L2(R), are eigenfunctions of the Fourier transform. In Sect. 2.3,
we present the Poisson summation formula and Shannon’s sampling theorem.
Finally, two generalizations of the Fourier transform are sketched in Sect. 2.5,
namely the windowed Fourier transform and the fractional Fourier transform.

2.1 Fourier Transforms on L1(R)

Let C0(R) denote the Banach space of continuous functions f : R→ C vanishing
as |x| → ∞ with norm

‖f ‖C0(R) := max
x∈R

|f (x)|

and let Cc(R) be the set of continuous, compactly supported functions. By Cr(R),
r ∈ N, we denote the set of r-times continuously differentiable functions on R.
Accordingly Cr

0(R) and Cr
c (R) are defined.

For 1 ≤ p ≤ ∞, let Lp(R) denote the Banach space of all measurable functions
f : R→ C with finite norm

‖f ‖Lp(R) :=
{( ∫

R
|f (x)|p dx

)1/p 1 ≤ p <∞ ,

ess sup{|f (x)| : x ∈ R} p =∞ ,
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where we identify almost equal functions. In particular, we are interested in the
Hilbert space L2(R) with inner product and norm

〈f, g〉L2(R) :=
∫

R

f (x) g(x) dx , ‖f ‖L2(R) := ( ∫

R

|f (x)|2 dx
)1/2

.

If it is clear from the context which inner product or norm is addressed, we
abbreviate 〈f, g〉 := 〈f, g〉L2(R) and ‖f ‖:= ‖f ‖L2(R).

Note that in contrast to the periodic setting there is no continuous embedding
of the spaces Lp(R). We have neither L1(R) ⊂ L2(R) nor L1(R) ⊃ L2(R). For
example, f (x) := 1

x
χ[1,∞)(x), where χ[1,∞) denotes the characteristic function

of the interval [1,∞), is in L2(R), but not in L1(R). On the other hand, f (x) :=
1√
x
χ(0,1](x) is in L1(R), but not in L2(R).

Remark 2.1 Note that each function f ∈ C0(R) is uniformly continuous on R by
the following reason: For arbitrary ε > 0 there exists L = L(ε) > 0 such that
|f (x)| ≤ ε/3 for all |x| ≥ L. If x, y ∈ [−L,L], then there exists δ > 0 such
that |f (x) − f (y)| ≤ ε/3 whenever |x − y| ≤ δ. If x, y ∈ R\[−L,L], then
|f (x)− f (y)| ≤ |f (x)| + |f (y)| ≤ 2ε/3. If x ∈ [−L,L] and y ∈ R\[−L,L], say
y > L with |x−y| ≤ δ, then |f (x)−f (y)| ≤ |f (x)−f (L)|+ |f (L)−f (y)| ≤ ε.
In summary we have then |f (x)− f (y)| ≤ ε whenever |x − y| ≤ δ.

The (continuous) Fourier transform f̂ = Ff of a function f ∈ L1(R) is
defined by

f̂ (ω) = (Ff )(ω) :=
∫

R

f (x) e−ixω dx , ω ∈ R . (2.1)

Since |f (x) e−ixω| = |f (x)| and f ∈ L1(R), the integral (2.1) is well defined. In
practice, the variable x denotes mostly the time or the space and the variable ω is
the frequency. Therefore the domain of the Fourier transform is called time domain
or space domain. The range of the Fourier transform is called frequency domain.
Roughly spoken, the Fourier transform (2.1) measures how much oscillations

around the frequency ω are contained in f ∈ L1(R). The function f̂ = |f̂ | ei argf̂ is
also called spectrum of f with modulus |f̂ | and phase arg f̂ .

Remark 2.2 In the literature, the Fourier transform is not consistently defined. For
instance, other frequently applied definitions are

1√
2π

∫

R

f (x) e−iωx dx ,

∫

R

f (x) e−2π iωx dx .
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Example 2.3 Let L > 0. The rectangle function

f (x) :=

⎧
⎪⎪⎨

⎪⎪⎩

1 x ∈ (−L, L) ,

1
2 x ∈ {−L, L} ,
0 otherwise ,

has the Fourier transform

f̂ (ω) =
∫ L

−L

e−i ωx dx = −e−i ωL + ei Lω

iω
= 2iL sin(ωL)

iLω

= 2L sin(Lω)

Lω
= 2L sinc(Lω)

with the cardinal sine function or sinc function

sinc(x) =
{

sinx
x

x ∈ R \ {0} ,
1 x = 0 .

Figure 2.1 shows the cardinal sine function.
While supp f = [−L, L] is bounded, this is not the case for f̂ . Even worse,

f̂ �∈ L1(R), since for n ∈ N \ {1}
∫ nπ

0
|sinc(x)| dx =

n∑

k=1

∫ kπ

(k−1)π
|sinc(x)| dx ≥

n∑

k=1

1

kπ

∫ kπ

(k−1)π
|sin x| dx = 2

π

n∑

k=1

1

k

and the last sum becomes infinitely large as n → ∞. Thus the Fourier transform
does not map L1(R) into itself.

Fig. 2.1 The sinc function
on [−20, 20]

−20 20

1
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Example 2.4 For given L > 0, the hat function

f (x) :=
{

1− |x|
L

x ∈ [−L, L] ,
0 otherwise ,

has the Fourier transform

f̂ (ω) = 2
∫ L

0

(
1− x

L

)
cos(ωx) dx = 2

Lω

∫ L

0
sin(ωx) dx

= 2

Lω2

(
1− cos(Lω)

) = L
(
sinc

Lω

2

)2

for ω ∈ R \ {0}. In the case ω = 0, we obtain

f̂ (0) = 2
∫ L

0

(
1− x

L

)
dx = L .

The following theorem collects basic properties of the Fourier transform which can
easily be proved.

Theorem 2.5 (Properties of the Fourier Transform) Let f , g ∈ L1(R). Then
the Fourier transform possesses the following properties:

1. Linearity: For all α, β ∈ C,

(αf + βg)ˆ= α f̂ + β ĝ .

2. Translation and modulation: For each x0, ω0 ∈ R,

(
f (· − x0)

)ˆ(ω) = e−i x0ω f̂ (ω),

(
e−i ω0·f

)ˆ(ω) = f̂ (ω0 + ω) .

3. Differentiation and multiplication: For an absolutely continuous function f ∈
L1(R) with f ′ ∈ L1(R),

(f ′)ˆ(ω) = iω f̂ (ω) .

If h(x) := x f (x), x ∈ R, is absolutely integrable, then

ĥ(ω) = i (f̂ )′(ω) .

4. Scaling: For c ∈ R \ {0},

(f (c·)) ˆ(ω) = 1

|c| f̂
(
c−1ω

)
.
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Applying these properties we can calculate the Fourier transforms of some
special functions.

Example 2.6 We consider the normalized Gaussian function

f (x) := 1√
2πσ 2

e−x2/(2σ 2) , x ∈ R , (2.2)

with standard deviation σ > 0. Note that
∫
R
f (x) dx = 1, since for a > 0 we obtain

using polar coordinates r and ϕ that

( ∫

R

e−ax2
dx

)2 =
( ∫

R

e−ax2
dx

)( ∫

R

e−ay2
dy

)
=

∫

R

∫

R

e−a(x2+y2) dx dy

=
∫ 2π

0

( ∫ ∞

0
r e−ar2

dr
)

dϕ = π

a
.

Now we compute the Fourier transform

f̂ (ω) = 1√
2πσ 2

∫

R

e−x2/(2σ 2) e−i ωx dx . (2.3)

This integral can be calculated by Cauchy’s integral theorem of complex function
theory. Here we use another technique. Obviously, the Gaussian function (2.2)
satisfies the differential equation

f ′(x)+ x

σ 2 f (x) = 0 .

Applying Fourier transform to this differential equation, we obtain by the differen-
tiation–multiplication property of Theorem 2.5

iω f̂ (ω)+ i

σ 2 (f̂ )′(ω) = 0 .

This linear differential equation has the general solution

f̂ (ω) = C e−σ 2ω2/2 ,

with an arbitrary constant C. From (2.3) it follows that

f̂ (0) = C =
∫

R

f (x) dx = 1

and hence

f̂ (ω) = e−σ 2ω2/2 (2.4)
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is a non-normalized Gaussian function with standard deviation 1/σ . The smaller the
standard deviation is in the space domain, the larger it is in the frequency domain.
In particular for σ = 1, the Gaussian function (2.2) coincides with its Fourier
transform f̂ up to the factor 1/

√
2π . Note that the Gaussian function is the only

function with this behavior.

Example 2.7 Let a > 0 and b ∈ R \ {0} be given. We consider the Gaussian chirp

f (x) := e−(a−i b) x2
. (2.5)

The Fourier transform of (2.5) reads as follows:

f̂ (ω) = C exp
−(a + i b)ω2

4 (a2 + b2)
,

which can be calculated by a similar differential equation as in Example 2.6. The
constant C reads as follows:

C = f̂ (0) =
∫

R

e−ax2
cos(bx2) dx + i

∫

R

e−ax2
sin(bx2) dx

such that

C =

⎧
⎪⎪⎨

⎪⎪⎩

√
π
2

(√√
a2+b2+a

a2+b2 + i

√√
a2+b2−a

a2+b2

)
b > 0 ,

√
π
2

(√√
a2+b2+a

a2+b2 − i

√√
a2+b2−a

a2+b2

)
b < 0 .

In Example 2.3 we have seen that the Fourier transform of a function f ∈ L1(R)

is not necessarily in L1(R). By the following theorem, the Fourier transform of
f ∈ L1(R) is a continuous function, which vanishes at ±∞.

Theorem 2.8 The Fourier transform F defined by (2.1) is a linear, continuous
operator from L1(R) into C0(R) with operator norm ‖F‖L1(R)→C0(R) = 1.

More precisely F maps onto a dense subspace of C0(R).

Proof The linearity of F follows from those of the integral operator. Let f ∈
L1(R). For any ω, h ∈ R we can estimate

|f̂ (ω + h)− f̂ (ω)| = ∣
∣
∫

R

f (x) e−iωx (e−ihx − 1) dx
∣
∣ ≤

∫

R

|f (x)| |e−ihx − 1| dx .

Since |f (x)| |e−ihx − 1| ≤ 2 |f (x)| ∈ L1(R) and

|e−ihx − 1| = (
(cos(hx)− 1)2 + (sin(hx))2)1/2 = (

2− 2 cos(hx)
)1/2 → 0
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as h→ 0, we obtain by the dominated convergence theorem of Lebesgue

lim
h→0

|f̂ (ω + h)− f̂ (ω)| ≤ lim
h→0

∫

R

|f (x)| |e−ihx − 1| dx

=
∫

R

|f (x)| ( lim
h→0

|e−ihx − 1|) dx = 0 .

Hence f̂ is continuous. Further, we know by Lemma 1.27 of Riemann–Lebesgue
that lim|ω|→∞ f̂ (ω) = 0. Thus f̂ = Ff ∈ C0(R).

For f ∈ L1(R) we have

|f̂ (ω)| ≤
∫

R

|f (x)| dx = ‖f ‖L1(R) ,

so that

‖Ff ‖C0(R) = ‖f̂ ‖C0(R) ≤ ‖f ‖L1(R)

and consequently ‖F‖L1(R)→C0(R) ≤ 1. In particular we obtain for g(x) :=
1√
2π

e−x2/2 that ‖g‖L1(R) = 1 and ĝ(ω) = e−ω2/2, see Example 2.6. Hence we

have ‖ĝ‖C0(R) = 1 and ‖F‖L1(R)→C0(R) = 1.

Using Theorem 2.8, we obtain the following result:

Lemma 2.9 Let f , g ∈ L1(R). Then we have f̂ g, ĝ f ∈ L1(R) and

∫

R

f̂ (x) g(x) dx =
∫

R

f (ω) ĝ(ω) dω . (2.6)

Proof By Theorem 2.8 we know that f̂ , ĝ ∈ C0(R) are bounded so that f̂ g, f ĝ ∈
L1(R). Taking into account that f (x) g(y) e−i xy ∈ L1(R

2), equality (2.6) follows
by Fubini’s theorem

∫

R

f̂ (x) g(x) dx =
∫

R

∫

R

f (ω) g(x) e−i xω dω dx

=
∫

R

f (ω)

∫

R

g(x) e−i xω dx dω =
∫

R

f (ω) ĝ(ω) dω .

Next we examine under which assumptions on f ∈ L1(R) the Fourier inversion
formula

f (x) = (f̂ )ˇ(x) := 1

2π

∫

R

f̂ (ω) ei ωx dω (2.7)
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holds true. Note that (2.7) is almost the same formula as (2.1), except for the plus
sign in the exponential and the factor 1

2π .

Theorem 2.10 (Fourier Inversion Formula for L1(R) Functions) Let f ∈
L1(R) with f̂ ∈ L1(R) be given.

Then the Fourier inversion formula (2.7) holds true for almost every x ∈ R. For
f ∈ L1(R) ∩ C0(R) with f̂ ∈ L1(R), the Fourier inversion formula holds for all
x ∈ R.

In the following we give a proof for a function f ∈ L1(R)∩C0(R) with f̂ ∈ L1(R).
For the general setting, we refer, e.g., to [63, pp. 38–44].

Proof

1. For any n ∈ N we use the function gn(x) := 1
2π e−|x|/n which has by

straightforward computation the Fourier transform

ĝn(ω) = n

π(1+ n2ω2)
.

Both functions gn and ĝn are in L1(R). By (2.6) and Theorem 2.5 we deduce the
relation for the functions f (x) and gn(x) ei xy

∫

R

f̂ (x) gn(x) ei xy dx =
∫

R

f (ω) ĝn(ω − y) dω ,

where y ∈ R is arbitrary fixed. We examine this equation as n → ∞. We have
limn→∞ gn(x) = 1

2π . For the left-hand side, since |f̂ (x) gn(x) ei xy| ≤ 1
2π |f̂ (x)|

and f̂ ∈ L1(R), we can pass to the limit under the integral by the dominated
convergence theorem of Lebesgue

lim
n→∞

∫

R

f̂ (x) gn(x) ei xy dx = 1

2π

∫

R

f̂ (x) eixy dx = (f̂ )ˇ(y) .

2. It remains to show that the limit on the right-hand side is equal to

lim
n→∞

∫

R

f (ω) ĝn(ω − y) dω = f (y) .

By assumption, f ∈ L1(R)∩C0(R). Then f ∈ C0(R) and hence f is uniformly
continuous on R by Remark 2.1, i.e., for every ε > 0, there exists δ = δ(ε) > 0
such that |f (x)− f (y)| < ε if |x − y| ≤ δ.

Note that ĝn ∈ L1(R) fulfills the relation

∫

R

ĝn(ω) dω = lim
L→∞

∫ L

−L

ĝn(ω) dω = 2

π
lim

L→∞ arctan (nL) = 1
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Then we get

∫

R

f (ω) ĝn(ω − y) dω − f (y) =
∫

R

(
f (ω + y)− f (y)

)
ĝn(ω) dω

=
∫ δ

−δ

(
f (ω + y)− f (y)

)
ĝn(ω) dω +

∫

|ω|≥δ

(
f (ω + y)− f (y)

)
ĝn(ω) dω .

3. For all n ∈ N, we obtain

∣
∣
∫ δ

−δ

(
f (ω + y)− f (y)

)
ĝn(ω) dω

∣
∣ ≤

∫ δ

−δ

∣
∣f (ω + y)− f (y)

∣
∣ ĝn(ω) dω

≤ ε

∫ δ

−δ

ĝn(ω) dω ≤ ε .

Next we see

∣
∣
∫

|ω|≥δ

f (y) ĝn(ω) dω
∣
∣ ≤ |f (y)| (1− 2

π
arctan(nδ)

)
. (2.8)

Since the even function ĝn is decreasing on [0, ∞), we receive

∣
∣
∫

|ω|≥δ

f (ω + y) ĝn(ω) dω
∣
∣ ≤ ĝn(δ) ‖f ‖L1(R) . (2.9)

As n → ∞ the right-hand sides in (2.8) and (2.9) go to zero. This completes the
proof.

As a corollary we obtain that the Fourier transform is one-to-one.

Corollary 2.11 If f ∈ L1(R) fulfills f̂ = 0, then f = 0 almost everywhere on R.

We have seen that a 2π-periodic function can be reconstructed from its Fourier
coefficients by the Fourier series in the L2(T) sense and that pointwise/uniform
convergence of the Fourier series requires additional assumptions on the function.

Now we consider a corresponding problem in L1(R) and ask for the convergence
of Cauchy principal value (of an improper integral)

lim
L→∞

1

2π

∫ L

−L

f̂ (ω) ei ωx dω .

Note that for a Lebesgue integrable function on R, the Cauchy principal value
coincides with the integral over R.
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Similar to Riemann’s localization principle in Theorem 1.28 in the 2π-periodic
setting, we have the following result:

Theorem 2.12 (Riemann’s Localization Principle) Let f ∈ L1(R) and x0 ∈ R.
Further let ϕ(t) := f (x0 + t)+ f (x0 − t)− 2f (x0), t ∈ R. Assume that for some
δ > 0

∫ δ

0

|ϕ(t)|
t

dt <∞ .

Then it holds

f (x0) = lim
L→∞

1

2π

∫ L

−L

f̂ (ω) ei ωx0 dω .

Proof It follows

IL(x0) := 1

2π

∫ L

−L

f̂ (ω) ei ωx0 dω = 1

2π

∫ L

−L

∫

R

f (u) e−i ωu du ei ωx0 dω

= 1

2π

∫ L

−L

∫

R

f (u) ei ω(x0−u) du dω .

Since |f (u) ei ω (x0−u)| = |f (u)| and f ∈ L1(R), we can change the order of
integration in IL(x0) by Fubini’s theorem which results in

IL(x0) = 1

2π

∫

R

f (u)

∫ L

−L

ei ω(x0−u) dω du = 1

π

∫

R

f (u)
sin

(
L (x0 − u)

)

x0 − u
du

= 1

π

∫ ∞

0

(
f (x0 + t)+ f (x0 − t)

) sin(L t)

t
dt .

Since we have by Lemma 1.41 that

∫ ∞

0

sin(L t)

t
dt =

∫ ∞

0

sin t

t
dt = π

2
, (2.10)

we conclude

IL(x0)− f (x0) = 1

π

∫ ∞

0

ϕ(t)

t
sin(L t) dt

= 1

π

∫ δ

0

ϕ(t)

t
sin(L t) dt + 1

π

∫ ∞

δ

f (x0 + t)+ f (x0 − t)

t
sin(L t) dt

− 2

π
f (x0)

∫ ∞

δ

sin(Lt)

t
dt.
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Since ϕ(t)/t ∈ L1([0, δ]) by assumption, the first integral converges to zero as
L→∞ by Lemma 1.27 of Riemann–Lebesgue. The same holds true for the second
integral. Concerning the third integral we use

π

2
=

∫ ∞

0

sin(L t)

t
dt =

∫ δ

0

sin(L t)

t
dt +

∫ ∞

δ

sin(L t)

t
dt

=
∫ Lδ

0

sin t

t
dt +

∫ ∞

δ

sin(L t)

t
dt .

Since the first summand converges to π
2 as L → ∞, the integral

∫∞
δ

sin(L t)
t

dt
converges to zero as L→∞. This finishes the proof.

A function f : R → C is called piecewise continuously differentiable on R,
if there exists a finite partition of R determined by −∞ < x0 < x1 < . . . <

xn <∞ of R such that f is continuously differentiable on each interval (−∞, x0),
(x0, x1), . . ., (xn−1, xn), (xn, ∞) and the one-sided limits limx→xj±0 f (x) and
limx→xj±0 f ′(x), j = 0, . . . , n exist. Similarly as in the proof of Theorem 1.34 of
Dirichlet–Jordan, the previous theorem can be used to prove that for a piecewise
continuously differentiable function f ∈ L1(R) it holds

1

2

(
f (x + 0)+ f (x − 0)

) = lim
L→∞

1

2π

∫ L

−L

f̂ (ω) ei ωx dω

for all x ∈ R.
The Fourier transform is again closely related to the convolution of functions. If

f : R → C and g : R → C are given functions, then their convolution f ∗ g is
defined by

(f ∗ g)(x) :=
∫

R

f (y) g(x − y) dy , x ∈ R , (2.11)

provided that this integral (2.11) exists. Note that the convolution is a commutative,
associative, and distributive operation. Various conditions can be imposed on f and
g to ensure that (2.11) exists. For instance, if f and g are both in L1(R), then
(f ∗ g)(x) exists for almost every x ∈ R and further f ∗ g ∈ L1(R). In the same
way as for 2π-periodic functions we can prove the following result:

Theorem 2.13

1. Let f ∈ Lp(R) with 1 ≤ p ≤ ∞ and g ∈ L1(R) be given. Then f ∗ g exists
almost everywhere and f ∗ g ∈ Lp(R). Further we have the Young inequality

‖f ∗ g‖Lp(R) ≤ ‖f ‖Lp(R) ‖g‖L1(R) .
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2. Let f ∈ Lp(R) and g ∈ Lq(R), where 1 < p < ∞ and 1
p
+ 1

q
= 1. Then

f ∗ g ∈ C0(R) fulfills

‖f ∗ g‖C0(R)≤ ‖f ‖Lp(R) ‖g‖Lq(R) .

3. Let f ∈ Lp(R) and g ∈ Lq(R) , where 1 ≤ p, q, r ≤ ∞ and 1
p
+ 1

q
= 1

r
+ 1.

Then f ∗ g ∈ Lr(R) and we have the generalized Young inequality

‖f ∗ g‖Lr (R) ≤ ‖f ‖Lp(R) ‖g‖Lq (R) .

Differentiation and convolution are related by the following

Lemma 2.14 Let f ∈ L1(R) and g ∈ Cr(R), where g(k) for k = 0, . . . , r are
bounded on R. Then f ∗ g ∈ Cr(R) and

(f ∗ g)(k) = f ∗ g(k) , k = 1, . . . , r .

Proof Since g(k) ∈ L∞(R), the first assertion follows by the first part of
Theorem 2.13. The function x �→ f (y)g(x − y) is r-times differentiable, and for
k = 0, . . . , r we have

∣
∣f (y)g(k)(x − y)

∣
∣ ≤ |f (y)| sup

t∈R
|g(k)(t)|.

Since f ∈ L1(R), we can differentiate under the integral sign, see [125, Proposi-
tion 14.2.2], which results in

(f ∗ g)(k)(x) =
∫

R

f (y) g(k)(x − y) dx = (
f ∗ g(k)

)
(x) .

The following theorem presents the most important property of the Fourier
transform.

Theorem 2.15 (Convolution Property of Fourier Transform) Let f , g ∈
L1(R). Then we have

(f ∗ g)ˆ= f̂ ĝ .

Proof For f , g ∈ L1(R) we have f ∗ g ∈ L1(R) by Theorem 2.13. Using Fubini’s
theorem, we obtain for all ω ∈ R

(f ∗ g)ˆ(ω) =
∫

R

(f ∗ g)(x) e−i ωx dx =
∫

R

( ∫

R

f (y) g(x − y) dy
)

e−i ωx dx

=
∫

R

f (y)
( ∫

R

g(x − y) e−i ω(x−y) dx
)

e−iωy dy

=
∫

R

f (y)
( ∫

R

g(t) e−i ωt dt
)

e−i ωy dy = f̂ (ω) ĝ(ω) .
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Applying these properties of the Fourier transform, we can calculate the Fourier
transforms of some special functions.

Example 2.16 Let N1 : R → R denote the cardinal B-spline of order one defined
by

N1(x) :=
⎧
⎨

⎩

1 x ∈ (0, 1) ,
1/2 x ∈ {0, 1} ,
0 otherwise .

For m ∈ N, the convolution

Nm+1(x) := (Nm ∗ N1)(x) =
∫ 1

0
Nm(x − t) dt ,

is the cardinal B-spline of order m+ 1. Especially, for m = 1 we obtain the linear
cardinal B-spline

N2(x) :=
⎧
⎨

⎩

x x ∈ [0, 1) ,
2− x x ∈ [1, 2) ,
0 otherwise .

Note that the support of Nm is the interval [0, m]. By

N̂1(ω) =
∫ 1

0
e−i xω dx = 1− e−i ω

iω
, ω ∈ R \ {0} ,

and N̂1(0) = 1, we obtain

N̂1(ω) = e−i ω/2 sinc
ω

2
, ω ∈ R .

By the convolution property of Theorem 2.15, we obtain

N̂m+1(ω) = N̂m(ω) N̂1(ω) = (
N̂1(ω)

)m+1
.

Hence the Fourier transform of the cardinal B-spline Nm reads as follows:

N̂m(ω) = e−i mω/2 (
sinc

ω

2

)m
.

For the centered cardinal B-spline of order m ∈ N defined by

Mm(x) := Nm(x + m

2
) ,
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we obtain by the translation property of Theorem 2.5 that

M̂m(ω) = (
sinc

ω

2

)m
.

The Banach space L1(R) with the addition and convolution of functions is a
Banach algebra. As for periodic functions there is no identity element with respect
to the convolution. A remedy is again to work with an approximate identity. We start
with the following observation:

Lemma 2.17

1. If f ∈ Lp(R) with 1 ≤ p ≤ ∞, then

lim
y→0

‖f (· − y)− f ‖Lp(R) = 0 .

2. If f ∈ C0(R), then

lim
y→0

‖f (· − y)− f ‖C0(R) = 0 .

Proof

1. Let f ∈ Lp(R) be given. Then for arbitrary ε > 0 there exists a step function

s(x) :=
n∑

j=1

aj χIj (x)

with constants aj ∈ C and pairwise disjoint intervals Ij ⊂ R such that
‖f − s‖Lp(R) < ε/3. Corresponding to ε, we choose δ > 0 so that ‖s(· −
y)− s‖Lp(R) < ε/3 for all |y| < δ. Thus we obtain

‖f (· − y)− f ‖Lp(R) ≤ ‖f (· − y) − s(· − y)‖Lp(R) + ‖s(· − y) − s‖Lp(R) + ‖s − f ‖Lp(R)

≤ ε

3
+ ε

3
+ ε

3
= ε .

2. Now let f ∈ C0(R) be given. Then by Remark 2.1, f is uniformly continuous
on R. Thus for each ε > 0 there exists δ > 0 such that |f (x − y) − f (x)| < ε

for all |y| < δ and all x ∈ R, i.e., ‖f (· − y)− f ‖C0(R) < ε.

Theorem 2.18 Let ϕ ∈ L1(R) with
∫
R
ϕ(x) dx = 1 be given and let

ϕσ (x) := 1

σ
ϕ
( x
σ

)
, σ > 0 ,
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be a so-called approximate identity. Then the following relations hold true:

1. For f ∈ Lp(R) with 1 ≤ p <∞, we have

lim
σ→0

‖f ∗ ϕσ − f ‖Lp(R) = 0 .

2. For f ∈ C0(R) we have

lim
σ→0

‖f ∗ ϕσ − f ‖C0(R) = 0 .

Proof

1. Let f ∈ Lp(R), 1 ≤ p <∞, be given. Since
∫
R
ϕσ (y) dy = 1 for all σ > 0, we

obtain

(f ∗ ϕσ )(x)− f (x) =
∫

R

(
f (x − y)− f (x)

)
ϕσ (y) dy

and hence

∣
∣(f ∗ ϕσ )(x)− f (x)

∣
∣ ≤

∫

R

|f (x − y)− f (x)| |ϕσ (y)| dy

=
∫

R

(|f (x − y)− f (x)| |ϕσ(y)|1/p
) |ϕσ (y)|1/q dy ,

where 1
p
+ 1

q
= 1. Using Hölder’s inequality, the above integral can be

estimated by

( ∫

R

|f (x − y)− f (x)|p |ϕσ (y)| dy
)1/p ( ∫

R

|ϕσ (y)| dy
)1/q

.

Thus we obtain
∫

R

∣
∣(f ∗ ϕσ )(x)− f (x)

∣
∣p dx

≤
( ∫

R

∫

R

|f (x − y)− f (x)|p |ϕσ (y)| dy dx
)( ∫

R

|ϕσ (y)| dy
)p/q

.

For arbitrary ε > 0 we choose δ > 0 by Lemma 2.17 so that ‖f (· − y) −
f ‖Lp(R) < ε for |y| < δ. Changing the order of integration, we see that the last
integral term is bounded by

‖ϕσ‖p/qL1(R)

( ∫

R

|ϕσ (y)|
∫

R

|f (x − y)− f (x)|p dx dy
)

≤ ‖ϕσ‖p/qL1(R)

( ∫ δ

−δ

+
∫

|y|>δ

)
|ϕσ (y)| ‖f (· − y)− f ‖p

Lp(R)
dy .
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Then we receive

∫ δ

−δ

|ϕσ (y)| ‖f (· − y)− f ‖pLp(R) dy ≤ ε

∫ δ

−δ

|ϕσ (y)| dy ≤ ε ‖ϕ‖L1(R) .

Since ‖f (· − y) − f ‖Lp(R) ≤ ‖f (· − y)‖Lp(R) + ‖f ‖Lp(R) = 2 ‖f ‖Lp(R), we
conclude that

∫

|y|>δ

|ϕσ (y)| ‖f (· − y)− f ‖pLp(R) dy ≤ 2p ‖f ‖pLp(R)

∫

|y|>δ

|ϕσ (y)| dy

= 2p ‖f ‖pLp(R)

∫

|x|>δ/σ

|ϕ(x)| dx .

Observing

lim
σ→0

∫

|x|>δ/σ

|ϕ(x)| dx = 0

by ϕ ∈ L1(R), we obtain

lim supσ→0‖f ∗ ϕσ − f ‖p
Lp(R)

≤ ε ‖ϕ‖p
L1(R)

.

2. Now we consider f ∈ C0(R). For arbitrary ε > 0 we choose δ > 0 by
Lemma 2.17 so that ‖f (·− y)−f ‖C0(R) < ε for |y| < δ. As in the first step, we
preserve

∣∣(f ∗ ϕσ )(x)− f (x)
∣∣ ≤

∫

R

∣∣f (x − y)− f (x)
∣∣ ∣∣ϕσ (y)

∣∣ dy

≤
( ∫ δ

−δ

+
∫

|y|>δ

)
|ϕσ (y)| |f (x − y)− f (x)| dy .

Now we estimate both integrals

∫ δ

−δ

|ϕσ (y)| |f (x − y)− f (x)| dy ≤ ε

∫ δ

−δ

|ϕσ (y)| dy ≤ ε ‖ϕ‖L1(R) ,

∫

|y|>δ

|ϕσ (y)| |f (x − y)− f (x)| dy ≤ 2 ‖f ‖C0(R)

∫

|y|>δ

|ϕσ (y)| dy

= 2 ‖f ‖C0(R)

∫

|y|>δ/σ

|ϕ(x)| dx

and obtain

lim supσ→0‖f ∗ ϕσ − f ‖C0(R) ≤ ε ‖ϕ‖L1(R) .
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Example 2.19 Let f ∈ L1(R) be given. We choose

ϕ(x) := 1√
2π

e−x2/2 , x ∈ R .

Then by Example 2.6, the approximate identity ϕσ coincides with the normalized
Gaussian function (2.2) with standard deviation σ > 0. Then for each continuity
point x0 ∈ R of f , it holds

lim
σ→0

(f ∗ ϕσ )(x0) = f (x0) .

This can be seen as follows: For any ε > 0, there exists δ > 0 such that |f (x0 −
y)− f (x0)| ≤ ε for all |y| ≤ δ. Since

∫
R
ϕσ (y) dy = 1 by Example 2.6, we get

(f ∗ ϕσ )(x0)− f (x0) =
∫

R

(
f (x0 − y)− f (x0)

)
ϕσ (y) dy

and consequently

∣
∣(f ∗ gσ )(x0)− f (x0)

∣
∣ ≤

( ∫ δ

−δ

+
∫

|y|>δ

)
ϕσ (y) |f (x0 − y)− f (x0)| dy

≤ ε

∫ δ

−δ

ϕσ (y) dy +
∫

|y|>δ

|f (x0 − y)| ϕσ (y) dy + |f (x0)|
∫

|y|>δ

ϕσ (y) dy

≤ ε + ‖f ‖L1(R) ϕσ (δ)+ 1√
2π
|f (x0)|

∫

|x|>δ/σ

e−x2/2 dx .

Thus we obtain

lim supσ→0|(f ∗ ϕσ )(x0)− f (x0)| ≤ ε .

An important consequence of Theorem 2.18 is the following result:

Theorem 2.20 The set C∞c (R) of all compactly supported, infinitely differentiable
functions is dense in Lp(R) for 1 ≤ p <∞ and in C0(R).

Proof Let

ϕ(x) :=
{
c exp

(− 1
1−x2

)
x ∈ (−1, 1) ,

0 x ∈ R \ (−1, 1) ,

where the constant c > 0 is determined by the condition
∫
R
ϕ(x) dx = 1. Then ϕ

is infinitely differentiable and has compact support [−1, 1], i.e., ϕ ∈ C∞c (R). We
choose ϕσ with σ > 0 as approximate identity.



78 2 Fourier Transforms

Let f ∈ Lp(R). For arbitrary ε > 0, there exists N ∈ N such that

‖f − fN‖Lp(R) <
ε

2
,

where fN is the restricted function

fN(x) :=
{
f (x) x ∈ [−N, N] ,
0 x ∈ R \ [−N, N] .

By the first part of Theorem 2.18 we know that

‖fN ∗ ϕσ − fN‖Lp(R) <
ε

2

for sufficiently small σ > 0. Thus fN ∗ ϕσ is a good approximation of f , because

‖fN ∗ ϕσ − f ‖Lp(R) ≤ ‖fN ∗ ϕσ − fN‖Lp(R) + ‖fN − f ‖Lp(R) < ε .

By Lemma 2.14, the function fN ∗ ϕσ is infinitely differentiable. Further this
convolution product has compact support supp fN ∗ ϕσ ⊆ [−N − σ, N + σ ].
Consequently, C∞c (R) is a dense subset of Lp(R).

Using the second part of Theorem 2.18, one can analogously prove the assertion
for f ∈ C0(R).

2.2 Fourier Transforms on L2(R)

Up to now we have considered the Fourier transforms of L1(R) functions. Next we
want to establish a Fourier transform on the Hilbert space L2(R), where the Fourier
integral

∫

R

f (x) e−i xω dx

may not exist, i.e., it does not take a finite value for some ω ∈ R. Therefore we
define the Fourier transform of an L2(R) function in a different way based on the
following result:

Lemma 2.21 Let f , g ∈ L1(R), such that f̂ , ĝ ∈ L1(R). Then the following
Parseval equality is valid

2π 〈f, g〉L2(R) = 〈f̂ , ĝ〉L2(R) . (2.12)
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Note that f , f̂ ∈ L1(R) implies that (f̂ )ˇ= f almost everywhere by Theorem 2.10
and (f̂ )ˇ∈ C0(R) by Theorem 2.8. Thus we have f ∈ L2(R), since

∫

R

|f (x)|2 dx =
∫

R

|(f̂ )ˇ(x)| |f (x)| dx ≤ ‖(f̂ )ˇ‖C0(R) ‖f ‖L1(R) <∞ .

Proof Using Fubini’s theorem and Fourier inversion formula (2.7), we obtain

∫

R

f̂ (ω) ĝ(ω) dω =
∫

R

f̂ (ω)

∫

R

g(x) e−i xω dx dω

=
∫

R

g(x)

∫

R

f̂ (ω) ei xω dω dx = 2π
∫

R

g(x) f (x) dx .

Applying Theorem 2.20, for any function f ∈ L2(R) there exists a sequence
(fj )j∈N of functions fj ∈ C∞c (R) such that

lim
j→∞‖f − fj‖L2(R) = 0 .

Thus (fj )j∈N is a Cauchy sequence in L2(R), i.e., for every ε > 0 there exists an
index N(ε) ∈ N so that for all j , k ≥ N(ε)

‖fk − fj‖L2(R) ≤ ε .

Clearly, fj , f̂j ∈ L1(R). By Parseval equality (2.21) we obtain for all j , k ≥ N(ε)

‖fk − fj‖L2(R) = 1√
2π
‖f̂k − f̂j‖L2(R) ≤ ε ,

so that (f̂j )j∈N is also a Cauchy sequence in L2(R). Since L2(R) is complete,
this Cauchy sequence converges to some function in L2(R). We define the Fourier
transform f̂ =Ff ∈ L2(R) of f ∈ L2(R) as

f̂ = Ff := lim
j→∞ f̂j .

In this way the domain of the Fourier transform is extended to L2(R). Note that the
set L1(R) ∩L2(R) is dense in L2(R), since C∞c (R) is contained in L1(R)∩ L2(R)

and C∞c (R) is dense in L2(R) by Theorem 2.20.
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By the continuity of the inner product we obtain also the Parseval equality in
L2(R). We summarize:

Theorem 2.22 (Plancherel) The Fourier transform truncated on L1(R) ∩ L2(R)

can be uniquely extended to a bounded linear operator of L2(R) onto itself which
satisfies the Parseval equalities

2π 〈f, g〉L2(R) = 〈f̂ , ĝ〉L2(R) ,
√

2π ‖f ‖L2(R) = ‖f̂ ‖L2(R) (2.13)

for all f , g ∈ L2(R).

Note that Theorem 2.5 is also true for L2(R) functions. Moreover, we have the
following Fourier inversion formula.

Theorem 2.23 (Fourier Inversion Formula for L2(R) Functions) Let f ∈
L2(R) with f̂ ∈ L1(R) be given. Then the Fourier inversion formula

f (x) = 1

2π

∫

R

f̂ (ω) ei ωx dω (2.14)

holds true for almost every x ∈ R. If f is in addition continuous, then the Fourier
inversion formula (2.14) holds pointwise for all x ∈ R.

Remark 2.24 Often the integral notation

f̂ (ω) =
∫

R

f (x) e−i xω dx

is also used for the Fourier transform of L2(R) functions, although the integral may
not converge pointwise. But it may be interpreted by a limiting process. For ε > 0
and f ∈ L2(R), the function gε : R→ C is defined by

gε(ω) :=
∫

R

e−ε2x2
f (x) e−i xω dx .

Then gε converges in the L2(R) norm and pointwise almost everywhere to f̂ for
ε → 0.

Finally we introduce an orthogonal basis of L2(R), whose elements are eigen-
functions of the Fourier transform. For n ∈ N0, the nth Hermite polynomial Hn is
defined by

Hn(x) := (−1)n ex
2 dn

dxn
e−x2

, x ∈ R .

In particular we have

H0(x) = 1 , H1(x) = 2x , H2(x) = 4x2 − 2 , H3(x) = 8x3 − 12x .
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The Hermite polynomials fulfill the three-term relation

Hn+1(x) = 2x Hn(x)− 2nHn−1(x) , (2.15)

and the recursion

H ′
n(x) = 2nHn−1(x) . (2.16)

For n ∈ N0, the nth Hermite function hn is given by

hn(x) := Hn(x) e−x2/2 = (−1)n ex
2/2 dn

dxn
e−x2

, x ∈ R .

In particular, we have h0(x) = e−x2/2 which has the Fourier transform ĥ0(ω) =
1√
2π

e−ω2/2 by Example 2.6. The Hermite functions fulfill the differential equation

h′′n(x)− (x2 − 2n− 1) hn(x) = 0 (2.17)

and can be computed recursively by

hn+1(x) = x hn(x)− h′n(x) .

Theorem 2.25 The Hermite functions hn, n ∈ N0, with

〈hn, hn〉L2(R) =
√
π 2nn!

form a complete orthogonal system in L2(R). The Fourier transforms of the Hermite
functions are given by

ĥn(ω) = √2π (−i)n hn(ω) . (2.18)

In other words, the functions hn are the eigenfunctions of the Fourier transform
F : L2(R)→ L2(R) with eigenvalues

√
2π (−i)n for all n ∈ N0.

By Theorem 2.25 we see that the Hermite polynomials are orthogonal polynomials
in the weighted Hilbert space L2,w(R) with w(x) := e−x2

, x ∈ R, i.e., they are

orthogonal with respect to the weighted Lebesgue measure e−x2
dx.

Proof

1. We show that 〈hm, hn〉L2(R) = 0 for m �= n. By the differential equation (2.17)
we obtain

(h′′m − x2hm) hn = −(2m+ 1) hm hn ,

(h′′n − x2hn) hm = −(2n+ 1) hm hn .
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Subtraction yields

h′′m hn − h′′n hm = (h′mhn − h′nhm)′ = 2(n−m)hm hn ,

which results after integration in

2(n−m) 〈hm, hn〉L2(R) = 2(m− n)

∫

R

hm(x) hn(x) dx

= (
h′m(x) hn(x)− h′n(x) hm(x)

)∣∣∞−∞ = 0 .

2. Next we prove for n ∈ N0 that

〈hn, hn〉L2(R) =
√
π 2nn! . (2.19)

For n = 0 the relation holds true by Example 2.6. We show the recursion

〈hn+1, hn+1〉L2(R) = 2(n+ 1) 〈hn, hn〉L2(R) (2.20)

which implies (2.19). Using (2.16), integration by parts, and step 1 of this proof,
we obtain

〈hn+1, hn+1〉L2(R) =
∫

R

e−x2
(Hn+1(x))

2 dx =
∫

R

(
2x e−x2) (

Hn(x)Hn+1(x)
)

dx

=
∫

R

e−x2 (
H ′

n(x)Hn+1(x)+Hn(x)H
′
n+1(x)

)
dx

= 2 (n+ 1)
∫

R

e−x2 (
Hn(x)

)2
dx = 2 (n + 1) 〈hn, hn〉L2(R) .

3. To verify the completeness of the orthogonal system {hn : n ∈ N0}, we prove
that f ∈ L2(R) with 〈f, hn〉L2(R) = 0 for all n ∈ N0 implies f = 0 almost
everywhere. To this end, we consider the complex function g : C→ C defined by

g(z) :=
∫

R

h0(x) f (x) e−i xz dx , z ∈ C .

This is the holomorphic continuation of the Fourier transform of h0 f onto whole
C. For every m ∈ N0 it holds

g(m)(z) = (−i)m
∫

R

xm h0(x) f (x) e−ixz dx , z ∈ C .

Since g(m)(0) is a certain linear combination of 〈f, hn〉L2(R), n = 0, . . . ,m, we
conclude that g(m)(0) = 0 for all m ∈ N0. Thus we get g = 0 and (h0f )ˇ = 0.
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By Corollary 2.11 we have h0f = 0 almost everywhere and consequently f = 0
almost everywhere.

4. By Example 2.6 we know that

ĥ0(ω) =
∫

R

e−i xω−x2/2 dx = √2π e−ω2/2 , ω ∈ R .

We compute the Fourier transform of hn and obtain after n times integration by parts

ĥn(ω) =
∫

R

hn(x) e−i ωx dx = (−1)n
∫

R

e−i ωx+x2/2 ( dn

dxn
e−x2)

dx

=
∫

R

e−x2 ( dn

dxn
e−i ωx+x2/2) dx = eω

2/2
∫

R

e−x2 ( dn

dxn
e(x−i ω)2/2) dx .

By symmetry reasons we have

dn

dxn
e(x−i ω)2/2 = in

dn

dωn
e(x−i ω)2/2 ,

so that

ĥn(ω) = in eω
2/2

∫

R

e−x2 ( dn

dωn
e(x−i ω)2/2) dx

= in eω
2/2 dn

dωn

(
e−ω2/2

∫

R

e−i xω−x2/2 dx
)

= √2π in eω
2/2 dn

dωn
e−ω2 = √2π (−i)n hn(ω) .

2.3 Poisson Summation Formula and Shannon’s Sampling
Theorem

Poisson summation formula establishes an interesting relation between Fourier
series and Fourier transforms. For n ∈ N and f ∈ L1(R) we consider the functions

ϕn(x) :=
n∑

k=−n

|f (x + 2kπ)| ,

which fulfill
∫ π

−π

ϕn(x) dx =
∫ π

−π

n∑

k=−n

|f (x + 2kπ)| dx =
n∑

k=−n

∫ π

−π

|f (x + 2kπ)| dx

=
n∑

k=−n

∫ 2kπ+π

2kπ−π

|f (x)| dx =
∫ 2nπ+π

−2nπ−π

|f (x)| dx ≤ ‖f ‖L1(R) <∞ .
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Since (ϕn)n∈N is a monotone increasing sequence of nonnegative functions, we
obtain by the monotone convergence theorem of B. Levi that the function ϕ(x) :=
limn→∞ ϕn(x) for almost all x ∈ R is measurable and fulfills

∫ π

−π

ϕ(x) dx = lim
n→∞

∫ π

−π

ϕn(x) dx = ‖f ‖L1(R) <∞ .

We introduce the 2π-periodic function

f̃ (x) :=
∑

k∈Z
f (x + 2kπ) . (2.21)

The 2π-periodic function f̃ ∈ L1(T) is called 2π-periodization of f ∈ L1(R).
Since

|f̃ (x)| = ∣
∣
∑

k∈Z
f (x + 2kπ)

∣
∣ ≤

∑

k∈Z
|f (x + 2kπ)| = ϕ(x) ,

we obtain
∫ π

−π

|f̃ (x)| dx ≤
∫ π

−π

|ϕ(x)| dx = ‖f ‖L1(R) <∞

so that f̃ ∈ L1(T). After these preparations we can formulate the Poisson
summation formula.

Theorem 2.26 (Poisson Summation Formula) Assume that f ∈ L1(R)∩C0(R)

fulfills the conditions

1.
∑

k∈Z max
x∈[−π, π]|f (x + 2kπ)| <∞ ,

2.
∑

k∈Z|f̂ (k)| <∞ .

Then for all x ∈ R, the following relation is fulfilled:

2π f̃ (x) = 2π
∑

k∈Z
f (x + 2kπ) =

∑

k∈Z
f̂ (k) ei kx . (2.22)

Both series in (2.22) converge absolutely and uniformly on R.
For x = 0 this implies the Poisson summation formula

2π
∑

k∈Z
f (2kπ) =

∑

k∈Z
f̂ (k) . (2.23)

Proof By the first assumption, we have absolute and uniform convergence of the
series (2.21) by the known criterion of Weierstrass. Since f ∈ C0(R), we see that
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f̃ ∈ C(T). Because the uniformly convergent series (2.21) can be integrated term
by term, we obtain for the Fourier coefficients of f̃

2π ck(f̃ ) =
∫ π

−π

∑

�∈Z
f (x + 2�π) e−i kx dx =

∑

�∈Z

∫ π

−π

f (x + 2�π) e−i kx dx

=
∫

R

f (x) e−i kx dx = f̂ (k) .

Thus,

f̃ (x) =
∑

k∈Z
ck(f̃ ) eikx = 1

2π

∑

k∈Z
f̂ (k) eikx

where by the second assumption and Theorem 1.37 the Fourier series of f̃ converges
uniformly to f̃ on R. By the second assumption the Fourier series of f̃ is absolutely
convergent.

Remark 2.27 The general Poisson summation formula (2.22) is fulfilled, if f ∈
L1(R) ∩ C0(R) fulfills the conditions

|f (x)| ≤ C (1+ |x|)−1−ε , |f̂ (ω)| ≤ C (1+ |ω|)−1−ε

for some C > 0 and ε > 0. For further details, see [341, pp. 250–253] or [146,
pp. 171–173]. The Poisson summation formula was generalized for slowly growing
functions in [254].

We illustrate the performance of Poisson summation formula (2.23) by an
example.

Example 2.28 For fixed α > 0, we consider the function f (x) := e−α|x|, x ∈ R.
Simple calculation shows that its Fourier transform reads

f̂ (ω) =
∫ ∞

0

(
e(α−i ω)x + e(α+i ω)x

)
dx = 2α

α2 + ω2 .

Note that by Fourier inversion formula (2.14), the function g(x) := (x2+α2)−1 has
the Fourier transform ĝ(ω) = π

α
e−α|ω|.

The function f is contained in L1(R) ∩ C0(R) and fulfills both conditions of
Theorem 2.26. Since

∑

k∈Z
f (2πk) = 1+ 2

∞∑

k=1

(
e−2πα

)k = 1+ e−2πα

1− e−2πα
,
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we obtain by the Poisson summation formula (2.23) that

∑

k∈Z

1

α2 + k2 =
π

α

1+ e−2πα

1− e−2πα
.

The following sampling theorem was discovered independently by the mathe-
matician Whittaker [375] as well as the electrical engineers Kotelnikov [208] and
Shannon [328], see also [124, 360]. Shannon first recognized the significance of the
sampling theorem in digital signal processing. The sampling theorem answers the
question how to sample a function f by its values f (nT ), n ∈ Z, for an appropriate
T > 0 while keeping the whole information contained in f . The distance T between
two successive sample points is called sampling period. In other words, we want to
find a convenient sampling period T such that f can be recovered from its samples
f (nT ), n ∈ Z. The sampling rate is defined as the reciprocal value 1

T
of the

sampling period T . Indeed this question can be only answered for a certain class
of functions.

A function f ∈ L2(R) is called bandlimited on [−L, L] with some L > 0, if
supp f̂ ⊆ [−L, L], i.e., if f̂ (ω) = 0 for all |ω| > L. The positive number L is the
bandwidth of f . A typical bandlimited function on [−L, L] is

h(x) = L

π
sinc(Lx) , x ∈ R .

Note that h ∈ L2(R) \L1(R). By Example 2.3 and Theorem 2.22 of Plancherel, the
Fourier transform ĥ is equal to

ĥ(ω) =
⎧
⎨

⎩

1 ω ∈ (−L, L) ,
1
2 ω ∈ {−L, L} ,
0 ω ∈ R \ [−L, L] .

(2.24)

Theorem 2.29 (Sampling Theorem of Shannon–Whittaker–Kotelnikov) Let
f ∈ L1(R) ∩ C0(R) be bandlimited on [−L,L]. Let M ≥ L > 0.

Then f is completely determined by its values f
(
kπ
M

)
, k ∈ Z, and further f can

be represented in the form

f (x) =
∑

k∈Z
f
(kπ
M

)
sinc(Mx − kπ) , (2.25)

where the series (2.25) converges absolutely and uniformly on R.

Proof

1. From f ∈ L1(R) ∩ C0(R) it follows that f ∈ L2(R), since

‖f ‖2
L2(R) =

∫

R

|f (x)| |f (x)| dx ≤ ‖f ‖C0(R) ‖f ‖L1(R) <∞ .
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Let x ∈ R be an arbitrary point. Since f ∈ L2(R) is bandlimited on [−L, L]
and M ≥ L, by Theorem 2.10 we obtain

f (x) = 1

2π

∫ M

−M

f̂ (ω) ei ωx dω . (2.26)

Let ϕ, ψ ∈ L2(T) be the 2π-periodic extensions of

ϕ(ω) := f̂
(Mω

π

)
, ψ(ω) := e−i xMω/π , ω ∈ [−π, π) .

By (2.26) these functions possess the Fourier coefficients

ck(ϕ) = 〈ϕ, ei k ·〉L2(T) =
1

2M

∫ M

−M

f̂ (ω) e−i kπω/M dω = π

M
f
(− kπ

M

)
,

ck(ψ) = 〈ψ, ei k ·〉L2(T) =
1

2M

∫ M

−M

e−i (x+ kπ
M

) ω dω = sinc (Mx + kπ) .

From (2.26) it follows that

f (x) = M

2π2

∫ π

−π

f̂
(Mω

π

)
ei xMω/π dω = M

π
〈ϕ, ψ〉L2(T)

and hence by the Parseval equality (1.16)

f (x) = M

π

∑

k∈Z
ck(ϕ) ck(ψ) =

∑

k∈Z
f
(− kπ

M

)
sinc (Mx + kπ)

=
∑

k∈Z
f
(kπ
M

)
sinc (Mx − kπ) .

2. As shown in the first step, it holds for arbitrary n ∈ N

f (x)−
n∑

k=−n

f
(kπ
M

)
sinc (Mx − kπ) = 1

2π

∫ M

−M

(
f̂ (ω) −

n∑

k=−n

ck(ϕ) ei kπω/M
)

ei xω dω

= M

2π2

∫ π

−π

(
ϕ(ω)− (Snϕ)(ω)

)
ei xMω/π dω .

Using the Cauchy–Schwarz inequality in L2(T), we obtain for all x ∈ R

∣∣f (x) −
n∑

k=−n

f
( kπ
M

)
sinc (Mx − kπ)

∣∣ = M

2π2

∣∣
∫ π

−π

(
ϕ(ω)− (Snϕ)(ω)

)
ei xMω/π dω

∣∣

≤ M

π
‖ϕ − Snϕ‖L2(T)
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and thus by Theorem 1.3

‖f−
n∑

k=−n

f
(kπ
M

)
sinc (M ·−kπ)‖C0(R) ≤ M

π
‖ϕ−Snϕ‖L2(T) → 0 as n→∞ .

Consequently, the series (2.25) converges uniformly on R. Note that each
summand of the series (2.25) has the following interpolation property:

f
(kπ
M

)
sinc (Mx − kπ) =

{
f
(
kπ
M

)
x = kπ

M
,

0 x ∈ π
M

(Z \ {k}) .
3. The absolute convergence of the series (2.25) is an immediate consequence of

the Cauchy–Schwarz inequality in �2(Z) as well as the Parseval equalities of ϕ

and ψ:

∞∑

k=−∞

∣
∣f

(kπ
M

)〉 ∣∣sinc (M · −kπ)
∣
∣ = M

π

∞∑

k=−∞
|ck(ϕ)| |ck(ψ)|

≤ M

π

( ∞∑

k=−∞
|ck(ϕ)|2

)1/2 ( ∞∑

k=−∞
|ck(ψ)|2)1/2 = M

π
‖ϕ‖L2(T) <∞ .

By the sampling Theorem 2.29, a bandlimited function f with supp f̂ ⊆
[−L, L] can be reconstructed from its equispaced samples f

(
kπ
M

)
, k ∈ Z, with

M ≥ L > 0. Hence the sampling period T = π
L

is the largest and the sampling rate
L
π

is the smallest possible one. Then π
L

is called Nyquist rate, see [258].

Remark 2.30 The sinc function decreases to zero only slightly as |x| → ∞ so that
we have to incorporate many summands in a truncated series (2.25) to get a good
approximation of f . One can obtain a better approximation of f by the so-called
oversampling, i.e., by the choice of a higher sampling rate L(1+λ)

π
with some λ > 0

and corresponding sample values f
(

kπ
L(1+λ)

)
, k ∈ Z.

The choice of a lower sampling rate L(1−λ)
π

with some λ ∈ (0, 1) is called
undersampling, which results in a reconstruction of a function f ◦ where higher
frequency parts of f appear in lower frequency parts of f ◦. This effect is called
aliasing in signal processing or Moiré effect in imaging.

2.4 Heisenberg’s Uncertainty Principle

In this section, we consider a nonzero function f ∈ L2(R) with squared L2(R)

norm

‖f ‖2 := ‖f ‖2
L2(R) =

∫

R

|f (x)|2 dx > 0 ,
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which is called the energy of f in some applications. A signal f is often measured
in time. We keep the spatial variable x instead of t also when speaking about a time-
dependent signal. In the following, we investigate the time–frequency locality of f
and f̂ .

It is impossible to construct a nonzero compactly supported function f ∈ L2(R)

whose Fourier transform f̂ has a compact support too. More generally, we show the
following result:

Lemma 2.31 If the Fourier transform f̂ of a nonzero function f ∈ L2(R) has
compact support, then f cannot be zero on a whole interval. If a nonzero function
f ∈ L2(R) has compact support, then f̂ cannot be zero on a whole interval.

Proof We consider f ∈ L2(R) with supp f̂ ⊆ [−L, L] with some L > 0. By the
Fourier inversion formula (2.14) we have almost everywhere

f (x) = 1

2π

∫ L

−L

f̂ (ω) ei ωx dω ,

where the function on the right-hand side is infinitely differentiable. Since we
identify almost everywhere equal functions in L2(R), we can assume that f ∈
C∞(R).

Assume that f (x) = 0 for all x ∈ [a, b] with a < b. For x0 = a+b
2 we obtain by

repeated differentiation with respect to x that

f (n)(x0) = 1

2π

∫ L

−L

f̂ (ω) (iω)n ei ωx0 dω = 0 , n ∈ N0 .

Expressing the exponential ei ω(x−x0) as power series, we see that for all x ∈ R,

f (x) = 1

2π

∫ L

−L

f̂ (ω) ei ω(x−x0) ei ωx0 dω

= 1

2π

∞∑

n=0

(x − x0)
n

n!
∫ L

−L

f̂ (ω) (iω)n ei ωx0 dω = 0 .

This contradicts the assumption that f �= 0. Analogously, we can show the second
assertion.

Lemma 2.31 describes a special aspect of a general principle that says that both f

and f̂ cannot be highly localized, i.e., if |f |2 vanishes or is very small outside some
small interval, then |f̂ |2 spreads out, and conversely. We measure the dispersion of
f about the time x0 ∈ R by

Δx0f :=
1

‖f ‖2

∫

R

(x − x0)
2 |f (x)|2dx > 0 .



90 2 Fourier Transforms

Note that if x f (x), x ∈ R, is not in L2(R), then Δx0f = ∞ for any x0 ∈ R.
The dispersion Δx0f measures how much |f (x)|2 spreads out in a neighborhood
of x0. If |f (x)|2 is very small outside a small neighborhood of x0, then the factor
(x − x0)

2 makes the numerator of Δx0f small in comparison with the denominator
‖f ‖2. Otherwise, if |f (x)|2 is large far away from x0, then the factor (x − x0)

2

makes the numerator of Δx0f large in comparison with the denominator ‖f ‖2.
Analogously, we measure the dispersion of f̂ about the frequency ω0 ∈ R by

Δω0 f̂ :=
1

‖f̂ ‖2

∫

R

(ω − ω0)
2 |f̂ (ω)|2 dω > 0 .

By the Parseval equality ‖f̂ ‖2 = 2π ‖f ‖2 > 0 we obtain

Δω0 f̂ =
1

2π ‖f ‖2

∫

R

(ω − ω0)
2 |f̂ (ω)|2 dω .

If ω f (ω), ω ∈ R, is not in L2(R), then Δω0f = ∞ for any ω0 ∈ R.

Example 2.32 As in Example 2.6 we consider the normalized Gaussian function

f (x) := 1√
2πσ 2

e−x2/(2σ 2)

with standard deviation σ > 0. Then f has L1(R) norm one, but the energy

‖f ‖2 = 1

2πσ 2

∫

R

e−x2/σ 2
dx = 1

2σ
√
π

.

Further f has the Fourier transform

f̂ (ω) = e−σ 2ω2/2

with the energy

‖f̂ ‖2 =
∫

R

e−σ 2ω2
dω =

√
π

σ
.

For small deviation σ we observe that f is highly localized near zero, but its Fourier
transform f̂ has the large deviation 1

σ
and is not concentrated near zero. Now we

measure the dispersion of f around the time x0 ∈ R by

Δx0f =
1

2πσ 2 ‖f ‖2

∫

R

(x − x0)
2 e−x2/σ 2

dx

= 1

2πσ 2 ‖f ‖2

∫

R

x2 e−x2/σ 2
dx + x2

0 =
σ 2

2
+ x2

0 .
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For the dispersion of f̂ about the frequency ω0 ∈ R, we obtain

Δω0 f̂ =
1

‖f̂ ‖2

∫

R

(ω − ω0)
2 e−σ 2ω2

dω

= 1

‖f̂ ‖2

∫

R

ω2 e−σ 2ω2
dω + ω2

0 =
1

2σ 2
+ ω2

0 .

Thus for each σ > 0 we get the inequality

(Δx0f ) (Δω0 f̂ ) = (σ 2

2
+ x2

0

) ( 1

2σ 2 + ω2
0

) ≥ 1

4

with equality for x0 = ω0 = 0.

Heisenberg’s uncertainty principle says that for any x0, ω0 ∈ R, both functions
f and f̂ cannot be simultaneously localized around time x0 ∈ R and frequency
ω0 ∈ R.

Theorem 2.33 (Heisenberg’s Uncertainty Principle) For any nonzero function
f ∈ L2(R), the inequality

(Δx0f ) (Δω0 f̂ ) ≥ 1

4
(2.27)

is fulfilled for each x0, ω0 ∈ R. The equality in (2.27) holds if and only if

f (x) = C ei ω0x e−a (x−x0)
2/2 , x ∈ R , (2.28)

with some a > 0 and complex constant C �= 0.

Proof

1. Without loss of generality, we can assume that both functions x f (x), x ∈ R,
and ω f̂ (ω), ω ∈ R are contained in L2(R) too, since otherwise we have
(Δx0f ) (Δω0 f̂ ) = ∞ and the inequality (2.27) is true.

2. In the special case x0 = ω0 = 0, we obtain by the definitions that

(Δ0f ) (Δ0f̂ ) = 1

2π ‖f ‖4

( ∫

R

|x f (x)|2 dx
) ( ∫

R

|ω f̂ (ω)|2 dω
)
.

For simplicity we additionally assume the differentiability of f . From ωf̂ (ω) ∈
L2(R) it follows by Theorems 2.5 and 2.22 that f ′ ∈ L2(R). Thus we get by
(Ff ′)(ω) = iωf̂ (ω) and the Parseval equality (2.13) that

(Δ0f ) (Δ0f̂ ) = 1

2π ‖f ‖4

( ∫

R

|x f (x)|2 dx
) ( ∫

R

|(Ff ′)(ω)|2 dω
)

= 1

‖f ‖4

( ∫

R

|x f (x)|2 dx
) ( ∫

R

|f ′(x)|2 dx
)
. (2.29)
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By integration by parts we obtain

∫

R

(
x f (x)

)
f ′(x) dx = x |f (x)|2

∣
∣
∣
∞
−∞︸ ︷︷ ︸

=0

−
∫

R

(|f (x)|2 + x f (x) f ′(x)
)

dx

and hence

‖f ‖2 = −2 Re
∫

R

x f (x) f ′(x) dx .

By the Cauchy–Schwarz inequality in L2(R) it follows that

‖f ‖4 = 4
(

Re
∫

R

x f (x) f ′(x) dx
)2

≤ 4
∣
∣
∫

R

x f (x) f ′(x) dx
∣
∣2

≤ 4
( ∫

R

x2 |f (x)|2 dx
) ( ∫

R

|f ′(x)|2 dx
)
. (2.30)

Then by (2.29) and (2.30) we obtain the inequality (2.27) for x0 = ω0 = 0.
3. Going through the previous step of the proof we see that we have equality

in (2.27) if and only if

∫

R

x f (x) f ′(x) dx ∈ R (2.31)

and equality holds true in the Cauchy–Schwarz estimate

∣
∣
∫

R

x f (x) f ′(x) dx
∣
∣2 = ( ∫

R

x2 |f (x)|2 dx
) ( ∫

R

|f ′(x)|2 dx
)
.

The latter is the case if and only if x f (x) and f ′(x) are linearly dependent, i.e.,

f ′(x)+ a xf (x) = 0, a ∈ C.

Plugging this into (2.31), we see that the integral can become only real if a ∈ R.
The above ordinary differential equation has the solution f (x) = C e−a x2/2

which belongs to L2(R) only for a > 0.
4. In the general case with any x0, ω0 ∈ R, we introduce the function

g(x) := e−iω0x f (x + x0) , x ∈ R . (2.32)
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Obviously, g ∈ L2(R) is nonzero. By Theorem 2.5, this function g has the
Fourier transform

ĝ(ω) = ei(ω+ω0)x0 f̂ (ω + ω0) , ω ∈ R ,

such that

Δ0g =
∫

R

x2 |f (x + x0)|2 dx = Δx0f ,

Δ0ĝ =
∫

R

ω2 |f̂ (ω + ω0)|2 dω = Δω0 f̂ .

Thus we obtain by step 2 that

(Δx0f ) (Δω0 f̂ ) = (Δ0g) (Δ0ĝ) ≥ 1

4
.

5. From the equality (Δ0g) (Δ0ĝ) = 1
4 it follows by step 3 that g(x) = C e−ax2/2

with C ∈ C and a > 0. By the substitution (2.32) we see that the equality
in (2.27) means that f has the form (2.28).

Remark 2.34 In the above proof, the additional assumption that f is differentiable
is motivated by the following example. The hat function f (x) = maxx∈R{1−|x|, 0}
possesses the Fourier transform f̂ (ω) = (

sinc ω
2

)2 (cf. Example 2.4). Hence x f (x)

and ω f̂ (ω) are in L2(R), but f is not differentiable. In Sect. 4.3.1 we will see that
we have to deal indeed with functions which are differentiable in the distributional
sense. The distributional derivative of the hat function f is equal to χ[−1, 0] − χ[0, 1]
(cf. Remark 4.43).

The average time of a nonzero function f ∈ L2(R) is defined by

x∗ := 1

‖f ‖2

∫

R

x |f (x)|2 dx .

This value exists and is a real number, if
∫
R
|x| |f (x)|2 dx < ∞. For a nonzero

function f ∈ L2(R) with x∗ ∈ R, the quantity Δx∗f is the so-called temporal
variance of f . Analogously, the average frequency of the Fourier transform f̂ ∈
L2(R) is defined by

ω∗ := 1

‖f̂ ‖2

∫

R

ω |f̂ (ω)|2 dω .

For a Fourier transform f̂ with ω∗ ∈ R, the quantity Δω∗ f̂ is the so-called frequency
variance of f̂ .
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Example 2.35 The normalized Gaussian function in Example 2.32 has the average

time zero and the temporal variance Δ0f = σ 2

2 , where σ > 0 denotes the standard
deviation of the normalized Gaussian function (2.2). Its Fourier transform has the
average frequency zero and the frequency variance Δ0f̂ = 1

2σ 2 .

Lemma 2.36 For each nonzero function f ∈ L2(R) with finite average time x∗, it
holds the estimate

Δx0f = Δx∗f + (x∗ − x0)
2 ≥ Δx∗f

for any x0 ∈ R.
Similarly, for each nonzero function f ∈ L2(R) with finite average frequency ω∗

of f̂ it holds the estimate

Δω0 f̂ = Δω∗ f̂ + (ω∗ − ω0)
2 ≥ Δω∗ f̂

for any ω0 ∈ R.

Proof From

(x − x0)
2 = (x − x∗)2 + 2 (x − x∗)(x∗ − x0)+ (x∗ − x0)

2

it follows immediately that

∫

R

(x − x0)
2 |f (x)|2 dx =

∫

R

(x − x∗)2 |f (x)|2 dx + 0+ (x∗ − x0)
2 ‖f ‖2

and hence

Δx0f = Δx∗f + (x∗ − x0)
2 ≥ Δx∗f .

Analogously, one can show the second inequality.

Applying Theorem 2.33 in the special case x0 = x∗ and ω0 = ω∗, we obtain the
following result:

Corollary 2.37 For any nonzero function f ∈ L2(R) with finite average time x∗
and finite average frequency ω∗, the inequality

(Δx∗f ) (Δω∗ f̂ ) ≥ 1

4

is fulfilled. The equality in above inequality holds if and only if

f (x) = C ei ω∗x e−a (x−x∗)2/2 , x ∈ R ,

with some a > 0 and complex constant C �= 0.
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2.5 Fourier-Related Transforms in Time–Frequency Analysis

In time–frequency analysis time-dependent functions with changing frequency
characteristics appearing e.g., in music, speech, or radar signal, are studied in time
and frequency simultaneously. By the uncertainty principle, the Fourier transform
does not yield a good description of the local spatial behavior of the frequency
content. A standard tool in time–frequency analysis is the windowed Fourier
transform which is discussed in the first subsection. In order to obtain information
about local properties of f ∈ L2(R), we restrict f to small intervals and examine
the resulting Fourier transforms. Another popular tool in time–frequency analysis
is the fractional Fourier transform which is handled in the second subsection. Note
that wavelet theory also belongs to time–frequency analysis, but is out of the scope
of this book.

2.5.1 Windowed Fourier Transform

The Fourier transform f̂ contains frequency information of the whole function
f ∈ L2(R). Now we are interested in simultaneous information about time and
frequency of a given function f ∈ L2(R). In time–frequency analysis we ask for
frequency information of f near certain time. Analogously, we are interested in the
time information of the Fourier transform f̂ near certain frequency. Therefore we
localize the function f and its Fourier transform f̂ by using windows.

A real, even nonzero function ψ ∈ L2(R), where ψ and ψ̂ are localized near
zero, is called a window function or simply window. Thus ψ̂ is a window too.

Example 2.38 Let L > 0 be fixed. Frequently applied window functions are the
rectangular window

ψ(x) = χ[−L,L](x) ,

the triangular window

ψ(x) = (
1− |x|

L

)
χ[−1, 1](x) ,

the Gaussian window with deviation σ > 0

ψ(x) = 1√
2πσ 2

e−x2/(2σ 2) ,

the Hanning window

ψ(x) = 1

2

(
1+ cos

πx

L

)
χ[−L,L](x) ,
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Fig. 2.2 Hanning window
(red) and Hamming window
(blue) for L = 2

ψ(x)

0.5

210

x

−2 −1

and the Hamming window

ψ(x) = (
0.54+ 0.46 cos

πx

L

)
χ[−L,L](x) ,

where χ[−L,L] denotes the characteristic function of the interval [−L, L].
Figures 2.2 shows the Hanning window and the Hamming window for L = 2.

Using the shifted window ψ(· − b), we consider the product f ψ(· − b) which is
localized in some neighborhood of b ∈ R. Then we form the Fourier transform of
the localized function f ψ(· − b). The mapping Fψ : L2(R)→ L2(R

2) defined by

(Fψf )(b, ω) :=
∫

R

f (x)ψ(x − b) e−i ωx dx = 〈f, Ψb,ω〉L2(R) (2.33)

with the time–frequency atom

Ψb,ω(x) := ψ(x − b) ei ωx , x ∈ R ,

is called windowed Fourier transform or short-time Fourier transform (STFT), see
[152, pp. 37–58]. Note that the time–frequency atom Ψb,ω is concentrated in time
b and in frequency ω. A special case of the windowed Fourier transform is the
Gabor transform [124] which uses a Gaussian window. The squared magnitude
|(Fψf )(b, ω)|2 of the windowed Fourier transform is called spectrogram of f with
respect to ψ .

The windowed Fourier transform Fψf can be interpreted as a joint time–
frequency information of f . Thus (Fψf )(b, ω) can be considered as a measure
for the amplitude of a frequency band near ω at time b.

Example 2.39 We choose the Gaussian window ψ with deviation σ = 1, i.e.,

ψ(x) := 1√
2π

e−x2/2 , x ∈ R ,

and consider the L2(R) function f (x) := ψ(x) ei ω0x with fixed frequency ω0 ∈ R.
We show that the frequency ω0 can be detected by windowed Fourier transform
Fψf which reads as follows:

(Fψf )(b, ω) = 1

2π
e−b2/2

∫

R

e−x2
eb x+i (ω0−ω) x dx .
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From Example 2.6 we know that

∫

R

e−x2
ei ωx dx = √π e−ω2/4

and hence we obtain by substitution that

(Fψf )(b, ω) = 1

2
√
π

e−b2/4 e(ω0−ω)2/4 ei b (ω0−ω)/2 .

Thus the spectrogram is given by

∣
∣(Fψf )(b, ω)

∣
∣2 = 1

4π
e−b2/2 e(ω0−ω)2/2 .

For each time b ∈ R, the spectrogram has its maximum at the frequency ω = ω0. In
practice, one can detect ω0 only, if |b| is not too large.

The following identity combines f and f̂ in a joint time–frequency
representation.

Lemma 2.40 Let ψ be a window. Then for all time–frequency locations (b, ω) ∈
R

2 we have

2π (Fψf )(b, ω) = e−i bω (F
ψ̂
f̂ )(ω,−b) .

Proof Since ψ is real and even by definition, its Fourier transform ψ̂ is real and
even too. Thus ψ̂ is a window too. By Theorem 2.5 and Parseval equality (2.13) we
obtain

2π 〈f, ψ(· − b) eiω ·〉L2(R) = 〈f̂ , ψ̂(· − ω) e−ib(·−ω)〉L2(R)

and hence

2π
∫

R

f (x)ψ(x − b) e−i ωx dx =
∫

R

f̂ (u) ψ̂(u− ω) ei b (u−ω) du

= e−i bω
∫

R

f̂ (u) ψ̂(u− ω) ei bu du .

Remark 2.41 Let ψ be a window function, where the functions x ψ(x) and ω ψ̂(ω)

are in L2(R) too. For all time–frequency locations (b, ω) ∈ R
2, the time–frequency

atoms Ψb,ω = ψ(·−b) ei ω · and their Fourier transforms Ψ̂b,ω = ψ̂(·−ω) e−i b (· −ω)

have constant energies ‖Ψb,ω‖2 = ‖ψ‖2 and ‖Ψ̂b,ω‖2 = ‖ψ̂‖2 = 2π ‖ψ‖2. Then
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the atom Ψb,ω has the average time x∗ = b and Ψ̂b,ω has the average frequency
ω∗ = ω, since

x∗ = 1

‖ψ‖2

∫

R

x |Ψb,ω(x)|2 dx = 1

‖ψ‖2

∫

R

(x + b) |ψ(x)|2 dx = b ,

ω∗ = 1

‖ψ̂‖2

∫

R

u |Ψ̂b,ω(u)|2 du = 1

‖ψ̂‖2

∫

R

(u+ ω) |ψ̂(u)|2 du = ω .

Further, the temporal variance of the time–frequency atom Ψb,ω is invariant for all
time–frequency locations (b, ω) ∈ R

2, because

ΔbΨb,ω = 1

‖ψ‖2

∫

R

(x − b)2 |Ψb,ω(x)|2 dx = 1

‖ψ‖2

∫

R

x2 |ψ(x)|2 dx = Δ0ψ .

Analogously, the frequency variance of Ψ̂b,ω is constant for all time–frequency
locations (b, ω) ∈ R

2, because

ΔωΨ̂b,ω = 1

‖ψ̂‖2

∫

R

(u− ω)2 |Ψ̂b,ω(u)|2 du = 1

‖ψ̂‖2

∫

R

u2 |ψ̂(u)|2 du = Δ0ψ̂ .

For arbitrary f ∈ L2(R), we obtain by Parseval equality (2.13)

2π (Fψ)(b, ω) = 2π 〈f, Ψb,ω〉L2(R) = 〈f̂ , Ψ̂b,ω〉L2(R) .

Hence the value (Fψ)(b, ω) contains information on f in the time–frequency
window or Heisenberg box

[
b −√

Δ0ψ, b +√
Δ0ψ

]× [
ω −

√
Δ0ψ̂, ω +

√
Δ0ψ̂

]
,

since the deviation is the square root of the variance. Note that the area of the
Heisenberg box cannot become arbitrary small, i.e., it holds by Heisenberg’s
uncertainty principle (see Corollary 2.37) that

(
2
√
Δ0ψ

) (
2
√
Δ0ψ̂

) ≥ 2.

The size of the Heisenberg box is independent of the time–frequency location
(b, ω) ∈ R

2. This means that a windowed Fourier transform has the same resolution
across the whole time–frequency plane R2.

Theorem 2.42 Let ψ be a window function. Then for f, g ∈ L2(R) the following
relation holds true:

〈Fψf, Fψg〉L2(R
2) = 2π ‖ψ‖2

L2(R
〈f, g〉L2(R) .
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In particular, for ‖ψ‖L2(R) = 1 the energies ofFψ and f are equal up to the factor
2π ,

‖Fψf ‖2
L2(R)2)

= 2π ‖f ‖2
L2(R) .

Proof

1. First, let ψ ∈ L1(R) ∩ L∞(R). Then we have

〈Fψf,Fψg〉L2(R2) =
∫

R

∫

R

(Fψ)f (b, ω) (Fψg)(b, ω) dω db .

We consider the inner integral

∫

R

(Fψf )(b, ω) (Fψg)(b, ω) dω =
∫

R

(f ψ̄(· − b))ˆ(ω) (g ψ̄(· − b))ˆ(ω) dω .

By

∫

R

|f (x)ψ(x − b)|2 dx ≤ ‖ψ‖2
L∞(R) ‖f ‖2

L2(R) <∞

we see that fψ ∈ L2(R) such that we can apply the Parseval equality (2.13)

∫

R

(Fψf )(b, ω) (Fψg)(b, ω) dω = 2π
∫

R

f (x) g(x) |ψ(x − b)|2 dx .

Using this in the above inner product results in

〈Fψf, Fψg〉L2(R2) =
∫

R

∫

R

f (x) g(x) |ψ(x − b)|2 dx db .

Since f , g ∈ L2(R), we see as in the above argumentation that the absolute
integral exists. Hence we can change the order of integration by Fubini’s theorem
which results in

〈Fψf, Fψg〉L2(R2) = 2π
∫

R

f (x) g(x)

∫

R

|ψ(x − b)|2 db dx

= 2π ‖ψ‖2
L2(R) 〈f, g〉L2(R) .

2. Let f , g ∈ L2(R) be fixed. By ψ �→ 〈Fψf,Fψg〉L2(R2) a continuous functional
is defined on L1(R)∩L∞(R). Now L1(R)∩L∞(R) is a dense subspace of L2(R).
Then this functional can be uniquely extended on L2(R), where 〈f, g〉L2(R) is
kept.
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Remark 2.43 By Theorem 2.42 we know that

∫

R

|f (x)|2 dx = 1

2π

∫

R

∫

R

|(Fψf )(b, ω)|2 db dω .

Hence the spectrogram |(Fψf )(b, ω)|2 can be interpreted as an energy density, i.e.,
the time–frequency rectangle [b, b+Δb]×[ω, ω+Δω] corresponds to the energy

1

2π
|(Fψf )(b, ω)|2 Δb Δω .

By Theorem 2.42 the windowed Fourier transform represents a univariate signal f ∈
L2(R) by a bivariate function Fψf ∈ L2(R

2). Conversely, from given windowed
Fourier transform Fψf one can recover the function f :

Corollary 2.44 Let ψ be a window function with ‖ψ‖L2(R) = 1. Then for all f ∈
L2(R) it holds the representation formula

f (x) = 1

2π

∫

R

∫

R

(Fψf )(b, ω) ψ(x − b) ei ωx db dω ,

where the integral is meant in the weak sense.

Proof Let

f̃ (x) :=
∫

R

∫

R

(Fψf )(b, ω)ψ(x − b) ei ωx db dω , x ∈ R .

By Theorem 2.42 we obtain

〈f̃ , h〉L2(R) =
∫

R

∫

R

(Fψf )(b, ω) 〈ψ(· − b) ei ω ·, h〉L2(R) db dω

= 〈Fψf, Fψh〉L2(R2) = 2π 〈f, h〉L2(R)

for all h ∈ L2(R) so that f̃ = 2π f in L2(R).

A typical application of this time–frequency analysis consists in the following
three steps:

1. For a given (noisy) signal f ∈ L2(R) compute the windowed Fourier transform
Fψf with respect to a suitable window ψ .

2. Then (Fψf )(b, ω) is transformed into a new function g(b, ω) by the so-called
signal compression. Usually, (Fψf )(b, ω) is truncated to a region of interest,
where |(Fψf )(b, ω)| is larger than a given threshold.
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3. By the compressed function g compute an approximate signal f̃ (of the given
signal f ) by a modified reconstruction formula of Corollary 2.44

f̃ (x) = 1

2π

∫

R

∫

R

g(b, ω) ϕ(x − b) eiωx db dω ,

where ϕ is a convenient window. Note that distinct windows ψ and ϕ may be
used in steps 1 and 3.

For an application of the windowed Fourier transform in music analysis, we refer
to [111].

2.5.2 Fractional Fourier Transforms

The fractional Fourier transform (FRFT) is another Fourier-related transform in
time–frequency analysis. Some of its roots can be found in quantum mechanics
and in optics, where the FRFT can be physically realized. For more details, see
[52, 53, 260] and in particular for numerical algorithms to compute the FRFT
[54]. The definition of FRFT is based on the spectral decomposition of the Fourier
transform on L2(R). To this end, we consider the normalized Fourier transform

1√
2π

(Ff )(u) = 1√
2π

∫

R

f (x) e−i xu dx

which is a unitary operator on L2(R) by Theorem 2.22 of Plancherel. By Theo-
rem 2.25, the normalized Hermite functions

ϕn(x) := (2n n!)−1/2 π−1/4 Hn(x) e−x2/2 , n ∈ N0 ,

are eigenfunctions of 1√
2π

F related to the eigenvalues (−i)n = e−inπ/2, i.e.,

1√
2π

Fϕn = e−i nπ/2 ϕn , n ∈ N0 . (2.34)

Since {ϕn : n ∈ N0} is an orthonormal basis of L2(R), every function f ∈ L2(R)

can be represented in the form

f =
∞∑

n=0

〈f, ϕn〉L2(R) ϕn .
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Then, by Theorems 2.22 and 2.34, it follows the spectral decomposition

1√
2π

(Ff )(u) =
∞∑

n=0

e−i nπ/2 〈f, ϕn〉L2(R) ϕn(u) =
∫

R

Kπ/2(x, u) f (x) dx

with the kernel of the normalized Fourier transform

Kπ/2(x, u) :=
∞∑

n=0

e−i nπ/2 ϕn(x) ϕn(u) = 1√
2π

e−i xu .

We use the spectral decomposition of 1√
2π

F to define the fractional Fourier

transformFα of order α ∈ R as the series

(Fαf )(u) :=
∞∑

n=0

e−i nα 〈f, ϕn〉L2(R) ϕn(u) (2.35)

for arbitrary f ∈ L2(R). Obviously, Fα is a continuous linear operator of L2(R)

into itself with the property

Fαϕn = e−i nα ϕn , n ∈ N0 . (2.36)

Since the operator F is 2π-periodic with respect to α, i.e., Fα+2πf = Fαf for
all f ∈ L2(R), we can restrict ourselves to the case α ∈ [−π, π). Using (2.35)
we see that F0f = f , Fπ/2f = 1√

2π
Ff , and F−π/2f = 1√

2π
F−1f for all

f ∈ L2(R). Applying Hn(−x) = (−1)n Hn(x), we obtain

(F−πf )(u) =
∞∑

n=0

(−1)n 〈f, ϕn〉L2(R) ϕn =
∞∑

n=0

〈f (−·), ϕn〉L2(R) ϕn(u) = f (−u) .

Roughly speaking, the fractional Fourier transform can be interpreted by a rotation
through an angle α ∈ [−π, π) in the time–frequency plane. Let u and v be the new
rectangular coordinates in the time–frequency plane, i.e.,

(
u

v

)
=

(
cosα sinα

− sinα cosα

) (
x

ω

)
.

Using (2.35) and setting

u = x cosα + ω sin α , (2.37)
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we obtain the following connections:

α u = x cos α + ω sinα (Fαf )(u)

−π u = −x (F−πf )(−x) = f (x)

− π
2 u = −ω (F−π/2f )(−ω) = 1√

2π
(F−1f )(−ω)

0 u = x (F0f )(x) = f (x)
π
2 u = ω (Fπ/2f )(ω) = 1√

2π
(Ff )(ω)

π u = −x (Fπf )(−x) = (F−πf )(−x) = f (x)

As seen in the table, the FRFT is essentially a rotation in the time–frequency
plane. By (2.37) the u-axis rotates around the origin such that, e.g., for increasing
α ∈ [0, π

2 ], the FRFT (Fαf )(u) describes the change of f (x) towards the

normalized Fourier transform (2π)−1/2 f̂ (ω).
For 0 < |α| < π , Mehler’s formula [223, p. 61] implies for x, u ∈ R that

Kα(x, u) :=
∞∑

n=0

e−i nα ϕn(x) ϕn(u)

=
√

1− i cotα

2π
exp

(
i

2
(x2 + u2) cotα − i xu

sin α

)
,

where the argument of
√

1− i cotα lies in [−π
2 ,

π
2 ]. For computational purposes,

it is more practical to use the integral representation of the FRFT

(Fαf )(u) =
∫

R

f (x)Kα(x, u) dx

=
√

1− i cotα

2π

∫

R

f (x) exp

(
i

2
(x2 + u2) cotα − i xu

sin α

)
dx .

Remark 2.45 The FRFT Fαf exists if the Fourier transform Ff exists, in
particular for f ∈ L2(R) or f ∈ L1(R). Similarly to the Fourier transform
of tempered distributions introduced in Sect. 4.3, the FRFT can be extended to
tempered distributions.

In the most interesting case α ∈ (−π, π) \ {−π
2 , 0, π

2 }, the FRFT Fαf can be
formed in three steps:

1. multiplication of the given function f (x) with the linear chirp exp( i
2 x2 cotα),

2. Fourier transform of the product for the scaled argument u
sinα

, and
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3. multiplication of the intermediate result with the linear chirp

√
1− i cotα

2π
exp

(
i

2
u2 cotα

)
.

Similarly as the complex exponentials are the basic functions for the Fourier
transform, linear chirps are basic functions for the FRFT Fαf for α ∈ (−π, π) \
{−π

2 , 0, π
2 }.

From the definition of FRFT we obtain the following properties of the FRFT.

Lemma 2.46 For all α, β ∈ R, the FRFT has the following properties:

1. F0 is the identity operator and Fπ/2 coincides with the normalized Fourier
transform 1√

2π
F .

2. Fα Fβ = Fα+β .
3. F−α is the inverse ofFα .
4. For all f , g ∈ L2(R) it holds the Parseval equality

〈f, g〉L2(R) =
∫

R

f (x) g(x) dx = 〈Fαf, Fαg〉L2(R) .

Proof The first property follows immediately from the definition of the FRFT Fα

for α = 0 and α = π
2 . The second property can be seen as follows. For arbitrary

f ∈ L2(R) we have

Fβf =
∞∑

n=0

e−inβ 〈f, ϕn〉L2(R) ϕn .

Since Fα is a continuous linear operator with the property (2.36), we conclude

Fα(Fβf ) =
∞∑

n=0

e−in(α+β) 〈f, ϕn〉L2(R) ϕn = Fα+βf .

The third property is a simple consequence of the first and second property.
Finally, the Parseval equality holds for all f , g ∈ L2(R), since

〈Fαf, Fαg〉L2(R) =
∞∑

n=0

∞∑

m=0

e−i(n−m)α 〈f, ϕn〉L2(R) 〈g, ϕm〉L2(R) δn−m

=
∞∑

n=0

〈f, ϕn〉L2(R) 〈g, ϕn〉L2(R) = 〈f, g〉L2(R) .

This completes the proof.
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The following theorem collects further basic properties of the FRFT which can
easily be proved.

Theorem 2.47 Let α ∈ (−π, π) \ {−π
2 , 0, π

2 } be given. Then the FRFT of order
α has the following properties:

1. Linearity: For all c, d ∈ C and f , g ∈ L2(R),

Fα(c f + d g) = cFαf + d Fα .

2. Translation and modulation: For all b ∈ R and f ∈ L2(R),

(
Fαf (· − b)

)
(u) = exp

( i

2
b2 sinα cosα − i ub sinα

)
(Fαf )(u− b cosα) ,

(
Fαe−ib ·f

)
(u) = exp

(− i

2
b2 sinα cosα − i ub cosα

)
(Fαf )(u+ b sinα) .

3. Differentiation and multiplication: For f ∈ L2(R) with f ′ ∈ L2(R),

(Fαf
′)(u) = cosα

d

du
(Fαf )(u)+ i u sin α (Fαf )(u) .

If f and g(x) := x f (x), x ∈ R, are contained in L2(R), then

(Fαg)(u) = u cosα (Fαf )(u)+ i sinα
d

du
(Fαf )(u) .

4. Scaling: For b ∈ R \ {0}, (Fαf (b ·))(u) reads as follows:

1

|b|

√
1− i cotα

1− i cotβ
exp

( i

2
u2 cotα

(
1− (cosβ)2

(cosα)2

))
(Fβf )

(u sinβ

b sin α

)

with β := arctan(b2 tanα).

Example 2.48 The function f (x) = (4x2 − 10) e−x2/2 = (
H2(x) − 8

)
e−x2/2 is

contained in L2(R), where H2(x) = 4x2 − 2 is the second Hermite polynomial.
Since the FRFT Fα is a linear operator, we obtain the FRFT

(Fαf )(u) = (e−2iα H2(u)− 8) e−u2/2 = (4 e−2iα u2 − 2 e−2iα − 8) e−u2/2 .

Using the scaling property of the FRFT in Theorem 2.47, the function g(x) =
e−b2 x2/2, x ∈ R, with b ∈ R \ {0} possesses the FRFT

1

|b|

√
1− i cotα

1− i cotβ
exp

( i

2
u2 cotα

(
1− (cosβ)2

(cosα)2

))
exp

(− u2

2

(sin β)2

b2 (sinα)2

)

with β := arctan(b2 tanα).
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The linear canonical transform (see [162]) is a generalization of the FRFT. As
shown, the FRFT of order α is related to the rotation matrix

Rα :=
(

cosα sin α

− sinα cosα

)
.

If

A :=
(
a b

c d

)

is a real matrix with determinant 1 and b > 0, then the linear canonical transform
LA : L2(R)→ L2(R) is defined by

(LAf )(u) :=
∫

R

kA(u, x) f (x) dx , f ∈ L2(R) ,

with the kernel

kA(u, x) := 1√
2πb

exp
(

i
(a x2

2b
+ d u2

2b
− u x

b
− π

4

))
.

For A = R0, the linear canonical transform LA is equal to the Fourier transform
F multiplied by (2π)−1/2 e−iπ/4. For A = Rα with sin α > 0, the linear canonical
transform LA coincides with a scaled FRFT Fα .



Chapter 3
Discrete Fourier Transforms

This chapter deals with the discrete Fourier transform (DFT). In Sect. 3.1, we
show that numerical realizations of Fourier methods, such as the computation
of Fourier coefficients, Fourier transforms, or trigonometric interpolation, lead to
the DFT. We also present barycentric formulas for interpolating trigonometric
polynomials. In Sect. 3.2, we study the basic properties of the Fourier matrix
and of the DFT. In particular, we consider the eigenvalues of the Fourier matrix
with their multiplicities. Further, we present the intimate relations between cyclic
convolutions and the DFT. In Sect. 3.3, we show that cyclic convolutions and
circulant matrices are closely related and that circulant matrices can be diagonalized
by the Fourier matrix. Section 3.4 presents the properties of Kronecker products
and stride permutations, which we will need later in Chap. 5 for the factorization
of a Fourier matrix. We show that block circulant matrices can be diagonalized by
Kronecker products of Fourier matrices. Finally, Sect. 3.5 addresses real versions of
the DFT, such as the discrete cosine transform (DCT) and the discrete sine transform
(DST). These linear transforms are generated by orthogonal matrices.

3.1 Motivations for Discrete Fourier Transforms

Discrete Fourier methods can be traced back to the eighteenth and nineteenth
century, where they have been used already for determining the orbits of celes-
tial bodies. The corresponding data contain periodic patterns that can be well
interpolated by trigonometric polynomials. In order to calculate the coefficients
of trigonometric polynomials we need to employ the so-called discrete Fourier
transform (DFT). Clairaut, Lagrange, and later Gauss already considered the DFT
to solve the problem of fitting astronomical data. In 1754, Clairaut published a first
formula for a discrete Fourier transform. For historical remarks, see [46, pp. 2–6].
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We start with introducing the discrete Fourier transform. For a given vector a =
(aj )

N−1
j=0 ∈ C

N we call the vector â = (âk)
N−1
k=0 ∈ C

N the discrete Fourier transform
of a with length N , if

âk =
N−1∑

j=0

aj e−2π i jk/N =
N−1∑

j=0

aj w
jk

N , k = 0, . . . , N − 1 , (3.1)

where

wN := e−2π i/N = cos
2π

N
− i sin

2π

N
. (3.2)

Obviously, wN ∈ C is a primitive N th root of unity, because wN
N = 1 and wk

N �= 1
for k = 1, . . . , N − 1. Since

(wk
N)N = (

e−2π i k/N)N = e−2π ik = 1 ,

all numbers wk
N , k = 0, . . . , N − 1 are N th roots of unity and form the vertices of

a regular N-gon inscribed in the complex unit circle.
In this section we will show that the discrete Fourier transform naturally comes

into play for the numerical solution of the following fundamental problems:

• computation of Fourier coefficients of a function f ∈ C(T),
• computation of the values of a trigonometric polynomial on a uniform grid of the

interval [0, 2π),
• calculation of the Fourier transform of a function f ∈ L1(R)∩C(R) on a uniform

grid of an interval [−nπ, nπ) with certain n ∈ N,
• interpolation by trigonometric polynomials on a uniform grid of the interval
[0, 2π).

3.1.1 Approximation of Fourier Coefficients and Aliasing
Formula

First we describe a numerical approach to compute the Fourier coefficients ck(f ),
k ∈ Z, of a given function f ∈ C(T), where f is given by its values sampled on
the uniform grid { 2πj

N
: j = 0, . . . , N − 1}. Assume that N ∈ N is even. Using the

trapezoidal rule for numerical integration, we can compute ck(f ) for each k ∈ Z

approximately. By f (0) = f (2π) we find that

ck(f ) = 1

2π

∫ 2π

0
f (t) e−i kt dt

≈ 1

2N

N−1∑

j=0

[
f
(2πj

N

)
e−2π i jk/N + f

(2π(j + 1)

N

)
e−2π i (j+1)k/N

]
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= 1

2N

N−1∑

j=0

f
(2πj

N

)
e−2π i jk/N + 1

2N

N∑

j=1

f
(2πj

N

)
e−2π i jk/N

= 1

N

N−1∑

j=0

f
(2πj

N

)
e−2π i jk/N , k ∈ Z .

Thus we obtain

f̂k := 1

N

N−1∑

j=0

f
(2πj

N

)
w

jk
N (3.3)

as approximate values of ck(f ). If f is real-valued, then we observe the symmetry
relation

f̂k = f̂−k , k ∈ Z .

Obviously, the values f̂k are N-periodic, i.e., f̂k+N = f̂k for all k ∈ Z, since
wN

N = 1. However, by Lemma 1.27 of Riemann–Lebesgue we know that ck(f )→ 0
as |k| → ∞. Therefore, f̂k is only an acceptable approximation of ck(f ) for small
|k|, i.e.,

f̂k ≈ ck(f ) , k = −N

2
, . . . ,

N

2
− 1 .

Example 3.1 Let f be the 2π-periodic extension of the pulse function

f (x) :=
⎧
⎨

⎩

1 x ∈ (−π
2 ,

π
2 ) ,

1
2 x ∈ {−π

2 ,
π
2 } ,

0 x ∈ [−π, −π
2 ) ∪ (π2 , π) .

Note that f is even. Then its Fourier coefficients read for k ∈ Z \ {0} as follows:

ck(f ) = 1

2π

∫ π

−π

f (x) e−i kx dx = 1

π

∫ π/2

0
cos(kx) dx = 1

πk
sin

πk

2

and c0(f ) = 1
2 . For fixed N ∈ 4N, we obtain the related approximate values

f̂k = 1

N

N/2−1∑

j=−N/2

f
(2πj

N

)
w

jk

N

= 1

N

(
cos

πk

2
+ 1+ 2

N/4−1∑

j=1

cos
2πjk

N

)
k ∈ Z .
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Hence we have f̂k = 1
2 for k ∈ N Z. Using the Dirichlet kernel DN/4−1 with (1.22),

it follows that for k ∈ Z \ (N Z)

f̂k = 1

N

(
cos

πk

2
+DN/4−1

(2πk

N

)) = 1

N
sin

πk

2
cot

πk

N
.

This example illustrates the different asymptotic behavior of the Fourier coefficients
ck(f ) and its approximate values f̂k for |k| → ∞.

To see this effect more clearly, we will derive a so-called aliasing formula for
Fourier coefficients. To this end we use the following notations. As usual, δj , j ∈ Z,
denotes the Kronecker symbol with

δj :=
{

1 j = 0 ,

0 j �= 0 .

For j ∈ Z, we denote the nonnegative residue modulo N ∈ N by j mod N , where
j mod N ∈ {0, . . . , N −1} and N is a divisor of j− (j mod N). Note that we have
for all j, k ∈ Z

(j k) mod N = (
(j mod N) k

)
mod N . (3.4)

Lemma 3.2 Let N ∈ N be given. For each j ∈ Z, the primitive N th root of unity
wN has the property

N−1∑

k=0

w
jk
N = N δj mod N , (3.5)

where

δj mod N :=
{

1 j modN = 0 ,

0 j modN �= 0

denotes the N-periodic Kronecker symbol.

Proof In the case j modN = 0 we have j = �N with certain � ∈ Z and hence
w

j
N = (wN

N )� = 1. This yields (3.5) for j modN = 0.
In the case j modN �= 0 we have j = �N + m with certain � ∈ Z and m ∈

{1, . . . , N − 1} such that wj

N = (wN
N )� wm

N = wm
N �= 1. For arbitrary x �= 1, it holds

N−1∑

k=0

xk = xN − 1

x − 1
.

For x = w
j
N we obtain (3.5) for j modN �= 0.
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Lemma 3.2 can be used to prove the following aliasing formula, which describes
the relation between the Fourier coefficients ck(f ) and their approximate values f̂k .

Theorem 3.3 (Aliasing Formula for Fourier Coefficients) Let f ∈ C(T) be
given. Assume that the Fourier coefficients of f satisfy the condition

∑
k∈Z|ck(f )| <

∞. Then the aliasing formula

f̂k =
∑

�∈Z
ck+�N(f ) , k ∈ Z , (3.6)

holds.

Proof Using Theorem 1.37, the Fourier series of f converges uniformly to f . Hence
for each x ∈ T,

f (x) =
∑

�∈Z
c�(f ) ei �x .

For x = 2πj
N

, j = 0, . . . , N − 1, we obtain that

f
(2πj

N

) =
∑

�∈Z
c�(f ) e2π i j�/N =

∑

�∈Z
c�(f )w−�k

N .

Hence due to (3.3) and the convergence of the Fourier series

f̂k = 1

N

N−1∑

j=0

(∑

�∈Z
c�(f )w

−j�
N

)
w

jk
N =

∑

�∈Z
c�(f )

N−1∑

j=0

w
j(�−k)
N ,

which yields by (3.5) the aliasing formula (3.6).

By Theorem 3.3 we have no aliasing effect, if f is a trigonometric polynomial of
degree < N

2 , i.e., for

f =
N/2−1∑

k=−N/2+1

ck(f ) e2π i k ·

we have f̂k = ck(f ), k = −N/2+ 1, . . . , N/2 − 1.

Corollary 3.4 Under the assumptions of Theorem 3.3, the error estimate

|f̂k − ck(f )| ≤
∑

�∈Z\{0}
|ck+�N(f )| (3.7)
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holds for k = −N
2 , . . . , N

2 − 1. Especially for f ∈ Cr(T), r ∈ N, with the property

|ck(f )| ≤ c

|k|r+1 , k ∈ Z \ {0} , (3.8)

where c > 0 is a constant, we have the error estimate

|f̂k − ck(f )| ≤ c

r Nr+1

((1

2
+ k

N

)−r + (1

2
− k

N

)−r
)

(3.9)

for |k| < N
2 .

Proof The estimate (3.7) immediately follows from the aliasing formula (3.6) by
triangle inequality. With the assumption (3.8), formula (3.7) implies that

|f̂k − ck(f )| ≤
∞∑

�=1

(
|ck+�N(f )| + |ck−�N(f )|

)

≤ c

Nr+1

∞∑

�=1

((
�+ k

N

)−r−1 + (
�+ k

N

)−r−1
)
.

For |s| < 1
2 and � ∈ N, it can be simply checked that

(
�+ s

)−r−1
<

∫ �+1/2

�−1/2
(x + s)−r−1 dx,

since the function g(x) = (x + s)−r−1 is convex and monotonically decreasing.
Hence

∞∑

�=1

(
�+ k

N

)−r−1
<

∫ ∞

1/2
(x + s)−r−1 dx = 1

r

(1

2
+ s

)−r
,

since for s = ± k
N

with |k| < N
2 we have |s| < 1

2 . This completes the proof of (3.9).

3.1.2 Computation of Fourier Series and Fourier Transforms

First we study the computation of a trigonometric polynomial p ∈ Tn, n ∈ N, on a
uniform grid of [0, 2π). Choosing N ∈ N with N ≥ 2n + 1, we want to calculate
the value of p =∑n

j=−n cj ei j · at all grid points 2πk
N

for k = 0, . . . , N − 1, where
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the coefficients cj ∈ C are given. Using (3.2) we have

p
(2πk

N

) =
n∑

j=−n

cj e2π i jk/N =
n∑

j=−n

cj w
−jk

N =
n∑

j=0

c−j w
jk

N +
n∑

j=1

cj w
(N−j)k

N

=
n∑

j=0

c−j w
jk
N +

N−1∑

j=N−n

cN−j w
jk
N . (3.10)

Introducing the entries

dj :=
⎧
⎨

⎩

c−j j = 0, . . . , n ,

0 j = n+ 1, . . . , N − n+ 1 ,

cN−j j = N − n, . . . , N − 1 ,

we obtain

p
(2πk

N

) =
N−1∑

j=0

dj w
jk
N , k = 0, . . . , N − 1 , (3.11)

which can be interpreted as a discrete Fourier transform of length N .
Now, in order to evaluate a Fourier series on a uniform grid of an interval of
length 2π , we use their partial sum p = Snf as an approximation. For smooth
functions, the Fourier series converges rapidly, see Theorem 1.39, such that we can
approximate the Fourier series very accurately by proper choosing the polynomial
degree n.

Next we sketch the computation of the Fourier transform f̂ of a given function
f ∈ L1(R) ∩ C(R). Since f (x)→ 0 for |x| → ∞, we obtain for sufficiently large
n ∈ N that

f̂ (ω) =
∫

R

f (x) e−i xω dx ≈
∫ nπ

−nπ

f (x) e−i xω dx , ω ∈ R .

Using the uniform grid { 2πj
N
: j = −nN

2 , . . . , nN
2 − 1} of the interval [−nπ, nπ)

for even n ∈ N, we approximate the integral by the rectangle rule,

∫ nπ

−nπ

f (x) e−i xω dx ≈ 2π

N

nN/2−1∑

j=−nN/2

f
(2πj

N

)
e−2π i jω/N .

For ω = k
n

with k = −nN
2 , . . . , nN

2 − 1 we find the following approximate value of

f̂
(
k
n

)
,

f̂
(k
n

) ≈ 2π

N

nN/2−1∑

j=−nN/2

f
(2πj

N

)
w

jk
nN . (3.12)
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This is indeed a discrete Fourier transform of length nN , when we shift the
summation index similarly as in (3.10). Here, as before when evaluating the Fourier
coefficients, the approximation is only acceptable for the |k| ≤ nN

2 , since the

approximate values of f̂ ( k
n
) are nN-periodic, while the Fourier transform decays

with lim|ω|→∞ |f̂ (ω)| = 0.

Remark 3.5 In Sects. 9.1 and 9.2 we will present more accurate methods for
the computation of Fourier transforms and Fourier coefficients. The sampling of
trigonometric polynomials on a nonuniform grid will be considered in Chap. 7.

3.1.3 Trigonometric Polynomial Interpolation

Finally we consider the interpolation by a trigonometric polynomial on a uniform
grid of [0, 2π). First we discuss the trigonometric interpolation with an odd number
of equidistant nodes xk := 2πk

2n+1 ∈ [0, 2π), k = 0, . . . , 2n.

Lemma 3.6 Let n ∈ N be given and N = 2n + 1. For arbitrary pk ∈ C, k =
0, . . . , N − 1, there exists a unique trigonometric polynomial of degree n,

p =
n∑

�=−n

c� ei � · ∈ Tn (3.13)

satisfying the interpolation conditions

p(xk) = p
( 2πk

2n+ 1

) = pk , k = 0, . . . , 2n . (3.14)

The coefficients c� ∈ C of (3.13) are given by

c� = 1

2n+ 1

2n∑

k=0

pk w
�k
N , � = −n, . . . , n . (3.15)

Using the Dirichlet kernel Dn, the interpolating trigonometric polynomial (3.13)
can be written in the form

p = 1

2n+ 1

2n∑

k=0

pk Dn(· − xk) . (3.16)

Proof

1. From the interpolation conditions (3.14) it follows by (3.2) that solving the
trigonometric interpolation problem is equivalent to solving the system of linear
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equations

p(xk) =
n∑

�=−n

c� w
−�k
N = pk , k = 0, . . . , 2n . (3.17)

Assume that c� ∈ C solve (3.17). Then by Lemma 3.2 we obtain

2n∑

k=0

pk w
jk
N =

2n∑

k=0

( n∑

�=−n

c� w
−k�
N

)
w

jk
N

=
n∑

�=−n

c�

( 2n∑

k=0

w
(j−�)k
N

)
= (2n+ 1) cj .

Hence any solution of (3.17) has to be of the form (3.15).
On the other hand, for c� given by (3.15) we find by Lemma 3.2 that for

k = 0, . . . , 2n

p
( 2πk

2n+ 1
) = p(xk) =

n∑

�=−n

c� w
−�k
N = 1

2n+ 1

n∑

�=−n

( 2n∑

j=0

pj w
j�

N

)
w−�k

N

= 1

2n+ 1

2n∑

j=0

pj

( n∑

�=−n

w
(j−k)�
N

)
= pk .

Thus the linear system (3.17) is uniquely solvable.
2. From (3.13) and (3.15) it follows by c−� = cN−�, � = 1, . . . , n, that

p(x) = c0 +
n∑

�=1

(
c� ei �x + cN−� e−i �x)

= 1

2n+ 1

2n∑

k=0

pk

(
1+

n∑

�=1

(
ei �(x−xk) + e−i �(x−xk)

))

and we conclude (3.16) by the definition (1.21) of the Dirichlet kernel Dn.

Formula (3.16) particularly implies that the trigonometric Lagrange polynomials
�k ∈ Tn with respect to the uniform grid {xk = 2πk

2n+1 : k = 0, . . . , 2n} are given by

�k := 1

2n+ 1
Dn(· − xk) , k = 0, . . . , 2n .
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By Lemma 3.6 the trigonometric Lagrange polynomials �k , k = 0, . . . , N−1, form
a basis of Tn and satisfy the interpolation conditions

�k(xj ) = δj−k , j, k = 0, . . . , 2n .

Further, the trigonometric Lagrange polynomials generate a partition of unity,
since (3.16) yields for p = 1 that

1 = 1

2n+ 1

2n∑

k=0

pk Dn(· − xk) =
2n∑

k=0

�k . (3.18)

Now we consider the trigonometric interpolation for an even number of equidis-
tant nodes x∗k := πk

n
∈ [0, 2π), k = 0, . . . , 2n− 1.

Lemma 3.7 Let n ∈ N be given and N = 2n. For arbitrary p∗k ∈ C, k =
0, . . . , 2n− 1, there exists a unique trigonometric polynomial of the special form

p∗ =
n−1∑

�=1−n

c∗� ei � · + 1

2
c∗n

(
ei n · + e−i n ·) ∈ Tn (3.19)

satisfying the interpolation conditions

p∗
(2πk

2n

) = p∗k , k = 0, . . . , 2n− 1 . (3.20)

The coefficients c∗� ∈ C of (3.19) are given by

c∗� =
1

2n

2n−1∑

k=0

p∗k w�k
N , � = 1− n, . . . , n . (3.21)

The interpolating trigonometric polynomial (3.19) can be written in the form

p∗ = 1

2n

2n−1∑

k=0

p∗k D∗n(· − x∗k ) , (3.22)

where D∗n := Dn − cos(n ·) denotes the modified nth Dirichlet kernel.

A proof of Lemma 3.7 is omitted here, since this result can be similarly shown
as Lemma 3.6.

Remark 3.8 By sin(nx∗k ) = sin(πk) = 0 for k = 0, . . . , 2n− 1, each trigonometric
polynomial p∗ + c sin(n ·) with arbitrary c ∈ C is a solution of the trigonometric
interpolation problem (3.20). Therefore the restriction to trigonometric polynomials
of the special form (3.19) is essential for the unique solvability of the trigonometric
interpolation problem (3.20).
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Formula (3.22) implies that the trigonometric Lagrange polynomials �∗k ∈ Tn

with respect to the uniform grid {x∗k = πk
n
: k = 0, . . . , 2n− 1} are given by

�∗k :=
1

2n
D∗n(· − x∗k ) , k = 0, . . . , 2n− 1 .

By Lemma 3.7 the 2n trigonometric Lagrange polynomials �∗k are linearly indepen-
dent, but they do not form a basis of Tn, since dim Tn = 2n+ 1.

Finally, we study efficient and numerically stable representations of the inter-
polating trigonometric polynomials (3.16) and (3.22). For that purpose we employ
the barycentric formulas for interpolating trigonometric polynomials introduced by
Henrici [166]. For a survey on barycentric interpolation formulas, we refer to [31]
and [356, pp. 33–41].

Theorem 3.9 (Barycentric Formulas for Trigonometric Interpolation) Let n ∈
N be given. For odd integer N = 2n + 1 and xk = 2πk

2n+1 , k = 0, . . . , 2n, the
interpolating trigonometric polynomial in (3.16) satisfies the barycentric formula

p(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

2n∑

k=0

(−1)k pk cosec
x − xk

2

2n∑

k=0

(−1)k cosec
x − xk

2

x ∈ R \⋃2n
k=0

({xk} + 2πZ
)
,

pj x ∈ {xj } + 2πZ , j = 0, . . . , 2n .

For even integer N = 2n and x∗k = πk
n
, k = 0, . . . , 2n − 1, the interpolating

trigonometric polynomial (3.22) satisfies the barycentric formula

p∗(x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

2n−1∑

k=0

(−1)k p∗k cot
x − x∗k

2

2n−1∑

k=0

(−1)k cot
x − x∗k

2

x ∈ R \⋃2n−1
k=0

({x∗k } + 2πZ
)
,

p∗j x ∈ {x∗j } + 2πZ , j = 0, . . . , 2n− 1 .

Proof

1. Let N = 2n+ 1 be odd. We consider x ∈ R \⋃2n
k=0

({xk} + 2πZ
)
. From (3.16)

and (1.22) it follows for all xk , k = 0, . . . , 2n, that

p(x) = 1

2n+ 1

2n∑

k=0

pk

sin (2n+1)(x−xk)
2

sin x−xk
2

= sin
(
n+ 1

2

)
x

2n+ 1

2n∑

k=0

(−1)k pk
1

sin x−xk
2

= sin
(
n+ 1

2

)
x

2n+ 1

2n∑

k=0

(−1)k pk cosec
x − xk

2
. (3.23)
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Especially for p = 1 we obtain

1 = sin
(
n+ 1

2

)
x

2n+ 1

2n∑

k=0

(−1)k cosec
x − xk

2
. (3.24)

Dividing (3.23) by (3.24) and canceling the common factor, we find the first
barycentric formula.

2. For even N = 2n, we consider x ∈ R \ ⋃2n−1
k=0

({x∗k } + 2πZ
)
. By (1.22) the

modified nth Dirichlet kernel can be written in the form

D∗n(x) = Dn(x)− cos(nx) = sin
(
n+ 1

2

)
x

sin x
2

− cos(nx) = sin(nx) cot
x

2
.

Then from (3.22) it follows that

p∗(x) = sin(nx)

2n

2n−1∑

k=0

(−1)k p∗k cot
x − x∗k

2
. (3.25)

Especially for p∗ = 1 we receive

1 = sin(nx)

2n

2n−1∑

k=0

(−1)k cot
x − x∗k

2
. (3.26)

Dividing (3.25) by (3.26) and canceling the common factor, we get the second
barycentric formula.

For an efficient numerical realization of these barycentric formulas, one can
apply the fast summation technique presented in Sect. 7.5.

The results of the four problems presented in (3.3), (3.11), (3.12), and (3.15)
have almost the same structure and motivate the detailed study of the DFT in the
next section. For fast algorithms for the DFT, we refer to Chap. 5.

3.2 Fourier Matrices and Discrete Fourier Transforms

In this section we present the main properties of Fourier matrices and discrete
Fourier transforms.

3.2.1 Fourier Matrices

For fixed N ∈ N, we consider the vectors a = (aj )
N−1
j=0 and b = (bj )

N−1
j=0 with

components aj , bj ∈ C. As usual, the inner product and the Euclidean norm in the
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vector space CN are defined by

〈a, b〉 := a b =
N−1∑

j=0

aj bj , ‖a‖2 :=

√√
√√
√

N−1∑

j=0

|aj |2 .

Lemma 3.10 Let N ∈ N be given and wn := e−2π i/N . Then the set of the
exponential vectors ek :=

(
w

jk
N

)N−1
j=0 , k = 0, . . . , N − 1, forms an orthogonal

basis of CN , where ‖ek‖2 =
√
N for each k = 0, . . . , N − 1. Any a ∈ C

N can
be represented in the form

a = 1

N

N−1∑

k=0

〈a, ek〉 ek . (3.27)

The set of complex conjugate exponential vectors ek =
(
w
−jk
N

)N−1
j=0 , k = 0, . . . , N−

1, forms also an orthogonal basis of CN .

Proof For k, � ∈ {0, . . . , N − 1}, the inner product 〈ek, e�〉 can be calculated by
Lemma 3.2 such that

〈ek, e�〉 =
N−1∑

j=0

w
(k−�)j

N = N δ(k−�) mod N .

Thus {ek : k = 0, . . . , N − 1} is an orthogonal basis of C
N , because the N

exponential vectors ek are linearly independent and dim C
N = N . Consequently,

each vector a ∈ C
N can be expressed in the form (3.27). Analogously, the vectors

ek , k = 0, . . . , N − 1, form an orthogonal basis of CN .

The N-by-N Fourier matrix is defined by

FN :=
(
w

jk
N

)N−1
j,k=0 =

⎛

⎜
⎜⎜
⎝

1 1 . . . 1
1 wN . . . wN−1

N
...

...
...

1 wN−1
N . . . wN

⎞

⎟
⎟⎟
⎠

.

Due to the properties of the primitive N th root of unity wN , the Fourier matrix FN

consists of only N distinct entries. Obviously, FN is symmetric, FN = FN , but FN

is not Hermitian for N > 2. The columns of FN are the vectors ek of the orthogonal
basis of CN such that by Lemma 3.10

FN FN = N IN , (3.28)
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where IN denotes the N-by-N identity matrix. Hence the scaled Fourier matrix
1√
N

FN is unitary.

The linear map from C
N onto C

N , which is represented as the matrix vector
product

â = FN a = (〈a, ek〉
)N−1
k=0 , a ∈ C

N ,

is called discrete Fourier transform of length N and abbreviated by DFT(N). The
transformed vector â = (âk)

N−1
k=0 is called the discrete Fourier transform (DFT) of

a = (aj )
N−1
j=0 and we have

âk = 〈a, ek〉 =
N−1∑

j=0

aj w
jk

N , k = 0, . . . , N − 1 . (3.29)

In practice, one says that the DFT(N) maps from time domain C
N onto frequency

domain CN .
The main importance of the DFT arises from the fact that there exist fast and

numerically stable algorithms for its computation, see Chap. 5.

Example 3.11 For N ∈ {2, 3, 4} we obtain the Fourier matrices

F2 =
(

1 1
1 −1

)
, F3 =

⎛

⎝
1 1 1
1 w3 w3

1 w3 w3

⎞

⎠ , F4 =

⎛

⎜
⎜
⎝

1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i

⎞

⎟
⎟
⎠

with w3 = − 1
2 −

√
3

2 i. Figure 3.1 displays both real and imaginary part of the
Fourier matrix F16 and a plot of the second row of both below. In the grayscale
images, white corresponds to the value 1 and black corresponds to −1.

Remark 3.12 Let N ∈ N with N > 1 be given. Obviously we can compute the
values

âk =
N−1∑

j=0

aj w
jk
N (3.30)

for all k ∈ Z. From

w
j(k+N)
N = w

jk
N · 1 = w

jk
N , k ∈ Z ,
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15

−1

1

15

−1

1

Fig. 3.1 Grayscale images of real and imaginary part of the Fourier matrix F16 (top left and right)
and the values of the corresponding second rows (bottom)

we observe that the resulting sequence (âk)k∈Z is N-periodic. The same is true for
the inverse DFT(N). For a given vector (âk)

N−1
k=0 the sequence (aj )j∈Z with

aj = 1

N

N−1∑

k=0

âk w
−jk

N , j ∈ Z ,

is an N-periodic sequence, since

w
−(j+N)k
N = w

−jk
N · 1 = w

−jk
N , j ∈ Z .

Thus, the DFT(N) can be extended, mapping an N-periodic sequence (aj )j∈Z to
an N-periodic sequence (âk)

N−1
k=0 . A consequence of this property is the fact that the

DFT(N) of even length N of a complex N-periodic sequence (aj )j∈Z can be formed
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by any N-dimensional subvector of (aj )j∈Z. For instance, if we choose (aj )
N/2−1
j=−N/2,

then we obtain the same transformed sequence, since

N/2−1∑

j=−N/2

aj w
jk
N =

N/2∑

j=1

aN−j w
(N−j)k
N +

N/2−1∑

j=0

aj w
jk
N

=
N−1∑

j=0

aj w
jk

N , k ∈ Z .

Example 3.13 For given N ∈ 2N, we consider the vector a = (aj )
N−1
j=0 with

aj =
⎧
⎨

⎩

0 j ∈ {0, N
2 } ,

1 j = 1, . . . , N
2 − 1 ,

−1 j = N
2 + 1, . . . , N − 1 .

We determine the DFT(N) of a, i.e., â = (âk)
N−1
k=0 . Obviously, we have â0 = 0. For

k ∈ {1, . . . , N − 1} we obtain

âk =
N/2−1∑

j=1

w
jk
N −

N−1∑

j=N/2+1

w
jk
N = (

1− (−1)k
) N/2−1∑

j=1

w
jk
N

and hence âk = 0 for even k. Using

N/2−1∑

j=1

xj = x − xN/2

1− x
, x �= 1 ,

it follows for x = wk
N with odd k that

âk = 2
wk

N −w
kN/2
N

1−wk
N

= 2
wk

N + 1

1− wk
N

= 2
wk

2N +w−k
2N

w−k
2N −wk

2N

= −2i cot
πk

N
.

Thus we receive

âk =
{

0 k = 0, 2, . . . , N − 2 ,

−2i cot πk
N

k = 1, 3, . . . , N − 1 .

Example 3.14 For given N ∈ N \ {1}, we consider the vector a = (aj )
N−1
j=0 with

aj =
{

1
2 j = 0 ,

j
N

j = 1, . . . , N − 1 .
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Note that the related N-periodic sequence (aj )j∈Z with aj = aj modN , j ∈ Z,
is a sawtooth sequence. Now we calculate the DFT(N) of a, i.e., â = (âk)

N−1
k=0 .

Obviously, we have

â0 = 1

2
+ 1

N

N−1∑

j=1

j = 1

2
+ N (N − 1)

2 N
= N

2
.

Using the sum formula

N−1∑

j=1

j xj = − (N − 1) xN

1− x
+ x − xN

(1− x)2 , x �= 1 ,

we obtain for x = wk
N with k ∈ {1, . . . , N − 1} that

N−1∑

j=1

j w
jk
N = −(N − 1)

1−wk
N

+ wk
N − 1

(1−wk
N)2

= − N

1−wk
N

and hence

âk = 1

2
+ 1

N

N−1∑

j=1

j w
jk
N = 1

2
− 1

1− wk
N

= − 1+wk
N

2 (1−wk
N)
= i

2
cot

πk

N
.

Remark 3.15 In the literature, the Fourier matrix is not consistently defined. In par-
ticular, the normalization constants differ and one finds, for example,

(
w
−jk
N

)N−1
j,k=0,

1√
N

(
w

jk

N

)N−1
j,k=0, 1

N

(
w

jk

N

)N−1
j,k=0, and

(
w

jk

N

)N
j,k=1. Consequently, there exist different

forms of the DFT(N). For the sake of clarity, we emphasize that the DFT(N)
is differently defined in the respective package documentations. For instance,
Mathematica uses the DFT(N) of the form

âk = 1√
N

N∑

j=1

aj w
−(j−1)(k−1)
N , k = 1, . . . , N .

In Matlab, the DFT(N) is defined by

âk+1 =
N−1∑

j=0

aj+1 w
jk
N , k = 0, . . . , N − 1 .
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In Maple, the definition of DFT(N) reads as follows:

âk = 1√
N

N∑

j=1

aj w
(j−1)(k−1)
N , k = 1, . . . , N .

3.2.2 Properties of Fourier Matrices

Now we describe the main properties of Fourier matrices.

Theorem 3.16 The Fourier matrix FN is invertible and its inverse reads as follows:

F−1
N = 1

N
FN = 1

N

(
w
−jk
N

)N−1
j,k=0 . (3.31)

The corresponding DFT is a bijective map on C
N . The inverse DFT of length N is

given by the matrix–vector product

a = F−1
N â = 1

N

(〈â, ek〉
)N−1
k=0 , â ∈ C

N

such that

aj = 1

N
〈â, ek〉 = 1

N

N−1∑

k=0

âk w
−jk

N , j = 0, . . . , N − 1 . (3.32)

Proof Relation (3.31) follows immediately from (3.28). Consequently, the DFT(N)
is bijective on C

N .

Lemma 3.17 The Fourier matrix FN satisfies

F2
N = N J′N , F4

N = N2 IN , (3.33)

with the flip matrix

J′N :=
(
δ(j+k) mod N

)N−1
j,k=0 =

⎛

⎜⎜
⎜
⎝

1
1
...

1

⎞

⎟⎟
⎟
⎠

.

Further we have

F−1
N = 1

N
J′N FN = 1

N
FN J′N . (3.34)
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Proof Let F2
N =

(
cj,�

)N−1
j,�=0. Using Lemma 3.2, we find

cj,� =
N−1∑

k=0

w
jk
N wk�

N =
N−1∑

k=0

w
(j+�)k
N = N δ(j+�) mod N .

and hence F2
N = N J′N . From (J′N)2 = IN it follows that

F4
N = F2

N F2
N = (N J′N) (N J′N) = N2 (J′N)2 = N2 IN .

By N FN J′N = N J′N FN = F3
N and F4

N = N2 IN we finally obtain

F−1
N = 1

N2 F3
N =

1

N
FN J′N =

1

N
J′N FN .

This completes the proof.

Using (3.34), the inverse DFT(N) can be computed by the same algorithm as the
DFT(N) employing a reordering and a scaling.

Remark 3.18 The application of the flip matrix J′N to a vector a = (ak)
N−1
k=0

provides the vector

J′N a = (
a(−j) mod N

)N−1
j=0 = (a0, aN−1, . . . , a1)

 ,

i.e., the components of a are “flipped”.

Now we want to study the spectral properties of the Fourier matrix in a more
detailed manner. For that purpose, let the counter-identity matrix JN be defined by

JN :=
(
δ(j+k+1) mod N

)N−1
j,k=0 =

⎛

⎜
⎝

1
...

1

⎞

⎟
⎠

having nonzero entries 1 only on the main counter-diagonal. Then JNa provides the
reversed vector

JNa = (
a(−j−1) mod N

)N−1
j=0 = (aN−1, aN−2, . . . , a1, a0)

 .

First we obtain the following result about the eigenvalues of FN .

Lemma 3.19 For N ∈ N \ {1}, the Fourier matrix FN possesses at most the four
distinct eigenvalues

√
N , −√N , −i

√
N , or i

√
N .

Proof Let λ ∈ C be an eigenvalue of FN with the corresponding eigenvector a ∈
C

N , i.e., FNa = λ a, a �= 0. Hence by (3.33) we obtain N2 a = F4
Na = λ4 a such
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that λ4 − N2 = 0. Hence possible eigenvalues of FN are
√
N , −√N , −i

√
N , or

i
√
N .

Now, we want to determine the exact multiplicities of the distinct eigenvalues of
the Fourier matrix FN . We start by considering the characteristic polynomial of the
matrix F2

N .

Lemma 3.20 For N ∈ N with N ≥ 4 we have

det (λIN − F2
N) =

{
(λ−N)(N+2)/2 (λ+N)(N−2)/2 N even ,

(λ−N)(N+1)/2 (λ+N)(N−1)/2 N odd .

Proof

1. For n ∈ N we consider the matrix Tn(λ) := λ In − N Jn. For even n, the matrix
is of the form

Tn(λ) =

⎛

⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎝

λ −N

.. .
...

λ −N

−N λ

...
. . .

−N λ

⎞

⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎠

.

We show for even n by induction that

det Tn(λ) = (λ−N)n/2 (λ+ N)n/2 . (3.35)

Indeed, for n = 2 we have

det T2(λ) = det

(
λ −N

−N λ

)
= (λ−N) (λ +N) .

Assume now that (3.35) is true for an even n ∈ N. Expanding det Tn+2(λ) with
respect to the 0-th column, we obtain

det Tn+2(λ) = λ det

(
Tn(λ)

λ

)
+ N det

( −N

Tn(λ)

)

= (λ2 −N2) det Tn(λ)

= (λ−N)(n+2)/2 (λ+N)(n+2)/2 .
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2. By (3.33) we obtain

det (λIN − F2
N) = det (λIN −N J′N) = det

(
λ−N

TN−1(λ)

)
.

For odd N , we find

det (λIN −N J′N) = (λ−N) det TN−1(λ) = (λ−N)(N+1)/2(λ+N)(N−1)/2.

For even N we expand TN−1(λ) with respect to the (N−1)
2 -th column that contains

only one nonzero value λ−N in the center. We obtain

det (λIN −N J′N) = (λ−N)2 det TN−2(λ) = (λ−N)(N+2)/2(λ+N)(N−2)/2.

This completes the proof.

Since det (λIN − F2
N) is the characteristic polynomial of F2

N , we can conclude
already the multiplicities of the eigenvalues of F2

N . We denote the multiplicities of
the eigenvalues

√
N ,−√N ,−i

√
N , and i

√
N of FN by m1, m2, m3, and m4. Thus

the eigenvalue N of F2
N possesses the multiplicity m1 +m2 and the eigenvalue−N

has the multiplicity m3 +m4. Lemma 3.20 implies

m1 +m2 =
{
(N + 2)/2 N even ,

(N + 1)/2 N odd ,
(3.36)

m3 +m4 =
{
(N − 2)/2 N even ,

(N − 1)/2 N odd .
(3.37)

In order to deduce m1, m2, m3, and m4, we also consider the trace and the
determinant of FN . We recall that the trace of a square matrix AN =

(
aj,k

)N−1
j,k=0 ∈

C
N×N is equal to the sum of its eigenvalues and that the determinant det AN is the

product of its eigenvalues, i.e.,

tr AN =
N−1∑

j=0

aj,j =
N−1∑

j=0

λj , det AN =
N−1∏

j=0

λj . (3.38)

For the Fourier matrix FN we obtain

tr FN =
√
N (m1 −m2)+ i

√
N (m4 −m3) . (3.39)

Now we calculate the trace of FN ,

tr FN =
N−1∑

j=0

e−2π ij2/N .
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The above sum is called quadratic Gauss sum. The following computation of the
quadratic Gauss sum is based on the ideas of Dirichlet and is a nice application of
1-periodic Fourier series.

Lemma 3.21 For N ∈ N \ {1}, we have

tr FN =
√
N (1+ iN)(1− i) . (3.40)

Proof

1. We consider the 1-periodic function h, which is given on [0, 1) by

h(x) :=
N−1∑

j=0

e−2π i (x+j)2/N , x ∈ [0, 1) .

Then we obtain

1

2

(
h(0+ 0)+ h(0− 0)

) = 1

2

(
h(0+ 0)+ h(1 − 0)

)

= 1

2

N−1∑

j=0

(
e−2π i j2/N + e−2π i (j+1)2/N

)

= 1

2
+

N−1∑

j=1

e−2π i j2/N + 1

2
= tr FN .

The function h is piecewise continuously differentiable and can be represented
by its 1-periodic Fourier series

h(x) =
∑

k∈Z
c
(1)
k (h) e2π ikx .

By Theorem 1.34 of Dirichlet–Jordan, this Fourier series converges at the point
x = 0 to

∑

k∈Z
c
(1)
k (h) = 1

2

(
h(0+ 0)+ h(0− 0)

) = tr FN .

2. Now we calculate the Fourier coefficients

c
(1)
k (h) =

N−1∑

j=0

∫ 1

0
e−2π i (u+j)2/N e−2π iku du =

∫ N

0
e−2π i y2/N e−2π iky dy

= eπ iNk2/2
∫ N

0
e−2π i (y+kN/2)2/N dy .
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Thus we obtain for even k = 2 r , r ∈ Z,

c
(1)
2r (h) =

∫ N

0
e−2π i (y+rN)2/N dy ,

and for odd k = 2 r + 1, r ∈ Z,

c
(1)
2r+1(h) = eπ i N/2

∫ N

0
e−2π i (y+rN+N/2)2/N dy = iN

∫ 3N/2

N/2
e−2π i (y+rN)2/N dy .

Consequently,

tr FN =
∑

r∈Z
c
(1)
2r (h)+

∑

r∈Z
c
(1)
2r+1(h)

= (1+ iN)

∫

R

e−2π i y2/N dy = 2 (1+ iN)

∫ ∞

0
e−2π i y2/N dy

= (1+ iN)

√
2N

π

∫ ∞

0
e−i v2

dv

= (1+ iN)

√
2N

π

( ∫ ∞

0
cos v2 dv − i

∫ ∞

0
sin v2 dv

)

3. The two integrals

∫ ∞

0
cos v2 dv ,

∫ ∞

0
sin v2 dv

can be computed by Cauchy’s integral theorem. One obtains

∫ ∞

0
cos v2 dv =

∫ ∞

0
sin v2 dv = 1

2

√
π

2
.

Hence it follows that

tr FN = (1+ iN)

√
2N

π

1

2
(1− i)

√
π

2
= √N (1+ iN)(1− i) .

This completes the proof.

Theorem 3.22 For N ∈ N with N > 4, the Fourier matrix FN has four distinct
eigenvalues

√
N , −√N , −i

√
N , and i

√
N with corresponding multiplicities m1,

m2, m3, and m4 given in the table:
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N m1 m2 m3 m4 det FN

4n n+ 1 n n n − 1 i (−1)n+1 NN/2

4n + 1 n+ 1 n n n (−1)n NN/2

4n + 2 n+ 1 n+ 1 n n (−1)n+1 NN/2

4n + 3 n+ 1 n+ 1 n+ 1 n i (−1)n NN/2

Proof Each integer N > 4 can be represented in the form N = 4n+ k with n ∈ N

and k ∈ {0, 1, 2, 3}. From (3.39) and (3.40),

tr FN =
√
N (1+ iN)(1− i) =

√
N

2

(
1− i+ iN − iN+1)

= √N (m1 −m2)+ i
√
N (m4 −m3) ,

it follows that

m1 −m2 =

⎧
⎪⎪⎨

⎪⎪⎩

1 N = 4n ,

1 N = 4n+ 1 ,

0 N = 4n+ 2 ,

0 N = 4n+ 3 ,

(3.41)

m4 −m3 =

⎧
⎪⎪⎨

⎪⎪⎩

−1 N = 4n ,

0 N = 4n+ 1 ,

0 N = 4n+ 2 ,

−1 N = 4n+ 3 .

(3.42)

Using the linear equations (3.36) and (3.41) we compute m1 and m2. Analogously
we determine m3 and m4 by solving the linear equations (3.37) and (3.42). Finally,
we conclude

det FN = (−1)m2+m3 im3+m4 NN/2

as the product of all N eigenvalues of FN .

Remark 3.23 For the computation of the eigenvectors of the Fourier matrix FN , we
refer to [239, 247].

3.2.3 DFT and Cyclic Convolutions

The cyclic convolution of the vectors a = (ak)
N−1
k=0 , b = (bk)

N−1
k=0 ∈ C

N is defined
as the vector c = (cn)

N−1
n=0 := a ∗ b ∈ C

N with the components

cn =
N−1∑

k=0

ak b(n−k) mod N =
n∑

k=0

ak bn−k +
N−1∑

k=n+1

ak bN+n−k , n = 0, . . . , N − 1 .
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The cyclic convolution in C
N is a commutative, associative, and distributive

operation with the unity b0 =
(
δj mod N

)N−1
j=0 = (1, 0, . . . , 0) which is the so-

called pulse vector.
The forward-shift matrix VN is defined by

VN :=
(
δ(j−k−1) mod N

)N−1
j,k=0 =

⎛

⎜⎜
⎜
⎝

1
1
. . .

1

⎞

⎟⎟
⎟
⎠

.

The application of VN to a vector a = (ak)
N−1
k=0 provides the forward-shifted vector

VNa = (
a(j−1) mod N

)N−1
j=0 = (aN−1, a0, a1, . . . , aN−2)

 .

Hence we obtain

V2
N :=

(
δ(j−k−2) mod N

)N−1
j,k=0 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1
1

1
. . .

1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

and

V2
Na = (

a(j−2) mod N

)N−1
j=0 = (aN−2, aN−1, a0, . . . , aN−3)

 .

Further we have VN
N = IN and

VN = V−1
N = VN−1

N =

⎛

⎜
⎜
⎜
⎝

1
. . .

1
1

⎞

⎟
⎟
⎟
⎠

,

which is called backward-shift matrix, since

V−1
N a = (

a(j+1) mod N

)N−1
j=0 = (a1, a2, . . . , aN−1, a0)

 .

is the backward-shifted vector of a.
The matrix IN − VN is the cyclic difference matrix, since

(IN−VN) a = (
aj−a(j−1) mod N

)N−1
j=0 = (a0−aN−1, a1−a0, . . . , aN−1−aN−2)

 .
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We observe that

IN + VN + V2
N + . . .+ VN−1

N = (
1
)N−1
j,k=0 .

We want to characterize all linear maps HN from C
N to C

N which are shift-
invariant, i.e., satisfy

HN (VN a) = VN (HN a)

for all a ∈ CN . Thus we have HN Vk
N = Vk

N HN , k = 0, . . . , N − 1. Shift-invariant
maps play an important role for signal filtering. We show that a shift-invariant map
HN can be represented by the cyclic convolution.

Lemma 3.24 Each shift-invariant, linear map HN from C
N to C

N can be repre-
sented in the form

HN a = a ∗ h , a ∈ C
N ,

where h := HN b0 is the impulse response vector of the pulse vector b0.

Proof Let bk :=
(
δ(j−k) mod N

)N−1
j=0 , k = 0, . . . , N−1, be the standard basis vectors

ofCN . Then bk = Vk
N b0, k = 0, . . . , N−1. An arbitrary vector a = (ak)

N−1
k=0 ∈ C

N

can be represented in the standard basis as

a =
N−1∑

k=0

ak bk =
N−1∑

k=0

ak Vk
N b0 .

Applying the linear, shift-invariant map HN to this vector a, we get

HN a =
N−1∑

k=0

ak HN(Vk
N b0) =

N−1∑

k=0

ak Vk
N (HN b0) =

N−1∑

k=0

ak Vk
N h

= (
h |VN h | . . . |VN−1

N h
)

a

that means

HN a =

⎛

⎜
⎜
⎜
⎝

h0 hN−1 . . . h2 h1

h1 h0 . . . h3 h2
...

...
...

...

hN−1 hN−2 . . . h1 h0

⎞

⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎝

a0

a1
...

aN−1

⎞

⎟
⎟
⎟
⎠

= (N−1∑

k=0

ak h(n−k) mod N

)N−1
n=0 = a ∗ h .

This completes the proof.
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Now we present the basic properties of DFT(N) and start with an example.

Example 3.25 Let bk =
(
δ(j−k) mod N

)N−1
j=0 , k = 0, . . . , N−1, be the standard basis

vectors of CN and let ek =
(
w

jk
N

)N−1
j=0 , k = 0, . . . , N−1, be the exponential vectors

in Lemma 3.10 that form the columns of FN . Then we obtain for k = 0, . . . , N − 1
that

FN bk = ek , FN ek = F2
N bk = N J′N bk = N b(−k) mod N .

In particular, we observe that the sparse vectors bk are transformed into non-sparse
vectors ek , since all components of ek are non-zero. Further we obtain that for all
k = 0, . . . , N − 1

FN VN bk = FN b(k+1) mod N = e(k+1) mod N = MN FN bk ,

where MN := diag e1 is the so-called modulation matrix which generates a
modulation or frequency shift by the property MN ek = e(k+1) mod N . Consequently,
we have

FN VN = MN FN (3.43)

and more generally FN Vk
N = Mk

N FN , k = 1, . . . , N − 1. Transposing the last
equation for k = N − 1, we obtain

VN FN = V−1
N FN = FN MN, VN FN = FN M−1

N . (3.44)

Theorem 3.26 (Properties of DFT(N)) The DFT(N) possesses the following
properties:

1. Linearity: For all a, b ∈ C
N and α ∈ C we have

(a+ b)ˆ= â+ b̂ , (α a)ˆ= α â .

2. Inversion: For all a ∈ C
N we have

a = F−1
N â = 1

N
FN â = 1

N
J′N FN â .

3. Flipping property: For all a ∈ C
N we have

(J′N a)ˆ= J′N â , (a)ˆ= J′N â .

4. Shifting in time and frequency domain: For all a ∈ C
N we have

(VN a)ˆ= MN â , (M−1
N a)ˆ= VN â .
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5. Cyclic convolution in time and frequency domain: For all a, b ∈ C
N we have

(a ∗ b)ˆ= â ◦ b̂ , N (a ◦ b)ˆ= â ∗ b̂ ,

where a ◦ b := (ak bk)
N−1
k=0 denotes the componentwise product of the vectors

a = (ak)
N−1
k=0 and b = (bk)

N−1
k=0 .

6. Parseval equality: For all a, b ∈ C
N we have

1

N
〈â, b̂〉 = 〈a, b〉 , 1

N
‖â‖2

2 = ‖a‖2
2 .

7. Difference property in time and frequency domain: For all a ∈ C
N we have

(
(IN − VN) a

)ˆ= (IN −MN) â ,
(
(IN −M−1

N ) a
)ˆ= (IN − VN) â .

8. Permutation property: Let p ∈ Z and N be relatively prime. Assume that q ∈ Z

satisfies the condition (p q) mod N = 1 and that the DFT(N) of (aj )
N−1
j=0 ∈ C

N

is equal to (âk)
N−1
k=0 . Then the DFT(N) of the permuted vector

(
a(pj) mod N

)N−1
j=0

is equal to the permuted vector
(
â(qk) mod N

)N−1
k=0 .

Proof

1. The linearity follows from the definition of the DFT(N).
2. The second property is obtained from (3.31) and (3.34).
3. By (3.31) and (3.34) we have FN J′N = J′N FN = FN and hence

(J′N a)ˆ= FN J′N a = J′N FN a = J′N â ,

(a)ˆ= FN a = FN a = J′N FN a = J′N â .

4. From (3.43) and (3.44) it follows that

(VN a)ˆ= FN VN a = MN FN a = MN â ,

(M−1
N a)ˆ= FN M−1

N a = VN FN a = VN â .

5. Let c = a ∗ b be the cyclic convolution of a and b with the components

cj =
N−1∑

n=0

an b(j−n) mod N , j = 0, . . . , N − 1 .
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We calculate the components of ĉ = (
ĉk

)N−1
k=0 and obtain for k = 0, . . . , N − 1

ĉk =
N−1∑

j=0

(N−1∑

n=0

an b(j−n) mod N

)
w

jk
N

=
N−1∑

n=0

an w
nk
N

(N−1∑

j=0

b(j−n) mod N w
((j−n) mod N) k
N

)

= (N−1∑

n=0

an w
nk
N

)
b̂k = âk b̂k .

Now let c = a ◦ b = (aj bj )
N−1
j=0 . Using the second property, we get

aj = 1

N

N−1∑

k=0

âk w
−jk

N , bj = 1

N

N−1∑

�=0

b̂� w
−j�

N , j = 0, . . . , N − 1 .

Thus we obtain that for j = 0, . . . , N − 1

cj = aj bj = 1

N2

(N−1∑

k=0

âk w
−jk
N

) (N−1∑

�=0

b̂� w
−j�
N

)

= 1

N2

N−1∑

k=0

N−1∑

�=0

âk b̂� w
−j (k+�)

N

= 1

N2

N−1∑

n=0

(N−1∑

k=0

âk b̂(n−k) mod N

)
w
−jn
N ,

i.e., c = 1
N

F−1
N (â ∗ b̂) and hence N ĉ = â ∗ b̂.

6. For arbitrary a, b ∈ C
N we conclude

〈â, â〉 = a FN FN b = N a b = N 〈a, b〉 .

7. The difference properties follow directly from the shift properties.
8. Since p ∈ Z and N are relatively prime, the greatest common divisor of p and N

is one. Then there exist q, M ∈ Z with p q +M N = 1 (see [6, p. 21]). By the
Euler–Fermat theorem (see [6, p. 114]) the (unique modulo N) solution of the
linear congruence p q ≡ 1 (modN) is given by q ≡ pϕ(N)−1 (modN), where
ϕ(N) denotes the Euler totient function.
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Now we compute the DFT(N) of the permuted vector
(
a(pj) mod N

)N−1
j=0 . Then

the kth component of the transformed vector reads

N−1∑

j=0

a(pj) mod N w
jk
N . (3.45)

The value (3.45) does not change, if the sum is reordered and the summation
index j = 0, . . . , N − 1 is replaced by (q �) mod N with � = 0, . . . , N − 1.
Indeed, by p q ≡ 1 (modN) and (3.4) we have

� = (p q �) mod N = [(
(q �) mod N

)
p
]

mod N

and furthermore

w
[(q �) mod N] k
N = w

q � k
N = w

� [(q k) mod N]
N .

Thus we obtain

N−1∑

j=0

a(pj) mod N w
jk
N =

N−1∑

�=0

a(p q �) mod N w
q � k
N

=
N−1∑

j=0

a� w
� [(q k) mod N]
N = â(qk) mod N .

For example, in the special case p = q = −1, the flipped vector(
a(−j) mod N

)N−1
j=0 is transformed to the flipped vector

(
â(−k) mod N

)N−1
k=0 .

Now we analyze the symmetry properties of DFT(N). A vector a = (aj )
N−1
j=0 ∈ C

N

is called even, if a = J′N a, i.e. aj = a(N−j) mod N for all j = 0, . . . , N − 1, and it
is called odd, if a = −J′N a, i.e. aj = −a(N−j) mod N for all j = 0, . . . , N − 1. For
N = 6 the vector (a0, a1, a2, a3, a2, a1)

 is even and (0, a1, a2, 0, −a2, −a1)


is odd.

Corollary 3.27 For a ∈ R
N and â = FNa = (

âj
)N−1
j=0 we have

â = J′N â ,

i.e., âj = â(N−j) mod N , j = 0, . . . , N − 1. In other words, Re â is even and Im â
is odd.

Proof By a = a ∈ R
N and FN = J′N FN it follows that

J′N â = J′N FN a = FN a = FN a = â .
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For â = Re â+ i Im â we obtain

â = Re â− i Im â = J′N â = J′N (Re â)+ i J′N (Im â)

and hence Re â = J′N (Re â) and Im â = −J′N (Im â).

Corollary 3.28 If a ∈ C
N is even/odd, then â = FNa is even/odd.

If a ∈ R
N is even, then â = Re â ∈ R

N is even.
If a ∈ R

N is odd, then â = i Im â ∈ iRN is odd.

Proof From a = ±J′N a it follows that

â = FN a = ±FN J′N a = ±J′N FN a = ±J′N â .

For even a ∈ R
N we obtain by Corollary 3.27 that â = J′N â = â, i.e., â ∈ R

N is
even. Analogously we can show the assertion for odd a ∈ R

N .

3.3 Circulant Matrices

An N-by-N matrix

circ a := (
a(j−k) mod N

)N−1
j,k=0 =

⎛

⎜
⎜⎜
⎝

a0 aN−1 . . . a2 a1

a1 a0 . . . a3 a2
...

...
...

...

aN−1 aN−2 . . . a1 a0

⎞

⎟
⎟⎟
⎠

(3.46)

is called circulant matrix generated by a = (ak)
N−1
k=0 ∈ C

N . The first column of
circ a is equal to a. A circulant matrix is a special Toeplitz matrix in which the
diagonals wrap around. Remember that a Toeplitz matrix is a structured matrix(
aj−k

)N−1
j,k=0 for given

(
ak

)N−1
k=1−N

∈ C
2N−1 such that the entries along each diagonal

are constant.

Example 3.29 If bk = (δj−k)
N−1
j=0 , k = 0, . . . , N − 1, denote the standard basis

vectors of CN , then the forward-shift matrix VN is a circulant matrix, since VN =
circ b1. More generally, we obtain that

Vk
N = circ bk , k = 0, . . . , N − 1 .

with V0
N = circ b0 = IN and VN−1

N = V−1
N = circ bN−1. The cyclic difference

matrix is also a circulant matrix, since IN − VN = circ (b0 − b1).
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Remark 3.30 In the literature, a circulant matrix is not consistently defined. For
instance in [78, p. 66] and [169, p. 33], a circulant matrix of a ∈ C

N is defined by(
a(k−j) mod N

)N−1
j,k=0 = (circ a) such that the first row is equal to a.

Circulant matrices and cyclic convolutions of vectors in C
N are closely related.

From Lemma 3.24 it follows that for arbitrary vectors a, b ∈ C
N

(circ a) b = a ∗ b .

Using the cyclic convolution property of DFT(N) (see property 5 of Theorem 3.26),
we obtain that a circulant matrix can be diagonalized by Fourier matrices.

Theorem 3.31 For each a ∈ C
N , the circulant matrix circ a can be diagonalized

by the Fourier matrix FN . We have

circ a = F−1
N

(
diag (FNa)

)
FN . (3.47)

Proof For any b ∈ C
N we form the cyclic convolution of a and b. Then by the

cyclic convolution property of Theorem 3.26 we obtain that

FN c = (FN a) ◦ (FN b) = (
diag (FN a)

)
FN b .

and hence

c = F−1
N

(
diag (FN a)

)
FN b .

On the other hand, we have c = (circ a) b such that for all b ∈ C
N

(circ a) b = F−1
N

(
diag (FN a)

)
FN b .

This completes the proof of (3.47).

Remark 3.32 Using the decomposition (3.47), the matrix–vector product (circ a) b
can be realized by employing three DFT(N) and one componentwise vector
multiplication. We compute

(circ a) b = F−1
N

(
diag (FNa)

)
FN b = F−1

N (diag â) b̂ = F−1
N (â ◦ b̂) .

As we will see in Chap. 5, one DFT(N) of radix-2 length can be realized by
O(N logN) arithmetical operations such that (circ a) b = a ∗ b can be computed
by O(N logN) arithmetical operations too.

Corollary 3.33 For arbitrary a ∈ C
N , the eigenvalues of circ a coincide with the

components âj , j = 0, . . . , N − 1, of (âj )
N−1
j=0 = FN a. A right eigenvector related

to the eigenvalue âj , j = 0, . . . , N−1, is the complex conjugate exponential vector
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ej = (w
−jk
N )N−1

k=0 and a left eigenvector of âj is ej , i.e.,

(circ a) ej = âj ej , ej (circ a) = âj ej . (3.48)

Proof Using (3.47), we obtain that

(
circ a

)
F−1
N = F−1

N diag (âj )
N−1
j=0 , FN circ a = (

diag (âj )
N−1
j=0

)
FN

with

FN =

⎛

⎜
⎜
⎜
⎝

e0
e1
...

eN−1

⎞

⎟
⎟
⎟
⎠

, F−1
N = 1

N

(
e0 | e1 | . . . | eN−1

)
. (3.49)

Hence we conclude (3.48) holds. Note that the eigenvalues âj of circ a need not be
distinct.

By the definition of the forward-shift matrix VN , each circulant matrix (3.46) can
be written in the form

circ a =
N−1∑

k=0

ak Vk
N , (3.50)

where V0
N = VN

N = IN . Therefore, VN is called basic circulant matrix.
The representation (3.50) reveals that N-by-N circulant matrices form a com-

mutative algebra. Linear combinations and products of circulant matrices are also
circulant matrices, and products of any two circulant matrices commute. The inverse
of a nonsingular circulant matrix is again a circulant matrix. The following result is
very useful for the computation with circulant matrices:

Theorem 3.34 (Properties of Circulant Matrices) For arbitrary a, b ∈ C
N and

α ∈ C we have

1. (circ a) = circ (J′N a) ,
2. (circ a)+ (circ b) = circ (a+ b) , α (circ a) = circ (α a) ,
3. (circ a) (circ b) = (circ b) (circ a) = circ (a ∗ b) ,
4. circ a is a normal matrix with the spectral decomposition (3.47),
5. det (circ a) =∏N−1

j=0 âj with
(
âj

)N−1
j=0 = FN a .

6. The Moore–Penrose pseudo-inverse of circ a has the form

(circ a)+ = F−1
N

(
diag (â+j )N−1

j=0

)
FN ,

where â+j := â−1
j if âj �= 0 and â+j := 0 if âj = 0.
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7. circ a is invertible if and only if âj �= 0 for all j = 0, . . . , N − 1 . Under this
condition, (circ a)−1 is the circulant matrix

(circ a)−1 = F−1
N

(
diag (â−1

j )N−1
j=0

)
FN .

Proof

1. Using VN = V−1
N and VN

N = IN , we obtain for a = (ak)
N−1
k=0 ∈ C

N by (3.50)
that

(circ a) =
N−1∑

k=0

ak
(
Vk

N

) =
N−1∑

k=0

ak
(
VN

)k =
N−1∑

k=0

ak V−k
N =

N−1∑

k=0

ak VN−k
N

= a0 IN + aN−1 VN + . . .+ a1 VN−1
N = circ (J′N a) .

2. The two relations follow from the definition (3.46).
3. Let a = (ak)

N−1
k=0 , b = (b�)

N−1
�=0 ∈ C

N be given. Using VN
N = IN , we conclude

that by (3.50)

(circ a) (circ b) = (N−1∑

k=0

ak Vk
N

) (N−1∑

�=0

b� V�
N

) =
N−1∑

n=0

cn Vn
N

with the entries

cn =
N−1∑

j=0

aj b(n−j) mod N , n = 0, . . . , N − 1 .

By (cn)
N−1
n=0 = a ∗ b we obtain (circ a) (circ b) = circ (a ∗ b). Since the

cyclic convolution is commutative, the product of circulant matrices is also
commutative.

4. By property 1, the conjugate transpose of circ a is again a circulant matrix. Since
circulant matrices commute by property 3, circ a is a normal matrix. By (3.47)
we obtain the spectral decomposition of the normal matrix

circ a = 1√
N

FN

(
diag (FNa)

) 1√
N

FN , (3.51)

because 1√
N

FN is unitary.

5. The determinant det (circ a) of the matrix product (3.50) can be computed by

det (circ a) = (
det FN

)−1 (N−1∏

j=0

âj
)

det FN =
N−1∏

j=0

âj .
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6. The Moore–Penrose pseudo-inverse A+N of an N-by-N matrix AN is uniquely
determined by the properties

AN A+N AN = AN , A+N AN A+N = A+N ,

where AN A+N and A+N AN are Hermitian. From the spectral decomposi-
tion (3.51) of circ a it follows that

(circ a)+ = 1√
N

FN

(
diag (âj )

N−1
j=0

)+ 1√
N

FN = F−1
N

(
diag (â+j )N−1

j=0

)
FN .

The matrix circ a is invertible if and only if det (circ a) �= 0, i.e., if âj �= 0 for
all j = 0, . . . , N − 1. In this case,

F−1
N

(
diag (â−1

j )N−1
j=0

)
FN

is the inverse of circ a.

Circulant matrices can be characterized by the following property.

Lemma 3.35 AnN-by-N matrix AN is a circulant matrix if and only if AN and the
basic circulant matrix VN commute, i.e.,

VN AN = AN VN . (3.52)

Proof Each circulant matrix circ a with a ∈ C
N can be represented in the

form (3.50). Hence circ a commutes with VN .
Let AN =

(
aj,k

)N−1
j,k=0 be an arbitrary N-by-N matrix with the property (3.52) such

that VN AN V−1
N = AN . From

VN AN V−1
N = (

a(j−1) mod N,(k−1) mod N

)N−1
j,k=0

it follows for all j, k = 0, . . . , N − 1

a(j−1) mod N, (k−1) mod N = aj,k .

Setting aj := aj,0 for j = 0, . . . , N − 1, we conclude that aj,k = a(j−k) mod N for
j, k = 0, . . . , N − 1, i.e., AN = circ (aj )

N−1
j=0 .

Remark 3.36 For arbitrarily given tk ∈ C, k = 1 −N, . . . , N − 1, we consider the
N-by-N Toeplitz matrix

TN :=
(
tj−k

)N−1
j,k=0 =

⎛

⎜
⎜
⎜
⎝

t0 t−1 . . . t2−N t1−N

t1 t0 . . . t3−N t2−N

...
...

...
...

tN−1 tN−2 . . . t1 t0

⎞

⎟
⎟
⎟
⎠

.
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In general, TN is not a circulant matrix. But TN can be extended to a 2N-by-2N
circulant matrix C2N . We define

C2N :=
(

TN EN

EN TN

)

with

EN :=

⎛

⎜
⎜⎜
⎝

0 tN−1 . . . t2 t1

t1−N 0 . . . t3 t2
...

...
...

...

t−1 t−2 . . . t1−N 0

⎞

⎟
⎟⎟
⎠

.

Then, C2N = circ c with the vector

c := (t0, t1, . . . , tN−1, 0, t1−N, . . . , t−1)
 ∈ C

2N .

Thus for an arbitrary vector a ∈ CN , the matrix–vector product TN a can be
computed using the circulant matrix vector product

C2N

(
a
0

)
=

(
TN a
EN a

)
,

where 0 ∈ C
N denotes the zero vector. Applying a fast Fourier transform of

Chap. 5, this matrix–vector product can therefore be realized with only O(N logN)

arithmetical operations.

3.4 Kronecker Products and Stride Permutations

In this section we consider special block matrices that are obtained by employing the
Kronecker product of two matrices. These special matrices often occur by reshaping
linear equations with matrix-valued unknowns to matrix–vector representations. We
will also show that block circulant matrices can again be simply diagonalized using
Kronecker products of Fourier matrices.
For arbitrary matrices AM,N = (

aj,k
)M−1,N−1
j,k=0 ∈ C

M×N and BP,Q ∈ C
P×Q, the

Kronecker product of AM,N and BP,Q is defined as the block matrix

AM,N ⊗ BP,Q :=
(
aj,k BP,Q

)M−1,N−1
j,k=0

=
⎛

⎜
⎝

a0,0 BP,Q . . . a0,N−1 BP,Q

...
...

aM−1,0 BP,Q . . . aM−1,N−1 BP,Q

⎞

⎟
⎠ ∈ C

MP×NQ .
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In particular, for a = (aj )
M−1
j=0 ∈ C

M and b ∈ C
P we obtain the Kronecker product

a⊗ b = (
aj b

)M−1
j=0 =

⎛

⎜
⎝

a0 b
...

aM−1 b

⎞

⎟
⎠ ∈ C

MP .

The Kronecker product of the identity matrix IM and the square matrix BP is equal
to the block diagonal matrix

IM ⊗ BP =
(
δj−k BP

)M−1
j,k=0 =

⎛

⎜
⎝

BP

. . .

BP

⎞

⎟
⎠ ∈ C

MP×MP .

Example 3.37 For the Fourier matrix F2 we obtain that

I2 ⊗ F2 =

⎛

⎜
⎜
⎝

1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1

⎞

⎟
⎟
⎠ , F2 ⊗ I2 =

⎛

⎜
⎜
⎝

1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

⎞

⎟
⎟
⎠ .

By definition, the Kronecker product AM,N ⊗ BP,Q has the entry aj,k bm,n in the
(j P +m)th row and (k Q+ n)th column for j = 0, . . . ,M − 1, k = 0, . . . , N − 1,
m = 0, . . . , P −1, and n = 0, . . . ,Q−1. Further it follows from the definition that
the Kronecker product is associative, i.e., for arbitrary matrices AM,N ∈ C

M×N ,
BP,Q ∈ C

P×Q, and CR,S ∈ C
R×S we have

(
AM,N ⊗ BP,Q

)⊗ CR,S = AM,N ⊗
(
BP,Q ⊗ CR,S

)
. (3.53)

In many applications, we especially consider Kronecker products of square
matrices and of vectors. For square matrices AM and BP we simply observe by
blockwise multiplication that

AM ⊗ BP =
(
AM ⊗ IP

) (
IM ⊗ BP

) = (
IM ⊗ BP

) (
AM ⊗ IP

)
. (3.54)

As we can see in Example 3.37, the Kronecker product is not commutative. In
order to understand the relation between the Kronecker products AM ⊗ BP and
BP ⊗ AM , we introduce special permutation matrices. An N-by-N permutation
matrix is obtained by permuting the columns of the N-by-N identity matrix IN . For
instance, the counter-identity matrix JN , the flip matrix J′N , and the forward-shift
matrix VN are permutation matrices. For N ∈ N with N = LM , where L, M ≥ 2
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are integers, the L-stride permutation matrix PN(L) ∈ C
N×N is defined by the

property

PN(L) a = (
(aLk+�)

M−1
k=0

)L−1
�=0

= (
a0, . . . , aL(M−1) | a1, . . . , aL(M−1)+1 | . . . | aL−1, . . . , aL(M−1)+L−1

)

for arbitrary a = (
aj

)N−1
j=0 ∈ C

N . Note that

PN(L) = (
δ(j L−k) mod (N−1)

)N−1
j,k=0 .

For even N ∈ N, the 2-stride permutation matrix or even-odd permutation matrix
PN(2) is of special interest in the fast computation of DFT(N) (see Chap. 5). Then
we have

PN(2) a = (
(a2k+�)

N/2−1
k=0

)1
�=0 =

(
a0, a2, . . . , aN−2 | a1, a3, . . . , aN−1

)
.

Example 3.38 For N = 6, L = 2, and M = 3 we get that

P6(2) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜⎜
⎝

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟⎟
⎠

, P6(2)
 = P6(3) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜⎜
⎝

1 0 0 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟⎟
⎠

.

Then we have P6(2)P6(3) = I6 and

P6(2) a = (a0, a2, a4, a1, a3, a5)
 , P6(3) a = (a0, a3, a1, a4, a2, a5)



for a = (
aj

)5
j=0.

The following property of stride-permutation matrices can be simply shown
using Kronecker products.

Lemma 3.39 IfN ∈ N can be factorized in the formN = K LM withK, L, M ∈
N, then

PN(LM) = PN(L)PN(M) = PN(M)PN(L) . (3.55)

In particular, for N = LM we have

PN(L)−1 = PN(L) = PN(M) . (3.56)
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Proof For arbitrary vectors a ∈ C
K , b ∈ C

L, and c ∈ C
M , we obtain from the

definitions, on the one hand, that

PN(LM) (a⊗ b⊗ c) = PN(LM)
(
a⊗ (b⊗ c)

) = b⊗ c⊗ a .

On the other hand,

PN(L)PN(M) (a⊗ b⊗ c) = PN(L)
[
PN(M)

(
(a⊗ b)⊗ c

)]

= PN(L)
(
c⊗ (a⊗ b)

) = PN(L)
(
(c⊗ a)⊗ b

)

= b⊗ c⊗ a .

The two equations are true for all vectors a ⊗ b ⊗ c ∈ C
N , which span

C
N . Consequently, PN(LM) = PN(L)PN(M). Analogously, one can show that

PN(LM) = PN(M)PN(L).
If N = LM , then PN(LM) = PN(N) = IN and hence PN(M)PN(L) = IN .

Since PN(M) and PN(L) are orthogonal matrices, we conclude (3.56).

Corollary 3.40 Let p ∈ N be a prime. For N = pn with n ∈ N, the set {PN(pk) :
k = 0, . . . , n − 1} is a cyclic group generated by the p-stride permutation matrix
PN(p) with PN(p)k = PN(pk) for k = 0, . . . , n− 1.

This corollary follows immediately from Lemma 3.39.
We are interested in the properties of Kronecker products. For simplicity, we

restrict ourselves to square matrices.

Lemma 3.41 For arbitrary matrices AL ∈ C
L×L and BM ∈ C

M×M and for all
vectors a ∈ C

L and b ∈ C
M we have

(AL ⊗ BM) (a⊗ b) = (AL a)⊗ (BM b) .

Proof Assume that AL =
(
aj,k

)L−1
j,k=0 and a = (

ak
)L−1
k=0 . From

AL ⊗ BM = (
aj,k BM

)L−1
j,k=0 , a⊗ b = (

ak b
)L−1
k=0

it follows by blockwise computation that

(AL ⊗ BM) (a⊗ b) =
(( L−1∑

k=0

aj,k ak
)

BM b
)
= (AL a)⊗ (BM b) ,

since
∑L−1

k=0 aj,k ak is the j th component of AL a.

We denote with vec X the vectorization of a matrix X = (x0| . . . |xM−1) ∈ C
L×M

into the vector (x0 , . . . , xM−1)
 = (xk)

M−1
k=0 ∈ C

LM .
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Theorem 3.42 Let AL, CL ∈ C
L×L, and BM , DM ∈ C

M×M be arbitrary square
matrices. Then the Kronecker product possesses the following properties:

1. (AL ⊗ BM) (CL ⊗ DM) = (AL CL)⊗ (BM DM) ,

2. (AL ⊗ BM) = AL ⊗ BM ,

3. PN(M) (AL ⊗ BM)PN(L) = BM ⊗ AL with N = LM ,
4. det (AL ⊗ BM) = (det AL)

M (det BM)L ,

5. (AL ⊗ BM)−1 = A−1
L ⊗ B−1

M , if AL and BM are invertible.
6. Let X ∈ C

L×M , then

vec(AL X BM) = (BM ⊗ AL) vec X.

Proof

1. For arbitrary matrices AL = (
aj,k

)L−1
j,k=0 and CL = (

ck,�
)L−1
k,�=0 ∈ C

L×L we
obtain that

AL ⊗ BM := (
aj,k BM

)L−1
j,k=0 , CL ⊗ DM := (

ck,� DM

)L−1
k,�=0 .

By blockwise multiplication of the two matrices we conclude that

(AL⊗BM) (CL⊗DM) =
( L−1∑

k=0

aj,k ck,� BM DM

)L−1

j,�=0
= (AL CL)⊗(BM DM) ,

since
∑L−1

k=0 aj,k ck,� is the (j, �)th entry of the matrix product AL CL. The
first property of the Kronecker product is of high importance for efficient
multiplication of block matrices, since the multiplication of two matrices of large
size LM-by-LM can be transferred to the multiplication of matrices of lower
sizes L-by-L and M-by-M and the realization of one Kronecker product, being
computed by elementwise multiplication.

2. The second property follows immediately from the definition of the Kronecker
product.

3. For arbitrary vectors a ∈ C
L and b ∈ C

M we find

PN(M) (AL ⊗ BM)
(
PN(L) (b ⊗ a)

) = PN(M) (AL ⊗ BM) (a⊗ b)

= PN(M)
(
(AL a)⊗ (BM b)

)

= (BM b)⊗ (AL a) = (BM ⊗ (AL) (b⊗ a) .

Since arbitrary vectors of the form b⊗a span the vector space CLM , the so-called
commutation property is shown.

4. The Kronecker product AL ⊗ BM can be factorized in the form

AL ⊗ BM = (AL ⊗ IM) (IL ⊗ BM) .
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For the block diagonal matrix IL ⊗ BM we obtain that

det (IL ⊗ BM) = (det BM)L .

By the commutation property it follows that with N = LM

PN(M) (AL ⊗ IM)PN(L) = PN(M) (AL ⊗ IM)PN(M)−1 = IM ⊗AL

and hence

det (AL ⊗ IM) = det (IM ⊗ AL) = (det AL)
M .

Thus we have

det (AL ⊗ BM) = (
det (AL ⊗ IM)

) (
det (IL ⊗ BM)

) = (det AL)
M (det BM)L .

5. By property 4, the Kronecker product AL ⊗ BM is invertible if and only if AL

and BM are invertible. By property 1, the inverse of AL⊗BM reads A−1
L ⊗B−1

M ,
if AL and BM are invertible.

6. Let the columns of X be given by X = (x0 | . . . | xM−1), and let BM =
(bj,k)

M−1
j,k=0 = (b0 | . . . | bM−1). On the one hand, we find

vec (AL X BM) = vec (AL X b0 | . . . |AL X bM−1) .

On the other hand,

(B ⊗ AL) vec X =

⎛

⎜
⎜⎜⎜
⎜
⎝

AL b0,0 . . . AL b0,M−1

AL b1,0 . . . AL b1,M−1

.

.

.
.
.
.

AL bM−1,0 . . . AL bM−1,M−1

⎞

⎟
⎟⎟⎟
⎟
⎠

⎛

⎜⎜
⎝

x0

.

.

.

xM−1

⎞

⎟⎟
⎠

=

⎛

⎜⎜⎜
⎜⎜
⎝

b0,0 AL x0 + . . .+ b0,M−1 AL xM−1

b1,0 AL x0 + . . .+ b1,M−1 AL xM−1

.

.

.

bM−1,0 AL x0 + . . .+ bM−1,M−1 AL xM−1

⎞

⎟⎟⎟
⎟⎟
⎠
=

⎛

⎜⎜⎜
⎜⎜
⎝

AL X b0

AL X b1

.

.

.

AL X bM−1

⎞

⎟⎟⎟
⎟⎟
⎠

.

Thus the assertion follows.

Now we use Kronecker products of Fourier matrices in order to diagonalize
generalized circulant matrices. Assume that vectors ck ∈ C

M , k = 0, . . . , L − 1,
are given and let A(k) := circ ck be the corresponding M-by-M circulant matrices.



148 3 Discrete Fourier Transforms

Then the L-by-L block matrix

ALM := (
A((j − k) mod L)

)L−1
j,k=0 =

⎛

⎜⎜
⎜
⎜
⎝

A(0) A(L− 1) . . . A(1)

A(1) A(0) . . . A(2)
...

...
...

A(L− 1) A(L− 2) . . . A(0)

⎞

⎟⎟
⎟
⎟
⎠
∈ C

LM×LM

is called L-by-L block circulant matrix with M-by-M circulant blocks. We observe
that L-by-L block circulant matrices with M-by-M circulant blocks commute, since
circulant matrices commute by Theorem 3.34. Note that ALM is already determined
by the vectors ck , k = 0, . . . , L− 1, or equivalently by

CM,L :=
(
c0 | . . . | cL−1

) ∈ C
M×L .

Example 3.43 Let AL be an L-by-L circulant matrix and let BM be an M-by-M
circulant matrix. Obviously, the Kronecker product AL ⊗ BM is an L-by-L block
circulant matrix with M-by-M circulant blocks BM . In particular, IL⊗BM is a block
diagonal matrix with circulant blocks. The so-called Kronecker sum of AL and BM

defined by

(AL ⊗ IM)+ (IL ⊗ BM) ∈ C
LM×LM (3.57)

is also a block matrix with circulant blocks.

Lemma 3.44 Each L-by-L block circulant matrix ALM ∈ C
LM×LM with M-by-

M circulant blocks A(k) = circ ck with ck ∈ C
M , k = 0, . . . , L − 1 can be

diagonalized by the Kronecker product FL ⊗ FM of the Fourier matrices FL and
FM in the following form

ALM = (
FL ⊗ FM

)−1 (
diag (vec ĈM,L)

) (
FL ⊗ FM

)
,

where ĈM,L := FM CM,L FL. Moreover we have

(
FL ⊗ FM

)
vec CM,L = vec ĈM,L .

Proof First we compute the product
(
FL ⊗ IM

)
ALM

(
F−1
L ⊗ IM

)
by blockwise

multiplication

1

L

(
w

jk

L IM
)L−1
j,k=0

(
A((k − �) mod L)

)L−1
k,�=0

(
w−�n

L IM
)L−1
�,n=0 .
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The result is a block matrix
(
B(j, n)

)L−1
j,n=0 with the blocks

B(j, n) = 1

L

L−1∑

k=0

L−1∑

�=0

w
jk−�n
L A((k − �) mod L) ∈ C

M×M .

In the case j = n we obtain after substitution m = (k − �) mod L that

B(j, j) =
L−1∑

m=0

w
jm
L A(m) . (3.58)

In the case j �= n we see by Lemma 3.2 that B(j, n) is equal to the M-by-M zero
matrix. Hence

(
FL ⊗ IM

)
ALM

(
F−1
L ⊗ IM

)
is a block diagonal matrix with the

diagonal blocks in (3.58). By Theorem 3.42, the block circulant matrix ALM with
circulant blocks can be represented in the form

ALM = (
F−1
L ⊗ IM

) [
diag

(
B(j, j)

)L−1
j=0

] (
FL ⊗ IM

)
.

Since A(m) = circ cm are circulant matrices by assumption, we obtain by
Theorem 3.31 that

A(m) = F−1
M

(
diag (FM cm)

)
FM

and hence by (3.58)

B(j, j) = F−1
M

( L−1∑

m=0

w
jm
L diag (FM cm)

)
FM .

Thus by Theorem 3.42 we conclude

ALM = (
F−1
L
⊗ IM

) (
IL ⊗ F−1

M

) [
diag

( L−1∑

m=0

w
jm
L

FM cm
)L−1
j=0

] (
IL ⊗ FM

) (
FL ⊗ IM

)

= (
F−1
L ⊗ F−1

M

) [
diag

( L−1∑

m=0

w
jm
L FM cm

)L−1
j=0

] (
FL ⊗ FM

)

= (
FL ⊗ FM

)−1 [
diag

( L−1∑

m=0

w
jm
L

FM cm
)L−1
j=0

] (
FL ⊗ FM

)
.
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Finally, we show that

( L−1∑

m=0

w
jm
L FM cm

)L−1
j=0 = vec ĈM,L .

We recall that CM,L = (cj,k)
M−1,L−1
j,k=0 has the columns cm = (cj,m)M−1

j=0 , m =
0, . . . , L− 1, and ĈM,L := FM CM,L FL = (ĉ�,k

)M−1,L−1
�,k=0 has the entries

ĉ�,k =
M−1∑

j=0

L−1∑

m=0

cj,m w
j�
M wkm

L .

From FL ⊗ FM = (wkm
L FM)L−1

k,m=0 and vec CM,L = (cm)L−1
m=0 it follows by

blockwise multiplication

(FL ⊗ FM) vec CM,L =
( L−1∑

m=0

wkm
L FM cm

)L−1
k=0 =

(( L−1∑

m=0

M−1∑

j=0

cj,m w
j�

M wkm
L

)M−1
�=0

)L−1

k=0

= (
(ĉ�,k)

M−1
�=0

)L−1
k=0 = vec ĈM,L .

This completes the proof.

Corollary 3.45 Let a ∈ C
L and b ∈ C

M be arbitrary given vectors and let AL =
circ a and BM = circ b be the corresponding circulant matrices. Then both the
Kronecker product AL ⊗ BM and the Kronecker sum (3.57) of AL and BM can be
diagonalized by the Kronecker product FL ⊗ FM .
If λ ∈ C be an eigenvalue of AL with corresponding eigenvector x ∈ C

L and if
μ ∈ C be an eigenvalue of BM with corresponding eigenvector y ∈ C

M , then λ+μ

is an eigenvalue of the Kronecker sum (3.57) of AL and BM with an eigenvector
x⊗ y ∈ C

LM .

Proof From Lemma 3.44 and Example 3.43 it follows immediately that the
Kronecker product AL ⊗ BM and the Kronecker sum (3.57) can be diagonalized
by FL ⊗ FM .

If λ be an eigenvalue of AL and if μ be an eigenvalue of BM , then we see by
Lemma 3.41 that

[
(AL ⊗ IM)+ (IL ⊗ BM)

]
(x⊗ y) = (

(AL x)⊗ y
)+ (

(x⊗ (BM y)
)

= (λ+ μ) (x⊗ y) .
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3.5 Discrete Trigonometric Transforms

In this section we consider some real versions of the DFT. Discrete trigonometric
transforms are widely used in applied mathematics, digital signal processing,
and image compression. Examples of such real transforms are a discrete cosine
transform (DCT), discrete sine transform (DST), and discrete Hartley transform
(DHT). We will introduce these transforms and show that they are generated by
orthogonal matrices.

Lemma 3.46 Let N ≥ 2 be a given integer. Then the set of cosine vectors of type I

cI
k :=

√
2

N
εN(k)

(
εN(j) cos

jkπ

N

)N
j=0 , k = 0, . . . , N ,

forms an orthonormal basis of RN+1, where εN(0) = εN(N) :=
√

2
2 and εN(j) :=

1 for j = 1, . . . , N − 1. The (N + 1)-by-(N + 1) cosine matrix of type I is defined
by

CI
N+1 :=

√
2

N

(
εN(j) εN(k) cos

jkπ

N

)N
j,k=0 , (3.59)

i.e., it has the cosine vectors of type I as columns. Then CI
N+1 is symmetric and

orthogonal, i.e.,
(
CI

N+1

)−1 = CI
N+1.

Proof By Example 1.14 we know that for x ∈ R \ 2π Z

N−1∑

j=1

cos(jx) = sin (2N−1)x
2

2 sin x
2

− 1

2
.

In particular, it follows for x = 2πk
N

,

N−1∑

j=1

cos
2kjπ

N
= −1 , k ∈ Z \N Z , (3.60)

and for x = (2k+1)π
N

,

N−1∑

j=1

cos
(2k + 1)jπ

N
= 0 , k ∈ Z . (3.61)
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For k, � ∈ {0, . . . , N}, the inner product 〈cI
k, cI

�〉 can be calculated as follows:

〈cI
k, cI

�〉 =
2

N
εN(k) εN(�)

N∑

j=0

εN(j)2 cos
jkπ

N
cos

j�π

N

= 1

N
εN(k) εN(�)

(
1+ (−1)k+� +

N−1∑

j=1

cos
(k − �)jπ

N

+
N−1∑

j=1

cos
(k + �)jπ

N

)
. (3.62)

In the case k �= � with even k + �, the integer k − � is also even. Hence by (3.60)
and (3.62) we obtain 〈cI

k, cI
�〉 = 0. In the case k �= � with odd k + �, the integer

k−� is odd such that 〈cI
k, cI

�〉 = 0 by (3.61) and (3.62). For k = � ∈ {1, . . . , N −1}
it follows from (3.60) and (3.62) that

〈cI
k, cI

�〉 =
1

N

(
2+ (N − 1)+

N−1∑

j=1

cos
2kjπ

N

)
= 1 .

For k = � ∈ {0, N}, we get

〈cI
k, cI

�〉 =
1

2N

(
2+ (N − 1)+ (N − 1)

) = 1 .

Thus the set {cI
k : k = 0, . . . , N} is an orthonormal basis of RN+1, because the

N + 1 cosine vectors of type I are linearly independent and dim R
N+1 = N + 1.

The linear map from R
N+1 onto R

N+1, which is represented by the matrix–
vector product CI

N+1a = (〈a, cI
k〉

)N
k=0 for arbitrary a ∈ R

N+1, is called discrete
cosine transform of type I and lengthN +1 and will be abbreviated by DCT–I (N +
1). As we will show in Sect. 6.2 (see e.g. Algorithm 6.22), this transform plays an
important role for evaluating expansions of Chebyshev polynomials.

Lemma 3.47 Let N ≥ 2 be a given integer. Then the set of cosine vectors of type
II

cII
k :=

√
2

N

(
εN(j) cos

(2k + 1)jπ

2N

)N−1
j=0 , k = 0, . . . , N − 1 ,
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forms an orthonormal basis of RN . The N-by-N cosine matrix of type II is defined
by the column vectors cII

k ,

CII
N :=

√
2

N

(
εN(j) cos

(2k + 1)jπ

2N

)N−1
j,k=0 . (3.63)

The matrix CII
N is orthogonal, but it is not symmetric. We have

(
CII

N

)−1 = (
CII

N

)
.

Proof For k, � ∈ {0, . . . , N − 1}, we calculate the inner product

〈cII
k , cII

� 〉 =
2

N

N−1∑

j=0

εN(j)2 cos
(2k + 1)jπ

2N
cos

(2�+ 1)jπ

2N

= 1

N

(
1+

N−1∑

j=1

cos
(k − �)jπ

N
+

N−1∑

j=1

cos
(k + �+ 1)jπ

N

)
. (3.64)

In the case k �= � this inner product vanishes by (3.60), (3.61), and (3.64). For k = �

we obtain by (3.61) and (3.64) that

〈cII
k , cII

k 〉 =
1

N

(
1+ (N − 1)+

N−1∑

j=1

cos
(2k + 1)jπ

N

)
= 1 .

The linear map from R
N onto R

N , represented by CII
Na = (〈a, cII

k 〉
)N−1
k=0 for

arbitrary a ∈ R
N , is called discrete cosine transform of type II and lengthN and will

be abbreviated by DCT–II (N). The DCT–II plays a special role for decorrelation of
digital signals and images.

The N-by-N cosine matrix of type III is defined by

CIII
N :=

√
2

N

(
εN(k) cos

(2j + 1)kπ

2N

)N−1
j,k=0 . (3.65)

Obviously, CIII
N = (

CII
N

) = (
CII

N

)−1. The columns

cIII
k :=

√
2

N
εN(k)

(
cos

(2j + 1)kπ

2N

)N−1
j=0 , k = 0, . . . , N − 1 ,

of CIII
N form an orthonormal basis of RN and are called cosine vectors of type III.

The matrix CIII
N also generates a linear orthogonal map from R

N onto R
N , which

is called discrete cosine transform of type III and length N , abbreviated by DCT–
III (N). In particular, the DCT–III (N) is the inverse DCT–II (N).
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Lemma 3.48 Let N ≥ 2 be a given integer. Then the set of cosine vectors of type
IV

cIV
k :=

√
2

N

(
cos

(2j + 1)(2k + 1)π

4N

)N−1
j=0 , k = 0, . . . , N − 1 ,

forms an orthonormal basis of RN . The N-by-N cosine matrix of type IV, defined
by the columns cIV

k ,

CIV
N :=

√
2

N

(
cos

(2j + 1)(2k + 1)π

4N

)N−1
j,k=0 , (3.66)

is symmetric and orthogonal, i.e.,
(
CIV

N

)−1 = CIV
N .

Proof From

2 sin x

N−1∑

j=0

cos(2j + 1)x =
N−1∑

j=0

(
sin(2j + 2)x − sin(2jx)

) = sin(2Nx)

it follows for x ∈ R \ πZ
N−1∑

j=0

cos(2j + 1)x = sin(2Nx)

2 sin x

and hence

N−1∑

j=0

cos
(2j + 1)kπ

N
= 0 , k ∈ Z \ NZ , (3.67)

N−1∑

j=0

cos
(2j + 1)(2k + 1)π

2N
= 0 , k ∈ Z . (3.68)

For k, � ∈ {0, . . . , N − 1}, we calculate the inner product

〈cIV
k , cIV

� 〉 =
2

N

N−1∑

j=0

cos
(2j + 1)(2k + 1)π

4N
cos

(2j + 1)(2�+ 1)π

4N

= 1

N

(N−1∑

j=0

cos
(2j + 1)(k − �)π

2N
+

N−1∑

j=0

cos
(2j + 1)(k + �+ 1)π

2N

)
. (3.69)
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In the case k �= � this inner product vanishes by (3.67)–(3.69). For k = � we obtain
by (3.69) and (3.68) that

〈cIV
k , cIV

� 〉 =
1

N

(
N +

N−1∑

j=0

cos
(2j + 1)(2k + 1)π

2N

)
= 1 .

The linear map from R
N onto R

N , given by CIV
N a = (〈a, cIV

k 〉
)N−1
k=0 for arbitrary

a ∈ R
N , is called discrete cosine transform of type IV and length N and will be

abbreviated by DCT–IV (N). We will study the interplay between DCT–II (N) and
DCT–IV (N) in Sect. 6.3.

Analogously to DCTs of types I–IV one can introduce discrete sine transforms.

Lemma 3.49 Let N ≥ 2 be a given integer. Then the set of sine vectors of type I

sI
k :=

√
2

N

(
sin

(j + 1)(k + 1)π

N

)N−2
j=0 , k = 0, . . . , N − 2 ,

forms an orthonormal basis of RN−1. The (N − 1)-by-(N − 1) sine matrix of type
I, defined by

SI
N−1 :=

√
2

N

(
sin

(j + 1)(k + 1)π

N

)N−2
j,k=0 , (3.70)

is symmetric and orthogonal, i.e.,
(
SI
N−1

)−1 = SI
N−1.

Proof For k, � ∈ {0, . . . , N − 1}, we calculate the inner product

〈sI
k, sI

�〉 =
2

N

N−2∑

j=0

sin
(j + 1)(k + 1)π

N
sin

(j + 1)(�+ 1)π

N

= 1

N

( N−1∑

j=1

cos
(k − �)jπ

N
−

N−1∑

j=1

cos
(k + �+ 2)jπ

N

)
. (3.71)

In the case k �= � we observe that k−� and k+�+2 are either both even or both odd.
Hence 〈sI

k, sI
�〉 vanishes by (3.60), (3.61), and (3.71). For k = � we obtain by (3.71)

and (3.61) that

〈sI
k, sI

k〉 =
1

N

(
(N − 1)−

N−1∑

j=1

cos
(2k + 2)jπ

N

)
= 1 .
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The linear map from R
N−1 onto R

N−1 generated by SI
N−1a = (〈a, sI

k〉
)N−2
k=0 for

arbitrary a ∈ R
N−1, is called discrete sine transform of type I and length N − 1 and

will be abbreviated by DST–I (N − 1).
Let N ≥ 2 be a given integer. The N-by-N sine matrices of type II–IV are

defined by

SII
N :=

√
2

N

(
εN(j + 1) sin

(j + 1)(2k + 1)π

2N

)N−1
j,k=0 , (3.72)

SIII
N := (

SII
N

)
, (3.73)

SIV
N :=

√
2

N

(
sin

(2j + 1)(2k + 1)π

4N

)N−1
j,k=0 . (3.74)

The discrete sine transform of type II–IV and length N is the linear mapping from
R

N ontoRN , which is generated by the matrix–vector product with the N-by-N sine
matrix of type II–IV. For these discrete sine transforms, we use the abbreviations
DST–II (N), DST–III (N), or DST–IV (N).

In the following lemma we recall the intertwining relations of above cosine and
sine matrices.

Lemma 3.50 For each integer N ≥ 2, the cosine and sine matrices satisfy the
following intertwining relations:

CI
N+1 JN+1 = DN+1 CI

N+1 , SI
N−1 JN−1 = DN−1 SI

N−1 ,

CII
N JN = DN CII

N , SII
N JN = DN SII

N ,

JN CIII
N = CIII

N DN , JN SIII
N = SIII

N DN ,

(−1)N−1 CIV
N JN DN = JN DN CIV

N , (−1)N−1 SIV
N JN DN = JN DN SIV

N

and further

JN CII
N = SII

N DN , JN CIII
N = DN SIII

N , CIV
N JN = DN SIV

N , (3.75)

where JN denotes the counter-identity matrix and where DN := diag
(
(−1)k

)N−1
k=0

is the diagonal sign matrix.

The proof is straightforward and is omitted here.

Lemma 3.51 For each integer N ≥ 2, the N-by-N sine matrices of type II–IV are
orthogonal. The columns of SII

N , SIII
N , or SIV

N form an orthonormal basis of RN .

Proof As shown by Lemmas 3.47 and 3.48, the cosine matrices of types II, III, and
IV are orthogonal. Obviously, the matrices JN and DN are orthogonal. By (3.75), the
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sine matrices of types II–IV can be represented as products of orthogonal matrices

SII
N = JN CII

N DN , SIII
N = (

SII
N

) = DN CIII
N JN , SIV

N = DN CIV
N JN .

Hence the sine matrices SII
N , SIII

N , and SIV
N are orthogonal, i.e., the corresponding

columns of these sine matrices form orthonormal bases of RN .

Remark 3.52 First cosine and sine matrices appeared in connection with trigono-
metric approximation (see [163] and [315]). In signal processing, cosine matrices
of type II and III were introduced in [2]. The above classification of cosine and sine
matrices was given in [367] (cf. [306, pp. 12–21]).
Other proofs for the orthogonality of the cosine matrices CI

N+1, CII
N , CIII

N , and CIV
N

can be found in [306, pp. 12–16] and [376, pp. 85–90]. Strang [343] pointed out that
the cosine vectors of each type are eigenvectors of a symmetric second difference
matrix and therefore orthogonal.
We will study discrete trigonometric transforms and its applications in more detail in
Chap. 6. In Sect. 6.3, we will derive fast algorithms for these discrete trigonometric
transforms with computational costs O(N logN), if the transform length N is a
power of two.

Remark 3.53 The N-by-N Hartley matrix

HN := 1

N

(
cas

jkπ

N

)N−1
j,k=0

with cas x := cos x + sin x for x ∈ R, where “cas” is an abbreviation of the
expression “cosine and sine”. The historical roots of this matrix go back to the
introduction of continuous Hartley transform by R. Hartley in 1942. The need to
sample signals and approximate the continuous Hartley transform by a matrix–
vector product led to the Hartley matrix introduced by Bracewell [44]. The Hartley
matrix is symmetric and orthogonal, since the Hartley vectors

hk := 1

N

(
cas

jkπ

N

)N−1
j=0 , k = 0, . . . , N − 1

form an orthonormal basis of RN . The linear map from R
N onto R

N generated by
the matrix vector product HN a = (〈a, hk〉

)N−1
k=0 for arbitrary a ∈ R

N , is called
discrete Hartley transform of length N and will be abbreviated by DHT(N). Note
that the basic properties of DHT are discussed in [7] that also presents fast and
numerically stable algorithms for DHT of radix-2 length N .



Chapter 4
Multidimensional Fourier Methods

In this chapter, we consider d-dimensional Fourier methods for fixed d ∈ N.
We start with Fourier series of d-variate, 2π-periodic functions f : T

d → C

in Sect. 4.1, where we follow the lines of Chap. 1. In particular, we present
basic properties of the Fourier coefficients and learn about their decay for smooth
functions.

Then, in Sect. 4.2, we deal with Fourier transforms of functions defined on R
d .

Here, we follow another path than in the case d = 1 considered in Chap. 2. We
show that the Fourier transform is a linear, bijective operator on the Schwartz space
S (Rd) of rapidly decaying functions. Using the density of S (Rd ) in L1(R

d) and
L2(R

d), the Fourier transform on these spaces is discussed. The Poisson summation
formula and the Fourier transforms of radial functions are also addressed.

In Sect. 4.3, we introduce tempered distributions as linear, continuous functionals
on the Schwartz space S (Rd ). We consider Fourier transforms of tempered
distributions and Fourier series of periodic tempered distributions. Further, we
introduce the Hilbert transform and its multidimensional generalization, the Riesz
transform.

As in the case d = 1, any numerical application of d-dimensional Fourier series
or Fourier transforms leads to d-dimensional discrete Fourier transforms handled
in Sect. 4.4. We present the basic properties of the two-dimensional and higher-
dimensional DFT, including the convolution property and the aliasing formula.

4.1 Multidimensional Fourier Series

We consider d-variate, 2π-periodic functions f : Rd → C, i.e., functions fulfilling
f (x) = f (x + 2π k) for all x = (xj )

d
j=1 ∈ R

d and all k = (kj )
d
j=1 ∈ Z

d . Note
that the function f is 2π-periodic in each variable xj , j = 1, . . . , d , and that f is
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uniquely determined by its restriction to the hypercube [0, 2π)d . Hence, f can be
considered as a function defined on the d-dimensional torus Td = R

d/(2π Z
d). For

fixed n = (nj )
d
j=1 ∈ Z

d , the d-variate complex exponential:

ei n·x =
d∏

j=1

ei nj xj , x ∈ R
d ,

is 2π-periodic, where n · x := n1 x1 + . . . + nd xd is the inner product of n ∈ Z
d

and x ∈ R
d . Further, we use the Euclidean norm ‖x‖2 := (x · x)1/2 of x ∈ R

d . For
a multi-index α = (αk)

d
k=1 ∈ N

d
0 with |α| = α1 + . . .+ αd , we use the notation:

xα :=
d∏

k=1

x
αk

k .

Let C(Td ) be the Banach space of continuous functions f : Td → C equipped with
the norm:

‖f ‖C(Td) := max
x∈Td

|f (x)| .

By Cr(Td), r ∈ N, we denote the Banach space of r-times continuously differen-
tiable functions with the norm:

‖f ‖Cr(Td) :=
∑

|α|≤r

max
x∈Td

|Dαf (x)| ,

where

Dαf (x) := ∂α1

∂x
α1
1

. . .
∂αd

∂x
αd

d

f (x)

denotes the partial derivative with the multi-index α = (αj )
d
j=1 ∈ N

d
0 and |α| ≤ r .

For 1 ≤ p ≤ ∞, let Lp(T
d) denote the Banach space of all measurable functions

f : Td → C with finite norm:

‖f ‖Lp(Td) :=
⎧
⎨

⎩

(
1

(2π)d

∫
[0, 2π]d |f (x)|p dx

)1/p
1 ≤ p <∞ ,

ess sup {|f (x)| : x ∈ [0, 2π]d} p = ∞ ,
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where almost everywhere equal functions are identified. The spaces Lp(T
d ) with

1 < p <∞ are continuously embedded as:

L1(T
d ) ⊃ Lp(T

d ) ⊃ L∞(Td) .

By the periodicity of f ∈ L1(T
d ), we have

∫

[0, 2π]d
f (x) dx =

∫

[−π, π]d
f (x) dx .

For p = 2, we obtain the Hilbert space L2(T
d ) with the inner product and norm:

〈f, g〉L2(Td) :=
1

(2π)d

∫

[0, 2π]d
f (x) g(x) dx , ‖f ‖L2(Td) :=

√
〈f, f 〉L2(Td )

for arbitrary f , g ∈ L2(T
d). For all f , g ∈ L2(T

d ), it holds the Cauchy–Schwarz
inequality:

|〈f, g〉L2(Td)| ≤ ‖f ‖L2(Td ) ‖g‖L2(Td) .

The set of all complex exponentials
{
ei k·x : k ∈ Z

d
}

forms an orthonormal basis of
L2(T

d ). A linear combination of complex exponentials:

p(x) =
∑

k∈Zd

ak ei k·x

with only finitely many coefficients ak ∈ C \ {0} is called d-variate, 2π-periodic
trigonometric polynomial. The degree of p is the largest number ‖k‖1 = |k1| +
. . . + |kd | such that ak �= 0 with k = (kj )

d
j=1 ∈ Z

d . The set of all trigonometric

polynomials is dense in Lp(T
d) for 1 ≤ p <∞ (see [146, p. 168]).

For f ∈ L1(T
d ) and arbitrary k ∈ Z

d , the kth Fourier coefficient of f is defined
as:

ck(f ) := 〈f (x), ei k·x〉L2(Td ) =
1

(2π)d

∫

[0, 2π]d
f (x) e−ik·x dx .

As in the univariate case, the kth modulus and phase of f are defined by |ck(f )|
and arg ck(f ), respectively. Obviously, we have

|ck(f )| ≤ 1

(2π)d

∫

[0, 2π]d
|f (x)| dx = ‖f ‖L1(T

d) .

The Fourier coefficients possess similar properties as in the univariate setting (cf.
Lemmas 1.6 and 1.13).
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Lemma 4.1 The Fourier coefficients of any functions f , g ∈ L1(T
d) have the

following properties for all k = (kj )
d
j=1 ∈ Z

d :

1. Uniqueness: If ck(f ) = ck(g) for all k ∈ Z
d , then f = g almost everywhere.

2. Linearity: For all α, β ∈ C:

ck(α f + β g) = α ck(f )+ β ck(g) .

3. Translation and modulation: For all x0 ∈ [0, 2π)d and k0 ∈ Z
d :

ck
(
f (x− x0)

) = e−i k·x0 ck(f ) ,

ck
(
e−i k0·x f (x)

) = ck+k0(f ) .

4. Differentiation: For f ∈ L1(T
d ) with partial derivative ∂f

∂xj
∈ L1(T

d ):

ck

( ∂f

∂xj

)
= i kj ck(f ) .

5. Convolution: For f, g ∈ L1(T
d ), the d-variate convolution:

(f ∗ g)(x) := 1

(2π)d

∫

[0, 2π]d
f (y) g(x− y) dy , x ∈ R

d ,

is contained in L1(T
d ) and we have

ck(f ∗ g) = ck(f ) ck(g) .

The proof of Lemma 4.1 can be given similarly as in the univariate case and is
left to the reader.

Remark 4.2 The differentiation property 4 of Lemma 4.1 can be generalized.
Assume that f ∈ L1(R

d ) possesses partial derivatives Dαf ∈ L1(T
d ) for all multi-

indices α ∈ N
d
0 with |α| ≤ r , where r ∈ N is fixed. Repeated application of the

differentiation property 4 of Lemma 4.1 provides

ck(D
αf ) = (i k)α ck(f ) (4.1)

for all k ∈ Z
d , where (i k)α denotes the product (i k1)

α1 . . . (i kd)αd with the
convention 00 = 1.

Remark 4.3 If the 2π-periodic function:

f (x) =
d∏

j=1

fj (xj )
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is the product of univariate functions fj ∈ L1(T), j = 1, . . . , d , then we have for
all k = (kj )

d
j=1 ∈ Z

d

ck(f ) =
d∏

j=1

ckj (fj ) .

Example 4.4 Let n ∈ N0 be given. The nth Dirichlet kernel Dn : Td → C:

Dn(x) :=
n∑

k1=−n

. . .

n∑

kd=−n

ei k·x

is a trigonometric polynomial of degree d n. It is the product of univariate nth
Dirichlet kernels:

Dn(x) =
d∏

j=1

Dn(xj ) .

For arbitrary n ∈ N0, the nth Fourier partial sum of f ∈ L1(T
d ) is defined by:

(Snf )(x) :=
n∑

k1=−n

. . .

n∑

kd=−n

ck(f ) ei k·x . (4.2)

Using the nth Dirichlet kernel Dn, the nth Fourier partial sum Snf can be
represented as convolution Snf = f ∗Dn.

For f ∈ L1(T
d ), the d-dimensional Fourier series:

∑

k∈Zd

ck(f ) ei k·x (4.3)

is called convergent to f in L2(T
d ), if the sequence of Fourier partial sums (4.2)

converges to f , that is:

lim
n→∞‖f − Snf ‖L2(Td) = 0 .

Then, it holds the following result on convergence in L2(T
d ) (cf. Lemma 1.3 for

d = 1):
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Theorem 4.5 Every function f ∈ L2(T
d) can be expanded into the Fourier

series (4.3) which converges to f in L2(T
d ). Further, the Parseval equality:

‖f ‖2
L2(Td)

= 1

(2π)d

∫

[0, 2π]d
|f (x)|2 dx =

∑

k∈Zd

|ck(f )|2 (4.4)

is fulfilled.

Now, we investigate the relation between the smoothness of the function f :
T
d → C and the decay of its Fourier coefficients ck(f ) as ‖k‖2 → ∞. We show

that the smoother a function f : Td → C is, the faster its Fourier coefficients ck(f )

tend to zero as ‖k‖2 →∞ (cf. Lemma 1.27 and Theorem 1.39 for d = 1).

Lemma 4.6

1. For f ∈ L1(T
d ), we have

lim
‖k‖2→∞

ck(f ) = 0 . (4.5)

2. Let r ∈ N be given. If f and its partial derivativesDαf are contained in L1(T
d )

for all multi-indices α ∈ N
d
0 with |α| ≤ r , then:

lim‖k‖2→∞
(1+ ‖k‖r2) ck(f ) = 0 . (4.6)

Proof

1. If f ∈ L2(T
d ), then (4.5) is a consequence of the Parseval equality (4.4). For

all ε > 0, any function f ∈ L1(T
d) can be approximated by a trigonometric

polynomial p of degree n such that ‖f − p‖L1(Td) < ε. Then, the Fourier
coefficients of r := f − p ∈ L1(T

d ) fulfill |ck(r)| ≤ ‖r‖L1(Td) < ε for all
k ∈ Z

d . Further, we have ck(p) = 0 for all k ∈ Z
d with ‖k‖1 > n, since

the trigonometric polynomial p has the degree n. By the linearity of the Fourier
coefficients and by ‖k‖1 ≥ ‖k‖2, we obtain for all k ∈ Z

d with ‖k‖2 > n that

|ck(f )| = |ck(p)+ ck(r)| = |ck(r)| < ε .

2. We consider a fixed multi-index k ∈ Z
d \ {0} with |k�| = maxj=1,...,d |kj | > 0.

From (4.1), it follows that

(i k�)r ck(f ) = ck
(∂rf

∂xr
�

)
.
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Using ‖k‖2 ≤
√
d |k�|, we obtain the estimate:

‖k‖r2 |ck(f )| ≤ dr/2 |ck
(∂rf

∂xr
�

)| ≤ dr/2 max|α|=r
|ck(D

αf )| .

Then from (4.5), it follows the assertion (4.6).

Now, we consider the uniform convergence of d-dimensional Fourier series.

Theorem 4.7 If f ∈ C(Td ) has the property:

∑

k∈Zd

|ck(f )| <∞ , (4.7)

then the d-dimensional Fourier series (4.3) converges uniformly to f on Td , that is:

lim
n→∞‖f − Snf ‖C(Td) = 0 .

Proof By (4.7), the Weierstrass criterion ensures that the Fourier series (4.3)
converges uniformly to a continuous function:

g(x) :=
∑

k∈Zd

ck(f ) ei k·x.

Since f and g have the same Fourier coefficients, the uniqueness property in
Lemma 4.1 gives f = g on T

d .

Now, we want to show that a sufficiently smooth function f : Td → C fulfills
condition (4.7). We need the following result:

Lemma 4.8 If 2 r > d , then:

∑

k∈Zd\{0}
‖k‖−2 r

2 <∞ . (4.8)

Proof For all k = (kj )
d
j=1 ∈ Z

d \ {0}, we have ‖k‖2 ≥ 1. Using the inequality of
arithmetic and geometric means, it follows

(d + 1) ‖k‖2
2 ≥ d + ‖k‖2

2 =
d∑

j=1

(1+ k2
j ) ≥ d

( d∏

j=1

(1+ k2
j )

)1/d

and hence

‖k‖−2 r
2 ≤

(d + 1

d

)r
d∏

j=1

(1+ k2
j )
−r/d .
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Consequently, we obtain

∑

k∈Zd\{0}
‖k‖−2 r

2 ≤
(d + 1

d

)r ∑

k1∈Z
(1+ k2

1)
−r/d . . .

∑

kd∈Z
(1+ k2

d)
−r/d

=
(d + 1

d

)r (∑

k∈Z
(1+ k2)−r/d

)d
<

(d + 1

d

)r (
1+ 2

∞∑

k=1

k−2 r/d
)d

<∞.

Theorem 4.9 If f ∈ Cr(Td ) with 2 r > d , then the condition (4.7) is fulfilled and
the d-dimensional Fourier series (4.3) converges uniformly to f on Td .

Proof By assumption, each partial derivative Dαf with |α| ≤ r is continuous
on T

d . Hence, we have Dαf ∈ L2(T
d ) such that by (4.1) and the Parseval

equality (4.4):

∑

|α|=r

∑

k∈Zd

|ck(f )|2 k2α <∞ ,

where k2α denotes the product k
2α1
1 . . . k

2αd

d with 00 := 1. Then, there exists a
positive constant c, depending only on the dimension d and on r , such that:

∑

|α|=r

k2α ≥ c ‖k‖2 r
2 .

By the Cauchy–Schwarz inequality in �2(Z
d ) and by Lemma 4.8, we obtain

∑

k∈Zd\{0}
|ck(f )| ≤

∑

k∈Zd\{0}
|ck(f )| (

∑

|α|=r

k2α
)1/2

c−1/2 ‖k‖−r
2

≤ ( ∑

|α|=r

∑

k∈Zd

|ck(f )|2 k2α
)1/2 ( ∑

k∈Zd\{0}
‖k‖−2r

2

)1/2
c−1/2 <∞ .

For further discussion on the theory of multidimensional Fourier series, see [341,
pp. 245–250], [146, pp. 161–248], and [329, pp. 1–137].

4.2 Multidimensional Fourier Transforms

Let C0(R
d) be the Banach space of all functions f : Rd → C, which are continuous

on R
d and vanish as ‖x‖2 →∞, with norm:

‖f ‖C0(Rd) := max
x∈Rd

|f (x)| .
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Let Cc(R
d ) be the subspace of all continuous functions with compact supports. By

Cr(Rd), r ∈ N ∪ {∞}, we denote the set of r-times continuously differentiable
functions and by Cr

c (R
d) the set of r-times continuously differentiable functions

with compact supports.
For 1 ≤ p ≤ ∞, let Lp(R

d) be the Banach space of all measurable functions
f : Rd → C with finite norm:

‖f ‖Lp(Rd) :=
{( ∫

Rd |f (x)|p dx
)1/p 1 ≤ p <∞ ,

ess sup {|f (x)| : x ∈ R
d } p = ∞ ,

where almost everywhere equal functions are identified. In particular, we are
interested in the Hilbert space L2(R

d) with inner product and norm:

〈f, g〉L2(Rd) :=
∫

Rd

f (x) g(x) dx , ‖f ‖L2(Rd) := ( ∫

Rd

|f (x)|2 dx
)1/2

.

4.2.1 Fourier Transforms onS (Rd)

By S (Rd), we denote the set of all functions ϕ ∈ C∞(Rd ) with the property
xα Dβϕ(x) ∈ C0(R

d) for all multi-indices α, β ∈ N
d
0 . We define the convergence

in S (Rd) as follows: A sequence (ϕk)k∈N of functions ϕk ∈ S (Rd ) converges
to ϕ ∈ S (Rd ), if for all multi-indices α, β ∈ N

d
0 , the sequences

(
xα Dβϕk

)
k∈N

converge uniformly to xα Dβϕ on R
d . We will write ϕk −→

S
ϕ as k → ∞. Then,

the linear space S (Rd ) with this convergence is called Schwartz space or space of
rapidly decreasing functions. The name is in honor of the French mathematician
L. Schwartz (1915–2002).

Any function ϕ ∈ S (Rd) is rapidly decreasing in the sense that for all multi-
indices α, β ∈ N

d
0 :

lim‖x‖2→∞
xα Dβϕ(x) = 0 .

Introducing

‖ϕ‖m := max
|β|≤m

‖(1+ ‖x‖2)
m Dβϕ(x)‖C0(R

d) , m ∈ N0 , (4.9)

we see that ‖ϕ‖0 ≤ ‖ϕ‖1 ≤ ‖ϕ‖2 ≤ . . . are finite for all ϕ ∈ S (Rd). We can
describe the convergence in the Schwartz space by the help of (4.9).
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Lemma 4.10 For ϕk , ϕ ∈ S (Rd ), we have ϕk −→
S

ϕ as k → ∞ if and only if for

all m ∈ N0:

lim
k→∞‖ϕk − ϕ‖m = 0 . (4.10)

Proof

1. Let (4.10) be fulfilled for all m ∈ N0. Then for all α = (αj )
d
j=1 ∈ N

d
0 \ {0} with

|α| ≤ m, we get by the relation between geometric and quadratic means that

|xα| ≤
(
α1x

2
1 + . . .+ αdx

2
d

|α|

)|α|/2

≤
(
x2

1 + . . .+ x2
d

)|α|/2 ≤ (1+ ‖x‖2)
m

so that

|xαDβ(ϕk − ϕ)(x)| ≤ (1+ ‖x‖2)
m |Dβ(ϕk − ϕ)(x)|.

Hence, for all β ∈ N
d
0 with |β| ≤ m, it holds

‖xαDβ(ϕk − ϕ)(x)‖C0(Rd) ≤ sup
x∈Rd

(1+ ‖x‖2)
m |Dβ(ϕk − ϕ)(x)| ≤ ‖ϕk − ϕ‖m .

2. Assume that ϕk −→
S

ϕ as k →∞, i.e., for all α, β ∈ N
d
0 we have

lim
k→∞‖x

αDβ(ϕk − ϕ)(x)‖C0(Rd) = 0 .

We consider multi-indices α, β ∈ N
d
0 with |α| ≤ m and |β| ≤ m for m ∈ N.

Since norms in R
n are equivalent, we obtain

(1+ ‖x‖2)
m ≤ C1(1+ ‖x‖m2 ) ≤ C1

(
1+ C2

d∑

j=1

|xj |m
)

≤ C
∑

|α|≤m

|xα| .

This implies

‖(1 + ‖x‖2)
m Dβ(ϕk − ϕ)(x)‖C0(Rd) ≤ C

∑

|α|≤m

‖xα Dβ(ϕk − ϕ)(x)‖C0(Rd)
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and hence

‖ϕk − ϕ‖m ≤ C max
|β|≤m

∑

|α|≤m

‖xα Dβ(ϕk − ϕ)(x)‖C0(R
d)

such that limk→∞ ‖ϕk − ϕ‖m = 0.

Remark 4.11 Using Lemma 4.10, it is not hard to check that the convergence in the
Schwartz space S (Rd) is induced by the metric:

ρ(ϕ,ψ) :=
∞∑

m=0

1

2m

‖ϕ − ψ‖m
1+ ‖ϕ − ψ‖m , ϕ, ψ ∈ S (Rd) ,

that is, the convergence ϕk −→
S

ϕ as k →∞ is equivalent to:

lim
k→∞ ρ(ϕk, ϕ) = 0 .

Moreover, the metric space is complete by the following reason: Let (ϕk)k∈N be a
Cauchy sequence with respect to ρ. Then, for every α, β ∈ N

d
0 ,

(
xα Dβϕk

)
k∈N is

a Cauchy sequence in Banach space C0(R
d) and converges uniformly to a function

ψα,β . Then, by definition of S (Rd ), it follows ψα,β(x) = xα Dβψ0,0(x) with
ψ0,0 ∈ S (Rd) and hence ϕk −→

S
ψ0,0 as k →∞.

Note that the metric ρ is not generated by a norm, since ρ(c ϕ, 0) �= |c| ρ(ϕ, 0)
for all c ∈ C \ {0} with |c| �= 1 and nonvanishing ϕ ∈ S (Rd).

Clearly, it holds S (Rd ) ⊂ C0(R
d) ⊂ L∞(Rd ) and S (Rd) ⊂ Lp(R

d), 1 ≤
p <∞, by the following argument: For each ϕ ∈ S (Rd), we have by (4.9):

|ϕ(x)| ≤ ‖ϕ‖d+1 (1+ ‖x‖2)
−d−1

for all x ∈ R
d . Then, using polar coordinates with r = ‖x‖2, we obtain

∫

Rd

|ϕ(x)|p dx ≤ ‖ϕ‖pd+1

∫

Rd

(1+ ‖x‖2)
−p(d+1) dx

≤ C

∫ ∞

0

rd−1

(1+ r)p(d+1)
dr ≤ C

∫ ∞

0

1

(1+ r)2 dr <∞

with some constant C > 0. Hence, the Schwartz space S (Rd ) is contained in
L1(R

d) ∩ L2(R
d ).

Obviously, C∞c (Rd) ⊂ S (Rd ). Since C∞c (Rd) is dense in Lp(R
d), p ∈ [1,∞),

see, e.g., [357, Satz 3.6], we also have that S (Rd ) is dense in Lp(R
d), p ∈ [1,∞).

Summarizing, it holds

C∞c (Rd) ⊂ S (Rd) ⊂ C∞0 (Rd ) ⊂ C∞(Rd ) . (4.11)
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Example 4.12 A typical function in C∞c (Rd ) ⊂ S (Rd ) is the test function:

ϕ(x) :=
{

exp
(− 1

1−‖x‖2
2

) ‖x‖2 < 1 ,

0 ‖x‖2 ≥ 1 .
(4.12)

The compact support of ϕ is the unit ball {x ∈ R
d : ‖x‖2 ≤ 1}.

Any Gaussian function e−a ‖x‖2
2 with a > 0 is contained in S (Rd ), but it is not

in C∞c (Rd).
For any n ∈ N, the function:

f (x) := (1+ ‖x‖2
2)
−n ∈ C∞0 (Rd )

does not belong to S (Rd), since ‖x‖2n
2 f (x) does not tend to zero as ‖x‖2 →∞.

Example 4.13 In the univariate case, each product of a polynomial and the Gaussian
function e−x2/2 is a rapidly decreasing function. By Theorem 2.25, the Hermite
functions hn(x) = Hn(x) e−x2/2, n ∈ N0, are contained in S (R) and form an
orthogonal basis of L2(R). Here, Hn denotes the nth Hermite polynomial. Thus,
S (R) is dense in L2(R). For each multi-index n = (nj )

d
j=1 ∈ N

d
0 , the function

xn e−‖x‖2
2/2, x = (xj )

d
j=1 ∈ R

d , is a rapidly decreasing function. The set of all
functions:

hn(x) := e−‖x‖2
2/2

d∏

j=1

Hnj (xj ) ∈ S (Rd ) , n ∈ N
d
0 ,

is an orthogonal basis of L2(R
d ). Further, S (Rd) is dense in L2(R

d).

For f ∈ L1(R
d ), we define its Fourier transform at ω ∈ R

d by:

Ff (ω) = f̂ (ω) :=
∫

Rd

f (x) e−i x·ω dx . (4.13)

Since

|f̂ (ω)| ≤
∫

Rd

|f (x)| dx = ‖f ‖L1(R
d) ,

the Fourier transform (4.13) exists for all ω ∈ R
d and is bounded on R

d .

Example 4.14 Let L > 0 be given. The characteristic function f (x) of the hyper-
cube [−L, L]d ⊂ R

d is the product
∏d

j=1 χ[−L,L](xj ) of univariate characteristic
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functions. By Example 2.3, the related Fourier transform reads as follows:

f̂ (ω) = (2L)d
d∏

j=1

sinc(Lωj ) .

Example 4.15 The Gaussian function f (x) := e−‖σx‖2
2/2 with fixed σ > 0 is the

product of the univariate functions f (xj ) = e−σ 2 x2
j /2 such that by Example 2.6:

f̂ (ω) =
(2π

σ 2

)d/2
e−‖ω‖2

2/(2σ
2) .

By the following theorem, the Fourier transform maps the Schwartz space
S (Rd) into itself.

Theorem 4.16 For every ϕ ∈ S (Rd ), it holdsFϕ ∈ S (Rd ), i.e.,F : S (Rd)→
S (Rd). Furthermore,Dα(Fϕ) ∈ S (Rd ) andF (Dαϕ) ∈ S (Rd) for all α ∈ N

d
0 ,

and we have

Dα(Fϕ) = (−i)|α|F (xα ϕ) , (4.14)

ωα (Fϕ) = (−i)|α|F (Dα ϕ) , (4.15)

where the partial derivative Dα in (4.14) acts on ω and in (4.15) on x.

Proof

1. We consider α = e1. Using Fubini’s theorem, we obtain

∂

∂ω1
(Fϕ)(ω) = lim

h→0

1

h

(
(Fϕ)(ω + he1)− (Fϕ)(ω)

)

= lim
h→0

∫

Rd

ϕ(x)
1

h

(
e−ix·(ω+he1) − e−ix·ω) dx (4.16)

= lim
h→0

∫

Rd−1
e−ix̃·ω̃

∫

R

ϕ(x)
1

h

(
e−2x1(ω1+h) − e−ix1ω1

)
dx1 dx̃

where x̃ := (x2, . . . , xd). Now, g(ω) := e−i xω is Lipschitz continuous with
Lipschitz constant supω |g′(ω)| = supω | − ix e−i xω| = |x| so that

1

h

∣
∣
∣e−ix1(ω1+h) − e−i x1ω1

∣
∣
∣ ≤ |x1|.

Since ϕ ∈ S(Rd ), we conclude that |ϕ(x) x1| is an integrable upper bound of
the sequence in the integrand of (4.16). By Lebesque’s dominated convergence
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theorem, one can change the order of differentiation and integration which
results in:

∂

∂ω1
(Fϕ)(ω) =

∫

Rd

ϕ(x)
∂

∂ω1
e−ix·ω dx

= −i
∫

Rd

ϕ(x) x1 e−i x·ω dx = −i (F (x1ϕ)(ω).

For arbitrary α ∈ N
d
0 , the assertion follows by induction.

2. We start by considering α = e1. From the theorem of Fubini, it follows

ω1 (Fϕ)(ω) =
∫

Rd

ω1 e−i x·ω ϕ(x) dx

=
∫

Rd−1
e−i x̃·ω̃

∫

R

iω1 e−i x1ω1 ϕ(x) dx1 dx2 . . . dxd .

For the inner integral, integration by parts yields

∫

R

iω1 e−iω1x1 ϕ(x) dx1 =
∫

R

e−i x1ω1
∂

∂x1
ϕ(x) dx1 .

Thus, we obtain

ω1 (Fϕ)(ω) = −iF
( ∂

∂x1
ϕ
)
(ω) .

For an arbitrary multi-index α ∈ N
d
0 , the formula (4.15) follows by induction.

3. From (4.14) and (4.15), it follows for all multi-indices α, β ∈ N
d
0 and each

ϕ ∈ S (Rd ):

ωα [Dβ(Fϕ)] = (−i)|β| ωαF (xβϕ) = (−i)|α|+|β|F [Dα(xβϕ)] . (4.17)

Since

|ωα [Dβ(Fϕ)](ω)| = |F [Dα(xβϕ)](ω)| ≤
∫

Rd

|Dα(xβϕ)| dx <∞ ,

we conclude that ωα [Dβ(Fϕ)](ω) is uniformly bounded on R
d , so that Fϕ ∈

S (Rd ).

Remark 4.17 The Leibniz product rule for the partial differentiation of the product
of two functions reads as follows:

Dα(ϕ ψ) =
∑

β≤α

(
α

β

)
(Dβϕ) (Dα−βψ) (4.18)
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with α = (αj )
d
j=1 ∈ N

d
0 , where the sum runs over all β = (βj )

d
j=1 ∈ N

d
0 with

βj ≤ αj for j = 1, . . . , d , and where

(
α

β

)
:= α1! . . . αd !

β1! . . . βd ! (α1 − β1)! . . . (αd − βd)! .

Based on Theorem 4.16, we can show that the Fourier transform is indeed a
bijection on S (Rd).

Theorem 4.18 The Fourier transform F : S (Rd ) → S (Rd) is a linear,
bijective mapping. Further, the Fourier transform is continuous with respect to the
convergence in S (Rd ), i.e., for ϕk , ϕ ∈ S (Rd), ϕk −→

S
ϕ as k → ∞ implies

Fϕk −→
S

Fϕ as k →∞.

For all ϕ ∈ S (Rd ), the inverse Fourier transform F−1 : S (Rd) → S (Rd) is
given by:

(F−1ϕ)(x) := 1

(2π)d

∫

Rd

ϕ(ω) ei x·ω dω . (4.19)

The inverse Fourier transform is also a linear, bijective mapping onS (Rd ) which is
continuous with respect to the convergence in S (Rd ). Further, for all ϕ ∈ S (Rd )

and all x ∈ R
d , it holds the Fourier inversion formula:

ϕ(x) = 1

(2π)d

∫

Rd

(Fϕ)(ω) ei x·ω dω .

Proof

1. By Theorem 4.16, the Fourier transformF maps the Schwartz space S (Rd ) into
itself. The linearity of the Fourier transform F follows from those of the integral
operator (4.13). For arbitrary ϕ ∈ S (Rd), for all α, β ∈ N

d
0 with |α| ≤ m and

|β| ≤ m, and for all ω ∈ R
d , we obtain by (4.17) and Leibniz product rule:

|ωβ Dα(Fϕ)(ω)| = |F (
Dβ(xα ϕ(x))

)
(ω)| ≤

∫

Rd

|Dβ (xα ϕ(x))| dx

≤ C

∫

Rd

(1+ ‖x‖2)
m

∑

|γ |≤m

|Dγ ϕ(x)| dx ≤ C

∫

Rd

(1+ ‖x‖2)
m+d+1

(1+ ‖x‖2)d+1

∑

|γ |≤m

|Dγ ϕ(x)| dx

≤ C

∫

Rd

dx
(1+ ‖x‖2)

d+1 ‖ϕ‖m+d+1 .
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By

‖Fϕ‖m = max|γ |≤m
‖(1+ ‖ω‖2)

m DγFϕ(ω)‖C0(R
d)

we see that

‖Fϕ‖m ≤ C′ ‖ϕ‖m+d+1 (4.20)

for all ϕ ∈ S (Rd) and each m ∈ N0.
Assume that ϕk −→

S
ϕ as k → ∞ for ϕk, ϕ ∈ S (Rd). Applying the

inequality (4.20) to ϕk − ϕ, we obtain for all m ∈ N0

‖Fϕk −Fϕ‖m ≤ C′ ‖ϕk − ϕ‖m+d+1 .

From Lemma 4.10, it follows that Fϕk −→
S

Fϕ as k →∞.

2. The mapping

(F̃ϕ)(x) := 1

(2π)d

∫

Rd

ϕ(ω) ei x·ω dω , ϕ ∈ S (Rd ) ,

is linear and continuous from S (Rd ) into itself by the first step of this proof,
since (F̃ϕ)(x) = 1

(2π)d
(Fϕ)(−x).

Now, we show that F̃ is the inverse mapping of F . For arbitrary ϕ, ψ ∈
S (Rd ), it holds by Fubini’s theorem:

∫

Rd

(Fϕ)(ω) ψ(ω) ei ω·x dω =
∫

Rd

( ∫

Rd

ϕ(y) e−i ω·y dy
)
ψ(ω) ei ω·x dω

=
∫

Rd

ϕ(y)
( ∫

Rd

ψ(ω) ei (x−y)·ω dω
)
dy

=
∫

Rd

ϕ(y) (Fψ)(y − x) dy =
∫

Rd

ϕ(z+ x) (Fψ)(z) dz .

For the Gaussian function ψ(x) := e−‖εx‖2
2/2 with ε > 0, we have by

Example 4.15 that (Fψ)(ω) = ( 2π
ε2

)d/2 e−‖ω‖2
2/(2ε

2) and consequently

∫

Rd

(Fϕ)(ω) e−‖εω‖2
2/2ei ω·x dω =

(2π

ε2

)d/2
∫

Rd

ϕ(z+ x) e−‖z‖2
2/(2ε

2) dz

= (2π)d/2
∫

Rd

ϕ(ε y+ x) e−‖y‖2
2/2 dy .
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Since |(Fϕ)(ω) e−‖εω‖2
2/2| ≤ |Fϕ(ω)| for all ω ∈ R

d and Fϕ ∈ S (Rd ) ⊂
L1(R

d ), we obtain by Lebesgue’s dominated convergence theorem:

(
F̃ (Fϕ)

)
(x) = 1

(2π)d
lim
ε→0

∫

Rd

(Fϕ)(ω) e−‖εω‖2
2/2 ei ω·x dω

= (2π)−d/2 lim
ε→0

∫

Rd

ϕ(x+ εy) e−‖y‖2
2/2 dy

= (2π)−d/2ϕ(x)
∫

Rd

e−‖y‖2
2/2 dy = ϕ(x) ,

since by Example 2.6:

∫

Rd

e−‖y‖2
2/2 dy = ( ∫

R

ey
2/2 dy

)d = (2π)d/2 .

From F̃ (Fϕ) = ϕ, it follows immediately that F (F̃ϕ) = ϕ for all ϕ ∈
S (Rd ). Hence, F̃ = F−1 and F is bijective.

The convolution f ∗ g of two d-variate functions f , g ∈ L1(R
d) is defined by:

(f ∗ g)(x) :=
∫

Rd

f (y) g(x− y) dy .

Theorem 2.13 carries over to our multivariate setting. Moreover, by the following
lemma the product and the convolution of two rapidly decreasing functions are again
rapidly decreasing.

Lemma 4.19 For arbitrary ϕ, ψ ∈ S (Rd ), the product ϕ ψ and the convolution
ϕ ∗ ψ are inS (Rd) and it holdsF (ϕ ∗ ψ) = ϕ̂ ψ̂ .

Proof By the Leibniz product rule (4.18), we obtain that xγ Dα
(
ϕ(x) ψ(x)

) ∈
C0(R

d) for all α, γ ∈ N
d
0 , i.e., ϕ ψ ∈ S (Rd).

By Theorem 4.18, we know that ϕ̂, ψ̂ ∈ S (Rd) and hence ϕ̂ ψ̂ ∈ S (Rd) by
the first step. Using Theorem 4.18, we obtain that F (ϕ̂ ψ̂) ∈ S (Rd). On the other
hand, we conclude by Fubini’s theorem:

F (ϕ ∗ ψ)(ω) =
∫

Rd

( ∫

Rd

ϕ(y) ψ(x− y) dy
)

e−i x·ω dx

=
∫

Rd

ϕ(y) e−i y·ω(
∫

Rd

ψ(x − y) e−i (x−y)·ω dx
)

dy

= ( ∫

Rd

ϕ(y) e−i y·ω dy
)
ψ̂(ω) = ϕ̂(ω) ψ̂(ω) .

Therefore, ϕ ∗ ψ =F−1(ϕ̂ ψ̂) ∈ S (Rd).
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The basic properties of the d-variate Fourier transform on S (Rd ) can be proved
similarly as in Theorems 2.5 and 2.15. The following properties 1, 3, and 4 hold
also true for functions in L1(R

d), whereas property 2 holds only under additional
smoothness assumptions.

Theorem 4.20 (Properties of the Fourier Transform on S (Rd )) The Fourier
transform of a function ϕ ∈ S (Rd ) has the following properties:

1. Translation and modulation: For fixed x0,ω0 ∈ R
d :

(
ϕ(x− x0)

)ˆ(ω) = e−i x0·ω ϕ̂(ω) ,

(
e−i ω0·x ϕ(x)

)ˆ(ω) = ϕ̂(ω + ω0) .

2. Differentiation and multiplication: For α ∈ N
d
0 :

(
Dαϕ(x)

)ˆ(ω) = i|α| ωα ϕ̂(ω) ,

(
xαϕ(x)

)ˆ(ω) = i|α| (Dα ϕ̂)(ω) .

3. Scaling: For c ∈ R \ {0}:
(
ϕ(c x)

)ˆ(ω) = 1

|c|d ϕ̂(c−1 ω) .

4. Convolution: For ϕ, ψ ∈ S (Rd ):

(ϕ ∗ ψ)ˆ(ω) = ϕ̂(ω) ψ̂(ω) .

4.2.2 Fourier Transforms on L1(R
d) and L2(R

d)

Similar to the univariate case, see Theorem 2.8, we obtain the following theorem for
the Fourier transform on L1(R

d ).

Theorem 4.21 The Fourier transform F defined by (4.13) is a linear continuous
operator from L1(R

d) into C0(R
d ) with the operator norm ‖F‖L1(Rd)→C0(Rd) = 1.

Proof By (4.11), there exists for any f ∈ L1(R
d ) a sequence (ϕk)k∈N with ϕk ∈

S (Rd) such that limk→∞ ‖f − ϕk‖L1(Rd) = 0. Then, the C0(R
d ) norm of Ff −

Fϕk can be estimated by:

‖Ff −Fϕk‖C0(Rd) = sup
ω∈Rd

|F (f − ϕk)(ω)| ≤ ‖f − ϕk‖L1(Rd) ,
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that is, limk→∞Fϕk = Ff in the norm of C0(R
d ). By S (Rd) ⊂ C0(R

d) and the
completeness of C0(R

d), we conclude that Ff ∈ C0(R
d). The operator norm of

F : L1(R
d) → C0(R

d ) can be deduced as in the univariate case, where we have
just to use the d-variate Gaussian function.

Theorem 4.22 (Fourier Inversion Formula for L1(R
d ) Functions) Let f ∈

L1(R
d) and f̂ ∈ L1(R

d). Then, the Fourier inversion formula:

f (x) = 1

(2π)d

∫

Rd

f̂ (ω) eiω·x dω (4.21)

holds true for almost all x ∈ R
d .

The proof follows similar lines as those of Theorem 2.10 in the univariate case.
Another proof of Theorem 4.22 is sketched in Remark 4.48.

The following lemma is related to the more general Lemma 2.21 proved in the
univariate case.

Lemma 4.23 For arbitrary ϕ,ψ ∈ S (Rd), the following Parseval equality is valid:

(2π)d 〈ϕ,ψ〉L2(Rd) = 〈Fϕ,Fψ〉L2 (Rd) .

In particular, we have (2π)d/2 ‖ϕ‖L2(Rd) = ‖Fϕ‖L2(Rd).

Proof By Theorem 4.18, we have ϕ = F−1(Fϕ) for ϕ ∈ S (Rd ). Then, Fubini’s
theorem yields

(2π)d 〈ϕ, ψ〉L2(Rd) = (2π)d
∫

Rd

ϕ(x) ψ(x) dx

=
∫

Rd

ψ(x)
( ∫

Rd

(Fϕ)(ω) ei x·ω dω
)

dx =
∫

Rd

(Fϕ)(ω)

∫

Rd

ψ(x) e−i x·ω dx dω

=
∫

Rd

Fϕ(ω)Fψ(ω) dω = 〈Fϕ, Fψ〉L2(Rd) .

We will use the following extension theorem of bounded linear operator, see,
e.g., [10, Theorem 2.4.1], to extend the Fourier transform from S (Rd) to L2(R

d ).

Theorem 4.24 (Extension of a Bounded Linear Operator) Let H be a Hilbert
space and let D ⊂ H be a linear subset which is dense in H . Further, let F : D →
H be a linear bounded operator. Then, F admits a unique extension to a bounded
linear operator F̃ : H → H and it holds

‖F‖D→H = ‖F̃‖H→H .

For each f ∈ H with f = limk→∞ fk , where fk ∈ D, it holds F̃ f = limk→∞ Ffk .
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Theorem 4.25 (Plancherel) The Fourier transform F : S (Rd) → S (Rd ) can
be uniquely extended to a linear continuous bijective transform F : L2(R

d) →
L2(R

d), which fulfills the Parseval equality:

(2π)d 〈f, g〉L2(Rd) = 〈Ff, Fg〉L2(Rd) (4.22)

for all f , g ∈ L2(R
d). In particular, it holds (2π)d/2 ‖f ‖L2(R

d) = ‖Ff ‖L2(R
d).

The above extension is also called Fourier transform on L2(R
d) or sometimes

Fourier–Plancherel transform.

Proof Applying Theorem 4.24, we consider D = S (Rd) as linear, dense subspace
of the Hilbert space H = L2(R

d ). By Lemma 4.23, we know that F as well as
F−1 are bounded linear operators from D to H with the operator norms (2π)d/2

and (2π)−d/2. Therefore, both operators admit unique extensions F : L2(R
d) →

L2(R
d) and F−1 : L2(R

d)→ L2(R
d) and (4.22) is fulfilled.

4.2.3 Poisson Summation Formula

Now, we generalize the one-dimensional Poisson summation formula (see Theo-
rem 2.26). For f ∈ L1(R

d), we introduce its 2π-periodization by:

f̃ (x) :=
∑

k∈Zd

f (x+ 2πk) , x ∈ R
d . (4.23)

First, we prove the existence of the 2π-periodization f̃ ∈ L1(T
d ) of f ∈ L1(R

d).

Lemma 4.26 For given f ∈ L1(R
d), the series in (4.23) converges absolutely for

almost all x ∈ R
d and f̃ is contained in L1(T

d).

Proof At first, we show that the 2π-periodization ϕ of |f | belongs to L1(T
d), that

is:

ϕ(x) :=
∑

k∈Zd

|f (x+ 2π k)| .

For each n ∈ N, we form the nonnegative function:

ϕn(x) :=
n−1∑

k1=−n

. . .

n−1∑

kd=−n

|f (x+ 2π k)| .
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Then, we obtain

∫

[0, 2π]d
ϕn(x) dx =

n−1∑

k1=−n

. . .

n−1∑

kd=−n

∫

[0, 2π]d
|f (x+ 2π k)| dx

=
n−1∑

k1=−n

. . .

n−1∑

kd=−n

∫

2πk+[0, 2π]d
|f (x)| dx =

∫

[−2πn, 2πn]d
|f (x)| dx

and hence

lim
n→∞

∫

[0, 2π]d
ϕn(x) dx =

∫

Rd

|f (x)| dx = ‖f ‖L1(Rd) <∞ . (4.24)

Since (ϕn)n∈N is a monotone increasing sequence of nonnegative integrable func-
tions with the property (4.24), we receive by the monotone convergence theorem of
B. Levi that limn→∞ ϕn(x) = ϕ(x) for almost all x ∈ R

d and ϕ ∈ L1(T
d ), where it

holds
∫

[0, 2π]d
ϕ(x) dx = lim

n→∞

∫

[0, 2π]d
ϕn(x) dx = ‖f ‖L1(R

d) .

In other words, the series in (4.23) converges absolutely for almost all x ∈ R
d . From

|f̃ (x)| = ∣
∣
∑

k∈Zd

f (x+ 2πk)
∣
∣ ≤

∑

k∈Zd

|f (x+ 2πk)| = ϕ(x) ,

it follows that f̃ ∈ L1(T
d) with

‖f̃ ‖L1(Td ) =
∫

[0, 2π]d
|f̃ (x)| dx ≤

∫

[0, 2π]d
ϕ(x) dx = ‖f ‖L1(R)d .

The d-dimensional Poisson summation formula describes an interesting connec-
tion between the values f̂ (n), n ∈ Z

d , of the Fourier transform f̂ of a given function
f ∈ L1(R

d) ∩ C0(R
d ) and the Fourier series of the 2π-periodization f̃ .

Theorem 4.27 Let f ∈ C0(R
d ) be a given function which fulfills the decay

conditions:

|f (x)| ≤ c

1+ ‖x‖d+ε
2

, |f̂ (ω)| ≤ c

1+ ‖ω‖d+ε
2

(4.25)

for all x, ω ∈ R
d with some constants ε > 0 and c > 0.
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Then for all x ∈ R
d , it holds the Poisson summation formula:

(2π)d f̃ (x) = (2π)d
∑

k∈Zd

f (x+ 2π k) =
∑

n∈Zd

f̂ (n) ei n·x , (4.26)

where both series in (4.26) converge absolutely and uniformly on Rd . In particular,
for x = 0 it holds

(2π)d
∑

k∈Zd

f (2π k) =
∑

n∈Zd

f̂ (n) .

Proof From the decay conditions (4.25), it follows that f , f̂ ∈ L1(R
d) such that

f̃ ∈ L1(T
d ) by Lemma 4.26. Then, we obtain

cn(f̃ ) = 1

(2π)d

∫

[0, 2π]d
f̃ (x) e−i n·x dx

= 1

(2π)d

∫

[0, 2π]d

( ∑

k∈Zd

f (x+ 2π k) e−i n·(x+2πk)
)

dx

= 1

(2π)d

∫

Rd

f (x) e−i n·x dx = 1

(2π)d
f̂ (n) .

From the second decay condition and Lemma 4.8, it follows that
∑

n∈Zd |f̂ (n)| <
∞. Thus, by Theorem 4.7, the 2π-periodization f̃ ∈ C(Td ) possesses the uniformly
convergent Fourier series:

f̃ (x) = 1

(2π)d

∑

n∈Zd

f̂ (n) ei n·x .

Further, we have f̃ ∈ C(Td ) such that (4.26) is valid for all x ∈ R
d .

Remark 4.28 The decay conditions (4.25) on f and f̂ are needed only for the
absolute and uniform convergence of both series and the pointwise validity of (4.26).
Obviously, any f ∈ S (Rd) fulfills the decay conditions (4.25). Note that the
Poisson summation formula (4.26) holds pointwise or almost everywhere under
much weaker conditions on f and f̂ , see [151].

4.2.4 Fourier Transforms of Radial Functions

A function f : Rd → C is called a radial function, if f (x) = f (y) for all x, y ∈ R
d

with ‖x‖2 = ‖y‖2. Thus, a radial function f can be written in the form f (x) =
F(‖x‖2) with certain univariate function F : [0,∞) → C. A radial function f is
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characterized by the property f (A x) = f (x) for all orthogonal matrices A ∈ R
d×d .

The Gaussian function in Example 4.15 is a typical example of a radial function.
Extended material on radial functions can be found in [373].

Lemma 4.29 Let A ∈ R
d×d be invertible and let f ∈ L1(R

d). Then, we have

(
f (A x)

)ˆ(ω) = 1

|det A| f̂ (A−ω) .

In particular, for an orthogonal matrix A ∈ R
d×d we have the relation:

(
f (A x)

)ˆ(ω) = f̂ (Aω) .

Proof Substituting y := A x, it follows

(
f (A x)

)ˆ(ω) =
∫

Rd

f (Ax) e−i ω·x dx

= 1

|det A|
∫

Rd

f (y) e−i (A−ω)·y dy = 1

|det A| f̂ (A−ω) .

If A is orthogonal, then A− = A and |det A| = 1.

Corollary 4.30 Let f ∈ L1(R
d) be a radial function of the form f (x) = F(r)

with r := ‖x‖2. Then, its Fourier transform f̂ is also a radial function. In the case
d = 2, we have

f̂ (ω) = 2π
∫ ∞

0
F(r) J0(r ‖ω‖2) r dr , (4.27)

where J0 denotes the Bessel function of order zero:

J0(x) :=
∞∑

k=0

(−1)k

(k!)2

(x

2

)2k
.

Proof The first assertion is an immediate consequence of Lemma 4.29. Let d = 2.
Using polar coordinates (r, ϕ) and (ρ, ψ) with r = ‖x‖2, ρ = ‖ω‖2 and ϕ, ψ ∈
[0, 2π) such that:

x = (r cosϕ, r sinϕ) , ω = (ρ cosψ, ρ sin ψ) ,

we obtain

f̂ (ω) =
∫

R2
f (x) e−i x·ω dx

=
∫ ∞

0

∫ 2π

0
F(r) e−i rρ cos(ϕ−ψ) r dϕ dr .
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The inner integral with respect to ϕ is independent of ψ , since the integrand is 2π-
periodic. For ψ = −π

2 , we conclude by Bessel’s integral formula:

∫ 2π

0
e−i rρ cos(ϕ+π/2) dϕ =

∫ 2π

0
ei rρ sinϕ dϕ = 2π J0(rρ) .

This yields the integral representation (4.27), which is called Hankel transform of
order zero of F .

Remark 4.31 The Hankel transform of order zero H : L2
(
(0, ∞)

) →
L2

(
(0, ∞)

)
is defined by:

(H F)(ρ) :=
∫ ∞

0
F(r) J0(r ρ) r dr .

Remark 4.32 In the case d = 3, we can use spherical coordinates for the
computation of the Fourier transform of a radial function f ∈ L1(R

3), where
f (x) = F(‖x‖2). This results in

f̂ (ω) = 4π

‖ω‖2

∫ ∞

0
F(r) r sin(r ‖ω‖2) dr , ω ∈ R

3 \ {0} . (4.28)

For an arbitrary dimension d ∈ N \ {1}, we obtain

f̂ (ω) = (2π)d/2 ‖ω‖2
1−d/2

∫ ∞

0
F(r) rd/2−1 Jd/2−1(r ‖ω‖2) dr , ω ∈ R

d \ {0} ,

where

Jν(x) :=
∞∑

k=0

(−1)k

k!Γ (k + ν + 1)

(x

2

)2k+ν

denotes the Bessel function of order ν ≥ 0 , see [341, p. 155].

Example 4.33 Let f : R2 → R be the characteristic function of the unit disk, i.e.,
f (x) := 1 for ‖x‖2 ≤ 1 and f (x) := 0 for ‖x‖2 > 1. By (4.27), it follows for
ω ∈ R

2 \ {0} that

f̂ (ω) = 2π
∫ 1

0
J0(r ‖ω‖2) r dr = 2π

‖ω‖2
J1(‖ω‖2)

and f̂ (0) = π .
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Let f : R3 → R be the characteristic function of the unit ball. Then from (4.28),
it follows for ω ∈ R

3 \ {0} that

f̂ (ω) = 4π

‖ω‖3
2

(
sin ‖ω‖2 − ‖ω‖2 cos ‖ω‖2

)
,

and in particular f̂ (0) = 4π
3 .

4.3 Fourier Transform of Tempered Distributions

Now, we show that the Fourier transform can be generalized to the so-called
tempered distributions which are linear continuous functionals on the Schwartz
space S (Rd ), see [325]. The simplest tempered distribution, which cannot be
described just by integrating the product of some function with functions from
S (Rd), is the Dirac distribution δ defined by 〈δ, ϕ〉 := ϕ(0) for all ϕ ∈ S (Rd).

4.3.1 Tempered Distributions

A tempered distribution T is a continuous linear functional on S (Rd ). In other
words, a tempered distribution T : S (Rd )→ C fulfills the following conditions:

(i) Linearity: For all α1, α2 ∈ C and all ϕ1, ϕ2 ∈ S (Rd ):

〈T , α1 ϕ1 + α2 ϕ2〉 = α1〈T , ϕ1〉 + α2〈T , ϕ2〉 .
(ii) Continuity: If ϕj −→

S
ϕ as j →∞ with ϕj , ϕ ∈ S (Rd), then:

lim
j→∞〈T , ϕj 〉 = 〈T , ϕ〉 .

The set of tempered distributions is denoted by S ′(Rd). Defining for T1, T2 ∈
S ′(Rd) and all ϕ ∈ S (Rd ) the operation:

〈α1 T1 + α2 T2, ϕ〉 := α1 〈T1, ϕ〉 + α2 〈T2, ϕ〉,
the set S ′(Rd ) becomes a linear space. We say that a sequence (Tk)k∈N of tempered
distributions Tk ∈ S ′(Rd) converges in S ′(Rd) to T ∈ S ′(Rd), if for all ϕ ∈
S (Rd):

lim
k→∞〈Tk, ϕ〉 = 〈T , ϕ〉 .

We will use the notation Tk −→
S ′ T as k →∞.
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Lemma 4.34 (Schwartz) A linear functional T : S (Rd) → C is a tempered
distribution if and only if there exist constants m ∈ N0 and C ≥ 0 such that for all
ϕ ∈ S (Rd):

|〈T , ϕ〉| ≤ C ‖ϕ‖m . (4.29)

Proof

1. Assume that (4.29) holds true. Let ϕj −→
S

ϕ as j → ∞, i.e., by Lemma 4.10,

limj→∞ ‖ϕj − ϕ‖m = 0 for all m ∈ N0. From (4.29), it follows

|〈T , ϕj − ϕ〉| ≤ C ‖ϕj − ϕ‖m
for some m ∈ N0 and C ≥ 0. Thus, limj→∞〈T , ϕj − ϕ〉 = 0 and hence
limj→∞〈T , ϕj 〉 = 〈T , ϕ〉.

2. Conversely, let T ∈ S ′(Rd). Then, ϕj −→
S

ϕ as j → ∞ implies

limj→∞〈T , ϕj 〉 = 〈T , ϕ〉.
Assume that for all m ∈ N and C > 0 there exists ϕm,C ∈ S (Rd) such that:

|〈T , ϕm,C〉| > C ‖ϕm,C‖m.

Choose C = m and set ϕm := ϕm,m. Then, it follows |〈T , ϕm〉| > m‖ϕm‖m and
hence

1 = |〈T ,
ϕm

〈T , ϕm〉 〉| > m ‖ ϕm

〈T , ϕm〉‖m .

We introduce the function:

ψm := ϕm

〈T , ϕm〉 ∈ S (Rd )

which has the properties 〈T ,ψm〉 = 1 and ‖ψm‖m < 1
m

. Thus, ψm −→
S

0

as m → ∞. On the other hand, we have by assumption T ∈ S ′(Rd) that
limm→∞〈T ,ψm〉 = 0. This contradicts 〈T ,ψm〉 = 1.

A measurable function f : Rd → C is called slowly increasing, if there exist
C > 0 and N ∈ N0 such that it holds almost everywhere:

|f (x)| ≤ C (1+ ‖x‖2)
N . (4.30)

These functions grow at most polynomial as ‖x‖2 →∞. In particular, polynomials
and complex exponential functions ei ω·x are slowly increasing functions. But, the
reciprocal Gaussian function f (x) := e‖x‖2

2 is not a slowly increasing function.
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For each slowly increasing function f , we can form the linear functional Tf :
S (Rd)→ C:

〈Tf , ϕ〉 :=
∫

Rd

f (x) ϕ(x) dx , ϕ ∈ S (Rd ) . (4.31)

By Lemma 4.34, we obtain Tf ∈ S ′(Rd ), because for every ϕ ∈ S (Rd ):

|〈Tf , ϕ〉| ≤
∫

Rd

|f (x)|
(1+ ‖x‖2)N+d+1 (1+ ‖x‖2)

N+d+1 |ϕ(x)| dx

≤ C

∫

Rd

dx
(1+ ‖x‖2)d+1 sup

x∈Rd

(
(1+ ‖x‖2)

N+d+1 |ϕ(x)|)

≤ C

∫

Rd

dx
(1+ ‖x‖2)d+1

‖ϕ‖N+d+1 .

A function in Lp(R
d ) must not be slowly increasing; however, these functions

give also rise to tempered distributions as the following example shows.

Example 4.35 Every function f ∈ Lp(R
d ), 1 ≤ p ≤ ∞, is in S ′(Rd) by

Lemma 4.34. For p = 1, we have

|〈Tf , ϕ〉| ≤
∫

Rd

|f (x)||ϕ(x)| dx ≤ ‖f ‖L1(Rd)‖ϕ‖0 <∞ .

For 1 < p ≤ ∞, let q be given by 1
p
+ 1

q
= 1, where q = 1 if p = ∞. Then, we

obtain for m ∈ N0 with mq ≥ d + 1 by Hölder’s inequality:

|〈Tf , ϕ〉| ≤
∫

Rd

|f (x)|(1+ ‖x‖2)
−m(1+ ‖x‖2)

m |ϕ(x)| dx

≤ ‖ϕ‖m
∫

Rd

|f (x)|(1+ ‖x‖2)
−m dx

≤ ‖ϕ‖m ‖f ‖Lp(Rd)

( ∫

Rd

(1+ ‖x‖2)
−qm dx

)1/q
.

If a distribution T ∈ S ′(Rd) arises from a function in the sense that 〈T , ϕ〉 =∫
Rd f (x)ϕ(x) dx is well defined for all ϕ ∈ S (Rd), then we speak about a regular
tempered distribution. The following example describes a distribution which is not
regular.

Example 4.36 The Dirac distribution δ is defined by:

〈δ, ϕ〉 := ϕ(0)
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for all ϕ ∈ S (Rd). Clearly, the Dirac distribution δ is a continuous linear functional
with |〈δ, ϕ〉| ≤ ‖ϕ‖0 for all ϕ ∈ S (Rd ) so that δ ∈ S ′(Rd). By the following
argument, the Dirac distribution is not regular: Assume in contrary that there exists
a function f such that:

ϕ(0) =
∫

Rd

f (x) ϕ(x) dx

for all ϕ ∈ S (Rd). By (4.30), this function f is integrable over the unit ball. Let
ϕ be the compactly supported test function (4.12) and ϕn(x) := ϕ(n x) for n ∈ N.
Then, we obtain the contradiction:

e−1 = |ϕn(0)| =
∣
∣
∫

Rd

f (x) ϕn(x) dx
∣
∣ ≤

∫

B1/n(0)
|f (x)| |ϕ(nx)| dx

≤ e−1
∫

B1/n(0)
|f (x)| dx → 0 as n→∞ ,

where B1/n(0) = {x ∈ R
d : ‖x‖2 ≤ 1/n}.

Remark 4.37 In quantum mechanics, the distribution δ was introduced by the
physicist Paul Dirac. It is used to model the density of an idealized point mass
as a “generalized function” which is equal to zero everywhere except for zero and
whose integral over R is equal to one. Since there does not exist a function with
these properties, the Dirac distribution was defined by Schwartz [325, p. 19] as a
continuous linear functional that maps every test function ϕ ∈ S (R) to its value
ϕ(0). In signal processing, the Dirac distribution is also known as the unit impulse
signal. The Kronecker symbol which is usually defined on Z is a discrete analogon
of the Dirac distribution.

Important operations on tempered distributions are translations, dilations, and
multiplications with smooth, sufficiently fast decaying functions and derivations. In
the following, we consider these operations.

The translation by x0 ∈ R
d of a tempered distribution T ∈ S ′(Rd ) is the

tempered distribution T (· − x0) defined for all ϕ ∈ S (Rd ) by:

〈T (· − x0), ϕ〉 := 〈T , ϕ(· + x0)〉 .

The scaling with c ∈ R \ {0} of T ∈ S ′(Rd ) is the tempered distribution T (c ·)
given for all ϕ ∈ S (Rd) by:

〈T (c ·), ϕ〉 := 1

|c|d 〈T , ϕ(c−1 ·)〉 .
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In particular for c = −1, we obtain the reflection of T ∈ S ′(Rd), namely:

〈T (− ·), ϕ〉 := 〈T , ϕ̃〉

for all ϕ ∈ S (Rd ), where ϕ̃(x) := ϕ(−x) denotes the reflection of ϕ ∈ S (Rd).
Assume that ψ ∈ C∞(Rd) fulfills

|Dαψ(x)| ≤ Cα (1+ ‖x‖2)
Nα (4.32)

for all α ∈ N
d
0 and positive constants Cα and Nα , i.e., Dαψ has at most polynomial

growth at infinity for all α ∈ N
d
0 . Then, the product of ψ with a tempered distribution

T ∈ S ′(Rd) is the tempered distribution ψ T defined as:

〈ψ T, ϕ〉 := 〈T ,ψ ϕ〉 , ϕ ∈ S (Rd) .

Note that the product of an arbitrary C∞(Rd) function with a tempered distribution
is not defined.

Example 4.38 For a regular tempered distribution Tf ∈ S ′(Rd ) and c �= 0, we
obtain

Tf (· − x0) = Tf (·−x0) , Tf (c·) = Tf (c·) , ψTf = Tψf .

For the Dirac distribution δ, we have

〈δ(· − x0), ϕ〉 = 〈δ, ϕ(· + x0)〉 = ϕ(x0) ,

〈δ(c·), ϕ〉 = 1

|c|d 〈δ, ϕ
( ·
c

)〉 = 1

|c|d ϕ(0) ,

〈ψ δ, ϕ〉 = 〈δ, ψ ϕ〉 = ψ(0) ϕ(0)

for all ϕ ∈ S (Rd ), where ψ ∈ C∞(Rd) fulfills (4.32) for all α ∈ N
d
0 .

Example 4.39 The distribution Tf arising from the function f (x) := ln(|x|) for
x �= 0 and f (x) = 0 for x = 0 is in S ′(R) by the following reason: For all
ϕ ∈ S (R), we have

〈ln(|x|), ϕ(x)〉 =
∫ 0

−∞
ln(−x) ϕ(x) dx +

∫ ∞

0
ln(x) ϕ(x) dx

=
∫ ∞

0
ln(x) ϕ(−x) dx +

∫ ∞

0
ln(x) ϕ(x) dx.
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Since ln(x) ≤ x for x ≥ 1, we obtain

∫ ∞

0
ln(x) ϕ(x) dx =

∫ 1

0
ln(x) ϕ(x) dx +

∫ ∞

1
ln(x) ϕ(x) dx

≤ ‖ϕ‖C0(R)

∫ 1

0
ln(x) dx +

∫ ∞

1
xϕ(x) dx

= ‖ϕ‖C0(R) lim
ε→0

∫ 1

ε

ln(x) dx +
∫ ∞

1
xϕ(x) dx

and similarly for ϕ(−x). Since ϕ ∈ S (R), the second integral exists. For the first
integral, we get by integration by parts:

∫ 1

ε

ln(x) dx = x ln(x)|1ε −
∫ 1

ε

1

x
x dx = −ε ln(ε)− (1− ε)

and by l’Hospital’s rule:

lim
ε→0

∫ 1

ε

ln(x) dx = lim
ε→0

(−ε ln(ε)− (1− ε)) = −1.

Therefore, 〈ln(|x|), ϕ(x)〉 is well defined for all ϕ ∈ S (R) and a tempered
distribution of function type. Similarly as above, we can conclude that ln(|x|) is
absolutely integrable on any compact set.

Another important operation on tempered distributions is the differentiation. For
α ∈ N

d
0 , the derivative Dα T of a distribution T ∈ S ′(Rd) is defined for all ϕ ∈

S (Rd) by:

〈Dα T , ϕ〉 := (−1)|α| 〈T , Dαϕ〉 . (4.33)

Assume that f ∈ Cr(Rd ) with r ∈ N possesses slowly increasing partial derivatives
Dαf for all |α| ≤ r . Thus, TDαf ∈ S ′(Rd). Then, we see by integration by parts
that TDαf = DαTf for all α ∈ N

d
0 with |α| ≤ r , i.e., the distributional derivatives

and the classical derivatives coincide.

Lemma 4.40 Let T , Tk ∈ S ′(Rd ) with k ∈ N be given. For λ1, λ2 ∈ R and α,
β ∈ N

d
0 , the following relations hold true:

1. Dα T ∈ S ′(Rd ) ,

2. Dα (λ1 T1 + λ2 T2) = λ1 Dα T1 + λ2 Dα T2 ,

3. Dα (Dβ T ) = Dβ (Dα T ) = Dα+β T , and
4. Tk −→

S ′ T as k →∞ implies Dα Tk −→
S ′ Dα T as k →∞ .
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Proof The properties 1–3 follow directly from the definition of the derivative of
tempered distributions. Property 4 can be derived by:

lim
k→∞〈D

α Tk, ϕ〉 = lim
k→∞(−1)|α| 〈Tk, Dα ϕ〉 = (−1)|α| 〈T , Dα ϕ〉 = 〈Dα T , ϕ〉

for all ϕ ∈ S (Rd ).

Example 4.41 For the slowly increasing univariate function:

f (x) :=
{

0 x ≤ 0 ,

x x > 0 ,

we obtain

〈D Tf , ϕ〉 = −〈f, ϕ′〉 = −
∫

R

f (x) ϕ′(x) dx

= −
∫ ∞

0
x ϕ′(x) dx = −x ϕ(x)

∣∣∞
0 +

∫ ∞

0
ϕ(x) dx =

∫ ∞

0
ϕ(x) dx

so that

D Tf (x) = H(x) :=
{

0 x ≤ 0 ,

1 x > 0 .

The function H is called Heaviside function. Further, we get

〈D2 Tf , ϕ〉 = −〈D Tf , ϕ′〉 = −
∫ ∞

0
ϕ′(x) dx = −ϕ(x)

∣
∣∞
0 = ϕ(0) = 〈δ, ϕ〉

so that D2 Tf = DTH = δ. Thus, the distributional derivative of the Heaviside
function is equal to the Dirac distribution.

Example 4.42 We are interested in the distributional derivative of regular tempered
distribution Tf of Example 4.39. For all ϕ ∈ S (R), we get by integration by parts:

〈D ln(|x|), ϕ(x)〉 = −〈ln(|x|), ϕ′(x)〉

= −
∫ ∞

0
ln(x)

(
ϕ′(x)+ ϕ′(−x)

)
dx

= − ln(x)
(
ϕ(x)− ϕ(−x)

)|∞0 +
∫ ∞

0

1

x

(
ϕ(x)− ϕ(−x)

)
dx

= lim
ε→0

ln(ε)
(
ϕ(ε)− ϕ(−ε)

)+ lim
ε→0

∫ ∞

ε

1

x

(
ϕ(x)− ϕ(−x)

)
dx
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Taylor expansion yields

ϕ(ε) = ϕ(0)+ ε ϕ′(ξε) , ξε ∈ (0, ε)

so that by the mean value theorem:

ϕ(ε)− ϕ(−ε) = ε
(
ϕ′(ξε)+ ϕ′(ξ−ε)

) = 2ε ϕ′(ξ) , |ξ | < ε .

Thus:

〈D ln(|x|), ϕ(x)〉 = lim
ε→0

∫ ∞

ε

1

x

(
ϕ(x) − ϕ(−x)

)
dx = lim

ε→0

( ∫ ∞

ε

+
∫ ε

−∞
) 1

x
ϕ(x) dx

= pv
∫

R

1

x
ϕ(x) dx,

where pv denotes the Cauchy principle value integral. We see that the tempered
distribution pv

( 1
x

)
defined for all ϕ ∈ S (R) by:

〈pv
( 1

x

)
, ϕ(x)〉 := pv

∫

R

1

x
ϕ(x) dx (4.34)

fulfills D ln(|x|) = pv
( 1
x

)
. Note that the integral

∫
R

1
x
ϕ(x) dx does not exist for all

ϕ ∈ S (R).

Remark 4.43 Let f ∈ C1(R\{x1, . . . , xn}) be given, where xk ∈ R, k = 1, . . . , n,
are distinct jump discontinuities of f . Then, the distributional derivative of Tf reads
as follows:

DTf = f ′ +
n∑

k=1

(
f (xk + 0)− f (xk − 0)

)
δ(· − xk) .

For example, the distributional derivative of the characteristic function f = χ[a, b],
where [a, b] ⊂ R is a compact interval, is equal to:

DTf = δ(· − a)− δ(· − b) .

If f = N2 is the cardinal B-spline of order 2 (cf. Example 2.16), then the first and
second distributional derivatives of Tf are

D Tf = χ[0, 1] − χ[1, 2] , D2 Tf = δ − 2 δ(· − 1)+ δ(· − 2) .

For arbitrary ψ ∈ S (Rd) and T ∈ S ′(Rd), the convolutionψ ∗ T is defined as:

〈ψ ∗ T , ϕ〉 := 〈T , ψ̃ ∗ ϕ〉 , ϕ ∈ S (Rd ) , (4.35)

where ψ̃ denotes the reflection of ψ .
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Example 4.44 Let f be a slowly increasing function. For the regular tempered
distribution Tf ∈ S ′(Rd ) and ψ ∈ S (Rd), we have by Fubini’s theorem for all
ϕ ∈ S (Rd):

〈ψ ∗ Tf , ϕ〉 = 〈Tf , ψ̃ ∗ ϕ〉 =
∫

Rd

f (y) (ψ̃ ∗ ϕ)(y) dy

=
∫

Rd

f (y)
( ∫

Rd

ψ(x − y) ϕ(x) dx
)

dy =
∫

Rd

(ψ ∗ f )(x) ϕ(x) dx ,

that is, ψ ∗ Tf = Tψ∗f is a regular tempered distribution generated by the C∞(Rd )

function:
∫

Rd

ψ(x− y) f (y) dy = 〈Tf , ψ(x − ·)〉 .

For the Dirac distribution δ and ψ ∈ S (Rd), we get for all ϕ ∈ S (Rd )

〈ψ ∗ δ, ϕ〉 = 〈δ, ψ̃ ∗ ϕ〉 = (ψ̃ ∗ ϕ)(0) =
∫

Rd

ψ(x) ϕ(x) dx

that is, ψ ∗ δ = ψ .

The convolution ψ ∗T of ψ ∈ S (Rd ) and T ∈ S ′(Rd) possesses the following
properties:

Theorem 4.45 For all ψ ∈ S (Rd) and T ∈ S ′(Rd), the convolution ψ ∗ T is a
regular tempered distribution generated by the slowly increasing C∞(Rd ) function
〈T , ψ(x − ·)〉, x ∈ R

d . For all α ∈ N
d
0 , it holds

Dα(ψ ∗ T ) = (Dαψ) ∗ T = ψ ∗ (DαT ) . (4.36)

Proof

1. For arbitrary ϕ ∈ S (Rd ), T ∈ S ′(Rd ), and α ∈ N
d
0 , we obtain by (4.33)

and (4.35):

〈Dα(ψ ∗ T ), ϕ〉 = (−1)|α| 〈ψ ∗ T , Dαϕ〉 = (−1)|α| 〈T , ψ̃ ∗Dαϕ〉 ,

where ψ̃(x) = ψ(−x) and

(ψ̃ ∗Dαϕ)(x) =
∫

Rd

ψ̃(y)Dαϕ(x− y) dy .
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Now, we have

(ψ̃ ∗Dαϕ)(x) =
∫

Rd

ψ̃(y)Dαϕ(x− y) dy = Dα (ψ̃ ∗ ϕ)(x)

= Dα

∫

Rd

ψ̃(x− y) ϕ(y) dy =
∫

Rd

Dα ψ̃(x− y) ϕ(y) dy = (Dα ψ̃ ∗ ϕ)(x) ,

since the interchange of differentiation and integration in above integrals is
justified, because ψ̃ and ϕ belong to S (Rd). From

Dα ψ̃ = (−1)|α| D̃α ψ

it follows that

〈Dα(ψ ∗ T ), ϕ〉 = (−1)|α| 〈ψ ∗ T , Dαϕ〉 = 〈Dα T , ψ̃ ∗ ϕ〉 = 〈ψ ∗Dα T , ϕ〉
= (−1)|α| 〈T , Dαψ̃ ∗ ϕ〉 = 〈T , D̃αψ ∗ ϕ〉 = 〈(Dαψ) ∗ T , ϕ〉 .

Thus, we have shown (4.36).
2. Now, we prove that the convolutionψ∗T is a regular tempered distribution gener-

ated by the complex-valued function 〈T , ψ(x− ·)〉 for x ∈ R
d . In Example 4.44,

we have seen that this is true for each regular tempered distribution.
Let ψ , ϕ ∈ S (Rd) and T ∈ S ′(Rd) be given. By Lemma 4.19, we know

that ψ̃ ∗ ϕ ∈ S (Rd ). We represent (ψ̃ ∗ ϕ)(y) for arbitrary y ∈ R
d as a limit of

Riemann sums:

(ψ̃ ∗ ϕ)(y) =
∫

Rd

ψ(x − y) ϕ(x) dx = lim
j→∞

∑

k∈Zd

ψ(xk − y)ψ(xk)
1

jd
,

where xk := k
j

, k ∈ Z
d , is the midpoint of a hypercube with side length 1

j
.

Indeed, since ψ̃ ∗ ϕ ∈ S (Rd), it is not hard to check that the above Riemann
sums converge in S (Rd). Since T is a continuous linear functional, we get

〈T , ψ̃ ∗ ϕ〉 = lim
j→∞〈T ,

∑

k∈Zd

ϕ(xk − ·) ψ(xk)
1

jd
〉

= lim
j→∞

∑

k∈Zd

ϕ(xk)
1

jd
〈T , ψ(xk − ·)〉 =

∫

Rd

〈T , ψ(x − ·)〉ϕ(x) dx ,

that is, the convolution ψ ∗ T is a regular tempered distribution generated by the
function 〈T , ψ(x− ·)〉 which belongs to C∞(Rd) by (4.36).
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3. Finally, we show that the C∞(Rd) function 〈T , ψ(x − ·)〉 is slowly increasing.
Here, we use the simple estimate:

1+ ‖x− y‖2 ≤ 1+ ‖x‖2 + ‖y‖2 ≤ (1+ ‖x‖2) (1+ ‖y‖2)

for all x, y ∈ R
d .

For arbitrary fixed x0 ∈ R
d and every m ∈ N0, we obtain for ψ ∈ S (Rd):

‖ψ(x0 − ·)‖m = max|β|≤m
‖(1 + ‖x‖2)

m Dβψ(x0 − x)‖C0(Rd)

= max|β|≤m
max
x∈Rd

(1+ ‖x‖2)
m |Dβ ψ(x0 − x)| = max|β|≤m

max
y∈Rd

(1+ ‖x0 − y‖2)
m |Dβψ(y)|

≤ (1+ ‖x0‖2)
m sup
|β|≤m

sup
y∈Rd

(1+ ‖y‖2)
m |Dβ ψ(y)| = (1+ ‖x0‖2)

m ‖ψ‖m .

Since T ∈ S ′(Rd ), by Lemma 4.34 of Schwartz there exist constants m ∈ N0
and C > 0, so that |〈T , ϕ〉| ≤ C ‖ϕ‖m for all ϕ ∈ S (Rd ). Then, we conclude

|〈T , ψ(x− ·)〉| ≤ C ‖ψ(x − ·)‖m ≤ C (1+ ‖x‖2)
m ‖ψ‖m .

Hence, 〈T , ψ(x − ·)〉 is a slowly increasing function.

4.3.2 Fourier Transforms onS ′(Rd)

The Fourier transformFT = T̂ of a tempered distribution T ∈ S ′(Rd) is defined
by:

〈FT , ϕ〉 = 〈T̂ , ϕ〉 := 〈T ,Fϕ〉 = 〈T , ϕ̂〉 (4.37)

for all ϕ ∈ S (Rd). Indeed, T̂ is again a continuous linear functional on S (Rd),
since by Theorem 4.18, the expression 〈T ,Fϕ〉 defines a linear functional on
S (Rd). Further, ϕk −→

S
ϕ as k → ∞, implies F ϕk −→

S
F ϕ as k → ∞ so

that for T ∈ S ′(Rd), it follows

lim
k→∞〈T̂ , ϕk〉 = lim

k→∞〈T , F ϕk〉 = 〈T , F ϕ〉 = 〈T̂ , ϕ〉 .
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Example 4.46 Let f ∈ L1(R
d). Then, we obtain for an arbitrary ϕ ∈ S (Rd) by

Fubini’s theorem:

〈FTf , ϕ〉 = 〈Tf , ϕ̂〉 =
∫

Rd

( ∫

Rd

ϕ(x) e−i x·ω dx
)
f (ω) dω

=
∫

Rd

f̂ (x) ϕ(x) dx = 〈T
f̂
, ϕ〉 ,

that is, F Tf = TFf .
Let x0 ∈ R

d be fixed. For the shifted Dirac distribution δ(· − x0), we have

〈Fδ(· − x0), ϕ〉 = 〈δ(· − x0), ϕ̂〉 = 〈δ(· − x0),

∫

Rd

ϕ(ω)e−i ω·x dω〉

=
∫

Rd

ϕ(ω) e−i ω·x0 dω = 〈e−i ω·x0, ϕ(ω)〉 ,

so that Fδ(· − x0) = e−i ω·x0 and in particular, for x0 = 0 we obtain Fδ = 1.

Theorem 4.47 The Fourier transform on S ′(Rd ) is a linear, bijective operator
F : S ′(Rd) → S ′(Rd). The Fourier transform on S ′(Rd) is continuous in the
sense that for Tk , T ∈ S ′(Rd ) the convergence Tk −→

S ′ T as k → ∞ implies

F Tk −→
S ′ F T as k →∞. The inverse Fourier transform is given by:

〈F−1T , ϕ〉 = 〈T , F−1ϕ〉 (4.38)

for all ϕ ∈ S (Rd) which means

F−1T := 1

(2π)d
F T (− ·) .

For all T ∈ S ′(Rd), it holds the Fourier inversion formula:

F−1(F T ) = F (F−1T ) = T .

Proof By definition (4.37), the Fourier transform F maps S ′(Rd ) into itself.
Obviously,F is a linear operator. We show that F is a continuous linear operator of
S ′(Rd) onto S ′(Rd ). Assume that Tk −→

S ′ T as k →∞. Then, we get by (4.37):

lim
k→∞〈F Tk, ϕ〉 = lim

k→∞〈Tk, F ϕ〉 = 〈T , F ϕ〉 = 〈F T , ϕ〉

for all ϕ ∈ S (Rd). This means that F Tk −→
S ′ F T as k → ∞, i.e., the operator

F : S ′(Rd )→ S ′(Rd) is continuous.
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Next, we show that (4.38) is the inverse Fourier transform, that is:

F−1 (F T ) = T , F (F−1 T ) = T (4.39)

for all T ∈ S ′(Rd). By Theorem 4.18, we find that for all ϕ ∈ S (Rd):

〈F−1 (F T ), ϕ〉 = 1

(2π)d
〈F (

F T (− ·)), ϕ〉

= 1

(2π)d
〈F T (− ·), F ϕ〉 = 1

(2π)d
〈F T , (F ϕ)(− ·)〉

= 〈F T , F−1 ϕ〉 = 〈T , F (F−1 ϕ)〉 = 〈T , ϕ〉 .

By (4.39), each T ∈ S ′(Rd) is the Fourier transform of the tempered distribution
S = F−1 T , i.e., T = F S. Thus, both F and F−1 map S ′(Rd) one-to-one onto
S ′(Rd).

Remark 4.48 From Theorem 4.47, it follows immediately Theorem 4.22. If f ∈
L1(R

d) with f̂ ∈ L1(R
d ) is given, then Tf and T

f̂
are regular tempered

distributions by Example 4.35. By Theorem 4.47 and Example 4.46, we have

TF−1f̂
= F−1 T

f̂
= F−1(FTf ) = Tf

so that the functions f and

(F−1f̂ )(x) = 1

(2π)d

∫

Rd

f̂ (ω) ei x·ω dω

are equal almost everywhere.

The following theorem summarizes properties of Fourier transform on S ′(Rd).

Theorem 4.49 (Properties of the Fourier Transform on S ′(Rd )) The Fourier
transform of a tempered distribution T ∈ S ′(Rd) has the following properties:

1. Translation and modulation: For fixed x0, ω0 ∈ R
d :

FT (· − x0) = e−i ω·x0 FT ,

F
(
e−i ω0·x T

) = FT (· + ω0) .

2. Differentiation and multiplication: For α ∈ N
d
0 :

F (DαT ) = i|α| ωα FT ,

F (xαT ) = i|α|DαFT .
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3. Scaling: For c ∈ R \ {0}:

FT (c ·) = 1

|c|d FT (c−1 ·) .

4. Convolution: For ϕ ∈ S (Rd):

F (T ∗ ϕ) = (FT ) (Fϕ) .

The proof follows in a straightforward way from the definitions of corresponding
operators, in particular the Fourier transform (4.37) on S ′(Rd ) and Theorem 4.20.

Finally, we present some additional examples of Fourier transforms of tempered
distributions.

Example 4.50 In Example 4.46, we have seen that for fixed x0 ∈ R
d :

F δ(· − x0) = e−i ω·x0 , F δ = 1 .

Now, we determine F−1 1. By Theorem 4.47, we obtain

F−1 1 = 1

(2π)d
F 1(− ·) = 1

(2π)d
F 1,

since the reflection 1(− ·) is equal to 1. Thus, we have F 1 = (2π)d δ. From
Theorem 4.49, it follows for any α ∈ N

d
0 :

F (Dα δ) = (i ω)α F δ = (i ω)α 1 = (i ω)α ,

F (xα) = F (xα 1) = i|α|Dα F 1 = (2π)d i|α|Dα δ .

Example 4.51 We are interested in the Fourier transform of the distribution pv
(

1
x

)
.

from Example 4.39. First, it is not hard to check that for any T ∈ S ′(R):

xT = 1 ⇐⇒ T = pv

(
1

·
)
+ Cδ

with a constant C ∈ R. Similarly as in Example 4.41, the derivative of the sign
function:

sgn(x) :=
⎧
⎨

⎩

1 x > 0 ,

0 x = 0 ,

−1 x < 0 ,



4.3 Fourier Transform of Tempered Distributions 197

is D sgn = 2δ. Then, we obtain by Theorem 4.49 for all ϕ ∈ S (R):

〈F (D sgn), ϕ〉 = 〈D sgn, ϕ̂〉 = 2ϕ̂(0) = 〈2δ̂, ϕ〉 = 〈2, ϕ〉
= 〈iωsgnˆ(ω), ϕ(ω)〉

so that iωsgnˆ(ω) = 2 and

sgnˆ = 2

i
pv

(
1

·
)
+ Cδ = 2

i
pv

(
1

·
)
,

where the last equality, i.e., C = 0, can be seen using the Gaussian ϕ. Hence, it
follows

pv

(
1

·
)
ˆ = −iπ sgn.

Remark 4.52 Using Theorem 4.47, we can simplify the d-dimensional Poisson
summation formula (4.26). For arbitrary ϕ ∈ S (Rd), we introduce the 2π-
periodization operator P2π : S (Rd )→ C∞(Td ) by:

P2πϕ :=
∑

k∈Zd

ϕ(· + 2π k) .

Note that this series converges absolutely and uniformly on R
d . Then, P2πϕ ∈

C∞(Td) can be represented as uniformly convergent Fourier series:

(P2πϕ)(x) =
∑

k∈Zd

ck(P2πϕ) ei k·x ,

where

ck(P2πϕ) = 1

(2π)d

∫

[0, 2π]d
(P2πϕ)(x) e−i k·x dx

= 1

(2π)d

∫

Rd

ϕ(x) e−i k·x dx = 1

(2π)d
ϕ̂(−k) .

Hence, we obtain the d-dimensional Poisson summation formula:

(P2πϕ)(x) = 1

(2π)d

∑

k∈Zd

ϕ̂(k) e−i k·x ,
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where the Fourier series converges absolutely and uniformly on R
d too. For ϕ̂ ∈

S (Rd), we can form the uniform sampling operator S1 : S (Rd )→ S ′(Rd) by:

S1ϕ̂ =
∑

k∈Zd

ϕ̂(k) δ(· − k) .

Obviously, S1ϕ̂ is a 1-periodic tempered distribution. For the distributional inverse
Fourier transform F−1, we have F−1 e−i k ·ω = δ(· − k). Thus for arbitrary ϕ ∈
S (Rd), we obtain by Theorem 4.47 the equation:

P2πϕ = F−1 S1 F ϕ .

In [254], the Poisson summation formula is generalized for regular tempered
distributions generated by continuous, slowly increasing functions.

The spaces S (Rd), L2(R
d), and S ′(Rd) are a typical example of a so-called

Gelfand triple named after the mathematician I.M. Gelfand (1913–2009). To obtain
a Gelfand triple (B, H, B ′), we equip a Hilbert space H with a dense topological
vector subspace B of test functions carrying a finer topology than H such that the
natural (injective) inclusion B ⊂ H is continuous. Let B ′ be the dual space of all
linear continuous functionals on B with its (weak-*) topology. Then, the embedding
of H ′ in B ′ is injective and continuous. Applying the Riesz representation theorem,
we can identify H with H ′ leading to the Gelfand triple:

B ⊂ H ∼= H ′ ⊂ B ′.

We are interested in

S (Rd ) ⊂ L2(R
d ) ∼= L2(R

d)′ ⊂ S ′(Rd). (4.40)

Note that we already know that S (Rd ) is dense in L2(R
d ). Moreover, the natural

embedding is indeed continuous, since ϕk −→
S

ϕ as k →∞ implies

‖ϕk − ϕ‖2
L2(Rd)

=
∫

Rd

(1+ ‖x‖2)
−d−1 (1+ ‖x‖2)

d+1 |ϕk(x)− ϕ(x)|2 dx

≤ sup
x∈Rd

(1+ ‖x‖2)
d+1|ϕk(x)− ϕ(x)|2

∫

Rd

dy
(1+ ‖y‖2)d+1

≤ C sup
x∈Rd

(1+ ‖x‖2)
d+1 |ϕk(x)− ϕ(x)|2 → 0

as k →∞.

Corollary 4.53 If we identify f ∈ L2(R
d) with Tf ∈ S ′(Rd ), then the Fourier

transforms on L2(R
d) andS ′(Rd ) coincide in the sense FTf = TFf .
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Proof For any sequence (fk)k∈N of functions fk ∈ S (Rd ) converging to f in
L2(R

d), we obtain

lim
k→∞〈Fϕ, f̄k〉L2(Rd) = 〈Fϕ, f̄ 〉L2(Rd) = 〈Tf , Fϕ〉 = 〈FTf , ϕ〉

for all ϕ ∈ S (Rd). On the other hand, we conclude by definition of F on L2(R
d )

that

lim
k→∞〈Fϕ, f̄k〉L2(Rd) = lim

k→∞〈ϕ,Ffk〉L2(Rd) = 〈ϕ,Ff 〉L2(Rd) = 〈TFf , ϕ〉

for all ϕ ∈ S (Rd ). Thus, FTf = TFf and we are done.

4.3.3 Periodic Tempered Distributions

Next, we describe the connection between 2π-periodic tempered distributions and
Fourier series. We restrict our attention to the case d = 1.

A tempered distribution T ∈ S ′(R) with the property T = T (· − 2π), that is:

〈T , ϕ〉 = 〈T , ϕ(· + 2π)〉

for all ϕ ∈ S (R) is called 2π-periodic tempered distribution.

Example 4.54 We consider the so-called Dirac comb:

Δ2π :=
∑

k∈Z
δ(· − 2πk) = lim

n→∞

n∑

k=−n

δ(· − 2πk) ,

which is meant as follows: For every ϕ ∈ S (Rd) and Tn := ∑n
k=−n δ(· − 2πk) ∈

S ′(R), we have

|Tn(ϕ)| =
∣
∣

n∑

k=−n

(1+ 4π2k2) ϕ(2πk)

1+ 4π2k2

∣
∣

≤
n∑

k=−n

1

1+ 4π2k2 sup
x∈R

(1+ |x|)2 |ϕ(x)| ≤ C ‖ϕ‖m ,

where m = 2. Hence, the absolute sum is bounded for all n ∈ N and thus converges
for n→∞. The limit is 〈Δ2π , ϕ〉.
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Lemma 4.55 (Poisson Summation Formula for Dirac Comb) InS ′(R), it holds

2π Δ2π =
∑

k∈Z
e−i k· .

Proof Since F is continuous on S ′(R), we have

F
(∑

k∈Z
δ(· − k)

) =
∑

k∈Z
ei k· ∈ S ′(R) . (4.41)

The functions from S (R) fulfill the assumptions of Poisson summation for-
mula (4.26). Using this formula and (4.41), we obtain for all ϕ ∈ S (R):

2π
〈∑

k∈Z
δ(· − 2πk), ϕ

〉 = 2π
∑

k∈Z
ϕ(2πk) =

∑

k∈Z
ϕ̂(k) = 〈∑

k∈Z
e−i k·, ϕ

〉
.

This yields the assertion.

By Theorem 1.3, we known that every function f ∈ L2(T) possesses a
convergent Fourier series In L2(T). On the other hand, we know from Sect. 1.4
that there exists f ∈ L1(T) such that the sequence of Fourier partial sums (Snf )(x)

is not convergent in L1(T) as n → ∞, see [221, p. 52]. But, every f ∈ L1(T)

generates a regular tempered distribution Tf which is 2π-periodic. Next, we show
that the Fourier series of any function f ∈ L1(T) converges to f in S ′(R).

Lemma 4.56 For f ∈ L1(T), the Fourier series:

T :=
∑

k∈Z
ck(f ) ei k · , ck(f ) := 1

2π

∫ 2π

0
f (t) e−i kt dt ,

is a 2π-periodic tempered distribution which coincides with Tf in S ′(R). The
Fourier transformF Tf reads as:

F Tf = 2π
∑

k∈Z
ck(f ) δ(· − k)

and the distributional derivativeD Tf as:

DTf =
∑

k∈Z\{0}
i k ck(f ) ei k · .

Proof Consider the nth Fourier partial sum:

Sn f =
n∑

k=−n

ck(f ) ei k · .
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For arbitrary ϕ ∈ S (R), we obtain by Fubini’s theorem:

〈Sn f, ϕ〉 =
∫

R

(Sn f )(x) ϕ(x) dx

=
∫ 2π

0

( ∫

R

1

2π

n∑

k=−n

ei k (x−t ) ϕ(x) dx
)
f (t) dt .

By Lemma 4.55, we know that 1
2π

∑n
k=−n ei k (·−t ) converges to Δ2π(· − t) in

S ′(R). Taking the limit for n→∞ and using Lebesgue’s dominated convergence
theorem, it follows

〈T , ϕ〉 =
∫ 2π

0
〈Δ2π(· − t), ϕ〉 f (t) dt =

∫ 2π

0

(∑

k∈Z
ϕ(t + 2π k)

)
f (t) dt

=
∫

R

ϕ(t) f (t) dt = 〈f, ϕ〉

for all ϕ ∈ S ′(R). Thus, T = Tf . Since F and D are linear continuous operations
in S ′(R), the Fourier transform F Tf and the derivative D Tf can be formed term-
by-term by Theorem 4.47 and Lemma 4.40.

Example 4.57 As in Example 1.9, we consider the 2π-periodic sawtooth function
f given by f (x) = 1

2 − x
2π , x ∈ (0, 2π), and f (0) = 0. This function possesses in

L2(R) the pointwise convergent Fourier expansion:

∑

k∈Z\{0}

1

2π i k
ei kx.

By Lemma 4.56, we obtain the representation:

Tf =
∑

k∈Z\{0}

1

2π i k
ei k ·

in S ′(R). Using Lemma 4.40, this Fourier series can be termwise differentiated in
S ′(R), so that

D Tf = 1

2π

∑

k∈Z\{0}
ei k ·

= − 1

2π
+

∑

k∈Z
δ(· − 2πk) = − 1

2π
+Δ2π .
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Finally, we want to extend Lemma 4.56 to 2π-periodic tempered distributions.
Since the function ei k · is not in S (R), the expression 〈T , ei k ·〉 is not defined.
Therefore, we choose a nonnegative compactly supported function θ ∈ C∞c (R)

which generates a partition of unity:

∑

k∈Z
θ(x + 2πk) = 1 , x ∈ R . (4.42)

Note that the series (4.42) is locally finite, i.e., on every compact interval only a
finite number of terms θ(x + 2πk) does not vanish identically.

Example 4.58 The even function θ ∈ C∞c (R) with θ(x) := 1 for 0 ≤ x ≤ 2π
3 ,

θ(x) := 0 for x ≥ 4π
3 , and

θ(x) :=
(

1+ e1/(4π/3−x)

e1/(x−2π/3)

)−1
,

2π

3
< x <

4π

3

supported in
[− 4π

3 , 4π
3 ] fulfills (4.42). This follows immediately from the facts that

for x ∈ ( 2π
3 , 4π

3

)
we have

∑

k∈Z
θ(x + 2πk) = θ(x)+ θ(x − 2π) = 1

by definition of θ . For x ∈ [
0, 2π

3

]
, we have

∑

k∈Z
θ(x + 2πk) = θ(x) = 1

and for x ∈ [ 4π
3 , 2π

]
:

∑

k∈Z
θ(x + 2πk) = θ(x − 2π) = 1 .

Then, θ e−i k · ∈ S (R), so that the Fourier coefficients of a 2π-periodic tempered
distribution T ∈ S ′(R) given by:

ck(T ) := 1

2π
〈T , θ e−i k ·〉 , k ∈ Z (4.43)

are well defined. By the following reason, the Fourier coefficients are independent of
the chosen θ ∈ C∞c (R): Let θ1 ∈ C∞c (R) be another function with property (4.42),
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Then, by the 2π-periodicity of T , we obtain

〈T , θ1 e−i k ·〉 = 〈T ,
∑

�∈Z
θ(· + 2�π) θ1 e−i k ·〉

= 〈T ,
∑

�∈Z
θ θ1(· − 2�π) e−i k ·〉 = 〈T , θ e−i k ·〉 .

Theorem 4.59 Let T ∈ S ′(R) be a 2π-periodic tempered distribution. Then, its
Fourier coefficients (4.43) are slowly increasing, i.e., there exist m ∈ N and C > 0
such that for all k ∈ Z:

|ck(T )| ≤ C (1+ |k|)m (4.44)

and T has the distributional Fourier series:

T =
∑

k∈Z
ck(T ) ei k · (4.45)

which converges inS ′(R). Further, we have for all ϕ ∈ S (R):

〈T , ϕ〉 =
∑

k∈Z
ck(T ) ϕ̂(−k) .

The Fourier transformF T reads as:

F T = 2π
∑

k∈Z
ck(T ) δ(· − k) . (4.46)

Proof By Lemma 4.34, we know that there exist C1 > 0 and m ∈ N0 such that:

|ck(T )| = 1

2π
|〈T , θ e−i k ·〉| ≤ C1 ‖θ e−i k ·‖m .

Then, we get by the Leibniz product rule:

‖θ e−i k ·‖m = max|β|≤m
‖(1+ |x|)m Dβ

(
θ(x) e−i k x)‖C(suppϕ) ≤ C (1+ |k|)m

which gives (4.44).
Next, we show that for arbitrary ϕ ∈ S (R) the series:

∑

k∈Z
ck(T ) ϕ̂(−k) (4.47)
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converges. By ϕ ∈ S (R), we have ϕ̂ ∈ S (R), so that for some C1 > 0 and m from
above:

(1+ |k|)m+2 |ϕ̂(−k)| ≤ C1 .

Together with (4.44), this implies

|ck(T ) ϕ̂(−k)| ≤ C C1(1+ |k|)−2

for all k ∈ Z, so that the series (4.47) converges absolutely.
For n ∈ N, we have

〈
n∑

k=−n

ck(T ) ei k ·, ϕ〉 =
n∑

k=−n

ck(T )

∫

R

ϕ(x) ei kx dx =
n∑

k=−n

ck(T ) ϕ̂(−k)

and letting n go to infinity, we obtain

lim
n→∞〈

n∑

k=−n

ck(T ) ei k ·, ϕ〉 =
∑

k∈Z
ck(T ) ϕ̂(−k) .

Define

〈
∑

k∈Z
ck(T ) ei k ·, ϕ〉 :=

∑

k∈Z
ck(T ) ϕ̂(−k)

for all ϕ ∈ S (R). By definition of the Fourier coefficients, we see that

n∑

k=−n

ck(T ) ϕ̂(−k) = 〈T , θ

∫

R

1

2π

n∑

k=−n

ei k (x−·) ϕ(x) dx〉

and for n→∞ by Poisson summation formula (2.26):

∑

k∈Z
ck(T ) ϕ̂(−k) = 〈T , θ

∑

k∈Z
ϕ(· − 2πk)〉.

Now, the 2π-periodicity of T and (4.42) imply

〈T , θ
∑

k∈Z
ϕ(· + 2πk)〉 = 〈T , ϕ

∑

k∈Z
θ(· − 2πk)〉 = 〈T , ϕ〉
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for all ϕ ∈ S (R) and consequently

T =
∑

k∈Z
ck(T ) ei k · .

Since the Fourier transform is continuous on S ′(R), we obtain (4.46).

Example 4.60 The Fourier coefficients of the 2π-periodic Dirac comb Δ2π ∈
S ′(R) are given by:

ck(Δ2π) = 1

2π
〈Δ2π , θ e−i k ·〉 = 1

2π

∑

k∈Z
θ(2πk) = 1

2π
.

Thus, by Theorem 4.59, the 2π-periodic Dirac comb Δ2π can be represented as
distributional Fourier series:

Δ2π = 1

2π

∑

k∈Z
ei k ·

which is in agreement with Lemma 4.55. By (4.46), the distributional Fourier
transform of Δ2π is equal to the 1-periodic Dirac comb:

F Δ2π = Δ1 :=
∑

k∈Z
δ(· − k) .

Remark 4.61 As known, the asymptotic behavior of the Fourier coefficients ck(f ),
k ∈ Z, of a given 2π-periodic function f reflects the smoothness of f . By
Lemma 1.27, the Fourier coefficients ck(f ) of f ∈ L1(T) tend to zero as |k| →
∞. With increasing smoothness of f , the decay of |ck(f )| becomes faster, see
Theorem 1.39. In contrast to that, Fourier coefficients ck(T ) of a 2π-periodic
tempered distribution T possess another asymptotic behavior. By (4.44), the values
|ck(T )| may possibly grow infinitely, but the growth is at most polynomial. For
example, the Fourier coefficients ck(Δ2π) = 1

2π of the 2π-periodic Dirac comb
Δ2π are constant.

4.3.4 Hilbert Transform and Riesz Transform

In this subsection, we introduce the Hilbert transform and a generalization thereof
to higher dimensions, the Riesz transform. Both are closely related to the so-called
quadrature operators [129, 340] which will be not considered here. The transforms
have many applications in signal and image processing and we will refer to some of
them in the following. Concerning further information on the Hilbert transform, the
reader may consult the books [154, 200, 201].
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The Hilbert transformH : L2(R)→ L2(R) is defined by:

H f = F−1(−i sgn(·) f̂ ) . (4.48)

In the Fourier domain, it reads

Ĥ f (ω) = −i sgn(ω) f̂ (ω) =
⎧
⎨

⎩

−if̂ (ω) ω > 0 ,

0 ω = 0 ,

if̂ (ω) ω < 0 .

Since we have by Example 4.51 that pv
(

1
·
)
ˆ = −iπ sgn, we expect by formally

applying the convolution property of the Fourier transform that

H f (x) = 1

π

(
f ∗ pv

(1

·
))
(x) = 1

π
pv

∫

R

f (y)

x − y
dy .

However, the convolution of a tempered distribution and a function in L2(R) is in
general not defined so that we have to verify that the above integral is indeed defined
almost everywhere.

Theorem 4.62 The Hilbert transform (4.48) can be expressed as:

H f (x) = 1

π

(
f ∗ pv

(1

·
))
(x) = 1

π
pv

∫

R

f (y)

x − y
dy = 1

π
pv

∫

R

f (x − y)

y
dy .

Proof For ε > 0, we define the L2(R) function:

gε(x) :=
{ 1

x
|x| > ε ,

0 |x| ≤ ε .

By the convolution theorem of the Fourier transform, we obtain for all f ∈ L2(R)

that
∫

|y|>ε

f (x − y)

y
dy = (f ∗ gε)(x) = F−1

(
f̂ ĝε

)
(x) .

We have

ĝε(ω) =
∫

|x|>ε

1

x
e−ixω dx =

∫ ∞

ε

1

x
(e−ixω − eixω) dx

= −2i
∫ ∞

ε

sin (xω)

x
dx = −2i sgn(ω)

∫ ∞

ωε

sin y

y
dy .
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Using Lemma 1.41, we conclude

lim
ε→0

ĝε(ω) = −iπ sgn(ω) .

For all ω �= 0, we know that |ĝε(ω)| ≤ 2 sup0<τ<t

∣
∣ ∫ t

τ
sin(y)

y
dy

∣
∣ <∞ so that

lim
ε→0

‖f̂ ĝε + iπ sgn f̂ ‖L2(R) = 0

and by continuity of the Fourier transform on L2(R):

1

π
lim
ε→0

∫

|y|>ε

f (x − y)

y
dy = 1

π
lim
ε→0

F−1
(
f̂ ĝε

)
(x)

= F−1(− i sgn(ω) f̂ (ω)
)
(x) .

In particular, Theorem 4.62 shows that the Hilbert transform of a real-valued
function in L2(R) is again real-valued. In the following, we denote by L2(R

d ,Rn)

with d ∈ N and n ∈ {1, d}, the functions from L2(R
d ) mapping into R

n. The
Hilbert transform has various useful properties.

Theorem 4.63 (Properties of Hilbert Transform) The Hilbert transform H :
L2(R)→ L2(R):

1. multiplied by
√

2π is an isometry,
2. commutes with translations,
3. commutes with positive dilations,
4. is self-inverting, i.e., (iH )2 is the identity,
5. is anti-self-adjoint on L2(R,R), that is, H ∗ = −H , and
6. anti-commutes with reflections on L2(R,R), that is, H (f (− ·)) = −H f for

all f ∈ L2(R,R).

Proof

1. The first property follows by the Parseval equality and since |− i sgn(ω)| = 1 for
ω �= 0.

2. By the property 1 of Theorem 4.49, we obtain

H
(
(f (· − x0)

)
(x) = F−1(− i sgnF (f (· − x0))

)
(x)

= F−1(− i sgn(ω) e−ix0ωf̂ (ω)
)
(x)

= F−1(− i sgn f̂
)
(x − x0) =H f (x − x0) .

3. For c > 0, it follows

H
(
f (c·))(x) = 1

π
pv

∫

R

f (cy)

x − y
dy = 1

π
pv

∫

R

f (s)

cx − s
ds =H f (cx) .
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4. For all f ∈ L2(R), we get by (4.48)

iH f = iF−1(−i sgn f̂ ) = F−1(sgn f̂ )

and hence:

(iH )2f =F−1(sgnFF−1(sgn f̂ )
) = F−1(sgn)2 f̂ = f .

5. By the Parseval equality, we conclude for all real-valued functions f , g ∈
L2(R,R) that

〈H f, g〉L2(R) =
∫

R

F−1
(
−i sgn f̂

)
(x) g(x) dx

= 1

2π

∫

R

(− i sgn(ω) f̂ (ω)
)
ĝ(ω) dω

= − 1

2π

∫

R

f̂ (ω) (−i sgn(ω) ĝ(ω)) dω = −〈f, H g〉L2(R) .

6. For all f ∈ L2(R,R), we have
(
f (− ·))ˆ = ¯̂

f so that

H
(
f (− ·)) =F−1(− i sgn ¯̂

f
) = −F−1(−i sgn f̂ ) = −H f .

Note that up to a constant, the Hilbert transform is the only operator on L2(R,R)

with properties 1–3 and 6, and up to the sign, the only operator which fulfills
properties 1–5, see [340].

The Hilbert transform can be used to construct functions in which Fourier
transform is only supported on the positive interval. For a real-valued function
f ∈ L2(R,R), the function:

fa(x) := f (x)+ iH f (x)

with

f̂a(ω) = f̂ (ω)+ iĤ f (ω) =
{

2f̂ (ω) ω > 0 ,

0 ω < 0

is called analytic signal of f with amplitude |fa(x)| :=
(
f (x)2 +H f (x)2

)1/2
,

phase φ(x) := atan2 (H f (x), f (x)), and instantaneous phase ν(x) = φ′(x). Note
that any complex-valued function f can be written as:

f (x) = A(x) ei φ(x) = A(x) cos
(
φ(x)

)+ iA(x) sin
(
φ(x)

)
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with a nonnegative function A(x) = |f (x)| and φ(x) = atan2
(
Imφ(x),Re φ(x)

)
.

If f is real-valued, we have only the cosine part representation. For applications of
analytic signals in time–frequency analysis see, e.g., [234, Chapter 4.4].

Example 4.64 For the function:

f (x) := A(x) cos(ω0 x + ζ0) = 1

2
A(x)

(
ei(ω0 x+ζ0) + e−i(ω0 x+ζ0)

)

with a nonnegative, continuous function A ∈ L2(R) and ω0 > 0, we are interested
in finding its amplitudeA(x) and phase φ(x) = ω0 x+ζ0 which is an affine function.
This would be easy if we could compute somehow

g(x) := A(x) sin(ω0 x + ζ0) = 1

2i
A(x)

(
ei(ω0 x+ζ0) − e−i(ω0 x+ζ0)

)

because of f (x)+ i g(x) = A(x) ei (ω0 x+ζ0) so that

A(x) = |f (x)+ i g(x)| , φ(x) = atan2
(
g(x), f (x)

)
.

Indeed, g can sometimes be computed by the Hilbert transform of f : By the
translation-modulation property of the Fourier transform, we obtain

f̂ (ω) = 1

2

∫

R

(
A(x) e−i (ω−ω0) x ei ζ0 + A(x) e−i (ω+ω0) x e−i ζ0

)
dx

= 1

2

(
ei ζ0 Â(ω − ω0)+ e−i ζ0 Â(ω + ω0)

)
,

ĝ(ω) = 1

2i

∫

R

(
A(x) e−i (ω−ω0) x ei ζ0 − A(x) e−i (ω+ω0) x e−i ζ0

)
dx

= − i

2

(
ei ζ0 Â(ω − ω0)− e−i ζ0 Â(ω + ω0)

)

and

Ĥ f (ω) = − i

2
·
{(

ei ζ0 Â(ω − ω0)+ e−i ζ0 Â(ω + ω0)
)

ω > 0 ,(− ei ζ0 Â(ω − ω0)− e−i ζ0 Â(ω + ω0)
)

ω < 0 .

We see that Ĥ f (ω) = ĝ(ω) if and only if almost everywhere

Â(ω + ω0) = 0, ω > 0 and Â(ω − ω0) = 0, ω < 0
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Fig. 4.1 Left: Function (4.49) and its Hilbert transform. Right: Amplitude |fa |, and the phase φ

of its analytical signal fa

which is fulfilled if and only if Â is supported (up to a set of measure zero) in
[−ω0, ω0]. The function:

f (x) :=
{

e−x2
cos(6x) x ∈ [−π, π]

0 x ∈ R \ [−π, π] (4.49)

together with its Hilbert transform as well as the amplitude and phase of its
analytical signal fa are shown in Fig. 4.1.

The example can be also seen using the so-called Bedrosian theorem which
formally says that

H (f g) = f H (g),

if either supp f̂ ⊆ (0, ∞) and supp ĝ ⊆ (0, ∞) or supp f̂ ⊆ [−a, a] and supp ĝ ⊆
R\[−a, a]. For the theorem of Bedrosian and corresponding extensions, see, e.g.,
[24, 49, 383].

There are several ways to generalize the Hilbert transform to higher dimensions.
In the following, we concentrate on the most frequently used generalizations,
namely the partial Hilbert transform and the Riesz transform.

Let ω0 ∈ R
d \ {0} be given. The partial Hilbert transform with respect to ω0 is

defined for f ∈ L2(R
d ) by:

Hω0f := F−1(− i sgn(ω · ω0) f̂ (ω)
)
.

The partial Hilbert transform occurs in the context of functions whose Fourier
transform is supported in one half-space, see [51] or [234, Chapter 4].
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The Riesz transformR : L2(R
d,R)→ L2(R

d,Rd ) is defined by:

Rf = F−1(− i
ω

‖ω‖2
f̂ (ω)

)
,

where the inverse Fourier transform is taken componentwise, i.e., Rf = (Rj f )dj=1
with:

Rj f := F−1(− i
ωj

‖ω‖2
(Ff )(ω)

)
, ω = (ωj )

d
j=1 ∈ R

d .

Note that for f ∈ L2(R
d) we have f̂ ∈ L2(R

d) and
ωj

‖ω‖2
f̂ ∈ L2(R

d), j =
1, . . . , d , where we set ωj

‖ω‖2
:= 0 if ω = 0. Therefore, the inverse Fourier transform

is well defined. For d = 1, the Riesz transform coincides with the Hilbert transform.
In the Fourier domain, it reads

R̂f (ω) = −i
ω

‖ω‖2
f̂ (ω) .

Similarly as for the Hilbert transform, it can be shown that the Riesz transform can
be rewritten as:

Rf (x) = Cd

(
f ∗ pv

( ·
‖ · ‖d+1

2

))
(x)

= Cd lim
ε→0

∫

Rd\Bε(0)

y

‖y‖d+1
2

f (x− y) dy

where

Cd := π−(d+1)/2 Γ
(d + 1

2

)

with the Gamma function Γ (z) := ∫∞
0 tz−1e−t dt . In particular, we have

C1 = 1

π
, C2 = 1

2π
, C3 = 1

π2 .

The Riesz transform was introduced in [309] and arises in the study of differentia-
bility properties of harmonic potentials.

Theorem 4.65 (Properties of Riesz Transform) The Riesz transform R :
L2(R

d,R)→ L2(R
d,Rd ):

1. multiplied by (2π)d/2 is an isometry,
2. commutes with translations,
3. commutes with positive dilations,
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4. fulfills for each orthogonal matrix U ∈ R
d×d , the relation:

R
(
f (U−1·)) = URf (U−1·) ,

5. is anti-self-adjoint, that is, R∗g = −∑d
j=1 Rj gj for all g = (gj )

d
j=1 ∈

L2(R
d ,Rd), and

6. anti-commutes with reflections on L2(R
d ,R).

Proof We only prove the fourth property since the other ones follow similarly as for
the Riesz transform. By Lemma 4.29, we obtain

R
(
f (U−1·))(x) =F−1(− i

ω

‖ω‖2
f̂ (U−1ω)

)
(x)

= 1

(2π)d

∫

R

(− i
ω

‖ω‖2
f̂ (U−1ω)

)
ei ω·x dω

= 1

(2π)d

∫

R

(− i
Uv
‖v‖2

f̂ (v) ei v·U−1x) dv

= UF−1(− i
v
‖v‖2

f̂
)
(U−1x) .

The multidimensional counterpart of an analytic signal is the monogenic signal.
Let d = 2 and Rf = (R1f,R2f ). Then, the monogenic signal of a function
f ∈ L2(R

2,R) is defined by:

fm := (f, R1f, R2f ) .

The monogenic signal was introduced in image processing by Felsberg and Sommer
[109] and in the context of optics by Larkin et al. [220]. It has the amplitude:

A :=
√
f 2 + (R1f )2 + (R2f )2.

Its local orientation θ ∈ (−π, π] and instantaneous phase ξ ∈ [0, π] are
determined by:

f = A cos ξ, R1f = A sin ξ cos θ , R2f = A sin ξ sin θ .

The instantaneous phase can be recovered by:

ξ = arccos
f

A
.
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With r := √
(R1f )2 + (R2f )2 = A sin ξ , we obtain the local orientation vector

by (
R1f
r

,
R2f
r

) = (cos θ, sin θ) and the local orientation by:

θ := atan2(R2f, R1f ) .

Thus, the Riesz transform of a two-dimensional signal provides information about
the amplitude, the instantaneous phase, and the local orientation (of the phase) of the
signal. Therefore, it contains, in contrast to, e.g., the directional Hilbert transform
where the desired direction has to be addressed in advance, an “automatic”
orientation component. The Riesz transform can replace the (smoothed) gradient
in structure tensors as those of Förstner and Gülch [115] to make them more robust,
see, e.g., [209]. It was used in the context of steerable wavelets [361], curvelets
[342], and shearlets [158].

4.4 Multidimensional Discrete Fourier Transforms

The multidimensional DFT is necessary for the computation of Fourier coefficients
of a function f ∈ C(Td ) as well as for the calculation of the Fourier transform of a
function f ∈ L1(R

d) ∩ C(Rd). Further, the two-dimensional DFT finds numerous
applications in image processing. The properties of the one-dimensional DFT (see
Chap. 3) can be extended to the multidimensional DFT in a straightforward way.

4.4.1 Computation of Multivariate Fourier Coefficients

We describe the computation of Fourier coefficients ck(f ), k = (kj )
d
j=1 ∈ Z

d , of

a given function f ∈ C(Td ), where f is sampled on the uniform grid { 2π
N

n : n ∈
Id
N }, where N ∈ N is even, IN := {0, . . . , N − 1}, and Id

N := {n = (nj )
d
j=1 :

nj ∈ IN , j = 1, . . . , d}. Using the rectangle rule of numerical integration, we can
compute ck(f ) for k ∈ Z

d approximately. Since [0, 2π]d is equal to the union of
the Nd hypercubes 2π

N
n+ [0, 2π

N
]d , n ∈ Id

N , we obtain

ck(f ) = 1

(2π)d

∫

[0, 2π]d
f (x) e−i k·x dx ≈ 1

Nd

∑

n∈I dN
f
(2π

N
n
)

e−2π i (k·n)/N

= 1

Nd

∑

n∈I dN
f
(2π

N
n
)
wk·n

N
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with wN = e−2π i/N . The expression:

∑

n∈I dN
f
(2π

N
n
)
wk·n

N

is called the d-dimensional discrete Fourier transform of size N1 × . . .×Nd of the
d-dimensional array

(
f ( 2π

N
n)

)
n∈I dN , where N1 = . . . = Nd := N . Thus, we obtain

the approximate Fourier coefficients:

f̂k := 1

Nd

∑

n∈I dN
f
(2π

N
n
)
wk·n

N . (4.50)

Obviously, the values f̂k are N-periodic, i.e., for all k, m ∈ Z
d we have

f̂k+N m = f̂k .

But by Lemma 4.6, we know that lim‖k‖2→∞ ck(f ) = 0. Therefore, we can only
expect that

f̂k ≈ ck(f ) , kj = −N

2
, . . . ,

N

2
− 1 ; j = 1, . . . , d .

To see this effect more clearly, we will derive a multidimensional aliasing formula.
By δm, m ∈ Z

d , we denote the d-dimensional Kronecker symbol:

δm :=
{

1 m = 0 ,

0 m ∈ Z
d \ {0} .

First, we present a generalization of Lemma 3.2.

Lemma 4.66 Let Nj ∈ N \ {1}, j = 1, . . . , d , be given. Then for each m =
(mj )

d
j=1 ∈ Z

d , we have

N1−1∑

k1=0

. . .

Nd−1∑

kd=0

w
m1k1
N1

. . . w
mdkd
Nd

=
d∏

j=1

(Nj δmj mod N)

=
{∏d

j=1 Nj m ∈ N1 Z× . . .× Nd Z ,

0 m ∈ Z
d \ (N1 Z× . . .× Nd Z) .
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If N1 = . . . = Nd = N , then for each m ∈ Z
d :

∑

k∈I dN
wm·k

N = Nd δm mod N =
{
Nd m ∈ N Z

d ,

0 m ∈ Z
d \ (N Z

d ) ,

where the vector m mod N := (mj mod N)dj=1 denotes the nonnegative residue of

m ∈ Z
d modulo N , and

δm mod N =
d∏

j=1

δmj mod N .

Proof This result is an immediate consequence of Lemma 3.2, since

N1−1∑

k1=0

. . .

Nd−1∑

kd=0

w
m1k1
N1

. . . w
mdkd
Nd

=
d∏

j=1

( Nj−1∑

kj=0

w
mjkj
Nj

)
=

d∏

j=1

(Nj δmj mod Nj ) .

The following aliasing formula describes a close relation between the Fourier
coefficients ck(f ) and the approximate values f̂k.

Theorem 4.67 (Aliasing Formula for d-Variate Fourier Coefficients) Let N ∈
N be even and let f ∈ C(Td ) be given. Assume that the Fourier coefficients ck(f )

satisfy the condition
∑

k∈Zd

|ck(f )| <∞.

Then, we have the aliasing formula:

f̂k =
∑

m∈Zd

ck+N m(f ) . (4.51)

Thus for kj = −N
2 , . . . , N

2 − 1 and j = 1, . . . , d , we have the error estimate:

|f̂k − ck(f )| ≤
∑

m∈Zd\{0}
|ck+N m(f )| .

Proof By Theorem 4.7, the d-dimensional Fourier series of f converges uniformly
to f . Hence for all x ∈ T

d , we have

f (x) =
∑

m∈Zd

cm(f ) ei m·x .
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In particular for x = 2π
N

n, n ∈ Id
N , we obtain

f
(2π

N
n
) =

∑

m∈Zd

cm(f ) e2π i (m·n)/N =
∑

m∈Zd

cm(f )w−m·n
N .

Hence due to (4.50) and the pointwise convergence of the Fourier series:

f̂k = 1

Nd

∑

n∈IN

( ∑

m∈Zd

cm(f )w−m·n
N

)
wk·n

N

= 1

Nd

∑

m∈Zd

cm(f )
∑

n∈I dN
w

(k−m)·n
N ,

which yields the aliasing formula (4.51) by Lemma 4.66.

Now, we sketch the computation of the Fourier transform f̂ of a given function
f ∈ L1(R

d ) ∩ C0(R
d ). Since f (x) → 0 as ‖x‖2 → ∞, we obtain for sufficiently

large n ∈ N that

f̂ (ω) =
∫

Rd

f (x) e−i x·ω dx ≈
∫

[−nπ, nπ]d
f (x) e−i x·ω dx , ω ∈ R

d .

Using the uniform grid { 2π
N

k : kj = −nN
2 , . . . , nN

2 − 1; j = 1, . . . , d} of
the hypercube [−nπ, nπ)d for even N ∈ N, we receive by the rectangle rule of
numerical integration:

∫

[−nπ, nπ]d
f (x) e−i x·ω dx ≈ (2π

N

)d
nN/2−1∑

k1=−nN/2

. . .

nN/2−1∑

kd=−nN/2

f
(2π

N
k
)

e−2π i (k·ω)/N .

For ω = 1
n

m with mj = −nN
2 , . . . , nN

2 − 1 and j = 1, . . . , d , we obtain the
following values:

(2π

N

)d
nN/2−1∑

k1=−nN/2

. . .

nN/2−1∑

kd=−nN/2

f
(2π

N
k
)
wk·ω

nN ≈ f̂
( 1

n
m

)
,

which can be considered as d-dimensional DFT(N1 × . . . × Nd ) with N1 = . . . =
Nd = nN .
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4.4.2 Two-Dimensional Discrete Fourier Transforms

Let N1, N2 ∈ N \ {1} be given, and let INj := {0, . . . , Nj − 1} for j = 1, 2
be the corresponding index sets. The linear map which maps any matrix A =
(ak1,k2)

N1−1,N2−1
k1,k2=0 ∈ C

N1×N2 to the matrix:

Â = (ân1,n2)
N1−1,N2−1
n1,n2=0 := FN1 A FN2 ∈ C

N1×N2 ,

is called two-dimensional discrete Fourier transform of sizeN1×N2 and abbreviated
by DFT(N1 ×N2). The entries of the transformed matrix Â read as follows:

ân1,n2 =
N1−1∑

k1=0

N2−1∑

k2=0

ak1,k2 w
k1n1
N1

w
k2n2
N2

, nj ∈ INj ; j = 1, 2 . (4.52)

If we form the entries (4.52) for all n1, n2 ∈ Z, then we observe the periodicity of
DFT(N1 ×N2), i.e., for all �1, �2 ∈ Z, one has

ân1,n2 = ân1+�1 N1,n2+�2 N2 , nj ∈ INj , j = 1, 2 .

Remark 4.68 The two-dimensional DFT is of great importance for digital image
processing. The light intensity measured by a camera is generally sampled over a
rectangular array of pictures elements, the so-called pixels. Thus, a digital grayscale
image is a matrix A = (ak1,k2)

N1−1,N2−1
k1,k2=0 of N1 N2 pixels (k1, k2) ∈ IN1 × IN2

and corresponding grayscale values ak1,k2 ∈ {0, 1, . . . , 255}, where zero means
black and 255 is white. Typically, N1, N2 ∈ N are relatively large, for instance
N1 = N2 = 512.

The modulus of the transformed matrix Â is given by |Â| := (|ân1,n2 |)N1−1,N2−1
n1,n2=0

and its phase by:

atan2 (Im Â,Re Â) := (
atan2 (Im ân1,n2 ,Re ân1,n2)

)N1−1,N2−1
n1,n2=0 ,

where atan2 is defined in Remark 1.4. In natural images, the phase contains
important structure information as illustrated in Fig. 4.2. For image sources, we
refer to [42] and the databank of the Signal and Image Processing Institute of the
University of Southern California (USA).

For the computation of DFT(N1 × N2), the following simple relation to one-
dimensional DFT’s is very useful. If the data ak1,k2 can be factorized as:

ak1,k2 = bk1 ck2 , kj ∈ INj ; j = 1, 2 ,
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Fig. 4.2 Top: Images Barbara (left) and Lena (right). Bottom: Images reconstructed with
modulus of Barbara and phase of Lena (left) and conversely, with modulus of Lena and phase
of Barbara (right). The phase appears to be dominant with respect to structures

then the DFT(N1 ×N2) of A = (ak1,k2)
N1−1,N2−1
k1,k2=0 = b c reads as follows:

Â = FN1bcFN2
= (b̂n1 ĉn2)

N1−1,N2−1
n1,n2=0 , (4.53)

where (b̂n1)
N1−1
n1=0 is the one-dimensional DFT(N1) of b = (bk1)

N1−1
k1=0 and (ĉn2)

N2−1
n2=0

is the one-dimensional DFT(N2) of c = (ck2)
N−1
k2=0.

Example 4.69 For fixed sj ∈ INj , j = 1, 2, the sparse matrix:

A := (
δ(k1−s1) mod N1 δ(k2−s2) mod N2

)N1−1,N2−1
k1,k2=0

is transformed to Â = (
w

n1s1
N1

w
n2s2
N2

)N1−1,N2−1
n1,n2=0 . Thus, we see that a sparse matrix

(i.e., a matrix with few nonzero entries) is not transformed to a sparse matrix.
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Conversely, the matrix B = (
w
−s1k1
N1

w
−s2k2
N2

)N1−1,N2−1
k1,k2=0 is mapped to:

B̂ := N1 N2
(
δ(n1−s1) mod N1 δ(n2−s2) mod N2

)N1−1,N2−1
n1,n2=0 .

Example 4.70 Let N1 = N2 = N ∈ N \ {1}. We consider the matrix A =(
ak1 ak2

)N−1
k1,k2=0, where akj is defined as in Example 3.13 by:

akj :=
{ 1

2 kj = 0 ,

kj
N

kj = 1, . . . , N − 1 .

Thus by (4.53) and Example 3.13, we obtain the entries of the transformed matrix
Â by:

ân1,n2 = ân1 ân2 = −
1

4
cot

πn1

N
cot

πn2

N
, nj ∈ INj ; j = 1, 2 .

By Theorem 3.16, the DFT(N1 × N2) maps CN1×N2 one-to-one onto itself. The
inverse DFT(N1 × N2) of size N1 × N2 is given by:

A = F−1
N1

Â F−1
N2
= 1

N1N2
J′N1

FN1 Â FN2 J′N2

such that:

ak1,k2 =
1

N1N2

N1−1∑

n1=0

N2−1∑

n2=0

ân1,n2 w
−k1n1
N1

w
−k2n2
N2

, kj ∈ INj ; j = 1, 2 .

In practice, one says that the DFT(N1 ×N2) is defined on the time domain or space
domainCN1×N2 . The range of the DFT(N1×N2) is called frequency domain which
is CN1×N2 too.

In the linear space C
N1×N2 , we introduce the inner product of two complex

matrices A = (
ak1,k2

)N1−1,N2−1
k1,k2=0 and B = (

bk1,k2

)N1−1,N2−1
k1,k2=0 by:

〈A, B〉 :=
N1−1∑

k1=0

N2−1∑

k2=0

ak1,k2 bk1,k2

as well as the Frobenius norm of A by:

‖A‖F := 〈A, A〉1/2 = (N1−1∑

k1=0

N2−1∑

k2=0

|ak1,k2 |2
)1/2

.
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Lemma 4.71 For given N1, N2 ∈ N \ {1}, the set of exponential matrices:

Em1,m2 :=
(
w
−k1m1
N1

w
−k2m2
N2

)N1−1,N2−1
k1,k2=0

forms an orthogonal basis of CN1×N2 , where ‖Em1,m2‖F = √N1 N2 for all mj ∈
INj and j = 1, 2. Any matrix A ∈ C

N1×N2 can be represented in the form:

A = 1

N1 N2

N1−1∑

m1=0

N2−1∑

m2=0

〈A, Em1,m2〉Em1,m2 ,

and we have

Â = (〈A, Em1,m2〉
)N1−1,N2−1
m1,m2=0 .

Proof From Lemma 4.66, it follows that for pj ∈ INj , j = 1, 2:

〈Em1,m2 , Ep1,p2〉 =
N1−1∑

k1=0

N2−1∑

k2=0

w
k1 (p1−m1)
N1

w
k2 (p2−m2)
N2

= N1N2 δ(m1−p1) mod N1 δ(m2−p2) mod N2 =
{
N1 N2 (m1, m2) = (p1, p2) ,

0 (m1, m2) �= (p1, p2) .

Further, we see that ‖Em1,m2‖F = √N1 N2. Since dim C
N1×N2 = N1 N2, the set of

the N1 N2 exponential matrices forms an orthogonal basis of CN1×N2 .

In addition, we introduce the cyclic convolution:

A ∗ B := (N1−1∑

k1=0

N2−1∑

k2=0

ak1,k2 b(m1−k1) mod N1, (m2−k2) mod N2

)N1−1,N2−1
m1,m2=0

and the entrywise product:

A ◦ B := (
ak1,k2 bk1,k2

)N1−1,N2−1
k1,k2=0 .

In the case N1 = N2 = N , the cyclic convolution in C
N×N is a commutative,

associative, and distributive operation with the unity (δk1 mod N δk2 mod N)N−1
k1,k2=0.

Remark 4.72 The cyclic convolution is of great importance for digital image
filtering. Assume that A = (

ak1,k2

)N1−1, N2−1
k1,k2=0 is a given grayscale image. The matrix



4.4 Multidimensional Discrete Fourier Transforms 221

G = (
gk1,k2

)N1−1,N2−1
k1,k2=0 with:

gk1,k2 :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1
4 (k1, k2) = (0, 0) ,
1
8 (k1, k2) ∈ {(N1 ± 1) mod N1, 0), (0, (N2 ± 1) mod N2)} ,
1

16 (k1, k2) = ((N1 ± 1) mod N1, (N2 ± 1) mod N2) ,

0 otherwise

is called discrete Gaussian filter. Then, A ∗ G is the filtered image. Gaussian
filtering is used to blur images and to remove noise or details. The matrix L =
(�k1,k2)

N1−1,N2−1
k1,k2=0 with:

�k1,k2 :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

4 (k1, k2) = (0, 0) ,

−2 (k1, k2) ∈ {(N1 ± 1) mod N1, 0), (0, (N2 ± 1) mod N2)} ,
1 (k1, k2) = ((N1 ± 1) mod N1, (N2 ± 1) mod N2) ,

0 otherwise

is called discrete Laplacian filter. Then, A ∗ L is the filtered image. Laplacian
filtering distinguishes that regions of A with rapid intensity change and can be used
for edge detection.

The properties of DFT(N1×N2) are immediate generalizations of the properties
of one-dimensional DFT, see Theorem 3.26.

Theorem 4.73 (Properties of Two-Dimensional DFT(N1×N2)) The DFT(N1×
N2) possesses the following properties:

1. Linearity: For all A, B ∈ C
N1×N2 and α ∈ C, we have

(A+ B)ˆ= Â+ B̂ , (α A)ˆ= α Â .

2. Inversion: For all A ∈ C
N1×N2 , we have

A = F−1
N1

Â F−1
N2
= 1

N1 N2
FN1 Â FN2 =

1

N1 N2
J′N1

FN1 Â FN2 J′N2
.

3. Flipping property: For all A ∈ C
N1×N2 , we have

(J′N1
A J′N2

)ˆ= J′N1
Â J′N2

, (A)ˆ= J′N1
Â J′N2

,
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where J′Nj
are the flip matrices. Note that

J′N1
A J′N2

= (
a(N1−k1) mod N1,(N2−k2) mod N2

)N1−1,N2−1
k1,k2=0 ,

J′N1
Â J′N2

= ( ¯̂a(N1−n1) mod N1,(N2−n2) mod N2

)N1−1,N2−1
n1,n2=0 .

4. Shifting in time and frequency domain: For all A ∈ C
N1×N2 and fixed sj ∈ INj ,

j = 1, 2, we have

(Vs1
N1

A Vs2
N2

)ˆ= Ms1
N1

Â Ms2
N2

, (M−s1
N1

A M−s2
N2

)ˆ= Vs1
N1

Â Vs2
N2

,

where VNj are forward-shift matrices and MNj are modulation matrices. Note
that

Vs1
N1

A Vs2
N2
= (

a(k1−s1) mod N1,(k2−s2) mod N2

)N1−1,N2−1
k1,k2=0 ,

Ms1
N1

Â Ms2
N2
= (

w
s1n1
N1

w
s2n2
N2

ân1,n2

)N1−1,N2−1
n1,n2=0 .

5. Cyclic convolution in time and frequency domain: For all A, B ∈ C
N1×N2 , we

have

(A ∗ B)ˆ= Â ◦ B̂ , N1 N2 (A ◦ B)ˆ= Â ∗ B̂ .

6. Parseval equality: For all A, B ∈ C
N1×N2 , we have

〈Â, B̂〉 = N1 N2 〈A, B〉

such that:

‖Â‖F =
√
N1 N2 ‖A‖F .

Proof

1. The linearity follows immediately from the definition of DFT(N1 ×N2).
2. By (3.31) and (3.34), we obtain the inversion property.
3. By (3.31) and (3.34), we have FNj J′Nj

= J′Nj
FNj = FNj for j = 1, 2 and

hence:

(J′N1
A J′N2

)ˆ= FN1 J′N1
A J′N2

FN2

= J′N1
FN1 A FN2 J′N2

= J′N1
Â J′N2

.
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Analogously, we receive that

(A)ˆ= FN1 A FN2 = FN1 A FN2
= J′N1

FN1 A FN2 J′
N2
= J′N1

Â J′N2
.

4. From (3.43) and (3.44), it follows that FNj V
sj
Nj
= M

sj
Nj

FNj and V
sj
Nj

FNj =
FNj M

−sj
Nj

and hence:

(Vs1
N1

A Vs2
N2

)ˆ= FN1 Vs1
N1

A Vs2
N2

FN2

= Ms1
N1

FN1 A FN2 Ms2
N2
= Ms1

N1
Â Ms2

N2
.

The transformed matrix of M−s1
N1

A M−s2
N2

can be similarly determined.

5. Let C = (
cm1,m2

)N1−1,N2−1
m1,m2=0 = A ∗ B be the cyclic convolution of the matrices

A = (
ak1,k2

)N1−1,N2−1
k1,k2=0 and B = (

bk1,k2

)N1−1,N2−1
k1,k2=0 with the entries:

cm1,m2 =
N1−1∑

k1=0

N2−1∑

k2=0

ak1,k2 b(m1−k1) mod N1, (m2−k2) mod N2 .

Then, we calculate the transformed matrix Ĉ = (ĉn1,n2)
N1−1,N2−1
n1,n2=0 by:

ĉn1,n2 =
N1−1∑

m1=0

N2−1∑

m2=0

(N1−1∑

k1=0

N2−1∑

k2=0

ak1,k2 b(m1−k1) mod N1, (m2−k2) mod N2

)
w

m1n1
N1

w
m2n2
N2

=
(N1−1∑

k1=0

N2−1∑

k2=0

ak1,k2 w
k1n1
N1

w
k2n2
N2

)
b̂n1,n2 = ân1,n2 b̂n1,n2 .

The equation N1 N2 (A ◦ B)ˆ= Â ∗ B̂ can be similarly shown.
6. The entries of the transformed matrices Â and B̂ read as follows:

ân1,n2 =
N1−1∑

k1=0

N2−1∑

k2=0

ak1,k2 w
k1n1
N1

w
k2n2
N2

, b̂n1,n2 =
N1−1∑

�1=0

N2−1∑

�2=0

b�1,�2 w
�1n1
N1

w
�2n2
N2

.
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Applying Lemma 4.66, we obtain

〈Â, B̂〉 =
N1−1∑

n1=0

N2−1∑

n2=0

ân1,n2 b̂n1,n2

=
N1−1∑

k1=0

N2−1∑

k2=0

N1−1∑

�1=0

N2−1∑

�2=0

ak1,k2 b�1,�2

(N1−1∑

n1=0

N2−1∑

n2=0

w
(k1−�1) n1
N1

w
(k2−�2) n2
N2

)

= N1N2

N1−1∑

k1=0

N2−1∑

k2=0

ak1,k2 bk1,k2 = N1N2 〈A, B〉 .

Now, we analyze the symmetry properties of DFT(N1 × N2). A matrix A =(
ak1,k2

)N1−1,N2−1
k1,k2=0 is called even, if A = J′N1

A J′N2
, i.e., for all kj ∈ INj , j = 1, 2:

ak1,k2 = a(N1−k1) mod N1, (N2−k2) mod N2 .

A matrix A is called odd, if A = −J′N1
A J′N2

, i.e., for all kj ∈ INj , j = 1, 2:

ak1,k2 = − a(N1−k1) mod N1, (N2−k2) mod N2 .

Corollary 4.74 If A ∈ R
N1×N2 is real, then Â has the symmetry property Â =

J′N1
Â J′N2

, i.e., for all nj ∈ INj , j = 1, 2:

ân1,n2 = â(N1−n1) mod N1, (N2−n2) mod N2 .

In other words, Re Â is even and Im Â is odd.

Proof Using A = A and the flipping property of Theorem 4.73, we obtain

Â = J′N1
Â J′N2

.

From Â = Re Â+ i Im Â, it follows that

Re Â− i Im Â = J′N1
(Re Â) J′N2

+ i J′N1
(Im Â) J′N2

,

that is, Re Â = J′N1
(Re Â) J′N2

and Im Â = −J′N1
(Im Â) J′N2

.

Corollary 4.75 If A ∈ C
N1×N2 is even/odd, then Â is even/odd.

If A ∈ R
N1×N2 is even, then Â = Re Â is even. If A ∈ R

N1×N2 is odd, then
Â = i Im Â is odd.
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Proof From A = ±J′N1
A J′N2

and (3.34), it follows that

Â = ±FN1 J′N1
A J′N2

FN2 = ±J′N1
FN1 A FN2 J′N2

= ±J′N1
Â J′N2

.

For even A ∈ R
N1×N2 , we obtain by Corollary 4.74 that Â = J′N1

Â J′N2
, i.e., Â ∈

R
N1×N2 is even. Analogously, we can show the assertion for odd A ∈ R

N1×N2 .

Example 4.76 For fixed sj ∈ INj , j = 1, 2, we consider the real even matrix:

A =
(

cos 2π
(s1k1

N1
+ s2k2

N2

))N1−1,N2−1

k1,k2=0
.

Using Example 4.69 and Euler’s formula eix = cos x + i sin x, we obtain for A =(
Re (w

−s1k1
N1

w
−s2k2
N2

)
)N1−1,N2−1

k1,k2=0
the real even transformed matrix:

Â = N1 N2

2

(
δ(n1−s1) mod N1 δ(n2−s2) mod N2+δ(n1+s1) mod N1 δ(n2+s2) mod N2

)N1−1,N2−1

n1,n2=0
.

Analogously, the real odd matrix:

B =
(

sin 2π
(s1k1

N1
+ s2k2

N2

))N1−1,N2−1

k1,k2=0

possesses the transformed matrix:

B̂ = N1 N2

2i

(
δ(n1−s1) mod N1 δ(n2−s2) mod N2 − δ(n1+s1) mod N1 δ(n2+s2) mod N2

)N1−1,N2−1

n1,n2=0

which is imaginary and odd.

Finally, we describe two simple methods for the computation of the two-
dimensional DFT via one-dimensional transforms. The first method reads as
follows. If A ∈ C

N1×N2 has rank 2 and can be decomposed in the form:

A = b1 c1 + b2 c2

with b� ∈ C
N1 and c� ∈ C

N2 for � = 1, 2, then by (4.53) and the linearity of
DFT(N1 ×N2) the transformed matrix is equal to:

Â = b̂1 ĉ1 + b̂2 ĉ2 ,

where b̂� = FN1b� and ĉ� = FN2c� for � = 1, 2.

In the second method, we reshape a matrix A = (
ak1, k2

)N1−1,N2−1
k1, k2=0 ∈ C

N1×N2

into a vector a = (
ak

)N1N2−1
k=0 ∈ C

N1N2 by vectorization vec : CN1×N2 → C
N1N2
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by ak1+N1 k2 := ak1, k2 for kj ∈ INj , j = 1, 2. Obviously, vec : CN1×N2 → C
N1N2

is a linear transform which maps C
N1×N2 one-to-one onto C

N1N2 . Hence, vec is
invertible and its inverse map reads vec−1 (ak)

N1N2−1
k=0 = (ak1,k2)

N1−1,N2−1
k1,k2=0 with

k1 := k mod N1 and k2 := (k − k1)/N1. For N1 = N2 = 2, we have

vec

(
a0,0 a0,1

a1,0 a1,1

)
= (a0,0 a1,0 a0,1 a1,1)

 ,

vec−1 (a0 a1 a2 a3)
 =

(
a0 a2

a1 a3

)
.

By Lemma 3.44, we obtain

Â = vec−1 (
(FN2 ⊗ FN1) vec A

)
.

Unfortunately, the one-dimensional transform with transform matrix FN2 ⊗ FN1 is
not a one-dimensional DFT. However, applying Theorem 3.42, we can write

FN2 ⊗ FN1 = (FN2 ⊗ IN1)(IN2 ⊗ FN1).

This factorization leads to the row–column method, see Sect. 5.3.5.

4.4.3 Higher-Dimensional Discrete Fourier Transforms

Assume that d ∈ N \ {1, 2} and that Nj ∈ N \ {1} for j = 1, . . . , d are given. For
simplification, we shall use multi-index notations. We introduce the vector N :=
(Nj )

d
j=1, the product P := N1 . . . Nd , and the d-dimensional index set IN := IN1 ×

· · ·× INd with INj = {0, . . . , Nj −1}. For k = (kj )
d
j=1 ∈ Z

d , the multiplication k◦
N := (kj Nj )

d
j=1 and the division k/N := (kj/Nj )

d
j=1 are performed elementwise.

Further, we set

k mod N := (kj mod Nj)
d
j=1 .

Let CN1×...×Nd denote the set of all d-dimensional arrays A = (ak)k∈IN of size
N1 × . . .× Nd with ak ∈ C. Note that two-dimensional arrays are matrices.

The linear map from C
N1×...×Nd into itself, which transforms any d-dimensional

array A = (ak)k∈IN to an array Â = (ân)n∈IN with:

ân :=
N1−1∑

k1=0

. . .

Nd−1∑

kd=0

ak w
k1n1
N1

. . . w
kdnd
Nd

=
∑

k∈IN

ak e−2π i n·(k/N) (4.54)
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is called d-dimensional discrete Fourier transform of size N1 × . . . × Nd and
abbreviated by DFT(N1 × . . . × Nd ). If we form the entries (4.54) for all n ∈ Z

d ,
then we observe the periodicity of DFT(N1 × . . .×Nd ), namely for all p ∈ Z

d and
m ∈ IN:

âm = âm+p◦N .

The inverse DFT(N1 × . . .× Nd ) maps each d-dimensional array A = (an)n∈IN to
an array Ǎ = (ǎk)k∈IN with:

ǎk := 1

P

N1−1∑

n1=0

. . .

Nd−1∑

nd=0

ânw
−n1k1
N1

. . . w
−ndkd
Nd

= 1

P

∑

n∈IN

an e2π i n·(k/N) .

From Lemma 4.66, it follows that for all m ∈ Z
d :

∑

k∈IN

e2π i m·(k/N) =
{
P m/N ∈ Z

d ,

0 m/N /∈ Z
d .

Hence, we obtain that for all A ∈ C
N1×...×Nd :

A = (
Â
)ˇ= (

Ǎ
)ˆ.

As usually, we define entrywise the addition and the multiplication by a scalar in
C

N1×...×Nd . Further for d-dimensional arrays A = (ak)k∈IN and B = (bk)k∈IN , we
consider the inner product:

〈A, B〉 :=
∑

k∈IN

ak b̄k

and the related norm:

‖A‖ := 〈A, A〉1/2 = ( ∑

k∈IN

|ak|2
)1/2

.

Then, the set of exponential arrays:

Em :=
(
e2π i m·(k/N)

)
k∈IN

, m ∈ IN

forms an orthogonal basis of CN1×...×Nd , where ‖Em‖ =
√
P for all m ∈ IN. Any

array A ∈ C
N1×...×Nd can be represented in the form:

A = 1

P

∑

m∈IN

〈A, Em〉Em .
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Hence, Â is equal to the array:

(〈A, Em〉
)

m∈IN
.

In addition, we introduce the cyclic convolution:

A ∗ B := ( ∑

k∈IN

ak b(m−k) mod N
)

m∈IN

and the entrywise product:

A ◦ B := (ak bk)m∈IN

in C
N1×...×Nd .

The properties of DFT(N1 × . . . × Nd ) are natural generalizations of Theo-
rem 4.73.

Theorem 4.77 (Properties of d-Dimensional DFT(N1 × . . . × Nd)) The
DFT(N1 × . . .× Nd) possesses the following properties:

1. Linearity: For all A, B ∈ C
N1×...×Nd and α ∈ C, we have

(A+ B)ˆ= Â+ B̂ , (α A)ˆ= α Â .

2. Inversion: For all A ∈ C
N1×...×Nd , we have

A = (
Â
)ˇ= (

Ǎ
)ˆ.

3. Flipping property:For all A ∈ C
N1×...×Nd , the DFT(N1× . . .×Nd) of the flipped

array:

(
a(N−k) mod N

)
k∈IN

is equal to:

(
â(N−n) mod N

)
n∈IN

.

The DFT(N1 × . . .×Nd) of the conjugate complex array
(
āk

)
k∈IN

is equal to:

( ¯̂a(N−n) mod N
)

n∈IN
.

4. Shifting in time and frequency domain: For each A ∈ C
N1×...×Nd and fixed s ∈

IN, the DFT(N1 × . . .×Nd) of the shifted array:

(
a(k−s) mod N

)
k∈IN
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is equal to the modulated array:

E−s ◦ Â = (
e−2π i n·(s/N) ân

)
n∈IN

.

Further, the DFT(N1 × . . .×Nd) of the modulated array:

Es ◦ A = (
e2π i k·(s/N) ak

)
k∈IN

is equal to the shifted array:

(
â(n−s) mod N

)
n∈IN

.

5. Cyclic convolution in time and frequency domain: For all A, B ∈ C
N1×...×Nd ,

we have

(A ∗ B)ˆ= Â ◦ B̂ , P (A ◦ B)ˆ= Â ∗ B̂ .

6. Parseval equality: For all A, B ∈ C
N1×...×Nd , we have

〈Â, B̂〉 = P 〈A, B〉

such that:

‖Â‖ = √P ‖A‖ .

The proof is similar to that of Theorem 4.73.
Now, we describe the symmetry properties of DFT(N1 × . . . × Nd ). An array

A = (ak)k∈IN ∈ C
N1×...×Nd is called even, if we have

ak = a(N−k) mod N

for all k ∈ IN. Analogously, an array A = (ak)k∈IN ∈ C
N1×...×Nd is called odd, if

for all k ∈ IN:

ak = −a(N−k) mod N .

Corollary 4.78 If A ∈ R
N1×...×Nd is a real array, then the entries of Â = (ân)n∈IN

possess the symmetry property:

ân = â(N−n) mod N , n ∈ IN .

In other words, Re Â is even and Im Â is odd. If A ∈ C
N1×...×Nd is even/odd, then

Â is even/odd too.
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This corollary can be similarly shown as Corollary 4.74.
As for the two-dimensional DFT, we can compute the d-dimensional DFT using

only one-dimensional transforms. If the entries of the array A ∈ C
N1×...×Nd can be

factorized in the form:

ak = bk1 . . . ckd , k = (kj )
d
j=1 ∈ IN ,

then the entries of the transformed matrix Â read as follows:

ân = b̂n1 . . . ĉnd , n = (nj )
d
j=1 ∈ IN ,

where (b̂n)
N1−1
n=0 = FN1 (bk)

N1−1
k=0 , . . . , (ĉn)

Nd−1
n=0 = FNd (ck)

Nd−1
k=0 are one-

dimensional DFT’s.
We can also reshape an array A = (ak)k∈IN ∈ C

N1×...×Nd into a vector a =
(ak)

P−1
k=0 ∈ C

P by vectorization vec : CN1×...×Nd → C
P by:

ak1+N1 k2+N1 N2 k3+...+N1...Nd−1 kd := ak , k = (kj )
d
j=1 ∈ IN .

Obviously, vec : C
N1×...×Nd → C

P is a linear transform which maps
C

N1×...×Nd one-to-one onto C
P . Hence, vec is invertible and its inverse map reads

vec−1 (ak)
P−1
k=0 = (ak)k∈IN with k1 := k mod N1 and

kj = k − k1N1 − . . .− kj−1N1 . . . Nj−1

N1 . . . Nj−1
mod Nj , j = 2, . . . , d .

By extension of Lemma 3.44, we obtain

Â = vec−1 (
(FNd ⊗ . . .⊗ FN1) vec A

)
.

Thus, the d-dimensional DFT is converted into a matrix–vector product with a P -
by-P matrix. This matrix is however different from the Fourier matrix FP . The
Kronecker product of Fourier matrices can be rewritten into a product of d matrices,
where each of the matrix factors corresponds to a one-dimensional DFT that has
to be applied to subvectors. This approach leads to the generalized row–column
method in Sect. 5.3.5.



Chapter 5
Fast Fourier Transforms

As shown in Chap. 3, any application of Fourier methods leads to the evaluation of
a discrete Fourier transform of length N (DFT(N)). Thus the efficient computation
of DFT(N) is very important. Therefore this chapter treats fast Fourier transforms.
A fast Fourier transform (FFT) is an algorithm for computing the DFT(N) which
needs only a relatively low number of arithmetic operations.

In Sect. 5.1, we summarize the essential construction principles for fast algo-
rithms. Section 5.2 deals with radix-2 FFTs, where N is a power of 2. Here we
show three different representations of these algorithms in order to give more insight
into their structures. In Sect. 5.3, we derive some further FFTs. In particular, we
consider the decomposition approach to reduce an DFT(N1 N2) to N1 DFT(N2) and
N2 DFT(N1). We also study the radix-4 FFT and the split–radix FFT. For prime N

or arbitrary N ∈ N, the Rader FFT and the Bluestein FFT are considered, being
based on the representation of the DFT using cyclic convolutions.

The FFTs considerably reduce the computational cost for computing the DFT(N)

from 2 N2 to O(N logN) arithmetic operations. In Sect. 5.5, we examine the
numerical stability of the derived FFT. Note there exists no linear algorithm that
can realize the DFT(N) with a smaller computational cost than O(N logN), see
[246]. Faster algorithms can be only derived, if some a priori information on the
resulting vector are available. We will consider such approaches in Sect. 5.4.

5.1 Construction Principles of Fast Algorithms

One of the main reasons for the great importance of Fourier methods is the existence
of fast algorithms for the implementation of DFT. Nowadays, the FFT is one of
the most well-known and mostly applied fast algorithms. Many applications in
mathematical physics, engineering, and signal processing were just not possible
without FFT.
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A frequently applied FFT is due to Cooley and Tukey [73]. Indeed an earlier
fast algorithm by Good [138] used for statistical computations did not find further
attention.

Around 1800, C.F. Gauss was very interested in astronomy. Using his least
squares method, he has determined the orbit of the asteroid Ceres with great
accuracy. Later he has fitted 12 equidistant data points for the position of the asteroid
Pallas by a trigonometric polynomial. The solution of this interpolation problem
leads to a DFT of length 12. In order to reduce arithmetical operations, Gauss has
firstly decomposed the DFT of length 12 into DFT’s of shorter lengths 3 and 4. This
splitting process is the main idea of FFT.

Being interested in trigonometric interpolation problems, Runge [314] developed
in 1903 fast methods for discrete sine transforms of certain lengths.

But only the development of the computer technology heavily enforced the
development of fast algorithms. After deriving the Cooley–Tukey FFT in 1965,
many further FFTs emerged being mostly based on similar strategies. We especially
mention the Sande–Tukey FFT as another radix-2 FFT, the radix-4 FFT, and
the split–radix FFT. While these FFT methods are only suited for length N =
2t or even N = 4t , other approaches employ cyclic convolutions and can be
generalized to other lengths N . For the history of FFT, see [163] or [299, pp. 77–
83].

First we want to present five aspects being important for the evaluation and
comparison of fast algorithms, namely computational cost, storage cost, numerical
stability, suitability for parallel programming, and needed number of data rearrange-
ments.

1. Computational Cost
The computational cost of an algorithm is determined by the number of

floating point operations (flops), i.e., of single (real/complex) additions and
(real/complex) multiplications to perform the algorithm. For the considered FFT
we will separately give the number of required additions and multiplications.

Usually, one is only interested in the order of magnitude of the computational
cost of an algorithm in dependence of the number of input values and uses the
big O notation. For two functions f, g : N→ R with f (N) �= 0 for all N ∈ N,
we write g(N) = O(f (N)) for N → ∞, if there exists a constant c > 0 such
that |g(N)/f (N)| ≤ c holds for all N ∈ N. By

loga N = (loga b)(logb N) , a, b > 1 ,

we have

O(loga N) = O(logb N) .

Therefore it is usual to write simply O(logN) without fixing the base of the
logarithm.
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2. Storage Cost
While memory capacities got tremendously cheaper within the last years, it is

desired that algorithms require only a memory capacity being in the same order
as the size of input data. Therefore we prefer the so-called in-place algorithms,
where the needed intermediate and final results can be stored by overwriting the
input data. Clearly, these algorithms have to be carefully derived, since a later
access to the input data or intermediate data is then impossible. Most algorithms
that we consider in this chapter can be written as in-place algorithms.

3. Numerical Stability
Since the evaluations are performed in floating point arithmetic, rounding

errors can accumulate essentially during a computation leading to an inaccurate
result. In Sect. 5.5 we will show that the FFTs accumulate smaller rounding errors
than the direct computation of the DFT using a matrix–vector multiplication.

4. Parallel Programming
In order to increase the speed of computation, it is of great interest to

decompose the algorithm into independent subprocesses such that execution can
be carried out simultaneously using multiprocessor systems. The results of these
independent evaluations have to be combined afterwards upon completion.

The FFT has been shown to be suitable for parallel computing. One approach
to efficiently implement the FFT and to represent the decomposition of the FFT
into subprocesses is to use signal flow graphs, see Sect. 5.2.

5. Rearrangements of Data
The computation time of an algorithm mainly depends not only on the

computational cost of the algorithm but also on the data structure as, e.g., the
number and complexity of needed data rearrangements.

In practical applications the simplicity of the implementation of an algorithm
plays an important role. Therefore FFTs with a simple and clear data structure
are preferred to FFTs with slightly smaller computational cost but requiring more
complex data arrangements.

Basic principles for the construction of fast algorithms are

• the application of recursions,
• the divide-and-conquer technique, and
• parallel programming.

All three principles are applied for the construction of FFTs.
Recursions can be used, if the computation of the final result can be decomposed

into consecutive steps, where in the nth step only the intermediate results from
the previous r steps are required. Optimally, we need only the information of one
previous step to perform the next intermediate result such that an in-place processing
is possible.

The divide-and-conquer technique is a suitable tool to reduce the execution time
of an algorithm. The original problem is decomposed into several subproblems of
smaller size but with the same structure. This decomposition is then iteratively
applied to decrease the subproblems even further. Obviously, this technique is
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closely related to the recursion approach. In order to apply the divide-and-conquer
technique to construct FFTs a suitable indexing of the data is needed.

The FFTs can be described in different forms. We will especially consider
the sum representation, the representation based on polynomials, and the matrix
representation. The original derivation of the FFT by Cooley and Tukey [73] applied
the sum representation of the DFT(N). For a vector a = (aj )

N−1
j=0 ∈ C

N the DFT is

given by â = (âk)
N−1
k=0 ∈ C

N with the sum representation

âk :=
N−1∑

j=0

aj w
jk
N , k = 0, . . . , N − 1 , wN := e−2π i/N . (5.1)

Applying the divide-and-conquer technique, the FFT performs the above summation
by iterative evaluation of partial sums.

Employing the polynomial representation of the FFT, we interpret the DFT(N)

as evaluation of the polynomial

a(z) := a0 + a1z+ . . .+ aN−1z
N−1 ∈ C[z]

at the N knots wk
N , k = 0, . . . , N − 1, i.e.,

âk := a(wk
N) , k = 0, . . . , N − 1 . (5.2)

This approach to the DFT is connected with trigonometric interpolation. The FFT
is now based on the fast polynomial evaluation by reducing it to the evaluation of
polynomials of smaller degrees.

Besides the polynomial arithmetic, the matrix representation has been shown
to be appropriate for representing fast DFT algorithms. Starting with the matrix
representation of the DFT

â := FN a , (5.3)

the Fourier matrix FN := (w
jk

N )N−1
j,k=0 is factorized into a product of sparse matrices.

Then the FFT is performed by successive matrix–vector multiplications. This
method requires essentially less arithmetical operations than a direct multiplication
with the full matrix FN . The obtained algorithm is recursive, where at the nth step,
only the intermediate vector obtained in the previous step is employed.

Beside the three possibilities to describe the FFTs, one tool to show the data
structures of the algorithm and to simplify the programming is the signal flow graph.
The signal flow graph is a directed graph whose vertices represent the intermediate
results and whose edges illustrate the arithmetical operations. In this chapter, all
signal flow graphs are composed of butterfly forms as presented in Fig. 5.1.

The direction of evaluation in signal flow graphs is always from left to right. In
particular, the factorization of the Fourier matrix into sparse matrices with at most
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Fig. 5.1 Butterfly signal flow
graph

w

a0 + a1

w(a0 a1)

a0

a1 −

Fig. 5.2 Signal flow graphs
of F2a and diag (1, w) a

w

a0

w a1

a0

a1

a0 + a1

a0 a1

a0

a1−

two nonzero entries per row and per column can be simply transferred to a signal
flow graph. For example, the matrix–vector multiplications

F2a =
(

1 1
1 −1

)(
a0

a1

)
, diag (1, w) a =

(
1 0
0 w

)(
a0

a1

)

with fixed w ∈ C can be transferred to the signal flow graphs in Fig. 5.2.
As seen in Chap. 3, most applications use beside the DFT also the inverse DFT

such that we need also a fast algorithm for the inverse transform. However, since

F−1
N = 1

N
J′N FN

with the flip matrix J′N :=
(
δ(j+k) mod N

)N−1
j,k=0 in Lemma 3.17, each fast algorithm

for the DFT(N) also provides a fast algorithm for the inverse DFT(N), and we need
not to consider this case separately.

5.2 Radix-2 FFTs

Radix-2 FFTs are based on the iterative divide-and-conquer technique for comput-
ing the DFT(N), if N is a power of 2. The most well-known radix-2 FFTs are the
Cooley–Tukey FFT and the Sande–Tukey FFT [73]. These algorithms can be also
adapted for parallel processing. The two radix-2 FFTs only differ regarding the order
of components of the input and output vector and the order of the multiplication with
twiddle factors. As we will see from the corresponding factorization of the Fourier
matrix into a product of sparse matrices, the one algorithm is derived from the
other by using the transpose of the matrix product. In particular, the two algorithms
possess the same computational costs. Therefore we also speak about variants of
only one radix-2 FFT.
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We start with deriving the Sande–Tukey FFT using the sum representation.
Then we develop the Cooley–Tukey FFT in polynomial form. Finally we show
the close relation between the two algorithms by examining the corresponding
factorization of the Fourier matrix. This representation will be also applied to derive
an implementation that is suitable for parallel programming.

5.2.1 Sande–Tukey FFT in Summation Form

Assume that N = 2t , t ∈ N \ {1}, is given. Then (5.1) implies

âk =
N/2−1∑

j=0

aj w
jk
N +

N/2−1∑

j=0

aN/2+j w
(N/2+j)k
N

=
N/2−1∑

j=0

(
aj + (−1)kaN/2+j

)
w

jk
N , k = 0, . . . , N − 1 . (5.4)

Considering the components of the output vector with even and odd indices,
respectively, we obtain

â2k =
N/2−1∑

j=0

(aj + aN/2+j ) w
jk

N/2 , (5.5)

â2k+1 =
N/2−1∑

j=0

(aj − aN/2+j ) w
j
N w

jk

N/2 , k = 0, . . . , N/2− 1 . (5.6)

Thus, using the divide-and-conquer technique, the DFT(N) is obtained by comput-
ing

• N/2 DFT(2) of the vectors (aj , aN/2+j )
, j = 0, . . . , N/2 − 1,

• N/2 multiplications with the twiddle factors w
j
N, j = 0, . . . , N/2 − 1,

• 2 DFT(N/2) of the vectors (aj + aN/2+j )
N/2−1
j=0 and

(
(aj − aN/2+j ) w

j
N

)N/2−1
j=0 .

However, we do not evaluate the two DFT(N/2) directly but apply the decom-
position in (5.4) again to the two sums. We iteratively continue this procedure
and obtain the desired output vector after t decomposition steps. At each iteration
step we require N/2 DFT(2) and N/2 multiplications with twiddle factors. As we
will show in Sect. 4.3, this procedure reduces the computational cost to perform
the DFT(N) to O(N logN). This is an essential improvement! For example, for
N = 512 = 29 the computation cost is reduced by more than 50 times.

The above algorithm is called Sande–Tukey FFT. In Fig. 5.3 we show the
corresponding signal flow graph of the DFT(8).
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â5

â3
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Fig. 5.3 Sande–Tukey algorithm for DFT(8) with input values in natural order (above) and in bit
reversal order (below)

The evaluation of â0 =∑N−1
j=0 aj in the Sande–Tukey FFT is obviously executed

by cascade summation. The signal flow graph well illustrates how to implement
an in-place algorithm. Note that the output components are obtained in a different
order, which can be described by a permutation of indices.

All indices are in the set

JN := {0, . . . , N − 1} = {0, . . . , 2t − 1}
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and can be written as t-digit binary numbers,

k = (kt−1, . . . , k1, k0)2 := kt−12t−1 + . . .+ k12+ k0 , kj ∈ {0, 1} .

The permutation � : JN → JN with

�(k) = (k0, k1, . . . , kt−1)2 = k02t−1 + . . .+ kt−22+ kt−1

is called bit reversal or bit-reversed permutation of JN .
Let RN := (δ�(j)−k)

N−1
j,k=0 be the permutation matrix corresponding to �. Since

we have �2(k) = k for all k ∈ JN , it follows that

R2
N = IN , RN = R−1

N = RN . (5.7)

Table 5.1 shows the bit reversal for N = 8 = 23.
The comparison with Fig. 5.3 demonstrates that �(k) indeed determines the order

of output components. In general we can show the following:

Lemma 5.1 For an input vector with natural order of components, the Sande–
Tukey FFT computes the output components in bit-reversed order.

Proof We show by induction with respect to t that for N = 2t with t ∈ N \ {1} the
kth value of the output vector is â�(k).

For t = 1, the assertion is obviously correct. Assuming that the assertion holds
for N = 2t , we consider now the DFT of length 2N = 2t+1.

The first step of the algorithm decomposes the DFT(2N) into two DFT(N),
where for k = 0, . . . , N − 1 the values â2k are computed at the kth position
and â2k+1 at the (N + k)th position of the output vector. Afterwards the two
DFT(N) are independently computed using further decomposition steps of the
Sande–Tukey FFT. By induction assumption, we thus obtain after executing the

Table 5.1 Bit reversal for
N = 8 = 23

k k2k1k0 k0k1k2 �(k)

0 000 000 0

1 001 100 4

2 010 010 2

3 011 110 6

4 100 001 1

5 101 101 5

6 110 011 3

7 111 111 7
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complete algorithm the values â2�(k) at the kth position, and â2�(k)+1 at the (N+k)th
position of the output vector. The permutation π : J2N → J2N with

π(k) = 2 �(k) , π(k +N) = 2 �(k)+ 1 , k = 0, . . . , N − 1 ,

is by

π(k) = π((0, kt−1, . . . , k0)2) = 2 (0, k0, . . . , kt−2, kt−1)2 = (k0, . . . , kt−1, 0)2 ,

π(N + k) = π((1, kt−1, . . . , k0)2) = 2 (0, k0, . . . , kt−2, kt−1)2 + 1 = (k0, . . . , kt−1, 1)2

indeed equivalent to the bit reversal of J2N .

We summarize the pseudo-code for the Sande–Tukey FFT as follows:

Algorithm 5.2 (Sande–Tukey FFT)

Input:N = 2t with t ∈ N \ {1}, aj ∈ C for j = 0, . . . , N − 1.

for n := 1 to t do
begin m := 2t−n+1

for � := 0 to 2n−1 − 1 do
begin
for r := 0 to m/2− 1 do
begin j := r + �m ,

s := aj + am/2+j ,

am/2+j := (aj − am/2+j ) w
r
m ,

aj := s

end
end

end.
Output: âk := a�(k) ∈ C, k = 0, . . . , N − 1 .

5.2.2 Cooley–Tukey FFT in Polynomial Form

Next, we derive the Cooley–Tukey FFT in polynomial form. In the presentation of
the algorithm we use multi-indices for a better illustration of the order of data. We
consider the polynomial a(z) := a0+a1z+ . . .+aN−1z

N−1 that has to be evaluated
at the N knots z = wk

N , k = 0, . . . , N − 1. We decompose the polynomial a(z) as
follows:

a(z) =
N/2−1∑

j=0

aj z
j +

N/2−1∑

j=0

aN/2+j z
N/2+j =

N/2−1∑

j=0

(aj + zN/2 aN/2+j ) z
j .
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By w
kN/2
N = (−1)k = (−1)k0 for all k ∈ {0, . . . , N − 1} with

k = (kt−1, . . . , k0)2 , kj ∈ {0, 1} ,

the term zN/2 = (−1)k can be only 1 or −1. Thus the evaluation of a(z) at z =
wk

N, k = 0, . . . , N − 1, can be reduced to the evaluation of the two polynomials

a(i0)(z) :=
N/2−1∑

j=0

a
(i0)
j zj , i0 = 0, 1 ,

with the coefficients

a
(i0)
j := aj + (−1)i0 aN/2+j , j = 0, . . . , N/2 − 1 ,

at the N/2 knots wk
N with k = (kt−1, . . . , k1, i0)2. In the first step of the algorithm,

we compute the coefficients of the new polynomials a(i0)(z), i0 = 0, 1. Then we
apply the method again separately to the two polynomials a(i0)(z), i0 = 0, 1. By

a(i0)(z) :=
N/4−1∑

j=0

(
a
(i0)
j + zN/4a

(i0)
N/4+j

)
zj

and w
kN/4
N = (−1)k1 (−i)k0 , this polynomial evaluation is equivalent to the

evaluating the four polynomials

a(i0,i1)(z) :=
N/4−1∑

j=0

a
(i0,i1)
j zj , i0, i1 ∈ {0, 1} ,

with the coefficients

a
(i0,i1)
j := a

(i0)
j + (−1)i1 (−i)i0 a(i0)

N/4+j , j = 0, . . . , N/4 − 1 ,

at the N/4 knots wk
N with k = (kt−1, . . . , k2, i1, i0)2. Therefore, at the second step

we compute the coefficients of a(i0,i1)(z), i0, i1 ∈ {0, 1}. We iteratively continue
the method and obtain after t steps N polynomials of degree 0, i.e., constants that
yield the desired output values. At the (i0, . . . , it−1)2th position of the output vector
we get

a(i0,...,it−1)(z) = a
(i0,...,it−1)

0 = a(wk
N) = âk, i0, . . . , it−1 ∈ {0, 1},
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â1

â2
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â5

â6
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Fig. 5.4 Cooley–Tukey FFT for N = 8 with input values in natural order (above) and in bit
reversal order (below)

with k = (it−1, . . . , i0)2. Thus, the output values are again in bit-reversed order.
Figure 5.4 shows the signal flow graph of the described Cooley–Tukey FFT for
N = 8.

Remark 5.3 In the Sande–Tukey FFT, the number of output values that can be
independently computed doubles at each iteration step, i.e., the sampling rate is
iteratively reduced in frequency domain. Therefore this algorithm is also called
decimation-in-frequency FFT, see Fig. 5.3. Analogously, the Cooley–Tukey FFT
corresponds to reduction of sampling rate in time and is therefore called decimation-
in-time FFT, see Fig. 5.4.
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5.2.3 Radix-2 FFT’s in Matrix Form

The close connection between the two radix-2 FFTs can be well illustrated using the
matrix representation. For this purpose we consider first the permutation matrices
that yield the occurring index permutations when executing the algorithms. Beside
the bit reversal, we introduce the perfect shuffle πN : JN → JN by

πN(k) = πN((kt−1, . . . , k0)2)

= (kt−2, . . . , k0, kt−1)2 =
{

2k k = 0, . . . , N/2 − 1 ,

2k + 1−N k = N/2, . . . , N − 1 .

The perfect shuffle realizes the cyclic shift of binary representation of the numbers
0, . . . , N − 1. Then the t-times repeated cyclic shift πt

N yields again the original

order of the coefficients. Let PN := (
δπN(j)−k

)N−1
j,k=0 denote the corresponding

permutation matrix, then

(PN)t = IN , (PN)t−1 = P−1
N = PN . (5.8)

Obviously, PN is equivalent to the N/2-stride permutation matrix considered in
Sect. 3.4 with

PN a = (
a0, aN/2, a1, aN/2−1, . . . , aN/2−1, aN−1

)
.

The cyclic shift of (k0, kt−1, . . . , k1)2 provides the original number (kt−1, . . . , k0)2,
i.e.,

π−1
N (k) = π−1

N ((kt−1, . . . , k0)2) = (k0, kt−1, . . . , k1)2

=
{
k/2 k ≡ 0 mod 2 ,

N/2 + (k − 1)/2 k ≡ 1 mod 2 .

Hence, at the first step of the algorithm, P−1
N = PN yields the desired rearrangement

of output components âk taking first all even and then all odd indices. Thus, P−1
N

coincides with the even–odd permutation matrix in Sect. 3.4.
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Example 5.4 For N = 8, i.e., t = 3, we obtain

P8 =

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎝

1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎠

, P8

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎝

c0

c1

c2

c3

c4

c5

c6

c7

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎝

c0

c4

c1

c5

c2

c6

c3

c7

⎞

⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎠

and

P8 =

⎛

⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎝

1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎠

, P8

⎛

⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎝

c0

c1

c2

c3

c4

c5

c6

c7

⎞

⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎝

c0

c2

c4

c6

c1

c3

c5

c7

⎞

⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎠

.

The first step of the Sande–Tukey FFT in Algorithm 5.2 is now by (5.5) and (5.6)
equivalent to the matrix factorization

FN = PN (I2 ⊗ FN/2)DN (F2 ⊗ IN/2) (5.9)

with the diagonal matrix WN/2 := diag (w
j
N)

N/2−1
j=0 and the block diagonal matrix

DN := diag (IN/2,WN/2) =
(

IN/2

WN/2

)

which is a diagonal matrix too. In (5.9), by ⊗ we denote the Kronecker product
introduced in Sect. 3.4. At the second step of the decomposition the factorization is
again applied to FN/2. Thus we obtain

FN = PN

(
I2 ⊗

[
PN/2 (I2 ⊗ FN/4)DN/2 (F2 ⊗ IN/4)

])
DN (F2 ⊗ IN/2)

with the diagonal matrices

DN/2 := diag (IN/4,WN/4) , WN/4 := diag (w
j

N/2)
N/4−1
j=0 .
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Application of Theorem 3.42 yields

FN = PN (I2 ⊗ PN/2) (I4 ⊗ FN/4) (I2 ⊗DN/2) (I2 ⊗ F2 ⊗ IN/4)DN (F2 ⊗ IN/2) .

After t steps we thus obtain the factorization of the Fourier matrix FN into sparse
matrices for the Sande–Tukey FFT with natural order of input components

FN = RN (IN/2 ⊗ F2) (IN/4 ⊗D4) (IN/4 ⊗ F2 ⊗ I2) (IN/8 ⊗D8) . . . DN (F2 ⊗ IN/2)

= RN

t∏

n=1

Tn (IN/2n ⊗ F2 ⊗ I2n−1) (5.10)

with the permutation matrix RN = PN (I2⊗PN/2) . . . (IN/4⊗P4) and the diagonal
matrices

Tn := IN/2n ⊗ D2n ,

D2n := diag (I2n−1,W2n−1) , W2n−1 := diag (w
j

2n)
2n−1−1
j=0 .

Note that T1 = IN .
From Lemma 5.1 and by (5.7) we know already that RN in (5.10) is the

permutation matrix corresponding to the bit reversal. We want to illustrate this fact
taking a different view.

Remark 5.5 For distinct indices j1, . . . , jn ∈ Jt := {0, . . . , t − 1} let
(j1, j2, . . . , jn) with 1 ≤ n < t be that permutation of Jt that maps j1 to j2, j2 to
j3, . . . , jn−1 to jn, and jn to j1. Such a permutation is called n-cycle. For N = 2t ,
the permutations of the index set JN occurring in a radix-2 FFT can be represented
by permutations of the indices in its binary presentation, i.e., π : JN → JN can be
written as

π(k) = π((kt−1, . . . , k0)2) = (kπt(k−1), . . . , kπt (0))2

with a certain permutation πt : Jt → Jt . The perfect shuffle πN : JN → JN
corresponds to the t-cycle

πN,t := (0, . . . , t − 1)

and the bit reversal � : JN → JN to the permutation

�t :=
{
(0, t − 1)(1, t − 2) . . . (t/2 − 1, t/2+ 1) t ≡ 0 mod 2 ,

(0, t − 1)(1, t − 2) . . . ((t − 1)/2, (t + 1)/2) t ≡ 1 mod 2 .
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Let πN,n : Jt → Jt with 1 ≤ n ≤ t be given by the n-cycle

πN,n := (0, . . . , n− 1).

Then we can prove by induction that

�t = πN,t πN,t−1 . . . πN,2 .

Using the matrix representation we obtain now the desired relation

RN = PN (I2 ⊗ PN/2) . . . (IN/4 ⊗ P4) .

Example 5.6 The factorization of F8 in (5.10) has the form

F8 = R8 (I4 ⊗ F2) (I2 ⊗ D4) (I2 ⊗ F2 ⊗ I2)D8 (F2 ⊗ I4) ,

i.e.,

F8 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎝

1 1 0 0 0 0 0 0
1 −1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 −1

⎞

⎟
⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎠

·

⎛

⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 −i 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 −i

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎝

1 0 1 0 0 0 0 0
0 1 0 1 0 0 0 0
1 0 −1 0 0 0 0 0
0 1 0 −1 0 0 0 0
0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 1
0 0 0 0 1 0 −1 0
0 0 0 0 0 1 0 −1

⎞

⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎠

·

⎛

⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 w8 0 0
0 0 0 0 0 0 −i 0
0 0 0 0 0 0 0 w3

8

⎞

⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜⎜
⎜
⎜
⎜
⎜⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1
1 0 0 0 −1 0 0 0
0 1 0 0 0 −1 0 0
0 0 1 0 0 0 −1 0
0 0 0 1 0 0 0 −1

⎞

⎟⎟
⎟
⎟
⎟
⎟⎟
⎟
⎟
⎟
⎟
⎠

.
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This factorization of F8 yields the signal flow graph of the Sande–Tukey FFT in
Fig. 5.3.

Using (5.10), we can now derive further factorizations of the Fourier matrix FN

and obtain corresponding radix-2 FFTs. A new factorization is, e.g., obtained by
taking the transpose of (5.10), where we use that FN = FN . Further, we can employ
the identity matrix as a new factor that is written as a product of a permutation matrix
and its transpose. We finish this subsection by deriving the matrix factorizations
of FN for the Sande–Tukey FFT with bit reversed order of input values and for
the Cooley–Tukey FFT. In the next subsection we will show how these slight
manipulations of the found Fourier matrix factorization can be exploited for deriving
a radix-2 FFT that is suitable for parallel programming.

We recall that by Theorem 3.42

PN (A⊗ B)PN = PN(N/2) (A⊗ B)PN(2) = B⊗A ,

where PN(2) denotes the even–odd permutation matrix and PN(N/2) is the N/2-
stride permutation matrix. Thus we conclude:

Corollary 5.7 Let N = 2t . Then we have

Pn
N (IN/2 ⊗ F2)P−n

N = IN/2n+1 ⊗ F2 ⊗ I2n , n = 0, . . . , t − 1 ,

RN (IN/2n ⊗ F2 ⊗ I2n−1)RN = I2n−1 ⊗ F2 ⊗ IN/2n , n = 1, . . . , t .

From (5.10) and Corollary 5.7 we conclude the factorization of FN correspond-
ing to the Sande–Tukey FFT with bit reversed order of input values,

FN =
( t∏

n=1

T�
n (I2n−1 ⊗ F2 ⊗ IN/2n )

)
RN , T�

n := RN Tn RN .

The matrix factorization corresponding to the Cooley–Tukey FFT is obtained
from (5.10) by taking the transpose. From FN = FN it follows that

FN =
( t∏

n=1

(I2n−1 ⊗ F2 ⊗ IN/2n )Tt−n+1

)
RN .

This factorization equates the Cooley–Tukey FFT with bit reversal order of input
values. By Corollary 5.7 we finally observe that

FN = RN

t∏

n=1

(IN/2n ⊗ F2 ⊗ I2n−1)T�

t−n+1
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is the matrix factorization of the Cooley–Tukey FFT with natural order of input
values.

5.2.4 Radix-2 FFT for Parallel Programming

Now we want to consider a radix-2 FFT with respect to parallel programming.
For parallel execution of the algorithm, the iteration steps should have the same
structure. The common structure of the different steps of the radix-2 FFT consists in
the applying N/2 butterfly operations that are realized with a convenient N th root
of unity w, see Fig. 5.1. We present the signal flow graph in the following simplified
form in Fig. 5.5.

In the factorization of FN , the N/2 butterfly operations correspond to the product
of T̃n (I2n−1⊗F2⊗ IN/2n ) with one intermediate vector. Here, T̃n denotes a suitable
diagonal matrix. Since each time two components of the evaluated intermediate
vector in one step depend only on two components of the previously computed
vector, the N/2 butterfly operations can be realized independently. Therefore, these
operations can be evaluated in parallel. A radix-2 FFT for parallel programming
should satisfy the following requirements:

1. Uniform location of the butterfly operations at each step of the algorithm. In ma-
trix representation, this means that the nth step corresponds to the multiplication
of an intermediate vector with a matrix of the form T̃n (IN/2⊗F2). The individual
steps should differ only with respect to the diagonal matrices T̃n.

2. Uniform data flow between the steps of the algorithm. In matrix representation,
this means that the products T̃n (IN/2 ⊗ F2) are always connected by the same
permutation matrix.

Now we derive a Sande–Tukey FFT for parallel programming such that its
structure satisfies the above requirements. Then the corresponding factorization of
the Fourier matrix FN is of the form

FN = Q
t∏

n=1

(
T̃n (IN/2 ⊗ F2)P

)
(5.11)

with suitable permutation matrices P and Q as well as diagonal matrices T̃n. We
restrict ourselves to the Sande–Tukey FFT in order to illustrate the essential ideas.
The Cooley–Tukey FFT and other FFTs can be treated similarly for parallelization,
where we only have to take care of the appropriate diagonal matrices.

Fig. 5.5 Butterfly signal flow
graph

a0

a1

a0 + a1

w(a0 − a1)
w
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Fig. 5.6 Radix-2 FFT with uniform positions of the butterflies for DFT(8)

Example 5.8 We want to illustrate the approach for the Sande–Tukey FFT for the
DFT(8). From the signal flow graph in Fig. 5.3 and the matrix factorization in
Example 5.6 it can be seen that the algorithm does not satisfy the two requirements
for parallel programming. We reorganize the wanted uniform location of the
butterfly operations and obtain the algorithm as illustrated in Fig. 5.6.

The corresponding factorization of the Fourier matrix F8 is of the form

F8 = R8 (I4 ⊗ F2) (I2 ⊗ P4)T2 (I4 ⊗ F2)R8 TPS
3 (I4 ⊗ F2)P8

with TPS
3 := P8 T3 P8 . This algorithm still not satisfies the second requirement of a

uniform data flow between the steps of the algorithm. A completely parallelized
Sande–Tukey FFT is presented in Fig. 5.7. This algorithm corresponds to the
factorization

F8 = R8 (I4 ⊗ F2)P8 TPS
2 (I4 ⊗ F2)P8 TPS

3 (I4 ⊗ F2)P8

with TPS
n := P−(n−1)

8 T3 Pn−1
8 . The uniform data flow between the algorithm steps

is realized by the perfect shuffle permutation matrix P8. A parallelized algorithm is
well suited for hardware implementation with VLSI technology.
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Fig. 5.7 Radix-2 FFT of DFT(8) for parallel programming

Generally, it follows from the factorization (5.10) of the Fourier matrix FN and
from Corollary 5.7 that

FN = RN

t∏

n=1

Tn (IN/2n ⊗ F2 ⊗ I2n−1)

= RN

t∏

n=1

Tn Pn−1
N (IN/2 ⊗ F2)P−(n−1)

N

= RN (IN/2 ⊗ F2)T2 PN (IN/2 ⊗ F2) . . .

(IN/2 ⊗ F2)P−(t−2)
N Tt Pt−1

N (IN/2 ⊗ F2)P−(t−1)
N

and further with (5.8)

FN = RN (IN/2 ⊗ F2)PN P−1
N T2 PN (IN/2 ⊗ F2) . . .

(IN/2 ⊗ F2)PN P−(t−1)
N Tt Pt−1

N (IN/2 ⊗ F2)PN

= RN

t∏

n=1

P−(n−1)
N Tn Pn−1

N (IN/2 ⊗ F2)PN,
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i.e.,

FN = RN

t∏

n=1

TPS
n (IN/2 ⊗ F2)PN

with the diagonal matrices TPS
n := P−(n−1)

N Tn Pn−1
N for n = 1, . . . , t . This yields

the factorization of FN corresponding to the parallelized Sande–Tukey FFT.

Algorithm 5.9 (Sande–Tukey FFT of DFT(N) for Parallel Programming)

Input: N = 2t with t ∈ N, a ∈ C
N , w(n) := (w

(n)
j )N−1

j=0 with w
(n)
j := 1 for even j

and
w

(n)
j := w

"j/2t−n+1#
2n for odd j .

for n := 1 to t do
begin a := PNa;

b := a ◦ (1,−1, . . . , 1,−1);
a := (a+ b) ◦ w(t−n+1)

end.

Output: â := RN a.

For more information we refer to the subroutine library FFTW, see [122, 123].
A software library for computing FFTs on massively parallel, distributed memory
architectures based on the Message Passing Interface standard (MPI) based on [271]
is available, see [269].

5.2.5 Computational Costs of Radix-2 FFT’s

Finally, we consider the computational costs of the radix-2 FFTs. We want to
evaluate the number of nontrivial real multiplications and real additions.

Remark 5.10 As usual, the product of an arbitrary complex number a = α0 + iα1
with α0, α1 ∈ R \ {0} and a known complex number w = ω0 + iω1 with ω0,
ω1 ∈ R \ {0} requires 4 real multiplications and 2 real additions. If the values
ω0 ± ω1 are precomputed, then by

Re(a w) = (α0+α1) ω0−α1 (ω0+ω1) , Im(a w) = (α0+α1) ω0−α0 (ω0−ω1)

one needs 3 real multiplications and 3 real additions.

We start with the following observations:

1. Multiplications with ±1 and ±i are trivial and are not taken into account.
2. The multiplication with a primitive 8th root of unity (±1± i)/

√
2 requires 2 real

multiplications and 2 real additions.
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3. The multiplication with the nth primitive root of unity for n ∈ N \ {1, 2, 4, 8}
can be performed with an algorithm requiring 3 real multiplications and 3 real
additions.

4. The addition of two complex numbers requires 2 real additions.

Let μ(t) denote the number of real multiplications and α(t) the number of real
additions that are needed for executing the radix-2 FFT of the DFT(2t ). Then, by
Fig. 5.3, we observe

μ(1) = 0 , α(1) = 2 · 2 = 4 ,

μ(2) = 0 , α(2) = 2 · 2 · 4 = 16 ,

μ(3) = 4 , α(3) = 4 + 2 · 3 · 8 = 52 .

Let now N = 2t with t ∈ N \ {1} be given. For evaluating the DFT(2N) with
the radix-2 FFT we have to execute two DFT(N), 2N complex additions, and N

complex multiplications with the twiddle factors w
j

2N , j = 0, . . . , N − 1. Among
the multiplications with twiddle factors, there are two trivial for j = 0, N/2 and
two multiplications with primitive 8th roots of unity for j = N/4, 3N/4. Thus for
t ≥ 2 it follows that

μ(t + 1) = 2μ(t)+ 3 · 2t − 8 , (5.12)

α(t + 1) = 2α(t)+ 3 · 2t − 8+ 2 · 2t+1 = 2α(t)+ 7 · 2t − 8 . (5.13)

We want to transfer these recursions into explicit statements. For that purpose, we
shortly summarize the theory of linear difference equations, since this method will
give us a general way for obtaining explicit numbers for the computational cost.

In the following, we solve a linear difference equation of order n with constant
coefficients aj ∈ R, j = 0, . . . , n− 1, where a0 �= 0, of the form

f (t+n)+an−1 f (t+n−1)+. . .+a1 f (t+1)+a0 f (t) = g(t) , t ∈ N . (5.14)

Here g : N → R is a given sequence and f : N → R is the wanted sequence.
If g(t) ≡ 0, then (5.14) is a homogeneous difference equation. We introduce the
difference operator

Lf (t) := f (t + n)+ an−1 f (t + n− 1)+ . . .+ a1 f (t + 1)+ a0 f (t) , t ∈ N ,

and the corresponding characteristic polynomial

p(λ) := λn + an−1 λn−1 + . . .+ a1 λ+ a0 , λ ∈ C .

Obviously, a solution of (5.14) is uniquely determined by the initial values f (1),
f (2), . . . , f (n) or, more generally, by n consecutive sequence components. In
the first step we determine all solutions of the homogeneous difference equation
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Lf (t) = 0. The ansatz f (t) := λt
1 with λ1 �= 0 provides by

Lλt
1 = p(λ1) λ

t
1

a nontrivial solution of Lf (t) = 0, if and only if λ1 is a zero of p(λ). Let now λj ∈
C, j = 1, . . . , s, be distinct zeros of the characteristic polynomial with multiplicities
rj . Taking the kth derivative with regard to λ, we obtain

dk

dλk
λt = k!

(
t

k

)
λt−k , 1 ≤ k ≤ t , (5.15)

and the Leibniz product rule yields

L
( dk

dλk
λt

) = dk

dλk
(Lλt ) = dk

dλk

(
p(λ) λt

) =
k∑

�=0

(
k

�

)
p(�)(λ)

dk−�

dλk−�
λt . (5.16)

For the r1-fold zero λ1 we conclude

p(λ1) = p′(λ1) = . . . = p(r1−1)(λ1) = 0 , p(r1)(λ1) �= 0

and by (5.15) and (5.16)) it follows that

L

(
t

k

)
λt

1 = 0 , k = 0, . . . , r1 − 1 .

Thus,

L(tkλt
1) = 0 , k = 0, . . . , r1 − 1 .

If λ1 is a real number, then tkλt
1, k = 0, . . . , r1−1, are r1 real, linearly independent

solutions of Lf (t) = 0. If λ1 = �1 eiϕ1 with �1 > 0, 0 < ϕ1 < 2π , and ϕ1 �= π is a
complex r1-fold zero of p(λ), then λ̄1 is also an r1-fold zero. Hence,

Re (tj λt
1) = tj �t

1 cos(tϕ1) , Im (tj λt
1) = tj �t

1 sin(tϕ1) , j = 0, . . . , r1 − 1,

are the 2r1 real, linearly independent solutions of Lf (t) = 0. In this way we obtain
in any case n real, linearly independent solutions of Lf (t) = 0. The general solution
of Lf (t) = 0 is an arbitrary linear combination of these n solutions, see [30].

Using superposition we find the general solution of (5.14) as the sum of the
general solution of the homogeneous difference equation Lf (t) = 0 and one
special solution of (5.14). Often, a special solution of the inhomogeneous difference
equation Lf (t) = g(t) can be found by the following method. For g(t) = α at with
α �= 0 and a �= 1, we choose in the case p(a) �= 0 the ansatz f (t) = c at and
determine c. If p(a) = p′(a) = . . . = p(r−1)(a) = 0 and p(r)(a) �= 0, then the
ansatz f (t) = c tr at leads to the desired special solution.
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If g(t) is a polynomial with p(1) �= 0, then we choose an ansatz with a
polynomial of the same degree as g(t). If p(1) = p′(1) = . . . = p(r−1)(1) =
0, p(r)(1) �= 0, then this polynomial is to multiply by tr .

Example 5.11 We consider the linear difference equation (5.12) of first order,

μ(t + 1)− 2μ(t) = 3 · 2t − 8 , t ∈ N \ {1} ,

with the initial condition μ(2) = 0. The corresponding characteristic polynomial
p(λ) := λ−2 possesses the zero λ1 = 2, such that μ(t) = c 2t with arbitrary c ∈ R

is the general solution of μ(t + 1) − 2μ(t) = 0. To find a special solution of the
inhomogeneous difference equation we set μ(t) = c1 t 2t + c2 and obtain c1 = 3

2
and c2 = 8. Thus, the general solution of (5.12) reads

μ(t) = c 2t + 3

2
t 2t + 8 , c ∈ R .

From the initial condition μ(2) = 0 it follows that c = −5.

To compute now the DFT(N) of length N = 2t , t ∈ N, with the Cooley–Tukey
or Sande–Tukey FFT, we thus require

μ(t) = 3

2
2t t − 5 · 2t + 8 = 3

2
N log2 N − 5 N + 8 (5.17)

nontrivial real multiplications. Similarly, we conclude from (5.13) the number of
real additions

α(t) = 7

2
2t t − 5 · 2t + 8 = 7

2
N log2 N − 5 N + 8 . (5.18)

We summarize:

Theorem 5.12 Let N = 2t , t ∈ N, be given. Then the computational costs of the
Cooley–Tukey and Sande–Tukey FFT for the DFT(N) are equal and amount to

α(t) + μ(t) = 5 N log2 N − 10 N + 16

real arithmetic operations.

5.3 Other Fast Fourier Transforms

In this section we want to study some further FFTs. On the one hand, we consider
techniques that possess even less computational costs than described radix-2 FFTs,
and on the other hand we study FFTs for DFT(N), if N is not a power of two.
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5.3.1 Chinese Remainder Theorem

Efficient algorithms for computing the DFT can be deduced using the Chinese
remainder theorem which was already applied in China about 1700 years ago. The
first proof of this theorem was given by L. Euler in 1734. The theorem can be
generalized for rings with identity element. In the following we restrict our attention
to the ring of integers.

Theorem 5.13 (Chinese Remainder Theorem in Z)
Let N := N1 . . . Nd be the product of pairwise coprime numbers Nj ∈ N \ {1},

j = 1, . . . , d . Let rj ∈ N0 with rj < Nj , j = 1, . . . , d be given. Then there exists
a uniquely determined integer r ∈ N0, r < N , with residuals

r modNj = rj , j = 1, . . . , d . (5.19)

This number can be computed by one of the following methods:

1. Lagrangian method:

r =
d∑

j=1

N

Nj

tj rj modNj , tj :=
(

N

Nj

)−1

modNj . (5.20)

2. Newton’s method:

r = [r1] + [r1r2]N1 + . . .+ [r1 . . . rd ]N1 . . . Nd−1 (5.21)

with modular divided differences

[rj ] := rj j = 1, . . . , d ,

[
rj1rj2

] := [rj2] − [rj1]
Nj1

modNj2, 1 ≤ j1 < j2 ≤ d ,

[
rj1 . . . rjm

] := [rj1 . . . rjm−2rjm] − [rj1 . . . rjm−2rjm−1]
Njm−1

modNjm,

1 ≤ j1 < . . . < jm ≤ d .

Note that (N/Nj )
−1 modNj and N−1

j modNk for j �= k exist, since Nj and Nk ,
j �= k, are coprime by assumption.

Proof First we show that the numbers in (5.20) and (5.21) fulfill property (5.19). Let
r ∈ N0 be given by (5.20). Then we have by definition of r for any j ∈ {1, . . . , d}
that

r modNj = N

Nj

tj rj modNj = rj modNj .
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Next let r ∈ N0 be given (5.21). To show the assertion we apply induction on the
number d of factors of N . The case d = 1 is obvious.

Assume that the assertion is true, if N is the product of d − 1 pairwise coprime
numbers. Then we have by assumption for N := N1 . . . Nd−2Nd−1 and N :=
N1 . . . Nd−2Nd that

s := [r1] + [r1r2]N1 + . . .+ [r1 . . . rd−2]N1 . . . Nd−3 + [r1 . . . rd−2 rd−1]N1 . . . Nd−2 ,

t := [r1] + [r1r2]N1 + . . .+ [r1 . . . rd−2]N1 . . . Nd−3 + [r1 . . . rd−2 rd ]N1 . . . Nd−2

satisfy

s modNj = rj , j = 1, . . . , d − 2, d − 1 , (5.22)

t modNj = rj , j = 1, . . . , d − 2, d . (5.23)

Now let N := N1 . . . Nd and r ∈ N0 be defined by (5.21). Consider

r̃ := s + (t − s) (N−1
d−1 modNd)Nd−1

= s + ([r1 . . . rd−2rd ] − [r1 . . . rd−2rd−1]) (N−1
d−1 modNd) N1 . . . Nd−1

By definition of the forward difference we see that r̃ = r . Further we obtain
by (5.22) that r̃ modNj = rj , j = 1, . . . , d − 1, and by (5.23) that

r̃ modNd = s modNd

+ (t modNd − s modNd) (N
−1
d−1 modNd) (Nd−1 modNd)

= t modNd = rd .

Hence r modNj = r̃ modNj = rj , j = 1, . . . , d .
It remains to show that r ∈ N0 with 0 ≤ r < N is uniquely determined by its

residues rj , j = 1, . . . , d . Assume that there exists another number s ∈ N0 with 0 ≤
s < N and s modNj = rj for all j = 1, . . . , d . Then it holds (r − s) modNj = 0,
j = 1, . . . , d . Since the numbers Nj , j = 1, . . . , d are pairwise coprime, this
implies N | r − s and consequently r − s = 0.

Example 5.14 We are searching for the smallest number r ∈ N0 with the property

r mod 4 = 1, r mod 9 = 1, r mod 25 = 4 .

We set N := 4 · 9 · 5 = 900. Since

(9 · 25)−1 mod 4 = 1 , (4 · 25)−1 mod 9 = 1 , (4 · 9)−1 mod 25 = 16 ,
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we obtain by the Lagrangian method

r = (9 · 25 · 1 · 1+ 4 · 25 · 1 · 1+ 4 · 9 · 16 · 4) mod 900 = 829 .

Using the following scheme to compute the divided differences

N1 [r1] [r1r2] = r2−r1
N1

modN2 [r1r2r3] = [r1r3]−[r1r2]
N2

modN3

N2 [r2] [r1r3] = r3−r1
N1

modN3

N3 [r3]

that means in our case

4 1 0 23

9 1 7

25 4

we get by Newton’s method

r = [r1] + [r1r2]N1N2 + [r1r2r3]N1N2

= 1+ 0 · 4+ 23 · 4 · 9 = 829 .

The Chinese remainder theorem can be generalized to polynomial rings. In
this form it can be used to design fast algorithms for DFT’s, see, e.g., [378].
One can employ the Chinese remainder theorem for index permutations in higher
dimensional DFT algorithms.

5.3.2 Fast Algorithms for DFT of Composite Length

First we present the Coley–Tukey FFT for DFT(N), if N = N1N2 with Nr ∈ N\{1},
r = 1, 2. This algorithm is also called Gentleman–Sande FFT, see [128]. As before,
the basic idea consists in evaluating the DFT(N) by splitting it into the computation
of DFT’s of smaller lengths N1 and N2 using the divide-and-conquer technique.
For a suitable indexing of the input and output components we employ again a
permutation of the index set JN := {0, . . . , N − 1}. Let j1 := j mod N1 denote
the nonnegative residue modulo N1 of j ∈ JN and let j2 := "j/N1# be the largest
integer being smaller than or equal to j/N1. Then we have

j = j1 + j2 N1 . (5.24)
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Analogously, let k1 := k mod N1 and k2 := "k/N1# for k ∈ JN such that k =
k1 + k2 N1. We introduce the permutation π : JN → JN with

π(k) = k1 N2 + k2 (5.25)

that we will apply for the new indexing during the evaluation of the DFT(N). Let
PN be the permutation matrix corresponding to the permutation π of JN , i.e.,

PN := (δπ(j)−k)
N−1
j,k=0

with the Kronecker symbol δj . Then, for a := (aj )
N−1
j=0 ∈ C

N we obtain

PN a = (
aπ(j)

)N−1
j=0 .

Example 5.15 For N = 6 with N1 = 3 and N2 = 2, the permutation π of J6 :=
{0, . . . , 5} is given by

π(0) = 0 , π(1) = 2 , π(2) = 4 , π(3) = 1 , π(4) = 3 , π(5) = 5

and corresponds to the permutation matrix

P6 :=

⎛

⎜
⎜
⎜
⎜
⎜⎜
⎜
⎝

1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟⎟
⎟
⎠

. (5.26)

Index permutations play an important role in all FFTs. They are the key for
applying the divide-and-conquer technique. Further, they form an essential tool for
a precise presentation of the component order in input vectors, intermediate vectors,
and output vectors of an FFT.

As in the previous section, we can present the FFT in a sum representation,
polynomial representation, and matrix factorization. We start by considering the
sum representation of the Cooley–Tukey FFT. From

âk :=
N−1∑

j=0

aj w
jk

N , k = 0, . . . , N − 1 ,

it follows by inserting the indices as in (5.24) and (5.25) that

âk1N2+k2 =
N1−1∑

j1=0

N2−1∑

j2=0

aj1+j2N1 w
(j1+j2N1)(k1N2+k2)
N , kr = 0, . . . , Nr − 1, r = 1, 2 ,
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and by

w
(j1+j2N1)(k1N2+k2)

N = w
j1k1
N1

w
j1k2
N w

j2k2
N2

further

âk1N2+k2 =
N1−1∑

j1=0

w
j1k1
N1

w
j1k2
N

N2−1∑

j2=0

aj1+j2N1 w
j2k2
N2

, kr = 0, . . . , Nr−1, r = 1, 2 .

(5.27)
For fixed j1, the inner sum is equal to a DFT(N2),

bj1+k2N1 :=
N2−1∑

j2=0

aj1+j2N1 w
j2k2
N2

, k2 = 0, . . . , N2 − 1 . (5.28)

Therefore, for each fixed j1 = 0, . . . , N1 − 1, we first compute this DFT(N2). It
remains to evaluate

âk1N2+k2 =
N1−1∑

j1=0

bj1+k2N1w
j1k2
N w

j1k1
N1

, kr = 0, . . . , Nr − 1, r = 1, 2 . (5.29)

Now, we first multiply the obtained intermediate values bj1+k2N1 with the twiddle

factors w
j1k2
N ,

cj1+k2N1 := bj1+k2N1 w
j1k2
N1N2

, j1 = 0, . . . N1 − 1, k2 = 0, . . . , N2 − 1 ,

and then compute for each fixed k2 = 0, . . . , N2 − 1 the DFT(N1) of the form

âk1N2+k2 =
N1−1∑

j1=0

cj1+k2N1 w
j1k1
N1

, k1 = 0, . . . , N1 − 1 .

Thus, the original problem to evaluate the DFT(N1 N2) has been decomposed into
evaluating N1 DFT(N2) and N2 DFT(N1) according to the divide-and-conquer
technique. We summarize the algorithm as follows:

Algorithm 5.16 (Fast Algorithm for DFT(N1 N2))

Input:N1, N2 ∈ N \ {1}, aj ∈ C, j = 0, . . . , N1N2 − 1.

1. Compute for each j1 = 0, . . . , N1 − 1 the DFT(N2)

bj1+k2N1 :=
N2−1∑

j2=0

aj1+j2N1w
j2k2
N2

, k2 = 0, . . . , N2 − 1 .
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2. Compute the N1 N2 products

cj1+k2N1 := bj1+k2N1 w
j1k2
N1N2

, j1 = 0, . . . , N1 − 1, k2 = 0, . . . , N2 − 1 .

3. Compute for k2 = 0, . . . , N2 − 1 the DFT(N1)

âk1N2+k2 :=
N1−1∑

j1=0

cj1+k2N1 w
j1k1
N1

, k1 = 0, . . . , N1 − 1 .

Output: âk ∈ C, k = 0, . . . , N1 N2 − 1.

Using the above method, we indeed save arithmetical operations. While the
direct computation of the DFT(N1 N2) requires N2

1 N2
2 complex multiplications and

N1 N2 (N1 N2 − 1) complex additions, the application of Algorithm 5.16 needs
N1 N2 (N1 + N2 + 1) complex multiplications and N1 N2 (N1 + N2 − 2) complex
additions.

If the numbers N1 and/or N2 can be further factorized, then the method can be
recursively applied to the DFT’s of length N1 and N2 in step 1 and step 3 up to
remaining prime numbers. In the special case N1 N2 = 2t with t ∈ N \ {1}, we can
choose N1 = 2t−1, N2 = 2. Splitting recursively the first factor again, a radix-2
FFT is obtained in the end.

Let us now derive the polynomial representation of (5.27)–(5.29). The com-
putation of the DFT(N1 N2) is by (5.24) and (5.25) equivalent to evaluating the
polynomial

a(z) =
N1−1∑

j1=0

N2−1∑

j2=0

aj1+j2N1 z
j1+j2N1 =

N1−1∑

j1=0

zj1

N2−1∑

j2=0

aj1+j2N1 z
j2N1 , z ∈ C ,

of degree N1N2 − 1 at the N1N2 knots w
k1N2+k2
N1N2

for kr = 0, . . . , Nr − 1, r = 1, 2.

By w
(k1N2+k2)j2N1
N1N2

= w
k2j2
N2

, the term zj2N1 can take for all N1N2 knots at most N2
different values. Therefore, evaluating a(z) can be reduced to the evaluation of the
N2 polynomials of degree N1 − 1,

b(k2)(z) :=
N1−1∑

j1=0

b
(k2)
j1

zj1 , k2 = 0, . . . , N2 − 1,

with the coefficients

b
(k2)
j1

:=
N2−1∑

j2=0

aj1+j2N1 w
k2j2
N2

, j1 = 0, . . . , N1 − 1 ,
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at the N1 knots w
k1N2+k2
N1N2

, k1 = 0, . . . , N1 − 1. To compute the coefficients

using (5.28), i.e., b(k2)
j1

= bj1+k2N1 , we have to evaluate the N2 polynomials b(k2)(z)

at each of the N1 knots (5.29). We summarize this procedure as follows:

Algorithm 5.17 (FFT of DFT(N1N2) in Polynomial Representation)

Input:N1, N2 ∈ N \ {1}, aj ∈ C, j = 0, . . . , N1N2 − 1.

1. Compute for each j1 = 0, . . . , N1 − 1 the DFT(N2)

b
(k2)
j1

:=
N2−1∑

j2=0

aj1+j2N1 w
j2k2
N2

, k2 = 0, . . . , N2 − 1 .

2. Evaluate each of the N2 polynomials

b(k2)(z) :=
N1−1∑

j1=0

b
(k2)
j1

zj1 , k2 = 0, . . . , N2 − 1 ,

at the N1 knots wk1N2+k2
N1N2

, k1 = 0, . . . , N1 − 1, by DFT(N1) and set

âk1N2+k2 := b(k2)(w
k1N2+k2
N1N2

) .

Output: âk ∈ C, k = 0, . . . N1N2 − 1.

As before, if N1 or N2 can be further factorized, we can apply the method
recursively and obtain a radix-2 FFT in the special case N1N2 = 2t , t ∈ N \ {1}.

Finally, we study the matrix representation of the Algorithm 5.16 by showing
that the three steps of the algorithm correspond to a factorization of the Fourier
matrix FN1N2 into a product of four sparse matrices. In the first step we compute
the N1 DFT(N2) for the N1 partial vectors (aj1+j2N1)

N2−1
j2=0 , j1 = 0, . . . , N1 − 1, of

the input vector a = (aj )
N1N2−1
j=0 ∈ C

N1N2 . This is equivalent to the matrix–vector
multiplication

b = (bk)
N1N2−1
k=0 := (FN2 ⊗ IN1) a .

The multiplication of the components of the intermediate vector b ∈ C
N with the

twiddle factors in the second step can be equivalently represented by a multiplication
with a diagonal matrix DN1N2 , i.e.,

c = (ck)
N1N2−1
k=0 := DN1N2 b ,
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where

DN1N2 := diag (IN1 ,WN1 , . . . ,WN2−1
N1

) =

⎛

⎜
⎜
⎜
⎜
⎝

IN1

WN1

. . .

WN2−1
N1

⎞

⎟
⎟
⎟
⎟
⎠

with WN1 := diag
(
wr

N1N2

)N1−1
r=0 .

Finally in the third step, we apply N2 DFT(N1) to the partial vectors
(cj1+k2N1)

N1−1
j1=0 , k2 = 0, . . . , N2 − 1, of c ∈ C

N1N2 . This can be described by

PN1N2 â = (
âπ(�)

)N1N2−1
�=0 := (IN2 ⊗ FN1) c .

Here, π denotes the permutation in (5.25) of output indices and PN1N2 is the
corresponding permutation matrix.

In summary, Algorithm 5.16 corresponds to the following factorization of the
Fourier matrix,

FN1N2 = PN1N2
(IN2 ⊗ FN1)DN1N2 (FN2 ⊗ IN1) . (5.30)

Example 5.18 We consider the case N = 6 with N1 = 3 and N2 = 2. Then it
follows from (5.30) that

F6 = P6 (I2 ⊗ F3)D6 (F2 ⊗ I3) =

P6

⎛

⎜
⎜
⎜
⎜
⎜
⎜⎜
⎝

1 1 1 0 0 0
1 w3 w2

3 0 0 0
1 w2

3 w3 0 0 0
0 0 0 1 1 1
0 0 0 1 w3 w2

3
0 0 0 1 w2

3 w3

⎞

⎟
⎟
⎟
⎟
⎟
⎟⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜⎜
⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 w6 0
0 0 0 0 0 w3

⎞

⎟
⎟
⎟
⎟
⎟
⎟⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜⎜
⎝

1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1
1 0 0 −1 0 0
0 1 0 0 −1 0
0 0 1 0 0 −1

⎞

⎟
⎟
⎟
⎟
⎟
⎟⎟
⎠

with the permutation matrix P6 in (5.26). The factorization of F6 yields the signal
flow graph in Fig. 5.8.

We want to illustrate the presented fast algorithm of DFT(N1N2) from a different
point of view. For that purpose, we order the components of the input and output
vectors in N1-by-N2 matrices A := (aj1,j2)

N1−1,N2−1
j1,j2=0 and Â := (âk1,k2)

N1−1,N2−1
k1,k2=0

using the following procedure,

aj1,j2 := aj1+j2N1 , âk1,k2 := ak1N2+k2 , kr , jr = 0, . . . , Nr − 1 , r = 1, 2 .
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â3

â5
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â2

â4
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Fig. 5.9 Realization of a fast algorithm for DFT(6)

Then the first step of Algorithm 5.16 corresponds to N1 DFT(N2) of the row vectors
of A and the third step to N2 DFT(N1) of the column vectors of the matrix C :=
(cj1,j2)

N1−1,N2−1
j1,j2=0 with the intermediate values cj1,j2 := cj1+j2N1 from step 2 as

components. Figure 5.9 illustrates this representation of the DFT(6).
There exist more efficient algorithms for realizing DFT(N1N2), if (N1, N2) = 1,

i.e., if N1 and N2 are coprime, see, e.g., [138, 257].
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5.3.3 Radix-4 FFT and Split–Radix FFT

In this subsection we present a radix-4 FFT and a split–radix FFT. The advantage of
these algorithms compared to radix-2 FFTs consists in lower computational costs.

The radix-4 FFT works for DFT(N) with N = 4t , t ∈ N\{1}, and can be seen as a
special case of the decomposition in the last subsection by taking N1 = 4 and N2 =
N/4, where N2 is decomposed iteratively into smaller powers of 4. The split–radix
FFT uses a coupling of the radix-4 FFT and the radix-2 FFT. We restrict ourselves
to only one form of the radix-2 FFT and the split–radix FFT. Similar algorithms can
be derived by variations of ordering of the multiplication with twiddle factors and
by changing the order of components in input and output vectors, see also Sect. 5.2.
Since both algorithms are again based on butterfly operations, one can also derive a
version that is suitable for parallel programming similarly as in Sect. 5.2.4.

We start with the radix-4 FFT. Let N = 4t with t ∈ N \ {1}. We decompose the
sum in (5.1) into the four partial sums

âk =
N/4−1∑

j=0

(
aj w

jk

N + aN/4+j w
(N/4+j)k

N + aN/2+j w
(N/2+j)k

N + a3N/4+j w
(3N/4+j)k

N

)

=
N/4−1∑

j=0

(
aj + (−i)kaN/4+j + (−1)kaN/2+j + ika3N/4+j

)
w

jk
N

and consider the output values with respect to the remainders of their indices
modulo 4,

â4k =
N/4−1∑

j=0

(
aj + aN/4+j + aN/2+j + a3N/4+j

)
w

jk

N/4 ,

â4k+1 =
N/4−1∑

j=0

(
aj − i aN/4+j − aN/2+j + i a3N/4+j

)
w

j
N w

jk
N/4 ,

â4k+2 =
N/4−1∑

j=0

(
aj − aN/4+j + aN/2+j − a3N/4+j

)
w

2j
N w

jk

N/4 ,

â4k+3 =
N/4−1∑

j=0

(
aj + i aN/4+j − aN/2+j − i a3N/4+j

)
w

3j
N w

jk

N/4 , k = 0, . . . , N/4− 1 .

In this way, the DFT(N) is decomposed into

• N/4 DFT(4) of the vectors (aj , aN/4+j , aN/2+j , a3N/4+j )
, j = 0, . . . ,

N/4 − 1,
• 3N/4 complex multiplications with the twiddle factors wjr

N , j = 0, . . . , N/4−1,
r = 1, 2, 3,
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• 4 DFT(N/4) of the vectors
(
aj+(−i)raN/4+j+(−1)raN/2+j+ira3N/4+j

)N/4−1
j=0 ,

r = 0, 1, 2, 3.

The N/4 DFT(4) and the multiplications with the twiddle factors are now executed
in the first step of the algorithm, while the 4 DFT(N/4) are individually decomposed
using the above approach in a recursive manner. After t reduction steps we obtain
the transformed vector â. With this procedure, the DFT(N) is realized using only
DFT(4) and multiplications with twiddle factors.

We now modify the algorithm by computing the DFT(4) with the radix-2 FFT
thereby reducing the required number of additions. Then again, the algorithm only
consists of butterfly operations. Figure 5.11 shows the signal flow graph of the
radix-4 FFT for the DFT(16). The matrix representation of the radix-4 FFT can
be obtained as follows: Let N = 4t = 22t . Then the first step of the radix-4 FFT
corresponds to the factorization

FN = QN (I4 ⊗ FN/4) D̃N (F4 ⊗ IN/4)

with

QN := PN (I2 ⊗ PN/2) (P4 ⊗ IN/4) ,

D̃N := diag
(
IN/4, W̃N/4, W̃2

N/4, W̃3
N/4

)
, W̃N/4 := diag (w

j
N)

N/4−1
j=0 .

Computing the DFT(4) with the radix-2 FFT of Algorithm 5.2 yields by (5.9) that

F4 = P4 (I2 ⊗ F2)D4 (F2 ⊗ I2)

and thus

FN = QN (I4 ⊗ FN/4) D̃N

[
P4 (I2 ⊗ F2)D4 (F2 ⊗ I2)

] ⊗ IN/4

= QN (I4 ⊗ FN/4) (P4 ⊗ IN/4) T̃2t (I2 ⊗ F2 ⊗ IN/4) (D4 ⊗ IN/4) (F2 ⊗ IN/2)

= PN (I2 ⊗ PN/2) (I4 ⊗ FN/4) T̃2t (I2 ⊗ F2 ⊗ IN/4) (D4 ⊗ IN/4) (F2 ⊗ IN/2)

with D4 := diag (1, 1, 1, −i) and

T̃2t := (P4 ⊗ IN/4) D̃N (P4 ⊗ IN/4) = diag (IN/4, W̃2
N/4, W̃N/4, W̃3

N/4) .

The iterative application of the above factorization finally leads to the following
matrix factorization that corresponds to the radix-4 FFT for the DFT(N) with
N = 4t ,

FN = RN

2t∏

n=1

T̃n (IN/2n ⊗ F2 ⊗ I2n−1) (5.31)
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with the bitreversal matrix RN and

T̃n :=
{

IN/2n ⊗ D4 ⊗ I2n−2 n ≡ 0 mod 2 ,

IN/2n+1 ⊗ D̃2n+1 n ≡ 1 mod 2 ,
n = 1, . . . , 2t ,

where

D̃2n+1 := diag (I2n−1, W̃2
2n−1, W̃2n−1, W̃3

2n−1) .

A comparison with the factorization of FN corresponding to the radix-2 FFT of
Algorithm 5.2 shows that the two algorithms differ with regard to the twiddle
factors. The output values are again in bit-reversed order.

We determine the numbers μ(t) and α(t) of nontrivial real multiplications and
additions needed for executing the radix-4 FFT for the DFT(N) with N = 4t , t ∈
N \ {1}.

For computing the DFT(4N) using the radix-4 algorithm we have to execute 4
DFT(N), 8N complex additions as well as 3N complex multiplications with twiddle
factors wrj

4N , j = 0, . . . , N−1, r = 1, 2, 3. Among the multiplications with twiddle
factors, there are 4 trivial multiplications for (j, r) = (0, 1), (0, 2), (0, 3), (N/2, 2)
and 4 multiplications with 8th primitive roots of unity for (j, r) = (N/2, 1),
(N/2, 3), (N/4, 2), (3N/4, 2). With the considerations in Sect. 5.2.5 we conclude

μ(t + 1) = 4 μ(t)+ 9 · 4t − 16 ,

α(t + 1) = 4 α(t)+ 9 · 4t − 16+ 16 · 4t = 4 α(t)+ 25 · 4t − 16 , t ∈ N ,

with initial values μ(1) = 0, α(1) = 16. The explicit solutions of these linear
difference equations are of the form

μ(t) = 9
4 t 4t − 43

12 4t + 16
3 = 9

8 N log4 N − 43
12 N + 16

3 ,

α(t) = 25
4 t 4t − 43

12 4t + 16
3 = 25

8 N log4 N − 43
12 N + 16

3 , t ∈ N .
(5.32)

A comparison of (5.32) with (5.17) and (5.18) shows that the application of the
radix-4 FFT saves approximately 25% of nontrivial arithmetical operations. This
saving is achieved only by a more advantageous choice of twiddle factors. Now,
among the twiddle factors, there are more primitive 2r th roots of unity with r =
0, 1, 2, 3.

The idea can be similarly used to construct radix-8 and radix-16 FFTs, etc.
Here, a transfer from a radix-2r FFT to a radix-2r+1 FFT further reduces the
computational cost, while at the same time this makes the algorithm more and more
complex.

In the following, we derive the split–radix FFT. This algorithm is due to Yavne
[387] and became popular under the name “split–radix FFT” in [91]. Compared to
the radix-4 FFT, it reduces the computational cost further.



266 5 Fast Fourier Transforms

Let now N = 2t with t ∈ N \ {1, 2}. From (5.1) we obtain

â2k =
N/2−1∑

j=0

(aj + aN/2+j ) w
jk

N/2 , k = 0, . . . , N/2− 1 ,

â4k+1 =
N/4−1∑

j=0

(
(aj − aN/2+j )− i (aN/4+j − a3N/4+j )

)
w

j
N w

jk
N/4 , k = 0, . . . , N/4− 1 ,

â4k+3 =
N/4−1∑

j=0

(
(aj − aN/2+j )+ i (aN/4+j − a3N/4+j )

)
w

3j
N w

jk
N/4 , k = 0, . . . , N/4− 1.

In this way the DFT(N) is decomposed into

• N/2 DFT(2) of the vectors (aj , aN/2+j )
, j = 0, . . . , N/2 − 1,

• N/2 complex additions to compute the sums in the outer brackets,
• N/2 complex multiplications with the twiddle factors w

jr

N , j = 0, . . . , N/4− 1,
r = 1, 3,

• 1 DFT(N/2) and 2 DFT(N/4).

This decomposition is then again applied to the DFT(N/2) and to the two
DFT(N/4). We iteratively continue until we finally have to compute N/2 DFT(2)
to obtain the output values which are again in bit-reversed order. Figure 5.12 shows
the signal flow graph of the split–radix FFT for the DFT(16).

Let again μ(t) and α(t) be the numbers of needed real multiplications and
additions for a transform length N = 2t , t ∈ N \ {1}. To evaluate the DFT(2N),
the split–radix FFT requires one DFT(N), two DFT(N/2), 3N complex additions,
and N complex multiplications with the twiddle factors w

rj

2N , j = 0, . . . , N/2 − 1,
r = 1, 3. Among the multiplications with twiddle factors, there are two trivial
multiplications for (j, r) = (0, 1), (0, 3) and two multiplications with primitive 8th
roots of unity for (j, r) = (N/4, 1), (N/4, 3). Thus we obtain

μ(t + 1) = μ(t)+ 2 μ(t − 1)+ 3 · 2t − 8 ,

α(t + 1) = α(t)+ 2 α(t − 1)+ 3 · 2t − 8+ 6 · 2t .
(5.33)

With the initial values

μ(2) = 0 , α(2) = 16 ,

μ(3) = 4 , α(3) = 52 ,

we conclude that

μ(t) = t 2t − 3 · 2t + 4 = N log2 N − 3 N + 4 ,

α(t) = 3 t 2t − 3 · 2t + 4 = 3 N log2 N − 3 N + 4 , t ∈ N \ {1} . (5.34)
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We summarize:

Theorem 5.19 For N = 4t , t ∈ N, the computational cost of the radix-4 FFT for
DFT(N) amounts

α(t) + μ(t) = 17

2
N log4 N − 43

6
N + 32

3

real arithmetical operations.
For N = 2t , t ∈ N \ {1}, the computational cost of the split–radix FFT for

DFT(N) adds up to

α(t) + μ(t) = 4 N log2 N − 6 N + 8 .

Note that comparing the computational cost of the radix-4 FFT with that of the
radix-2 FFT or the split-radix FFT, one needs to keep in mind that N = 4t = 22t ,
i.e., for N = 4t one needs to compareα(t)+μ(t) for radix-4 FFT with α(2t)+μ(2t)
for radix-2 FFT and split–radix FFT.

In Tables 5.2 and 5.3, we present the number of required nontrivial real
multiplications and additions for the radix-2 FFT, the radix-4 FFT, the radix-8 FFT,
and the split–radix FFT. For comparison of the algorithm structures, we also present
the signal flow graphs of the radix-2 FFT, the radix-4 FFT, and the split–radix FFT
for the DFT(16) in Figs. 5.10, 5.11, and 5.12.

Table 5.2 Number of real
multiplications required by
various FFTs for DFT(N)

N Radix-2 Radix-4 Radix-8 Split–radix

16 24 20 20

32 88 68

64 264 208 204 196

128 712 516

256 1800 1392 1284

512 4360 13,204 3076

1024 10,248 7856 7172

Table 5.3 Number of real
additions required by various
FFTs for DFT(N)

N Radix-2 Radix-4 Radix-8 Split–radix

16 152 148 148

32 408 388

64 1032 976 972 964

128 2504 2308

256 5896 5488 5380

512 13,566 12,420 12,292

1024 30,728 28,336 27,652
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Fig. 5.10 Signal flow graph of the radix-2 FFT for DFT(16)

A modification of the split–radix FFT in [179] is based on the decomposition

âk =
N/2−1∑

j=0

a2j w
jk
N/2 +wk

N

N/4−1∑

j=0

a4j+1 w
jk
N/4 +w−k

N

N/4−1∑

j=0

a4j−1 w
jk
N/4 ,

where a−1 := aN−1. Here, we get a conjugate complex pair of twiddle factors
instead of wk

N and w3k
N . The corresponding algorithm succeeds to reduce the twiddle

factor load by rescaling and achieves a reduction of flops by further 5.6% compared
to the usual split–radix FFT. A direct generalization of the split–radix FFT for N =
pt with t ∈ N and a small prime (e.g., p = 3) has been considered in [363]. We
remark that it is not known up to now how many flops are at least needed for an
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Fig. 5.11 Signal flow graph of the radix-4 FFT for DFT(16)

FFT of length N and whether there exist an FFT algorithm that needs even less
operations than the split–radix algorithm in [179]. On the other hand, it has been
shown in [246] that there exists no linear algorithm to compute the DFT(N) with
less than O(N logN) arithmetical operations.

5.3.4 Rader FFT and Bluestein FFT

Most previous FFTs are suitable for a special length N = 2t or even N = 4t

with t ∈ N \ {1}. For DFT applications with a different length, one can surely
enlarge them by adding zero entries in the data vector to achieve the next radix-
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â2
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â1

â8
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â11

â7
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2 length. However, these longer data vectors have a changed structure and are
not always desirable. In this subsection, we want to consider FFTs that can work
with different lengths N and still achieve a computational cost of O(N logN)

arithmetical operations.
We start with the Rader FFT [302] that can be used to evaluate a DFT(p),

where p ∈ N is a prime number. Again, the permutation of input and output
values will play here an essential role. But the basic idea to realize the DFT is now
completely different from the previously considered radix FFTs. The idea of the
Rader FFT is that the DFT(p) can be rewritten using a cyclic convolution of length
p − 1, which can then be realized efficiently by an FFT described in the previous
subsections.
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The Rader FFT is frequently applied to prime lengths p ≤ 13. For larger p,
the Bluestein FFT is usually preferred because of its simpler structure. However,
the Rader FFT is mathematically interesting, since it requires a small number of
multiplications.

Let now p ≥ 3 be a prime number. The transformed vector â ∈ C
p of a ∈ C

p is
given by

âk :=
p−1∑

j=0

aj w
j k
p , k = 0, . . . , p − 1 , wp := e−2π i/p. (5.35)

Since p is a prime number, the index set {1, 2, . . . , p− 1} forms the multiplicative
group (Z/pZ)∗ of integers modulo p. This group is cyclic of order ϕ(p) = p − 1,
where ϕ denotes Euler’s totient function. If g is a generating element of (Z/pZ)∗,
then each index j ∈ {1, 2, . . . , p − 1} can be uniquely represented in the
form

j = gu modp , u ∈ {0, . . . p − 2} .

For example, for p = 5 we can choose g = 2 as generating element of (Z/5Z)∗
and find

1 = 20 , 2 = 21 , 4 = 22 , 3 = 23 mod 5 . (5.36)

In (5.35) we now consider the two indices j = 0 and k = 0 separately and replace
j , k ∈ {1, . . . , p − 1} by

j = gu modp , k = gv modp, u, v = 0, . . . , p − 2 .

Then

â0 = c0
0 + c0

1 , (5.37)

âgv = c0
0 + c1

v , v = 0, . . . , p − 2 , (5.38)

with

c0
0 := a0, c0

1 :=
p−2∑

u=0

agu ,

c1
v :=

p−2∑

u=0

agu w
gu+v

p , v = 0, . . . , p − 2 . (5.39)
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Obviously, (5.39) describes a cyclic correlation of the (p − 1)-dimensional vec-
tors

a1 := (agu)
p−2
u=0 , w1 := (w

gu

p )
p−2
u=0 .

The cyclic correlation is closely related to the cyclic convolution considered in
Sects. 3.2.3 and 3.3. Employing the flip matrix

J′p−1 =
(
δ(j+k)mod(p−1)

)p−2
j,k=0 ∈ R

(p−1)×(p−1)

and the vector c1 := (c1
v)

p−2
v=0 , Eq. (5.39) can be written in the form

c1 = cor (a1,w1) := (J′p−1a1) ∗ w1 = (circ w1)(J′p−1 a1) , (5.40)

such that (5.37)–(5.40) implies

â0 = c0
0 + c0

1 , â1 = c0
0 1p−1 + c1 .

Here 1p−1 := (1)p−2
j=0 denotes the vector with p − 1 ones as components. Thus the

DFT(p) can be evaluated using a cyclic convolution of length p − 1 and 2 (p − 1)
additions.

We illustrate the permutations above by a matrix representation. Let Pp and
Qp be the permutation matrices that realize the following rearrangements of vector
components,

Pp â :=
(
â0

â1

)
, Qp a :=

(
a0

J′p−1a1

)

.

Obviously we have Qp = (1⊕ J′p−1)Pp, where

A⊕ B := diag (A, B) =
(

A
B

)

denotes the block diagonal matrix of two square matrices A and B. For example, for
p = 5 we obtain with (5.36)

⎛

⎜
⎜⎜
⎜
⎜
⎝

1
1

1
1

1

⎞

⎟
⎟⎟
⎟
⎟
⎠

︸ ︷︷ ︸
P5:=

⎛

⎜
⎜⎜
⎜
⎜
⎝

â0

â1

â2

â3

â4

⎞

⎟
⎟⎟
⎟
⎟
⎠
=

⎛

⎜
⎜⎜
⎜
⎜
⎝

â0

â1

â2

â4

â3

⎞

⎟
⎟⎟
⎟
⎟
⎠

,

⎛

⎜
⎜⎜
⎜
⎜
⎝

1
1

1
1

1

⎞

⎟
⎟⎟
⎟
⎟
⎠

︸ ︷︷ ︸
Q5:=

⎛

⎜
⎜⎜
⎜
⎜
⎝

a0

a1

a2

a3

a4

⎞

⎟
⎟⎟
⎟
⎟
⎠
=

⎛

⎜
⎜⎜
⎜
⎜
⎝

a0

a1

a3

a4

a2

⎞

⎟
⎟⎟
⎟
⎟
⎠

.
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From â = Fp a it follows by (5.37)–(5.40) now

Pp â = Pp Fp Qp Qp a = F̃p Qp a (5.41)

with the matrix F̃p being composed by row and column permutations of Fp,

F̃p := Pp Fp Qp =
(

1 1p−1

1p−1 circ w1

)

. (5.42)

A simple computation shows that F̃p = Ap (1⊕ circ w1) with

Ap :=
(

1 −1p−1

1p−1 Ip−1

)

. (5.43)

For p = 5 we particularly obtain

⎛

⎜⎜
⎜
⎜
⎜
⎝

â0

â1

â2

â4

â3

⎞

⎟⎟
⎟
⎟
⎟
⎠
=

⎛

⎜⎜
⎜
⎜
⎜
⎝

1 1 1 1 1
1 w5 w3

5 w4
5 w2

5
1 w2

5 w5 w3
5 w4

5
1 w4

5 w2
5 w5 w3

5
1 w3

5 w4
5 w2

5 w5

⎞

⎟⎟
⎟
⎟
⎟
⎠

︸ ︷︷ ︸
F̃5:=

⎛

⎜⎜
⎜
⎜
⎜
⎝

a0

a1

a3

a4

a2

⎞

⎟⎟
⎟
⎟
⎟
⎠

.

The essential part of the Rader FFT, the cyclic convolution of length p−1 in (5.40),
can now be computed by employing a fast algorithm for cyclic convolutions based
on Theorem 3.31. The multiplication with a circulant matrix can be realized with 3
DFT(p − 1) and p − 1 multiplications. Indeed, (3.47) implies

(circ w1) (J′p−1 a1) = F−1
p−1

(
diag (Fp−1w1)

)
Fp−1 (Jp−1a1) .

Assuming that p − 1 can be factorized into powers of small prime factors, we may
use an FFT as described in Sect. 5.3.2. For small integers p− 1 there exist different
efficient convolution algorithms, see, e.g., [36, 257], based on the Chinese remainder
theorem.

Example 5.20 In the case p = 5 we particularly have

circ w1 = F−1
4 diag (F4w1)F4

= 1

4
P4

(
F2

F2

)
D4

(
I2 I2

I2 −I2

)
(diag ŵ1)P4

(
F2

F2

)
D4

(
I2 I2

I2 −I2

)
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with the even–odd permutation matrix P4 and D4 = diag (1, 1, 1, −i). Here the
factorization (5.9) of F4 is used.

A generalization of the Rader FFT is the Winograd FFT that can be applied for
fast computation of DFT(pt ), where p ∈ N is a prime and t ∈ N \ {1}. It employs
the special group structure of (Z/pt

Z)∗, for details see [378].
The Bluestein FFT is also based on the idea to write the DFT(N) as a convolution.

The obtained circulant N-by-N matrix can in turn be embedded into a circulant M-
by-M matrix, where M = 2t , t ∈ N, satisfies 2N − 2 ≤ M < 4N . To compute
the obtained convolution of length M , a radix-2 FFT or split–radix FFT can be
employed in order to end up with an O(N logN) algorithm.

Let now N ∈ N \ {1, 2} be given, where N is not a power of 2. With

k j = 1

2

(
k2 + j2 − (k − j)2)

we can rewrite (5.1) as

âk =
N−1∑

j=0

aj w
k j
N = w

k2/2
N

N−1∑

j=0

aj w
j2/2
N w

−(k−j)2/2
N , k = 0, . . . , N − 1 .

Multiplication with w
−k2/2
N on both sides gives

zk := w
−k2/2
N âk =

N−1∑

j=0

(
aj w

j2/2
N

)
w
−(k−j)2/2
N =

N−1∑

j=0

bj hk−j , k = 0, . . . , N − 1 ,

(5.44)

with

b := (bj )
N−1
j=0 =

(
aj w

j2/2
N

)N−1
j=0 , h := (hj )

N−1
j=0 =

(
w
−j2/2
N

)N−1
j=0 .

We observe that

hk−j = w
−(k−j)2/2
N = hj−k ,

such that the circulant matrix circ h = (h(j−k) mod N)N−1
j,k=0 is symmetric. With z :=

(zk)
N−1
k=0 , Eq. (5.44) can now be rewritten as

z = (diag h)FN a = b ∗ h = (circ h) b = (circ h) (diag h) a ,
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where h := (hj )
N−1
j=0 is the conjugate complex vector. Thus, we obtain the matrix

factorization

FN = (diag h)−1 (circ h) (diag h) .

This representation of FN is not yet efficient. But the idea is now to embed circ h
into a circulant M-by-M matrix circ h1 with M = 2t , t ∈ N, and 2N − 2 ≤ M <

4N . We determine h1 = (h1
j )

M−1
j=0 ∈ C

M with

h1
j :=

⎧
⎨

⎩

hj 0 ≤ j ≤ N − 1 ,

0 N ≤ j ≤ M −N ,

hM−j M −N + 1 ≤ j ≤ M − 1 .

(5.45)

For example, for N = 7, we have to choose M = 16 = 24 such that 12 ≤ M < 28,
and h1 is of the form

h1 = (
h0, h1, h2, h3, h4, h5, h6, 0, 0, 0, h6, h5, h4, h3, h2, h1

)

with hj = w
−j2/2
7 . Observe that circ h1 contains circ h as a submatrix at the left

upper corner. In order to compute the convolution h ∗ b = (circ h) b, we therefore
consider the enlarged vector b1 = (b1

j )
M−1
j=0 with

b1
j :=

{
bj 0 ≤ j ≤ N − 1 ,

0 N ≤ j ≤M − 1 ,
(5.46)

such that the computation of (circ h) b is equivalent with evaluating the first N

components of (circ h1) b1.
We summarize the Bluestein FFT as follows:

Algorithm 5.21 (Bluestein FFT)

Input:N ∈ N \ {1}, a = (aj )
N−1
j=0 ∈ C

N .

1. Determine M := 2t with t := "log2(4N − 1)#.
2. Compute b := (aj w

j2/2
N )N−1

j=0 and h := (w
−j2/2
N )N−1

j=0 .

3. Enlarge h to h1 and b to b1 according to (5.45) and (5.46).
4. Compute ĥ1 = FMh1 and b̂1 = FMb1 using a radix-2 FFT of length M .
5. Compute ẑ := ĥ1 ◦ b̂1 = (ĥ1

k b̂
1
k)

M−1
k=0 .

6. Compute z = F−1
M ẑ using a radix-2 FFT of length M .

7. Calculate â := (
w

j2/2
N zj

)N−1
j=0 .

Output: â ∈ C
N .
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The numerical effort for the Bluestein FFT is governed by the 3 DFT(M), but
since M < 4N , it easily follows that the computational cost of the Bluestein FFT is
still O(N logN).

Remark 5.22 Let us give some further notes on FFTs. This field has been inten-
sively studied within the last 60 years, and a lot of extensions have been suggested
that we are not able to present in this chapter. Therefore we only want to give a few
further ideas that can be found in the literature and refer, e.g., to [47, 92, 163, 362].

1. An early attempt to obtain a fast DFT algorithm is due to Goerzel [132],
who applied a recursive scheme to the simultaneous computation of c(x) =∑N−1

k=0 ak cos kx and s(x) = ∑N−1
k=0 ak sin kx. The Goerzel algorithm has a

higher complexity than FFTs, but it is of interest for computing only a small
number of selected values of c(x) and s(x).

2. Bruun’s FFT [50] uses z-transform filters to reduce the number of complex
multiplications compared to the usual FFT.

3. Winograd developed a theory of multiplicative complexity of bilinear forms that
can be exploited for fast convolution algorithms using a minimal number of
multiplications, see [377, 379].

4. The FFT has also been generalized to finite fields, where the notion “cyclotomic
FFT” has been coined. It is again based on a transfer to several circular
convolutions, see, e.g., [381] and the references therein.

5.3.5 Multidimensional FFTs

For fixed N1, N2 ∈ N \ {1}, we consider the two-dimensional DFT(N1×N2) of the
form

Â = FN1 A FN2 ,

where A = (
ak1,k2

)N1−1,N2−1
k1,k2=0 and Â = (

ân1,n1

)N1−1,N2−1
n1,n2=0 are complex N1-by-N2

matrices as in Sect. 4.4.2. For the entries ân1,n2 we obtain from (4.52)

ân1,n2 =
N1−1∑

k1=0

N2−1∑

k2=0

ak1,k2 w
k1n1
N1

w
k2n2
N2

, n1 = 0, . . . , N1 − 1 ; n2 = 0, . . . , N2 − 1 .

(5.47)

The fast evaluation of Â can be performed using only one-dimensional FFTs.
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First we present the row–columnmethod for the two-dimensional DFT(N1×N2).
Let A = (

a0 | a1 | . . . | aN1−1
)
, where ak1 ∈ C

N2 , k1 = 0, . . . , N1 − 1, denote the
N1 rows of A. Then the product

FN2 A = (
FN2a0 |FN2a1 | . . . |FN2aN1−1

)

can be performed by applying an FFT of length N2 to each row of A separately. We
obtain B = (A FN2)

 = (
â0 | â1 | . . . | âN1−1

)
and therefore Â = FN1 B. Let now

B = (b0 | b1 | . . . | bN2−1) with columns bk2 ∈ C
N1 , k2 = 0, . . . , N2 − 1. Then

Â = FN1 B = (
FN1 b0 |FN1b1 | . . . |FN1bN2−1

)

can be performed by applying an FFT of length N1 to each column of B. Obviously
we can also compute B̃ = FN1 A by applying a one-dimensional DFT(N1) to each
column of A in the first step and then compute B̃ FN2 by applying a DFT(N2) to
each row of B̃ in the second step.

By reshaping the matrix A = (
ak1,k2

)N1−1,N2−1
k1,k2

into a vector a = vec A ∈ C
N1N2

with ak1+N1k2 = ak1,k2 we can transfer the two-dimensional DFT into a matrix–
vector product. Applying Theorem 3.42 we obtain

vec Â = (FN2 ⊗ FN1)vec A = (FN2 ⊗ IN1)(IN2 ⊗ FN1) vec A .

The multiplication vec B = (IN2 ⊗ FN1) vec A is equivalent with applying the one-
dimensional FFT of length N2 to each row of A, and the multiplication (FN2 ⊗
IN1) vec B is equivalent with applying the one-dimensional FFT of length N1 to
each column of B.

We also present the sum representation of the row–column method for the two-
dimensional DFT(N1 × N2) of A = (

ak1,k2

)N1−1,N2−1
k1,k2=0 . We rewrite the double sum

in (5.47),

ân1,n2 =
N1−1∑

k1=0

w
k1n1
N1

(N2−1∑

k2=0

ak1,k2 w
k2n2
N2

)

︸ ︷︷ ︸
bk1,n2 :=

.

Now, for each k1 ∈ IN1 we first compute the vectors (bk1,n2)
N2−1
n2=0 using a one-

dimensional DFT(N2) applied to the k1th row of A. Then we compute

ân1,n2 =
N1−1∑

k1=0

bk1,n2 w
k1n1
N1

,
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i.e., for each n2 ∈ IN2 we calculate the one-dimensional DFT(N1) of the n2th
column of the intermediate array (bk1,n2)

N1−1,N2−1
k1,n2=0 . In summary, we can compute a

general DFT(N1 ×N2) by means of N1 DFT(N2) and N2 DFT(N1).

Algorithm 5.23 (Row–Column Method for DFT(N1 ×N2))

Input:N1, N2 ∈ N \ {1}, A ∈ C
N1×N2 .

1. Compute the DFT(N2) for each of the N1 rows of A by one-dimensional FFT’s
to obtain

B = (A FN2)
 = (

â0 | â1 | . . . | âN1−1
)
.

2. Compute the DFT(N1) for each of the N2 columns of B = (
b0 | b1 | . . . | bN2−1

)

by one-dimensional FFT’s to obtain

Â = FN1 B = (
b̂0 | b̂1 | . . . | b̂N2−1

)
.

Output: Â ∈ C
N1×N2 .

The computational cost to apply Algorithm 5.23 is O
(
N1 N2 (logN1)(logN2)

)

assuming that a one-dimensional FFT of length N requires O(N logN) floating
point operations.

Now we describe the nesting method for the two-dimensional DFT(N1 × N2).
Compared to the row–column method considered above, we can reduce the
computational cost of the two-dimensional DFT using the known factorization of
the Fourier matrix FN that we have found to derive the one-dimensional FFTs. As
shown in (5.30), for N = M1 M2 we have the matrix factorization

FN = PN (IM2 ⊗ FM1)DM1M2 (FM2 ⊗ IM1)

with the block diagonal matrix

DM1M2 = diag
(
IM1 ,WM1 , . . . ,WM2−1

M1

) =

⎛

⎜
⎜
⎜
⎜
⎝

IM1

WM1

. . .

WM2−1
M1

⎞

⎟
⎟
⎟
⎟
⎠

,

where WM1 = diag (wr
N)

M1−1
r=0 . Assuming now that we have the factorizations

N1 = K1 K2 and N2 = L1 L2 with K1, K2, L1, L2 ∈ N \ {1} the two-dimensional
DFT(N1 × N2) can be rewritten as

Â = PN1(IK2 ⊗ FK1)DK1K2(FK2 ⊗ IK1)A(FL2 ⊗ IL1)DL1L2(IL2 ⊗ FL1)P

N2

,

(5.48)
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where we have used that FN2 and all matrix factors in the factorization up to PN2

are symmetric. Now the computation of Â can be performed as follows:

Algorithm 5.24 (Nesting Method for DFT(N1 × N2))

Input:N1, N2 ∈ N \ {1}, A ∈ C
N1×N2 .

1. Compute B := (FK2 ⊗ IK1)A (FL2 ⊗ IL1) .
2. Compute C := DK1K2 B DL1L2 by

cn1,n2 = bn1,n2 dn1,n2, n1 = 0, . . . , N1 − 1 ; n2 = 0, . . . N2 − 1 ,

where dn1,n2 := DK1K2(n1, n1)DL1L2(n2, n2) is the product of the n1th diagonal
element of DK1K2 and the n2th diagonal element of DL1L2 .

3. Compute Â := PN1 (IK2 ⊗ FK1)C (IL2 ⊗ FL1)P

N2

.

Output: Â ∈ C
N1×N2 .

By reshaping the matrices to vectors using the vectorization as in Theorem 3.42,
the factorization (5.48) can be rewritten as

vec Â = (
PN2(IL2 ⊗ FL1)DL1L2(FL2 ⊗ IL1)

)

⊗ (
PN1(IK1 ⊗ FK1)DK1K2(FK2 ⊗ IK1)

)
vec A

= (
PN2 ⊗ PN1

)(
(IL2 ⊗ FL1)⊗ (IK1 ⊗ FK1)

)(
DL1L2 ⊗ DK1K2

)

· ((FL2 ⊗ IL1)⊗ (FK2 ⊗ IK1)
)

vec A . (5.49)

Hence successive multiplication with these matrices corresponds to the three
steps of Algorithm 5.24. Compared to the application of the row–column method
connected with the considered DFT of composite length, we save multiplications
assuming that the diagonal values dn1,n2 of the matrix DL1L2 ⊗ DK1K2 in step
2 of Algorithm 5.24 are precomputed beforehand. The structure of the diagonal
matrices implies that the multiplication with DK1K2 from the left and with DL1L2

from the right that needs to be performed using the row–column method requires
(N1−K1)N2+ (N2−L1)N1 multiplications, while step 2 of Algorithm 5.23 needs
N1N2 − L1K1 multiplications with precomputed values dn1n2 . Here we have taken
into consideration that dn1,n2 = 1 for n1 = 0, . . . ,K1 − 1 and n2 = 0, . . . , L1 − 1.
In the special case N = N1 = N2 and L1 = K1 we save (N −K1)

2 multiplications.
If N1 and N2 are powers of two, then the nesting approach can also be applied using
the full factorization of the Fourier matrices FN1 and FN2 as given in (5.10), and
we can save multiplications at each level if applying the nesting method instead
of multiplying with the diagonal matrices of twiddle factors from left and right. If
particularly N1 = N2 = N , then we have log2 N levels and save (log2 N)(N2 )2

multiplications compared to the row–column method.
Now we consider higher dimensional FFTs, i.e., d ∈ N \ {1, 2} is of moderate

size. We generalize the row–column method and the nesting method to compute the
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d-dimensional DFT. Let N = (Nj )
d
j=1 ∈ (N \ {1})d and the index set

IN := IN1 × IN2 . . .× INd

with INj := {0, . . . , Nj − 1} be given. Recall that for a d-dimensional array A =
(ak)k∈IN of size N1 × . . . × Nd the d-dimensional DFT Â = (ân)n∈IN is given
by (4.54), i.e.,

ân :=
N1−1∑

k1=0

. . .

Nd−1∑

kd=0

ak w
k1n1
N1

. . . w
kdnd
Nd

=
∑

k∈IN

ak e−2π i n·(k/N).

For moderate dimension d , a generalized row–column method is often used for the
computation of the d-dimensional DFT of A = (ak)k∈IN . We rewrite the multiple
sum above,

ân1,n2,...,nd =
N1−1∑

k1=0

w
k1n1
N1

(N2−1∑

k2=0

. . .

Nd−1∑

kd=0

ak w
k2n2
N2

. . . w
kdnd
Nd

)

︸ ︷︷ ︸
bk1,n2 ,...,nd :=

.

Thus for a given array (bk1,n2,...,nd ) of size N1 × . . .× Nd , we compute

ân1,n2,...,nd =
N1−1∑

k1=0

bk1,n2,...,nd w
k1n1
N1

,

i.e., for each (n2, . . . , nd)
 ∈ IN2 × . . . × INd we calculate a one-dimensional

DFT(N1). The arrays Bk1 = (bk1,n2,...,nd )(n2,...,nd )
∈IN2×...×INd

are obtained by a
(d − 1)-dimensional DFT(N2× . . .×Nd ). The computational costs to compute the
d-dimensional DFT are therefore

N2 . . . Nd DFT(N1)+N1 DFT(N2 × . . .× Nd) .

Recursive application of this idea with regard to each dimension thus requires for
the d-dimensional DFT(N1 × . . .× Nd )

N1 · · ·Nd

( 1

N1
DFT(N1)+ 1

N2
DFT(N2)+ . . . + 1

Nd

DFT(Nd)
)

(5.50)

with computational cost of O
(
N1 N2 . . . Nd log2(N1 N2 . . . Nd)

)
. If we apply the

mapping vec : CN1×...×Nd → CP with P = N1N2 · · ·Nd introduced in Sect. 4.4.3
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and reshape the array A = (ak)k∈IN ∈ C
N1×...×Nd into a vector vec A = a =

(ak)
P−1
k=0 by

ak1+N1k2+N1N2k3+...+N1...Nd−1kd := ak, k = (kj )
d
j=1 ∈ IN ,

then we can rewrite the d-dimensional DFT as a matrix–vector product

vec Â = (FNd ⊗ · · · ⊗ FN1) vec A

= (FNd ⊗ IP/Nd ) . . . (IP/N1N2 ⊗ FN2 ⊗ IN1)(IP/N1 ⊗ FN1) vec A

Thus the row–column method can be reinterpreted as the application of the one-
dimensional DFT(Nj ) to subvectors of vec A. Similarly as for the two-dimensional
FFT, we can now again employ the factorization of the Fourier matrices FNj and
reorder the multiplications to save operations by the nesting method. Using, for
example, a similar factorization as in (5.49), we arrive for d = 3 with N1 = K1K2,
N2 = L1L2, and N3 = M1M2 that

vec Â = (
PN3 ⊗ PN2 ⊗ PN1

)(
(IM2 ⊗ FM1)⊗ (IL2 ⊗ FL1)⊗ (IK1 ⊗ FK1)

)

· (DM1M2 ⊗ DL1L2 ⊗ DK1K2

)(
(FM2 ⊗ IM1)⊗ (FL2 ⊗ IL1)⊗ (FK2 ⊗ IK1)

)
vec A .

As for the two-dimensional DFT, we can save multiplications by precomputing the
diagonal matrix DM1M2 ⊗DL1L2 ⊗DK1K2 and multiplying it to the vectorized array
at once. For comparison, using the row–column method we multiply with the three
matrices DM1M2⊗ IN2 ⊗ IN1 , IN3 ⊗DL1L2⊗ IN1 , and IN3 ⊗ IN2 ⊗DK1K2 separately.

Generally, if we assume that the one-dimensional radix-2 FFT requires N
2 log2 N

complex multiplications and N log2 N complex additions, then the row–column
method using this radix-2 FFT for the d-dimensional DFT(N1×. . .×Nd) with N1 =
. . . = Nd = N = 2t requires (log2 N)d Nd

2 complex multiplications by (5.50).
Applying the nesting method, we need only (log2 N)

(
Nd − (N2 )d

)
multiplications

by performing the multiplication with the diagonal matrix of precomputed twiddle
factors, see Table 5.4. Here we have taken into account for both methods that the
matrices of twiddle factors DN possess N/2 ones such that the multiplication with
DN requires N/2 multiplications.

5.4 Sparse FFT

In the previous sections we have derived fast algorithms to execute the DFT(N) for
arbitrary input vectors a ∈ C

N . All fast algorithms possess the computational costs
O(N logN), where the split–radix FFT is one of the most efficient known FFTs up
to now.
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Table 5.4 Numbers of complex multiplications and additions required by various multidimen-
sional FFTs based on radix-2 FFT

Row-column method, radix-2 Nesting method, radix-2

Size μ α μ α

8× 8 192 384 144 384

32× 32 5120 10,240 3840 10,240

64× 64 24,576 49,152 18,432 49,152

128× 128 114,688 229,378 86,096 229,378

256× 256 524,288 1,048,576 393,216 1,048,576

8× 8× 8 2304 4608 1344 4608

64× 64× 64 2,359,296 4,718,592 1,376,256 4,718,592

However, in recent years there has been some effort to derive the so-called
sparse FFTs with sublinear computational costs. These methods exploit a priori
knowledge on the vector â to be recovered. Frequently used assumptions are that
â ∈ C

N is sparse or has only a small amount of significant frequencies. Often,
further assumptions regard the recovery of frequencies in a certain quantized range.
One can distinguish between probabilistic and deterministic algorithms on the one
hand and between approximate and exact algorithms on the other hand. Further,
many sparse FFTs employ special input data being different from the components
of a given vector a ∈ C

N to compute â = FN a.
In this section we restrict ourselves to exact deterministic sparse FFTs that use

only the given components of a ∈ C
N to evaluate â.

5.4.1 Single Frequency Recovery

In the simplest case, where a ∈ C
N possesses only one frequency, i.e., â ∈ C

N is 1-
sparse. Let us assume that â = (

âk
)N−1
k=0 has one nonzero component |âk0 | ≥ θ > 0

and ak = 0 for k ∈ {0, . . . , N − 1} \ {k0}. In order to compute â, we only need to
recover the index k0 and the value âk0 ∈ C.

Considering the inverse DFT(N), this assumption leads to

aj = 1

N

N−1∑

k=0

âk w
−jk
N = 1

N
âk0 w

−jk0
N , j = 0, . . . , N − 1 .

In particular,

a0 = 1

N
âk0 , a1 = 1

N
âk0 w

−k0
N .
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Thus, only two components of a are sufficient to recover â, where

âk0 = N a0 , w
−k0
N = a1

a0
.

More generally, two arbitrary components aj1 , aj2 of a with j1 �= j2 yield

w
−k0(j2−j1)

N = aj2

aj1

, âk0 = N aj1 w
k0j1
N ,

where k0 can be extracted from the first term. However, the above procedure is
numerically instable for large N . Small perturbations in a1 and a0 may lead to a
wrong result for k0, since the values wk

N lie denser on the unit circle for larger N .
We want to derive a numerically stable algorithm for the recovery of â. For

simplicity, we assume that N = 2t , t ∈ N\{1}. We introduce the periodizations â(�)

of â by

â(�) := ( 2t−�−1∑

r=0

âk+2�r

)2�−1
k=0 , � = 0, . . . , t . (5.51)

In particular, â(t) := â, and the recursion

â(�) = (
â
(�+1)
k

)2�−1
k=0 +

(
â
(�+1)
k+2�

)2�−1
k=0 , � = 0, . . . , t − 1 , (5.52)

is satisfied. The following lemma shows the close connection between the vector a
being the inverse DFT of â and the inverse DFT’s of â(�) for � = 0, . . . , t − 1.

Lemma 5.25 For the vectors â(�) ∈ C
2�
, � = 0, . . . , t , in (5.51) we have

a(�) := F−1
2� â(�) = 2t−�

(
a2t−�j

)2�−1
j=0 ,

where a = (aj )
N−1
j=0 = F−1

N â ∈ C
N is the inverse DFT of â ∈ C

N .

Proof We obtain by (5.51) that

a
(�)
j = 1

2�

2�−1∑

k=0

â
(�)
k w

−jk

2� = 1

2�

2�−1∑

k=0

( 2t−�−1∑

r=0

âk+2�r

)
w
−jk

2�

= 1

2�

2t−1∑

k=0

âk w
−jk

2� = 1

2�

N−1∑

k=0

âk w
−(2t−�j)k

N = 2t−� a2t−�j

for all j = 0, . . . , 2� − 1.
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We observe that all periodizations â(�) of â(t) = â are again 1-sparse, where
the index of the nonzero frequency may change according to (5.52), while the
magnitude of the nonzero frequency is always the same. For example, for â = â(3) =
(0, 0, 0, 0, 0, 0, 1, 0), we find

â(2) = (0, 0, 1, 0) , â(1) = (1, 0) , â(0) = (1) .

Denoting the index of the nonzero entry of â(�) by k
(�)
0 , the recursion (5.52) implies

that

k
(�)
0 =

{
k
(�+1)
0 0 ≤ k

(�+1)
0 ≤ 2� − 1 ,

k
(�+1)
0 − 2� 2� ≤ k

(�+1)
0 ≤ 2�+1 − 1 ,

(5.53)

while âk0 = â
(t)

k
(t)
0

= â
(t−1)

k
(t−1)
0

= . . . = â
(0)

k
(0)
0

. Thus, fixing âk0 = N a0, a robust recovery

of k0 can be achieved by recursive computation of the indices k
(0)
0 , . . . , k

(t)
0 .

Set k
(0)
0 := 0, since obviously â(0) = â

(0)
0 = N a0. Now, we want to evaluate

k
(1)
0 . Using Lemma 5.25, we consider now a

(1)
1 = 2t−1 a2t−1 = 2t−1 aN/2. By

assumption, we find

a
(1)
1 = 1

2

1∑

k=0

â
(1)
k w−k

2 = 1

2
â
k
(1)
0

(−1)−k
(1)
0 = 1

2
âk0 (−1)−k

(1)
0 ,

while a
(1)
0 = 2t−1 a0 = 1

2 âk0 . It follows that k
(1)
0 = k

(0)
0 = 0 if a

(1)
0 = a

(1)
1 ,

i.e., if a0 = aN/2, and k
(1)
0 = 1 if a0 = −aN/2. Hence we set k

(1)
0 = k

(0)
0 if

|a0 − aN/2| ≤ |a0 + aN/2| and k
(1)
0 = k

(0)
0 + 1 otherwise.

Generally, assuming that k(�)0 is known, by (5.53) we have only to decide whether

k
(�+1)
0 = k

(�)
0 or k

(�+1)
0 = k

(�)
0 + 2�. We consider a

(�+1)
1 = 2t−(�+1) a2t−�−1 and

a
(�+1)
0 = 2t−� a0, and conclude that

a
(�+1)
1 = 1

2�+1 â
(�+1)
k0

w
−k

(�+1)
0

2�+1 = 1

2�+1 âk0 w
−k

(�+1)
0

2�+1 , a
(�+1)
0 = 1

2�+1 âk0 .

Thus we choose k
(�+1)
0 = k

(�)
0 if |a(�+1)

1 − a
(�+1)
0 w

−k
(�)
0

2�+1 | ≤ |a(�+1)
1 + a

(�+1)
0 w

−k
(�)
0

2�+1 |,
or equivalently, if

|a2t−�−1 − a0 w
−k

(�)
0

2�+1 | ≤ |a2t−�−1 + a0 w
−k

(�)
0

2�+1 |

and k
(�+1)
0 = k

(�)
0 + 2� otherwise. Proceeding in this way, we compute ak0 and

k0 = k
(t)
0 employing the t+1 values a0, a2t−1, a2t−2, . . . , a2, a1 with computational

cost of O(logN):
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Algorithm 5.26 (Robust Sparse FFT for Single Frequency Recovery)

Input:N = 2t with t ∈ N \ {1}, components a0, a2� ∈ C, � = 0, . . . , 2t−1, of
a = (aj )

N−1
j=0 ∈ C

N .

1. Compute â := N a0 .

2. Set k0 := 0 .

3. For � = 0, . . . , t − 1 if |a2t−�−1 − a0 w
−k0
2�+1| > |a2t−�−1 + a0 w

−k0
2�+1 |, then k0 :=

k0 + 2�.

Output: index k0 ∈ {0, . . . , N − 1}, âk0 := â.
Computational cost: O(logN).

5.4.2 Recovery of Vectors with One Frequency Band

The above idea can be simply transferred to the fast recovery of vectors â possessing
only one frequency band of short support with given length, see also [274]. Assume
that â = (âk)

N−1
k=0 possesses a short support of given length M , i.e., we assume that

there exists an index μ ∈ {0, . . . , N − 1} such that all non-vanishing components of
â have their indices in the support set

IM := {μ, (μ+ 1)modN, . . . , (μ+M − 1)modN} ,

while âk = 0 for k ∈ {0, . . . , N − 1} \ IM . We assume that the frequency band is
chosen of minimal size and that |âμ| ≥ θ > 0 and |â(μ+M−1) modN | ≥ θ > 0 are
significant frequencies, then M is called support length of â.

For example, both vectors (0, 0, 0, 1, 2, 0, 2, 0) and (2, 0, 0, 0, 0, 1, 2, 0) have
a support length M = 4, where μ = 3, I4 = {3, 4 , 5 , 6} for the first vector and
μ = 5 and I4 = {5 , 6 , 7 , 0} for the second vector.

In order to recover â ∈ C
N with support length M , we determine L ∈ N such that

2L−1 < M ≤ 2L. Then we compute in the first step the (L+1)-periodization â(L+1)

of â applying a DFT(2L+1). More precisely, by Lemma 5.25 we have to compute

â(L+1) = 2t−L−1 F2L+1

(
a2t−L−1j

)2L+1−1
j=0 .

By (5.51) it follows that â(L+1) also possesses a support of length M , where
the nonzero components corresponding to the support set are already the desired
nonzero components that occur also in â. Moreover, the first support index μ(L+1)

of the support set of â(L+1) is uniquely determined. Thus, to recover â, we only
need to compute the correct first support index μ = μ(t) in order to shift the found
nonzero coefficients to their right place. This problem is now very similar to the
problem to find the single support index k0 for single frequency recovery. Let μ(�)

denote the first support indices of â(�) for � = L+1, . . . , t . As before, (5.52) implies
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that

μ(�) =
{
μ(�+1) 0 ≤ μ(�+1) ≤ 2� − 1 ,

μ(�+1) − 2� 2� ≤ μ(�+1) ≤ 2�+1 − 1 .

Conversely, for given μ(�) the next index μ(�+1) can only take the values μ(�) or
μ(�) + 2�.

Example 5.27 Assume that we have a given vector a ∈ C
16 and a priori knowledge

that a possesses a frequency band of support length M = 3. We want to recover
â = (âk)

15
k=0 ∈ C

16 with â13 = â14 = â15 = 1 and âk = 0 for k = 0, . . . , 12.
From M = 3 we obtain L = 2 and 2L+1 = 8. In the first step, we compute the

periodized vector â(3) ∈ C
8 by applying a DFT(8) to the vector (a2j )

7
j=0. This gives

â(3) = (0, 0, 0, 0, 0, 1, 1, 1) .

Obviously, â(3) has also support length 3 and the first support index μ(3) = 5. In
the last step, we need to recover â = â(4) from â(3). By (5.52), we only need to find
out whether μ(4) = 5 or μ(4) = 5 + 8 = 13, where in the second case the already
computed nonzero components of â(3) only need an index shift of 8.

Generally, if μ(�+1) = μ(�) is true, then each component of

F−1
2�+1 â(�+1) = 2t−�−1(a2t−�−1j

)2�+1−1
j=0

satisfies

2t−�−1a2t−�−1j =
μ(�)+M−1∑

k=μ(�)

â
(�+1)
k mod 2�+1 w

−jk

2�+1 = w
−jμ(�)

2�+1

M−1∑

k=0

â
(L+1)
(k+μ(L+1))mod 2L+1 w

−jk

2�+1 ,

where we have used that â(L+1) already contains the correct component values.
Similarly, if μ(�+1) = μ(�) + 2�, then it follows that

2t−�−1 a2t−�−1j =
μ(�)+2�+M−1∑

k=μ(�)+2�

â
(�+1)
k mod 2�+1 w

−jk

2l+1

= (−1)j w−jμ(�)

2�+1

M−1∑

k=0

â
(L+1)
(k+μ(L+1)) mod 2L+1 w

−jk

2�+1 .

We choose now j� as an odd integer in {1, 3, 5, . . . , 2�+1−1} such that a2t−�−1j�
�= 0.

This is always possible, since if the vector (a2t−�−1(2j+1))
2�−1
j=0 had M or more zero

components, the equations above would imply that â(L+1) = 0, contradicting the
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assumption. Now, taking j = j�, we need to compare a2t−�−1j�
with

A� := 2�+1−t w
−μ(�)j�
2�+1

M−1∑

k=0

â
(L+1)
k+μ(L+1) mod 2L+1 w

−kj�
2�+1 .

If

|A� − a2t−�−1j�
| ≤ |A� + a2t−�−1j�

|,

then we have to take μ(�+1) = μ(�), and we take μ(�+1) = μ(�) + 2� otherwise.

Algorithm 5.28 (Sparse FFT for a Vector with Small Frequency Band)
Input:N = 2t with t ∈ N \ {1}, a ∈ C

N vector with small frequency band,
upper boundN of support length M of â.

1. Compute L := �log2 M�.
2. If L ≥ t − 1 compute â := FN a by FFT of length N .
3. If L < t − 1, then

3.1. Set a(L+1) := (a2t−L−1j )
2L+1−1
j=0 and compute â(L+1) := F2L+1 a(L+1) by

FFT of length 2L+1.
3.2. Determine the first support index μ of â(L+1) as follows:

Compute

e0 :=
M−1∑

k=0

|â(L+1)
k |2.

For k = 1, . . . , 2L+1 − 1 compute

ek := ek−1 − |â(L+1)
(k−1) mod2L+1 |2 + |â(L+1)

(k+M−1) mod 2L+1 |2.

Compute μ := arg max {ek : k = 0, . . . , 2L+1 − 1} and set μ0 := μ.
3.3. For � = L+1, . . . , t−1 choose j ∈ {1, 3, . . . , 2�−1} such that |a2t−�−1j | >

θ . Compute

A := 2�+1−t w
−μj

2�+1

M−1∑

k=0

â
(L+1)
k+μmod 2L+1 w

−kj

2�+1 .

If |A− a2t−�−1j | > |A+ a2t−�−1j |, then μ := μ+ 2�.

3.4. Set â := 0 ∈ C
N .

3.5. For r = 0, . . . ,M − 1 set

â(μ+r) modN := â
(L+1)
(μ0+r) mod 2L+1 .
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Output: â ∈ C
N , first support index μ ∈ {0, . . . , N − 1}.

Computational cost: O(M logN).

Let us shortly study the computational cost to execute the sparse FFT in
Algorithm 5.28. If M ≥ N/4, then the usual FFT of length N should be used
to recover â with O(N logN) flops. For M < N/4, step 3.1 requires O((L +
1)2L+1) = O(M logM) flops, since 2L+1 < 4M . Step 3.2 involves the computation
of energies ek with O(2L+1) = O(M) flops. In step 3.3 we have to perform t−L−1
scalar products of length M and t−L−1 comparisons requiring computational costs
of O(M(logN − logM)). Finding j requires at most M(t − L − 1) comparisons.
The complete algorithm is governed by the DFT(2L+1) and the computations in step
3.5 with overall computational cost of O(M logN).

5.4.3 Recovery of Sparse Fourier Vectors

Assume now that â = (âj )
N−1
j=0 ∈ (R+ + iR+)N , i.e., Re âj ≥ 0 and Im âj ≥ 0 for

all j = 0, . . . , N − 1, is M-sparse, i.e., â possesses M nonzero components, where
M ∈ N0 with M ≤ N = 2t , t ∈ N, is not a priori known. Let a = F−1

N â = (ak)
N−1
k=0

be the given vector of length N . We follow the ideas in [278] and want to derive
a fast and numerically stable algorithm to reconstruct â from adaptively chosen
components of a. For that purpose, we again use the periodized vectors â(�) ∈ (R++
iR+)2�

as defined in (5.51).
The basic idea consists in recursive evaluation of the vectors â(�) in (5.51) for

� = 0, . . . , t , using the fact that the sparsities M� of â(�) satisfy

M0 ≤ M1 ≤ M2 ≤ . . . ≤ Mt =M.

In particular, no cancelations can occur and the components of â(�) are contained
in the first quadrant of the complex plane, i.e., Re â

(�)
j ≥ 0 and Im â

(�)
j ≥ 0 for

j = 0, . . . , 2� − 1.
We start by considering â(0). Obviously,

â(0) =
N−1∑

k=0

âk = N a0.

Since â possesses all components in the first quadrant, we can conclude that for
a0 = 0 the vector â is the zero vector, i.e., it is 0-sparse.

Having found â(0) = N a0 > 0, we proceed and consider â(1). By (5.52), we find
â(1) = (â

(1)
0 , â

(1)
1 ), where â

(1)
0 + â

(1)
1 = â(0) = N a0 is already known. Applying

Lemma 5.25, we now choose the component N
2 aN/2 = â

(1)
0 − â

(1)
1 . Hence, with
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â
(1)
1 = â(0) − â

(1)
0 we obtain N

2 aN/2 = 2 â
(1)
0 − â(0), i.e.,

â
(1)
0 = 1

2

(
â(0) + N

2
aN/2

)
, â

(1)
1 = â(0) − â

(1)
0 .

If â
(1)
0 = 0, we can conclude that all even components of â vanish, and we do

not need to consider them further. If â
(1)
1 = 0, it follows analogously that all odd

components of â are zero.
Generally, having computed â(�) at the �th level of iteration, let M� ≤ 2� be the

obtained sparsity of â(�), and let

0 ≤ n
(�)
1 < n

(�)
2 < . . . < n

(�)
M�
≤ 2� − 1

be the indices of the corresponding nonzero components of â(�). From (5.52) we can
conclude that â(�+1) possesses at most 2 M� nonzero components, and we only need
to consider â

(�+1)
nk and â

(�+1)
nk+2� for k = 1, . . . ,M� as candidates for nonzero entries

while all other components of â(�+1) can be assumed to be zero. Moreover, (5.52)
provides already M� conditions on these values,

â(�+1)
nk

+ â
(�+1)
nk+2� = â(�)

nk
, k = 1, . . . ,M� .

Therefore, we need only M� further data to recover â(�+1). In particular, we can
show the following result, see [278]:

Theorem 5.29 Let â(�), � = 0, . . . , t , be the vectors defined in (5.51). Then for
each � = 0, . . . , t − 1, we have:

If â(�) is M�-sparse with support indices 0 ≤ n
(�)
1 < n

(�)
2 < . . . < n

(�)
M�
≤ 2� − 1,

then the vector â(�+1) can be uniquely recovered from â(�) and M� components
aj1, . . . , ajM�

of a = F−1
N â, where the indices j1, . . . , jM� are taken from the set

{2t−�−1(2j + 1) : j = 0, . . . 2� − 1} such that the matrix
(
w

jpn
(�)
r

N

)M�

p,r=1 =
(
e−2π i jpn

(�)
r /N

)M�

p,r=1 ∈ C
M�×M�

is invertible.

Proof Using the vector notation â(�+1)
0 := (â

(�+1)
k )2�−1

k=0 and â(�+1)
1 := (â

(�+1)
k )2�+1−1

k=2� ,
the recursion (5.52) yields

â(�) = â(�+1)
0 + â(�+1)

1 . (5.54)
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Therefore, for given â(�), we only need to compute â(�+1)
0 to recover â(�+1). By

Lemma 5.25, we find

(
a2t−�−1j

)2�+1−1
j=0 = a(�+1) = F−1

2�+1

(
â(�+1)

0

â(�+1)
1

)

= F−1
2�+1

(
â(�+1)

0

â(�) − â(�+1)
0

)

= 2−�−1 (
w
−jk

2�+1

)2�+1−1,2�−1
j,k=0 â(�+1)

0 + 2−�−1 (
(−1)jw−jk

2�+1

)2�+1−1,2�−1
j,k=0

(
â(�) − â(�+1)

0

)
.

(5.55)

Let now 0 ≤ n
(�)
1 < n

(�)
1 < . . . < n

(�)
M�
≤ 2� − 1 be the indices of the nonzero

entries of â(�). Then by (5.54) also â(�+1)
0 can have nonzero entries only at these

components. We restrict the vectors according to

˜̂a
(�+1)
0 :=

(
â
(�+1)

n
(�)
r

)M�

r=1
, ˜̂a

(�) :=
(
â
(�)

n
(�)
r

)M�

r=1
.

Further, let j1, . . . , jM� be distinct indices from {2t−�−1(2r+1) : r = 0, . . . 2�−1},
i.e., we have jp := 2t−�−1(2κp + 1) with κp ∈ {0, . . . , 2� − 1} for p = 1, . . . ,M�.
We now restrict the linear system (5.55) to the M� equations corresponding to these
indices j1, . . . , jM� and find

b(�+1) :=
⎛

⎜
⎝

aj1
...

ajM�

⎞

⎟
⎠ =

⎛

⎜
⎜
⎝

a
(�+1)
2κ1+1
...

a
(�+1)
2κM�

+1

⎞

⎟
⎟
⎠ = A(�+1)˜̂a

(�+1)
0 − A(�+1) (̃â

(�) −˜̂a
(�+1)
0

)
,

(5.56)
where

A(�+1) = 2−�−1 (
w
−jpn

(�)
r

N

)M�

p,r=1

= 2−�−1 (
w
−κpn

(�)
r

2�

)M�

p,r=1 diag
(
ω
−n

(�)
1

2�+1 , . . . , ω
−n

(�)
M�

2�+1

)
. (5.57)

If A(�+1) and
(
w
−κpn

(�)
r

2�

)M�

p,r=1, respectively, is invertible, it follows from (5.56) that

A(�+1)˜̂a
(�+1)
0 = 1

2

(
b(�+1) + A(�+1)˜̂a

(�))
. (5.58)

Thus, to recover ˜̂a
(�+1)
0 we have to solve this system of M� linear equations in M�

unknowns, and the components of â(�+1) are given by

â
(�+1)
k =

⎧
⎪⎨

⎪⎩

(̃
â
(�+1)
0

)
r

k = n
(�)
r ,

(̃
â
(�))

r
− (̃

â
(�+1)
0

)
r

k = n
(�)
r + 2�,

0 otherwise.
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This completes the proof.

Theorem 5.29 yields that we essentially have to solve the linear system (5.58)
in order to compute â(�+1) from â(�). We summarize this approach in the following
algorithm, where the conventional FFT is used at each step as long as this is more
efficient than solving the linear system (5.58).

Algorithm 5.30 (Recovery of Sparse Vector â ∈ (R+ + iR+)N )
Input:N = 2t with t ∈ N, a = (aj )

N−1
j=0 ∈ C

N , θ > 0 shrinkage constant.

1. Set M := 0 and K := {0}.
2. If a0 < θ , then â = 0 and I (t) = ∅.
3. If a0 ≥ θ , then

3.1. Set M := 1, I (0) := {0}, â(0) := N a0, and ˜̂a
(0) := â(0).

3.2. For � = 0 to t − 1 do

If M2 ≥ 2�, then choose b(�+1) := (
a
(�+1)
2p+1

)2�−1
p=0 = (

a2t−�−1(2p+1)
)2�−1
p=0 ∈ C

M

and solve the linear system

F−1
2�

(
diag(w−k

2�+1)
2�−1
k=0

)
â(�+1)

0 = 1

2

(
2 b(�+1) + F−1

2�

(
diag(w−k

2�+1)
2�−1
k=0

)
â(�)

)

using an FFT of length 2�.
Find the index set I� of components in â(�) with â

(�)
k ≥ θ for k ∈ I (�) and set its

cardinality M := |I�|,
else

• Choose M indices jp = 2t−�−1(2κp + 1) with κp ∈ {0, . . . , 2� − 1} for
p = 1, . . . ,M such that

A(�+1) := 2−�−1 (
w
−jpr

N

)
p=1,...,M; r∈I (�)

is well-conditioned and set K := K ∪ {j1, . . . , jM }.
• Choose the vector b(�+1) := (ajp)

M
p=1 ∈ C

M and solve the linear system

A(�+1)̃â
(�+1)
0 = 1

2

(
b(�+1) + A(�+1)˜̂a

(�))
.

• Set ˜̂a
(�+1)
1 := ˜̂a

(�) −˜̂a
(�+1)
0 and ˜̂a

(�+1) :=
((̃

â
(�+1)
0

)
,
(̃
â
(�+1)
1

))
.

• Determine the index set I (�+1) ⊂ (
I (�) ∪ (I (�)+ 2�)

)
such that â(�+1)

k ≥ θ for
k ∈ I (�+1). Set M := |I (j+1)|.
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Output: I (t) is the set of active indices in â with M = |I (t)| and ã = ã(t) =
(ak)k∈I (t) .
K is the index set of used components of a.

Note that the matrices A(�+1) are scaled partial Fourier matrices, namely the
restrictions of the Fourier matrix F−1

N to the columns n
(�)
1 , . . . , n

(�)
M�

and the rows

k1, . . . , kM� . For given M column indices n(�)
1 , . . . n

(�)
M�

, we are allowed to choose the

row indices in a way such that a good condition of A(�+1) is ensured. Observe that
we can always choose kp = 2t−�−1(2κp + 1) with κp = p − 1, for p = 1, . . . ,M�

to ensure invertibility. This means, we can just take the first M� rows of F−1
2� in the

product representation (5.57). However, the condition of this matrix can get very
large for larger �.

Example 5.31 Assume that we want to recover the 4-sparse vector â ∈ C
128 with

âk = 1 for k ∈ I (7) := {1, 6, 22, 59}. For the periodizations of â we find the sparsity
and the index sets

I (0) = {0} , M0 = 1 ,

I (1) = {0, 1} , M1 = 2 ,

I (2) = {1, 2, 3} , M2 = 3 ,

I (3) = {1, 3, 6} , M3 = 3 ,

I (4) = {1, 6, 11} , M4 = 3 ,

I (5) = {1, 6, 22, 27} , M5 = 4 ,

I (6) = {1, 6, 22, 59} , M6 = 4 .

For � = 0, 1, 2, 3 we have M2
� ≥ 2� and therefore just apply the FFT of length 2�

as described in the first part of the algorithm to recover

â(4) = (0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 1, 0, 0, 0, 0).

For � = 4, we have M2
4 < 24 and apply the restricted Fourier matrix for the recovery

of â(5). The index set I (5) of nonzero components of â(5) is a subset of I (4)∪ (I (4)+
16) = {1, 6, 11, 17, 22, 27}. We simply choose k

(4)
p = 27−4−1(2κp + 1) with κp =

p − 1 for p = 1, . . . ,M4, i.e., (k(4)1 , k
(4)
2 , k

(4)
3 ) = 22(1, 3, 5) = (4, 12, 20). The

matrix A(5) reads

A(5) = 1

32

(
w
−(p−1)n(4)r

16

)3
p,r=1 diag(w−1

32 , w−6
32 , w−11

32 )

and possesses the condition number ‖A(5)‖2‖(A(5))−1‖2 = 1.1923. Solving a
system with 3 linear equations in 3 unknowns yields â(5) and I (5) = {1, 6, 22, 27}.
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Similarly, we find at the next iteration steps 5 and 6 the 4-by-4 coefficient matrices

A(6) = 1

64

(
w
−(p−1)n(5)r

32

)4
p,r=1 diag(w−1

64 , w−6
64 , w−22

64 , w−27
64 )

with condition number 4.7150 to recover â(6) and

A(7) = 1

128

(
w
−(p−1)n(6)r

64

)4
p,r=1 diag(w−1

128, w−6
128, w−22

128 , w−59
128 )

with condition number 21.2101 to recover â(7).
Thus, we have employed only the components a8k, k = 0, . . . , 15, in the first four

iteration steps (for � = 0, 1, 2, 3) to recover â(4), the entries a4(2k+1), k = 0, 1, 2,
at level � = 4, x̂2(2k+1), k = 0, 1, 2, 3, at level � = 5, and x̂2k+1, k = 0, 1, 2, 3, at
level � = 6. Summing up, we have to employ 27 of the 127 Fourier components to
recover â, while the computational cost is governed by solving the FFT of length 16
for getting â (up to level 3) the 3 linear systems with the coefficient matrices A(5),
A(6), and A(7), respectively.

While the condition numbers of A(�+1) in the above example are still moderate,
the choice κp = p − 1, p = 1, . . . ,M�, does not always lead to good condition
numbers if N is large. For example, for N = 1024, the recovery of a 4-sparse
vector with I (10) = I (9) = {1, 6, 22, 59} employs a 4-by-4 matrix A(10) at the last
iteration level � = 9 possessing the condition number 22742.

In order to be able to efficiently compute the linear system (5.58), we want to

preserve a Vandermonde structure for the matrix factor
(
w

κpn
(�)
r

2�

)M�

p,r=1 of A(�+1)

and at the same time ensure a good condition of this matrix. Therefore, we only

consider matrices of the form
(
w

(p−1)σ (�)n
(�)
r

2�

)M�

p,r=1, i.e., we set κp := (p − 1)σ (�)

for p = 1, . . . ,M�. The parameter σ (�) ∈ {1, 2, . . . , 2� − 1} has to be chosen in a

way such that
(
w

(p−1)σ (�)n
(�)
r

2�

)M�

p,r=1 and thus A(�+1) is well-conditioned.

In [278], it has been shown that the condition of A(�+1) mainly depends on

the distribution of the knots w
σ(�)n

(�)
r

2� on the unit circle, or equivalently on the

distribution of σ (�)n
(�)
r mod 2� in the interval [0, 2� − 1]. One simple heuristic

approach suggested in [278] to choose σ (�) is the following procedure. Note that
this procedure is only needed if M2

� < 2�.

Algorithm 5.32 (Choice of σ (�) to Compute A(�+1))
Input: � ≥ 1, M�−1, M�, I (�) = {n(�)

1 , . . . , n
(�)
M�
}, σ (�−1) if available.

If � ≤ 3 or M� = 1, choose σ (�) := 1
else
if M�−1 = M� then

if σ (�−1) is given, then σ (�) := 2σ (�−1)
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else set � := �− 1 and start the algorithm again to compute σ (�−1) first.
else

1. Fix Σ as the set of M(�) largest prime numbers being smaller than 2�−1.
2. For all σ ∈ Σ

2.1. Compute the set σI (�) := {σn
(�)
1 mod 2�, . . . , σn

(�)
M�

mod 2�}.
2.2. Order the elements of σI (�) by size and compute the smallest distance Lσ

between neighboring values.

3. Choose σ (�) := arg max {Lσ : σ ∈ Σ} . If several parameters σ achieve
the same distance Lσ , choose from this subset one σ (�) = σ that minimizes

|∑M�

k=1 w
σn

(�)
k

2� |.

Output: σ (�) ∈ {1, . . . , 2�−1}.
Computational cost: at most O(M2

� ) flops disregarding the computation of Σ .

The set Σ can be simply precomputed and is not counted as computational cost.
Step 2 of the Algorithm 5.32 requires O(M2

� ) flops and Step 3 only O(M�) flops.
Employing Algorithm 5.32 for computing A(�+1) of the form

A(�+1) = 2−�−1 (
w

(p−1)σ (�)n
(�)
r

2�

)M�

p,r=1 diag
(
w
−n

(�)
1

2�+1 , . . . , w
−n

(�)
M�

2�+1

)

in Algorithm 5.30 (for M2
� < 2�), we can solve the linear system (5.58) with

O(M2
� ) flops using the Vandermonde structure, see, e.g., [84]. Altogether, since

M� ≤ M for all � = 0, . . . , t , the computational cost of Algorithm 5.30 is at
most O(2� log 2�) ≤ O(M2 logM2) to execute all levels � = 0 to "log2 M

2#, and
O((t − �)M2) = O((logN − logM2)M2) for the remaining steps. Thus we obtain
overall computational cost of O(M2 logN), and the algorithm is more efficient
than the usual FFT of length N if M2 < N . Note that the sparsity M needs not to
be known in advance, and the Algorithm 5.30 in fact falls back automatically to an
FFT with O(N logN) arithmetical operations, if M2 ≥ N .

Remark 5.33 The additional strong condition that â satisfies Re âj ≥ 0 and Im âj ≥
0 is only needed in order to avoid cancelations. The approach similarly applies if,
e.g., the components of â are all in only one of the four quadrants. Moreover, it is
very unlikely that full cancelations occur in the periodized vectors â(�), such that the
idea almost always works for arbitrary sparse vectors â.

In [275], the sparse FFT for vectors with small frequency band has been
considered. But differently from our considerations in Sect. 5.4.2, no a priori
knowledge on the size of the frequency band is needed, but a possible band size is
automatically exploited during the algorithm. This improvement goes along with the
drawback that the range of the Fourier components needs to be restricted similarly
as in this subsection in order to avoid cancellations.
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The consideration of sublinear DFT algorithms goes back to the 1990s, we refer
to [130] for a review of these randomized methods that possess a constant error
probability. In the last years, the research on sparse FFT has been intensified, see,
e.g., [157, 263] and the survey [131]. While randomized algorithms suffer from the
fact that they provide not always correct results, there exist also recent deterministic
approaches that make no errors. Beside the results that have been presented in this
subsection, we refer to deterministic algorithms in [3, 34, 174, 175, 222] based
on arithmetical progressions and the Chinese remainder theorem. In contrast to
the results given here, these algorithms need access to special signal values in an
adaptive way, and these values are usually different from the components of the
given input vector a ∈ C

N . A further class of algorithms employs the Prony method
[164, 265, 298], see also Chap. 10, where however, the emerging Hankel matrices
can have very large condition numbers. For various applications of sparse FFT, we
refer to [156].

5.5 Numerical Stability of FFT

In this section, we show that an FFT of length N that is based on a unitary
factorization of the unitary Fourier matrix 1√

N
FN is numerically stable in practice,

if N ∈ N is a power of 2. We will employ the model of floating point arithmetic and
study the normwise forward and backward stability of the FFT.

Assume that we work with a binary floating point number system F ⊂ R, see
[168, pp. 36–40]. This is a subset of real numbers of the form

x̃ = ±m× 2e−t = ±2e
(d1

2
+ d2

4
+ . . .+ dt

2t

)

with precision t , exponent range emin ≤ e ≤ emax, and d1, . . . , dt ∈ {0, 1}. The
mantissa m satisfies 0 ≤ m ≤ 2t − 1, where for each x̃ ∈ F \ {0} it is assumed
that m ≥ 2t−1, i.e., d1 = 1. In case of single precision (i.e., 24 bits for the
mantissa and 8 bits for the exponent), the so-called unit roundoff u is given by
u = 2−24 ≈ 5.96 × 10−8. For double precision (i.e., 53 bits for the mantissa
and 11 bits for the exponent) we have u = 2−53 ≈ 1.11 × 10−16, see [168,
p. 41].

We use the standard model of binary floating point arithmetic in R, see [134,
pp. 60–61] or [168, p. 40], that is based on the following assumptions:

• If a ∈ R is represented by a floating point number fl(a) ∈ F, then

fl(a) = a (1+ ε) , |ε| ≤ u ,

where u is the unit roundoff.
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• For arbitrary floating point numbers a, b ∈ F and any arithmetical operation
◦ ∈ {+, −, ×, /} we assume that

fl(a ◦ b) = (a ◦ b) (1+ ε) , |ε| ≤ u .

For complex arithmetic that is implemented by real operations, we can conclude
the following estimates, see also [67].

Lemma 5.34 For x = a + i b, y = c + i d ∈ C with a, b, c, d ∈ F we have

|fl(x + y)− (x + y)| ≤ |x + y| u ,

|fl(x y)− x y| ≤ (1+√2) |x y| u .

Proof Using the assumptions, we obtain

fl(x + y) = fl(a + c)+ i fl(b + d)

= (a + c) (1+ ε1)+ i (b + d) (1+ ε2) = (x + y)+ ε1(a + c)+ i ε2(b + d)

with |ε1|, |ε2| ≤ u, and thus

|fl(x + y)− (x + y)|2 ≤ |ε1|2 |a + c|2 + |ε2|2 |b + d|2 ≤ u2 |x + y|2.

The estimate for complex multiplication can be similarly shown, see [67,
Lemma 2.5.3].

We study now the influence of floating point arithmetic for the computation of
the DFT(N), where N ∈ N \ {1}. Let x ∈ C

N be an arbitrary input vector and

1√
N

FN = 1√
N

(
wjk

)N−1
j,k=0 , wN := e−2π i/N .

We denote with y := 1√
N

FN x the exact output vector and with ỹ ∈ C
N the vector

that is computed by floating point arithmetic with unit roundoff u. Then, there exists
a vector Δx ∈ C

N such that ỹ can be written as

ỹ = 1√
N

FN (x+Δx) .

According to [168, pp. 129–130], we say that an algorithm computing the matrix–
vector product 1√

N
FN x is normwise backward stable, if for all vectors x ∈ C

N

there exists a positive constant kN such that

‖Δx‖2 ≤
(
kN u+O(u2)

)‖x‖2 (5.59)
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holds with kN u& 1. Here, ‖x‖2 :=
(∑N−1

k=0 |xk|2
)1/2

denotes the Euclidean norm
of x. Observe that the size of kN is a measure for the numerical stability of the
algorithm. Since by (3.31), the matrix 1√

N
FN is unitary, we conclude that

‖Δx‖2 = ‖ 1√
N

FN Δx‖2 = ‖̃y− y‖2 , ‖x‖2 = ‖ 1√
N

FN x‖2 = ‖y‖2 .

Thus, the inequality (5.59) implies

‖̃y− y‖2 = ‖Δx‖2 ≤
(
kN u+O(u2)

) ‖x‖2 =
(
kN u+O(u2)

)‖y‖2 , (5.60)

i.e., we also have the normwise forward stability.
In the following, we will derive worst case estimates for the backward stability

constant kN for the Sande–Tukey FFT and compare it to the constant obtained by
employing a direct computation of 1√

N
FN x.

Let us assume that the N th roots of unity wk
N , k = 0, . . . , N−1, are precomputed

by a direct call, i.e.,

w̃k
N := fl

(
cos

2kπ

N

)− i fl
(

sin
2kπ

N

)

using quality library routines, such that

∣∣fl
(

cos
2kπ

N

)− cos
2kπ

N

∣∣ ≤ u ,
∣∣fl

(
sin

2kπ

N

)− sin
2kπ

N

∣∣ ≤ u .

Then it follows that

|w̃k
N −wk

N |2 ≤
∣
∣fl

(
cos

2kπ

N

)− cos
2kπ

N
− i fl

(
sin

2kπ

N

)+ i sin
2kπ

N

∣
∣2 ≤ 2 u2 ,

i.e., |w̃k
N −wk

N | ≤
√

2 u. The direct call is most accurate but more time consuming
than other precomputations of wk

N using recursions, see, e.g., [67, 295].
Next, we study how floating point errors accumulate. Assume that x̃1 and x̃2

have been obtained from previous floating point computations with discrepancies
|̃xj − xj | = δ(xj ) u + O(u2) for j = 1, 2. Then x̃ = fl(̃x1 ◦ x̃2) has a new
discrepancy δ(x), where x = x1 ◦ x2.

Lemma 5.35 Let x1, x2 ∈ C with |̃xj − xj | ≤ δ(xj ) u + O(u2) for j = 1, 2 be
given. Then we have

|fl(̃x1 + x̃2)− (x1 + x2)| ≤
(|x1 + x2| + δ(x1)+ δ(x2)

)
u+O(u2) ,

|fl(̃x1 x̃2)− (x1 x2)| ≤
(
(1+√2) |x1 x2| + δ(x1) |x2| + δ(x2) |x1|

)
u+O(u2) .
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Proof We obtain by Lemma 5.34 with floating point numbers x̃1, x̃2 ∈ F,

|fl(̃x1 + x̃2)− (x1 + x2)| ≤ |fl(̃x1 + x̃2)− (̃x1 + x̃2)| + |(̃x1 + x̃2)− (x1 + x2)|
≤ (|̃x1 + x̃2| + δ(x1)+ δ(x2)

)
u+ O(u2) = (|x1 + x2| + δ(x1)+ δ(x2)

)
u+ O(u2) ,

where we have used |̃x1 + x̃2| = |x1 + x2| +O(u). Similarly, for the multiplication
we obtain

|fl(̃x1 x̃2)− (x1 x2)| ≤ |fl(̃x1 x̃2)− (̃x1 x̃2)| + |(̃x1 x̃2)− (x1 x2)| .
Lemma 5.34 implies for the first term

|fl(̃x1 x̃2)− (̃x1 x̃2)| ≤ (1+√2) |̃x1 x̃2| u+O(u2)

and for the second term

|(̃x1 x̃2)− (x1 x2)| ≤ |̃x2 (̃x1 − x1)| + |x1 (̃x2 − x2)|
≤ (|x2| + δ(x2) u

)
δ(x1) u+ |x1| δ(x2) u+O(u2) .

In particular, |̃x1 x̃2| = |x1 x2| +O(u). Thus the assertion follows.

In order to estimate the stability constant kN for a DFT(N) algorithm, we first
recall the roundoff error for scalar products of vectors.

Lemma 5.36 Let N ∈ N be fixed. Let x = (xj )
N−1
j=0 , y = (yj )

N−1
j=0 ∈ C

N be

arbitrary vectors and let x̃ = (̃xj )
N−1
j=0 , ỹ = (ỹj )

N−1
j=0 ∈ (F+ iF)N be their floating

point representations such that |̃xj − xj | ≤
√

2 |xj | u + O(u2) and |̃yj − yj | ≤
|yj | u+O(u2) for j = 0, . . . , N − 1.

Then we have

|fl(̃xỹ)− (xy)| ≤ (
(N + 1+ 2

√
2) |x||y|)u+O(u2)

for recursive summation, and

|fl(̃xỹ)− (xy)| ≤ (
(t + 2+ 2

√
2)|x||y|)u+ O(u2)

for cascade summation, where |x| := (|xj |)N−1
j=0 and t := �log2 N� forN ∈ N \ {1}.

Proof

1. We show the estimate for recursive estimation using induction with respect to N .
For N = 1 it follows by Lemma 5.35 with δ(x0) ≤

√
2 |x0| and δ(y0) ≤ |y0| that

|fl(̃x0 ỹ0)− x0 y0| ≤
(
(1+√2) |x0| |y0| + |x0| |y0| +

√
2 |y0| |x0|

)
u+O(u2)

= (
(2+ 2

√
2) |x0| |y0|

)
u+O(u2) .
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Assume now that z̃ is the result of the computation of x̃1 ỹ1 in floating point
arithmetic for x̃1, ỹ1 ∈ C

N . Let x̃ := (̃x1 , x̃N+1)
 ∈ C

N+1 and ỹ :=
(̃y1 , ỹN+1)

 ∈ C
N+1. Using the intermediate result z̃, we find by Lemma 5.35

and the induction hypothesis with discrepancies δ(z) ≤ (N + 1 + 2
√

2) |z| and
δ(xN+1 yN+1) ≤ (2+ 2

√
2) |xN+1 yN+1|,

|fl(̃xỹ)− (xy)| = |fl(z̃+ fl(̃xN+1 ỹN+1)
)− (xy)|

≤ (|z+ xN+1 yN+1| + δ(z)+ δ(xN+1 yN+1)
)
u+O(u2)

≤ (|x||y| + (N + 1+ 2
√

2) |x1||y1| + (2+ 2
√

2) |xN+1 yN+1|
)
u+O(u2)

≤ (
(N + 2+ 2

√
2) |x||y|)u+O(u2) .

2. For cascade summation, we also proceed by induction, this time over t , where
t = �log2 N� and N ∈ N \ {1}. For t = 1, i.e., N = 2, it follows from the
recursive summation that

|fl(̃xỹ)− (xy)| ≤ (
(3+ 2

√
2) |x||y|)u+O(u2) .

Assume now that z̃1 is the result of the computation of x̃1 ỹ1 in floating point
arithmetic for x̃1, ỹ1 ∈ C

N , and z̃2 is the result of the computation of x̃2 ỹ2
in floating point arithmetic for x̃2, ỹ2 ∈ C

N using cascade summation. Let x̃ :=
(̃x1 , x̃2 ) ∈ C

2N and ỹ := (̃y1 , ỹ2 ) ∈ C
2N . Using the intermediate results z̃1,

z̃2 for the scalar products z1 = x1 y1 and z2 = x2 y2, we obtain by Lemma 5.35
and the induction hypothesis

|fl(̃xỹ)− (xy)| = |fl(̃z1 + z̃2)| ≤
(|z1 + z2| + δ(z1)+ δ(z2)

)
u+O(u2)

≤ (|x||y| + (t + 2+ 2
√

2) |x1||y1| + (t + 2+ 2
√

2) |x2||y2|
)
u+O(u2)

≤ (
(t + 3+ 2

√
2) |x||y|)u+ O(u2) .

Thus, the assertion follows.

We are now ready to estimate the backward stability constant for the direct
computation of the DFT(N) of radix-2 length N .

Theorem 5.37 Let N = 2t , t ∈ N, be given. Assume that the entries of the floating
point representation of the Fourier matrix F̃N satisfy |w̃k

N − wk
N | ≤

√
2u for k =

0, . . . , N − 1. Further let x̃ = (̃xj )
N−1
j=0 be the vector of floating point numbers

representing x = (xj )
N−1
j=0 ∈ C

N with |̃xj − xj | ≤ |xj | u.
Then the direct computation of 1√

N
FN x is normwise backward stable, and we

have

‖fl( 1√
N

F̃N x̃
)− 1√

N
FN x‖2 ≤

(
kN u+ O(u2)

) ‖x‖2
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with the constant

kN =
{√

N (N + 1+ 2
√

2) for recursive summation ,√
N (log2 N + 2+ 2

√
2) for cascade summation .

Proof We apply Lemma 5.36 to each component of the matrix–vector product
1√
N

FN x, not counting the factor 1√
N

which is for even t only a shift in binary
arithmetic. For the j th component, we obtain for recursive summation

|fl( 1√
N

F̃N x̃)j − (
1√
N

FN x)j | ≤ 1√
N

(
(N + 1+ 2

√
2) ((1)N−1

k=0 )|x|)u+O(u2)

= ( 1√
N

(N + 1+ 2
√

2) ‖x‖1
)
u+O(u2) ≤ (

(N + 1+ 2
√

2) ‖x‖2
)
u+O(u2) .

Here we have used that ‖x‖1 ≤
√
N ‖x‖2. Taking now the Euclidean norm, it

follows that

(N−1∑

j=0

|fl( 1√
N

F̃N x̃)j−(
1√
N

FN x)j |2
)1/2 ≤ (√

N (N+1+2
√

2) ‖x‖2
)
u+O(u2) .

The result for cascade summation follows analogously.

In comparison, we estimate now the worst case backward stability constant
for a radix-2 FFT considered in Sect. 5.2. Particularly, we employ the matrix
factorization (5.10) related to the Sande–Tukey FFT, i.e.,

FN = RN

t∏

n=1

Tn (IN/2n ⊗ F2 ⊗ I2n−1) = RN M(t)
N M(t−1)

N . . . M(1)
N ,

where

M(j)
N := Tt−j (I2j ⊗ F2 ⊗ I2t−j−1) . (5.61)

Recall that RN is a permutation matrix, and

Tt−j := I2j ⊗ D2t−j ,

D2t−j := diag (I2t−j−1 , W2t−j−1) , W2t−j−1 := diag (w
j

2t−j )
2t−j−1−1
j=0 .

In particular, T1 = IN . The matrices I2j ⊗ F2 ⊗ I2t−j−1 are sparse with only two
nonzero entries per row, and these entries are either 1 or −1. Multiplication with
these matrices just means one addition or one subtraction per component.
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Theorem 5.38 Let N = 2t , t ∈ N. Assume that |w̃k
N − wk

N | ≤
√

2u for k =
0, . . . , N − 1. Further let x̃ = (̃xj )

N−1
j=0 be the vector of floating point numbers

representing x = (xj )
N−1
j=0 with |̃xj − xj | ≤ |xj | u.

Then the Sande–Tukey FFT is normwise backward stable with the constant

kN = (2+ 3
√

2) log2 N + 1 .

Proof

1. Let x̃(0) := x̃ such that ‖̃x(0) − x(0)‖2 ≤ u ‖x‖2. The Sande–Tukey FFT
is employed by successive multiplication with the sparse matrices M(j)

N , j =
1, . . . , t , and the permutation RN in (5.61). We introduce the vectors

x̃(j) := fl
(
M̃(j)

N x̃(j−1)) , j = 1, . . . , t ,

while x(j) := M(j)
N . . .M(1)

N x is the exact result after j steps. Here,

M̃(j)

N := T̃t−j (I2j ⊗ F2 ⊗ I2t−j−1)

denotes the floating point representation of M(j)
N using w̃k

N . Note that 1√
N

RN x̃(t)

is the result of the algorithm in floating point arithmetic, where we do not take
into account errors caused by the multiplication with 1√

N
as before. We consider

the errors ej of the form

ej := ‖̃x(j) − M̃(j) x̃(j−1)‖2 , j = 1, . . . , t .

Then we can estimate the floating point error as follows:

‖̃x(j ) − x(j )‖2 ≤ ‖̃x(j ) − M̃(j ) x̃(j−1)‖2 + ‖M̃(j ) x̃(j−1) − M̃(j ) x(j−1)‖2

+‖M̃(j ) x(j−1) −M(j ) x(j−1)‖2

≤ ej + ‖M̃(j )‖2 ‖̃x(j−1) − x(j−1)‖2 + ‖M̃(j ) −M(j )‖2 ‖x(j−1)‖2.

Observing that

‖M̃(j)‖2 = ‖T̃t−j‖2 ‖I2j ⊗ F2 ⊗ I2t−j−1‖2 =
√

2 ‖T̃t−j‖2 ≤
√

2 (1+√2u)

and that

‖M̃(j) −M(j)‖2 = ‖(T̃t−j − Tt−j ) (I2j ⊗ F2 ⊗ I2t−j−1)‖2

≤ √2 ‖T̃t−j − Tt−j‖2 < 2 u ,
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we obtain

‖̃x(j)−x(j)‖2 ≤ ej+
√

2 ‖̃x(j−1)−x(j−1)‖2+2 ‖x(j−1)‖2 u+O(u2) . (5.62)

2. We show now that ej ≤ 2
√

2 (1 + √2) ‖x(j−1)‖2 u for all j = 1, . . . , t .
Introducing the intermediate vectors

ỹ(j) := fl
(
(I2j ⊗ F2 ⊗ I2t−j−1) x̃(j−1)) , y(j) := (I2j ⊗ F2 ⊗ I2t−j−1) x̃(j−1) ,

we conclude that x̃(j) = fl
(
T̃t−j ỹ(j)

)
. By Lemma 5.35 with δ(̃x

(j)

k ) = 0 for all
k, we find for each component

|̃y(j)
k − y

(j)
k | ≤ |y(j)

k | u+O(u2) (5.63)

and thus

‖̃y(j) − y(j)‖2 ≤ ‖y(j)‖2 u = √2 ‖̃x(j−1)‖2 u ,

where we have used that ‖I2j ⊗ F2 ⊗ I2t−j−1‖2 =
√

2. Next, the multiplication
with the diagonal matrix T̃t−j implies by Lemma 5.35

|̃x(j)
k − (M(j)

N x̃(j−1))k| = |
(
fl(T̃t−j ỹ(j))

)
k
− (

Tt−j y(j)
)
k
|

≤ (
(1+√2) |y(j)

k | + √2 |y(j)
k | + δ(y

(j)
k )

)
u+O(u2)

≤ (
2 (1+√2) |y(j)

k |)u+ O(u2) ,

where we have used the assumption |w̃k
N − wk

N | ≤
√

2u and that (5.63) implies

δ(y
(j)
k ) = |y(j)

k |. Thus, we conclude

ej = ‖̃x(j)−M̃(j) x̃(j−1)‖2 ≤ 2(1+√2) ‖y(j)‖2 u = 2
√

2 (1+√2) ‖x(j−1)‖2 u .

3. We recall that ‖x(j)‖2 = 2j/2 ‖x‖2. Thus, the relation (5.62) can be written as

‖̃x(j) − x(j)‖2 ≤ 2
√

2 (1+√2) ‖x(j−1)‖2 u+√2 ‖̃x(j−1) − x(j−1)‖2

+ 2 ‖x(j−1)‖2 u+O(u2) .

Starting with ‖̃x(0) − x(0)‖2 ≤ u ‖x‖2, we show by induction over j that

‖̃x(j) − x(j)‖2 ≤ 2j/2 (
(2j + 1)+ 3

√
2j

) ‖x‖2 u+O(u2)
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is true for j = 1, . . . , t . For j = 1,

‖̃x(1) − x(1)‖2 ≤ 2
√

2 (1+√2) ‖x(0)‖2 u+√2 ‖̃x(0) − x(0)‖2 + 2 ‖x(0)‖2 u+O(u2)

= √2 (3+ 3
√

2) ‖x‖2 ,

and the assertion is correct. Assume now that the assertion is true for some j ∈
{1, . . . , t − 1}. Then

‖̃x(j+1) − x(j+1)‖2 ≤ 2 (
√

2+ 3) ‖x(j)‖2 u+√2 ‖̃x(j) − x(j)‖2 +O(u2)

= 2 (
√

2+ 3) 2j/2 ‖x‖2 u+ 2(j+1)/2 (
(2j + 1)+ 3

√
2j

) ‖x‖2 u+O(u2)

= 2(j+1)/2 (
(2j + 3)+ 3

√
2(j + 1)

) ‖x‖2 u+O(u2) .

Finally, it follows with F̃N = RN M̃(t)
N . . . M̃(1)

N and t = log2 N that

‖fl( 1√
N

F̃N x̃
)− 1√

N
FN x‖2 = 1√

N
‖̃x(t) − x(t)‖2

≤ (
(2+ 3

√
2) log2 N + 1

) ‖x‖2 u+O(u2) .

Comparing the constants of backward stability for the usual matrix–vector
multiplication and the Sande–Tukey FFT, we emphasize that the FFT not only
saves computational effort but also provides much more accurate results than direct
computation.

Remark 5.39 In [168, pp. 452–454], the numerical stability of the Cooley–Tukey
radix-2 FFT is investigated. The obtained result kN = O(log2 N) for various FFTs
has been shown in different papers, see [8, 67, 304, 384] under the assumption that x
is contained in F

N and all twiddle factors are either exactly known or precomputed
by direct call. In [67, 295, 321, 351], special attention was put on the influence of
the recursive precomputation of twiddle factors that can essentially deteriorate the
final result.

Beside worst case estimates, also the average case backward numerical stability
of FFT has been studied, see [60, 350] with the result kN = O(

√
log2 N).



Chapter 6
Chebyshev Methods and Fast DCT
Algorithms

This chapter is concerned with Chebyshev methods and fast algorithms for the
discrete cosine transform (DCT). Chebyshev methods are fundamental for the
approximation and integration of real-valued functions defined on a compact
interval. In Sect. 6.1, we introduce the Chebyshev polynomials of first kind and
study their properties. Further, we consider the close connection between Chebyshev
expansions and Fourier expansions of even 2π-periodic functions, the convergence
of Chebyshev series, and the properties of Chebyshev coefficients. Section 6.2
addresses the efficient evaluation of polynomials, which are given in the orthogonal
basis of Chebyshev polynomials. We present fast DCT algorithms in Sect. 6.3. These
fast DCT algorithms are based either on the FFT or on the orthogonal factorization
of the related cosine matrix.

In Sect. 6.4, we describe the polynomial interpolation at Chebyshev extreme
points (together with a barycentric interpolation formula) and the Clenshaw–Curtis
quadrature. Fast algorithms for the evaluation of polynomials at Chebyshev extreme
points, for computing products of polynomials as well as for interpolation and
quadrature involve different types of the DCT. In Sect. 6.5, we consider the discrete
polynomial transform which is a far-reaching generalization of the DCT.

6.1 Chebyshev Polynomials and Chebyshev Series

The basis of Chebyshev polynomials possesses a lot of favorable properties and is
therefore of high interest as an alternative to the monomial basis for representing
polynomials and polynomial expansions.
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G. Plonka et al., Numerical Fourier Analysis, Applied and Numerical
Harmonic Analysis, https://doi.org/10.1007/978-3-030-04306-3_6

305

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04306-3_6&domain=pdf
https://doi.org/10.1007/978-3-030-04306-3_6


306 6 Chebyshev Methods and Fast DCT Algorithms

6.1.1 Chebyshev Polynomials

We consider the interval I := [−1, 1] and define the functions

Tk(x) := cos(k arccos x) (6.1)

for all k ∈ N0 and all x ∈ I . Applying the substitution x = cos t , t ∈ [0, π], we
observe that

Tk(cos t) = cos(kt) , k ∈ N0 , (6.2)

for all t ∈ [0, π] and hence for all t ∈ R. Formula (6.2) implies that the graph of T5
on I is a “distorted” harmonic oscillation, see Fig. 6.1.

The trigonometric identity

cos(k + 1)t + cos(k − 1)t = 2 cos t cos(kt) , k ∈ N ,

provides the important recursion formula

Tk+1(x) = 2x Tk(x)− Tk−1(x) , k ∈ N , (6.3)

with initial polynomials T0(x) = 1 and T1(x) = x. Thus Tk is an algebraic
polynomial of degree k with leading coefficient 2k−1. Clearly, the polynomials Tk

can be extended to R such that the recursion formula (6.3) holds for all x ∈ R. The
polynomial Tk : R → R of degree k ∈ N0 is called the kth Chebyshev polynomial
of first kind.

Remark 6.1 Originally these polynomials were investigated in 1854 by the Russian
mathematician P.L. Chebyshev (1821–1894), see Fig. 6.2 (Image source: [347]).
Note that the Russian name has several transliterations (such as Tschebyscheff,
Tschebyschew, and Tschebyschow). We emphasize that the Chebyshev polynomials
are of similar importance as the complex exponentials (1.10) for the approximation

π

−1

1

−1 1

−1

1

Fig. 6.1 Comparison between cos(5·) restricted on [0, π] (left) and T5 restricted on I (right)
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Fig. 6.2 The Russian
mathematician Pafnuty
Lvovich Chebyshev
(1821–1894)

Fig. 6.3 The Chebyshev
polynomials T0 (black), T1
(red), T2 (orange), T3 (green),
T4 (blue), and T5 (violet)
restricted on I

−1 1

−1

1

of 2π-periodic functions. There exist several excellent publications [238, 262, 310,
356] on Chebyshev polynomials.

For k = 2, . . . , 5, the recursion formula (6.3) yields

T2(x) = 2x2 − 1 , T3(x) = 4x3 − 3x ,

T4(x) = 8x4 − 8x2 + 1 , T5(x) = 16x5 − 20x3 + 5x ,

Figure 6.3 shows the Chebyshev polynomials Tk restricted on I for k = 0, . . . , 5.
From

arccos(−x) = π − arccos x , x ∈ I ,
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it follows by (6.1) that for all k ∈ N0 and all x ∈ I

Tk(−x) = cos
(
k arccos(−x)

) = cos(kπ − k arccos x) = (−1)k Tk(x) . (6.4)

Hence T2k, k ∈ N0, is even and T2k+1, k ∈ N0, is odd. Further, we have for all
k ∈ N0

Tk(1) = 1 , Tk(−1) = (−1)k , T2k(0) = (−1)k+1 , T2k+1(0) = 0 .

Lemma 6.2 For each k ∈ N0 the Chebyshev polynomial Tk possesses the explicit
representation

Tk(x) =
{

1
2

[
(x + i

√
1− x2)k + (x − i

√
1− x2)k

]
x ∈ I ,

1
2

[
(x −√x2 − 1)k + (x +√x2 − 1)k

]
x ∈ R \ I .

Proof For k = 0 and k = 1 these explicit expressions yield T0(x) = 1 and T1(x) =
x for all x ∈ R. Simple calculation shows that for arbitrary k ∈ N the explicit
expressions fulfill the recursion formula (6.3) for all x ∈ R. Hence these explicit
formulas represent Tk .

Let L2,w(I) denote the real weighted Hilbert space of all measurable functions
f : I → R with

∫ 1

−1
w(x) f (x)2 dx <∞

with the weight

w(x) := (1− x2)−1/2, x ∈ (−1, 1).

The inner product of L2,w(I) is given by

〈f, g〉L2,w(I ) := 1

π

∫ 1

−1
w(x) f (x) g(x) dx

for all f , g ∈ L2,w(I), and the related norm of f ∈ L2,w(I) is equal to

‖f ‖L2,w(I ) := 〈f, f 〉1/2
L2,w(I ) .

As usual, almost equal functions are identified in L2,w(I). The following result
shows that the Chebyshev polynomials satisfy similar orthogonality relations as the
complex exponentials (1.10) in the weighted Hilbert space.



6.1 Chebyshev Polynomials and Chebyshev Series 309

Theorem 6.3 The Chebyshev polynomials Tk , k ∈ N0, form a complete orthogonal
system in L2,w(I). For all k, � ∈ N0 we have

〈Tk, T�〉L2,w(I ) =

⎧
⎪⎨

⎪⎩

1 k = � = 0 ,

1
2 k = � > 0 ,

0 k �= � .

Proof The orthogonality of the Chebyshev polynomials follows immediately from
the identity

〈Tk, T�〉L2,w(I ) = 1

π

∫ π

0
cos(kt) cos(�t) dt = 1

2π

∫ π

0

(
cos(k− �)t + cos(k+ �)t

)
dt .

The completeness of the orthogonal system {Tk : k ∈ N0} is a consequence of
Theorem 1.1: For f ∈ L2,w(I) with ak[f ] = 0 for all k ∈ N0 we can conclude that

0 = ak[f ] = 2 〈f, Tk〉L2,w(I ) = 1

π

∫ π

−π

ϕ(t) cos(kt) dt

with ϕ = f (cos ·). Since ϕ is even, we obtain for all k ∈ Z

∫ π

−π

ϕ(t) e−ikt dt = 0 .

Hence ϕ = 0 almost everywhere on R by Theorem 1.1 and thus f = 0 almost
everywhere on I .

We summarize some further useful properties of the Chebyshev polynomials on I .

Lemma 6.4 The Chebyshev polynomials (6.1) possess the following properties:

1. For all k ∈ N0 we have |Tk(x)| ≤ 1 for x ∈ I .
2. The Chebyshev polynomial Tk , k ∈ N, has exactly k + 1 extreme points

x
(k)
j := cos

jπ

k
∈ I , j = 0, . . . , k ,

with Tk(x
(k)
j ) = (−1)j .

3. The Chebyshev polynomial Tk , k ∈ N, possesses k simple zeros

z
(k)
j := cos

(2j + 1) π

2k
, j = 0, . . . , k − 1 .

Between two neighboring zeros of Tk+1 there is exactly one zero of Tk .
4. For all k, � ∈ N0 we have

2 Tk T� = Tk+� + T|k−�| , Tk(T�) = Tk� . (6.5)



310 6 Chebyshev Methods and Fast DCT Algorithms

The proof of this lemma results immediately from the representation (6.1). For
fixed N ∈ N \ {1}, the points x

(N)
j , j = 0, . . . , N , are called Chebyshev extreme

points and the points z
(N)
j , j = 0, . . . , N − 1, are called Chebyshev zero points.

Sometimes Chebyshev extreme points are also called Chebyshev points.
A polynomial of the form p(x) = p0 + p1x + . . . + pnx

n with the leading
coefficient pn = 1 is called monic. For example, 2−k Tk+1 ∈ Pk+1, k ∈ N0, is
monic. We will show that the polynomial 2−k Tk+1 has minimal norm among all
monic polynomials of Pk+1 in C(I).

Lemma 6.5 Let k ∈ N0 be given. For each monic polynomial p ∈Pk+1 we have

2−k = max
x∈I 2−k |Tk+1(x)| ≤ max

x∈I |p(x)| = ‖p‖C(I) .

Proof

1. For x
(k+1)
j := cos jπ

k+1 , j = 0, . . . , k + 1, the monic polynomial 2−k Tk+1

possesses the extreme value (−1)j 2−k . Hence, we see that

2−k = max
x∈I 2−k |Tk+1(x)| .

2. Assume that there exists a monic polynomial p ∈ Pk+1 with |p(x)| < 2−k for
all x ∈ I . Then the polynomial q := 2−k Tk+1−p ∈Pk has alternating positive
and negative values at the k + 2 points x

(k+1)
j , j = 0, . . . , k + 1. Thus, by the

intermediate value theorem, q possesses at least k + 1 distinct zeros such that
q = 0. Consequently we receive p = 2−k Tk+1 contradicting our assumption.

Remark 6.6 The Chebyshev polynomials of second kind can be defined by the
recursion formula

Uk+1(x) = 2x Uk(x)− Uk−1(x) , k ∈ N ,

starting with U0(x) = 1 and U1(x) = 2x for all x ∈ R. For x ∈ (−1, 1), the
Chebyshev polynomials of second kind can be represented in the form

Uk(x) = sin
(
(k + 1) arccos x

)

sin(arccos x)
, k ∈ N0 . (6.6)

Comparing this formula with (6.1), we conclude that

(k + 1) Uk = T ′k+1 , k ∈ N0 . (6.7)

Note that for all k ∈ N0 we have

Uk(−1) = (−1)k (k+1) , Uk(1) = k+1 , U2k(0) = (−1)k , U2k+1(0) = 0 .

(6.8)
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Further, the n+ 1 polynomials Uk , k = 0, . . . , n, form an orthonormal basis of Pn

with respect to the inner product

2

π

∫ 1

−1

√
1− x2 f (x) g(x) dx .

Remark 6.7 Chebyshev polynomials of first and second kind are special Jacobi
polynomials which are orthogonal polynomials related to the inner product

∫ 1

−1
(1− x)α (1+ x)β f (x) g(x) dx .

with certain parameters α > −1 and β > −1.

Finally we consider the recursive computation of derivatives and integrals of
Chebyshev polynomials.

Lemma 6.8 The derivative of the Chebyshev polynomial Tk fulfills the recursion
formula

T ′k = 2k Tk−1 + k

k − 2
T ′k−2 , k = 3, 4 . . . , (6.9)

starting with T ′0 = 0, T ′1 = T0, and T ′2 = 4 T1.
The integral of the Chebyshev polynomial Tk satisfies the formula

∫ x

−1
Tk(t) dt = 1

2 (k + 1)
Tk+1(x)− 1

2 (k − 1)
Tk−1(x) + (−1)k−1

k2 − 1
, k = 2, 3 . . . ,

(6.10)

and
∫ x

−1
T0(t) dt = T1(x)+ 1 ,

∫ x

−1
T1(t) dt = 1

4
T2(x)− 1

4
.

Particularly it follows for all k ∈ N0 that

∫ 1

−1
T2k(t) dt = −2

4k2 − 1
,

∫ 1

−1
T2k+1(t) dt = 0 . (6.11)

Proof

1. Let k ∈ N \ {1}. Substituting x = cos t , t ∈ [0, π], we obtain Tk(x) = cos(kt)
by (6.1). Differentiation with respect to t provides

1

k
T ′k(x) =

sin(kt)

sin t
, t ∈ (0, π) .
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Thus, for t ∈ (0, π), i.e., x ∈ (−1, 1), it follows the equation

1

k + 1
T ′k+1(x)−

1

k − 1
T ′k−1(x) =

sin(k + 1)t − sin(k − 1)t

sin t

= 2 cos(kt) = 2 Tk(x) .

We conclude that the polynomial identity

1

k + 1
T ′k+1 −

1

k − 1
T ′k−1 = 2 Tk (6.12)

is valid on R.
2. Integration of (6.12) yields that

∫ x

−1
Tk(t) dt = 1

2 (k + 1)
Tk+1(x)− 1

2 (k − 1)
Tk−1(x)+ ck

with some integration constant ck . Especially for x = −1 we obtain by Tk(−1) =
(−1)k that

0 = (−1)k+1

2 (k + 1)
− (−1)k−1

2 (k − 1)
+ ck

and hence

ck = (−1)k−1

k2 − 1
.

Thus, we have shown (6.10). For x = 1 we conclude now (6.11) from Tk(1)
= 1.

6.1.2 Chebyshev Series

In this section we consider real-valued functions defined on the compact interval
I := [−1, 1]. By the substitution x = cos t , t ∈ [0, π], the interval [0, π] can be
one-to-one mapped onto I . Conversely, the inverse function t = arccosx, x ∈ I ,
maps one-to-one I onto [0, π] (see Fig. 6.4).

Let f : I → R be an arbitrary real-valued function satisfying

∫ 1

−1

1√
1− x2

f (x)2 dx <∞ .
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π

−1

1

1 1

π

−

Fig. 6.4 The cosine function restricted on [0, π] (left) and its inverse function arccos (right)

Since

∫ 1

−1

1√
1− x2

dx = π , (6.13)

each continuous function f : I → R fulfills the above condition. Now we form
f (cos ·) : [0, π] → R and extend this function on R by

ϕ(t) := f (cos t) , t ∈ R .

Obviously, ϕ is a 2π-periodic, even function with

∫ π

0
ϕ(t)2 dt =

∫ 1

−1

1√
1− x2

f (x)2 dx <∞ .

We denote the subspace of all even, real-valued functions of L2(T) by L2,even(T).
Recall that by Theorem 1.3 each function ϕ ∈ L2,even(T) can be represented as a
convergent real Fourier series

ϕ(t) = 1

2
a0(ϕ)+

∞∑

k=1

ak(ϕ) cos(kt) , t ∈ R , (6.14)

with the Fourier coefficients

ak(ϕ) := 1

π

∫ π

−π

ϕ(t) cos(kt) dt = 2

π

∫ π

0
ϕ(t) cos(kt) dt . (6.15)

Here, convergence in L2(T) means that

lim
n→∞‖ϕ − Snϕ‖L2(T) = 0 , (6.16)
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where

Snϕ := 1

2
a0(ϕ)+

n∑

k=1

ak(ϕ) cos(k·) (6.17)

is the nth partial sum of the Fourier series. If we restrict (6.14) onto [0, π] and
substitute t = arccos x, x ∈ I , then we obtain

ϕ(arccosx) = f (x) = 1

2
a0(ϕ)+

∞∑

k=1

ak(ϕ) Tk(x) , x ∈ I ,

with Tk being the Chebyshev polynomials defined in (6.1). Substituting t =
arccos x, x ∈ I , in (6.15), we obtain for ϕ(t) = f (cos t)

ak[f ] := ak(ϕ) = 2

π

∫ 1

−1
w(x) f (x) Tk(x) dx , k ∈ N0 , (6.18)

with the weight

w(x) := (1− x2)−1/2 , x ∈ (−1, 1) .

The coefficient ak[f ] in (6.18) is called kth Chebyshev coefficient of f ∈ L2,w(I).

Remark 6.9 For sufficiently large N ∈ N, the numerical computation of the
Chebyshev coefficients ak[f ], k = 0, . . . , N − 1, is based on DCT introduced in
Sect. 3.5. We have

ak[f ] = ak(ϕ) = 2

π

∫ π

0
f (cos t) cos(kt) dt .

Analogously to the computation of the Fourier coefficients in Sect. 3.1, we split the
interval [0, π] into N subintervals of equal length and use the related midpoint rule
such that

ak[f ] ≈ 2

N

N−1∑

j=0

f
(

cos
(2j + 1)π

2N

)
cos

(2j + 1)kπ

2N
, k = 0, . . . , N − 1 .

These sums can be calculated by the DCT–II(N), see Sect. 6.3.
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For f (cos t) = ϕ(t), the Fourier series (6.14) of the transformed function ϕ ∈
L2,even(T) transfers to the so-called Chebyshev series of f ∈ L2,w(I) which has the
form

f = 1

2
a0[f ] +

∞∑

k=1

ak[f ] Tk .

The nth partial sum of the Chebyshev series is denoted by Cnf .

Theorem 6.10 Let f ∈ L2,w(I) be given. Then the sequence (Cnf )∞n=0 of partial
sums of the Chebyshev series converges to f in the norm of L2,w(I), i.e.

lim
n→∞‖f − Cnf ‖L2,w(I ) = 0 .

Further, for all f , g ∈ L2,w(I) the following Parseval equalities are satisfied,

2 ‖f ‖2
L2,w(I ) =

1

2
a0[f ]2 +

∞∑

k=1

ak[f ]2 ,

2 〈f, g〉L2,w(I ) = 1

2
a0[f ] a0[g] +

∞∑

k=1

ak[f ] ak[g] . (6.19)

Proof From f ∈ L2,w(I) it follows that ϕ = f (cos ·) ∈ L2(T). Therefore,
the Fourier partial sum (Snϕ)(t) coincides with the partial sum (Cnf )(x) of the
Chebyshev series, if x = cos t ∈ I for t ∈ [0, π]. By Theorem 1.3 we know that

lim
n→∞‖ϕ − Snϕ‖L2(T) = 0 .

Since

‖f − Cnf ‖L2,w(I ) = ‖ϕ − Snϕ‖L2(T) ,

we obtain the convergence of the Chebyshev series of f in L2,w(I).
The Parseval equalities for the Chebyshev coefficients are now a consequence of

the Parseval equalities for the Fourier coefficients.

A simple criterion for the uniform convergence of the Chebyshev series can be
given as follows:

Lemma 6.11 Let f ∈ C(I) with

∞∑

k=0

|ak[f ]| <∞

be given. Then the Chebyshev series of f converges absolutely and uniformly on I

to f .
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Proof By (6.1) it holds |Tk(x)| ≤ 1 for all x ∈ I . Thus, using the Weierstrass
criterion of uniform convergence, the Chebyshev series converges absolutely and
uniformly on I . The limit g is continuous on I . From the completeness of the
orthogonal system {Tk : k ∈ N0} it follows that f = g almost everywhere on
I , since their Chebyshev coefficients coincide for all k ∈ N0. Observing that f ,
g ∈ C(I), we conclude that the functions f and g are identical.

As usual by C(I) we denote the Banach space of all continuous functions f :
I → R with the norm

‖f ‖C(I) := max
x∈I |f (x)| .

Let Cr(I), r ∈ N, be the set of all r-times continuously differentiable functions
f : I → R, i.e., for each j = 0, . . . , r the derivative f (j) is continuous on (−1, 1)
and the one-sided derivatives f (j)(−1 + 0) as well as f (j)(1 − 0) exist and fulfill
the conditions

f (j)(−1+ 0) = lim
x→−1+0

f (j)(x) , f (j)(1− 0) = lim
x→1−0

f (j)(x) .

Theorem 6.12 For f ∈ C1(I), the corresponding Chebyshev series converges
absolutely and uniformly on I to f . If f ∈ Cr(I), r ∈ N, then we have

lim
n→∞ nr−1 ‖f − Cnf ‖C(I) = 0 .

Proof If f ∈ Cr(I) with r ∈ N, then the even function ϕ = f (cos ·) is contained
in Cr(T). By Theorem 1.39 we have

lim
n→∞ nr−1 ‖ϕ − Snϕ‖C(T) = 0 .

From ϕ − Snϕ = f − Cnf the assertion follows.

Example 6.13 We consider f (x) := |x|, x ∈ I . Then f ∈ C(I) is even. The related
Chebyshev coefficients of f are for k ∈ N0 of the form

a2k[f ] = 4

π

∫ 1

0
w(x) x T2k(x) dx , a2k+1[f ] = 0 .

The substitution x = cos t , t ∈ [0, π
2 ], provides for each k ∈ N0

a2k[f ] = 4

π

∫ π/2

0
cos t cos(2kt) dt = − (−1)k 4

(4 k2 − 1)π
.
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Fig. 6.5 The function
f (x) := |x|, x ∈ I , and the
partial sums Cnf of the
Chebyshev series for n = 2
(blue) and n = 4 (red)

1 1

1

−

By Theorem 6.11 the Chebyshev series of f converges absolutely and uniformly on
I to f , i.e.,

|x| = 2

π
− 4

π

∞∑

k=1

(−1)k 4

(4 k2 − 1)π
T2k(x) , x ∈ I ,

Figure 6.5 illustrates the partial sums C2f and C4f of the Chebyshev series.

Example 6.14 We consider the sign function

f (x) = sgn x :=
⎧
⎨

⎩

1 x ∈ (0, 1] ,
0 x = 0 ,

−1 x ∈ [−1, 0) .

Since f is odd, we find for all k ∈ N0

a2k[f ] = 0 , a2k+1[f ] = 4

π

∫ 1

0
w(x) T2k+1(x) dx .

Substituting x = cos t , t ∈ [0, π
2 ], we obtain

a2k+1[f ] = 4

π

∫ π/2

0
cos(2k + 1)t dt = (−1)k 4

(2k + 1) π
, k ∈ N0 .

Then the Chebyshev series of f converges pointwise to f , since the even 2π-
periodic function ϕ = f (cos ·) is piecewise continuously differentiable and hence
the Fourier series of ϕ converges pointwise to ϕ by Theorem 1.34. The jump
discontinuity at x = 0 leads to the Gibbs phenomenon, see Sect. 1.4.3. Each partial
sum Cnf of the Chebyshev series oscillates with overshoot and undershoot near
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Fig. 6.6 The function
f (x) := sgn x, x ∈ I , and
the partial sums Cnf of the
Chebyshev series for n = 8
(blue) and n = 16 (red)

−1 1

−1

1

x = 0. Figure 6.6 shows the partial sums C8f and C16f of the Chebyshev series
for the sign function f .

In the following theorem we summarize some simple properties of the Cheby-
shev coefficients.

Theorem 6.15 (Properties of Chebyshev Coefficients) For all k ∈ N0, the
Chebyshev coefficients of f , g ∈ L2,w(I) possess the following properties:

1. Linearity: For all α, β ∈ C,

ak[αf + βg] = α ak[f ] + β ak[g] .
2. Translation: For all � ∈ N0,

ak[T� f ] = 1

2

(
ak+�[f ] + a|k−�|[f ]

)
.

3. Symmetry:

ak[f (−·)] = (−1)k ak[f ] .
4. Differentiation: If additionally f ′ ∈ L2,w(I), then for all k ∈ N

ak[f ] = 1

2k

(
ak−1[f ′] − ak+1[f ′]

)
.

Proof The linearity follows immediately from the definition of the Chebyshev
coefficients. Using relation in (6.5), we conclude that

ak[T� f ] = 2

π

∫ 1

−1
w(x) f (x) T�(x) Tk(x) dx

= 1

2

(
ak+�[f ] + a|k−�|[f ]

)
.
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The symmetry is a simple consequence of (6.4). Using integration by parts, we find
that

ak[f ] = 2

π

∫ π

0
f (cos t) cos(kt) dt

= 2

kπ
f (cos t) sin(kt)

∣
∣π
0 +

2

kπ

∫ π

0
f ′(cos t) sin t sin(kt) dt

= 1

kπ

∫ π

0
f ′(cos t)

(
cos(k − 1)t − cos(k + 1)t

)
dt = 1

2k

(
ak−1[f ′] − ak+1[f ′]

)
.

This completes the proof.

We finish this section by studying the decay properties of the Chebyshev
coefficients and the Chebyshev series for expansions of smooth functions.

Theorem 6.16 For fixed r ∈ N0, let f ∈ Cr+1(I) be given. Then for all n > r , the
Chebyshev coefficients of f satisfy the inequality

|an[f ]| ≤ 2

n (n− 1) . . . (n− r)
‖f (r+1)‖C(I) . (6.20)

Further, for all n > r , the partial sum Cnf of the Chebyshev series satisfies

‖f − Cnf ‖C(I) ≤ 2

r (n− r)r
‖f (r+1)‖C(I) . (6.21)

Proof Using |Tn(x)| ≤ 1 for all x ∈ I and (6.13), we can estimate

|an[f (r+1)]| = 2

π

∣
∣
∫ 1

−1

1√
1− x2

f (r+1)(x) Tn(x) dx
∣
∣ ≤ 2 ‖f (r+1)‖C(I) .

By the differentiation property of the Chebyshev coefficients in Theorem 6.15 we
conclude that

|an[f (r)]| ≤ 1

2n

(|an−1[f (r+1)]| + |an+1[f (r+1)]|) ≤ 2

n
‖f (r+1)‖C(I) .

Analogously we receive

|an[f (r−1)]| ≤ 1

2n

(|an−1[f (r)]| + |an+1[f (r)]|) ≤ 2

n (n− 1)
‖f (r+1)‖C(I) .

If we continue in this way, we obtain (6.20) such that

|an[f ]| ≤ 2

n(n− 1) . . . (n− r)
‖f (r+1)‖C(I) ≤ 2

(n− r)r+1 ‖f (r+1)‖C(I) .
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By Theorem 6.12 the Chebyshev series of f ∈ Cr+1(I) converges uniformly on I .
Using |Tk(x)| ≤ 1 for all x ∈ I , the remainder

f − Cnf =
∞∑

k=n+1

ak[f ] Tk

can be estimated by

‖f − Cnf ‖C(I) ≤
∞∑

k=n+1

|ak[f ]| ≤ 2 ‖f (r+1)‖C(I)

∞∑

k=n+1

1

(k − r)r+1

≤ 2 ‖f (r+1)‖C(I)

∫ ∞

n

1

(t − r)r+1
dt = 2 ‖f (r+1)‖C(I)

1

r (n− r)r
.

Remark 6.17 Similar estimates of the Chebyshev coefficients ak[f ] and of the
remainder f − Cnf are shown in [356, pp. 52–54] and [233] under the weaker
assumption that f , f ′ , . . . , f (r) are absolutely continuous on I and that

∫ 1

−1

|f (r+1)(x)|√
1− x2

dx <∞ .

Summing up we can say by Theorems 6.12 and 6.16:
The smoother a function f : I → R , the faster its Chebyshev coefficients ak[f ]

tend to zero as n → ∞ and the faster its Chebyshev series converges uniformly
to f .

6.2 Fast Evaluation of Polynomials

The goal of the following considerations is the efficient evaluation of algebraic
polynomials and of polynomial operations.

6.2.1 Horner Scheme and Clenshaw Algorithm

Let Pn denote the set of all real algebraic polynomials up to degree n ∈ N0,

p(x) := p0 + p1 x + . . .+ pn xn , x ∈ [a, b] , (6.22)

where [a, b] ⊂ R is a compact interval. We want to compute a polynomial (6.22)
with real coefficients pk , k = 0, . . . , n, at one point x0 ∈ [a, b] by a low number of
arithmetic operations. In order to reduce the number of needed multiplications, we
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write p(x0) in the form of nested multiplications

p(x0) = p0 + x0

(
p1 + x0

(
p2 + x0 (. . . (pn−1 + x0 pn) . . .)

))
.

This simple idea leads to the well-known Horner scheme.

Algorithm 6.18 (Horner Scheme)

Input: n ∈ N \ {1}, x0 ∈ [a, b], pk ∈ R for k = 0, . . . , n.

1. Set qn−1 := pn and calculate recursively for j = 2, . . . , n

qn−j := pn−j+1 + x0 qn−j+1 . (6.23)

2. Form p(x0) := p0 + x0 q0.

Output: p(x0) ∈ R.

Computational cost: O(n).

Performing n real multiplications and n real additions, we arrive at the value
p(x0). But this is not the complete story of the Horner scheme. Introducing the
polynomial

q(x) := q0 + q1 x + . . .+ qn−1 xn−1 ,

we obtain by comparing coefficient method and (6.23) that

p(x) = q(x) (x − x0)+ p(x0) .

Hence the Horner scheme describes also the division of the polynomial in (6.22) by
the linear factor x−x0. Therefore, by repeated application of the Horner scheme we
can also calculate the derivatives of the polynomial (6.22) at the point x0 ∈ [a, b].
For simplicity, we only sketch the computation of p′(x0) and p′′(x0). Using the
Horner scheme, we divide q(x) by x − x0 and obtain

q(x) = r(x) (x − x0)+ q(x0) .

Then we divide the polynomial r(x) by x − x0 such that

r(x) = s(x) (x − x0)+ r(x0) .

This implies that

p(x) = r(x)(x − x0)
2 + q(x0)(x − x0)+ p(x0)

= s(x) (x − x0)
3 + r(x0) (x − x0)

2 + q(x0) (x − x0)+ p(x0)
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and hence

q(x0) = p′(x0) , r(x0) = 1

2
p′′(x0) .

As known, the monomials xk , k = 0, . . . , n, form a simple basis of Pn.
Unfortunately, the monomial basis is unfavorable from a numerical point of view.
Therefore we are interested in another basis of Pn which is more convenient for
numerical calculations. Using the Chebyshev polynomials (6.1), such a basis of Pn

can be formed by the polynomials

T
[a, b]
k (x) := Tk

(2x − a − b

b − a

)
, k = 0, . . . , n .

For the interval [0, 1] we obtain the shifted Chebyshev polynomials

T
[0, 1]
k (x) := Tk(2x − 1) .

For the properties of shifted Chebyshev polynomials, see [262, pp. 20–21].
We restrict our considerations to polynomials on I := [−1, 1] and want to

use the Chebyshev polynomials Tk , k = 0, . . . , n, as orthogonal basis of Pn. An
arbitrary polynomial p ∈Pn can be uniquely represented in the form

p = 1

2
a0 +

n∑

k=1

ak Tk (6.24)

with some coefficients ak ∈ R, k = 0, . . . , n. For an efficient computation of the
polynomial value p(x0) for fixed x0 ∈ I , we apply the Clenshaw algorithm. To this
end we iteratively reduce the degree of p by means of the recursion formula (6.3).
Assume that n ≥ 5 and an �= 0. Applying (6.3) to Tn in (6.24), we obtain

p(x0) = 1

2
a0 +

n−3∑

k=1

ak Tk(x0)+ (an−2 − bn) Tn−2(x0)+ bn−1 Tn−1(x0)

with bn := an and bn−1 := 2x0 bn+an−1. Next, with bn−2 := 2x0 bn−1−bn+an−2
it follows by (6.3) that

p(x0) = 1

2
a0 +

n−4∑

k=1

ak Tk(x0)+ (an−3 − bn−1) Tn−3(x0)+ bn−2 Tn−2(x0) .

In this way we can continue. Thus the Clenshaw algorithm can be considered as an
analogon of Algorithm 6.18, see [70].
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Algorithm 6.19 (Clenshaw Algorithm)

Input: n ∈ N \ {1}, x0 ∈ I , ak ∈ R for k = 0, . . . , n.

1. Set bn+2 = bn+1 := 0 and calculate recursively for j = 0, . . . , n

bn−j := 2x0 bn−j+1 − bn−j+2 + an−j . (6.25)

2. Form p(x0) := 1
2 (b0 − b2).

Output: p(x0) ∈ R.

The Clenshaw algorithm needs O(n) arithmetic operations and is convenient
for the computation of few values of the polynomial (6.24). The generalization to
polynomials with arbitrary three-term recurrence relation is straightforward.

6.2.2 Polynomial Evaluation and Interpolation at Chebyshev
Points

Now we want to compute simultaneously all values of an arbitrary polynomial
in (6.24) of high degree n on the grid of all Chebyshev zero points

z
(N)
k := cos

(2k + 1) π

2N
, k = 0, . . . , N − 1 , (6.26)

with an integer N ≥ n+ 1. Setting aj := 0, j = n+ 1, . . . , N − 1, and forming the
vectors

a := (
√

2

2
a0, a1, . . . , aN−1

)
, p := (

p(z
(N)
k )

)N−1
k=0 ,

we obtain

p =
√

N

2
CIII

N a (6.27)

with the orthogonal cosine matrix of type III

CIII
N =

√
2

N

(
εN(j) cos

(2k + 1)jπ

2N

)N−1
k,j=0 .

If N is a power of two, the vector p can be rapidly computed by a fast DCT–III (N)

algorithm, see Sect. 6.3.
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Algorithm 6.20 (Polynomial Values at Chebyshev Zero Points)

Input: n ∈ N \ {1}, N := 2t ≥ n+ 1 with t ∈ N \ {1}, ak ∈ R for k = 0, . . . , n.

1. Set aj := 0, j = n+ 1, . . . , N − 1, and a := (
√

2
2 a0, a1, . . . , aN−1)

.
2. Compute (6.27) by Algorithm 6.30 or 6.37.

Output: p(z(N)
k ) ∈ R, k = 0, . . . , N − 1.

Computational cost: O(N logN).

The simultaneous computation of N values of an arbitrary polynomial of degree
n with n ≤ N − 1 requires only O(N logN) arithmetic operations. This is an
important advantage compared to the Clenshaw Algorithm 6.19, since this method
would require O(nN) arithmetic operations.

From (6.27) and Lemma 3.47 it follows that

a =
√

2

N

(
CIII

N

)−1 p =
√

2

N
CII

N p . (6.28)

In other words, the coefficients ak , k = 0, . . . , N − 1, of the polynomial

p = 1

2
a0 +

N−1∑

j=0

aj Tj (6.29)

are obtained by interpolation at Chebyshev zero points z
(N)
k , k = 0, . . . , N − 1

in (6.26). Thus we obtain:

Lemma 6.21 Let N ∈ N \ {1} be given. For arbitrary pj ∈ R, j = 0, . . . , N − 1,
there exists a unique polynomial p ∈ PN−1 of the form (6.29) which solves the
interpolation problem

p(z
(N)
j ) = pj , j = 0, . . . , N − 1 . (6.30)

The coefficients of (6.29) can be computed by (6.28), i.e.,

ak = 2

N

N−1∑

j=0

pj cos
(2j + 1)kπ

2N
, k = 0, . . . , N − 1 .

The same idea of simultaneous computation of polynomial values and of
polynomial interpolation can be used for the nonequispaced grid of Chebyshev
extreme points x

(N)
j = cos jπ

N
, j = 0, . . . , N . In this case we represent an arbitrary

polynomial p ∈PN in the form

p = 1

2
a0 +

N−1∑

k=1

ak Tk + 1

2
aN TN (6.31)
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with real coefficients ak. For the simultaneous computation of the values p(x
(N)
j ),

j = 0, . . . , N , we obtain that

p =
√

N

2
CI

N+1a , (6.32)

where

p := (
εN(j) p(x

(N)
j )

)N
j=0 , a = (

εN(k) ak
)N
k=0 (6.33)

with εN(0) = εN(N) :=
√

2
2 and εN(j) := 1, j = 1, . . . , N − 1. Here,

CI
N+1 =

√
2

N

(
εN(j) εN(k) cos

jkπ

N

)N
j,k=0

denotes the orthogonal cosine matrix of type I (see Lemma 3.46). If N is a power of
two, the vector p can be rapidly computed by a fast DCT–I (N + 1) algorithm, see
Sect. 6.3.

Algorithm 6.22 (Polynomial Values at Chebyshev Extreme Points)

Input:N := 2t with t ∈ N \ {0}, ak ∈ R for k = 0, . . . , N .

1. Form the vector a := (εN(k) ak)
N
k=0.

2. Compute (pj )
N
j=0 :=

√
N
2 CI

N+1a by fast DCT–I (N + 1) using Algorithm 6.28
or 6.35.

3. Form p(x
(N)
j ) := εN(j)−1 pj , j = 0, . . . , N .

Output: p(x(N)
j ) ∈ R, j = 0, . . . , N .

Computational cost: O(N logN).

From (6.32) and Lemma 3.46 it follows that

a =
√

2

N

(
CI

N+1

)−1 p =
√

2

N
CI

N+1 p . (6.34)

In other words, the coefficients ak, k = 0, . . . , N , of the polynomial (6.31) are
obtained by interpolation at Chebyshev extreme points x

(N)
k = cos πk

N
, k =

0, . . . , N . Thus we get:

Lemma 6.23 Let N ∈ N \ {1} be given. For arbitrary pj ∈ R, j = 0, . . . , N ,
there exists a unique polynomial p ∈ PN of the form (6.31) which solves the
interpolation problem

p
(
x
(N)
j

) = pj , j = 0, . . . , N , (6.35)
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with x
(N)
j = cos πj

N
. The coefficients of the polynomial in (6.31) can be computed

by (6.34), i.e.,

ak = 2

N

(1

2
p0 +

N−1∑

j=1

pj cos
jkπ

N
+ 1

2
(−1)k pN

)
, k = 0, . . . , N .

Now we derive an efficient and numerically stable representation of the in-
terpolating polynomial (6.31) based on the so-called barycentric formula for
interpolating polynomial introduced by Salzer [317] (see also [31] and [356, pp.
33–41]).

Theorem 6.24 (Barycentric Interpolation at Chebyshev Extreme Points) Let
N ∈ N \ {1} be given. The polynomial (6.31) which interpolates the real data
pj at the Chebyshev extreme points x

(N)
j = cos πj

N
, j = 0, . . . , N , satisfies the

barycentric formula

p(x) =

p0

2 (x − 1)
+

N−1∑

j=1

(−1)j pj

x − x
(N)
j

+ (−1)NpN

2 (x + 1)

1

2 (x − 1)
+

N−1∑

j=1

(−1)j

x − x
(N)
j

+ (−1)N

2 (x + 1)

(6.36)

for all x ∈ R \ {x(N)
j : j = 0, . . . , N} and p(x

(N)
j ) = pj for x = x

(N)
j , j =

0, . . . , N .

Proof

1. Using the node polynomial

�(x) :=
N∏

j=0

(x − x
(N)
j ) ,

we form the kth Lagrange basis polynomial

�k(x) := �(x)

�′(x(N)
k ) (x − x

(N)
k )

, (6.37)

where

�′(x(N)
k ) =

N∏

j=0
j �=k

(x
(N)
k − x

(N)
j ) .
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The Lagrange basis polynomials possess the interpolation property

�k(x
(N)
j ) = δj−k , j, k = 0, . . . , N . (6.38)

Then the interpolation problem p(x
(N)
j ) = pj , j = 0, . . . , N , has the solution

p(x) =
N∑

k=0

pk �k(x) = �(x)

N∑

k=0

pk

�′(x(N)
k ) (x − x

(N)
k )

(6.39)

which is uniquely determined in PN . Particularly, for the constant polynomial
p ≡ 1 we have pk = 1, k = 0, . . . , N , and obtain

1 =
N∑

k=0

�k(x) = �(x)

N∑

k=0

1

�′(x(N)
k ) (x − x

(N)
k )

. (6.40)

Dividing (6.39) by (6.40), we get the barycentric formula

p(x) =

N∑

k=0

pk

�′
(
x
(N)
k

) (
x − x

(N)
k

)

N∑

k=0

1

�′
(
x
(N)
k

) (
x − x

(N)
k

)

. (6.41)

2. Now we calculate �′(x(N)
k ). Employing the substitution x = cos t , we simply

observe that the monic polynomial of degree N + 1

2−N(TN+1(x)−TN−1(x)) = 2−N(cos(N + 1)t − cos(N − 1)t) = −21−N sinNt sin t

possesses the N + 1 distinct zeros x
(N)
k = cos kπ

N
, k = 0, . . . , N , such that the

node polynomial reads

�(x) = 2−N
(
TN+1(x)− TN−1(x)

)
.

Consequently we obtain by (6.7) that

�′(x(N)
k ) = 2−N

(
T ′N+1(x

(N)
k )− T ′N−1(x

(N)
k )

)

= 2−N
(
(N + 1) UN(x

(N)
k )− (N − 1) UN−2(x

(N)
k )

)
.
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Applying (6.6) and (6.8), we find

(N+1) UN(x
(N)
k )−(N−1) UN−2(x

(N)
k ) =

⎧
⎨

⎩

4N k = 0 ,

2N (−1)k k = 1, . . . , N − 1 ,

4N (−1)N k = N

and hence

�′(x(N)
k ) =

⎧
⎨

⎩

22−N N k = 0 ,

21−N N (−1)k k = 1, . . . , N − 1 ,

22−N N (−1)N k = N .

By (6.41) the above result completes the proof of (6.36).

The barycentric formula (6.36) is very helpful for interpolation at Chebyshev
extreme points. By (6.36) the interpolation polynomial is expressed as a weighted
average of the given values pj . This expression can be efficiently computed by the
fast summation method, see Sect. 7.6.

Remark 6.25 A similar barycentric formula can be derived for the interpolation
at Chebyshev zero points z

(N)
j = cos (2j+1)π

2N for j = 0, . . . , N − 1. Then the
corresponding node polynomial has the form

�(x) =
N−1∏

j=0

(x − z
(N)
j ) = 21−N TN(x) .

By (6.7) we obtain

�′(z(N)
j ) = 21−NN sin(j + π

2 )

sin (2j+1)π
2N

= 21−N N (−1)j

sin (2j+1)π
2N

, j = 0, . . . , N − 1 .

Similarly to (6.41), the polynomialp ∈PN−1 which interpolates the real data pj at

the Chebyshev zero points z(N)
j , j = 0, . . . , N − 1, satisfies the barycentric formula

p(x) =

N−1∑

k=0

pk

�′(z(N)
k ) (x − z

(N)
k )

N−1∑

k=0

1

�′(z(N)
k ) (x − z

(N)
k )

=

N−1∑

k=0

(−1)k pk sin( (2k+1)π
2N )

x − z
(N)
k

N−1∑

k=0

(−1)k sin( (2k+1)π
2N )

x − z
(N)
k

for all x ∈ R \ {z(N)
j : j = 0, . . . , N − 1} and p(z

(N)
j ) = pj for x = z

(N)
j ,

j = 0, . . . , N − 1.

Next we describe the differentiation and integration of polynomials being given
on the basis of Chebyshev polynomials.
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Theorem 6.26 For fixed n ∈ N \ {1}, let an arbitrary polynomial p ∈Pn be given
in the form p = a0

2 +
∑n

j=1 ajTj . Then the derivative p′ has the form

p′ = 1

2
d0 +

n−1∑

j=1

dj Tj , (6.42)

where the coefficients dj satisfy the recursion

dn−1−j := dn+1−j + 2 (n− j) an−j , j = 0, 1, . . . , n− 1 , (6.43)

with dn+1 = dn := 0. Further the integral of the polynomial p can be calculated by

∫ x

−1
p(t) dt = 1

2
c0 +

n+1∑

j=1

cj Tj (x) (6.44)

with the recursion formula

cj := 1

2j
(aj−1 − aj+1) , j = 1, 2, . . . , n+ 1 , (6.45)

starting with

c0 := a0 − 1

2
a1 + 2

n∑

j=2

(−1)j+1 aj

j2 − 1
,

where we set an+1 = an+2 := 0.

Proof The integration formulas (6.44)–(6.45) are direct consequences of (6.10).
For proving the differentiation formulas (6.42)–(6.43) we apply the integration
formulas (6.44)–(6.45). Let p ∈ Pn be given in the form (6.24). Obviously,
p′ ∈ Pn−1 can be represented in the form (6.42) with certain coefficients dj ∈ R,
j = 0, . . . , n− 1. Then it follows that

∫ x

−1
p′(t) dt = p(x)− p(−1) = (1

2
a0 − p(−1)

)+
n∑

j=1

aj Tj (x) .

By (6.44)–(6.45) we obtain

aj = 1

2j
(dj−1 − dj+1) , j = 1, . . . , n ,

where we fix dn = dn+1 := 0. Hence the coefficients dn−1, . . . , d0 can be
recursively computed by (6.43).
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6.2.3 Fast Evaluation of Polynomial Products

Assume that two polynomials p, q ∈Pn are given in the monomial basis, i.e.,

p(x) = p0 + p1 x + . . . + pn x
n ,

q(x) = q0 + q1 x + . . . + qn x
n

with real coefficients pk and qk. Then the related product r := p q ∈P2n possesses
the form

r(x) = r0 + r1 x + . . . + r2n x
2n

with real coefficients

rk =
{∑k

j=0 pj qk−j k = 0, . . . , n ,
∑n

j=k−n pj qk−j k = n+ 1, . . . , 2n .

This product can be efficiently calculated by cyclic convolution of the corresponding
coefficient vectors, see Sect. 3.2. Let N ≥ 2n + 2 be a fixed power of two. We
introduce the corresponding coefficient vectors

p := (p0 , p1 , . . . , pn , 0 , . . . , 0) ∈ R
N ,

q := (q0 , q1 , . . . , qn , 0 , . . . , 0) ∈ R
N ,

r := (r0 , r1 , . . . , rn , rn+1 , . . . , r2n , 0 , . . . , 0) ∈ R
N ,

then it follows that r = p ∗ q. Applying the convolution property of the DFT in
Theorem 3.26 we find

r = F−1
N

(
(FNp) ◦ (FNq)

) = 1

N
J′N FN

(
(FNp) ◦ (FNq)

)
,

with the Fourier matrix FN , the flip matrix J′N , and the componentwise product ◦.
Using FFT, we can thus calculate the coefficient vector r by O(N logN) arithmetic
operations.

Now we assume that p, q ∈Pn are given on the basis of Chebyshev polynomials
Tk , k = 0, . . . , n. How can we efficiently calculate the product p q ∈ P2n in the
corresponding basis of Chebyshev polynomials?

Theorem 6.27 For fixed n ∈ N \ {1}, let p, q ∈ Pn be given polynomials of the
form

p = 1

2
a0 +

n∑

k=1

ak Tk , q = 1

2
b0 +

n∑

�=1

b� T� ,

where ak , b� ∈ R, k, � = 0, . . . , n.
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Then the product r := p q ∈P2n possesses the form

r = 1

2
c0 +

2n∑

k=1

ck Tk

with the coefficients

2 ck :=

⎧
⎪⎪⎨

⎪⎪⎩

a0 b0 + 2
∑n

�=1 a� b� k = 0 ,
∑k

�=0 ak−� b� +∑n−k
�=1(a� b�+k + a�+k b�) k = 1, . . . , n− 1 ,

∑n
�=k−n ak−� b� k = n, . . . , 2n .

Proof

1. First we calculate the special products 2 p T� for � = 1, . . . , n by means of (6.5),

2 p T� = a0 T� +
n∑

k=1

ak (2 Tk T�) = a0 T� +
n∑

k=1

ak Tk+� +
n∑

k=1

ak T|k−�|

=
n+�∑

k=�

ak−� Tk +
�−1∑

k=1

a�−k Tk + a� +
n−�∑

k=1

ak+� Tk .

Hence it follows that

2 p b� T� =
n+�∑

k=�

ak−� b� Tk +
�−1∑

k=1

a�−k b� Tk + a� b�+
n−�∑

k=1

ak+� b� Tk . (6.46)

Further we observe that

p b0 = 1

2
a0 b0 +

n∑

k=1

ak b0 Tk . (6.47)

2. If we sum up all equations (6.46) for � = 1, . . . , n and Eq. (6.47), then we obtain

2 p q = (1

2
a0 b0 +

n∑

�=1

a� b�
)+

n∑

k=1

ak b0 Tk +
n∑

�=1

n+�∑

k=�

ak−� b� Tk

+
n∑

�=2

�−1∑

k=1

a�−k b� Tk +
n−1∑

�=1

n−�∑

k=1

ak+� b� Tk .
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We change the order of summation in the double sums,

n∑

�=1

n+�∑

k=�

ak−� b� Tk =
( n∑

k=1

k∑

�=1

+
2n∑

k=n+1

n∑

�=k−n

)
ak−� b� Tk ,

n∑

�=2

�−1∑

k=1

a�−k b� Tk =
n−1∑

k=1

n∑

�=k+1

a�−k b� Tk ,

n−1∑

�=1

n−�∑

k=1

ak+� b� Tk =
n−1∑

k=1

n−k∑

�=1

ak+� b� Tk

such that we receive

2p q = (1

2
a0 b0 +

n∑

�=1

a� b�
)+

n∑

k=1

( k∑

�=0

ak−� b�
)
Tk +

2n∑

k=n+1

( n∑

�=k−n

ak−� b�
)
Tk

+
n−1∑

k=1

( n∑

�=k+1

a�−k b�
)
Tk +

n−1∑

k=1

( n−k∑

�=1

ak+� b�
)
Tk .

Taking into account that

n∑

�=k+1

a�−k b� =
n−k∑

�=1

a� b�+k ,

we obtain the assertion.

The numerical computation of the coefficients ck , k = 0, . . . , 2n, of the
polynomial multiplication r = p q ∈ P2n can be efficiently realized by means
of DCT. For this purpose, we choose N ≥ 2n + 2 as a power of two and we form
the corresponding coefficient vectors

a := (
√

2

2
a0 , a1 , . . . , an , 0 , . . . , 0

) ∈ R
N ,

b := (
√

2

2
b0 , b1 , . . . , bn , 0 , . . . , 0

) ∈ R
N ,

c := (
√

2

2
c0 , c1 , . . . , cn , cn+1 , . . . , c2n , 0 , . . . , 0

) ∈ R
N .

From r(z) = p(z)q(z), we particularly conclude for the Chebyshev zero points
z
(N)
k = cos (2k+1)π

2N , k = 0, . . . , N − 1, that

p(z
(N)
k ) q(z

(N)
k ) = r(z

(N)
k ) , k = 0, . . . , N − 1 .
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Recalling (6.27), the vectors of polynomial values and the corresponding coefficient
vectors are related by

p := (
p(z

(N)
k )

)N−1
k=0 =

√
N

2
CIII

N a ,

q := (
q(z

(N)
k )

)N−1
k=0 =

√
N

2
CIII

N b ,

r := (
r(z

(N)
k )

)N−1
k=0 =

√
N

2
CIII

N c .

Since r is equal to the componentwise product of p and q, it follows that

√
N

2
CIII

N c = r = p ◦ q = N

2
(CIII

N a) ◦ (CIII
N b) .

Hence we obtain by Lemma 3.47 that

c =
√

N

2
CII

N

(
(CIII

N a) ◦ (CIII
N b)

)
.

Using fast DCT algorithms, we can thus calculate the coefficient vector c by
O(N logN) arithmetic operations, see Sect. 6.3.

6.3 Fast DCT Algorithms

In this section, we want to derive fast algorithms for discrete cosine transform
(DCT) and discrete sine transform (DST), respectively. These discrete trigonometric
transforms have been considered already in Sect. 3.5. As we have seen for example
in Sect. 6.2, these transforms naturally occur, if we want to evaluate polynomials
efficiently. Other applications relate to polynomial interpolation in Sect. 6.4 and to
data decorrelation. For simplicity, we shortly recall the matrices related to DCT and
DST from Sect. 3.5. Let N ≥ 2 be a given integer. In the following, we consider
cosine and sine matrices of types I–IV which are defined by

CI
N+1 :=

√
2
N

(
εN (j) εN(k) cos jkπ

N

)N

j,k=0
,

CII
N :=

√
2
N

(
εN (j) cos j (2k+1)π

2N

)N−1

j,k=0
, CIII

N := (CII
N),

CIV
N :=

√
2
N

(
cos (2j+1)(2k+1)π

4N

)N−1

j,k=0
, (6.48)
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SI
N−1 :=

√
2
N

(
sin (j+1)(k+1)π

N

)N−2

j,k=0
,

SII
N :=

√
2
N

(
εN (j + 1) sin (j+1)(2k+1)π

2N

)N−1

j,k=0
, SIII

N := (SII
N),

SIV
N :=

√
2
N

(
sin (2j+1)(2k+1)π

4N

)N−1

j,k=0
.

Here we set εN(0) = εN (N) := √
2/2 and εN(j) := 1 for j ∈ {1, . . . , N − 1}.

In our notation a subscript of a matrix denotes the corresponding order, while a
superscript signifies the “type” of the matrix.

As shown in Sect. 3.5, the cosine and sine matrices of type I–IV are orthogonal.
We say that a discrete trigonometric transform of lengthM is a linear transform that
maps each vector x ∈ R

M to T x ∈ R
M , where the matrix T ∈ R

M×M is a cosine or
sine matrix in (6.48) and M ∈ {N − 1, N, N + 1}.

There exists a large variety of fast algorithms to evaluate these matrix–vector
products. We want to restrict ourselves here to two different approaches. The first
method is based on the close connection between trigonometric functions and the
complex exponentials by Euler’s formula. Therefore, we can always employ the
FFT to compute the DCT and DST. The second approach involves a direct matrix
factorization of an orthogonal trigonometric matrix into a product of sparse real
matrices such that the discrete trigonometric transform can be performed in real
arithmetic. In particular, if this matrix factorization is additionally orthogonal, the
corresponding algorithms possess excellent numerical stability, see [273].

6.3.1 Fast DCT Algorithms via FFT

The DCT and the DST of length N (or N + 1 and N − 1, respectively for DCT–I
and DST–I) can always be reduced to a DFT of length 2N such that we can apply
an FFT with computational cost of O(N logN). We exemplarily show the idea for
the DCTs and give the algorithms for all transforms.

Let us start with the DCT–I. In order to compute the components of â = CI
N+1a

with a = (ak)
N
k=0, we introduce the vector y ∈ R

2N of the form

y := (
√

2 a0, a1, . . . , aN−1,
√

2 aN, aN−1, aN−2, . . . , a1)
.

Then we obtain with w2N := e−2π i/(2N) = e−π i/N for j = 0, . . . , N ,

âj =
√

2
N

εN (j)
N∑

k=0
ak εN(k) cos 2πjk

2N

=
√

2
N

εN(j)
(√

2
2 a0 + (−1)j

√
2

2 aN + 1
2

N−1∑

k=1
ak

(
w

jk

2N +w
−jk

2N

))
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=
√

2
N

εN(j)
(√

2
2 a0 + (−1)j

√
2

2 aN + 1
2

N−1∑

k=1
ak w

jk

2N + 1
2

N−1∑

k=1
ak w

j(2N−k)

2N

)

=
√

2
N

εN(j)
(√

2
2 a0 + (−1)j

√
2

2 aN + 1
2

N−1∑

k=1
ak w

jk

2N + 1
2

2N−1∑

k=N+1
a2N−k w

jk

2N

)

= 1√
2N

εN(j)
2N−1∑

k=0
yk w

jk

2N.

Thus,
√

2N
(
εN(j)−1

)N
j=0 ◦ â is the partial vector formed by the first N + 1

components of ŷ := F2N y. This observation implies the following

Algorithm 6.28 (DCT–I (N + 1) via DFT (2N))

Input:N ∈ N \ {1}, a = (aj )
N
j=0 ∈ R

N+1.

1. Determine y ∈ R
2N with

yk :=
⎧
⎨

⎩

√
2 ak k = 0, N ,

ak k = 1, . . . , N − 1 ,

a2N−k k = N + 1, . . . , 2N − 1 .

2. Compute ŷ = F2N y using an FFT of length 2N .
3. Set

âj := 1√
2N

εN (j)Re ŷj , j = 0, . . . , N .

Output: â = (âj )
N
j=0 = CI

N+1 a ∈ R
N+1.

Computational cost: O(N logN).

For the DCT–II we proceed similarly. Let now â := CII
N a. Defining the vector

y := (a0, a1, . . . , aN−1, aN−1, . . . , a0)
 ∈ R

2N,

we find for j = 0, . . . , N − 1,

âj =
√

2
N

εN(j)
N−1∑

k=0
ak cos 2πj (2k+1)

4N = εN (j)√
2N

N−1∑

k=0
ak

(
w

j(2k+1)
4N +w

−j (2k+2−1)
4N

)

= εN (j)√
2N

w
j

4N

(N−1∑

k=0
ak w

jk

2N +
2N−1∑

k=N

a2N−k−1 w
jk

2N

)
= εN (j)√

2N
w

j

4N

( 2N−1∑

k=0
yk w

jk

2N

)
,
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implying the following

Algorithm 6.29 (DCT–II (N) via DFT (2N))

Input:N ∈ N \ {1}, a = (aj )
N−1
j=0 ∈ R

N .

1. Determine y ∈ R
2N with

yk :=
{
ak k = 0, . . . , N − 1 ,

a2N−k−1 k = N, . . . , 2N − 1 .

2. Compute ŷ = F2N y using an FFT of length 2N .
3. Set

âj := 1√
2N

εN(j)Re (w
j

4N ŷj ), j = 0, . . . , N − 1 .

Output: â = (âj )
N−1
j=0 = CII

N a ∈ R
N .

Computational cost: O(N logN).

The DCT–III can be implemented using the following observation. Let now â :=
CIII

N a. We determine

y := (
√

2 a0, w1
4N a1, w2

4N a2, . . . , w
N−1
4N aN−1, 0, w−N+1

4N aN−1, . . . , w
−1
4N a1)

 ∈ C
2N ,

and obtain for j = 0, . . . , N − 1,

âj =
√

2
N

N−1∑

k=0
εN(k)ak cos 2πk(2j+1)

4N = 1√
2N

(√
2a0 +

N−1∑

k=1
ak(w

(2j+1)k
4N + w

−(2j+1)k
4N )

)

= 1√
2N

(√
2 a0 +

N−1∑

k=1
(akw

k
4N)w

jk

2N +
2N−1∑

k=N+1
(a2N−kw

2N+k
4N )w

jk

2N

)
= 1√

2N

2N−1∑

k=0
ykw

jk

2N .

Thus we derive the following algorithm for the DCT–III:

Algorithm 6.30 (DCT–III (N) via DFT (2N))

Input:N ∈ N \ {1}, a = (aj )
N−1
j=0 ∈ R

N .

1. Determine y ∈ C
2N with

yk :=

⎧
⎪⎪⎨

⎪⎪⎩

√
2 ak k = 0 ,

wk
4N ak k = 1, . . . , N − 1 ,

0 k = N,

w2N+k
4N a2N−k k = N + 1, . . . , 2N − 1 .

2. Compute ŷ = F2N y using an FFT of length 2N .
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3. Set

âj := 1√
2N

Re ŷj , j = 0, . . . , N − 1 .

Output: â = (âj )
N−1
j=0 = CIII

N a ∈ R
N .

Computational cost: O(N logN).

Finally, we consider the DCT–IV (N). Let â := CIV
N a. This time we employ the

vector

y := (
w0

4N a0, w
1
4N a1, . . . , w

N−1
4N aN−1, w

−N
4N aN−1, w

−N+1
4N aN−2, . . . , w

−1
4N a0

) ∈ C
2N .

Using that

cos (2j+1)(2k+1)π
4N = 1

2

(
w

(2j+1)(2k+1)
8N + w

−(2j+1)(2k+1)
8N

)

= 1
2 w

(2j+1)
8N

(
wk

4N w
jk

2N +w
−(k+1)
4N w

−j (k+1)
2N

)
,

we obtain for j = 0, . . . , N − 1,

âj =
√

2
N

N−1∑

k=0
ak cos 2π(2j+1)(2k+1)

8N

= 1√
2N

N−1∑

k=0
ak w

(2j+1)
8N

(
wk

4N w
jk
2N +w

−(k+1)
4N w

−j (k+1)
2N

)

= 1√
2N

w
(2j+1)
8N

(N−1∑

k=0
(ak w

k
4N)w

jk
2N +

N−1∑

k=0
(ak w

−(k+1)
4N )w

j(2N−k−1)
2N

)

= 1√
2N

w
(2j+1)
8N

(N−1∑

k=0
(ak w

k
4N)w

jk
2N +

2N−1∑

k=N

(a2N−k−1 w
−2N+k
4N )w

jk
2N

)

= 1√
2N

w
(2j+1)
8N

2N−1∑

k=0
yk w

jk
2N .

Thus we conclude the following algorithm for the DCT–IV.

Algorithm 6.31 (DCT–IV (N) via DFT (2N))

Input:N ∈ N \ {1}, a = (aj )
N−1
j=0 ∈ R

N .

1. Determine y ∈ C
2N with

yk :=
{
wk

4N ak k = 0, . . . , N − 1 ,

w2N+k
4N a2N−k−1 k = N, . . . , 2N − 1 .
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2. Compute ŷ = F2N y using an FFT of length 2N .
3. Set

âj := 1√
2N

Re (w
2j+1
8N ŷj ) , j = 0, . . . , N − 1 .

Output: â = (âj )
N−1
j=0 = CIV

N a ∈ R
N .

Computational cost: O(N logN).

The DST algorithms can be similarly derived from the FFT of length 2N . We
summarize them in Table 6.1, where we use the vectors y = (yk)

2N−1
k=0 ∈ C

2N and
ŷ = (ŷj )

2N−1
j=0 = F2N y.

6.3.2 Fast DCT Algorithms via Orthogonal Matrix
Factorizations

Based on the considerations in [273, 367, 368], we want to derive numerically stable
fast DCT algorithms which are based on real factorizations of the corresponding
cosine and sine matrices into products of sparse, (almost) orthogonal matrices of
simple structure. These algorithms are completely recursive, simple to implement
and use only permutations, scaling with

√
2, butterfly operations, and plane rotations

or rotation–reflections.
In order to present the sparse factorizations of the cosine and sine matrices, we

first introduce a collection of special sparse matrices that we will need later. Recall
that IN and JN denote the identity and counter-identity matrices of order N . Further,
PN = PN(2) denotes the 2-stride permutation matrix as in Sect. 3.4. We use the

Table 6.1 DST algorithms of lengths N − 1 and N , respectively, based on an FFT of length 2N

DST Vector y Vector â

â=SI
N−1 a yk :=

⎧
⎪⎨

⎪⎩

0 k= 0, N,

−wk
2N ak−1 k= 1, . . . , N − 1,

wk
2N a2N−k−1 k=N + 1, . . . , N

âj := 1√
2N

Re
(
(−i) ŷj

)
,

j = 0, . . . , N − 2

â=SII
Na yk :=

{
−wk

2N ak k= 0, . . . , N − 1 ,

wk
2N a2N−k−1 k=N, . . . , 2N − 1

âj := 1√
2N

εN (j + 1) Re
(
(−i) wj + 1

4N ŷj
)
,

j = 0, . . . , N − 1

â=SIII
N a yk :=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−wk+ 1
4N ak k= 0, . . . , N − 2 ,√

2i aN−1 k=N − 1 ,

−wk+ 1
4N a2N−k−2 k=N, . . . , 2N − 2 ,

0 k=N − 1

âj := 1√
2N

Re
(
(−i) wj

2N ŷj
)
,

j = 0, . . . , N − 1

â=SIV
N a yk :=

{
−wk

4N ak k= 0, . . . , N − 1 ,

−wk
4N a2N−k−1 k=N, . . . , 2N − 1

âj := 1√
2N

Re
(
(−i) w2j + 1

8N ŷj
)
,

j = 0, . . . , N − 1
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notation A⊕B = diag(A, B) for block diagonal matrices, where the square matrices
A and B can have different orders. Let

DN := diag ((−1)k)N−1
k=0

be the diagonal sign matrix. For even N ≥ 4 let N1 := N
2 . We introduce the sparse

orthogonal matrices

AN :=
(

1⊕ 1√
2

(
IN1−1 IN1−1

IN1−1 −IN1−1

)
⊕ (−1)

)
(IN1 ⊕ DN1 JN1),

and

BN := 1√
2

(
IN1 JN1

IN1 −JN1

)
, BN+1 := 1√

2

⎛

⎝
IN1 JN1√

2
IN1 −JN1

⎞

⎠ ,

B̃N := (IN1 ⊕ DN1)

(
diag cN1 (diag sN1) JN1

−JN1 diag sN1 diag (JN1 cN1)

)
,

where

cN1 :=
(

cos (2k+1)π
4N

)N1−1
k=0 , sN1 :=

(
sin (2k+1)π

4N

)N1−1
k=0 .

All these sparse “butterfly” matrices possess at most two nonzero components in
each row and each column. The modified identity matrices are denoted by

I′N :=
√

2⊕ IN−1 , I′′N := IN−1 ⊕
√

2 .

Finally, let VN be the forward shift matrix as in Sect. 3.2. Now, we can show the
following factorizations of the cosine matrices of types I–IV.

Theorem 6.32 Let N ≥ 4 be an even integer and N1 := N/2.

(i) The cosine matrix CII
N satisfies the orthogonal factorization

CII
N = PN (CII

N1
⊕ CIV

N1
)BN . (6.49)

(ii) The cosine matrix CI
N+1 can be orthogonally factorized in the form

CI
N+1 = PN+1 (CI

N1+1 ⊕ CIII
N1

)BN+1 . (6.50)
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Proof In order to show (6.49) we first permute the rows of CII
N by multiplying with

PN and write the result as a block matrix

PN CII
N = 1√

N1

⎛

⎜
⎝

(
εN(2j) cos 2j (2k+1)π

2N

)N1−1

j,k=0

(
εN(2j) cos 2j (N+2k+1)π

2N

)N1−1

j,k=0(
cos (2j+1)(2k+1)π

2N

)N1−1

j,k=0

(
cos (2j+1)(N+2k+1)π

2N

)N1−1

j,k=0

⎞

⎟
⎠ .

Recalling the definition of CIV
N and using

cos j (N+2k+1)π
N

= cos j (N−2k−1)π
N

, cos (2j+1)(N+2k+1)π
2N = − cos (2j+1)(N−2k−1)π

2N ,

it follows immediately that the four blocks of PN CII
N can be represented by CII

N1

and CIV
N1

,

PN CII
N = 1√

2

(
CII

N1
CII

N1
JN1

CIV
N1
−CIV

N1
JN1

)

= (CII
N1
⊕ CIV

N1
) 1√

2

(
IN1 JN1

IN1 −JN1

)

= (CII
N1
⊕ CIV

N1
)BN .

Since P−1
N = PN and BN BN = IN , the matrices PN and BN are orthogonal. The

proof of (6.50) follows similarly.

From (6.49) we also obtain a factorization of CIII
N ,

CIII
N = BN (CIII

N1
⊕ CIV

N1
)PN. (6.51)

The next theorem provides an orthogonal factorization of CIV
N for even N ≥ 4.

Theorem 6.33 For even N ≥ 4, the cosine matrix CIV
N can be orthogonally

factorized in the form

CIV
N = PN AN (CII

N1
⊕ CII

N1
) B̃N . (6.52)

Proof We permute the rows of CIV
N by multiplying with PN and write the result as

a block matrix,

PN CIV
N = 1√

N1

⎛

⎜
⎝

(
cos (4j+1)(2k+1)π

4N

)N1−1

j,k=0

(
cos (4j+1)(N+2k+1)π

4N

)N1−1

j,k=0(
cos (4j+3)(2k+1)π

4N

)N1−1

j,k=0

(
cos (4j+3)(N+2k+1)π

4N

)N1−1

j,k=0

⎞

⎟
⎠ .
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Now we consider the single blocks of PN CIV
N and represent every block by CII

N1
and

SII
N1

. By

cos (4j+1)(2k+1)π
4N = cos j (2k+1)π

N
cos (2k+1)π

4N − sin j (2k+1)π
N

sin (2k+1)π
4N

it follows that

1√
N1

(
cos (4j+1)(2k+1)π

4N

)N1−1

j,k=0
= 1√

2

(
I′N1

CII
N1

diag cN1 − VN1 SII
N1

diag sN1

)

= 1√
2

(
I′N1

CII
N1

diag cN1 − VN1 DN1 SII
N1

JN1 diag sN1

)
. (6.53)

Further, with

cos (4j+3)(2k+1)π
4N = cos (j+1)(2k+1)π

N
cos (2k+1)π

4N + sin (j+1)(2k+1)π
N

sin (2k+1)π
4N

we obtain

1√
N1

(
cos (4j+3)(2k+1)π

4N

)N1−1

j,k=0
= 1√

2

(
VN1

CII
N1

diag cN1 + I′′N1
SII
N1

diag sN1

)

= 1√
2

(
VN1

CII
N1

diag cN1 + I′′N1
DN1 SII

N1
JN1 diag sN1

)
. (6.54)

From

cos (4j+1)(N+2k+1)π
4N = (−1)j cos

( j (2k+1)π
N

+ (N+2k+1)π
4N

)

= (−1)j cos j (2k+1)π
N

sin (N−2k−1)π
4N − (−1)j sin j (2k+1)π

N
cos (N−2k−1)π

4N

we conclude

1√
N1

(
cos (4j+1)(N+2k+1)π

4N

)N1−1

j,k=0

= 1√
2

(
DN1 I′N1

CII
N1

diag (JN1 sN1)− DN1 VN1 SII
N1

diag (JN1 cN1)
)

= 1√
2

(
I′N1

CII
N1

JN1diag (JN1 sN1)+ VN1 DN1 SII
N1

diag (JN1 cN1)
)
. (6.55)

Here we have used that DN1 I′N1
= I′N1

DN1 and −DN1VN1 = VN1DN1 . Finally,

cos (4j+3)(N+2k+1)π
4N = (−1)j+1 cos

(
(j+1)(2k+1)π

N
− (N+2k+1)π

4N

)

= (−1)j+1 cos (j+1)(2k+1)π
N

sin (N−2k−1)π
4N + (−1)j+1 sin (j+1)(2k+1)π

N
cos (N−2k−1)π

4N
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implies that

1√
N1

(
cos (4j+3)(N+2k+1)π

4N

)N1−1

j,k=0

= − 1√
2

(
DN1 VN1

CII
N1

diag (JN1 sN1)+ DN1 I′′N1
SII
N1

diag (JN1 cN1)
)

= 1√
2

(
VN1

DN1 CII
N1

diag (JN1 sN1)− I′′N1
DN1 SII

N1
diag (JN1 cN1)

)

= 1√
2

(
VN1

CII
N1

JN1 diag (JN1 sN1)− I′′N1
DN1 SII

N1
diag (JN1 cN1)

)
. (6.56)

Using the relations (6.53)–(6.56), we find the following factorization

PN CIV
N = 1√

2

(
I′N1

VN1DN1

VN1
−I′′N1

DN1

)

(CII
N1
⊕ SII

N1
)

(
diag cN1 (diag sN1) JN1

−JN1 diag sN1 diag (JN1cN1)

)
,

where
(

I′N1
VN1 DN1

VN1
−I′′N1

DN1

)

=
(√

2⊕
(

IN1−1 IN1−1

IN1−1 −IN1−1

)
⊕ (−√2)

)
(IN1 ⊕ DN1).

Thus (6.52) follows by the intertwining relation SII
N1
= JN1 CII

N1
DN1 . The orthog-

onality of AN and B̃N can be simply observed. Note that B̃N consists only of N1
plane rotations or rotation–reflections.

Since CIV
N is symmetric, we also obtain the factorization

CIV
N = B̃N (CIII

N1
⊕ CIII

N1
)AN PN . (6.57)

Example 6.34 For N = 4 we find

CII
4 = P4 (CII

2 ⊕ CIV
2 )B4 = 1

2
P4 (

√
2 CII

2 ⊕
√

2 CIV
2 )
√

2 B4

with

CII
2 =

1√
2

(
1 1
1 −1

)
, CIV

2 =
(

cos π
8 sin π

8
sin π

8 − cos π
8

)
, B4 =

(
I2 J2

I2 −J2

)
.

Thus CII
4 a with a ∈ R

4 can be computed with 8 additions and 4 multiplications (not
counting the scaling by 1

2 ). Similarly,

CIII
4 = B4 (CIII

2 ⊕CIV
2 )P4 = 1

2
(
√

2 B4 )(
√

2 CIII
2 ⊕√2 CIV

2 )P4
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with CIII
2 = CII

2 . Further, we find

CIV
4 = P4 A4 (CII

2 ⊕ CII
2 ) B̃4 = 1

2
P4
√

2 A4 (
√

2 CII
2 ⊕

√
2 CII

2 ) B̃4

with

A4 = 1√
2

⎛

⎜
⎜
⎝

√
2

1 1
1 −1√

2

⎞

⎟
⎟
⎠ , B̃4 =

⎛

⎜⎜
⎜
⎝

cos π
16 sin π

16
cos 3π

16 sin 3π
16

− sin 3π
16 cos 3π

16
sin π

16 − cos π
16

⎞

⎟⎟
⎟
⎠

,

such that CIV
4 a with a ∈ R

4 can be computed with 10 additions and 10 multiplica-
tions. Finally,

CI
5 = P5 (CI

3 ⊕ CIII
2 )B5 = 1

2
P5 (

√
2 CI

3 ⊕
√

2 CIII
2 )
√

2 B5 ,

where particularly

√
2 CI

3 = P3 (CII
2 ⊕ 1)

√
2 B3

with

B5 = 1√
2

⎛

⎝
I2 J2√

2
I2 −J2

⎞

⎠ , B3 = 1√
2

⎛

⎝
1 1√

2
1 −1

⎞

⎠ .

Thus the computation of CI
5a with a ∈ R

5 requires 10 additions and 4 multiplica-
tions.

The derived factorizations of the cosine matrices of types I–IV imply the fol-
lowing recursive fast algorithms. We compute â = √N CX

N a for X ∈ {II, III, IV}
with a ∈ R

N and â = √
N CI

N+1 a with a ∈ R
N+1. The corresponding recursive

procedures are called cos− I (a, N + 1), cos− II (a, N), cos− III (a, N), and
cos− IV (a, N), respectively.

Algorithm 6.35 (cos− I (a, N + 1) via Matrix Factorization)

Input:N = 2t , t ∈ N, N1 = N/2, a ∈ R
N+1.

1. If N = 2, then

â = P3 (CII
2 ⊕ 1)

√
2 B3 a .
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2. If N ≥ 4, then

(uj )
N
j=0 :=

√
2 BN+1 a ,

v′ := cos− I
(
(uj )

N1
j=0, N1 + 1

)
,

v′′ := cos− III
(
(uj )

N
j=N1+1, N1

)
,

â := PN+1

(
(v′), (v′′)

)
.

Output: â = √N CI
N+1 a ∈ R

N+1.

Computational cost: O(N logN).

Algorithm 6.36 (cos− II (a, N) via Matrix Factorization)

Input:N = 2t , t ∈ N, N1 = N/2, a ∈ R
N .

1. If N = 2, then

â = √2 CII
2 a.

2. If N ≥ 4, then

(uj )
N−1
j=0 :=

√
2 BN a ,

v′ := cos− II
(
(uj )

N1−1
j=0 , N1

)
,

v′′ := cos− IV
(
(uj )

N−1
j=N1

, N1
)
,

â := PN
(
(v′), (v′′)

)
.

Output: â = √N CII
N a ∈ R

N .

Computational cost: O(N logN).

Algorithm 6.37 (cos− III (a, N) via Matrix Factorization)

Input:N = 2t , t ∈ N, N1 = N/2, a ∈ R
N .

1. If N = 2, then

â = √2 CIII
2 a .

2. If N ≥ 4, then

(uj )
N−1
j=0 := PN a ,

v′ := cos− III
(
(uj )

N1−1
j=0 , N1

)
,
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v′′ := cos− IV
(
(uj )

N−1
j=N1

, N1
)
,

â := √2 BN
(
(v′), (v′′)

)
.

Output: â = √N CIII
N a ∈ R

N .

Computational cost: O(N logN).

Algorithm 6.38 (cos− IV (a, N) via Matrix Factorization)

Input:N = 2t , t ∈ N, N1 = N/2, a ∈ R
N .

1. If N = 2, then

â = √2 CIV
2 a .

2. If N ≥ 4, then

(uj )
N−1
j=0 :=

√
2 B̃N a ,

v′ := cos− II
(
(uj )

N1−1
j=0 , N1

)
,

v′′ := cos− II
(
(uj )

N−1
j=N1

, N1
)
,

w := AN

(
(v′), (v′′)

)
,

â := PN w .

Output: â = √N CIV
N a ∈ R

N .

Computational cost: O(N logN).

Let us consider the computational costs of these algorithms in real arithmetic.
Here, we do not count permutations and multiplications with ±1 or 2k for k ∈
Z. Let α(cos − II, N) and μ(cos− II, N) denote the number of additions and
multiplications of Algorithm 6.36. For the other algorithms we employ analogous
notations. The following result is due to [273].

Theorem 6.39 Let N = 2t , t ∈ N \ {1}, be given. Then the recursive Algo-
rithms 6.35–6.38 require the following numbers of additions and multiplications

α(cos− II, N) = α(cos− III, N) = 4

3
Nt − 8

9
N − 1

9
(−1)t + 1 ,

μ(cos− II, N) = μ(cos− III, N) = Nt − 4

3
N + 1

3
(−1)t + 1 ,

α(cos− IV, N) = 4

3
Nt − 2

9
N + 2

9
(−1)t ,



346 6 Chebyshev Methods and Fast DCT Algorithms

μ(cos− IV, N) = Nt + 2

3
N − 2

3
(−1)t ,

α(cos− I, N + 1) = 4

3
Nt − 14

9
N + 1

2
t + 7

2
+ 1

18
(−1)t ,

μ(cos− I, N + 1) = Nt − 4

3
N + 5

2
− 1

6
(−1)t .

Proof

1. We compute α(cos− II, N) and α(cos− IV, N). From Example 6.34 it follows
that

α(cos− II, 2) = 2 , α(cos− II, 4) = 8 , (6.58)

α(cos − IV, 2) = 2 , α(cos− II, 4) = 10 . (6.59)

Further, Algorithms 6.36 and 6.38 imply the recursions

α(cos− II, N) = α(
√

2 BN)+ α(cos− II, N1)+ α(cos − IV, N1) ,

α(cos − IV, N) = α(
√

2 B̃N)+ 2α(cos− II, N1)+ α(AN) ,

where α(
√

2 BN) denotes the number of additions required for the product√
2 BN a for an arbitrary vector a ∈ R

N . Analogously, α(
√

2 B̃N) and α(AN)

are determined. From the definitions of BN, B̃N , and AN it follows that

α(
√

2 BN) = α(
√

2 B̃N) = N , α(
√

2 AN) = N − 2 .

Thus, we obtain the linear difference equation of order 2 (with respect to t ≥ 3),

α(cos− II, 2t ) = α(cos − II, 2t−1)+ 2 α(cos− II, 2t−2)+ 2t+1 − 2 .

With the initial conditions in (6.58) we find the unique solution

α(cos− II, N) = α(cos− III, N) = 4

3
Nt − 8

9
N − 1

9
(−1)t + 1

which can be simply verified by induction with respect to t . Thus,

α(cos− IV, N) = 4

3
Nt − 2

9
N + 2

9
(−1)t .

2. The computational cost for cos− III (a, N) is obviously the same as for
cos− II (a, N).
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3. Finally, for cos− I (a, N) we conclude

α(cos− I, N + 1) = α(
√

2 BN+1)+ α(cos − I, N1 + 1)+ α(cos− III, N1)

and hence by α(
√

2 BN+1) = N that

α(cos− I, 2t + 1) = 2t +α(cos− I, 2t−1+ 1)+ 2

3
2t (t − 1)− 4

9
2t − 1

9
(−1)t−1+ 1

= α(cos− I, 2t−1 + 1)+ 2

3
2t t − 1

9
2t + 1

9
(−1)t + 1 .

Together with the initial condition α(cos− I, 3) = 4 we conclude

α(cos − I, 2t ) = 4

3
Nt − 14

9
N + 1

2
t + 7

2
+ 1

18
(−1)t .

The results for the required number of multiplications can be derived analo-
gously.

Remark 6.40

1. Comparing the computational costs of the DCT algorithms based on orthogonal
factorization in real arithmetic with the FFT based algorithms in the previous
subsection, we gain a factor larger than 4. Taking, e.g., Algorithm 6.29 using the
Sande–Tukey Algorithm for FFT of length 2N in the second step, we have by
Theorem 5.12 costs of 10 N log2(2N) − 20 N + 16 = 10 N log2 N − 10 N +
16 and further N multiplications to evaluate the needed vector (wj

4N ŷj )
N−1
j=0 . In

comparison, Theorem 6.39 shows computational cost of at most 7
3 N log2 N −

20
9 N + 22

9 for Algorithm 6.36.
2. A detailed analysis of the roundoff errors for the fast DCT Algorithms 6.35–6.38

shows their excellent numerical stability, see [273].
3. Besides the proposed fast trigonometric transforms based on FFT or on or-

thogonal matrix factorization, there exist further fast DCT algorithms in real
arithmetic via polynomial arithmetic with Chebyshev polynomials, see, e.g.,
[107, 108, 300, 337, 339]. These DCT algorithms generate nonorthogonal matrix
factorizations of the cosine and sine matrices and therefore are inferior regarding
numerical stability, see [18, 273, 324, 350].

4. Similar orthogonal matrix factorizations and corresponding recursive algorithms
can be also derived for the sine matrices, see [273].
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6.4 Interpolation and Quadrature Using Chebyshev
Expansions

Now we show that interpolation at Chebyshev extreme points has excellent numeri-
cal properties. Further we describe the efficient Clenshaw–Curtis quadrature which
is an interpolatory quadrature rule at Chebyshev extreme points.

6.4.1 Interpolation at Chebyshev Extreme Points

Let N ∈ N \ {1} be fixed and let I := [−1, 1]. Then the nonequispaced Chebyshev
extreme points x

(N)
j = cos jπ

N
∈ I , j = 0, . . . , N , are denser near the endpoints

±1, see Fig. 6.7. We want to interpolate an arbitrary function f ∈ C(I) at the
Chebyshev extreme points x

(N)
j , j = 0, . . . , N , by a polynomial pN ∈ PN . Then

the interpolation conditions

pN(x
(N)
j ) = f (x

(N)
j ) , j = 0, . . . , N , (6.60)

have to be satisfied. Since the Chebyshev polynomials Tj , j = 0, . . . , N , form a
basis of PN , the polynomial pN can be expressed as a Chebyshev expansion

pN = 1

2
a
(N)
0 [f ] +

N−1∑

k=1

a
(N)
k [f ] Tk + 1

2
a
(N)
N [f ] TN =

N∑

k=0

εN(k)2 a
(N)
k [f ] Tk

(6.61)

with certain coefficients a
(N)
k [f ] ∈ R, where εN(0) = εN(N) :=

√
2

2 and εN(j) :=
1, j = 1, . . . , N − 1. The interpolation conditions in (6.60) imply the linear system

f (x
(N)
j ) =

N∑

k=0

εN(k)2 a
(N)
k [f ] cos

jkπ

N
, j = 0, . . . , N .

Fig. 6.7 The nonequispaced
Chebyshev extreme points
x
(8)
j = cos jπ

8 ∈ [−1, 1],
j = 0, . . . , 8, and the
equispaced points ei jπ/8,
j = 0, . . . , 8, on the upper
unit semicircle

1 1−
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This linear system can be written in the matrix–vector form

(
εN(j) f (x

(N)
j )

)N
j=0 =

√
N

2
CI

N+1

(
εN(k) a

(N)
k [f ])N

k=0 , (6.62)

where CI
N+1 in (3.59) is the cosine matrix of type I. Recall that the symmetric cosine

matrix of type I is orthogonal by Lemma 3.46, i.e., (CI
N+1)

−1 = CI
N+1. Hence the

linear system (6.62) possesses the unique solution

(
εN(k) a

(N)
k [f ])N

k=0 =
√

2

N
CI

N+1

(
εN(j) f (x

(N)
j )

)N
j=0 .

If N is a power of two, we can apply a fast algorithm of DCT–I(N+1) from Sect. 6.3
for the computation of the matrix–vector product above. We summarize:

Lemma 6.41 Let N ∈ N \ {1} be fixed and let f ∈ C(I) be given. Then the
interpolation problem (6.60) at Chebyshev extreme points x(N)

j , j = 0, . . . , N , has
a unique solution of the form (6.61) inPN with the coefficients

a
(N)
k [f ] = 2

N

N∑

j=0

εN(j)2 f (x
(N)
j ) cos

jkπ

N
, k = 0, . . . , N . (6.63)

If f ∈ C(I) is even, then pN is even and a
(N)
2k+1[f ] = 0 for k = 0, . . . , "(N−1)/2#.

If f ∈ C(I) is odd, then pN is odd and a
(N)
2k [f ] = 0 for k = 0, . . . , "N/2#.

The Chebyshev coefficients aj [f ], j ∈ N0, of a given function f in (6.18)

and the coefficients a
(N)
k [f ], k = 0, . . . , N , of the corresponding interpolation

polynomial (6.63) are closely related. This connection can be described by the
aliasing formulas for Chebyshev coefficients, see [71].

Lemma 6.42 (Aliasing Formulas for Chebyshev Coefficients) Let N ∈ N \ {1}
be fixed. Assume that the Chebyshev coefficients of a given function f ∈ C(I) satisfy
the condition

∞∑

j=0

|aj [f ]| <∞ . (6.64)

Then the aliasing formulas

a
(N)
k [f ] = ak[f ] +

∞∑

�=1

(
a2�N+k[f ] + a2�N−k[f ]

)
(6.65)
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hold for k = 1, . . . , N − 1, and for k = 0 and k = N we have

a
(N)
0 [f ] = a0[f ] + 2

∞∑

�=1

a2�N [f ] , (6.66)

a
(N)
N [f ] = 2 aN [f ] + 2

∞∑

�=1

a(2�+1) N[f ] . (6.67)

Proof By assumption (6.64) and Lemma 6.11, the Chebyshev series

1

2
a0[f ] +

∞∑

�=1

a�[f ] T�

converges absolutely and uniformly on I to f . Thus we obtain the function values

f (x
(N)
j ) = 1

2
a0[f ] +

∞∑

�=1

a�[f ] cos
j�π

N
, j = 0, . . . , N ,

at the Chebyshev extreme points x
(N)
j = cos jπ

N
. By (6.63), the interpolation

polynomial in (6.61) possesses the coefficients

a
(N)
k [f ] = 2

N

N∑

j=0

εN(j)2 f (x
(N)
j ) cos

jkπ

N

= a0[f ] 1

N

N∑

j=0

εN(j)2 cos
jkπ

N
+

∞∑

�=1

a�[f ] 2

N

N∑

j=0

εN(j)2 cos
j�π

N
cos

jkπ

N
.

Using (3.60) and (3.61), we see that

1

N

N∑

j=0

εN(j)2 cos
jkπ

N
= 1

N

(1

2
+

N−1∑

j=1

cos
jkπ

N
+ 1

2
(−1)k

)
=

{
1 k = 0 ,

0 k = 1, . . . , N .

Analogously we evaluate the sum

2

N

N∑

j=0

εN(j)2 cos
j�π

N
cos

jkπ

N

= 1

N

(
1+ (−1)�+k +

N−1∑

j=1

cos
j (�− k)π

N
+

N−1∑

j=1

cos
j (�+ k)π

N

)
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=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

2 k = 0, � = 2s N, s ∈ N ,

1 k = 1, . . . , N − 1 , � = 2s N + k, s ∈ N0 ,

1 k = 1, . . . , N − 1 , � = 2s N − k, s ∈ N ,

2 k = N, � = (2s + 1) N, s ∈ N0 ,

0 otherwise .

This completes the proof of the aliasing formulas for Chebyshev coefficients.

The aliasing formulas (6.65)–(6.67) for Chebyshev coefficients immediately
provide a useful estimate of the interpolation error.

Theorem 6.43 Let N ∈ N \ {1} be fixed. Assume that the Chebyshev coefficients of
a given function f ∈ C(I) satisfy the condition (6.64).

Then the polynomial pN ∈ PN which interpolates f at the Chebyshev extreme
points x(N)

j , j = 0, . . . , N , satisfies the error estimate

‖f − pN‖C(I) ≤ 2
∞∑

k=N+1

|ak[f ]| . (6.68)

If f ∈ Cr+1(I) for fixed r ∈ N and N > r , then

‖f − pN‖C(I) ≤ 4

r (N − r)r
‖f (r+1)‖C(I) . (6.69)

Proof

1. By Lemma 6.41, the interpolation polynomial pN possesses the form (6.61) with
the coefficients in (6.63). If CNf denotes the N th partial sum of the Chebyshev
series of f , then we have

‖f − pN‖C(I) ≤ ‖f − CNf ‖C(I) + ‖CNf − pN‖C(I) .

Obviously, we see by |Tk(x)| ≤ 1 for x ∈ I that

‖f − CNf ‖C(I) =
∥
∥

∞∑

k=N+1

ak[f ] Tk

∥
∥
C(I)

≤
∞∑

k=N+1

|ak[f ]| .

Using the aliasing formulas (6.65)–(6.67), we obtain

‖CNf − pN‖C(I) ≤
N−1∑

k=0

εN(k)2 |ak[f ] − a
(N)
k [f ]| + |aN [f ] − 1

2
a
(N)
N [f ]|
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≤
∞∑

�=1

(|a2�N [f ]| + |a(2�+1)N[f ]|
)+

N−1∑

k=1

∞∑

�=1

(|a2�N+k[f ]| + |a2�N−k[f ]|
)

=
∞∑

k=N+1

|ak[f ]| .

Thus (6.68) is shown.
2. Let f ∈ Cr+1(I) for fixed r ∈ N be given. Assume that N ∈ N with N > r .

Then for any k > r the Chebyshev coefficients can be estimated by (6.20) such
that

|ak[f ]| ≤ 2

(k − r)r+1 ‖f (r+1)‖C(I) .

Thus from (6.68) it follows that

‖f − pN‖C(I) ≤ 4 ‖f (r+1)‖C(I)

∞∑

k=N+1

1

(k − r)r+1

≤ 4 ‖f (r+1)‖C(I)

∫ ∞

N

1

(x − r)r+1 dx = 4 ‖f (r+1)‖C(I)

1

r (N − r)r
.

Example 6.44 We interpolate the function f (x) := ex for x ∈ I at Chebyshev
extreme points x

(N)
j , j = 0, . . . , N . Choosing r = 10, by (6.69) the interpolation

error can be estimated for any N > 10 by

‖f − pN‖C(I) ≤ 2 e

(N − 10)10 .

We emphasize that the polynomial interpolation at Chebyshev extreme points
x
(N)
j ∈ I , j = 0, . . . , N , has excellent properties:

The coefficients of the interpolation polynomial pN can be rapidly computed by a
fast algorithm of DCT–I (N + 1).
The interpolation polynomial pN can be evaluated stably by the barycentric
formula (6.36).
The smoother the given function f : I → R, the faster the interpolation error
‖f − pN‖C(I) tends to zero for N →∞.

This situation changes completely for interpolation at equispaced points y
(N)
j :=

−1 + 2j
N
∈ I , j = 0, . . . , N . We illustrate the essential influence of the chosen

interpolation points by the famous example of Runge [313].

Example 6.45 The Runge phenomenon shows that equispaced polynomial inter-
polation of a continuous function can be troublesome. Therefore we interpolate
the rational function f (x) := (25 x2 + 1)−1, x ∈ I , at the equispaced points
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y
(N)
j := −1 + 2j

N
∈ I , j = 0, . . . , N . Then we observe that the corresponding

interpolation polynomial qN ∈PN with

qN(y
(N)
j ) = f (y

(N)
j ) , j = 0, . . . , N ,

oscillates near the endpoints ±1 such that the interpolation error ‖f − qN‖C(I)

increases for growing N . Thus the interpolation polynomial qN does not converge
uniformly on I to f as N →∞. Figure 6.8 shows the graphs of f and of the related
interpolation polynomials qN for N = 10 and N = 15.

On the other hand, if we interpolate f at the nonequispaced Chebyshev extreme
points x

(N)
j ∈ I , j = 0, . . . , N , then by Theorem 6.43 the corresponding

interpolation polynomials pN converge uniformly on I to f as N →∞. Figure 6.9
illustrates the nice approximation behavior of the interpolation polynomial p15.

Fig. 6.8 The function
f (x) := (25 x2 + 1)−1,
x ∈ [−1, 1], and the related
interpolation polynomials qN

with equispaced nodes y
(N)
j ,

j = 0, . . . , N , for N = 9
(blue) and N = 15 (red)

−1 1

1

Fig. 6.9 The function
f (x) := (25 x2 + 1)−1,
x ∈ [−1, 1], and the related
interpolation polynomial pN

with nonequispaced
Chebyshev extreme points
x
(N)
j , j = 0, . . . , N , for

N = 15 (red)

1 1

1

−
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Compared with the best approximation of f ∈ C(I) by algebraic polynomials
in PN , which exists and is unique on the compact interval I , the interpolation
polynomial pN at the Chebyshev extreme points x

(N)
j , j = 0, . . . , N , has

distinguished approximation properties for sufficiently large N :

Theorem 6.46 Let f ∈ Cr(I) with r ∈ N \ {1} be given. Further let N ∈ N with
N > r . Then the interpolation polynomial pN∈PN of f at the Chebyshev extreme
points x(N)

j , j = 0, . . . , N , satisfies the inequality

‖f − pN‖C(I) ≤
(
5+ 2

π
ln (2N − 1)

)
EN(f ) ,

where

EN(f ) := inf{‖f − p‖C(I) : p ∈PN }

denotes the best approximation error of f by polynomials inPN .

Proof

1. Let p∗N ∈PN denote the (unique) polynomial of best approximation of f on I ,
i.e.,

‖f − p∗N‖C(I) = EN(f ) . (6.70)

Using the Lagrange basis polynomials �
(N)
j ∈ PN defined by (6.37) the

interpolation polynomial pN ∈PN of f at the Chebyshev extreme points x
(N)
j ,

j = 0, . . . , N , can be expressed as

pN =
N∑

j=0

f (x
(N)
j ) �

(N)
j . (6.71)

Especially for f = p∗N it follows

p∗N =
N∑

j=0

p∗N(x
(N)
j ) �

(N)
j . (6.72)

Then the triangle inequality yields

‖f − pN‖C(I) ≤ ‖f − p∗N‖C(I) + ‖p∗N − pN‖C(I) . (6.73)
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By (6.71) and (6.72) we can estimate

‖p∗N − pN‖C(I) ≤
N∑

j=0

|p∗N(x
(N)
j )− f (x

(N)
j )| ‖�(N)

j ‖C(I)

≤ ‖p∗N − f ‖C(I) λN = EN(f ) λN , (6.74)

where

λN :=
N∑

j=0

‖�(N)
j ‖C(I) = max

x∈I

N∑

j=0

|�(N)
j (x)|

denotes the Lebesgue constant for polynomial interpolation at Chebyshev ex-
treme points. By (6.74) the Lebesgue constant measures the distance between the
interpolation polynomial pN and the best approximation polynomial p∗N subject
to EN(f ). From (6.73), (6.74), and (6.70) it follows

‖f − pN‖C(I) ≤ ‖f − p∗N‖C(I) (1+ λN) = (1+ λN )EN(f ) .

2. Now we estimate the Lebesgue constant λN for interpolation at Chebyshev
extreme points x

(N)
j , j = 0, . . . , N . Using the modified Dirichlet kernel

D∗N(t) = 1

2
+

N−1∑

j=1

cos(j t)+ 1

2
cos(Nt) =

{ 1
2 sin(Nt) cot t

2 t ∈ R \ 2π Z ,

N t ∈ 2π Z ,

we observe that

D∗N
(jπ
N

) =
{
N j ≡ 0 mod (2N) ,

0 j �≡ 0 mod (2N) .

Thus for t ∈ [0, π] and j = 0, . . . , N we find

�
(N)
j (cos t) = 1

N
D∗N

(
t− jπ

N

) =
{

(−1)j

2N sin(Nt) cot( t
2 − jπ

2N ) t ∈ [0, π] \ { jπ
N
} ,

1 t = jπ
N

.

Consequently we have to estimate the function

s(t) :=

⎧
⎪⎨

⎪⎩

1
2N

N∑

j=0
| sin(Nt) cot

(
t
2 − jπ

2N

)| t ∈ [0, π] \ { jπ
N
: j = 0, . . . , N} ,

1 t ∈ { jπ
N
: j = 0, . . . , N} .
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3. First, we observe that s(t) is π
N

-periodic. We consider sin(Nt) cot t
2 on the set

[−(2N+1) π
2N , (2N+1) π

2N

] \ {0}. From

2

π
|x| ≤ | sin x| ≤ |x| , x ∈ [− π

2
,
π

2

]
,

and | cos x| ≤ 1 we obtain the inequality

∣
∣ sin(Nt) cot

t

2

∣
∣ ≤ Nπ |t|

|t| = Nπ , t ∈ [− π

2N
,

π

2N

] \ {0} .

For t ∈ [− (2j+1)π
2N , − (2j−1)π

2N

]∪[ (2j−1)π
2N ,

(2j+1)π
2N

]
, j = 1, . . . , N , we conclude

∣
∣ sin(Nt) cot

t

2

∣
∣ ≤ 1

∣
∣ sin t

2

∣
∣ ≤

1

sin (2j−1)π
4N

using that sin t is monotonously increasing in [0, π
2 ). Thus for t ∈ [0, π] \ { jπ

N
:

j = 0, . . . , N} it follows the estimate

s(t) ≤ 1

2N

(
Nπ + 2

N∑

j=1

1

sin (2j−1)π
4N

)
.

Introducing the increasing function h ∈ C1[0, π
2 ] by

h(t) :=
{ 1

sin t
− 1

t
t ∈ (0, π

2 ] ,
0 t = 0 ,

we continue with the estimation of s(t) and get

s(t) ≤ π

2
+ 1

N

N∑

j=1

4N

(2j − 1) π
+ 1

N

N∑

j=1

h
( (2j − 1)π

4N

)

= π

2
+ 2

π

N∑

j=1

2

(2j − 1)
+ 2

π

π

2N

N∑

j=1

h
( (2j − 1)π

4N

)
.

Interpreting the two sums as Riemann sums of corresponding definite integrals,
this provides

N∑

j=1

2

(2j − 1)
= 2+

N∑

j=2

1

(j − 1/2)
< 2+

∫ N−1/2

1/2

dt

t
= 2+ ln (2N − 1) ,

π

2N

N∑

j=1

h
( (2j − 1)π

4N

)
<

π

2
h(

π

2
) = π

2
− 1 .
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Therefore we obtain

s(t) ≤ π

2
+ 2

π

(
2+ ln (2N − 1)+ π

2
− 1

)
< 4+ 2

π
ln (2N − 1) .

and hence

λN ≤ 4+ 2

π
ln (2N − 1) .

Remark 6.47

1. For the interpolation at the Chebyshev zero points z
(N+1)
j = cos (2j+1)π

2N+2 ,
j = 0, . . . , N , one obtains similar results as for the described interpolation at
Chebyshev extreme points x

(N)
j = cos jπ

N
, j = 0, . . . , N , see [382].

2. Let a sufficiently smooth function f ∈ Cr(I) with fixed r ∈ N \ {1} be given.
Then the simultaneous approximation of f and its derivatives by polynomial
interpolation can be investigated. If pN ∈ PN denotes the interpolation
polynomial of f ∈ Cr(I) at the Chebyshev extreme points x

(N)
j , j = 0, . . . , N ,

then Haverkamp [159, 160] pointed out that

‖f ′ − p′N‖C(I) ≤ (2+ 2 ln N)EN−1(f
′) ,

‖f ′′ − p′′N‖C(I) ≤ π2

3
N EN−2(f

′′) .

The numerical computation of p′N and p′′N can be performed by Lemma 6.8.
3. Interpolation at Chebyshev nodes is also used in collocation methods for the

Cauchy singular integral equation

a(x) u(x)+ b(x)

π

∫ 1

−1

u(y)

y − x
dy = f (x) , x ∈ (−1, 1) ,

where the functions a, b, f : [−1, 1] → C are given and u : (−1, 1) → C

is the unknown solution, see, e.g., [180]. An efficient solution of the collocation
equations is based on the application of fast algorithms of discrete trigonometric
transforms, see [181], and on fast summation methods, see [182].

6.4.2 Clenshaw–Curtis Quadrature

Now we will apply the interpolation polynomial (6.61) of a given function f ∈
C(I) to numerical integration. In the quadrature problem, we wish to calculate an
approximate value of the integral

I (f ) :=
∫ 1

−1
f (x) dx .
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We obtain the famous Clenshaw–Curtis quadrature, see [71], where the function f

in the integral is replaced by its interpolation polynomial (6.61) at the Chebyshev
extreme points x

(N)
j , j = 0, . . . , N , such that

I (f ) ≈ QN(f ) :=
∫ 1

−1
pN(x) dx .

By Lemma 6.8, the integrals of the Chebyshev polynomials possess the exact values

∫ 1

−1
T2j (x) dx = 2

1− 4j2 ,

∫ 1

−1
T2j+1(x) dx = 0 , j ∈ N0 .

Thus we obtain the Clenshaw–Curtis quadrature formula from (6.61),

QN(f ) =
⎧
⎨

⎩

a
(N)
0 [f ] +∑N/2−1

j=0
2

1−4j2 a
(N)
2j [f ] + 1

1−N2 a
(N)
N [f ] N even ,

a
(N)
0 [f ] +∑(N−1)/2−1

j=0
2

1−4j2 a
(N)
2j [f ] N odd

(6.75)

with the corresponding quadrature error

RN(f ) := I (f )−QN(f ) .

Note that TN+1 is odd for even N and hence

∫ 1

−1
TN+1(x) dx = 0 .

Consequently, RN(p) = 0 for all polynomials p ∈ PN+1, if N is even, and for
all p ∈ PN , if N is odd. Therefore, all polynomials up to degree N are exactly
integrated by the Clenshaw–Curtis rule.

Example 6.48 The simplest Clenshaw–Curtis quadrature formulas read as follows:

Q1(f ) = f (−1)+ f (1) ,

Q2(f ) = 1

3
f (−1)+ 4

3
f (0)+ 1

3
f (1) ,

Q3(f ) = 1

9
f (−1)+ 8

9
f (−1

2
)+ 8

9
f (

1

2
)+ 1

9
f (1) ,

Q4(f ) = 1

15
f (−1)+ 8

15
f (−

√
2

2
)+ 4

5
f (0)+ 8

15
f (

√
2

2
)+ 1

15
f (1) .

Note that Q1(f ) coincides with the trapezoidal rule and that Q2(f ) is equal to
Simpson’s rule.
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Assume that N ∈ N is given. Using the explicit coefficients of pN in (6.63) and
changing the order of summations, the quadrature formula (6.75) possesses the form

QN(f ) =
N∑

k=0

εN(k)2 q
(N)
k f (x

(N)
k )

with the quadrature weights

q
(N)
k :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2
N

N/2∑

j=0
εN(2j)2 2

1−4j2 cos 2jkπ
N

N even ,

2
N

(N−1)/2∑

j=0
εN(2j)2 2

1−4j2 cos 2jkπ
N

N odd

(6.76)

for k = 0, . . . , N .

Theorem 6.49 Let N ∈ N be given. All weights q
(N)
k , k = 0, . . . , N , of the

Clenshaw–Curtis quadrature are positive. In particular,

q
(N)
0 = q

(N)
N =

{
2

N2−1
N even ,

2
N2 N odd ,

and for k = 1, . . . , N − 1,

q
(N)
k = q

(N)
N−k ≥

{
2

N2−1
N even ,

2
N2 N even .

Further,

N∑

k=0

εN(j)2 q
(N)
k = 2 .

For each f ∈ C(I) we have

lim
N→∞QN(f ) = I (f ) =

∫ 1

−1
f (x) dx . (6.77)

If f ∈ C(I) is odd, then I (f ) = QN(f ) = 0.

Proof

1. Assume that N is even. Using (6.76) we will show the inequality

N

2
q
(N)
k =

N/2∑

j=0

εN(2j)2 2

1− 4j2 cos
2jkπ

N
≥ N

N2 − 1
, k = 0, . . . , N .
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Since | cos x| ≤ 1 for all x ∈ R, it follows by the triangle inequality that

N/2∑

j=0

εN(2j)2 2

1− 4j2
cos

2jkπ

N
≥ 1−

(N/2−1∑

j=1

2

4j2 − 1
+ 1

N2 − 1

)

= 1+
N/2−1∑

j=1

( 1

2j + 1
− 1

2j − 1

)− 1

N2 − 1
= 1+ ( 1

N − 1
− 1

)− 1

N2 − 1
.

For k = 0 and k = N we have cos 2πjk
N

= 1 for j = 0, . . . , N
2 , and therefore

even find the equality

q
(N)
0 = q

(N)
N = 2

N

(
1−

N/2−1∑

j=1

2

4j2 − 1
− 1

N2 − 1

)

= 2

N

(
1+ 1

N − 1
− 1− 1

N2 − 1

) = 2

N2 − 1
.

For odd N the assertions can be shown analogously.
The Clenshaw–Curtis quadrature is exact for the constant function f ≡ 1, i.e.,

QN(1) =
N∑

k=0

εN(j)2 q
(N)
k =

∫ 1

−1
1 dx = 2 .

2. Formula (6.77) follows from Theorem 1.24 of Banach–Steinhaus using the fact
that

lim
N→∞QN(p) = I (p) =

∫ 1

−1
p(x) dx

is satisfied for each polynomial p.

Employing Theorem 6.43 we obtain a useful estimate for the error of the
Clenshaw–Curtis quadrature.

Theorem 6.50 Let N ∈ N \ {1} and let f ∈ Cr+1(I) with r ∈ N be given. Then
for any N > r + 1 the quadrature error of the Clenshaw–Curtis quadrature can be
estimated by

|I (f )−QN(f )| ≤ 4

r (N − r − 1)r
‖f (r+1)‖C(I) . (6.78)
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Proof

1. First we express f ∈ Cr+1(I) in the form f = f0 + f1 with

f0(x) := 1

2

(
f (x)+ f (−x)

)
, f1(x) := 1

2

(
f (x)− f (−x)

)
, x ∈ I .

For the odd function f1, we see that I (f1) = QN(f1) = 0 and hence

I (f ) = I (f0) , QN(f ) = QN(f0) .

Therefore we can replace f by its even part f0 ∈ Cr+1(I), where

‖f (r+1)
0 ‖C(I) ≤ ‖f (r+1)‖C(I) .

2. Let pN ∈ PN denote the interpolation polynomial of f0 at the Chebyshev
extreme points x

(N)
j , j = 0, . . . , N . Using Theorem 6.43 we estimate

|I (f0)−QN(f0)| =
∣
∣
∫ 1

−1

(
f0(x)− pN(x)

)
dx

∣
∣ ≤ 2‖f0 − pN‖C(I)

≤ 4
∞∑

�="N/2#+1

|a2�[f0]| ,

since ak[f0] = 0 for all odd k ∈ N. By (6.20) we know for all 2� > r that

|a2�[f0]| ≤ 2

(2�− r)r+1 ‖f (r+1)
0 ‖C(I) .

Therefore we obtain

|I (f0)−QN(f0)| ≤ 8 ‖f (r+1)
0 ‖C(I)

∞∑

�="N/2#+1

1

(2�− r)r+1

≤ 8 ‖f (r+1)
0 ‖C(I)

∫ ∞

"N/2#
dx

(2x − r)r+1 ≤
4

r (N − r − 1)r
‖f (r+1)

0 ‖C(I) .

Remark 6.51 The inequality (6.78) is not sharp. For better error estimates we refer
to [355, 382]. It is very remarkable that the Clenshaw–Curtis quadrature gives results
nearly as accurate as the Gauss quadrature for most integrands, see [355] and [356,
Chapter 19].
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For the numerical realization of QN [f ] we suggest to use (6.75). By

a
(N)
2k [f ] =

2

N

N∑

j=0

εN(j)2 f (x
(N)
j ) cos

2jkπ

N

= 2

N

N/2∑

j=0

εN/2(j)
2 (

f (x
(N)
j )+ f (x

(N)
N−j )

)
cos

2jkπ

N

we can calculate a
(N)
2k [f ] by means of DCT–I (N/2+ 1),

(
εN/2(k) a

(N)
2k [f ]

)N/2
k=0 =

1√
N

CI
N/2+1 (εN/2(j) fj )

N/2
j=0 , (6.79)

where we set fj := f (x
(N)
j ) + f (x

(N)
N−j ), j = 0, . . . , N/2. Thus we obtain the

following efficient algorithm of numerical integration:

Algorithm 6.52 (Clenshaw–Curtis Quadrature)
Input: t ∈ N \ {1}, N := 2t , f (x

(N)
j ) ∈ R, j = 0, . . . , N , for given f ∈ C(I),

where x
(N)
j := cos jπ

N
.

1. For j = 0, . . . , N/2 form

εN/2(j) fj := εN/2(j)
(
f (x

(N)
j )+ f (x

(N)
N−j )

)
.

2. Compute (6.79) by Algorithm 6.28 or 6.35.
3. Calculate

QN(f ) :=
N/2∑

k=0

εN/2(k)
2 2

1− 4 k2 a
(N)
2k [f ] .

Output:QN(f ) ∈ R approximate value of the integral I (f ).

Computational cost: O(N logN).

Example 6.53 The rational function f (x) := (x4+x2+ 9
10 )

−1, x ∈ I , possesses the
exact integral value I (f ) = 1.582233 . . .. Algorithm 6.52 provides the following
approximate integral values for N = 2t , t = 2, . . . , 6:

N QN(f )

4 1.548821

8 1.582355

16 1.582233

32 1.582233

64 1.582233
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Example 6.54 We consider the needle-shaped function f (x) := (10−4 + x2)−1,
x ∈ I . The integral of f over I has the exact value

∫ 1

−1

dx

10−4 + x2 = 200 arctan 100 = 312.159332 . . . .

For N = 2t , t = 7, . . . , 12, Algorithm 6.52 provides the following results:

N QN(f )

128 364.781238

256 315.935656

512 314.572364

1024 312.173620

2048 312.159332

4096 312.159332

The convergence of this quadrature formula can be improved by a simple trick.
Since f is even, we obtain by substitution x = t−1

2 ,

∫ 1

−1

dx

10−4 + x2
= 2

∫ 0

−1

dx

10−4 + x2
= 4

∫ 1

−1

dt

4 · 10−4 + (t − 1)2
.

such that the function g(t) = 4 (4 · 10−4 + (t − 1)2)−1, t ∈ I , possesses a needle
at the endpoint t = 1. Since the Chebyshev extreme points are clustered near the
endpoints of I , we obtain much better results for lower N :

N QN(g)

8 217.014988

16 312.154705

32 312.084832

64 312.159554

128 312.159332

256 312.159332

Summarizing we can say:
The Clenshaw–Curtis quadrature formula QN(f ) for f ∈ C(I) is an interpo-

latory quadrature rule with explicitly given nodes x
(N)
j = cos jπ

N
, j = 0, . . . , N ,

and positive weights. For even N , the terms a
(N)
2j [f ], j = 0, . . . , N

2 , in QN(f )

can be efficiently and stably computed by a fast algorithm of DCT–I (N2 + 1).
Each polynomial p ∈ PN is exactly integrated over I . For sufficiently smooth
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functions, the Clenshaw–Curtis quadrature gives similarly accurate results as the
Gauss quadrature.

Remark 6.55 The popular Clenshaw–Curtis quadrature for nonoscillatory integrals
can be generalized to highly oscillatory integrals, i.e., integrals of highly oscillating
integrands, which occur in fluid dynamics, acoustic, and electromagnetic scattering.
The excellent book [83] presents efficient algorithms for computing highly oscilla-
tory integrals such as

Iω[f ] :=
∫ 1

−1
f (x) ei ωx dx ,

where f ∈ Cs(I) is sufficiently smooth and ω ' 1. Efficient quadrature methods
for highly oscillatory integrals use the asymptotic behavior of Iω[f ] for large ω. In
the Filon–Clenshaw–Curtis quadrature one interpolates f by a polynomial

p(x) :=
2s+N∑

j=0

pj Tj (x)

such that

p(�)(−1) = f (�)(−1) , p(�)(1) = f (�)(1) , � = 0, . . . , s ,

p
(
x
(N)
k

) = f
(
x
(N)
k

)
, k = 1, . . . , N − 1 ,

where the coefficients pj can be calculated by DCT–I, for details see [83, pp. 62–
66]. Then one determines

Iω[p] =
2s+N∑

j=0

pj bj (ω)

with

bj (ω) :=
∫ 1

−1
Tj (x) ei ωx dx , j = 0, . . . , 2s +N ,

which can be explicitly computed

b0(ω) = 2 sin ω

ω
, b1(ω) = −2i cosω

ω
+ 2i sin ω

ω2 ,

b2(ω) = 8 cosω

ω2 + ( 2

ω
− 8

ω3

)
sin ω , . . . .
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6.5 Discrete Polynomial Transforms

We show that orthogonal polynomials satisfy a three-term recursion formula.
Furthermore, we derive a fast algorithm to evaluate an arbitrary linear combination
of orthogonal polynomials on a nonuniform grid of Chebyshev extreme points.

6.5.1 Orthogonal Polynomials

Let ω be a nonnegative, integrable weight function defined almost everywhere on
I := [−1, 1]. Let L2,ω(I) denote the real weighted Hilbert space with the inner
product

〈f, g〉L2,ω(I ) :=
∫ 1

−1
ω(x) f (x) g(x) dx , f, g ∈ L2,ω(I) , (6.80)

and the related norm

‖f ‖L2,ω(I ) :=
√
〈f, f 〉L2,ω(I ) .

A sequence (Pn)
∞
n=0 of real polynomials Pn ∈ Pn, n ∈ N0, is called a sequence

of orthogonal polynomials with respect to (6.80), if 〈Pm, Pn〉L2,ω(I ) = 0 for all
distinct m, n ∈ N0 and if each polynomial Pn possesses exactly the degree n ∈ N0.
If (Pn)

∞
n=0 is a sequence of orthogonal polynomials, then (cn Pn)

∞
n=0 with arbitrary

cn ∈ R\{0} is also a sequence of orthogonal polynomials. Obviously, the orthogonal
polynomials Pk , k = 0, . . . , N , form an orthogonal basis of PN with respect to the
inner product defined in (6.80).

A sequence of orthonormal polynomials is a sequence (Pn)
∞
n=0 of orthogonal

polynomials with the property ‖Pn‖L2,ω(I ) = 1 for each n ∈ N0. Starting from
the sequence of monomials Mn(x) := xn, n ∈ N0, a sequence of orthonormal
polynomials Pn can be constructed by the known Gram–Schmidt orthogonalization
procedure, i.e., one forms P0 := M0/‖M0‖L2,ω(I ) and then recursively for n =
1, 2, . . .

P̃n := Mn −
n−1∑

k=0

〈Mn, Pk〉L2,ω(I ) Pk , Pn := 1

‖P̃n‖L2,ω(I )

P̃n .

For the theory of orthogonal polynomials we refer to the books [65, 127, 348].

Example 6.56 For the weight function ω(x) := (1 − x)α (1 + x)β , x ∈ (−1, 1),
with α > −1 and β > −1, the related orthogonal polynomials are called Jacobi
polynomial. For α = β = 0 we obtain the Legendre polynomials. The case α =
β = − 1

2 leads to the Chebyshev polynomials of first kind and α = β = 1
2 to
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the Chebyshev polynomials of second kind up to a constant factor. For α = β =
λ− 1

2 with λ > − 1
2 we receive the ultraspherical polynomials which are also called

Gegenbauer polynomials.

For efficient computation with orthogonal polynomials it is essential that orthog-
onal polynomials can be recursively calculated:

Lemma 6.57 If (Pn)
∞
n=0 is a sequence of orthogonal polynomials Pn ∈ Pn, then

the polynomials Pn satisfy a three-term recurrence relation

Pn(x) = (αn x + βn) Pn−1(x)+ γn Pn−2(x) , n ∈ N , (6.81)

with P−1(x) := 0 and P0(x) := 1, where αn, βn, and γn are real coefficients with
αn �= 0 and γn �= 0.

Proof Clearly, formula (6.81) holds for n = 1 and n = 2. We consider n ≥ 3. If
cn and cn−1 are the leading coefficients of Pn and Pn−1, respectively, then we set
αn := cn

cn−1
�= 0. Thus q(x) := Pn(x)− αn x Pn−1(x) ∈Pn−1 can be expressed as

q = d0 P0 + . . .+ dn−1 Pn−1 .

For k = 0, . . . , n − 3 this provides dk = 0 by the orthogonality, since x Pk(x) ∈
Pk+1 can be written as a linear combination of P0, . . . , Pk+1 and therefore

〈Pk, q〉L2,ω(I ) = 〈Pk, Pn〉L2,ω(I ) − αn 〈x Pk(x), Pn−1(x)〉L2,ω(I ) = 0 = dk ‖Pk‖2
L2,ω(I )

.

Thus with βn := dn−1 and γn := dn−2 we find

Pn(x) = αn x Pn−1(x)+ βn Pn−1(x)+ γn Pn−2(x) .

The coefficient γn does not vanish, since the orthogonality implies

0 = 〈Pn, Pn−2〉L2,ω(I ) =
αn

αn−1
‖Pn−1‖2

L2,ω(I )
+ γn ‖Pn−2‖2

L2,ω(I )
.

Example 6.58 The Legendre polynomials Ln normalized by Ln(1) = 1 satisfy the
three-term recurrence relation

Ln+2(x) = 2n+ 3

n+ 2
x Ln+1(x)− n+ 1

n+ 2
Ln(x)

for n ∈ N0 with L0(x) := 1 and L1(x) := x (see [348, p. 81]).
The Chebyshev polynomials Tn normalized by Tn(1) = 1 satisfy the three-term

relation

Tn+2(x) = 2x Tn+1(x)− Tn(x)

for n ∈ N0 with T0(x) := 1 and T1(x) := 1.
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Let now (Pn)
∞
n=0 be a sequence of orthogonal polynomialsPn ∈Pn with respect

to (6.80). Then, every p ∈PN can be represented as

p =
N∑

k=0

〈p, Pk〉L2,ω(I )

〈Pk, Pk〉L2,ω(I )

Pk .

The inner product 〈p,Pk〉L2,ω(I ) can be exactly computed by a suitable interpolatory
quadrature rule of the form

〈p, Pk〉L2,ω(I ) =
∫ 1

−1
ω(x) p(x) Pk(x) dx =

2N∑

j=0

w
(2N)
j p(x

(2N)
j ) Pk(x

(2N)
j )

(6.82)

for k = 0, . . . , N , where we again employ the Chebyshev extreme points x
(2N)
j =

cos jπ
2N , and where the quadrature weights w

(2N)
j are obtained using the integrals of

the Lagrange basis functions �
(2N)
j related to the points x

(2N)
j , i.e.,

w
(2N)
j :=

∫ 1

−1
ω(x) �

(2N)
j (x) dx , �

(2N)
j (x) =

2N∏

k=0
k �=j

x − x
(2N)
k

x
(2N)
j − x

(2N)
k

.

For the special case ω ≡ 1 in (6.80), the quadrature rule in (6.82) coincides with the
Clenshaw–Curtis quadrature rule of order 2N in Sect. 6.4, where the interpolation
polynomial at the knots x

(2N)
j , j = 0, . . . , 2N , has been applied. In that special

case, the weights w
(2N)
j are of the form

w
(2N)
j = ε2N(j)2

N

N∑

�=0

ε2N(2�)2 2

1− 4�2 cos
2�jπ

2N
,

see (6.76), with ε2N(0) = ε2N(2N) = 1√
2

and ε2N(j) = 1 for j = 1, . . . , 2N − 1.

For other weights ω(x) the expressions for w(2N)
j may look more complicated, but

we will still be able to compute them by a fast DCT–I algorithm.

6.5.2 Fast Evaluation of Orthogonal Expansions

Let now M , N ∈ N with M ≥ N be given powers of two. In this section we are
interested in efficient solutions of the following two problems (see [293]):
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Problem 1 For given ak ∈ R, k = 0, . . . , N , compute the discrete polynomial
transform DPT (N + 1, M + 1) : RN+1 → R

M+1 defined by

âj :=
N∑

k=0

ak Pk(x
(M)
j ) , j = 0, . . . ,M , (6.83)

where x
(M)
j = cos jπ

M
, j = 0, . . . ,M . The corresponding transform matrix

P := (
Pk(x

(M)
j )

)M,N

j,k=0 ∈ R
(M+1)×(N+1)

is called Vandermonde-like matrix. This first problem addresses the evaluation of an
arbitrary polynomial

p :=
N∑

k=0

ak Pk ∈PN

on the nonuniform grid of Chebyshev extreme points x
(M)
j ∈ I , j = 0, . . . ,M .

The discrete polynomial transform can be considered as a generalization of DCT–I,
since for Pk = Tk , k = 0, . . . , N , the DPT (M + 1, N + 1) reads

âj :=
N∑

k=0

ak Tk(x
(M)
j ) =

N∑

k=0

ak cos
jkπ

M
, j = 0, . . . ,M .

Problem 2 For given bj ∈ R, j = 0, . . . ,M , compute the transposed discrete
polynomial transform TDPT (M + 1, N + 1) : RM+1 → R

N+1 defined by

b̃k :=
M∑

j=0

bj Pk(x
(M)
j ) , k = 0, . . . , N . (6.84)

This transposed problem is of similar form as (6.82) for M = 2N and with
bj = w

(2N)
j p(x

(2N)
j ). Therefore, it needs to be solved in order to compute the

Fourier coefficients of the polynomial p ∈ PN in the orthogonal basis {Pk : k =
0, . . . , N}.

A direct realization of (6.83) or (6.84) by the Clenshaw algorithm, see Algo-
rithm 6.19, would require computational cost of O(MN). We want to derive fast
algorithms to solve these two problems with only O(N(log2 N)2 + M log2 M)

arithmetical operations.
We will start with considering the first problem. The main idea is as follows.

First, we will derive a fast algorithm for the change of basis from the polynomial
expansion in the basis {Pk : k = 0, . . . , N} to the basis {Tk : k = 0, . . . , N} of
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Chebyshev polynomials. Then we can employ a fast DCT–I algorithm to evaluate

p =
N∑

k=0

ak Tk , ak ∈ R . (6.85)

at the Chebyshev extreme points x
(M)
j = cos jπ

M
, j = 0, . . . ,M . The values

p(x
(M)
j ), j = 0, . . . ,M , can be efficiently computed using Algorithm 6.22

involving a DCT–I (M + 1), where we only need to pay attention because of the
slightly different normalization in (6.85) compared to (6.24). Here, we obtain

(
εM(j) p(x

(M)
j )

)M
j=0 =

√
M

2
CI

M+1

(
δM(k) ak

)M
k=0 , (6.86)

where we set ak := 0 for k = N + 1, . . . ,M and δM(0) := √2, δM(k) := 1 for
k = 1, . . . ,M .

Let us now consider the problem to change the basis of a polynomial from {Pk :
k = 0, . . . , N} to the basis {Tk : k = 0, . . . , N} in an efficient way. For that purpose
we present in the first step a further algorithm for fast polynomial multiplication that
is slightly different from the algorithm given in Theorem 6.26. Let p ∈Pn be given
in the form

p =
n∑

k=0

ak Tk , ak ∈ R . (6.87)

Further, let q ∈ Pm with m ∈ N be a fixed polynomial with known polynomial
values q(x

(M)
j ), j = 0, . . . ,M , where M = 2s , s ∈ N, with M/2 ≤ m+ n < M is

chosen. Then the Chebyshev coefficients bk ∈ R, k = 0, . . . ,m+ n, in

r := p q =
n+m∑

k=0

bk Tk

can be computed in a fast way by the following procedure, see [16].

Algorithm 6.59 (Fast Polynomial Multiplication in Chebyshev Polynomial Ba-
sis)
Input:m, n ∈ N, M = 2s , s ∈ N, with M/2 ≤ m+ n < M ,

polynomial values q(x(M)
j ) ∈ R, j = 0, . . . ,M , of q ∈Pm,

Chebyshev coefficients ak ∈ R, k = 0, . . . , n, of p ∈Pn,

εM(0) = εM(M) :=
√

2
2 , εM(k) := 1, k = 1, . . . ,M − 1,

δM(0) = δM(M) := √2, δM(k) := 1, k = 1, . . . ,M − 1.

1. Set ak := 0, k = n + 1, . . . ,M , and compute the values εM(j) p(x
(M)
j ), j =

0, . . . ,M , by (6.86) using a DCT–I (M + 1), as in Algorithm 6.28 or 6.35.
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2. Evaluate the M + 1 products

εM(j) r(x
(M)
j ) := (

εM(j) p(x
(M)
j )

)
q(x

(M)
j ) , j = 0, . . . ,M .

3. Compute

(b̃k)
M−1
k=0 :=

√
2

M
CI

M+1

(
εM(j) r(x

(M)
j )

)M
j=0

by a fast algorithm of DCT–I (M + 1) using Algorithm 6.28 or 6.35 and form
bk := δM(k)−1 b̃k , k = 0, . . . ,m+ n.

Output: bk ∈ R, k = 0, . . . ,m + n, Chebyshev coefficients of the product p q ∈
Pm+n.

Computational cost: O(M logM).

By Theorem 6.39, the fast DCT–I (2s + 1) Algorithm 6.35 requires 2s s− 4
3 2s +

5
2 − 1

6 (−1)s multiplications and 4
3 2s s − 14

9 2s + 1
2 s + 7

2 + 1
18 (−1)s additions.

Hence, Algorithm 6.59 realizes the multiplication of the polynomials p ∈ Pn and
q ∈Pm in the Chebyshev polynomial basis by less than 2 M logM multiplications
and 8

3 M logM additions.
For the change of basis from {Pk : k = 0, . . . , N} to {Tk : k = 0, . . . , N} we

want to employ a divide-and-conquer technique, where we will use the so-called
associated orthogonal polynomials.

Assume that the sequence (Pn)
∞
n=0 of orthogonal polynomials satisfies the three-

term recurrence relation (6.81). Replacing the coefficient index n ∈ N0 in (6.81)
by n + c with c ∈ N0, we obtain the so-called associated orthogonal polynomials
Pn( · , c) ∈Pn defined recursively by

Pn(x, c) := (αn+c x + βn+c) Pn−1(x, c) + γn+c Pn−2(x, c) , n ∈ N , (6.88)

with P−1(x, c) := 0 and P0(x, c) := 1. By induction one can show the following
result (see [27]):

Lemma 6.60 For all c, n ∈ N0,

Pc+n = Pn(·, c) Pc + γc+1 Pn−1(·, c + 1) Pc−1 . (6.89)

Proof For n = 0 and n = 1, Eq. (6.89) is true for all c ∈ N0. Assume that (6.89)
holds up to fixed n ∈ N for all c ∈ N0. We employ an induction argument.
Using (6.81) and (6.88), we obtain

Pc+n+1(x) = (αc+n+1 x + βc+n+1) Pc+n(x)+ γc+n+1 Pc+n−1(x)

= (αc+n+1 x + βc+n+1)
(
Pn(x, c) Pc(x)+ γc+1 Pn−1(x, c + 1) Pc−1(x)

)
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+ γc+n+1
(
Pn−1(x, c) Pc(x) + γc+1 Pn−2(x, c + 1) Pc−1(x)

)

= (
(αc+n+1 x + βc+n+1) Pn(x, c) + γc+n+1 Pn−1(x, c)

)
Pc(x)

+ (
(αc+n+1 x + βc+n+1) Pn−1(x, c + 1) + γc+n+1 Pn−2(x, c + 1)

)
γc+1 Pc−1(x)

= Pn+1(x, c) Pc(x) + γc+1 Pn(x, c + 1) Pc−1(x) .

Lemma 6.60 implies

(
Pc+n

Pc+n+1

)
= Un(·, c)

(
Pc−1

Pc

)
(6.90)

with

Un(·, c) :=
(
γc+1Pn−1(·, c + 1) γc+1Pn(·, c + 1)

Pn(·, c) Pn+1(·, c)
)

.

This polynomial matrix Un(·, c) contains polynomial entries of degree n− 1, n and
n+ 1, respectively.

Now we describe the exchange between the bases {Pk : k = 0, . . . , N} and
{Tk : k = 0, . . . , N} of PN , where N = 2t , t ∈ N. Assume that p ∈PN is given
in the orthogonal basis {Pk : k = 0, . . . , N} by

p =
N∑

k=0

ak Pk (6.91)

with real coefficients ak. Our goal is the fast evaluation of the related Chebyshev
coefficients ãk in the representation

p =
N∑

k=0

ãk Tk. (6.92)

In an initial step we use (6.81) and the fact that T1(x) = x to obtain

p(x) =
N−1∑

k=0

ak Pk(x)+ aN ((αNx + βN)PN−1(x)+ γNPN−2(x))

=
N−1∑

k=0

a
(0)
k (x) Pk(x)
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with

a
(0)
k (x) :=

⎧
⎨

⎩

ak k = 0, . . . , N − 3 ,

aN−2 + γN aN k = N − 2 ,

aN−1 + βN aN + αN aN T1(x) k = N − 1 ,

(6.93)

where a
(0)
N−1 is a linear polynomial while a

(0)
k are constants for k = 0, . . . , N − 2.

Now, we obtain

p =
N−1∑

k=0

a
(0)
k Pk =

N/4−1∑

k=0

( 3∑

�=0

a
(0)
4k+� P4k+�

)

=
N/4−1∑

k=0

(a
(0)
4k , a

(0)
4k+1)

(
P4k

P4k+1

)
+ (a

(0)
4k+2, a

(0)
4k+3)

(
P4k+2

P4k+3

)

=
N/4−1∑

k=0

(
(a

(0)
4k , a

(0)
4k+1)+ (a

(0)
4k+2, a

(0)
4k+3)U1(·, 4k + 1)

)(
P4k

P4k+1

)
,

where we have used (6.90) with n = 1 and c = 4k + 1 for k = 0, . . . , N/4 − 1.
This yields

p =
N/4−1∑

k=0

( a
(1)
4k P4k + a

(1)
4k+1 P4k+1)

with

(
a
(1)
4k

a
(1)
4k+1

)

:=
(

a
(0)
4k

a
(0)
4k+1

)

+ U1(·, 4k + 1)

(
a
(0)
4k+2

a
(0)
4k+3

)

. (6.94)

Observe that the degree of polynomials in U1(·, 4k+1) is at most 2, and therefore the
degree of the polynomials a(1)

4k and a
(1)
4k+1 in (6.94) is at most 3. The computation of

the polynomial coefficients of a(1)
4k , a(1)

4k+1 ∈P3, k = 0, . . . , N
4 − 1 can be realized

by employing Algorithm 6.59 with M = 4. However, for these polynomials of
low degree we can also compute the Chebyshev coefficients directly with 4N + 5
multiplications and 5

2N + 3 additions (see Fig. 6.10).
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a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16

a
(0)
0 a

(0)
1 a

(0)
2 a

(0)
3 a

(0)
4 a

(0)
5 a

(0)
6 a

(0)
7 a

(0)
8 a

(0)
9 a

(0)
10 a

(0)
11 a

(0)
12 a

(0)
13 a

(0)
14 a

(0)
15

U1( · , 1) U1( · , 5) U1( · , 9) U1( · , 13)

a
(1)
0 a

(1)
1 a

(1)
4 a

(1)
5 a

(1)
8 a

(1)
9 a

(1)
12 a

(1)
13

U3( · , 1) U3( · , 9)

a
(2)
0 a

(2)
1 a

(2)
8 a

(2)
9

U7( · , 1)

a
(3)
0 a

(3)
1

(ãk)
16
k=0

Fig. 6.10 Cascade summation for the computation of the coefficient vector (ãk)
16
k=0 in the case

N = 16

We apply the cascade summation above now iteratively. In the next step, we
compute

p =
N/4−1∑

k=0

(
a
(1)
4k P4k + a

(1)
4k+1 P4k+1

)

=
N/8−1∑

k=0

(a
(1)
8k , a

(1)
8k+1)

(
P8k

P8k+1

)
+ (a

(1)
8k+4, a

(1)
8k+5)

(
P8k+4

P8k+5

)

=
N/8−1∑

k=0

(
(a

(1)
8k , a

(1)
8k+1)+ (a

(1)
8k+4, a

(1)
8k+5)U3(·, 8k + 1)

)(
P8k

P8k+1

)
,
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implying

p =
N/8−1∑

k=0

( a
(2)
8k P8k + a

(2)
8k+1 P8k+1)

with

(
a
(2)
8k

a
(2)
8k+1

)

:=
(

a
(1)
8k

a
(1)
8k+1

)

+ U3(·, 8k + 1)

(
a
(1)
8k+4

a
(1)
8k+5

)

.

Generally, in step τ ∈ {2, . . . , t − 1}, we compute by (6.90) with n = 2τ − 1
the Chebyshev coefficients of the polynomials a

(τ)

2τ+1k
, a(τ)

2τ+1k+1
∈ P2τ+1−1, k =

0, . . . , N/2τ+1 − 1, defined by

⎛

⎝
a
(τ)

2τ+1k

a
(τ)

2τ+1k+1

⎞

⎠ :=
⎛

⎝
a
(τ−1)
2τ+1k

a
(τ−1)
2τ+1k+1

⎞

⎠ + U2τ−1( · , 2τ+1k + 1)

⎛

⎝
a
(τ−1)
2τ+1k+2τ

a
(τ−1)
2τ+1k+2τ+1

⎞

⎠ ,

(6.95)

where we calculate the Chebyshev coefficients of the polynomials by Algo-

rithm 6.59 (with M = 2τ+1). Assume that the entries of U2τ−1
(
x
(2τ+1)
� , 2τ+1k + 1

)

for k = 0, . . . , N/2τ+1 and � = 0, . . . , 2τ+1 have been precomputed by Clenshaw
Algorithm 6.19. Then step τ requires 4 N

2τ+1 applications of Algorithm 6.59.
Therefore we have computational costs of less than 8 N(τ + 1) multiplications and
32
3 N(τ + 1)+ 2N additions at step τ with the result

p =
N/2τ+1−1∑

k=0

(
a
(τ)

2τ+1k
P2τ+1k + a

(τ)

2τ+1k+1
P2τ+1k+1

)
.

After step t − 1, we arrive at

p = a
(t−1)
0 P0 + a

(t−1)
1 P1

with the polynomial coefficients

a
(t−1)
0 =

N∑

n=0

a
(t−1)
0,n Tn , a

(t−1)
1 =

N−1∑

n=0

a
(t−1)
1,n Tn ,

and where P0(x) = 1, P1(x) = α1 x + β1. Therefore, by

x T0(x) = T1(x) , x Tn(x) = 1

2

(
Tn+1(x)+ Tn−1(x)

)
, n = 1, 2, . . . .
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we conclude

p = a
(t−1)
0 + a

(t)
1

with

a
(t)
1 = a

(t−1)
1 P1 =

N−1∑

n=0

a
(t−1)
1,n Tn(x) (α1x + β1)

=
N−1∑

n=0

β1 a
(t−1)
1,n Tn(x)+ α1a

(t−1)
1,0 T1(x)+

N−1∑

n=1

α1 a
(t−1)
1,n

1

2

(
Tn−1(x)+ Tn+1(x)

)

=
N∑

n=0

a
(t)
1,n Tn(x) .

For the coefficients we obtain

a
(t)
1,n :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

β1a
(t−1)
1,0 + 1

2α1a
(t−1)
1,1 n = 0 ,

β1a
(t−1)
1,1 + α1a

(t−1)
1,0 + 1

2α1a
(t−1)
1,2 n = 1 ,

β1a
(t−1)
1,n + 1

2α1(a
(t−1)
1,n−1 + a

(t−1)
1,n+1) n = 2, . . . , N − 2 ,

β1a
(t−1)
1,N−1 + 1

2α1a
(t−1)
1,N−2 n = N − 1 ,

1
2α1a

(t−1)
1,N−1 n = N .

(6.96)

The final addition of the Chebyshev coefficients of a(t−1)
0 and a

(t)
1 yields the desired

Chebyshev coefficients of p, i.e.

(
ãn

)N
n=0 =

(
a
(t−1)
0,n

)N
n=0 +

(
a
(t)
1,n

)N
n=0 . (6.97)

We summarize the discrete polynomial transform that computes the new coefficients
of the Chebyshev expansion of a polynomial given in a different basis of orthogonal
polynomials and solves problem 1 by evaluating the resulting Chebyshev expansion
at the knots x

(M)
j .

Algorithm 6.61 (Fast Algorithm of DPT (N + 1,M + 1))
Input:N = 2t , M = 2s with s, t ∈ N and s ≥ t ,

ak ∈ R, k = 0, . . . , N , coefficients in (6.91),

precomputed matrices U2τ−1
(
x
(2τ+1)
� , 2τ+1k + 1

)
for τ = 1, . . . , t − 1,

k = 0, . . . , 2t−τ−1, and � = 0, . . . , 2τ+1.

1. Compute a
(0)
k , k = 0, . . . , 2t − 1 by (6.93).

2. For τ = 1, . . . , t − 1 do
Step τ . For k = 0, . . . , 2t−τ−1 − 1 compute (6.95) by Algorithm 6.59.

3. Step t . Compute ãn, n = 0, . . . , N , by (6.96) and (6.97).
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4. Compute (6.86) by a DCT–I (M + 1) using Algorithm 6.28 or 6.35.

Output: p(x(M)
j ), j = 0, . . . ,M .

Computational cost: O(N log2 N +M logM).

In this algorithm, we have to store the precomputed elements of the matrices U.
Counting the arithmetic operations in each step, we verify that the complete basis
exchange algorithm possesses computational costs of O(N log2 N).

Finally, using fast DCT–I (M + 1), the computation of (6.86) takes M logM

multiplications and 4
3 M logM additions, see Theorem 6.39.

Remark 6.62 A fast algorithm for the transposed discrete polynomial transform
TDPT (N + 1,M + 1) in Problem 2, i.e., the fast evaluation of

âk :=
N∑

�=0

a� Pk(cos
π�

M
), k = 0, . . . , N ,

can be obtained immediately by “reversing” Algorithm 6.61. In other words,
we have simply to reverse the direction of the arrows in the flow graph of
Algorithm 6.61. For the special case of spherical polynomials this was done in [195].
See also the algorithm in [88] for the Legendre polynomials and the generalization
to arbitrary polynomials satisfying a three-term recurrence relation in [89, 161].
The suggested algorithms are part of the NFFT software, see [199, ../examples/fpt].
Furthermore there exists a MATLAB interface, see [199, ../matlab/fpt].

Fast algorithms based on semiseparable matrices can be found in [193, 194]. Fast
algorithms based on asymptotic formulas for the Chebyshev–Legendre transform
have been developed in [155, 173]. A method for the discrete polynomial transform
based on diagonally scaled Hadamard products involving Toeplitz and Hankel
matrices is proposed in [354].



Chapter 7
Fast Fourier Transforms
for Nonequispaced Data

In this chapter, we describe fast algorithms for the computation of the DFT for
d-variate nonequispaced data, since in a variety of applications the restriction to
equispaced data is a serious drawback. These algorithms are called nonequispaced
fast Fourier transforms and abbreviated by NFFT. In Sect. 7.1, we present a unified
approach to the NFFT for nonequispaced data either in space or frequency domain.
The NFFT is an approximate algorithm which is based on approximation of a
d-variate trigonometric polynomial by a linear combination of translates of a 2π-
periodic window function. For special window functions we obtain the NFFT of
Dutt and Rokhlin [95], Beylkin [32], and Steidl [338]. Section 7.2 is devoted to error
estimates for special window functions. The connection between the approximation
error and the arithmetic cost of the NFFT is described in Theorem 7.8. We will show
that the NFFT requires asymptotically the same arithmetical cost as the FFT, since
we are only interested in computing the result up to a finite precision. In Sect. 7.3,
we generalize the results of Sect. 7.1. We investigate the NFFT for nonequispaced
data in space and frequency domains. Based on the NFFT approach, we derive fast
approximate algorithms for discrete trigonometric transforms with nonequispaced
knots in Sect. 7.4. Section 7.5 describes the fast summation of radial functions with a
variety of applications. In Sect. 7.6, we develop methods for inverse nonequispaced
transforms, where we distinguish between direct and iterative methods.

7.1 Nonequispaced Data Either in Space or Frequency
Domain

For a given dimension d ∈ N and for large N ∈ N, let

Id
N :=

{
k ∈ Z

d : −N

2
1d ≤ k <

N

2
1d

}
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be an index set, where 1d := (1, . . . , 1) ∈ Z
d and the inequality holds for

each component. We use the hypercube [−π, π)d as a representative of the d-
dimensional torus T

d . The inner product of x = (xt )
d
t=1 and y = (yt)

d
t=1 ∈ R

d

is denoted by

x · y := x y =
d∑

t=1

xt yt .

First we describe the NFFT for nonequispaced data xj ∈ T
d , j ∈ I 1

M , in the
space domain and equispaced data in the frequency domain, i.e., we are interested
in the fast evaluation of the d-variate, 2π-periodic trigonometric polynomial

f (x) :=
∑

k∈I dN
f̂k ei k·x , f̂k ∈ C , (7.1)

at arbitrary knots xj ∈ T
d , j ∈ I 1

M for given arbitrary coefficients f̂k ∈ C, k ∈ Id
N .

In other words, we will derive an efficient algorithm for the fast and stable evaluation
of the M values

fj := f (xj ) =
∑

k∈I dN
f̂k ei k·xj , j ∈ I 1

M . (7.2)

The main idea is to approximate f (x) by a linear combination of translates of
a suitable d-variate window function in a first step and to evaluate the obtained
approximation at the knots xj , j ∈ I 1

M in a second step. Starting with a window
function ϕ ∈ L2(R

d) ∩ L1(R
d) which is well localized in space and frequency, we

define the 2π-periodic function

ϕ̃(x) :=
∑

r∈Zd

ϕ(x+ 2πr) (7.3)

which has the uniformly convergent Fourier series

ϕ̃(x) =
∑

k∈Zd

ck(ϕ̃) ei k·x (7.4)

with the Fourier coefficients

ck(ϕ̃) := 1

(2π)d

∫

[−π, π]d
ϕ̃(x) e−i k·x dx , k ∈ Z

d . (7.5)
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There is a close relation between the Fourier coefficients ck(ϕ̃) in (7.5) and the
Fourier transform ϕ̂(k) of the function ϕ, namely

ϕ̂(k) :=
∫

Rd

ϕ(x) e−i k·x dx = (2π)d ck(ϕ̃) , k ∈ Z
d , (7.6)

which is known from the Poisson summation formula, see the proof of Theo-
rem 4.27. Let now σ ≥ 1 be an oversampling factor such that σN ∈ N. This factor
will later determine the size of a DFT. One should choose σ such that the DFT of
length σN can be efficiently realized by FFT. Now we determine the coefficients
gl ∈ C, l ∈ Id

σN , of the linear combination

s1(x) :=
∑

l∈I dσN

gl ϕ̃
(
x− 2π l

σN

)
(7.7)

such that the function s1 is an approximation of the trigonometric polynomial (7.1).
Computing the Fourier series of the 2π-periodic function s1, we obtain by
Lemma 4.1

s1(x) =
∑

k∈Zd

ck(s1) ei k·x =
∑

k∈Zd

ĝk ck(ϕ̃) ei k·x

=
∑

k∈I dσN

ĝk ck(ϕ̃) ei k·x +
∑

r∈Zd\{0}

∑

k∈I dσN

ĝk ck+σNr(ϕ̃) ei (k+σNr)·x (7.8)

with the discrete Fourier coefficients

ĝk :=
∑

l∈I dσN

gl e−2π i k·l/(σN) . (7.9)

Assuming that |ck(ϕ̃)| are relatively small for ‖k‖∞ ≥ σN − N
2 and that ck(ϕ̃) �= 0

for all k ∈ Id
N , we compare the trigonometric polynomial (7.1) with the first sum of

the Fourier series (7.8) and choose

ĝk =
{
f̂k/ck(ϕ̃) k ∈ Id

N ,

0 k ∈ Id
σN \ Id

N .
(7.10)

We compute the coefficients gl in the linear combination (7.7) by applying the d-
variate inverse FFT of size (σN)× . . . (σN) and obtain

gl = 1

(σN)d

∑

k∈I dN
ĝk e2π i k·l/(σN) , l ∈ Id

σN . (7.11)
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Further we assume that the function ϕ is well localized in space domain and can
be well approximated by its truncation ψ := ϕ|Q on Q := [− 2πm

σN
, 2πm

σN

]d , where
2m& σN and m ∈ N. Thus we have

ψ(x) = ϕ(x) χQ(x) =
{
ϕ(x) x ∈ Q,

0 x ∈ R
d \Q,

(7.12)

where χQ denotes the characteristic function of Q ⊂ [−π, π]d , since 2m & σN .
We consider again the 2π-periodic function

ψ̃(x) :=
∑

r∈Zd

ψ(x + 2πr) ∈ L2(T
d ) (7.13)

and approximate s1 by the function

s(x) :=
∑

l∈I dσN

gl ψ̃
(
x− 2π l

σN

) =
∑

l∈IσN,m(x)

gl ψ̃
(
x− 2π l

σN

)
. (7.14)

Here, the index set IσN,m(x) is given by

IσN,m(x) := {l ∈ Id
σN :

σN

2π
x−m 1d ≤ l ≤ σN

2π
x+m 1d} .

For a fixed knot xj we see that the sum (7.14) contains at most (2m+ 1)d nonzero
terms. Finally we obtain

f (xj ) ≈ s1(xj ) ≈ s(xj ) .

Thus we can approximately compute the sum (7.1) for all xj , j ∈ I 1
M , with a

computational cost of O(Nd logN + mdM) operations. The presented approach
involves two approximations, s1 and s. We will study the related error estimates in
Sect. 7.2. In the following we summarize this algorithm of NFFT as follows:

Algorithm 7.1 (NFFT)

Input:N, M ∈ N, σ > 1, m ∈ N, xj ∈ T
d for j ∈ I 1

M , f̂k ∈ C for k ∈ Id
N .

Precomputation: (i) Compute the nonzero Fourier coefficients ck(ϕ̃) for all k ∈ Id
N .

(ii) Compute the values ψ̃
(
xj− 2π l

σN

)
for j ∈ I 1

M and l∈ IσN,m(xj ).

1. Let ĝk := f̂k/ck(ϕ̃) for k ∈ Id
N .

2. Compute the values

gl := 1

(σN)d

∑

k∈I dN
ĝk e2π ik·l/(σN) , l ∈ Id

σN .

using a d-variate FFT.
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3. Compute

s(xj ) :=
∑

l∈IσN,m(xj )

glψ̃
(
xj − 2π l

σN

)
, j ∈ I 1

M .

Output: s(xj ), j ∈ I 1
M , approximating the values f (xj ) in (7.2).

Computational cost: O(Nd logN +mdM).

Remark 7.2

1. In Sect. 7.2 we will investigate different window functions ϕ and ψ . There
will be also used ψ̃ , which can be very efficiently computed such that the
precomputation step (ii) can be omitted.

2. For window functions, which are expensive to compute, one can use the lookup
table technique. If the d-variate window function has the form

ϕ(x) =
d∏

t=1

ϕt(xt )

with even univariate window functions ϕt , then the precomputation step can be
performed as follows. We precompute the equidistant samples ϕt(

rm
KσN

) for r =
0, . . . ,K with K ∈ N and compute for the actual node xj during the NFFT
the values ϕt((xj )t − 2πlt

σN
) for t = 1, . . . , d and lt ∈ Int ,m((xj )t ) by means

of the linear interpolation from its two neighboring precomputed samples, see,
e.g., [198] for details.

Next we describe the NFFT for nonequispaced data in the frequency domain and
equispaced data in the space domain. We want to compute the values

h(k) :=
∑

j∈I 1
M

fj ei k·xj , k ∈ Id
N , (7.15)

with arbitrary nodes xj ∈ T
d , j ∈ I 1

M , and given data fj ∈ C, j ∈ I 1
M . For this

purpose we introduce the 2π-periodic function

g̃(x) :=
∑

j∈I 1
M

fj ϕ̃(x+ xj )

with ϕ̃ in (7.3). For the Fourier coefficients of g̃ we obtain by (7.5) and (7.15) the
identity

ck(g̃) = 1

(2π)d

∫

[−π, π]d
g̃(x) e−i k·x dx =

∑

j∈I 1
M

fj ei k·xj ck(ϕ̃)

= h(k) ck(ϕ̃) , k ∈ Z
d . (7.16)
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Thus the unknown values h(k), k ∈ Id
N , can be computed, if the values ck(ϕ̃)

and ck(g̃) for k ∈ Id
N are available. The Fourier coefficients (7.16) of g̃ can be

approximated by using the trapezoidal rule

ck(g̃) ≈ 1

(σN)d

∑

l∈I dσN

∑

j∈I 1
M

fj ϕ̃
(
xj − 2π l

σN

)
e2π i k·l/(σN) .

Similarly as above let ϕ be well-localized in the space domain, such that ϕ can be
approximated by its truncation ψ = ϕ|Q on Q = [ − 2πm

σN
, 2πm

σN

]d . Hence the

2π-periodic function ϕ̃ can be well approximated by the 2π-periodic function ψ̃ .
We summarize the proposed method and denote it as nonequispaced fast Fourier

transform transposed NFFT.

Algorithm 7.3 (NFFT)

Input:N ∈ N, σ > 1, m ∈ N, xj ∈ T
d for j ∈ I 1

M , f̃k ∈ C for k ∈ Id
N .

Precomputation: (i) Compute the nonzero Fourier coefficients ck(ϕ̃) for k ∈ Id
N .

(ii) Compute the values ψ̃
(

xj − 2π l
σN

)
for l ∈ Id

σN and j ∈
IT
σN,m(l), where IT

σN,m(l) := {j ∈ I 1
M : l − m1d ≤ σN

2π xj ≤
l+m1d}.

1. Compute

ĝl :=
∑

j∈IT
σN,m(l)

fj ψ̃
(
xj − 2π l

σN

)
, l ∈ Id

σN .

2. Compute with the d-variate FFT

c̃k(g̃) := 1

(σN)d

∑

l∈I dσN

ĝl e2π i k·l/(σN), k ∈ Id
N .

3. Compute h̃(k) := c̃k(g̃)/ck(ϕ̃) for k ∈ Id
N .

Output: h̃(k), k ∈ Id
N , approximating the values h(k) in (7.15).

Computational cost: O(Nd logN +mdM).

Remark 7.4 Setting f̂k = δk−m for arbitrary k ∈ Id
N and fixed m ∈ Id

N , where δk
denotes the d-variate Kronecker symbol, we see that the two Algorithms 7.1 and 7.3
use the approximation

ei m·x ≈ (2π)d

(σN)d ϕ̂(m)

∑

l∈I dσN

ψ̃
(
x− 2π l

σN

)
e2π i m·l/(σN) . (7.17)
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In some cases it is helpful to describe the algorithms as matrix–vector products.
This representation shows the close relation between the Algorithms 7.1 and 7.3. In
order to write the sums (7.2) and (7.15) as matrix–vector products, we introduce the
vectors

f̂ := (f̂k)k∈I dN ∈ C
Nd

, f := (fj )j∈I 1
M
∈ C

M (7.18)

and the nonequispaced Fourier matrix

A := (
ei k·xj

)
j∈I 1

M,k∈I dN ∈ C
M×Nd

. (7.19)

Then the evaluation of the sums (7.2) for j = −M/2, . . . ,M/2 − 1 is equivalent
to the computation of the matrix–vector product A f̂. Thus a naive evaluation of A f̂
takes O(NdM) arithmetical operations.

For equispaced knots −2π j/N , j ∈ Id
N , t = 1, . . . , d , the matrix A coincides

with classical d-variate Fourier matrix

Fd
N :=

(
e−2π ik·j/N)

j, k∈I dN ∈ C
Nd×Nd

,

and we can compute the matrix–vector product with the help of an FFT.
In the following we show that Algorithm 7.1 can be interpreted as an approximate

factorization of the matrix A in (7.19) into the product of structured matrices

B Fd
σN,N D . (7.20)

Each matrix corresponds to one step in Algorithm 7.1:

1. The diagonal matrix D ∈ C
Nd×Nd

is given by

D := diag
(
ck(ϕ̃)

−1)
k∈I dN . (7.21)

2. The matrix Fd
σN,N ∈ C

(σN)d×Nd
is the d-variate, truncated Fourier matrix

Fd
σN,N :=

1

(σN)d

(
e2π i k·l/(σN)

)
l∈I dσN , k∈I dN (7.22)

= F1
σN,N ⊗ . . .⊗ F1

σN,N︸ ︷︷ ︸
d−times

,

which is the Kronecker product of d truncated Fourier matrices

F1
σN,N =

1

σN

(
e2π i kl/(σN)

)
l∈I 1

σN ,k∈I 1
N
.
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3. Finally, B ∈ R
M×(σN)d is a sparse multilevel band matrix

B :=
(
ψ̃

(
xj − 2π l

σN

))

j∈I 1
M,l∈I dσN

. (7.23)

It is now obvious that we compute the values h(k) in (7.15) by the matrix–vector
multiplication with the transposed matrix of A, i.e.,

(h(k))k∈I dN = A (fj )j∈I 1
M
.

To this end, we calculate the values h(k) in (7.15) approximately by transposing
the factorization (7.20), i.e.,

(h(k))k∈I dN ≈ D (Fd
σN,N ) B(fj )j∈I 1

M
.

A comparison with Algorithm 7.3 shows that this factorization describes the three
steps of Algorithm 7.3. We emphasize that Algorithms 7.1 and 7.3 compute only
approximate values. Therefore we will discuss the approximation errors in the
next section.

Remark 7.5 Let A ∈ C
M×N with M ≤ N be a given rectangular matrix. For 1 ≤

s < N , the restricted isometry constant δs of A is the smallest number δs ∈ [0, 1),
for which

(1− δs) ‖x‖2
2 ≤ ‖A x‖2

2 ≤ (1+ δs) ‖x‖2
2

for all s-sparse vectors x ∈ C
N , i.e., x possesses exactly s nonzero components.

The matrix A is said to have the restricted isometry property, if δs is small for s

reasonably large compared to M .
For a matrix A with restricted isometry property, the following important

recovery result was shown in [61, 117, 118]: Assume that δ2s < 0.6246. For x ∈ C
N ,

let a noisy measurement vector y = A x + e be given, where e ∈ C
M is an error

vector with small norm ‖e‖2 < ε. Let x∗ ∈ C
N be the minimizer of

arg min
z∈CN

‖z‖1 subject to ‖A z− y‖2 ≤ ε .

Then it holds

‖x − x∗‖2 ≤ c1
σs(x)1√

s
+ c2 ε ,

where c1 and c2 are positive constants depending only on δ2s . In particular, if
x ∈ C

N is an s-sparse vector and if ε = 0, then the recovery in �1(C
N) is exact,
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i.e., x∗ = x. By σs(x)1 we denote the best s-term approximation of x ∈ C
N in

�1(C
N), i.e.,

σs(x)1 := inf{‖y− x‖1 : y ∈ C
N ‖y‖0 ≤ s} ,

where ‖y‖0 denotes the number of nonzero components of y. For a proof of this
result see [118, p. 44]. Several algorithms for sparse recovery such as basis pursuit,
thresholding-based algorithm, and greedy algorithm are presented in [118, pp. 61–
73, 141–170].

An important example of a matrix with restricted isometry property is a
rectangular nonequispaced Fourier matrix

A := 1√
M

(
ei kxj

)M−1, N−1
j,k=0

where the points xj , j = 0, . . . ,M − 1, are chosen independently and uniformly at
random from [0, 2π]. If for δ ∈ (0, 1),

M ≥ c δ−2 s (lnN)4 ,

then with probability at least 1 − N−(lnN)3
the restricted isometry constant δs of

the nonequispaced Fourier matrix A satisfies δs ≤ δ, where c > 0 is a universal
constant (see [118, p. 405]).

7.2 Approximation Errors for Special Window Functions

In contrast to the FFT, the NFFT and NFFT are approximate algorithms. Hence the
relation between the exactness of the computed result and computational cost of the
algorithm is important. In this section we start with a general error estimate. Later
we consider the error estimates for special window functions. For simplicity, we
only consider the NFFT, since the NFFT produces the same approximation error
by the corresponding approximate matrix factorization (7.20) of the nonequispaced
Fourier matrix (7.19).

We split the approximation error of Algorithm 7.1

E(xj ) := |f (xj )− s(xj )| (7.24)

into the aliasing error

Ea(xj ) := |f (xj )− s1(xj )|
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and the truncation error

Et(xj ) := |s1(xj )− s(xj )|,

such that we have E(xj ) ≤ Ea(xj )+Et(xj ). The aliasing error, which is due to the
truncation in the frequency domain, can be written by using (7.1), (7.6), (7.8), (7.9),
and (7.10) in the form

Ea(xj ) =
∣∣

∑

k∈I dσN

∑

r∈Zd\{0}
ĝk ck+σNr(ϕ̃) ei (k+σNr)·xj

∣∣

≤
∑

k∈I dN
|f̂k|

∑

r∈Zd\{0}

|ϕ̂(k+ σNr)|
|ϕ̂(k)|

≤ ‖f̂‖1 max
k∈I dN

∑

r∈Zd\{0}

|ϕ̂(k+ σNr)|
|ϕ̂(k)| . (7.25)

The truncation error Et(xj ) is obtained by truncating ϕ in space domain. Using the
functions s1(x) and s(x) in (7.7) and (7.14), we obtain

Et(xj ) =
∣
∣
∑

l∈IdσN

gl

(
ϕ̃
(
xj − 2π l

σN

)− ψ̃
(
xj − 2π l

σN

))∣∣. (7.26)

Applying the relation (7.6), the evaluation of ĝk in (7.10) and the identity

gl = 1

(σN)d

∑

k∈I dN

f̂k

ϕ̂(k)
e2π i k·l/(σN) , (7.27)

we obtain

Et(xj ) = 1

(σN)d

∣
∣
∑

l∈IdσN

∑

k∈I dN

f̂k

ϕ̂(k)
e2π i k·l/(σN)

(
ϕ̃
(
xj − 2π l

σN

)− ψ̃
(
xj − 2π l

σN

))∣∣

and further

Et(xj ) = 1

(σN)d

∣
∣
∑

k∈Id
N

f̂k

ϕ̂(k)

∑

l∈Id
σN

(
ϕ̃
(
xj − 2π l

σN

)− ψ̃
(
xj − 2π l

σN

))
e2π i k·l/(σN)

∣
∣

≤ ‖f̂‖1

(σN)d
max
k∈IdN

1

|ϕ̂(k)|
∣
∣
∑

l∈IdσN

(
ϕ̃
(
xj − 2π l

σN

)− ψ̃
(
xj − 2π l

σN

))
e2π i k·l/(σN)

∣
∣ .
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Now we simplify the sum over l. Using the functions in (7.3), (7.12), and (7.13), we
deduce

ϕ̃(x)− ψ̃(x) =
∑

r∈Zd

(
ϕ(x+ 2πr)− ϕ(x+ 2πr) χQ(x+ 2πr)

)
.

with Q = [− 2πm
σN

, 2πm
σN

]d . For the sum occurring in the estimate of Et(xj ) in (7.26)
we obtain

∣
∣
∑

l∈IdσN

(
ϕ̃
(
xj − 2π l

σN

)− ψ̃
(
xj − 2π l

σN

))
e2π i k·l/(σN)

∣
∣

= ∣
∣
∑

l∈IdσN

∑

r∈Zd

(
ϕ
(
xj − 2π l

σN
+ 2πr

)

− ϕ
(
xj − 2π l

σN
+ 2πr

)
χQ

(
xj − 2π l

σN
+ 2πr

))
e2π i k·l/(σN)

∣
∣

≤ ∣
∣
∑

r∈Zd

(
ϕ
(
xj + 2πr

σN

)− ϕ
(
xj + 2πr

σN

)
χQ

(
xj + 2πr

σN

))
e2π ik·r/(σN)

∣
∣

= ∣
∣

∑

‖xj+ 2πr
σN
‖∞> 2πm

σN

ϕ
(
xj + 2πr

σN

)
e2π i k·r/(σN)

∣
∣

and finally conclude for the truncation error in (7.26) the inequality

Et(xj ) ≤ ‖f̂‖1

(σN)d
max
k∈IdN

1

|ϕ̂(k)|
∣
∣

∑

‖xj+ 2πr
σN
‖∞> 2πm

σN

ϕ
(
xj + 2πr

σN

)
e2π i k·r/(σN)

∣
∣

≤ ‖f̂‖1

(σN)d
max
k∈IdN

1
∣∣ϕ̂(k)

∣∣
∑

‖xj+ 2πr
σN ‖∞> 2πm

σN

∣
∣ϕ

(
xj + 2πr

σN

)∣∣ . (7.28)

Usually one uses a special d-variate window function, which is the tensor product
of a univariate window function ϕ : R→ R. For simplicity, the tensor product

ϕ(x) :=
d∏

t=1

ϕ(xt ) , x = (xt)
d
t=1 ∈ R

d

is denoted again by ϕ. For the Fourier transform of this d-variate window function
we obtain

ϕ̂(k) =
d∏

t=1

ϕ̂(kt ) , k := (kt )
d
t=1 ∈ Z

d .
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Similarly, we introduce the d-variate truncated window function ψ : Rd → R

as tensor product of the univariate truncated window function ψ : R→ R. Clearly,
the Fourier coefficients of the d-variate, 2π-periodic function (7.3) are products of
the Fourier coefficients of the univariate, 2π-periodic function ϕ̃.

In the following we restrict ourselves to the univariate case and study the
approximation errors occurring in the NFFT algorithms for special univariate
window functions more closely. For the multivariate case we refer to [93, 101].
We remark further that error estimates in the norm of L2(T) were discussed in
[177, 251].

To keep the aliasing error and the truncation error small, several window
functions with good localizations in time and frequency domain can be applied.
We start with window functions which are formed by centered B-splines.

Let M1 : R→ R be the characteristic function of the interval [−1/2, 1/2). For
m ∈ N let

Mm+1(x) := (Mm ∗M1)(x) =
∫ 1/2

−1/2
Mm(x − t) dt , x ∈ R ,

be the centered cardinal B-spline of order m + 1. Note that M2 is the centered hat
function and that

Nm(x) := Mm(x − m

2
) , x ∈ R ,

is the cardinal B-spline of order m. As in [32, 338], we consider the (dilated)
centered cardinal B-spline of order 2m as window function

ϕ(x) = M2m
(σN

2π
x
)
, x ∈ R , (7.29)

where σ ≥ 1 is the oversampling factor and 2m& σN . The window function ϕ has
the compact support

supp ϕ = [− 2πm

σN
,

2πm

σN

] ⊂ [− π, π
]
.

We compute the Fourier transform

ϕ̂(ω) =
∫

R

ϕ(x) e−i ωx dx =
∫

R

M2m
(σN

2π
x
)

e−i ωx dx

= 2π

σN

∫

R

M2m(t) e−2π i ωt/(σN) dt .
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By Example 2.16, the convolution property M2m(t) = (M1 ∗M1 ∗ . . . ∗M1)(t) of
the Fourier transform yields

ϕ̂(ω) = 2π

σN

( ∫ 1/2

−1/2
e−2π iωt/(σN) dt

)2m = 2π

σN

(
sinc

ωπ

σN

)2m

with the sinc function sinc x := sinx
x

for x ∈ R \ {0} and sinc 0 := 1.
Note that ϕ̂(k) > 0 for all k ∈ I 1

N . Since ϕ(x) in (7.29) is supported on
[−2πm/(σN), 2πm/(σN)], we have ψ = ϕ. For arbitrary knots xj ∈ T, j ∈ I 1

M ,

and each data vector f̂ = (
f̂k

)
k∈I 1

N
, we obtain by (7.25) the approximation error

E(xj) = Ea(xj ) ≤ ‖f̂‖1 max
k∈I 1

N

∑

r∈Z\{0}

|ϕ̂(k + σNr)|
|ϕ̂(k)| (7.30)

with

|ϕ̂(k + σNr)|
|ϕ̂(k)| = ( k

k + σNr

)2m
. (7.31)

Lemma 7.6 (See [338]) Assume that σ > 1 and 2m& σN . Then for the window
function ϕ in (7.29) with ψ = ϕ, the approximation error of the NFFT can be
estimated by

E(xj) ≤ 4

(2σ − 1)2m ‖f̂‖1 , (7.32)

where xj ∈ [−π, π), j ∈ I 1
M , are arbitrary knots and f̂ ∈ C

N is an arbitrary data
vector.

Proof By (7.30) and (7.31) we conclude that

E(xj ) ≤ ‖f̂‖1 max
k∈I 1

N

∑

r∈Z\{0}

( k/(σN)

r + k/(σN)

)2m
. (7.33)

Setting u = k
σN

for k ∈ I 1
N , we have |u| ≤ 1

2σ < 1. Now we show that

∑

r∈Z\{0}

( u

u+ r

)2m ≤ 4

(2σ − 1)2m . (7.34)

For 0 ≤ u ≤ 1
2σ < 1 we have

∑

r∈Z\{0}

( u

u+ r

)2m = ( u

u− 1

)2m + ( u

u+ 1

)2m +
∞∑

r=2

[( u

u− r

)2m + ( u

u+ r

)2m
]
.
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By u+ r > |u− r| for r ∈ N it follows that
(

u
u+r

)2m ≤ (
u

u−r

)2m
and hence

∑

r∈Z\{0}

( u

u+ r

)2m ≤ 2
( u

u− 1

)2m + 2
∞∑

r=2

( u

u− r

)2m

≤ 2
( u

u− 1

)2m + 2
∫ ∞

1

( u

u− x

)2m dx

≤ 2
( u

u− 1

)2m (
1+ 1− u

2m− 1

)
< 4

( u

u− 1

)2m
.

Since the function
(

u
u−1

)2m increases in [0, 1
2σ ], the above sum has the upper bound

4
(2σ−1)2m for each m ∈ N. In the case −1 ≤ − 1

2σ < u < 0, we replace u by −u

and obtain the same upper bound. Now, the estimate (7.32) follows from (7.33)
and (7.34).

Next we consider the (dilated) Gaussian function [93, 95, 338]

ϕ(x) := 1√
πb

e−( σN
2π x)2/b , x ∈ R , (7.35)

with the parameter b := 2σm
(2σ−1)π which determines the localization of ϕ(x) in (7.35)

in time and frequency domain. As shown in Example 2.6, the Fourier transform
of (7.35) reads

ϕ̂(ω) = 2π

σN
e−( πω

σN )2b . (7.36)

Lemma 7.7 (See [338]) Assume that σ > 1 and 2m & σN . Then for the
Gaussian function in (7.35) and the truncated function ψ = ϕ| [− 2πm

σN
, 2πm

σN
], the

approximation error of the NFFT can be estimated by

E(xj ) ≤ 4 e−mπ(1−1/(2σ−1)) ‖f̂‖1 , (7.37)

where xj ∈ [−π, π), j ∈ I 1
M , is an arbitrary knot and f̂ ∈ C

N is an arbitrary data
vector.

Proof

1. For a > 0 and c > 0 we have
∫ ∞

a

e−cx2
dx =

∫ ∞

0
e−c(x+a)2

dx ≤ e−ca2
∫ ∞

0
e−2acx dx = 1

2ac
e−ca2

,

(7.38)

where we have used that e−cx2 ≤ 1.
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2. Using (7.25) and (7.36), we estimate the aliasing error

Ea(xj ) ≤ ‖f̂‖1 max
k∈I 1

N

∑

r∈Z\{0}
e−bπ2(r2+2kr/(σN)) .

Since ex + e−x is monotonously increasing on [0, N/2], it follows that

Ea(xj ) ≤ ‖f̂‖1

∞∑

r=1

(
e−bπ2(r2−r/σ ) + e−bπ2(r2+r/σ )

)

≤ ‖f̂‖1 e−bπ2(1−1/σ )
(
1+ e−2bπ2/σ

)

+‖f̂‖1 eb(π/(2σ))2
∞∑

r=2

(
e−bπ2(r−1/(2σ))2 + e−bπ2(r+1/(2σ))2)

≤ ‖f̂‖1 e−bπ2(1−1/σ )
(
1+ e−2bπ2/σ

)

+‖f̂‖1 eb(π/(2σ))2
∫ ∞

1

(
e−bπ2(x−1/(2σ))2 + e−bπ2(x+1/(2σ))2)

dx .

By (7.38) we obtain

eb(π/(2σ))2
∫ ∞

1
e−bπ2(x−1/(2σ))2

dx

= eb(π/(2σ))2
∫ ∞

1−1/(2σ)

e−bπ2y2
dy = eb(π/(2σ))2 1

2(1 − 1/(2σ))bπ2 e−bπ2(1−1/(2σ))2

= e−bπ2(1−1/σ ) σ

(2σ − 1)bπ2

and analogously

eb(π/(2σ))2
∫ ∞

1
e−bπ2(x+1/(2σ))2

dx = e−bπ2(1+1/σ ) σ

(2σ + 1)bπ2 .

Thus we conclude

Ea(xj ) ≤ ‖f̂‖1 e−bπ2(1−1/σ )
(

1+ σ

(2σ − 1) bπ2

+ e−2bπ2/σ
(
1+ σ

(2σ + 1) bπ2

))
. (7.39)
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3. Applying (7.28), (7.36), and (7.38), we estimate the truncation error

Et(xj ) ≤ ‖f̂‖1
1

2π
eb (π/(2σ))2 ∑

|xj+ 2πr
σN |> 2πm

σN

∣∣ϕ
(
xj + 2πr

σN

)∣∣

≤ ‖f̂‖1
1

2π
eb (π/(2σ))2 1√

πb

∑

| σN
2π xj+r |>m

e−( σN
2π xj+r)2/b

≤ ‖f̂‖1
1

2π
eb π2/(2σ)2 1√

πb

∞∑

q=m

e−q2/b

≤ ‖f̂‖1
1

2
√
bπ3

eb π2/(2σ)2 (
e−m2/b +

∫ ∞

m

e−x2/b dx
)

≤ ‖f̂‖1
1

2
√
bπ3

eb π2/(2σ)2−m2/b
(
1+ b

2m

)
.

Since the localization parameter b of the Gaussian function ϕ(x) in (7.35) is
chosen as b = 2σm

(2σ−1)π , we conclude that

−bπ2
(

m2

π2b2 −
1

(2σ)2

)
= −bπ2

(
(2σ − 1)2 − 1

(2σ)2

)
= −bπ2

(
1− 1

σ

)

and hence

Et(xj ) ≤ ‖f̂‖1
1

2
√
bπ3

(
1+ σ

(2σ − 1) π

)
e−b π2 (1−1/σ ) . (7.40)

Using (7.39) and (7.40), the approximation error can be estimated by

E(xj ) ≤ Ea(xj )+ Et(xj ) ≤ 4 e−mπ(1−1/(2σ−1)) ‖f̂‖1 ,

since b π2 (1− 1/σ) = mπ (1− 1/(2σ − 1)).

Further special window functions are the (dilated) power of the sinc function
[280],

ϕ(x) = Nπ (2σ − 1)

m

(
sinc

Nx(2σ − 1)

4m

)2m
, x ∈ R , (7.41)

with the Fourier transform

ϕ̂(ω) = M2m
( 2mω

(2σ − 1)N

)
, ω ∈ R ,
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and the (dilated) Kaiser–Bessel function [120, 176],

ϕ(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

sinh
(
b

√
m2 − ( σN

2π )2x2
)

√
m2 − ( σN

2π )2x2
|x| < 2πm

σN
,

b sinc
(
b

√
( σN

2π )2x2 −m2
) |x| ≥ 2πm

σN
,

(7.42)

with b := π(2− 1
σ
). The corresponding Fourier transform is given by

ϕ̂(ω) =
{

2
σN

I0
(
m
√
b2 − (2πω/(σN))2

) |ω| ≤ σN(1 − 1
2σ ) ,

0 otherwise ,

where I0 denotes the modified zero-order Bessel function. For these window
functions ϕ the approximation error of NFFT can be estimated as follows:

Theorem 7.8 Assume that σ > 1 and 2m& σN . Then for the window functions ϕ
in (7.29), (7.35), (7.41), or (7.42)with the corresponding truncated window function
ψ = ϕ| [− 2πm

σN
, 2πm

σN
], the approximation error of the NFFT can be estimated by

E(xj) ≤ C(σ,m) ‖f‖1 , (7.43)

where xj ∈ [−π, π), j ∈ I 1
M , are arbitrary knots and f̂ ∈ C

N is an arbitrary data
vector. The constant C(σ,m) reads as follows:

C(σ,m) :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

( 4
2σ−1

)2m for (7.29) ,

4 e−mπ(1−1/(2σ−1)) for (7.35) ,

1
m−1

(
2

σ 2m +
(

σ
2σ−1

)2m
)

for (7.41) ,

5π2m3/2 4
√

1− 1
σ

e−2πm
√

1−1/σ for (7.42) .

Proof For the window functions (7.29) and (7.35), the approximation errors are
estimated in Lemmas 7.6 and 7.7. For an estimate of the approximation error related
to (7.41) and (7.42), we refer to [280].

Thus, for a fixed oversampling factor σ > 1, the approximation error of the NFFT
decays exponentially with the number m of summands in (7.14). On the other
hand, the computational cost of the NFFT increases with m. Beylkin [32, 33] used
B-splines, whereas Dutt and Rokhlin [95] applied Gaussian functions as window
functions. Further approaches are based on scaling vectors [253], on minimizing the
Frobenius norm of certain error matrices [256] or on min–max interpolation [110].
Employing the results in [110, 256] we prefer to apply the Algorithms 7.1 and 7.3
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with Kaiser–Bessel functions or, by interchanging the time and frequency domain,
with the Bessel window [120, 251, 252] which is defined by

ϕ(x) :=
⎧
⎨

⎩
I0

(
b

√
m2 − ( σN

2π )2x2
) |x| ≤ 2πm

σN
,

0 |x| > 2πm
σN

with b := (2σ − 1)π
σ

. The Fourier transform of the Bessel window is given by

ϕ̂(ω) = 2π

σN

⎧
⎪⎨

⎪⎩

sinh
(
m
√
b2 − 4π2ω2/(σ 2N2)

)

√
b2 − 4π2ω2/(σ 2N2)

|ω| < σNb
2π ,

m sinc
(
m
√

4π2ω2/(σ 2N2)− b2
) |ω| ≥ σNb

2π .

(7.44)

Further we remark that in some applications a relatively small oversampling factor
σ > 1 or even σ = 1 can be used, see [251, 252]. These papers contain error
estimates related to the root mean square error as well as algorithms for tuning the
involved parameter.

7.3 Nonequispaced Data in Space and Frequency Domain

The algorithms in Sect. 7.1 are methods for nonequispaced knots in the
space/frequency domain and equispaced knots in the frequency/space domain.
Now we generalize these methods to nonequispaced knots in space as well as in
frequency domain. Introducing the exponential sum f : [−π, π]d → C by

f (ω) =
∑

k∈I 1
M1

fk e−iNxk ·ω , ω ∈ [−π, π]d ,

we derive an algorithm for the fast evaluation of

f (ωj ) =
∑

k∈I 1
M1

fk e−iNxk ·ωj , j ∈ I 1
M2

, (7.45)

where xk ∈ [0, 2π]d and ωj ∈ [−π, π]d are nonequispaced knots and fk ∈ C are
given coefficients. Here N ∈ N with N ' 1 is called the nonharmonic bandwidth.
We denote methods for the fast evaluation of the sums (7.45) as NNFFT. These
algorithms were introduced for the first time in [101, 102], see also [294]. The
algorithms are also called nonuniform FFT of type 3, see [224]. We will see that
the NNFFT is a combination of Algorithms 7.1 and 7.3.
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Let ϕ1 ∈ L2(R
d) ∩ L1(R

d) be a sufficiently smooth function, and recall that its
Fourier transform is given by

ϕ̂1(ω) =
∫

Rd

ϕ1(x) e−i ω·x dx .

Assume that ϕ̂1(ω) �= 0 for all ω ∈ N [−π, π]d . For the function

G(x) :=
∑

k∈I 1
M1

fk ϕ1(x− xk) , x ∈ R
d ,

we obtain the Fourier transformed function

Ĝ(ω) =
∑

k∈I 1
M1

fk e−i xk·ω ϕ̂1(ω) , ω ∈ R
d ,

and hence the relation

f (ωj ) = Ĝ(Nωj )

ϕ̂1(Nωj )
, j ∈ I 1

M2
.

Using this representation, for given ϕ̂1 we have to compute the function Ĝ at the
nodes Nωj , j ∈ I 1

M2
.

For a given oversampling factor σ1 > 1, let N1 := σ1N . Further let m1 ∈ N with
2m1 & N1 be given and choose the parameter a = 1+ 2m1/N1. Now,

Ĝ(ω) =
∑

k∈I 1
M1

fk

∫

Rd

ϕ1(x− xk) e−i x·ω dx

can be rewritten using a 2πa-periodization of ϕ1. We obtain

Ĝ(ω) =
∑

k∈I 1
M1

fk

∫

a [−π, π]d
∑

r∈Zd

ϕ1(x+ 2πar− xk) e−i (x+2πar)·ω dx . (7.46)

We discretize this integral by the rectangular rule and find the approximation

Ĝ(ω) ≈ S1(ω) := N−d
1

∑

k∈I 1
M1

fk

∑

t∈I daN1

∑

r∈Zd

ϕ1(
2πt
N1

+ 2πar− xk) e
−i ( 2π t

N1
+2πar)·ω

.

(7.47)
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Similarly as in Sect. 7.1, we assume that ϕ1 is localized in space domain and can be
replaced by a compactly supported function ψ1 with suppψ1 ⊆ [− 2πm1

N1
, 2πm1

N1
]d .

Then, the inner sum in (7.47) contains nonzero terms only for r = 0. We change the
order of summations and find

S1(ω) ≈ S2(ω) := N−d
1

∑

t∈I daN1

( ∑

k∈I 1
M1

fk ψ1(
2πt
N1

− xk)
)

e−2π i t·ω/N1 .

After computing the inner sum over k ∈ I 1
M1

, we evaluate the outer sum very
efficiently with the help of Algorithm 7.1. The related window function and
parameters are written with the subscript 2. We summarize this approach:

Algorithm 7.9 (NNFFT)

Input:N ∈ N, σ1 > 1, σ2 > 1, N1 := σ1N , a := 1+ 2m1
N1

, N2 := σ1σ2a N ,

xk ∈ [0, 2π]d , fk ∈ C for k ∈ I 1
M1

, ωj ∈ [−π, π]d for j ∈ I 1
M2

.

Precomputation: (i) Compute the nonzero Fourier transforms ϕ̂1(N1ωj ) for j ∈
I 1
M1

.

(ii) Compute ψ1(
2πt
N1
− xk) for k ∈ IT

N1,m1
(t) and t ∈ Id

aN1
(xk),

where
IT
N1,m1

(t) := {k ∈ I 1
M1
: t−m11d ≤ N1

2π xk ≤ t+m11d}.
(iii) Compute the nonzero Fourier transforms ϕ̂2(t) for t ∈ Id

aN1
.

(iv) Compute ψ2(ωj − 2π l
N2

) for j ∈ I 1
M2

and l ∈ IN2,m2(ωj ).

1. Calculate

F(t) :=
∑

k∈IT
N1 ,m

fk ψ1
(2πt
N1

− xk

)
, t ∈ Id

aN1
.

2. Determine ĝt := F(t)/ϕ̂2(t) for t ∈ Id
aN1

.
3. Compute

gl := N−d
2

∑

t∈I daN1

ĝt e−2π i t·l/N2, l ∈ Id
N2

.

using a d-variate FFT.
4. Compute

s(ωj ) := N−d
1

∑

l∈IN2,m2 (ωj )

gl ψ2
(
ωj − 2π l

N2

)
, j ∈ I 1

M2
.

5. Compute S(ωj ) := s(ωj )/ϕ̂1(N1ωj ), j ∈ I 1
M2

.
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Output: S(ωj ) approximate value of f (ωj ), j ∈ I 1
M .

Computational cost: O((σ1σ2 aN)d log(σ1σ2 aN)+m1M1 +m2M2) =
O(Nd logN +M1 +M2).

We estimate the approximation error of Algorithm 7.9 by

E(ωj ) := |f (ωj )− S(ωj )| ≤ Ea(ωj )+ Et(ωj )+ Ep(ωj ) ,

with the aliasing error Ea(ωj ) := |f (ωj )− S1(ωj )

ϕ̂1(N1ωj )
|, the truncation error Et(ωj ) :=

| S1(ωj )−S2(ωj )

ϕ̂1(ωj )
|, and the propagated error Ep(ωj ) := | S2(ωj )−s(ωj )

ϕ̂1(N1ωj )
|. The propagated

error Ep(ωj ) is the product of the approximation error of Algorithm 7.1 and
|ϕ̂1(N1ωj )|−1. The truncation error Et(ωj ) behaves as the truncation error in
Algorithm 7.1. The error Ea(ωj ) is due to the discretization of the integral (7.46)
and can be estimated by the aliasing formula, see [102] for details.

7.4 Nonequispaced Fast Trigonometric Transforms

In this section we present fast algorithms for the discrete trigonometric transforms,
see Sects. 3.5 and 6.3, at arbitrary nodes. We investigate methods for the nonequis-
paced fast cosine transform (NFCT) as well as methods for the nonequispaced fast
sine transform (NFST). In [279], three different methods for the NDCT have been
compared, where the most efficient procedure is based on an approximation of the
sums by translates of a window function. We restrict ourselves to the univariate case.
The generalization to the multivariate case follows similarly as for the NFFT. All
presented algorithms (also in the multivariate case) are part of the software [199].

First we develop a method for the fast evaluation of the even, 2π-periodic
function

f c(x) :=
N−1∑

k=0

f̂ c
k cos(kx) , x ∈ R , (7.48)

at the nonequidistant nodes xj ∈ [0, π], j = 0, . . . ,M − 1, and with arbitrary real
coefficients f̂ c

k , k = 0, . . . , N − 1. This evaluation can be written as matrix–vector

product A f̂ with the nonequispaced cosine matrix

A := (
cos(kxj )

)M−1,N−1
j, k=0 ∈ R

M×N (7.49)

and the vector f̂ = (f̂ c
k )

N−1
k=0 . A fast algorithm for the nonequispaced discrete cosine

transform (NDCT) can be deduced from the NFFT, see Algorithm 7.1.
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Let an oversampling factor σ ≥ 1 with σN ∈ N be given. As in (7.3)
we introduce the 2π-periodization ϕ̃ of an even, well-localized window function
ϕ ∈ L2(R) ∩ L1(R). Assume that ϕ̃ has a uniformly convergent Fourier series.
Our goal is now to evaluate the coefficients g� ∈ R, � = 0, . . . , σN , in the linear
combination

s1(x) :=
σN∑

�=0

g� ϕ̃
(
x − π�

σN

)
, x ∈ R , (7.50)

such that s1 is an approximation of f c. To this end, we rewrite the function f c

in (7.48) as a sum of exponentials,

f c(x) = f (x) :=
N−1∑

k=−N

f̂k ei kx , x ∈ R , (7.51)

with f̂0 = f̂ c
0 , f̂−N = 0, and f̂k = f̂−k = 1

2 f̂
c
k for k = 1, . . . , N − 1. We

immediately obtain the identity f c(x) = f (x), if f̂ c
k = 2 (εN(k))2 f̂k . Since ϕ̃ is an

even 2π-periodic function, we obtain for the Fourier coefficients ck(ϕ̃) = c−k(ϕ̃)

and with (7.10) also ĝk = ĝ−k . We take into account the symmetry in step 2 of the
NFFT Algorithm 7.1 and compute the coefficients g� in (7.50) by

g� = Re(g�) = 1

σN

σN∑

k=0

(
εσN(k)

)2
ĝk cos

2πk�

σN
, � = 0, . . . , σN .

Here we use the notation as in Lemma 3.46 with εN(0) = εN(N) := √
2/2 and

εN(j) := 1 for j = 1, . . . , N − 1. We observe that g� = g2σNr−�, r ∈ Z, i.e., one
can compute the coefficients g� in (7.50) with the help of a DCT-I of length σN+1,
see (3.59) and Sect. 6.3. We proceed similarly as in Sect. 7.1 and approximate s1 by

s(x) :=
�2σNx�+m∑

�="2σNx#−m

g� ψ̃
(
x − π�

σN

)
, x ∈ R . (7.52)

For a fixed node xj ∈ [0, π], the sum (7.52) contains at most 2m + 2 nonzero
summands. Hence we approximate the sum (7.48) at the nodes xj , j = 0, . . . ,M −
1, due to

f (x) ≈ s1(x) ≈ s(x)
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by evaluation of s(xj ), j = 0, . . . ,M − 1. In summary we obtain the following
algorithm:

Algorithm 7.10 (NFCT)

Input:N , M ∈ N, σ > 1, m ∈ N, xj ∈ [0, π] for j = 0, . . . ,M − 1,
f̂ c
k ∈ R for k = 0, . . . , N − 1.

Precomputation: (i) Compute the nonzero Fourier coefficients ck(ϕ̃) for all k =
0, . . . , N − 1.
(ii) Compute the values ψ̃

(
xj − π�

σN

)
for j = 0, . . . ,M − 1 and

� ∈ IσN,m(xj ).

1. Set

ĝk :=
⎧
⎨

⎩

f̂ c
k

2(εσN(k))2 ck(ϕ̃)
k = 0, . . . , N − 1 ,

0 k = N, . . . , σN .

2. Compute

g� := 1

σN

σN∑

k=0

(
εσN(k)

)2
ĝk cos

πk�

σN
, � = 0, . . . , σN,

using a fast algorithm of DCT-I(σN + 1), see Algorithm 6.28 or 6.35.
3. Compute

s(xj ) :=
�2σNxj �+m∑

�="2σNxj #−m

g� ψ̃
(
xj − π�

σN

)
, j = 0, . . . ,M − 1 .

Output: s(xj ), j = 0, . . . ,M − 1, approximate values of f c(xj ) in (7.48).

Computational cost: O(N logN +mM).

In the following we deduce a fast algorithm for the transposed problem, i.e., for
the fast evaluation of

h(k) :=
M−1∑

j=0

hj cos(kxj ), k = 0, . . . , N − 1 , (7.53)

with nonequispaced nodes xj ∈ [0, π]. To this end, we write the Algorithm 7.10
in matrix–vector form, since the evaluation of the sum (7.48) at the nodes xj is
equivalent to a matrix–vector multiplication with the transposed matrix A of the
nonequispaced cosine matrix (7.49). By Algorithm 7.10, A can be approximated



400 7 Fast Fourier Transforms for Nonequispaced Data

by the matrix product B CI
σN+1, t D, where each matrix corresponds to one step of

Algorithm 7.10:

1. The diagonal matrix D ∈ R
N×N is given by

D := diag
((

2(εσN(k))2 ck(ϕ̃)
)−1

)N−1

k=0
.

2. The matrix CI
σN+1, t ∈ R

σN×N is a truncated cosine matrix of type I (in a non-
orthogonal form)

CI
σN+1, t :=

(
(εσN(k))2

σN
cos

πk�

σN

)σN−1,N−1

�, k=0
.

3. The sparse matrix B = (
bj,�

)M−1,σN−1
j, �=0 ∈ R

M×σN has the entries

bj,� :=
{
ψ̃

(
xj − π�

σN

)
� ∈ {"2σNxj# −m, . . . , �2σNxj� +m} ,

0 otherwise

and possesses at most 2m + 1 nonzero entries per row. The approximate
factorization of A allows to derive an algorithm for the fast evaluation of (7.53),
since

g := (
h(k)

)N−1
k=0 = A (hj )

M−1
j=0

≈ D (CI
σN+1,t )

 B
(
hj

)M−1
j=0 .

We immediately obtain the following algorithm:

Algorithm 7.11 (NFCT)
Input:N ∈ N, σ > 1, m ∈ N, xj ∈ [0, π] for j = 0, . . . ,M − 1,

hj ∈ R for j = 0, . . . ,M − 1.
Precomputation: (i) Compute the nonzero Fourier coefficients ck(ϕ̃) for k =

0, . . . , N − 1.
(ii) Compute the values ψ̃

(
xj − π�

σN

)
for � ∈ I 1

σN and j ∈
IT
σN,m(�), where IT

σN,m(�) := {j ∈ {0, . . . ,M − 1} : � − m ≤
σN
π

xj ≤ �+m}.
1. Set g := Bh by computing

for � = 0 . . . , σN

g� := 0
end
for j = 0, . . . ,M − 1

for � = "σNxj# −m, . . . , �σNxj � +m
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g� := g� + hj ψ̃(xj − π�
σN

)

end
end.

2. Compute

ĝk := 1

σN

σN∑

�=0

(εσN(�))2 g� cos
πk�

σN
, k = 0, . . . , N − 1 .

using a fast algorithm of DCT-I(σN + 1), see Algorithm 6.28 or 6.35.
3. Compute h̃(k) := ĝk/(2(εσN(k))2 ck(ϕ̃)) for k = 0, 1, . . . , N − 1.

Output: h̃(k), k = 0, . . . , N − 1, approximate values for h(k) in (7.53).

Computational cost: O(N logN +mM).

Now we modify the NFFT in order to derive a fast algorithm for the evaluation
of the odd, 2π-periodic trigonometric polynomial

f s(x) =
N−1∑

k=1

f̂ s
k sin(kx) , x ∈ R , (7.54)

at nonequispaced nodes xj ∈ (0, π). To this end, we rewrite f s in (7.54) as a sum
of exponentials and obtain

if s(x) = f (x) =
N−1∑

k=−N

f̂k ei kx = i
N−1∑

k=1

2 f̂k sin(kx) , x ∈ R

with f̂0 = f̂−N = 0 and f̂k = −f̂−k = 1
2 f̂

s
k for k = 1, . . . , N − 1. Similarly

as before, we approximate f (x) by a function s1(x) as in (7.50) and obtain for the
coefficients gl for � = 1, . . . , σN − 1

− i g� = −i

2σN

σN−1∑

k=−σN

ĝk eπ ik�/(σN) = 1

σN

σN−1∑

k=1

ĝk sin
πk�

σN
. (7.55)

and particularly g0 = gσN = 0. Moreover, we observe that g2σNr−� = −g� for all
r ∈ Z. Finally we compute the sum

i s(xj ) :=
�2σNxj �+m∑

�="2σNxj #−m

i g� ψ̃
(
xj − π�

σN

)
(7.56)

similarly as in (7.52) and obtain the approximate values of f s(xj ) = i f (xj ) ≈
i s(xj ), j = 0, . . . ,M − 1.
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We summarize algorithm for the fast evaluation of the nonequispaced discrete
sine transform:

Algorithm 7.12 (NFST)

Input:N ∈ N, σ > 1, m ∈ N, xj ∈ (0, π) for j = 0, . . . ,M − 1,
f̂ s
k ∈ R for k = 1, . . . , N − 1.

Precomputation: (i) Compute the nonzero Fourier coefficients ck(ϕ̃) for all k =
0, . . . , N − 1.
(ii) Compute the values ψ̃

(
xj − π�

σN

)
for j = 0, . . . ,M − 1 and

� ∈ IT
σN,m(xj ).

1. Set

ĝk :=
⎧
⎨

⎩

f̂ s
k

2 ck(ϕ̃)
k = 1, . . . , N − 1 ,

0 k = 0 and k = N, . . . , σN .

2. Compute

g� := 1

σN

σN−1∑

k=1

ĝk sin
πk�

σN
, � = 1, . . . , σN − 1

using a fast algorithm of DST-I(σN − 1), see Table 6.1 and Remark 6.40, and
set g0 := 0.

3. Compute

s(xj ) :=
�2σNxj �+m∑

�="2σNxj #−m

g� ψ̃
(
xj − π�

σN

)
, j = 0, . . . ,M − 1 .

Output: s(xj ), j = 0, . . . ,M − 1, approximate values of f s(xj ) in (7.54).

Computational cost: O(N logN +mM).

An algorithm for the fast evaluation of the values

h(k) :=
M−1∑

j=0

hj sin(kxj ), (7.57)

follows immediately by transposing the matrix–vector product as described in the
case of NFCT. Note that these algorithms can also be generalized to the multivariate
case. The corresponding algorithms are part of the software in [199].
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Remark 7.13 Instead of (7.49) we consider the rectangular nonequispaced cosine
matrix

C := 1√
M

⎛

⎜
⎜
⎜
⎜⎜
⎝

√
2 cos x0 cos(2x0) . . . cos(N − 1)x0√
2 cos x1 cos(2x1) . . . cos(N − 1)x1√
2 cos x2 cos(2x2) . . . cos(N − 1)x2
...

...
...

...√
2 cos xM−1 cos(2xM−1) . . . cos(N − 1)xM−1

⎞

⎟
⎟
⎟
⎟⎟
⎠
∈ R

M×N ,

where x� ∈ [0, π], � = 0, . . . ,M − 1, are independent identically distributed
random variables. Assume that 1 ≤ s < N and 0 < δ < 1. If

M ≥ 2c δ−2 s (ln s)3 logN ,

then with probability at least 1 − N−γ (ln s)3
, the restricted isometry constant δs of

C satisfies δs ≤ δ, where c and γ are positive constants. Then the nonequispaced
cosine matrix C has the restricted isometry property, i.e., for all s-sparse vectors
x ∈ R

N with s nonzero components it holds

(1− δs) ‖x‖2
2 ≤ ‖C x‖2

2 ≤ (1+ δs) ‖x‖2
2 .

This remarkable result is a special case of a more general issue in [308, Theorem 4.3]
for the polynomial set {√2, T1(x) , . . . , TN−1(x)} which is an orthonormal system
in L2,w(I) by Theorem 6.3.

7.5 Fast Summation at Nonequispaced Knots

Let K be an even, real univariate function which is infinitely differentiable at least
in R \ {0}. We form the radially symmetric, d-variate function

K (x) := K(‖x‖2) , x ∈ R
d \ {0} ,

where ‖ · ‖2 denotes the Euclidean norm in R
d . If K or its derivatives have

singularities at zero, then K is called singular kernel function. If K is infinitely
differentiable at zero as well, then K is defined on R

d and is called nonsingular
kernel function. For given αk ∈ C and for distinct points xk ∈ R

d , k = 1, . . . ,M1,
we consider the d-variate function

f (y) :=
M1∑

k=1

αk K (y− xk) =
M1∑

k=1

αk K(‖y− xk‖2) . (7.58)
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In this section, we develop algorithms for the fast computation of the sums

f (yj ) :=
M1∑

k=1

αk K (yj − xk) , j = 1, . . . ,M2 , (7.59)

for given knots yj ∈ R
d . In the case of a singular kernel function K , we assume

that xk �= yj for all pairs of indices.

Example 7.14 If K(x) is equal to ln |x|, 1
|x| , or |x|2 ln |x| for x ∈ R \ {0}, then we

obtain known singular kernel functions. For arbitrary x ∈ R
d \ {0}, the singularity

function of the d-variate Laplacian reads as follows:

K (x) =
{

ln ‖x‖2 d = 2 ,

‖x‖2−d
2 d ≥ 3 ,

This singular kernel function appears in particle simulation [147, 272].
The thin-plate spline [90]

K (x) = ‖x‖2
2 ln ‖x‖2 , x ∈ R

d \ {0} ,

is often used for the scattered data approximation of surfaces.
For K(x) = √x2 + c2 with some c > 0, the corresponding kernel function K

is the multiquadrix. For K(x) = (x2 + c2)−1/2 with some c > 0, the corresponding
kernel function K is the inverse multiquadrix. In all these cases we obtain singular
kernel functions.

For fixed δ > 0, a frequently used nonsingular kernel function

K (x) = e−δ ‖x‖2
2 , x ∈ R

d ,

which arises in the context of diffusion [148], image processing [103], fluid
dynamics, and finance [48], is generated by the Gaussian function K(x) = e−δ x2

.

For equispaced knots xk and yj , (7.59) is simply a discrete convolution and its
fast computation can be mainly realized by fast Fourier methods exploiting the basic
property

ei (y−x) = ei y e−i x .

Following these lines, we propose to compute the convolution at nonequispaced
knots (7.59) by fast Fourier transforms at nonequispaced knots, i.e., NFFT and
NFFT, as presented in Sect. 7.1. For a nonsingular kernel function K , for
example, the Gaussian kernel function, our fast summation algorithm requires
O(M1 + M2) arithmetic operations for arbitrary distributed points xk and yj . For
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a singular kernel function K , we have to introduce an additional regularization
procedure and a so-called near field correction. If either the knots xk or yj are
“sufficiently uniformly distributed,” a notation which we will clarify later, then
our algorithm requires O((M1 + M2) log(M1/d

1 )) or O((M1 + M2) log(M1/d
2 ))

arithmetic operations, where the big O constant depends on the desired accuracy
of the computation.

As seen in Example 7.14, the kernel function K is in general a nonperiodic
function, while the use of Fourier methods requires to replace K by a periodic
version. Without loss of generality we assume that the knots satisfy ‖xk‖2 < π

2 − εB
2 ,

‖yj‖2 < π
2− εB

2 , and consequently ‖yj−xk‖2 < π−εB. The parameter εB ∈ (0, π),
which we will specify later, guarantees that K has to be evaluated only at points in
the interval [−π + εB, π − εB].

First we regularize K near zero and near the points ±π to obtain a 2π-periodic
sufficiently smooth function KR. For this purpose we set

KR(x) :=

⎧
⎪⎨

⎪⎩

TI(x) |x| ≤ εI ,

K(x) εI < |x| ≤ π − εB ,

TB(|x|) π − εB < |x| ≤ π ,

(7.60)

where 0 < εI < π − εB < π . Then we extend this function 2π-periodically on R.
The functions TI, TB ∈P2r−1 will be chosen such that the 2π-periodic extension of
KR is contained in Cr−1(T) for an appropriate parameter r ∈ N. This regularization
of K is possible by using algebraic polynomials, but also by applying splines or
trigonometric polynomials. Here we determine polynomials TI and TB ∈ P2r−1
by two-point Taylor interpolation. Applying Lemma 9.35, the two-point Taylor
interpolation polynomial TI is determined by the interpolation conditions

T
(j)

I (−εI) = K(j)(−εI) = (−1)j K(j)(εI) ,

T
(j)

I (εI) = K(j)(εI) , j = 0, . . . , r − 1 .

Note that TI is an even polynomial of degree 2r−2. Analogously, we choose the two-
point Taylor interpolation polynomial TB ∈P2r−1 with the interpolation conditions

T
(j)

B (π − εB) = K(j)(π − εB) , T
(j)

B (π) = δj K(π) , j = 0, . . . , r − 1 ,

(7.61)

where δj denotes the Kronecker symbol. Thus the 2π-periodic extension of (7.60)
is contained in Cr−1(T).

For x ∈ [−π, π]d , we introduce the function

KR(x) :=
{
KR(‖x‖2) ‖x‖2 < π ,

TB(π) ‖x‖2 ≥ π

and extend this function 2π-periodically on R
d .
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Next we approximate the sufficiently smooth, 2π-periodic function KR by a
partial sum of its Fourier series, where the Fourier coefficients are computed by
a simple quadrature rule, that means for sufficiently large, even n ∈ N we form

KRF(x) :=
∑

l∈I dn
bl ei l·x, (7.62)

where Id
n denotes the index set [−n

2 ,
n
2 − 1]d ∩ Z

d and where

bl := 1

nd

∑

j∈I dn
KR

(2πj
n

)
e−2π i j·l/n , l ∈ Id

n . (7.63)

Then our original kernel function K splits into

K = (K −KR) + (KR −KRF) + KRF = KNE + KER + KRF , (7.64)

where KNE :=K −KR and KER := KR−KRF. Since KR is sufficiently smooth,
its Fourier approximation KRF generates only a small error KER. We neglect this
error and approximate f by

f̃ (x) := fNE(x)+ fRF(x) , x ∈ R
d \ {0} ,

with the near field sum

fNE(x) :=
M1∑

k=1

αk KNE(x− xk) (7.65)

and the far field sum

fRF(x) :=
M1∑

k=1

αk KRF(x− xk) . (7.66)

Instead of f (yj ), j = 1, . . . ,M2, we evaluate the approximate values f̃ (yj ). If
either the points xk or the points yj are “sufficiently uniformly distributed,” this can
indeed be done in a fast way as follows.

• Near field computation of (7.65):
By definition (7.60), the function KNE restricted on [−π, π]d has only values

with sufficiently large magnitudes in the ball of radius εI around the origin and
near the sphere {x ∈ R

d : ‖x‖2 = π}. The second set is not of interest, since
‖xk − yj‖2 ≤ π − εB by assumption. To achieve the desired computational cost
of our algorithm, we suppose that either the M1 points xk or the M2 points yj are
sufficiently uniformly distributed, i.e., there exists a small constant ν ∈ N such
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that every ball of radius εI contains at most ν of the points xk and of the points
yj , respectively. This implies that εI depends linearly on M

−1/d
1 or M−1/d

2 . In the
following, we restrict our attention to the case

εI ≈ d

√
ν

M2
. (7.67)

Then the sum (7.65) contains for fixed yj not more than ν summands and its
evaluation at M2 knots requires only O(ν M2) arithmetic operations.

• Far field summation of (7.66) by NFFT and NFFT:
Substituting (7.62) for KRF, we obtain

fRF(yj ) =
M1∑

k=1

αk

∑

l∈I dn
bl ei l·(yj−xk) =

∑

l∈I dn
bl

( M1∑

k=1

αk e−i l·xk

)
ei l·yj .

The expression in the inner brackets can be computed by a d-variate NFFT of
size n× . . .×n. This is followed by nd multiplications with bl and completed by
a d-variate NFFT of size n× . . .× n to compute the outer sum with the complex
exponentials. If m is the cutoff parameter and ρ = 2 the oversampling factor of
the NFFT or NFFT, then the proposed evaluation of the values fRF(yj ), j =
1, . . . ,M2, requires O(md (M1 +M2) + (ρn)d log(ρn)) arithmetic operations.
The relation between M1, M2, and n is determined by the approximation error of
the algorithm and is investigated in detail in [281, 296].

In summary we obtain the following algorithm for fast summation of nonequis-
paced knots for a singular kernel function:

Algorithm 7.15 (Fast Summation with Singular Kernel Function)

Input: αk ∈ C for k = 1, . . . ,M1,
xk ∈ R

d for k = 1, . . . ,M1 with ‖xk‖2 < 1
2 (π − εB),

yj ∈ R
d for j = 1, . . . ,M2 with ‖yj‖2 < 1

2 (π − εB).
Precomputation: Compute the polynomials TI and TB by Lemma 9.35.

Compute (bl)l∈I dn by (7.63) and (7.60).

ComputeKNE(yj − xk) for j = 1, . . . ,M2 and k ∈ INE
εI

(j),
where INE

εI
(j) := {k ∈ {1, . . . ,M1} : ‖yj − xk‖2 < εI}.

1. For each l ∈ Id
n compute

al :=
M1∑

k=1

αk e−i l·xk

using the d-variate NFFT of size n× . . .× n, see Algorithm 7.3.
2. For each l ∈ Id

n compute the products dl := al bl.
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3. For j = 1, . . . ,M2 compute the far field sums

fRF(yj ) :=
∑

l∈I dn
dl ei l·yj

using the d-variate NFFT of size n× . . .× n, see Algorithm 7.1.
4. For j = 1, . . . ,M2 compute the near field sums

fNE(yj ) :=
∑

k∈INE
εI

(j)

αk KNE(yj − xk) .

5. For j = 1, . . . ,M2 compute the near field corrections

f̃ (yj ) := fNE(yj )+ fRF(yj ).

Output: f̃ (yj ), j = 1, . . . ,M2, approximate values of f (yj ).

Computational cost: O
(
nd logn+md (M1 +M2)

)
.

Remark 7.16 Algorithm 7.15 can be written in matrix–vector notation as follows.
Introducing the kernel matrix

K := (
K (yj − xk)

)M2,M1
j, k=1 ∈ R

M2,M1

and the coefficient vector ααα := (αk)
M1
k=1 ∈ C

M1 , Algorithm 7.15 reads in matrix–
vector notation

Kααα ≈ (
A2 DKR Ā1 +KNE

)
ααα ,

where

A1 :=
(
ei l·xk

)
k=1,...,M1, l∈I dn , DKR := diag (bl)l∈I dn ,

A2 :=
(
ei l·yj

)
j=1,...,M2, l∈I dn , KNE :=

(
KNE(yj − xk)

)M2,M1
j, k=1 .

Using the matrix factorization (7.20) of our NFFT, we have

A1 ≈ B1 Fd
σn,n D1 , A2 ≈ B2 Fd

σn,n D2

with diagonal matrices D1 and D2, sparse matrices B1 and B2 having at most (2m+
1)d nonzero entries in each row and column and the d-variate Fourier matrix given
in (7.22).
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This can be rewritten as

Kααα ≈ (B̄M2 T BM1
+KNE)ααα ,

where T := Fσn, n Dn DKR Dn Fσn, n is a multilevel-Toeplitz matrix. Note that one
can avoid the complex arithmetic by using fast Toeplitz matrix–vector multiplica-
tions based on discrete trigonometric transforms (see [291, Algorithm 3]).

Next we are interested in a nonsingular kernel function K (x) = K(‖x‖2) for
x ∈ R

d . For instance, the Gaussian function K(x) = e−δx2
with fixed δ > 0

generates such a nonsingular kernel function. Here a regularization of K near zero
is not necessary. Thus our computation does not require a near field correction. If
K(x) is very small near x = ±π , that is the case for the Gaussian function with
sufficiently large value δ, we also don’t need a regularization of K near ±π . In this
case we set KR := K on [−π, π] and

KR(x) :=
{
K(‖x‖2) ‖x‖2 < π ,

K(π) x ∈ [−π, π]d with ‖x‖2 ≥ π .
(7.68)

Otherwise, if we need a regularization of K near ±π . Therefore we choose the
two-point Taylor interpolation polynomial TB ∈ P2r−1 with the interpolation
conditions (7.61) and use the function

KR(x) =
⎧
⎨

⎩

K(‖x‖2) ‖x‖2 ≤ π − εB ,

TB(‖x‖2) π − εB < ‖x‖2 < π ,

TB(π) x ∈ [−π, π]d with ‖x‖2 ≥ π .

(7.69)

Then Algorithm 7.15 can also be applied for the fast summation with a
nonsingular kernel function and it simplifies to its first three steps. Moreover we
will see that the lack of the “near field correction” implies that the size n× . . .× n

of the NFFT and NFFT does not depend on the numbers M1 and M2 of the given
knots. Thus the Algorithm 7.15 with steps 1–3 requires for a nonsingular kernel
only O

(
(ρn)d log(ρn) + md(M1 + M2)

) = O(M1 + M2) arithmetic operations.

Applying Algorithm 7.15 to the Gaussian function K(x) = e−δx2
with fixed δ > 0,

we obtain the fast Gauss transform.

Algorithm 7.17 (Fast Gauss Transform)

Input: αk ∈ C for k = 1, . . . ,M1,
xk ∈ R

d for k = 1, . . . ,M1 with ‖xk‖2 < 1
2 (π − εB),

yj ∈ R
d for j = 1, . . . ,M2 with ‖yj‖2 < 1

2 (π − εB).
Precomputation: Compute the polynomial TB by Lemma 9.35.

Form KR(x) by (7.68) or (7.69) for K(x) = e−δx2
.

Compute (bl)l∈I dn by (7.63) using FFT of size n× . . .× n.
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1. For each l ∈ Id
n compute

al :=
M1∑

k=1

αk e−i l·xk

using the d-variate NFFT of size n× . . .× n, see Algorithm 7.3.
2. For each l ∈ Id

n compute the products dl := al bl.
3. For j = 1, . . . ,M2 compute the far field sums

f̃ (yj ) = fRF(yj ) :=
∑

l∈I dn
dl ei l·yj

using the d-variate NFFT of size n× . . .× n, see Algorithm 7.1.

Output: f̃ (yj ), j = 1, . . . ,M2, approximate values of

f (yj ) =
M1∑

k=1

αk e−δ ‖yj−xk‖2
2 .

Computational cost: O
(
md (M1 +M2)

)
.

Remark 7.18 Fast algorithms for the discrete Gauss transforms have been intro-
duced in [23, 149, 150]. Error estimates for fast summation at nonequispaced knots
have been presented in [280, 281] and for the Gauss transform in [214]. The related
software is available from [199], where a variety of different kernels is implemented.
Furthermore there exists a MATLAB interface, see [199, ./matlab/fastsum].

7.6 Inverse Nonequispaced Discrete Transforms

Important examples of nonequispaced discrete transforms are the nonequispaced
discrete Fourier transform (NDFT) (see Sect. 7.1) and the nonequispaced discrete
cosine transform (NDCT) (see Sect. 7.4). As shown in Sects. 7.1 and 7.4, fast
nonequispaced discrete transforms are efficient algorithms for the computation
of matrix–vector products A f, where A denotes the matrix of a nonequispaced
discrete transform and where f is an arbitrary given vector. The goal of this section
is to present algorithms for inverse nonequispaced discrete transforms. Inverse
nonequispaced discrete transform of a given vector f means the determination of
a vector f̂ as (approximate) solution of the linear system

A f̂ = f .
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First we present direct methods for inverse NDCT and inverse NDFT in the
one-dimensional case. Note that we compute the inverse nonequispaced discrete
transform without knowledge of a (generalized) inverse matrix of the nonequispaced
discrete transform. Instead of that, we first use a fast summation step and then the
inverse nonequispaced discrete transform can be realized as an inverse equispaced
discrete transform. Later we sketch iterative methods for inverse NDFT in the
multidimensional case.

7.6.1 Direct Methods for Inverse NDCT and Inverse NDFT

We consider the one-dimensional case and study direct methods for the inverse
NDCT first. We start with recalling the NDCT (7.48), where we have to evaluate
the polynomial

p(x) =
N∑

k=0

f̂k Tk(x)

at arbitrary distinct nodes xj ∈ [−1, 1]. Here, Tk(x) = cos(k arccos x), x ∈
[−1, 1], denotes the kth Chebyshev polynomial (of first kind).

In Sect. 6.2 we have already shown that using the Chebyshev extreme points
x
(N)
j := cos jπ

N
, j = 0, . . . , N , we can evaluate the polynomial p at the nodes x(N)

j ,
j = 0, . . . , N , with O(N logN) arithmetic operations employing a DCT-I(N + 1).
Vice versa, we can compute f̂k , k = 0, . . . , N , from samples p(x

(N)
j ), since the

DCT-I is an orthogonal transform, see Lemma 3.46.
The inverse NDCT can be formulated as follows: Compute the coefficients f̂k ∈

R, k = 0, . . . , N , from given values

p(xj ) =
N∑

k=0

f̂k Tk(xj )

at arbitrary distinct nodes xj ∈ [−1, 1], j = 0, . . . , N . Taking the fast summation
technique in Sect. 7.5 we transfer the inverse NDCT into an inverse DCT-I. To derive
the inverse NDCT we will use the following result.

Theorem 7.19 For arbitrary distinct nodes xj ∈ [−1, 1], j = 0, . . . , N , and f̂k ∈
R, k = 0, . . . , N , let

fj :=
N∑

k=0

f̂k Tk(xj ) =
N∑

k=0

f̂k cos(k arccosxj ) , j = 0, . . . , N , (7.70)
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i.e., (fj )
N
j=0 is the NDCT of (f̂k)

N
k=0. Further, for the Chebyshev extreme points

x
(N)
� = cos �π

N
, � = 0, . . . , N , let

g� :=
N∑

k=0

f̂k Tk(x
(N)
� ) =

N∑

k=0

f̂k cos
�kπ

N
, � = 0, . . . , N , (7.71)

i.e., (g�)N�=0 is the DCT-I(N+1) (up to normalization constants) of (f̂k)
N
k=0. Assume

that x(N)
� �= xk for all �, k = 0, . . . , N .

Then we have

g� = c�

N∑

j=0

fj dj

x
(N)
� − xj

, � = 0, . . . , N , (7.72)

where

c� =
N∏

k=0

(
x
(N)
� − xk

)
, � = 0, . . . , N (7.73)

dj =
N∏

k=0
k �=j

1

xj − xk
, j = 0, . . . , N . (7.74)

Proof Let the polynomial p be defined by

p(x) =
N∑

k=0

f̂k Tk(x) .

Using the Lagrange interpolation formula at the points xj , we rewrite p in the form

p(x) =
N∑

j=0

p(xj )

N∏

k=0
k �=j

x − xk

xj − xk
.

Thus for x �= xj we obtain

p(x) =
N∏

n=0

(x − xn)

N∑

j=0

p(xj )

x − xj

N∏

k=0
k �=j

1

xj − xk
, (7.75)
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and hence

p
(
x
(N)
�

) = g� = c�

N∑

j=0

fj gj

x
(N)
� − xj

.

This completes the proof.

Remark 7.20 Formula (7.75) can be considered as a special case of the barycentric
formula, see Sect. 6.2 and [31, formula (8.1)].

Consequently, we can efficiently compute the values g� via (7.72) from the given
values fj by Algorithm 7.15 using the singular kernel function 1

x
. Applying inverse

DCT-I, we then calculate the values f̂k , k = 0, . . . , N , from g�, � = 0, . . . , N . We
summarize this procedure:

Algorithm 7.21 (Inverse NDCT)

Input: xj ∈ [−1, 1], fj ∈ R, j = 0, . . . , N .
Precomputation: c�, � = 0, . . . , N , by (7.73),

dj , j = 0, . . . , N , by (7.74) or by Remark 7.22.

1. Compute the values g�, � = 0, . . . , N in (7.72) by Algorithm 7.15 with the kernel
1
x
.

2. Compute the values f̂k , k = 0, . . . , N in (7.71) by the inverse DCT-I(N + 1)
using Algorithm 6.28 or 6.35.

Output: f̂k , k = 0, . . . , N .

Computational cost: O(N logN).

Remark 7.22 The naive precomputation of c� and dj can be improved using the
relations

c� =
N∏

k=0

(
x
(N)
� − xk ) = (sgn c�) exp

( N∑

k=0

ln |x(N)
� − xk|

)
,

dj =
N∏

k=0
k �=j

1

xj − xk
= (sgn dj ) exp

(−
N∑

k=0
k �=j

ln |xj − xk|
)

and applying Algorithm 7.15 with the singular kernel function ln |x|.
Based on the same ideas, we will also develop a fast algorithm for the inverse

NDFT. In contrast to [96] we use the fast summation method of Algorithm 7.15
with the kernel cot x instead of the fast multipole method. Note that with the simple
modification in (7.60) we can handle odd singular kernels as well. Taking the fast
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summation technique we transfer the inverse NDFT into an inverse DFT. The inverse
NDFT is based on the following result, see [96, Theorem 2.3]:

Theorem 7.23 For N ∈ 2N, let xj ∈ [−π, π) \ { 2πk
N
: k = −N

2 , . . . , N
2 − 1},

j = −N
2 , . . . , N

2 − 1 be distinct nodes and let f̂k ∈ C, k = −N
2 , . . . , N

2 − 1 be
given. Let

fj :=
N/2−1∑

k=−N/2

f̂k ei kxj , j = −N

2
, . . . ,

N

2
− 1 , (7.76)

i.e.,(fj )
N/2−1
j=−N/2 is the NDFT of (f̂k)

N/2−1
k=−N/2. Further, for equispaced nodes h

(N)
� :=

2π�
N

, � = −N
2 , . . . , N

2 − 1, let

g� :=
N/2−1∑

k=−N/2

f̂k ei kh(N)
� =

N/2−1∑

k=−N/2

f̂k e2π ik�/N , � = −N

2
, . . . ,

N

2
− 1 ,

(7.77)

i.e., (g�)
N/2−1
�=−N/2 is the modified DFT of (f̂k)

N/2−1
k=−N/2.

Then we have

g� = c�

N/2−1∑

j=−N/2

fj dj

(
cot

(h(N)
� − xj

2

)− i
)

(7.78)

with

c� :=
N/2−1∏

k=−N/2

sin
h
(N)
� − xk

2
, (7.79)

dj :=
N/2−1∏

k=−N/2
k �=j

1

sin
xj−xk

2

. (7.80)

Proof We introduce the polynomial p by

p(z) :=
N−1∑

k=0

f̂k−N/2 zk , z ∈ C .
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Using the Lagrange interpolation formula at the distinct nodes zk := eixk , k =
−N

2 , . . . , N
2 , we rewrite p in the form

p(z) =
N/2−1∑

j=−N/2

p(zj )

N/2−1∏

k=−N/2
k �=j

z− zk

zj − zk
.

Then for z �= zj we obtain

p(z) =
N/2−1∏

n=−N/2

(z− zn)

N/2−1∑

j=−N/2

p(zj )

z− zj

N/2−1∏

k=−N/2
k �=j

1

zj − zk
.

The equispaced nodes w−�
N := ei h(N)

� = e2π i �/N , � = −N
2 , . . . , N

2 are complex

N th roots of unity which satisfy the condition w−�
N �= zj for all indices � and j by

assumption. Hence for z = w−�
N it follows that

p(w−�
N ) =

N/2−1∏

n=−N/2

(w−�
N − zn)

N/2−1∑

j=−N/2

p(zj )

w−�
N − zj

N/2−1∏

k=−N/2
k �=j

1

zj − zk
. (7.81)

By (7.76) and (7.77) we have

fj = z
−N/2
j p(zj ) , gj = (−1)j p(w−j

N ) , j = −N

2
, . . . ,

N

2
− 1 .

Using (7.79), we calculate

N/2−1∏

n=−N/2

(w−�
N − zn) =

N/2−1∏

n=−N/2

(
eih(N)

� − ei xn
)

=
N/2−1∏

n=−N/2

ei (h(N)
� +xn)/2 (

ei (h(N)
� −xn)/2 − e−i (h(N)

� −xn)/2)

= (−1)� (2 i)N
N/2−1∏

n=−N/2

ei xn/2 sin
h
(N)
� − xn

2
= (−1)� (2 i)N a c� .

with

a :=
N/2−1∏

n=−N/2

ei xn/2 .
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Analogously with (7.80) we compute the product

N/2−1∏

k=−N/2
k �=j

(zj − zk) = (2 i)N−1 ei xj (N−1)/2
N/2−1∏

k=−N/2
k �=j

ei xk/2 sin
xj − xk

2

= (2 i)N−1 ei xj (N−2)/2 a

dj
.

Then from (7.81) it follows that

p(w−�
N ) = (−1)� g� = 2 i (−1)� c�

N/2−1∑

j=−N/2

ei xj fj dj

w−�
N − zj

.

With

cot x = i
ei x + e−i x

ei x − e−i x , x ∈ R \ (πZ) ,

we find

cot
h
(N)
� − xj

2
− i = 2 i zj

w−�
N − zj

.

This implies the relation (7.78).

Consequently we can efficiently compute the values g� via (7.78) from the given
values fj using a univariate variant of Algorithm 7.15 with the odd kernel cot x.
Applying the modified DFT, we can calculate the values f̂k , k = −N

2 , . . . N
2 − 1,

from g�, � = −N
2 , . . . N

2 − 1.

Algorithm 7.24 (Inverse NDFT)

Input: N ∈ 2N, xj ∈ [−π, π) \ { 2πk
N

: k = −N
2 , . . . , N

2 − 1}, fj ∈ C, j =
−N

2 , . . . , N
2 − 1.

Precomputation: c�, � = −N
2 , . . . , N

2 − 1, by (7.79),
dj , j = −N

2 , . . . , N
2 − 1, by (7.80).

1. Compute the values (7.78) by a univariate variant of Algorithm 7.15 with the odd
kernel cot x.

2. Compute the values f̂k by the inverse modified DFT (7.77).

Output: f̂k , k = −N
2 , . . . , N

2 − 1.

Computational cost: O(N logN).

Remark 7.25 Algorithm 7.24 is part of the NFFT software, see [199, ./mat-
lab/infft1D].
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Remark 7.26 Formula (7.78) is closely related to the barycentric formula, see
Theorem 3.9. In (7.78) we apply the Lagrange polynomials at the nonequispaced
points xk . In Theorem 3.9 we used Lagrange polynomials at the equispaced points
h
(N)
� . Note that interchanging w−�

N and zn in (7.81) leads to the second barycentric
formula in Theorem 3.9.

7.6.2 Iterative Methods for Inverse NDFT

Now we explain the inversion of the multidimensional NDFT using iterative
methods. This approach can be applied to the mentioned NDFT variants as well.

Inversion of the NDFT means the computation of all coefficients f̂k ∈ C, k ∈ Id
N ,

of the d-variate, 2π-periodic trigonometric polynomial

f (x) =
∑

k∈I dN
f̂k ei k·x ,

if function samples fj = f (xj ), j = 0, . . . ,M − 1, at arbitrary knots xj ∈
[−π, π)d are given, see (7.2). In matrix–vector notation, this problem is equivalent
to solving the linear system

A f̂ = f (7.82)

with the given vector f = (fj )
M−1
j=0 ∈ C

M and the unknown vector f̂ = (f̂k)k∈I dN ∈
C

Nd
, where the nonequispaced Fourier matrix A is given in (7.19). This linear

system can be either overdetermined, if Nd ≤ M (this includes the quadratic
case), or underdetermined, if Nd > M . Generally, this forces us to look for a
pseudo-inverse solution f̂+ (see, e.g., [35, p. 15]). For this, we also require that the
nonequispaced Fourier matrix A has full rank. Eigenvalue estimates in [14, 106, 213]
indeed assert that this condition is satisfied, if the sampling set is uniformly dense
or uniformly separated with respect to the inverse bandwidth.

In the overdetermined case, we consider a weighted least squares problem, while
for the consistent underdetermined case, we look for a solution of an interpolation
problem. Both problems can be iteratively solved using NFFT (see Algorithm 7.1)
and adjoint NFFT (see Algorithm 7.3) to realize fast matrix–vector multiplications
involving A or AH.

If Nd ≤ M , the linear system (7.82) is overdetermined which typically implies
that the given data fj ∈ C, j = 0, . . . ,M − 1, can only be approximated up to a
residual r := f− A f̂. Therefore, we consider the weighted least squares problem

min
f̂

M−1∑

j=0

wj |fj − f (xj )|2
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with weights wj > 0. The weights might be used to compensate for clusters in
the sampling set. The weighted least squares problem is equivalent to solving the
weighted normal equations of first kind

AH W A f̂ = AHW f

with the diagonal matrix W := diag (wj )
M−1
j=0 . This linear system can be solved

using the Landweber (or Richardson) iteration, the steepest descent method, or the
conjugate gradient method for least squares problems. In the NFFT library [199] all
three algorithms are implemented.

If Nd > M , and if the linear system (7.82) is consistent, then the data fj ∈
C, j = 0, . . . ,M − 1, can be interpolated exactly. But since there exist multiple
solutions, we consider the constrained minimization problem

min
f̂

∑

k∈I dN

|f̂k|2
ŵk

subject to A f̂ = f,

which incorporates “damping factors” ŵk > 0. A smooth solution, i.e., a solution
with rapid decay of Fourier coefficients f̂k, is favored, if the damping factors ŵk are
decreasing. The interpolation problem is equivalent to the damped normal equations
of second kind

A Ŵ AH f̃ = f , f̂ = Ŵ AH f̃

with the diagonal matrix Ŵ := diag (ŵk)k∈I dN . The NFFT library [199] also contains
this scheme.

We summarize the inverse d-dimensional NFFT in the overdetermined case:

Algorithm 7.27 (Inverse Iterative NDFT Using the Conjugate Gradient
Method for Normal Equations of First Kind (CGNR))

Input:N ∈ 2N, xj ∈ [ − π, π)d , f ∈ C
M , f̂0 ∈ C

Nd
.

1. Set r0 := f− A f̂0.
2. Compute ẑ0 := AH W r0.
3. Set p̂0 = ẑ0.
4. For � = 0, 1, . . . compute

v� = A Ŵ p̂�

α� = (vH
� W v�)

−1 (ẑH
� Ŵ ẑ�)

f̂�+1 = f̂� + α� Ŵ p̂�

r�+1 = r� − α� v�

ẑ�+1 = AH W r�+1
β� = (ẑH

�+1Ŵẑ�+1)
−1 (ẑH

� Ŵ ẑ�)
p̂�+1 = β� p̂� + ẑ�+1.

Output: f̂� ∈ C
Nd

�th approximation of the solution vector f̂.
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Remark 7.28 The algorithms presented in this chapter are part of the NFFT
software [199]. The algorithmic details are described in [198]. The proposed
algorithms have been implemented on top of the well-optimized FFTW software
library [122, 123]. The implementation and numerical results of the multi-threaded
NFFT based on OpenMP are described in [365]. Furthermore there exist MATLAB
and Octave interfaces. We provide also windows binaries as DLL.

Implementations on GPU are presented in [211, 385]. Parallel NFFT algo-
rithms are developed in [272] and have been published in the PNFFT software
library [270]. The implementation of these algorithms is part of the publicly
available ScaFaCoS software library [9].



Chapter 8
High-Dimensional FFT

In this chapter, we discuss methods for the approximation of d-variate functions
in high dimension d ∈ N based on sampling along rank-1 lattices and we
derive the corresponding fast algorithms. In contrast to Chap. 4, our approach
to compute the Fourier coefficients of d-variate functions is no longer based on
tensor product methods. In Sect. 8.1, we introduce weighted subspaces of L1(T

d )

which are characterized by the decay properties of the Fourier coefficients. We
show that functions in these spaces can already be approximated well by d-variate
trigonometric polynomials on special frequency index sets. In Sect. 8.2, we study
the fast evaluation of d-variate trigonometric polynomials on finite frequency index
sets. We introduce the so-called rank-1 lattices and derive an algorithm for the
fast evaluation of these trigonometric polynomials at the lattice points. The special
structure of the rank-1 lattice enables us to perform this computation using only a
one-dimensional FFT. In order to reconstruct the Fourier coefficients of the d-variate
trigonometric polynomials from the polynomial values at the lattice points exactly,
the used rank-1 lattice needs to satisfy a special condition. Using the so-called
reconstructing rank-1 lattices, the stable computation of the Fourier coefficients of
a d-variate trigonometric polynomial can again be performed by employing only
a one-dimensional FFT, where the numerical effort depends on the lattice size. In
Sect. 8.3, we come back to the approximation of periodic functions in weighted
subspaces of L1(T

d) on rank-1 lattices. Section 8.4 considers the construction
of rank-1 lattices. We present a constructive component-by-component algorithm
with less than |I |2 lattice points, where I denotes the finite index set of nonzero
Fourier coefficients that have to be computed. In particular, this means that the
computational effort to reconstruct the Fourier coefficients depends only linearly on
the dimension and mainly on the size of the frequency index sets of the considered
trigonometric polynomials. In order to overcome the limitations of the single rank-1
lattice approach, we generalize the proposed methods to multiple rank-1 lattices in
Sect. 8.5.
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8.1 Fourier Partial Sums of Smooth Multivariate Functions

In order to ensure a good quality of the obtained approximations of d-variate
periodic functions, we need to assume that these functions satisfy certain smooth-
ness conditions, which are closely related to the decay properties of their Fourier
coefficients. As we have already seen for d = 1, the smoothness properties of
a function strongly influence the quality of a specific approximation method, for
example, see Theorem 1.39 of Bernstein.

We consider a d-variate periodic function f : Td → C with the Fourier series

f (x) =
∑

k∈Zd

ck(f ) ei k·x . (8.1)

We will always assume that f ∈ L1(T
d) in order to guarantee the existence of all

Fourier coefficients ck(f ), k ∈ Z
d . For the definition of function spaces Lp(T

d ),
1 ≤ p <∞, we refer to Sect. 4.1.

The decay properties of Fourier coefficients can also be used to characterize the
smoothness of the function f , see Theorem 1.37 for d = 1 or Theorem 4.9 for
d > 1. For a detailed characterization of periodic functions and suitable function
spaces, in particular with respect to the decay properties of the Fourier coefficients,
we refer to [322, Chapter 3].

In this section, we consider the approximation of a d-variate periodic function
f ∈ L1(T

d ) using Fourier partial sums SI f ,

(SI f )(x) :=
∑

k∈I
ck(f ) ei k·x , (8.2)

where the finite index set I ⊂ Z
d needs to be carefully chosen with respect to

the properties of the sequence of the Fourier coefficients
(
ck(f )

)
k∈Zd . The set I is

called frequency index set of the Fourier partial sum. The operator SI : L1(T
d ) →

C(Td ) maps f to a trigonometric polynomial with frequencies supported on the
finite index set I . We call

ΠI := span {ei k·x : k ∈ I }

the space of trigonometric polynomials supported on I . We will be interested in
frequency index sets of type

I = Id
p,N := {k = (ks)

d
s=1 ∈ Z

d : ‖k‖p ≤ N} , (8.3)
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Fig. 8.1 Two-dimensional frequency index sets I2
p,16 for p ∈ { 1

2 , 1, 2, ∞}. (a) I2
1
2 ,16

. (b) I2
1,16.

(c) I2
2,16. (d) I2∞,16

where ‖k‖p is the usual p-(quasi-)norm

‖k‖p :=

⎧
⎪⎪⎨

⎪⎪⎩

( d∑

s=1
|ks |p

)1/p 0 < p <∞ ,

max
s=1,...,d

|ks | p = ∞ .

Figure 8.1 illustrates the two-dimensional frequency index sets I 2
p,16 for p ∈

{ 1
2 , 1, 2,∞}, see also [185, 371, 372].

If the absolute values of the Fourier coefficients decrease sufficiently fast for
growing frequency index k, we can very well approximate the function f using only
a few terms ck(f ) ei k·x, k ∈ I ⊂ Z

d with cardinality |I | <∞. In particular, we will
consider a periodic function f ∈ L1(T

d ) whose sequence of Fourier coefficients
is absolutely summable. This implies by Theorem 4.9 that f has a continuous
representative within L1(T

d ). We introduce the weighted subspace Aω(T
d ) of

L1(T
d ) of functions f : Td → C equipped with the norm

‖f ‖Aω(Td) :=
∑

k∈Zd

ω(k)|ck(f )| , (8.4)

if f has the Fourier expansion (8.1). Here ω : Zd → [1,∞) is calledweight function
and characterizes the decay of the Fourier coefficients. If ω is increasing for ‖k‖p →
∞, then the Fourier coefficients ck(f ) of f ∈ Aω(T

d ) have to decrease faster than
the weight function ω increases with respect to k = (ks)

d
s=1 ∈ Z

d .

Example 8.1 Important examples for a weight function ω are

ω(k) = ωd
p(k) := max {1, ‖k‖p}
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for 0 < p ≤ ∞. Instead of the p-norm, one can also consider a weighted p-norm.
To characterize function spaces with dominating smoothness, also weight functions
of the form

ω(k) =
d∏

s=1

max {1, |ks |}

have been considered, see, e.g., [94, 184, 353].

Observe that ω(k) ≥ 1 for all k ∈ Z
d . Let ω1 be the special weight function

with ω1(k) = 1 for all k ∈ Z
d and A (Td ) := Aω1(T

d ). The space A (Td ) is
called Wiener algebra. Further, we recall that C(Td ) denotes the Banach space of
continuous d-variate 2π-periodic functions. The norm of C(Td ) coincides with
the norm of L∞(Td ). The next lemma, see [184, Lemma 2.1], states that the
embeddings Aω(T

d ) ⊂ A (Td ) ⊂ C(Td ) are true.

Lemma 8.2 Each function f ∈ A (Td ) has a continuous representative. In
particular, we obtainAω(T

d ) ⊂ A (Td ) ⊂ C(Td ) with the usual interpretation.

Proof Let f ∈ Aω(T
d ) be given. Then the function f belongs to A (Td ), since the

following estimate holds:

∑

k∈Zd

|ck(f )| ≤
∑

k∈Zd

ω(k) |ck(f )| <∞ .

Now let f ∈ A (Td ) be given. The summability of the sequence
(|ck(f )|)k∈Zd

of the absolute values of the Fourier coefficients implies the summability of the
sequence

(|ck(f )|2)k∈Zd of the squared absolute values of the Fourier coefficients
and, thus, the embedding A (Td ) ⊂ L2(T

d) is proved using Parseval equation (4.4).
Clearly, the function g(x) = ∑

k∈Zd ck(f ) ei k·x is a representative of f in
L2(T

d ) and also in A (Td ). We show that g is the continuous representative of
f . The absolute values of the Fourier coefficients of f ∈ A (Td ) are summable. So,
for each ε > 0 there exists a finite index set I ⊂ Z

d with
∑

k∈Zd\I |ck(f )| < ε
4 . For

a fixed x0 ∈ T
d , we estimate

|g(x0)− g(x)| = ∣
∣
∑

k∈Zd

ck(f ) ei k·x0 −
∑

k∈Zd

ck(f ) ei k·x∣∣

≤ ∣
∣
∑

k∈I
ck(f ) ei k·x0 −

∑

k∈I
ck(f ) ei k·x∣∣+ ε

2
.

The trigonometric polynomial (SI f )(x) = ∑
k∈I ck ei k·x is a continuous function.

Accordingly, for ε > 0 and x0 ∈ T
d there exists a δ0 > 0 such that ‖x0 − x‖1 < δ0

implies |(SI f )(x0) − (SI f )(x)| < ε
2 . Then we obtain |g(x0) − g(x)| < ε for all x

with ‖x0 − x‖1 < δ0.
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In particular for our further considerations on sampling methods, it is essential
that we identify each function f ∈ A (Td ) with its continuous representative in
the following. Note that the definition of Aω(T

d ) in (8.4) using the Fourier series
representation of f already comprises the continuity of the contained functions.

Considering Fourier partial sums, we will always call them exact Fourier partial
sums in contrast to approximate partial Fourier sums that will be introduced later.

Lemma 8.3 Let IN = {k ∈ Z
d : ω(k) ≤ N}, N ∈ R, be a frequency index set

defined by the weight function ω. Assume that the cardinality |IN | is finite.
Then the exact Fourier partial sum

(SIN f )(x) :=
∑

k∈IN
ck(f ) ei k·x (8.5)

approximates the function f ∈ Aω(T
d ) and we have

‖f − SIN f ‖L∞(Td ) ≤ N−1 ‖f ‖Aω(Td) .

Proof We follow the ideas of [184, Lemma 2.2]. Let f ∈ Aω(T
d ). Obviously,

SIN f ∈ Aω(T
d ) ⊂ C(Td ) and we obtain

‖f − SIN f ‖L∞(Td ) = ess sup
x∈Td

|(f − SIN f )(x)| = ess sup
x∈Td

∣
∣

∑

k∈Zd\IN
ck(f ) ei k·x∣∣

≤
∑

k∈Zd\IN
|ck(f )| ≤ 1

inf
k∈Zd\IN

ω(k)

∑

k∈Zd\IN
ω(k)| ck(f )|

≤ 1

N

∑

k∈Zd

ω(k) |ck(f )| = N−1‖f ‖Aω(Td).

Remark 8.4 For the weight function ω(k) = (
max {1, ‖k‖p}

)α/2 with 0 < p ≤ ∞
and α > 0 we similarly obtain for the index set IN = Id

p,N given in (8.3)

‖f − SIdp,N
f ‖L∞(Td) ≤ N−α/2

∑

k∈Zd\I dp,N

(
max {1, ‖k‖p}

)α/2|ck(f )|

≤ N−α/2 ‖f ‖Aω(Td) .

The error estimates can be also transferred to other norms. Let Hα,p(Td ) denote the
periodic Sobolev space of isotropic smoothness consisting of all f ∈ L2(T

d ) with
finite norm

‖f ‖Hα,p(Td ) :=
∑

k∈Zd

(
max {1, ‖k‖p}

)α |ck(f )|2 , (8.6)
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where f possesses the Fourier expansion (8.1) and where α > 0 is the smoothness
parameter. Using the Cauchy–Schwarz inequality, we obtain here

‖f − SIdp,N
f ‖L∞(Td ) ≤

∑

k∈Zd\I dp,N
|ck(f )|

≤ ( ∑

k∈Zd\I dp,N
‖k‖−α

p

)1/2( ∑

k∈Zd\I dp,N
‖k‖αp |ck(f )|2)1/2

≤ ( ∑

k∈Zd\I dp,N
‖k‖−α

p

)1/2 ‖f ‖Hα,p(Td ) .

Note that this estimate is related to the estimates on the decay of Fourier
coefficients for functions f ∈ Cr(Td ) in (4.1) and Theorem 4.9. For detailed
estimates of the approximation error of Fourier partial sums in these spaces, we
refer to [210].

As we will see later, for efficient approximation, other frequency index sets, as,
e.g., frequency index sets related to the hyperbolic crosses, are of special interest.
The corresponding approximation errors have been studied in [59, 190, 191].

Lemma 8.5 Let N ∈ N and the frequency index set IN := {k ∈ Z
d : 1 ≤ ω(k) ≤

N} with the cardinality 0 < |IN | <∞ be given.
Then the norm of the operator SIN that maps f ∈ Aω(T

d) to its Fourier partial
sum SIN f on the index set IN is bounded by

1

mink∈Zd ω(k)
≤ ‖SIN ‖Aω(Td)→C(Td) ≤

1

mink∈Zd ω(k)
+ 1

N
.

Proof

1. Since |IN | is finite, there exists mink∈IN ω(k). The definition of IN implies that
mink∈Zd ω(k) = mink∈IN ω(k). To obtain the upper bound for the operator norm
we apply the triangle inequality and Lemma 8.3,

‖SIN ‖Aω(Td)→C(Td) = sup
f∈Aω(T

d )
‖f ‖Aω(Td )

=1

‖SIN f ‖C(Td)

≤ sup
f∈Aω(T

d)
‖f ‖Aω(Td )

=1

‖SIN f − f ‖C(Td) + sup
f∈Aω(T

d)
‖f ‖Aω(Td )

=1

‖f ‖C(Td)

≤ sup
f∈Aω(T

d)
‖f ‖Aω(Td )

=1

⎛

⎝
∑

k∈Zd

|ck(f )| + N−1‖f ‖Aω(Td)

⎞

⎠
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≤ sup
f∈Aω(T

d)
‖f ‖Aω(Td )

=1

⎛

⎝
∑

k∈Zd

ω(k)

mink̃∈Zd ω(k̃)
|ck(f )| +N−1‖f ‖Aω(Td )

⎞

⎠

≤ 1

mink∈Zd ω(k)
+ 1

N
.

2. To prove the lower bound we construct a suitable example. Let k′ ∈ IN be
a frequency index with ω(k′) = mink∈Zd ω(k). We choose the trigonometric
polynomial g(x) = 1

ω(k′) ei k′·x which is an element of Aω(T
d ) with ‖g‖Aω(Td) =

1. Since SIN g = g, we find

‖SIN ‖Aω(Td)→C(Td) ≥ ‖SIN g‖C(Td ) = ‖g‖C(Td ) = g(0) = 1

ω(k′)
= 1

min
k∈IN

ω(k)
.

Our observations in this section imply that smooth functions with special decay
of their Fourier coefficients can be well approximated by d-variate trigonometric
polynomials on special index sets. In the next section we will therefore study the
efficient evaluation of d-variate trigonometric polynomials on special grids, as well
as the corresponding efficient computation of their Fourier coefficients.

8.2 Fast Evaluation of Multivariate Trigonometric
Polynomials

As we have seen in the last section, smooth functions in Aω(T
d ) can be already well

approximated by d-variate trigonometric polynomials on index sets IN = {k ∈ Z
d :

ω(k) ≤ N}. In Fig. 8.1, we have seen possible two-dimensional index sets, where
ω(k) = max {1, ‖k‖p}. Therefore we study trigonometric polynomials p ∈ ΠI on
the d-dimensional torus Td ∼= [0, 2π)d of the form

p(x) =
∑

k∈I
p̂k ei k·x (8.7)

with Fourier coefficients p̂k ∈ C and with a fixed finite frequency index set I ⊂ Z
d

of cardinality |I |.
Let X ⊂ [0, 2π)d be a finite set of sampling points with |X| elements. Now we

are interested in solving the following two problems:

(i) Evaluation of trigonometric polynomials. For given Fourier coefficients p̂k,
k ∈ I , how to compute the polynomial values p(x) for all x ∈ X efficiently?
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(ii) Evaluation of the Fourier coefficients. For given polynomial values p(x), x ∈
X, how to compute p̂k for all k ∈ I efficiently?

The second problem also involves the question, how the sampling set X has to be
chosen such that p̂k for all k ∈ I can be uniquely computed in a stable way.

Let us consider the |X|-by-|I | Fourier matrix A = A(X, I) defined by

A = A(X, I) := (
ei k·x)

x∈X, k∈I ∈ C
|X|×|I | ,

as well as the two vectors p := (
p(x)

)
x∈X ∈ C

|X| and p̂ := (
p̂(k)

)
k∈I ∈ C

|I |. To
solve problem (i), we need to perform the matrix–vector multiplication

p = A p̂ . (8.8)

To compute p̂ from p, we have to solve the inverse problem. For arbitrary
polynomial p ∈ ΠI this problem is only uniquely solvable, if |X| ≥ |I | and if
A possesses full rank |I |. In other words, the sampling set X needs to be large
enough and the obtained samples need to contain “enough information” about p.
Then AH A ∈ C

|I |×|I | is invertible, and we have

p̂ = (AH A)−1 AH p . (8.9)

In order to ensure stability of this procedure, we want to assume that the columns
of A are orthogonal, i.e., AHA = M I|I |, where I|I | is the |I |-by-|I | unit matrix and
M = |X|. Then (8.9) simplifies to

p̂ = 1

M
AH p .

In the following, we will consider very special sampling sets X, so-called rank-1
lattices.

8.2.1 Rank-1 Lattices

Initially, rank-1 lattices were introduced as sampling schemes for (equally weighted)
cubature formulas in the late 1950s and 1960s, see [206]. A summary of the early
work on cubature rules based on rank-1 lattice sampling can be found in [255]. The
recent increased interest in rank-1 lattices is particularly caused by new approaches
to describe lattice rules that allow optimal theoretical error estimates for cubature
formulas for specific function classes, see, e.g., [334]. We also refer to [332] for
a survey on lattice methods for numerical integration. Note that lattice rules are a
powerful and popular form of quasi-Monte Carlo rules [86].
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In contrast to general lattices which are spanned by several vectors, we consider
only sampling on the so-called rank-1 lattices. This simplifies the evaluation of
trigonometric polynomials essentially and allows to derive necessary and sufficient
conditions for unique or stable reconstruction.

For a given nonzero vector z ∈ Z
d and a positive integer M ∈ N we define the

rank-1 lattice

X = Λ(z,M) := {
xj := 2π

M
(j z mod M 1) ∈ [0, 2π)d : j = 0, . . . ,M − 1

}

(8.10)

as spatial discretization in [0, 2π)d . Here, 1 := (1)ds=1 ∈ Z
d and for z =

(zs)
d
s=1 ∈ Z

d the term j z mod M 1 denotes the vector (j zs mod M)ds=1. We call
z the generating vector and M the lattice size of the rank-1 lattice Λ(z,M). To
ensure that Λ(z,M) has exactly M distinct elements, we assume that M is coprime
with at least one component of z. Further, for a given rank-1 lattice Λ(z,M) with
generating vector z ∈ Z

d we call the set

Λ⊥(z,M) := {k ∈ Z
d : k · z ≡ 0 mod M} (8.11)

the integer dual lattice of Λ(z,M). The integer dual lattice Λ⊥(z,M) will play an
important role, when we approximate the Fourier coefficients of a function f using
only samples of f on the rank-1 lattice Λ(z,M).

Example 8.6 Let d = 2, z = (1, 3) and M = 11, then we obtain

Λ(z,M) = 2π

11

{(
0
0

)
,

(
1
3

)
,

(
2
6

)
,

(
3
9

)
,

(
4
1

)
,

(
5
4

)
,

(
6
7

)
,

(
7

10

)
,

(
8
2

)
,

(
9
5

)
,

(
10
8

)}
,

and Λ⊥(z,M) contains all vectors k = (k1, k2)
 ∈ Z

2 with k1 + 3k2 ≡ 0 mod 11.
Figure 8.2 illustrates the construction of this two-dimensional rank-1 lattice.

A rank-1 lattice possesses the following important property:

Lemma 8.7 Let a frequency index set I ⊂ Z
d of finite cardinality and a rank-1

lattice X = Λ(z,M) be given.
Then two distinct columns of the corresponding M-by-|I | Fourier matrix A are

either orthogonal or equal, i.e., the (h, k)th entry (AH A)h, k ∈ {0,M} for all h,
k ∈ I .
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Fig. 8.2 Rank-1 lattice
Λ(z,M) of Example 8.6

0

2π /3

4π /3

2π

0 2π /3 4π /3 2π

z/M

z = (1, 3)
M = 11

Proof The matrix AH A contains all inner products of two columns of the Fourier
matrix A, i.e., the (h, k)th entry (AH A)h,k is equal to the inner product of the kth
column and the hth column of A. For k · z �≡ h · z mod M we obtain

(AH A)h, k =
M−1∑

j=0

(
e2π i [(k−h)·z]/M)j = e2π i (k−h)·z − 1

e2π i [(k−h)·z]/M − 1
= 0 ,

since k− h ∈ Z
d .

For k · z ≡ h · z mod M it follows immediately that the kth and hth column of
A are equal and that (AH A)h, k = M .

8.2.2 Evaluation of Trigonometric Polynomials on Rank-1
Lattice

Let us now consider the efficient evaluation of a d-variate trigonometric polynomial
p supported on I on the sampling set X being a rank-1 lattice X = Λ(z,M). We
have to compute p(xj ) for all M nodes xj ∈ Λ(z,M), i.e.,

p(xj ) =
∑

k∈I
p̂k ei k·xj =

∑

k∈I
p̂k e2π i j (k·z)/M, j = 0, . . . ,M − 1.

We observe that {k · z mod M : k ∈ I } ⊂ {0, . . . ,M − 1} and consider the values

ĝ� =
∑

k∈I
�≡k·z mod M

p̂k , � = 0, . . . ,M − 1 . (8.12)
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Then, we can write

p(xj ) =
∑

k∈I
p̂k e2π i j (k·z)/M =

M−1∑

�=0

∑

k∈I
�≡k·z mod M

p̂k e2π i j�/M

=
M−1∑

�=0

ĝ� e2π i j�/M (8.13)

for j = 0, . . . ,M−1. Therefore, the right-hand side of (8.13) can be evaluated using
a one-dimensional FFT of length M with at most C · (M logM + d |I |) arithmetic
operations, where the constant C does not depend on the dimension d . Here we
assume that ĝ�, � = 0, . . . ,M , can be computed with C d |I | arithmetic operations.
The fast realization of the matrix–vector product in (8.8) or equivalently of (8.13) is
presented in the following

Algorithm 8.8 (Lattice-Based FFT (LFFT))
Input:M ∈ N lattice size of rank-1 lattice Λ(z,M),

z ∈ Z
d generating vector ofΛ(z,M),

I ⊂ Z
d finite frequency index set,

p̂ = (p̂k)k∈I Fourier coefficients of p ∈ ΠI .

1. Set ĝ := (0)M−1
�=0 .

2. For each k ∈ I do ĝk·z mod M := ĝk·z mod M + p̂k.
3. Apply a one-dimensional FFT of length M in order to compute p :=

F−1
M

(
(ĝ�)

M−1
�=0

)
.

4. Compute p := M p.

Output: p = A p̂ vector of values of the trigonometric polynomial p ∈ ΠI .
Computational cost: O(M logM + d|I |).

We immediately obtain also a fast algorithm for the matrix–vector multiplication
with the adjoint Fourier matrix AH.

Algorithm 8.9 (Adjoint Single Lattice-Based FFT (aLFFT))
Input:M ∈ N lattice size of rank-1 lattice Λ(z,M),

z ∈ Z
d generating vector ofΛ(z,M),

I ⊂ Z
d finite frequency index set,

p = (
p(

j
M

z)
)M−1
j=0 values of the trigonometric polynomial p ∈ ΠI .

1. Apply a one-dimensional FFT of length M in order to compute ĝ := FM p.
2. Set â := (0)k∈I .
3. For each k ∈ I do âk := âk + ĝk·z mod M .

Output: â = AH p with the adjoint Fourier matrix AH.
Computational cost: O(M logM + d |I |).
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8.2.3 Evaluation of the Fourier Coefficients

Our considerations of the Fourier matrix A = A(X, I) in (8.8) and (8.9) show that a
unique evaluation of all Fourier coefficients of an arbitrary d-variate trigonometric
polynomial p ∈ ΠI is only possible, if the |X|-by-|I |matrix A has full rank |I |. By
Lemma 8.7 we have seen that for a given frequency index set I and a rank-1 lattice
Λ(z,M), two distinct columns of A are either orthogonal or equal. Therefore, A has
full rank if and only if for all distinct k, h ∈ I ,

k · z �≡ h · z mod M . (8.14)

If (8.14) holds, then the sums determining ĝ� in (8.12) contain only one term for
each � and no aliasing occurs. We define the difference set of the frequency index set
I as

D(I) := {k− l : k, l ∈ I } . (8.15)

Then the condition (8.14) is equivalent to

k · z �≡ 0 modM for all k ∈ D(I) \ {0} . (8.16)

Therefore, we define a reconstructing rank-1 lattice to a given frequency index set
I as a rank-1 lattice satisfying (8.14) or equivalently (8.16) and denote it by

Λ(z,M, I) := {
x ∈ Λ(z,M) : k ∈ D(I) \ {0} with k · z �≡ 0 modM

}
.

The condition (8.16) ensures that the mapping of k ∈ I to k · z modM ∈
{0, . . . ,M − 1} is injective. Assuming that we have a reconstructing rank-1 lattice,
we will be able to evaluate the Fourier coefficients of p ∈ ΠI uniquely.

If condition (8.16) is satisfied, then Lemma 8.7 implies AH A = M IM for the
Fourier matrix A such that p̂ = (p̂k)k∈I = 1

M
AH p. Equivalently, for each Fourier

coefficient we have

p̂k = 1

M

M−1∑

j=0

p(xj ) e−2π i j (k·z)/M = 1

M

M−1∑

j=0

p(xj ) e−2π i j�/M

for all k ∈ I and � = k ·z mod M . Algorithm 8.10 computes all Fourier coefficients
f̂k using only a one-dimensional FFT of length M and the inverse mapping of k �→
k · z mod M , see also [184, Algorithm 3.2].

Algorithm 8.10 (Reconstruction via Reconstructing Rank-1 Lattice)
Input: I ⊂ Z

d finite frequency index set,
M ∈ N lattice size of reconstructing rank-1 lattice Λ(z,M, I),
z ∈ Z

d generating vector of reconstructing rank-1 lattice Λ(z,M, I),
p = (

p
( 2π
M

(j z mod M 1)
))M−1

j=0 values of p ∈ ΠI .
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1. Compute â := AH p using Algorithm 8.9.
2. Set p̂ := M−1 â.

Output: p̂ = M−1AH p = (p̂k)k∈I Fourier coefficients supported on I .
Computational cost: O(M logM + d |I |).
Example 8.11 Let Id∞,N be the full grid defined by (8.3). Then straightforward
calculation shows that the rank-1 lattice Λ(z,M) with the generating vector z =
(1, 2N + 2, . . . , (2N + 2)d−1) and the lattice size M = (2N + 2)d is a
reconstructing rank-1 lattice to the full grid Id∞,N . It provides a perfectly stable
spatial discretization. The resulting reconstruction algorithm is based on a one-
dimensional FFT of size (2N + 2)d , and has similar computational cost as the usual
d-dimensional tensor product FFT, see Sect. 5.3.5. Our goal is to construct smaller
reconstructing rank-1 lattices for special index sets, such that the computational cost
for the reconstruction of Fourier coefficients can be significantly reduced.

As a corollary of the observations above we show that a reconstructing rank-1
lattice implies the following important quadrature rule, see [333].

Theorem 8.12 For a given finite frequency index set I and a corresponding
reconstructing rank-1 lattice Λ(z,M, I) we have

∫

[0, 2π]d
p(x) dx = 1

M

M−1∑

j=0

p(xj )

for all trigonometric polynomials p ∈ ΠD(I ), where D(I) is defined by (8.15).

Proof For xj = 2π
M

(jz mod M 1) ∈ Λ(z,M, I) it follows that

M−1∑

j=0

p(xj ) =
M−1∑

j=0

( ∑

k∈D(I )

p̂k e2π i j (k·z)/M)

=
∑

k∈D(I )

p̂k
(M−1∑

j=0

e2π i j (k·z)/M)
.

According to (8.16) we have k · z �≡ 0 mod M for all k ∈ D(I) \ {0}. Therefore

M−1∑

j=0

e2π i j (k·z)/M =
{

0 k ∈ D(I) \ {0} ,
M k = 0 ,

and the equation above simplifies to

M−1∑

j=0

p(xj ) = M p̂(0) = M

∫

[0, 2π]d
p(x) dx.



434 8 High-Dimensional FFT

8.3 Efficient Function Approximation on Rank-1 Lattices

Now we come back to the problem of approximation of a smooth d-variate periodic
function f by a Fourier series (8.1) or by a Fourier partial sum (8.2). Let f be an
arbitrary continuous function in A (Td ) ∩ C(Td ). Then we determine approximate
values f̂k of the Fourier coefficients ck(f ) using only the sampling values on a
rank-1 lattice Λ(z,M) as given in (8.10) and obtain

f̂k := 1

M

M−1∑

j=0

f
(2π

M
(j z mod M 1)

)
e−2π i j (k·z)/M (8.17)

= 1

M

M−1∑

j=0

∑

h∈Zd

ch(f ) e2π i j [(h−k)·z]/M

=
∑

h∈Zd

ck+h(f )
1

M

M−1∑

j=0

e2π i j (h·z)/M =
∑

h∈Λ⊥(z,M)

ck+h(f ) ,

where the integer dual lattice Λ⊥(z,M) is defined by (8.11). Obviously we have
0 ∈ Λ⊥(z,M) and hence

f̂k = ck(f )+
∑

h∈Λ⊥(z,M)\{0}
ck+h(f ). (8.18)

The absolute convergence of the series of the Fourier coefficients of f ensures that
all terms in the calculation above are well-defined. We call f̂k the approximate
Fourier coefficients of f . The formula (8.18) can be understood as an aliasing
formula for the rank-1 lattice Λ(z,M). If the sum

∑

h∈Λ⊥(z,M)\{0}
|ck+h(f )|

is sufficiently small, then f̂k is a convenient approximate value of ck(f ).
Assume that f can be already well approximated by a trigonometric polynomial

p on a frequency index set I . Further, assume that we have a corresponding recon-
structing rank-1 lattice X = Λ(z,M, I). Then we can compute the approximative
Fourier coefficients f̂k with k ∈ I using Algorithm 8.10 by employing M sample
values f

( 2π
M

(j z mod M 1)
)

instead of the corresponding polynomial values. In this

way, we obtain f̂k, k ∈ I , with computational cost of O(M logM + d |I |) flops.
Now we want to study the approximation error that occurs if the exact Fourier

coefficients ck(f ) are replaced by the approximate Fourier coefficients f̂k in (8.18).
We consider the corresponding approximate Fourier partial sum on the frequency
index set IN = {k ∈ Z

d : ω(k) ≤ N}. Let Λ(z,M, IN ) be a reconstructing rank-1
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lattice for IN and Λ⊥(z,M, IN ) the corresponding integer dual lattice (8.11). By
definition of the reconstructing rank-1 lattice it follows that IN ∩Λ⊥(z,M, IN) =
{0}. Generally we can show the following result:

Lemma 8.13 Let I ⊂ Z
d be an arbitrary finite frequency index set and

let Λ(z,M, I) be a reconstructing rank-1 lattice with the integer dual lattice
Λ⊥(z,M, I).

Then we have

{
k+ h : k ∈ I,h ∈ Λ⊥(z,M, I) \ {0}} ⊂ Z

d \ I .

Proof Assume to the contrary that there exist k ∈ I and h ∈ Λ⊥(z,M, I)\{0} such
that k + h ∈ I . Since Λ(z,M, I) is a reconstructing rank-1 lattice for I , it follows
that 0 �= h = (k+ h)− k ∈ D(I). Thus, h ∈ D(I) ∩Λ⊥(z,M, I) \ {0}. But this is
a contradiction, since on the one hand (8.16) implies that h · z �≡ 0 mod M , and on
the other hand h · z ≡ 0 mod M by definition of Λ⊥(z,M, I).

Now we can estimate the error of the approximate Fourier sum of f as follows,
see [184, Theorem 3.11].

Theorem 8.14 Let f ∈ Aω(T
d ) and let a frequency index set IN = {k ∈

Z
d : ω(k) ≤ N} of finite cardinality be given. Further, let Λ(z,M, IN ) be a

reconstructing rank-1 lattice for IN . Moreover, let the approximate Fourier partial
sum

(SΛ
IN

f )(x) :=
∑

k∈IN
f̂k ei k·x (8.19)

of f be determined by

f̂k := 1

M

M−1∑

j=0

f
(2π

M
(j z mod M 1)

)
e−i j (k·z)/M , k ∈ IN , (8.20)

that are computed using the values on the rank-1 lattice Λ(z,M, IN).
Then we have

‖f − SΛ
IN

f ‖L∞(Td ) ≤ 2 N−1 ‖f ‖Aω(Td) . (8.21)

Proof Using the triangle inequality, we find

‖f − SΛ
IN

f ‖L∞(Td) ≤ ‖f − SIN f ‖L∞(Td) + ‖SΛ
IN

f − SIN f ‖L∞(Td) .

For the first term, Lemma 8.3 yields

‖f − SIN f ‖L∞(Td) ≤ N−1‖f ‖Aω(Td ) .
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For the second term we obtain by using (8.18)

‖SΛ
IN

f − SIN f ‖L∞(Td ) = ess sup
x∈Td

∣∣
∑

k∈IN

(
f̂k − ck(f )

)
ei k·x∣∣

≤
∑

k∈IN

∣
∣

∑

h∈Λ⊥(z,M)\{0}
ck+h(f )

∣
∣

≤
∑

k∈IN

∑

h∈Λ⊥(z,M)\{0}
|ck+h(f )| .

By Lemma 8.13 it follows that

‖SΛ
IN

f − SIN f ‖L∞(Td) ≤
∑

k∈Zd\IN
|ck(f )| ≤ 1

infh∈Zd\IN ω(h)

∑

k∈Zd

ω(k) |ck(f )|

≤ N−1‖f ‖Aω(Td)

and hence the assertion.

Theorem 8.14 states that the worst case error of the approximation SΛ
IN

f in (8.19)
given by the approximate Fourier coefficients computed from samples on the
reconstructing rank-1 lattice Λ(z,M, IN ) is qualitatively as good as the worst
case error of the approximation SIN f , see (8.5). Improved error estimates for the
approximation of functions in Aω(T

d ) with a special weight function ω as in
Remark 8.4 can be similarly derived. The approximation error essentially depends
on the considered norms. In particular, we have focused on the L∞(Td )-norm on
the left-hand side and the weighted �1(Z

d)-norm of the Fourier coefficients on the
right-hand side. Further results with different norms are given in [184, 366].

Remark 8.15 The idea to use special rank-1 lattices Λ(z,M) of Korobov type
as sampling schemes to approximate functions by trigonometric polynomials has
already been considered by Temlyakov [352]. Later, Li and Hickernell studied
a more general setting in [227]. They presented an approximation error using
an aliasing formula as (8.18) for the given rank-1 lattice Λ(z,M). But both
approaches did not lead to a constructive way to determine rank-1 lattices of high
quality. In contrast to their approach, we have constructed the frequency index
set IN := {k ∈ Z

d : ω(k) ≤ N} with |IN | < ∞ depending on the arbitrary
weight function ω. The problem to find a reconstructing rank-1 lattice Λ(z,M, IN )

which is well adapted to the frequency index set IN will be studied in the next
section. Approximation properties of rank-1 lattices have been also investigated in
information-based complexity and applied analysis, see, e.g., [218, 248, 390].
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8.4 Reconstructing Rank-1 Lattices

As shown in the two last sections, we can use the so-called reconstructing rank-1
lattices in order to compute the Fourier coefficients of a d-variate trigonometric
polynomial in ΠI in a stable way by applying a one-dimensional FFT. The
reconstructing rank-1 lattice Λ(z,M, I) for a frequency index set I is determined as
a rank-1 lattice Λ(z,M) in (8.10) satisfying the condition (8.14). The computational
cost to reconstruct the Fourier coefficients of the d-variate trigonometric polynomial
p from its sampling values of the given rank-1 lattice mainly depends on the
number M of needed sampling values. In this section we will present a deterministic
procedure to obtain reconstructing rank-1 lattices using a component-by-component
approach.

We start with considering the problem, how large the number M of sampling
values in Λ(z,M, I) needs to be, see also [185, 189]. For simplicity, we consider
only a symmetric frequency index set I ⊂ Z

d satisfying the condition that for each
k ∈ I also −k ∈ I . For example, all frequency index sets in Example 8.6 and
Fig. 8.1 are symmetric.

Theorem 8.16 Let I be a symmetric frequency index set with finite cardinality |I |
such that I ⊂ [−|I |2 ,

|I |
2 ]d ∩ Z

d .
Then there exists a reconstructing rank-1 lattice X = Λ(z,M, I) with prime

cardinalityM , such that

|I | ≤ M ≤ |D(I)| ≤ |I |2 − |I | + 1, (8.22)

where D(I) denotes the difference set (8.15).

Proof

1. The lower bound |I | ≤ M is obvious, since we need a Fourier matrix A =
A(X, I) ∈ C

|X|×|I | of full rank |I | in (8.9) to reconstruct p̂, and this property
follows from (8.14).

Recall that |D(I)| is the number of all pairwise distinct vectors k − l with k,
l ∈ I . We can form at most |I | (|I | − 1) + 1 pairwise distinct vectors in D(I).
Therefore we obtain the upper bound |D(I)| ≤ |I |2 − |I | + 1.

2. In order to show that there exists a reconstructing rank-1 lattice with M ≤
|D(I)|, we choose M as a prime number satisfying |D(I)|/2 < M ≤ |D(I)|
and show that there exists a generating vector z such that the condition (8.16)
is satisfied for X = Λ(z,M, I). The prime number M can be always chosen in
(|D(I)|/2, |D(I)|] by Bertrand’s postulate.

For the special case d = 1 we have I ⊂ [−|I |2 ,
|I |
2 ] ∩ Z. Taking z = z1 = 1,

each M ≥ |I | + 1 satisfies the assumption k · z = k �≡ 0 mod M for
k ∈ D(I) ⊂ [−|I |, |I |]. In particular, we can take M as a prime number in
(|D(I)|/2, |D(I)|], since we have |D(I)| ≥ 2 |I | in this case.
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Let us now assume that d ≥ 2. We need to show that there exists a generating
vector z such that

k · z �≡ 0 mod M for all k ∈ D(I) \ {0} ,

and want to use an induction argument with respect to the dimension d . We
consider the projection of D(I) on the index set

D(Id−1) := {k̃ = (kj )
d−1
j=1 : k = (kj )

d
j=1 ∈ D(I)} ,

such that each k ∈ D(I) can be written as (k̃, kd)
 with k̃ ∈ D(Id−1). Assume

that we have found already a vector z̃ ∈ Z
d−1 such that the condition

k̃ · z̃ �≡ 0 mod M for all k̃ ∈ D(Id−1) \ {0} (8.23)

is satisfied. We show now that there exists a vector z = (z̃, zd) with zd ∈
{1, . . . ,M − 1} such that

k · z = k̃ · z̃+ kdzd �≡ 0 mod M for all k ∈ D(I) \ {0} . (8.24)

For that purpose we will use a counting argument. We show that there are at most
(|D(Id−1)| − 1)/2 integers zd ∈ {1, . . . ,M − 1} with the property

k · z = k̃ · z̃+ kdzd ≡ 0 mod M for at least one k ∈ D(I) \ {0} . (8.25)

Since (|D(Id−1)| − 1)/2 ≤ (|D(I)| − 1)/2 < M − 1, we always find a zd
satisfying the desired condition (8.24).

3. We show now that for each pair of elements k, −k with k = (k̃, kd) ∈
D(I) \ {0} and given z̃ satisfying (8.23), there is at most one zd such that (8.25)
is satisfied.

If kd = 0, then (8.25) yields k̃ · z̃ ≡ 0 mod M contradicting (8.23). Thus in
this case no zd is found to satisfy (8.25).

If k̃ = 0 and kd �= 0, then (8.25) yields kdzd ≡ 0 mod M . Since |kd | ≤ |I | <
M and zd ∈ {1, . . . ,M−1}, it follows that kdzd and M are coprime such that no
zd is found to satisfy (8.25).

If k̃ �= 0 and kd �= 0, then (8.25) yields k̃ · z̃ ≡ −kdzd mod M . Since k̃ · z̃ �= 0
by assumption (8.23) and kd and M are coprime, there exists one unique solution
zd of this equation. The same unique solution zd is found, if we replace k =
(k̃, kd) by −k = (−k̃,−kd)

 in (8.25).
Taking into account that D(Id−1) and D(I) always contain the corresponding

zero vector, it follows that at most (|D(Id−1)|−1)/2 integers satisfy (8.25). Thus
the assertion is proved.

The idea of the proof of Theorem 8.16 leads us also to an algorithm, the so-
called component-by-component Algorithm 8.17. This algorithm computes for a
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known lattice size M the generating vector z of the reconstructing rank-1 lattice, see
also [185]. The component-by-component algorithm for numerical integration was
presented in [74, 217].

Algorithm 8.17 (Component-by-Component Lattice Search)
Input:M ∈ N prime, cardinality of rank-1 lattice,

I ⊂ Z
d finite frequency index set.

1. Set z1 := 1.
2. For s = 2, . . . , d do

form the set Is :=
{
(kj )

s
j=1 : k = (kj )

d
j=1 ∈ I

}

search for one zs ∈ [1, M − 1] ∩ Z with

|{(z1, . . . , zs)
 · k mod M : k ∈ Is}| = |Is | .

Output: z = (zj )
d
j=1 ∈ N

d generating vector.

The construction of the generating vector z ∈ N
d in Algorithm 8.17 requires

at most 2d |I |M ≤ 2d |I |3 arithmetic operations. For each component zs , s ∈
{2, . . . , d}, of the generating vector z in the component-by-component step s, the
tests for the reconstruction property (8.13) for a given component zs in step 2 of
Algorithm 8.17 require at most s |I | multiplications, (s − 1) |I | additions, and |I |
modulo operations. Since each component zs , s ∈ {2, . . . , d}, of the generating
vector z can only take M − 1 possible values, the construction requires at most
d|I | (M − 1) ≤ 2 d |I |M arithmetic operations in total.

Remark 8.18 The lower bound for the number M in Theorem 8.16 can be improved
for arbitrary frequency index sets, if we employ the exact cardinalities of the
projected index sets Is := {

(
kj

)s
j=1 : k = (

kj
)d
j=1 ∈ I }, see also [185].

The assumption on the index set can be also relaxed. In particular, the complete
index set can be shifted in Z

d without changing the results.

A drawback of Algorithm 8.17 is that the cardinality M needs to be known in
advance. As we have shown in Theorem 8.16, M can be always taken as a prime
number satisfying |D(I)|/2 < M ≤ |D(I)|. But this may be far away from an
optimal choice. Once we have discovered a reconstructing rank-1 lattice Λ(z,M, I)

satisfying for all distinct k, h ∈ I ,

k · z �≡ h · z mod M ,

we can ask for M ′ < M such that for all distinct k, h ∈ I ,

k · z �≡ h · z mod M ′

is still true for the computed generating vector z. This leads to the following simple
algorithm for lattice size decreasing, see also [185].
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Algorithm 8.19 (Lattice Size Decreasing)
Input:M ∈ N cardinality of rank-1 lattice,

I ⊂ Z
d finite frequency index set,

z ∈ N
d generating vector of reconstructing rank-1 lattice Λ(z,M, I).

1. For j = |I |, . . . ,M do
if |{k · z mod j : k ∈ I }| = |I | then Mmin := j .

Output:Mmin reduced lattice size.

There exist also other strategies to determine reconstructing rank-1 lattices for
given frequency index sets, where the lattice size M needs not to be known a
priori, see, e.g., [185, Algorithms 4 and 5]. These algorithms are also component-
by-component algorithms and compute complete reconstructing rank-1 lattices, i.e.,
the generating vectors z ∈ N

d and the lattice sizes M ∈ N, for a given frequency
index set I . The algorithms are applicable for arbitrary frequency index sets of finite
cardinality |I |.

As we have seen in Theorem 8.16 the sampling size M can be bounded by the
cardinality of the difference set D(I). Interestingly, this cardinality strongly depends
on the structure of I .

Example 8.20 Let I = Id
p,N := {k ∈ Z

d : ‖k‖p ≤ N}, N ∈ N, be the �p(Z
d )-

ball with 0 < p ≤ ∞ and the size N ∈ N, see Fig. 8.1. The cardinality of the
frequency index set Id

p,N is bounded by cp,d Nd ≤ |Id
p,N | ≤ Cd,p Nd , while the

cardinality of the difference set satisfies cp,d Nd ≤ |D(Id
p,N )| ≤ Cd,p 2d Nd with

the some constants 0 < cp,d ≤ Cd,p. Consequently, we can find a reconstructing
rank-1 lattice of size M ≤ C̃d,p |Id

p,N | using a component-by-component strategy,

where the constant C̃d,p > 0 only depends on p and d .
On the other hand, we obtain for p → 0 the frequency index set I := {k ∈

Z
d : ‖k‖1 = ‖k‖∞ ≤ N} with N ∈ N, which is supported on the coordinate axes.

In this case we have |I | = 2d N + 1, while we obtain (2N + 1)2 ≤ |D(I)| ≤
d (2N + 1)2. Hence, there exists a positive constant c̃d ∈ R with c̃d |I |2 ≤ |D(I)|
and the theoretical upper bound on M is quadratic in |I | for each fixed dimension
d . In fact, reconstructing rank-1 lattices for these specific frequency index sets need
at least O(N2) nodes, see [188, Theorem 3.5] and [189].

Example 8.21 Important frequency index sets in higher dimensions d > 2 are the
so-called (energy-norm-based) hyperbolic crosses, see, e.g., [15, 55, 56, 389]. In
particular, we can consider a frequency index set of the form

I
d,T
N := {

k ∈ Z
d : (max {1, ‖k‖1})T/(T−1)

d∏

s=1

(max {1, |ks |})1/(1−T ) ≤ N
}
,

with parameters T ∈ [0, 1) and N ∈ N, see Fig. 8.3 for illustration. The frequency
index set Id,0

N for T = 0 is a symmetric hyperbolic cross, and the frequency index
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set Id,T
N , T ∈ (0, 1), is called energy-norm-based hyperbolic cross. The cardinality

of Id,T
N can be estimated by

cd,0 N (logN)d−1 ≤ |Id,T
N | ≤ Cd,0 N (logN)d−1 , for T = 0 ,

cd,T N ≤ |Id,T
N | ≤ Cd,T N , for T ∈ (0, 1)

with some constants 0 < cd,T ≤ Cd,T , depending only on d and T , see [190,
Lemma 2.6]. Since the axis cross is a subset of the considered frequency index sets,
i.e., {k ∈ Z

d : ‖k‖1 = ‖k‖∞ ≤ N} ⊂ I
d,T
N for T ∈ [0, 1), it follows that (2N +

1)2 ≤ |D(I
d,T
N )|. On the other hand, we obtain upper bounds of the cardinality of

the difference set D(I
d,T
N ) of the form

|D(I
d,T
N )| ≤

{
C̃d,0 N

2 (logN)d−2 T = 0 ,

|Id,T
N |2 ≤ C2

d,T N2 T ∈ (0, 1) ,

see, e.g., [183, Theorem 4.8]. Theorem 8.16 offers a constructive strategy to find
reconstructing rank-1 lattices for I

d,T
N of cardinality M ≤ |D(I

d,T
N )|. For T ∈

(0, 1), these rank-1 lattices are of optimal order in N , see [183, Lemmata 2.1 and
2.3, and Corollary 2.4] and [184]. Reconstructing rank-1 lattices for these frequency
index sets are discussed in more detail in [184].

Summarizing, we can construct a reconstructing rank-1 lattice Λ(z,M, I) for
arbitrary finite frequency index set I . The choice of the frequency index set I

always depends on the approximation properties of the considered function space.
The positive statement is that the size M of the reconstructing rank-1 lattice can
be always bounded by |I |2 being independent of the dimension d . However for
important index sets, such as the hyperbolic cross or thinner index sets, the lattice
size M is bounded from below by M ≥ C N2. We overcome this disadvantage in
the following Sect. 8.5 by considering the union of several rank-1 lattices.

Remark 8.22 In [288, 290] a fast method for the evaluation of an arbitrary high-
dimensional multivariate algebraic polynomial in Chebyshev form at the nodes of
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an arbitrary rank-1 Chebyshev lattice is suggested. An algorithm for constructing
a suitable rank-1 Chebyshev lattice based on a component-by-component approach
is suggested. In the two-dimensional case, the sampling points of special rank-1
Chebyshev lattice coincide with Padua points, see [40].

8.5 Multiple Rank-1 Lattices

To overcome the limitations of the single rank-1 lattice approach, we consider now
multiple rank-1 lattices which are obtained by taking a union of rank-1 lattices. For
s rank-1 lattices Λ(zr ,Mr), r = 1, . . . , s as given in (8.10) we call the union

X = Λ(z1,M1, z2,M2, . . . , zs ,Ms) :=
s⋃

r=1

Λ(zr ,Mr)

multiple rank-1 lattice.
In order to work with this multiple rank-1 lattices, we need to consider the

question, how many distinct points are contained in X. Assuming that for each r

the lattice size Mr is coprime with at least one component of zr , the single rank-
1 lattice Λ(zr ,Mr ) possesses exactly Mr distinct points in [0, 2π)d including 0.
Consequently, the number of distinct points in Λ(z1,M1, z2,M2, . . . , zs ,Ms) is
bounded from above by

|Λ(z1,M1, z2,M2, . . . , zs ,Ms)| ≤ 1− s +
s∑

r=1

Mr .

In the special case s = 2, we obtain the following result, see also [187,
Lemma 2.1].

Lemma 8.23 Let Λ(z1,M1) and Λ(z2,M2) be two rank-1 lattices with coprime
lattice sizes M1 and M2.

Then the multiple rank-1 lattice Λ(z1,M1, z2,M2) is a subset of the rank-1
latticeΛ(M2z1+M1z2,M1M2). Furthermore, if the cardinalities of the single rank-
1 lattices Λ(z1,M1) and Λ(z2,M2) are M1 and M2, then

|Λ(z1,M1, z2,M2)| = M1 +M2 − 1 .

Proof

1. We show that Λ(z1,M1) is a subset of Λ(M2z1 +M1z2,M1M2). Let

xj := 2π

M1
(j z1 mod M11)
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be an arbitrary point of Λ(z1,M1). Since M1 and M2 are coprime, there exists a
k ∈ {0, . . . ,M1 − 1} such that k M2 ≡ j mod M1. Choose now � = kM2, then

y� := 2π

M1M2

(
�(M2z1 +M1z2) mod M1M21

)

is a point of Λ(M2z1 +M1z2,M1M2). Further we find by

� (M2 z1 +M1 z2) mod M1M21 = k (M2
2 z1 +M1M2 z2) mod M1M21

= k M2
2 z1 mod M1M21 = k M2 z1 mod M11 = j z1 mod M11

that xj = y�. Analogously, we conclude that Λ(z2,M2) ⊂ Λ(M2z1 +
M1z2,M1M2).

2. Now we prove that Λ(z1,M1)∩Λ(z2,M2) = {0}. For this purpose it is sufficient
to show that the M1M2 points of Λ(M2z1 +M1z2,M1M2) are distinct. Suppose
that there is an � ∈ {0, . . . ,M1M2 − 1} such that

� (M2z1 +M1z2) ≡ 0 mod M1M21 .

Then there exist j1, k1 ∈ {0, . . . ,M1 − 1} and j2, k2 ∈ {0, . . . ,M2 − 1} with
� = j2 M1 + j1 = k1 M2 + k2, and we find

� (M2z1 +M1z2) mod M1M21 = j1 M2z1 + k2 M1z2 mod M1M21 .

Thus, we arrive at

j1 M2 z1 ≡ −k2 M1 z2 mod M1M21 .

Since M1 and M2 are coprime, it follows that M1 is a divisor of each component
of j1 z1, and that M2 is a divisor of each component of −k2 z2. But this can be
only true for j1 = k2 = 0, since we had assumed that Λ(z1,M1) and Λ(z2,M2)

have the cardinalities M1 and M2. This observation implies now � = j2 M1 =
k1 M2 which is only possible for j2 = k1 = 0, since M1 and M2 are coprime.
Thus � = 0, and the assertion is proven.

Lemma 8.23 can be simply generalized to the union of more than two rank-1
lattices.

Corollary 8.24 Let the multiple rank-1 lattice Λ(z1,M1, . . . , zs ,Ms) with pair-
wise coprime lattice sizes M1, . . . ,Ms be given. Assume that |Λ(zr ,Mr)| =Mr for
each r = 1, . . . , s.

Then we have

|Λ(z1,M1, . . . , zs ,Ms)| = 1− s +
s∑

r=1

Mr .
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Further, let Λ(z,M) be the rank-1 lattice with the generating vector z and lattice
size M given by

z :=
s∑

r=1

( s∏

�=1
� �=r

M�

)
zr , M :=

s∏

r=1

Mr .

Then

Λ(z1,M1, . . . , zs ,Ms) ⊂ Λ(z,M).

Proof The proof follows similarly as for Lemma 8.23.

As in Sect. 8.2 we define now the Fourier matrix for the sampling set X =
Λ(z1,M1, z2,M2, . . . , zs ,Ms) and the frequency index set I ,

A = A(Λ(z1,M1, z2,M2, . . . , zs ,Ms), I )

:=

⎛

⎜
⎜
⎜
⎜
⎝

(
e2π i j (k·z1)/M1

)
j=0,...,M1−1, k∈I(

e2π i j (k·z2)/M2
)
j=0,...,M2−1, k∈I
...(

e2π i j (k·zs )/Ms
)
j=0,...,Ms−1, k∈I

⎞

⎟
⎟
⎟
⎟
⎠

, (8.26)

where we assume that the frequency indices k ∈ I are arranged in a fixed order.
Thus A has

∑s
r=1 Mr rows and |I | columns, where the first rows of the s partial

Fourier matrices coincide. We also introduce the reduced Fourier matrix

Ã :=

⎛

⎜
⎜
⎜
⎜
⎝

(
e2π i j (k·z1)/M1

)
j=0,...,M1−1, k∈I(

e2π i j (k·z2)/M2
)
j=1,...,M2−1, k∈I
...(

e2π i j (k·zs )/Ms
)
j=1,...,Ms−1, k∈I

⎞

⎟
⎟
⎟
⎟
⎠

,

where we use beside
(
e2π i j (k·z1)/M1

)
j=0,...,M1−1, k∈I only the partial matrices

(
e2π i j (k·zr )/Mr

)
j=1,...,Mr−1, k∈I , r = 2, . . . , s ,

such that Ã has
∑s

r=1 Mr − s + 1 rows and |I | columns. Obviously, A and Ã have
the same rank, since we have only removed redundant rows.

As in Sect. 8.2, we consider the fast evaluation of trigonometric polynomials
on multiple rank-1 lattices on the one hand and the evaluation of their Fourier
coefficients from samples on multiple rank-1 lattices on the other hand.
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(i) Evaluation of trigonometric polynomials. To evaluate a trigonometric polyno-
mial at all nodes of a multiple rank-1 lattice Λ(z1,M1, . . . , zs ,Ms), we can
apply the ideas from Sect. 8.2 and compute the trigonometric polynomial on
s different rank-1 lattices Λ(z1,M1), . . . , Λ(zs ,Ms) separately. The corre-
sponding Algorithm 8.25 applies the known Algorithm 8.8 s-times, once for
each single rank-1 lattice. The computational cost of the fast evaluation at all
nodes of the whole multiple rank-1 lattice Λ(z1,M1, . . . , zs,Ms) is therefore
O(

∑s
r=1 Mr logMr + s d |I |).

Algorithm 8.25 (Evaluation at Multiple Rank-1 Lattices)
Input:M1, . . . ,Ms ∈ N lattice sizes of rank-1 lattices Λ(z�,M�), � = 1, . . . , s,

z1, . . . , zs ∈ Z
d generating vectors of Λ(z�,M�), � = 1, . . . , s,

I ⊂ Z
d finite frequency index set,

p̂ = (
p̂k

)
k∈I Fourier coefficients of p ∈ ΠI in (8.7).

1. For � = 1, . . . , s do by Algorithm 8.8

p� := LFFT(M�, z�, I, p̂) .

2. Set p := (
p1(1), . . . ,p1(M1),p2(2), . . . ,p2(M2), . . . ,ps (2), . . .ps (Ms)

)
.

Output: p = Ã p̂ polynomial values of p ∈ ΠI .
Computational cost: O(

∑s
�=1 M� logM� + s d |I |) .

The algorithm is a fast realization of the matrix–vector product with the Fourier
matrix Ã in (8.26). The fast computation of the matrix–vector product with the
adjoint Fourier matrix AH can be realized by employing Algorithm 8.9 separately
to each rank-1 lattice with a numerical effort of O(

∑s
�=1 M� logM� + s d |I |).

(ii) Evaluation of the Fourier coefficients. To solve the inverse problem, i.e., to
compute the Fourier coefficients of an arbitrary trigonometric polynomial p ∈
ΠI as given in (8.7), we need to ensure that our Fourier matrix A in (8.26) has
full rank |I |. This means that p needs to be already completely determined by
the sampling set Λ(z1,M1, . . . , zs,Ms). Then we can apply formula (8.9) for
reconstruction. We are especially interested in a fast and stable reconstruction
method.

We define a reconstructing multiple rank-1 lattice to a given frequency index set
I as a multiple rank-1 lattice satisfying that

AHA = A(Λ(z1,M1, z2,M2, . . . , zs,Ms), I )
H A(Λ(z1,M1, z2,M2, . . . , zs ,Ms), I )

has full rank |I |.
In order to keep the needed number of sampling points |Λ(z1,M1, . . . , zs ,Ms)|

=∑s
r=1 Mr−s+1 small, we do not longer assume that each single rank-1 lattice is

a reconstructing rank-1 lattice. But still, we can use Lemma 8.7 in order to compute
the matrix AHA in an efficient way.
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Lemma 8.26 Let A be the (
∑s

r=1 Mr)-by-|I | Fourier matrix (8.26) for a frequency
index set |I | and a multiple rank-1 lattice Λ(z1,M1, z2,M2, . . . , zs,Ms) with
cardinality 1− s +∑s

r=1 Mr .
Then the entries of AHA ∈ C

|I |×|I | have the form

(AHA)h,k =
s∑

r=1

Mrδ(k−h)·zr mod Mr ,

where

δ(k−h)·zr mod Mr :=
{

1 k · zr ≡ h · zr mod Mr ,

0 k · zr �≡ h · zr mod Mr .

Proof The assertion follows directly from Lemma 8.7. The entry (AHA)h,k is the
inner product of the kth and the hth column of A. Thus we find

(AHA)h,k =
s∑

r=1

Mr−1∑

j=0

(
e2π i [(k−h)·zr]/Mr

)j
,

where the sums

Mr−1∑

j=0

(
e2π i [(k−h)·zr]/Mr

)j

can be simply computed as in Lemma 8.7.

Lemma 8.26 also shows that AHA can be sparse for suitably chosen rank-1
lattices. If the single rank-1 lattices are already reconstructing rank-1 lattices, then
it directly follows that AHA is a multiple of the identity matrix.

Now the question remains, how to choose the parameters s as well as zr
and Mr , r = 1, . . . s, to ensure that AHA indeed possesses full rank |I |. The
following strategy given in Algorithm 8.27, see [186, Algorithm 1], yields with high
probability such a multiple rank-1 lattice. Here we take the lattice sizes Mr := M for
all r = 1, . . . , s as a prime number and choose the generating vectors zr randomly
in the set [0, M − 1]d ∩ Z

d . In order to determine the lattice size M large enough
for the index set I , we define the expansion of the frequency set I by

NI := max
j=1,...,d

{max
k∈I

kj −min
l∈I �j } , (8.27)

where k = (kj )
d
j=1 and l = (�j )

d
j=1 belong to I . The expansion NI can be

interpreted as the size of a d-dimensional cube we need to cover the index set I .
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Algorithm 8.27 (Determining Reconstructing Multiple Rank-1 Lattices)
Input: T ∈ N upper bound of the cardinality of a frequency set I ,

d ∈ N dimension of the frequency set I ,
N ∈ N upper bound of the expansionNI of the frequency set I ,
δ ∈ (0, 1) upper bound of failure probability,
c > 1 minimal oversampling factor.

1. Set c := max
{
c, N

T−1

}
and λ := c (T − 1).

2. Set s := �( c
c−1

)2 ln T−ln δ
2 �.

3. Set M = argmin {p > λ : p ∈ N prime}.
4. For r = 1, . . . , s choose zr from [0,M − 1]d ∩ Z

d uniformly at random.

Output:M lattice size of all rank-1 lattices,
z1, . . . , zs generating vectors of rank-1 lattices such that
Λ(z1,M, . . . , zs,M) is a reconstructing multiple rank-1 lattice for I
with probability at least 1− δ.

Computational cost: O(λ ln ln λ+ ds) for c > 1, λ ∼ max{T ,N}, and s ∼ ln T −
ln δ.

Due to [186, Theorem 3.4] the Algorithm 8.27 determines a reconstructing
sampling set for trigonometric polynomials supported on the given frequency set
I with probability at least 1− δs , where

δs = T e−2s (c−1)2/c2
(8.28)

is an upper bound on the probability that the approach fails. There are several other
strategies in the literature to find appropriate reconstructing multiple rank-1 lattices,
see [186, 187, 192]. Finally, if a reconstructing multiple rank-1 lattice is found, then
the Fourier coefficients of the trigonometric polynomial p ∈ ΠI in (8.7) can be
efficiently computed by solving the system

AHA p̂ = AHp ,

where p := (
p(xj )xj∈Λ(z1,M1), . . . , p(xj )xj∈Λ(zs ,Ms)

) and AHp can be computed
using Algorithm 8.9 for the s partial vectors.

Remark 8.28 In [192, 289] the authors suggest approximate algorithms for the
reconstruction of sparse high-dimensional trigonometric polynomials, where the
support in frequency domain is unknown. The main idea is the construction of
the index set of frequencies belonging to the nonzero Fourier coefficients in a
dimension incremental way in combination with the approximation based on rank-
1 lattices. When one restricts the search space in frequency domain to a full grid
[−N,N]d ∩Zd of refinement N ∈ N and assumes that the cardinality of the support
of the trigonometric polynomial in frequency domain is bounded by the sparsity
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s ∈ N, the method requires O(d s2N) samples and O(d s3 + d s2N log(s N))

arithmetic operations in the case c1
√
N < s < c2N

d . The number of samples is
reduced to O(d s + d N) and the number of arithmetic operations is O(d s3) by
using a version of the Prony method.



Chapter 9
Numerical Applications of DFT

This chapter addresses numerical applications of DFTs. In Sect. 9.1, we describe a
powerful multidimensional approximation method, the so-called cardinal interpola-
tion by translates ϕ(· −k) with k ∈ Z

d , where ϕ ∈ Cc(R
d) is a compactly supported,

continuous function. In this approximation method, the cardinal Lagrange function
is of main interest. Applying this technique, we compute the multidimensional
Fourier transform by the method of attenuation factors. Then, in Sect. 9.2, we
investigate the periodic interpolation by translates on a uniform mesh, where we
use the close connection between periodic and cardinal interpolation by translates.
The central notion is the periodic Lagrange function. Using the periodic Lagrange
function, we calculate the Fourier coefficients of a multivariate periodic function by
the method of attenuation factors.

Starting with the Euler–Maclaurin summation formula, we discuss the quadrature
of univariate periodic functions in Sect. 9.3. In Sect. 9.4, we present two methods
for accelerating the convergence of Fourier series, namely the Krylov–Lanczos
method and the Fourier extension. Finally, in Sect. 9.5, we deal with fast Poisson
solvers, more precisely, we solve the homogeneous Dirichlet boundary problem of
the Poisson equation on the unit square by a finite difference method, where the
related linear system is solved by a fast algorithm of the two-dimensional DST–I.

9.1 Cardinal Interpolation by Translates

In this section, we describe a powerful approximation method of d-variate functions
which can be efficiently solved by Fourier technique. The dimension d ∈ N is fixed.
Let ϕ ∈ Cc(R

d) be a given complex-valued continuous basis function with compact
support

supp ϕ := {x ∈ Rd : ϕ(x) �= 0} .
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Further we assume that the d-dimensional Fourier transform

ϕ̂(ω) :=
∫

Rd

ϕ(x) e−i x·ω dx

belongs to L1(R
d). Note that x · ω := ∑d

�=1 x� ω� denotes the inner product of
vectors x = (x�)

d
�=1, ω = (ω�)

d
�=1 ∈ R

d . Often used basis functions are cardinal
B-splines and box splines. Note that B-splines (i.e., basis splines) are splines with
the smallest possible support. Cardinal B-splines are B-splines with integer knots.

Example 9.1 In the univariate case d = 1, let m ∈ N \ {1} be given. We choose
ϕ = Nm as the cardinal B-spline of order m which can be recursively defined by

Nm(x) := (
Nm−1 ∗ N1

)
(x) =

∫ 1

0
Nm−1(x − t) dt , x ∈ R , (9.1)

with

N1(x) := 1

2

(
χ(0, 1](x)+ χ[0, 1)(x)

)
,

where χ(0, 1] denotes the characteristic function of (0, 1]. Then Nm is contained in
Cm−2

c (R) and has the compact support supp Nm = [0, m]. In the cases m = 2, 3, 4
we obtain the cardinal B-splines

N2(x) =
⎧
⎨

⎩

x x ∈ [0, 1) ,
2− x x ∈ [1, 2) ,
0 x ∈ R \ [0, 2) ,

N3(x) =

⎧
⎪⎪⎨

⎪⎪⎩

x2/2 x ∈ [0, 1) ,
(−2x2 + 6x − 3)/2 x ∈ [1, 2) ,
(3− x)2/2 x ∈ [2, 3) ,
0 x ∈ R \ [0, 3) ,

N4(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x3/6 x ∈ [0, 1) ,
(−3x3 + 12x2 − 12x + 4)/6 x ∈ [1, 2) ,
(3x3 − 24x2 + 60x − 44)/6 x ∈ [2, 3) ,
(4− x)3/6 x ∈ [3, 4) ,
0 x ∈ R \ [0, 4) .

Further we have Nm | [k, k + 1) ∈ Pm−1 for each k ∈ Z and m > 1, where
∈ Pm−1 denotes the set of all algebraic polynomials up to degree m − 1. These
B-splines were introduced in [75]. The cardinal B-splines can be computed by the
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recurrence formula

Nm(x) = x

m− 1
Nm−1(x)+ m− x

x − 1
Nm−1(x − 1) , m = 2, 3, . . . .

Obviously, we have

N̂1(ω) =
∫ 1

0
e−i xω dx = e−i ω/2 sinc

ω

2
, ω ∈ R .

By the convolution property of the Fourier transform (see Theorem 2.5) and by (9.1)
we obtain for all ω ∈ R and m ∈ N that

N̂m(ω) = (
N̂1(ω)

)m = e−i mω/2 (
sinc

ω

2

)m
. (9.2)

The centered cardinal B-spline of order m ∈ N is defined by

Mm(x) := Nm

(
x + m

2

)
, x ∈ R .

Then Mm is an even function with supp Mm = [−m/2, m/2]. For m = 2, 3, 4, the
centered cardinal B-splines read as follows:

M2(x) =
⎧
⎨

⎩

1+ x x ∈ [−1, 0) ,
1− x x ∈ [0, 1) ,
0 x ∈ R \ [−1, 1) ,

M3(x) =

⎧
⎪⎪⎨

⎪⎪⎩

(3+ 2x)2/8 x ∈ [−3/2, −1/2) ,
(3− 4x2)/4 x ∈ [−1/2, 1/2) ,
(3− 2x)2/8 x ∈ [1/2, 3/2) ,
0 x ∈ R \ [−3/2, 3/2) .

M4(x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(x + 2)3/6 x ∈ [−2, −1) ,
(−3x3 − 6x2 + 4)/6 x ∈ [−1, 0) ,
(3x3 − 6x2 + 4)/6 x ∈ [0, 1) ,
(2− x)3/6 x ∈ [1, 2) ,
0 x ∈ R \ [−2, 2) .

Figure 9.1 shows the centered cardinal B-splines M2, M3, and M4. Note that Mm is
a spline on an integer grid if m is even and on a half integer grid if m is odd. The
centered cardinal B-splines Mm satisfy the recurrence formula

Mm(x) = (
Mm−1 ∗M1

)
(x) =

∫ 1/2

−1/2
Mm−1(x − t) dt , m = 2, 3, . . . . (9.3)
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Fig. 9.1 Centered cardinal B-splines (a) M2, (b) M3, and (c) M4

By the convolution property of the Fourier transform and by (9.3), the Fourier
transform of Mm reads as follows:

M̂m(ω) = (
sinc

ω

2

)m
, ω ∈ R .

For further details see [79] or [68, pp. 1–13].

Example 9.2 A natural multivariate generalization of the univariate centered cardi-
nal B-spline is the so-called box spline introduced in [80]. For the theory of box
splines we refer to [81] and [68, pp. 15–25]. For simplicity, we restrict us to the
bivariate case d = 2. We choose the directions d1 := (1, 0) and d2 := (0, 1)
with corresponding multiplicities k, � ∈ N. The tensor product B-spline M(k,�) is
defined as the tensor product of the centered cardinal B-splines Mk and M�, i.e.

M(k,�)(x) := Mk(x1)M�(x2) , x = (x1, x2)
 ∈ R

2 .

Obviously, M(k,�) is supported on [−k/2, k/2] × [−�/2, �/2] and is a piece-
wise polynomial whose polynomial pieces are separated by a rectangular mesh.
Figure 9.2 shows the rectangular partitions of the supports of M(2,2) and M(3,3).
The Fourier transform of M(k,�) reads as follows:

M̂(k,�)(ω) = (
sinc

ω1

2

)m (
sinc

ω2

2

)�
, ω = (ω1, ω2)

 ∈ R
2 .

The tensor product B-spline can be generalized by addition of the third direction
d3 := (1, 1). Then for k, �, m ∈ N, we define the three-direction box spline

M(k,�,m)(x) :=
∫ 1/2

−1/2
M(k,�,m−1)(x1 − t, x2 − t) dt , x = (x1, x2)

 ∈ R
2 ,

where we set M(k,�,0) :=M(k,�). Then the support of M(k,�,m) is

supp M(k,�,m) = {x = t1 k d1 + t2 � d2 + t3 m d3 : t1, t2, t3 ∈ [−1/2, 1/2]} ,
which forms a hexagon with the center (0, 0) whose sides are k, �, and

√
2m long

in direction d1, d2, and d3, respectively. The three-direction box spline M(k,�,m) is a
piecewise polynomial, whose polynomial pieces are separated by a three-direction
mesh or type-1 triangulation. Each polynomial piece is a bivariate polynomial of
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Fig. 9.2 Rectangular partitions of the supports of (a) M(2,2) and (b) M(4,4)
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Fig. 9.3 Three-direction meshes of the supports of (a) M(1,1,1) and (b) M(2,2,2)

total degree up to k + � + m − 2. Figure 9.3 shows the three-direction meshes of
the supports of M(1,1,1) and M(2,2,2). Further M(k,�,m) possesses continuous partial
derivatives up to order r − 2 with

r := k + �+m−max {k, �, m} .
For example, M(1,1,1) ∈ Cc(R

2) is the piecewise linear hat function with
M(1,1,1)(0, 0) = 1. The three-direction box spline M(2,2,1) ∈ C1

c (R
2) consists

of piecewise polynomials up to total degree 3 and M(2,2,2) ∈ C2
c (R

2) consists of
piecewise polynomials up to total degree 4. For multivariate box splines we refer to
the literature [68, 81].
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9.1.1 Cardinal Lagrange Function

Now we introduce some additional notations. Let N ∈ N \ {1} be fixed. By JN and
BN we denote the following sets of grid points

JN := {j = (j�)
d
�=1 ∈ Z

d : 0 ≤ j� ≤ N − 1 for � = 1, . . . , d} ,

BN := {j = (j�)
d
�=1 ∈ Z

d : −"N − 1

2
# ≤ j� ≤ "N

2
# for � = 1, . . . , d} .

Further we set

QN := [0, N)d , Q2π := [0, 2π)d .

By �1(Z
d ) we denote the Banach space of all complex, absolutely summable

sequences a = (ak)k∈Zd with the norm

‖a‖�1(Z
d) :=

∑

k∈Zd

|ak| .

As usual we agree the sum of such a series by

∑

k∈Zd

ak := lim
N→∞

∑

k∈BN

ak .

Let ϕ ∈ Cc(R
d) be a fixed basis function. Then we form integer translates ϕ(· − k)

for k ∈ Z
d . A linear subspace L of L1(R

d) is called shift-invariant, if for each
f ∈ L all integer translates f (· − k), k ∈ Z

d , are also contained in L . A special
shift-invariant space is the space L (ϕ) of all functions s of the form

s =
∑

k∈Zd

ak ϕ(· − k)

with
(
ak

)
k∈Zd ∈ �1(Z

d). Obviously, the above series converges absolutely and
uniformly on R

d . Hence we have s ∈ L1(R
d) ∩ C(Rd), because

‖s‖L1(Rd ) ≤
∑

k∈Zd

|ak| ‖ϕ‖L1(Rd) <∞ .

Now we study the cardinal interpolation problem in L (ϕ) and the cardinal
interpolation by translates, respectively. For given data f := (fj)j∈Zd ∈ �1(Z

d ),
we determine a function s ∈ L (ϕ) with

s(j) = fj for all j ∈ Z
d . (9.4)
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In applications, one assumes often that fj = 0 for all j ∈ Z
d \ JN and j ∈ Z

d \ BN ,
respectively. Thus for x = j ∈ Z

d we obtain the convolution-like equation

s(j) = fj =
∑

k∈Zd

sk ϕ(j− k) , x ∈ R
d .

We are interested in an efficient solution of this interpolation problem by using
multidimensional DFTs.

A key role in the cardinal interpolation in L (ϕ) plays the symbol σϕ which is
defined by

σϕ(ω) :=
∑

k∈Zd

ϕ(k) e−i k·ω , ω ∈ R
d . (9.5)

Since the basis function ϕ ∈ Cc(R
d ) is compactly supported, the symbol σϕ is a 2π-

periodic, d-variate trigonometric polynomial. For the symbol we show a property
which is closely related to the Poisson summation formula (see Theorem 4.27).

Lemma 9.3 Let ϕ ∈ Cc(R
d) be a given basis function. Assume that ϕ̂ fulfills the

condition

∑

k∈Zd

sup {|ϕ̂(ω + 2kπ)| : ω ∈ Q2π } <∞ . (9.6)

Then the symbol σϕ can be represented in the form

σϕ(ω) =
∑

k∈Zd

ϕ̂(ω + 2kπ) .

Proof By condition (9.6) we see that

‖ϕ̂‖L1(Rd) =
∑

k∈Zd

∫

Q2π

|ϕ̂(ω + 2kπ)| dω

≤ (2π)d
∑

k∈Zd

sup {|ϕ̂(ω + 2kπ)| : ω ∈ Q2π } <∞

such that ϕ̂ ∈ L1(R
d). By Theorem 4.21 we know that ϕ̂ ∈ C0(R

d). Thus by (9.6)
the series of continuous functions

∑

k∈Zd

ϕ̂(ω + 2kπ)
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converges uniformly on R
d to a 2π-periodic function ψ ∈ C(Td ). The Fourier

coefficients cj(ψ), j ∈ Z
d , read by Theorem 4.22 as follows:

cj(ψ) := 1

(2π)d

∫

Q2π

ψ(ω) e−i j·ω dω = 1

(2π)d

∑

k∈Zd

∫

Q2π

ϕ̂(ω + 2kπ) e−i j·ω dω

= 1

(2π)d

∫

Rd

ϕ̂(ω) e−i j·ω dω = ϕ(−j) .

Since ϕ is compactly supported, the Fourier series of ψ has only finitely many
nonzero summands such that

ψ(ω) =
∑

j∈Zd

ϕ(−j) ei j·ω =
∑

k∈Zd

ϕ(k) e−i k·ω = σϕ(ω)

for all ω ∈ R
d .

Example 9.4 In the case d = 1, the B-splines Nm and Mm are contained in Cc(R)

for m ∈ N \ {1} and they fulfill the condition (9.6).
For the cardinal B-spline ϕ = Nm, the corresponding symbol reads as follows:

σϕ(ω) =
⎧
⎨

⎩

e−iω m = 2 ,

e−3iω/2 cos ω
2 m = 3 ,

e−2iω (2+ cosω)/3 m = 4 .

For the centered cardinal B-spline ϕ = Mm, the corresponding symbol reads as
follows:

σϕ(ω) =
⎧
⎨

⎩

1 m = 2 ,

(3+ cosω)/4 m = 3 ,

(2+ cosω)/3 m = 4 .

Thus the symbols of important (centered) cardinal B-splines are quite simple.

Example 9.5 In the case d = 2, the three-direction box spline ϕ = M(k,�,m) with
k, �, m ∈ N fulfills the condition (9.6). The corresponding symbol reads for ω =
(ω1, ω2)

 ∈ R
2 as follows:

σϕ(ω) =
⎧
⎨

⎩

1 (k, �,m) = (1, 1, 1) ,(
7+ 2 cosω1 + 2 cosω2 + cos(ω1 + ω2)

)
/12 (k, �,m) = (2, 2, 1) ,(

3+ cosω1 + cosω2 + cos(ω1 + ω2)
)
/6 (k, �,m) = (2, 2, 2) .

The symbols of often used three-direction box splines are simple trigonometric
polynomials.
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A function λ ∈ L (ϕ) which interpolates the Kronecker data (δk)k∈Zd on the
integer grid Z

d , i.e.

λ(k) = δk :=
{

1 k = 0 ,

0 k ∈ Z
d \ {0} ,

is called cardinal Lagrange function. For a given basis function ϕ ∈ Cc(R
d )

with corresponding nonvanishing symbol σϕ , we can construct a cardinal Lagrange
function as follows:

Theorem 9.6 Let ϕ ∈ Cc(R
d ) be a given basis function. Assume that ϕ̂ fulfills the

condition (9.6) and that σϕ(ω) �= 0 for all ω ∈ Q2π .
Then the function λ ∈ L (ϕ) defined as

λ(x) := 1

(2π)d

∫

Rd

ϕ̂(ω)

σϕ(ω)
ei ω·x dω , x ∈ R

d , (9.7)

is a cardinal Lagrange function of the form

λ(x) =
∑

k∈Zd

λk ϕ(x− k) , x ∈ R
d , (9.8)

with the coefficients

λk := 1

(2π)d

∫

Q2π

ei ω·k

σϕ(ω)
dω , k ∈ Z

d , (9.9)

where
(
λk

)
k∈Zd ∈ �1(Z

d ). The series (9.8) converges absolutely and uniformly

on Rd .

Proof

1. By Lemma 9.3 we know that for all ω ∈ R
d

σϕ(ω) =
∑

n∈Zd

ϕ̂(ω + 2nπ) �= 0 .

Here the series

∑

n∈Zd

ϕ̂(ω + 2nπ)
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converges uniformly on R
d by condition (9.6). By (9.7) we obtain for each k ∈

Z
d that

λ(k) = 1

(2π)d

∫

Rd

ϕ̂(ω)

σϕ(ω)
ei ω·k dω

= 1

(2π)d

∑

j∈Zd

∫

Q2π

ϕ̂(ω + 2πj)
∑

n∈Zd ϕ̂(ω + 2πn)
ei ω·k dω = 1

(2π)d

∫

Q2π

ei ω·k dω = δk .

2. Applying Lemma 9.3 to the shifted function ψ := ϕ(· + x) for arbitrary fixed
x ∈ R

d , we obtain by Theorem 4.20

ψ̂(ω) = eiω·x ϕ̂(ω) , ω ∈ R
d ,

such that for all ω ∈ R
d

σψ(ω) =
∑

k∈Zd

ϕ(k+ x) e−i k·ω =
∑

j∈Zd

ϕ̂(ω + 2πj) ei ω·x e2π i j·x .

By condition (9.6) the above series on the right-hand side converges uniformly
on R

d . By definition (9.7) of the cardinal Lagrange function λ we see that

λ(x) = 1

(2π)d

∫

Rd

ϕ̂(ω)

σϕ(ω)
ei ω·x dω

= 1

(2π)d

∫

Q2π

1

σϕ(ω)

∑

j∈Zd

ϕ̂(ω + 2πj) ei ω·x e2π ij·x dω

= 1

(2π)d

∫

Q2π

1

σϕ(ω)

∑

k∈Zd

ϕ(k+ x) e−i ω·k dω =
∑

k∈Zd

λk ϕ(x− k) ,

where λk is given by (9.9).
3. Since σϕ �= 0 is a 2π-periodic, trigonometric polynomial, the 2π-periodic

function 1/σϕ ∈ C∞(Td ) possesses rapidly decreasing Fourier coefficients λk
by Lemma 4.6, i.e., for each m ∈ N0 it holds

lim‖k‖2→∞
(1+ ‖k‖2)

m |λk| = 0 .

Since by Lemma 4.8 we have

∑

k∈Zd

(1+ ‖k‖2)
−d−1 <∞
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we obtain that

∑

k∈Zd

|λk| <∞ .

Hence the series (9.8) converges absolutely and uniformly on R
d and λ ∈ L (ϕ).

Theorem 9.7 Let ϕ ∈ Cc(R
d ) be a given basis function. Assume that ϕ̂ fulfills the

condition (9.6).
The cardinal interpolation problem (9.4) in L (ϕ) is uniquely solvable for

arbitrary given data f = (
fk

)
k∈Zd ∈ �1(Z

d ) if and only if the symbol σϕ satisfies
the condition σϕ(ω) �= 0 for all ω ∈ Q2π .

Proof

1. Assume that the cardinal interpolation problem (9.4) in L (ϕ) is uniquely
solvable for each data f = (

fk
)

k∈Zd ∈ �1(Z
d ). Especially for the Kronecker

data
(
δj
)

j∈Zd there exists a function λ ∈ L (ϕ) of the form

λ =
∑

k∈Zd

λk ϕ(· − k)

with
(
λk

)
k∈Zd ∈ �1(Z

d ) and

δj = λ(j) =
∑

k∈Zd

λk ϕ(j− k) , j ∈ Z
d . (9.10)

Multiplying (9.10) by e−i j·ω and summing then all equations over j, we obtain
with n := j− k that

1 = τ (ω)
∑

n∈Zd

ϕn e−i n·ω = τ (ω) σϕ(ω)

with

τ (ω) :=
∑

k∈Zd

λk e−ik·ω .

Using Theorem 4.7, τ is a 2π-periodic, continuous function by
(
λk

)
k∈Zd ∈

�1(Z
d ). Hence the symbol σϕ cannot vanish.

2. Suppose that σϕ �= 0. By Theorem 9.6 there exists a cardinal Lagrange function
λ ∈ L (ϕ) with the property λ(j) = δj for all j ∈ Z

d . For arbitrary data
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f = (
fk

)
k∈Zd ∈ �1(Z

d ) we form the function

s :=
∑

k∈Zd

fk λ(· − k) . (9.11)

By

|fk λ(x − k)| ≤ |fk| sup{|λ(u)| : u ∈ R
d}

and by f ∈ �1(Z
d ), the series in (9.11) converges absolutely and uniformly on

R
d . Further it holds

‖s‖L1(R
d) ≤ ‖f‖�1(Z

d ) ‖λ‖L1(R
d) <∞ .

Thus s ∈ L1(R
d ) ∩ C(Rd ) fulfills the interpolation condition s(j) = fj for all

j ∈ Z
d .

Now we show that s ∈ L (ϕ). By Theorem 9.6, the cardinal Lagrange
function λ can be represented in the form

λ =
∑

j∈Zd

λj ϕ(· − j)

with
(
λj

)
j∈Zd ∈ �1(Z

d ). Then it follows that for all k ∈ Z
d

λ(· − k) =
∑

j∈Zd

λj−k ϕ(· − j) .

Thus by (9.11) we obtain that

s :=
∑

j∈Zd

aj λ(· − j)

with the coefficients

aj :=
∑

k∈Zd

fk λj−k , j ∈ Z
d .

By

∑

j∈Zd

|aj| ≤ ‖f‖�1(Zd ) ‖λ‖�1(Zd) <∞

we see that
(
aj

)
j∈Zd ∈ �1(Z

d ). Hence s ∈ L (ϕ) is a solution of the cardinal
interpolation problem (9.4).
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3. Finally we prove the unique solvability of the cardinal interpolation prob-
lem (9.4). Assume that t ∈ L (ϕ) is also a solution of (9.4), where t has the
form

t :=
∑

j∈Zd

bj λ(· − j)

with
(
bj

)
j∈Zd ∈ �1(Z

d). Then the coefficients cj := aj − bj, j ∈ Z
d , with the

property
(
cj
)

j∈Zd ∈ �1(Z
d ) fulfill the equation

0 =
∑

k∈Zd

ck ϕ(j− k)

for each j ∈ Z
d . Multiplying the above equation by e−i j·ω, ω ∈ R

d , and summing
all equations over j ∈ Z

d , we obtain

0 = c(ω) σϕ(ω) , ω ∈ R
d ,

with the 2π-periodic continuous function

c(ω) :=
∑

k∈Zd

ck e−i k·ω , ω ∈ R
d .

Since σϕ(ω) �= 0 for all ω ∈ Q2π by assumption, the function c ∈ C(Td )

vanishes such that its Fourier coefficients ck vanish too. Thus it holds ak = bk
for all k ∈ Z

d and hence s = t .

Remark 9.8 The proof of Theorem 9.7 is mainly based on a convolution in �1(Z
d ).

For arbitrary a = (
ak

)
k∈Zd , b = (

bk
)

k∈Zd ∈ �1(Z
d ), the convolution in �1(Z

d ) is
defined as a ∗ b := (

cj
)

j∈Zd with

cj :=
∑

k∈Zd

ak bj−k , j ∈ Z
d .

By

‖a ∗ b‖�1(Zd) ≤ ‖a‖�1(Zd) ‖b‖�1(Zd) <∞

we see that a ∗ b ∈ �1(Z
d). One can easily show that the convolution in �1(Z

d )

is a commutative, associative, and distributive operation with the unity
(
δj
)

j∈Zd .

Forming the corresponding functions a, b ∈ C(Td ) by

a(ω) :=
∑

k∈Zd

ak e−i k·ω , b(ω) :=
∑

k∈Zd

bk e−i k·ω ,
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then the convolution a ∗ b := (
cj
)

j∈Zd ∈ �1(Z
d) correlates to the product a b ∈

C(Td ), i.e.

a(ω) b(ω) =
∑

j∈Zd

cj e−i j·ω .

Now we show that the cardinal interpolation problem (9.4) in L (ϕ) can be
numerically solved by multidimensional DFTs. From (9.11) and from the translation
property of the d-dimensional Fourier transform (see Theorem 4.20) it follows that
the Fourier transform ŝ has the form

ŝ(ω) = λ̂(ω)
∑

k∈Zd

fk e−i k·ω .

Thus we can estimate

|ŝ(ω)| ≤ |λ̂(ω)|
∑

k∈Zd

|fk| = |λ̂(ω)| ‖f‖�1(Zd )

such that

‖ŝ‖L1(Rd) ≤ ‖λ̂‖L1(Rd) ‖f‖�1(Zd) ,

i.e., ŝ ∈ L1(R
d). Using the d-dimensional inverse Fourier transform of Theo-

rem 4.22, we obtain the formula

s(x) = 1

(2π)d

∫

Rd

λ̂(ω)
( ∑

k∈Zd

fk e−i k·ω) ei x·ω dω . (9.12)

We suppose again that the basis function ϕ fulfills the assumptions of Theorem 9.6
and that fk = 0 for all k ∈ Z

d \ JN with certain N ∈ N. Replacing the domain
of integration in (9.12) by the hypercube [−nπ, nπ]d with certain n ∈ N, instead
of (9.12) we compute the expression

1

(2π)d

∫

[−nπ, nπ]d
λ̂(ω)

( ∑

k∈JN
fk e−i k·ω) ei x·ω dω

by a simple d-dimensional quadrature rule with step size 2π
N

, i.e., we approximate
the integral (9.12) by the finite sum

1

Nd

∑

m∈BnN

λ̂
(2πm

N

) ( ∑

k∈JN
fk wk·m

N

)
e2π i x·m/N
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with the complex N th root of unity wN := e2π i/N . By Theorem 9.6 we know that
λ̂ = ϕ̂/σϕ . Since the symbol σϕ �= 0 is 2π-periodic, it holds

λ̂
(2πm

N

) = ϕ̂
( 2πm

N

)

σϕ

( 2πm′
N

) , m ∈ Z
d ,

where m′ = (
m′�

)d
�=1 ∈ JN denotes the nonnegative residue of m = (

m�

)d
�=1 ∈ Z

d

moduloN , i.e., it holds m′� ≡ m� (mod N) and 0 ≤ m′� < N for each � = 1, . . . , d .
We will use the notation m′ = m mod N .

Instead of the exact value s
( j
n

)
, j ∈ JnN , on the uniform grid 1

n
JnN we obtain

the approximate value

sj := 1

Nd

∑

m∈BnN

λ̂
(2πm

N

)
w
−m·j
nN

( ∑

k∈JN
fk wk·m

N

)
, j ∈ JnN . (9.13)

Now we summarize this method, where we repeat that the given basis function
ϕ ∈ L1(R

d) ∩ C(Rd) with the corresponding symbol σϕ fulfills the assumptions
of Theorem 9.6.

Algorithm 9.9 (Cardinal Interpolation by Translates)
Input: n, N ∈ N \ {1}, fk ∈ C with k ∈ JN given data.

1. For all j ∈ JN compute the d-dimensional DFT(N × . . .× N)

f̂j :=
∑

k∈JN
fk w

j·k
N .

2. For all m ∈ BnN determine

tm := ϕ̂
( 2πm

N

)

σϕ

( 2πm′
N

) f̂m′

with m′ = m mod N .
3. For all m ∈ BnN set uk := tm, where k := m mod nN ∈ JnN .
4. For all j ∈ JnN compute by d-dimensional DFT(nN × . . .× nN)

sj := 1

Nd

∑

k∈JnN
uk w

−j·k
nN .

Output: sj, j ∈ JnN , approximate value of s
( j
n

)
on the uniform grid 1

n
JnN .

Computational cost: O
(
(nN)d log(nN)

)
.
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9.1.2 Computation of Fourier Transforms

This subsection is devoted to the computation of the d-dimensional Fourier trans-
form f̂ of a given function f ∈ L1(R

d ) ∩ C(Rd), i.e.

f̂ (ω) :=
∫

Rd

f (x) e−i x·ω dω , ω ∈ R
d . (9.14)

We show that the standard method for computing of (9.14) can be essentially
improved without big additional work. The so-called method of attenuation factors
is based on the cardinal Lagrange function in the shift-invariant space L (ϕ), where
the basis function ϕ ∈ Cc(R

d) with the symbol σϕ fulfills the assumptions of
Theorem 9.6.

Assume that |f (x)| & 1 for all x ∈ R
d \ [−nπ, nπ]d with certain n ∈ N.

Replacing the domain of integration in (9.14) by the hypercube [−nπ, nπ]d , we
calculate the integral

∫

[−nπ, nπ]d
f (x) e−i x·ω dω

by the simple tensor product quadrature rule with uniform step size 2π
N

for certain

sufficiently large N ∈ N. Then as approximate value of f̂ (ω) we preserve

(2π

N

)d ∑

j∈BnN

f
(2πj
N

)
e−2π i j·ω/N , ω ∈ R

d ,

where the index set BnN is equal to

BnN = {j = (j�)
d
�=1 ∈ Z

d : −"nN − 1

2
# ≤ j� ≤ "nN

2
# for � = 1, . . . , d} .

(9.15)

Especially for ω = k
n

with k ∈ Z
d we get

f̃k :=
(2π

N

)d ∑

j∈BnN

f
(2πj
N

)
w

j·k
nN (9.16)

as approximate value of f̂
( k
n

)
, where wnN = e−2π i/(nN). Up to the factor

( 2π
N

)d , the
expression (9.16) is a d-dimensional DFT(nN × . . .× nN). Obviously, the values
f̃k, k ∈ Z

d , are nN-periodic, i.e., f̃k = f̃k+nN j for all j, k ∈ Z
d . Otherwise, the

Fourier transform f̂ possesses the property (see Lemma 4.21)

lim‖k‖2→∞
f̂
(k
n

) = 0 .
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Thus only for k = (
k�

)d
�=1 ∈ Z

d with |k�| < nN
2 , � = 1, . . . , d , the value f̃k

can be accepted as approximation of f̂
(k
n

)
. Better approximations of f̂

( k
n

)
can be

obtained by the following method of attenuation factors which is mainly based on
the cardinal Lagrange function λ ∈ L (ϕ), where ϕ ∈ Cc(R

d ) is a convenient
compactly supported basis function and L (ϕ) is the related shift-invariant space.

Theorem 9.10 (Method of Attenuation Factors for Fourier Transform) Let n,
N ∈ N be given. For f ∈ L1(R

d) ∩ C(Rd ) set

fj :=
{
f
( 2πj

N

)
j ∈ BnN ,

0 j ∈ Z
d \ BnN .

Let ϕ ∈ Cc(R
d) be a given compactly supported basis function. Assume that ϕ̂

fulfills the condition (9.6) and that σϕ(ω) �= 0 for all ω ∈ Q2π . Let λ ∈ L (ϕ)

denote the cardinal Lagrange function (9.7).
Then the values of the Fourier transform of the function

s(x) :=
∑

j∈BnN

fj λ
(Nx

2π
− j

)
, x ∈ R

d , (9.17)

read as follows:

ŝ
(k
n

) = λ̂
(2πk
nN

)
f̃k′ , k ∈ Z

d ,

where k′ := k mod nN and where f̃k is defined by (9.16). The values

λ̂
(2πk
nN

) = ϕ̂
( 2πk
nN

)

σϕ

( 2πk′
nN

) , k ∈ Z
d , (9.18)

are called attenuation factors of Fourier transform.

Proof By Theorem 9.6 there exists the cardinal Lagrange function λ ∈ L (ϕ).
Obviously, the function (9.17) interpolates the given data fj on the uniform grid
2π
N

Z
d , i.e.,

s
(2πj
N

) = fj , j ∈ Z
d .

Further by Theorem 9.7 we know that s ∈ L1(R
d) ∩ C(Rd ). Applying the d-

dimensional Fourier transform, we obtain

ŝ(ω) = (2π

N

)d ∑

j∈BnN

fj e−2π i j·ω/N λ̂
(2πω

N

)
, ω ∈ R

d .
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By Theorem 9.6 it holds λ̂ = ϕ̂/σϕ . For ω = k
n

, k ∈ Z
d , it follows that

ŝ
(k
n

) = λ̂
(2π k
nN

)
f̃k = λ̂

(2π k
nN

)
f̃k′ ,

where f̃k is defined by (9.16) and where k′ = k mod nN . Since the symbol σϕ is
2π-periodic, we obtain the formula (9.18).

Thus we can use ŝ
( k
n

)
as approximate value of f̂

( k
n

)
for k ∈ Z

d . The method

of attenuation factors performs two tasks. The computed values ŝ
(k
n

)
correct the

(nN)d coarse approximate values f̃k for k ∈ BnN . Further the approximate values
f̃k for k ∈ BnN are continued to whole Zd by the values ŝ

(k
n

)
.

The essential step for computing the Fourier transform f̂ on a uniform grid is the
d-dimensional DFT(nN × . . . × nN) in formula (9.16) so that we recommend to
choose the positive integers n and N as powers of two.

Example 9.11 For the cardinal B-spline ϕ = Nm with certain m ∈ N \ {1} the
attenuation factors result from

λ̂(ω) =

⎧
⎪⎨

⎪⎩

(
sinc ω

2

)2
m = 2 ,

3
(

sinc ω
2

)4
(2+ cosω)−1 m = 4 ,

60
(

sinc ω
2

)6
(33+ 26 cosω + cos 2ω)−1 m = 6

with ω = 2πk
nN

, k ∈ Z. Note that N3 and N5 don’t fulfill the assumptions of
Theorem 9.10, because the related symbols can vanish.

For the centered cardinal B-spline ϕ = Mm with certain m ∈ N \ {1} the
attenuation factors account for

λ̂(ω) =

⎧
⎪⎨

⎪⎩

(
sinc ω

2

)2
m = 2 ,

4
(

sinc ω
2

)3
(3+ cosω)−1 m = 3 ,

3
(

sinc ω
2

)4
(2+ cosω)−1 m = 4

with ω = 2πk
nN

, k ∈ Z.

Example 9.12 For the three-direction box spline ϕ = M(k,�,m) with k, �, m ∈ N

one obtains the attenuation factors by

λ̂(ω) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(
sinc ω1

2

) (
sinc ω2

2

) (
sinc ω1+ω2

2

)
(k, �,m) = (1, 1, 1) ,

12
(

sinc
ω1
2

)2 (
sinc

ω2
2

)2 (
sinc

ω1+ω2
2

)

7+2 cosω1+2 cosω2+cos(ω1+ω2)
(k, �,m) = (2, 2, 1) ,

6
(

sinc
ω1
2

)2 (
sinc

ω2
2

)2 (
sinc

ω1+ω2
2

)2

3+cosω1+cosω2+cos(ω1+ω2)
(k, �,m) = (2, 2, 2)

with ω = (ω1, ω2)
 = 2πk

nN
, k ∈ Z

2.
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In the univariate case with ϕ = N4, we obtain the following algorithm for
computing the Fourier transform of a function f ∈ L1(R) ∩ C(R) which fulfills
the condition |f (x)| & 1 for all |x| ≥ nπ with certain n ∈ N. Note that the Fourier
transform of the related cardinal Lagrange function λ ∈ L (ϕ) reads as follows:

λ̂(ω) = 3
(

sinc
ω

2

)4
(2+ cosω)−1 .

Algorithm 9.13 (Computation of One-Dimensional Fourier Transform via At-
tenuation Factors)
Input: n, N ∈ N powers of two, fj = f

( 2πj
N

)
for j = −⌊

nN−1
2

⌋
, . . . ,

⌊
nN
2

⌋
given

data of f ∈ L1(R) ∩ C(R).

1. Form

gj :=
{
fj j = 0, . . . ,

⌊
nN
2

⌋
,

fj−nN j = ⌊
nN
2

⌋+ 1, . . . , nN − 1 .

2. For k = 0, . . . , nN − 1 compute the DFT(nN)

ĝk :=
nN−1∑

j=0

gj w
jk
nN .

3. With h := 2π
N

form

f̃k :=
{
h ĝk k = 0, . . . ,

⌊
nN
2

⌋
,

h ĝk+nN k = −⌊
nN−1

2

⌋
, . . . ,−1 .

4. For k = −⌊
nN−1

2

⌋
, . . . ,

⌊
nN
2

⌋
calculate

ŝ
(k
n

) := λ̂
(2πk

nN

)
f̃k .

Output: ŝ
(
k
n

)
approximate value of f̂

(
k
n

)
for k = −⌊

nN−1
2

⌋
, . . . ,

⌊
nN
2

⌋
.

Computational cost: O
(
nN log(nN)

)
.

The following example shows the performance of this method of attenuation
factors.

Example 9.14 We consider the even function f ∈ L1(R) ∩ C(R) given by f (x) =
e−|x| for x ∈ R. Then the related Fourier transform reads as follows:

f̂ (ω) =
∫

R

e−|x| e−i xω dω = 2

1+ ω2 , ω ∈ R .
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20−20

1

2

Fig. 9.4 The crosses (k, |f̃k − f̂ (k)|) for k = −20, . . . , 20 illustrate the behavior for the classical
computation of f̂ (k) in Example 9.14

We choose N = 16, n = 1, and ϕ = N4. Instead of the exact values f̂ (k) we obtain
the coarse approximate values

f̃k = π

8

8∑

j=−7

f
(jπ

8

)
w

jk

16 .

The method of attenuation factors creates the improved approximate values

ŝ(k) = λ̂
(πk

8

)
f̃k = 3

(
sinc πk

16

)4

2+ cos πk
8

f̃k .

Figure 9.4 illustrates the errors for the classical computation of the values f̂ (k). On
the other hand, the method of attenuation factors produces the small maximal error

max|k|≤20
|ŝ(k)− f̂ (k)| = 0.070127 .

9.2 Periodic Interpolation by Translates

In this section, we investigate the periodic interpolation by translates on a uniform
mesh. Our approach is mainly based on Sect. 9.1, since there exists a close
connection between periodic and cardinal interpolation by translates.

In the following, let N ∈ N be fixed chosen. Let ϕ ∈ Cc(R
d) be a compactly

supported basis function with the property (9.6). By

ϕ∗(x) :=
∑

k∈Zd

ϕ(x+ Nk) , x ∈ R
d , (9.19)

we form an N-periodic function ϕ∗ ∈ CN(Rd), where CN(Rd) denotes the Banach
space of all N-periodic continuous functions f : Rd → C with the uniform norm

‖f ‖CN(Rd) := sup {|f (x)| : x ∈ QN := [0, N)d } .
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Analogously, we can periodize the Fourier transform ϕ̂, since condition (9.6) is
fulfilled. Thus we obtain the 2π-periodized Fourier transform

ϕ̃(ω) :=
∑

k∈Zd

ϕ̂(ω + 2π k) , ω ∈ R
d . (9.20)

By (9.6) it holds ϕ̃ ∈ C(Td ).
By LN(ϕ∗) we denote the space of all N-periodic continuous functions s :

R
d → C of the form

s(x) :=
∑

j∈JN
cj ϕ

∗(x− j) , x ∈ R
d ,

with arbitrary coefficients cj ∈ C and the index set

JN = {j = (j�)
d
�=1 ∈ Z

d : 0 ≤ j� ≤ N − 1 for � = 1, . . . , d} .

If we continue the coefficients cj by cj+Nk := cj for all j ∈ JN and k ∈ Z
d , then we

get the equation

s(x) =
∑

n∈Zd

cn ϕ(x− n) ,

where for each x ∈ R
d the above sum contains only finitely many nonzero

summands.

9.2.1 Periodic Lagrange Function

The N-periodic interpolation in LN(ϕ∗) on the uniform mesh JN means that one
has to determine a function s ∈ LN(ϕ∗) which fulfills the interpolation condition

s(j) = fj for all j ∈ JN , (9.21)

where fj ∈ C, j ∈ JN , are arbitrary given data. A function λ∗ ∈ CN(Rd ) which

interpolates the N-periodic Kronecker data δ
(N)
k on the uniform mesh JN , i.e.,

λ∗(k) = δ
(N)
k =

{
1 k = 0 ,

0 k ∈ JN \ {0}

is called an N-periodic Lagrange function. Now we construct an N-periodic La-
grange function in the space LN(ϕ∗). Similarly as in Theorem 9.6, the construction
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of N-periodic Lagrange function in LN(ϕ∗) is based on properties of the symbol

σϕ(ω) =
∑

k∈Zd

ϕ(k) e−i k·ω .

Since ϕ is compactly supported, we observe that σϕ is a 2π-periodic trigonometric
polynomial. The symbol of the shifted function ϕ(· +t) with fixed t ∈ R

d is denoted
by

σϕ(t, ω) :=
∑

k∈Zd

ϕ(k+ t) e−i k·ω , ω ∈ R
d . (9.22)

Obviously we have σϕ(0, ω) = σϕ(ω).

Lemma 9.15 For each t ∈ R
d and all j ∈ JN it holds

σϕ

(
t,

2πj
N

) =
∑

n∈JN
ϕ∗(n+ t) wj·n

N =
∑

k∈Zd

ϕ̂
(2πj
N
+ 2πk

)
e2π i j·t/N e2π i k·t .

(9.23)

Proof By Poisson summation formula (see Theorem 4.27) and by the translation
property of the d-dimensional Fourier transform (see Theorem 4.20) we conclude
that

σϕ

(
t,ω

) =
∑

k∈Zd

ϕ̂(ω + 2πk) ei ω·t e2π i k·t .

The convergence of above series is ensured by condition (9.6). Especially for ω =
2πj
N

with j ∈ JN we get one equation of (9.23).
Substituting k = n+Nm with n ∈ JN and m ∈ Z

d in (9.22), we see that

σϕ

(
t,

2πj
N

) =
∑

n∈JN

∑

m∈Zd

ϕ(n+ t+Nm) w
j·n
N =

∑

n∈JN
ϕ∗(n+ t) wj·n

N .

Now we construct an N-periodic Lagrange function in LN(ϕ∗).

Theorem 9.16 Let N ∈ N be fixed. Let ϕ ∈ Cc(R
d) be a given basis function with

the property (9.6). Assume that the related symbol σϕ fulfills the condition

σϕ

(2πj
N

) �= 0 , j ∈ JN . (9.24)

Then the N-periodic function λ∗ ∈ CN(Rd ) defined by the Fourier series

λ∗(x) :=
∑

k∈Zd

c
(N)
k (λ∗) e2π i k·x/N (9.25)



9.2 Periodic Interpolation by Translates 471

with the corresponding Fourier coefficients

c
(N)
k (λ∗) = ϕ̂

( 2π k
N

)

Nd σϕ

( 2π k
N

) , k ∈ Z
d , (9.26)

is an N-periodic Lagrange function in LN(ϕ∗) which can be represented in the
form

λ∗(x) = 1

Nd

∑

n∈JN

σϕ

(
x, 2πn

N

)

σϕ

( 2πn
N

) (9.27)

=
∑

j∈JN
λ∗j ϕ∗(x− j) , x ∈ R

d (9.28)

with the coefficients

λ∗j =
1

Nd

∑

n∈JN

w
−j·n
N

σϕ

( 2πn
N

) , j ∈ JN . (9.29)

Under the condition (9.24), the N-periodic Lagrange function in LN(ϕ∗) is
uniquely determined.

Proof

1. By (9.6), (9.24), and (9.26) we see that
∑

k∈Zd

∣
∣c(N)

k (λ∗)
∣
∣ <∞ .

Hence the Fourier series (9.25) converges absolutely and uniformly on R
d such

that λ∗ ∈ CN(Rd ) (see Theorem 4.7). Especially for x = j ∈ JN we obtain
by (9.25) and (9.26) that

λ∗(j) = 1

Nd

∑

k∈Zd

ϕ̂
( 2πk

N

)

σϕ

( 2πk
N

) w
−k·j
N

with wN = e−2π i/N . Substituting k = n+ N m with n ∈ JN and m ∈ Z
d in the

above series, it follows from Lemma 9.3 that

λ∗(j) = 1

Nd

∑

n∈JN

w
−n·j
N

σϕ

( 2πn
N

)
∑

m∈Zd

ϕ̂
(2πn

N
+ 2πm

)

= 1

Nd

∑

n∈JN
w
−n·j
N = δ

(N)
j , j ∈ JN .

Thus λ∗ is an N-periodic Lagrange function on the uniform mesh JN .
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2. Substituting k = n+ N m with n ∈ JN and m ∈ Z
d in the Fourier series (9.25),

we receive the representation (9.27) from Lemma 9.15, since

λ∗(x) = 1

Nd

∑

n∈JN

1

σϕ

( 2πn
N

)
( ∑

m∈Zd

ϕ̂
(2πn

N
+ 2πm

)
e2π i n·x/N e2π i m·x)

= 1

Nd

∑

n∈JN

σϕ

(
x, 2πn

N

)

σϕ

( 2πn
N

) .

Using Lemma 9.15, we preserve the formula (9.28) with the coefficients (9.29)
such that λ∗ ∈ LN(ϕ∗).

3. Finally we show the uniqueness of the N-periodic Lagrange function λ∗ in
LN(ϕ∗). Assume that

μ∗(x) =
∑

k∈JN
μ∗k ϕ∗(x− k) , x ∈ R

d ,

is another N-periodic Lagrange function in LN(ϕ∗). Then for all j ∈ JN we find

∑

k∈JN
(λ∗k − μ∗k) ϕ∗(j− k) = 0 .

Multiplying the above equation by w
j·n
N with n ∈ JN and adding all equations

over j ∈ JN , we obtain for each n ∈ JN

( ∑

k∈JN
(λ∗k − μ∗k) wk·n

N

) ( ∑

m∈JN
ϕ∗(m) wm·n

N

)
= 0 .

Thus from (9.23) it follows that

( ∑

k∈JN
(λ∗k − μ∗k) wk·n

N

)
σϕ

(2πn
N

) = 0

and hence by (9.24)

∑

k∈JN
(λ∗k − μ∗k) wk·n

N = 0 , n ∈ JN .

Since the d-dimensional DFT(N × . . . × N) is invertible (see Theorem 4.77),
we get λ∗k = μ∗k for all k ∈ JN , i.e., both N-periodic Lagrange functions
coincide.

The cardinal Lagrange function λ in L (ϕ) and the N-periodic Lagrange function
λ∗ in LN(ϕ∗) are closely related.
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Lemma 9.17 Let N ∈ N be fixed. Let ϕ ∈ Cc(R
d) be a given basis function with

the property (9.6). Assume that the related symbol σϕ fulfills the condition

σϕ(ω) �= 0 , ω ∈ Q2π . (9.30)

Then the N-periodic function λ∗ in LN(ϕ∗) coincides with the N-periodized
cardinal Lagrange function λ, i.e.,

λ∗(x) =
∑

k∈Zd

λ(x+Nk) , x ∈ R
d . (9.31)

For the coefficients λ∗j , j ∈ JN , of the N-periodic Lagrange function λ∗ it holds

λ∗j =
∑

n∈Zd

λj+Nn , j ∈ JN , (9.32)

where λj denote the coefficients (9.9) of the cardinal Lagrange function λ ∈ L (ϕ).

Proof

1. From the assumption (9.30) it follows that (σϕ)
−1 ∈ C∞(Td ). By (9.9), one can

interpret λj with j ∈ Z
d as (−j)th Fourier coefficient of (σϕ)

−1. As shown in
Theorem 9.6 it holds

∑

j∈Zd

|λj| <∞ .

The coefficients λ∗j , j ∈ JN , can be represented in the form (9.29). Using the
aliasing formula (see Theorem 4.67), we conclude that (9.32) for each j ∈ JN .

2. For arbitrary x ∈ R
d , the N-periodic Lagrange function λ∗ can be written

by (9.28) and (9.32) as

λ∗(x) =
∑

j∈JN

∑

n∈Zd

λj+Nn ϕ∗(x− j)

and hence by (9.19)

λ∗(x) =
∑

j∈JN

∑

n∈Zd

∑

m∈Zd

λj+Nn ϕ(x− j+Nm) .

Interchanging the order of summations and substituting p := j+Nn with j ∈ JN
and n ∈ Z

d , we obtain (9.31). Note that the order of summations can be changed,
since only finitely many summands don’t vanish by the compact support
of ϕ.
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Theorem 9.18 Let N ∈ N be fixed. Let ϕ ∈ Cc(R
d) be a given basis function with

the property (9.6). TheN-periodic interpolation problem (9.21) is uniquely solvable
inLN(ϕ∗) if and only if the symbol σϕ fulfills the condition (9.24).

Proof For given data fj ∈ C with j ∈ JN , the N-periodic interpolation prob-
lem (9.21) possesses a unique solution s ∈ LN(ϕ∗) of the form

s(x) =
∑

k∈JN
ck ϕ∗(x− k) , x ∈ R

d ,

with certain coefficients ck ∈ C if and only if the system of linear equations

fj =
∑

k∈JN
ck ϕ∗(j− k) , j ∈ JN , (9.33)

is uniquely solvable. Note that the right-hand side of (9.33) is equal to the
jth component of a d-dimensional cyclic convolution. Therefore we determine
the coefficients ck, k ∈ JN , using d-dimensional DFT(N × . . . × N). By the
definition (9.5) of the symbol σϕ and by (9.19) it holds for each n ∈ JN

σϕ

(2πn
N

) =
∑

j∈Zd

ϕ(j) wj·n
N =

∑

k∈JN

∑

m∈Zd

ϕ(k+Nm) wk·n
N

=
∑

k∈JN
ϕ∗(k) wk·n

N .

Thus we preserve by the convolution property of the d-dimensional DFT(N × . . .×
N) in Theorem 4.77 that

f̂n = ĉn σϕ

(2πn
N

)
, n ∈ JN , (9.34)

with

ĉn :=
∑

k∈JN
ck wk·n

N , f̂n :=
∑

k∈JN
fk wk·n

N .

Thus the unique solvability of the linear system (9.33) is equivalent to the unique
solvability of (9.34). Obviously, (9.34) is uniquely solvable under the assump-
tion (9.24).

Finally we ask for an algorithm for N-periodic interpolation by translates. As
before let ϕ ∈ Cc(R

d ) be a given basis function which possesses the properties (9.6)
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and (9.24). Then the N-periodic interpolation problem (9.21) has the unique
solution

s(x) =
∑

k∈JN
fk λ∗(x− k) ∈ LN(ϕ∗) (9.35)

for arbitrary given data fk ∈ C, k ∈ JN . Restricting the summation in the Fourier
series (9.25) to the finite index set (9.15) with certain n ∈ N, then in (9.35) we
replace λ∗(x− k) for k ∈ JN by its approximation

1

Nd

∑

m∈BnN

ϕ̂
( 2πm

N

)

σϕ

( 2πm
N

) wm·k
N e2π i m·x/N .

Thus for x = j
n

with j ∈ JnN we obtain the approximate value

sj := 1

Nd

∑

m∈BnN

ϕ̂
( 2πm

N

)

σϕ

( 2πm
N

) w
−m·j
nN

( ∑

k∈JN
fk wm·k

N

)

of the exact value s
( j
n

)
. Note that this value coincides with the approximate

value (9.13) for the related cardinal interpolation problem. Thus we can use the
corresponding Algorithm 9.9 for N-periodic interpolation by translates too.

9.2.2 Computation of Fourier Coefficients

For fixed N ∈ N, we calculate the Fourier coefficients

c
(N)
k (f ) := 1

Nd

∫

QN

f (x) e−2π i x·k/N dx , k ∈ Z
d , (9.36)

of an N-periodic function f ∈ CN(Rd), where QN = [0, N)d denotes the d-
dimensional hypercube. Assume that the values fj := f (j) on the uniform grid

JN are given. For a coarse computation of c
(N)
k (f ) one can use the simple tensor

product quadrature rule. Then one obtains the approximate value

c̃k := 1

Nd
f̂k

with the d-dimensional DFT(N × . . .× N)

f̂k :=
∑

j∈JN
fj w

j·k
N , k ∈ JN , (9.37)
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where wN = e−2π i/N means a primitive N-th root of unity. Extending f̂k onto Z
d

by f̂k+Nj := f̂k for all k ∈ JN and j ∈ Z
d , we see that the sequence

(
c̃k

)
k∈Zd is

N-periodically. Otherwise as shown in Lemma 4.6, we know that

lim
‖k‖2→∞

c
(N)
k (f ) = 0 . (9.38)

Hence only in the case ‖k‖2 < N
2 , we can expect that c̃k is a convenient

approximation of c(N)
k (f ) (see Corollary 3.4 for d = 1).

A better approximate value of c(N)
k (f ) with the correct asymptotic behavior for

‖k‖2 → ∞ can be preserved by the so-called method of attenuation factors for
Fourier coefficients. We choose a convenient compactly supported basis function
ϕ ∈ Cc(R

d) and form the N-periodized function (9.19). Instead to calculate the
integral (9.36) directly, first we determine the N-periodic interpolating function s ∈
LN(ϕ∗) interpolating the given data fj on the uniform grid JN . Then we obtain the

exact Fourier coefficients c(N)
k (s) which are excellent approximations of the wanted

Fourier coefficients (9.36).

Theorem 9.19 (Method of Attenuation Factors for Fourier Coefficients) Let
N ∈ N be fixed. Let ϕ ∈ Cc(R

d) be a given basis function with the property (9.6).
Assume that the related symbol σϕ fulfills the condition (9.30). For arbitrary given
function f ∈ CN(Rd) let s ∈ LN(ϕ∗) be the N-periodic function interpolating
s(j) = fj = f (j) for all j ∈ JN .

Then the Fourier coefficients of s read as follows:

c
(N)
k (s) = 1

Nd
λ̂
(2πk

N

)
f̂k′ , k ∈ Z

d , (9.39)

where f̂k′ is equal to (9.37) and where k′ := k mod N ∈ JN is the nonnegative
residue of k ∈ Z

d modulo N . The values

λ̂
(2πk

N

) = ϕ̂
( 2πk

N

)

σϕ

( 2πk‘
N

)

are called attenuation factors of the Fourier coefficients.

Proof By (9.35) the given data fj ∈ C on the uniform grid JN will be interpolated
by the N-periodic function s ∈ LN(ϕ∗) in the form

s(x) =
∑

j∈JN
fj λ

∗(x− j) , x ∈ R
d ,

where λ∗ ∈ LN(ϕ∗) denotes the N-periodic Lagrange function. By the translation
property of the Fourier coefficients (cf. Lemma 4.1 for the period 2π) we obtain for
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the kth Fourier coefficient of the N-periodic function s

c
(N)
k (s) = c

(N)
k (λ∗)

∑

j∈JN
fj w

j·k
N = c

(N)
k (λ∗) f̂k .

From Theorem 9.16 it follows that

c
(N)
k (λ∗) = 1

Nd
λ̂
(2πk

N

) = 1

Nd

ϕ̂
( 2πk

N

)

σϕ

( 2πk
N

) ,

where λ̂ denotes the Fourier transform of the cardinal Lagrange function.

We emphasize that the attenuation factors are independent of the given data fj
on the uniform grid JN , they are only special values of the Fourier transform of
the cardinal Lagrange function. Thus we can use c

(N)
k (s) as approximate values of

c
(N)
k (f ) for all k ∈ Z

d . The method of attenuation factors for Fourier coefficients

performs two tasks. The computed Fourier coefficients c
(N)
k (s) correct the coarse

approximate values N−d f̂k for k ∈ JN . Further the approximate values N−d f̂k for
k ∈ JN are continued to whole Zd by the values c

(N)
k (s).

The following example shows the performance of this method of attenuation
factors.

Example 9.20 We consider the even 2π-periodic function f ∈ C(T) given by
f (x) := x2 for x ∈ [−π, π). Then the related Fourier series

f (x) = π2

3
− 4 cos x + cos(2x)− 4

9
cos(3x)+ . . .

converges uniformly on R. We choose N = 16 and ϕ = N4. Instead of the exact
Fourier coefficients

ck(f ) = 1

2π

∫ π

−π

x2 e−i kx dx =
⎧
⎨

⎩

π2

3 k = 0 ,

2 (−1)k

k2 k ∈ Z \ {0} ,

we obtain the coarse approximate values

1

16
f̂k = 1

16

15∑

j=0

f
(jπ

8

)
w

jk
16 , k = 0, . . . , 15 .

The method of attenuation factors creates the improved approximate values

ck := 1

16
λ̂
(πk

8

)
f̂k
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1

2

15 15

Fig. 9.5 The crosses (k, | 1
16 f̂k − ck(f )|) for k = −15, . . . , 15 illustrate the error behavior for the

classical computation of ck(f ) in Example 9.20

with the attenuation factors

λ̂
(πk

8

) = 3
(

sinc πk
16

)4

2+ cos πk
8

.

Figure 9.5 illustrates the errors for the classical computation of the Fourier
coefficients ck(f ). On the other hand, the method of attenuation factors produces
the small maximal error

max
|k|≤15

|ck − ck(f )| = 0.026982 .

Remark 9.21 The method of attenuation factors has a long history. Using a poly-
nomial spline ϕ, the attenuation factors of Fourier coefficients were calculated first
by Eagle [97] and later by Quade and Collatz [301], see also [100, 133]. Gautschi
[126] presented a general theory of attenuation factors for Fourier coefficients. He
used a linear and translation invariant approximation process in order to interpolate
the given data on a uniform mesh, see also [230]. Later, Gutknecht [153] extended
Gautschi’s approach to multivariate periodic functions.

9.3 Quadrature of Periodic Functions

Now we consider the quadrature of univariate periodic functions. First we derive
the so-called Euler–Maclaurin summation formula, which is based on an expansion
into Bernoulli polynomials. The Bernoulli polynomial Bn of degree n is recursively
defined by B0(x) := 1 and

B ′n(x) = nBn−1(x) , n ∈ N , (9.40)
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with the condition

∫ 1

0
Bn(x) dx = 0 , n ∈ N . (9.41)

The numbers Bn(0) are called Bernoulli numbers. Thus the first Bernoulli polyno-
mials read as follows:

B0(x) = 1 , B1(x) = x − 1

2
, B2(x) = x2 − x + 1

6
,

B3(x) = x3 − 3

2
x2 + 1

2
x , B4(x) = x4 − 2 x3 + x2 − 1

30
.

Note that by (9.40) and (9.41) it holds Bn(0) = Bn(1) for all n ∈ N \ {1}, since

Bn(1)− Bn(0) =
∫ 1

0
B ′n(x) dx = n

∫ 1

0
Bn−1(x) dx = 0 . (9.42)

Each Bernoulli polynomial Bn has the following symmetry property

Bn(x) = (−1)n Bn(1− x) , (9.43)

since the polynomial (−1)n Bn(1 − x) has the same properties (9.40) and (9.41) as
Bn. For n = 2k + 1, k ∈ N, and x = 0 it follows that B2k+1(0) = −B2k+1(1).
Hence by (9.42) we conclude that

B2k+1(0) = B2k+1(1) = 0 , k ∈ N . (9.44)

By bn, n ∈ N \ {1}, we denote the 1-periodic Bernoulli function which is defined as
the 1-periodic continuation of Bernoulli polynomial Bn restricted on [0, 1). Hence
it holds

bn(x) = Bn(x − "x#) , x ∈ R , (9.45)

where "x# denotes the largest integer smaller than or equal to x ∈ R. Further b1
is defined as the 1-periodic continuation of B1 restricted on (0, 1) with b1(0) =
b1(1) := 0. Obviously, b1 is a 1-periodic sawtooth function.

Lemma 9.22 For each n ∈ N, the 1-periodic Bernoulli function bn can be
represented as a convergent Fourier series

bn(x) = −n!
∑

k∈Z\{0}

1

(2π i k)n
e2π i k x . (9.46)
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Proof First we remark that for all k ∈ Z and n ∈ N

c
(1)
k (bn) = c

(1)
k (Bn) =

∫ 1

0
Bn(t) e−2π i kt dt .

The condition (9.41) leads to c
(1)
0 (Bn) = 0 for each n ∈ N. Now we calculate the

Fourier coefficients c
(1)
k (Bn) for k ∈ Z \ {0}. For n = 1 we obtain

c
(1)
k (B1) =

∫ 1

0

(
t − 1

2

)
e−2π i kt dt = − 1

2π ik
. (9.47)

By Lemma 1.6 and (9.40) we receive for n ∈ N \ {0}

c
(1)
k (b′n) = 2π ik c

(1)
k (Bn) = n c

(1)
k (Bn−1)

and hence the recursion

c
(1)
k (Bn) = n

2π ik
c
(1)
k (Bn−1)

such that by (9.47)

c
(1)
k (Bn) = − n!

(2π i k)n
.

For n ∈ N \ {1}, the 1-periodic Bernoulli function bn is contained in C
(n−2)
1 (R)

and its Fourier series (9.46) converges uniformly by Theorem 1.37. For n = 1,
the 1-periodic Bernoulli function b1 is piecewise linear. By the Theorem 1.34 of
Dirichlet–Jordan, the related Fourier series converges pointwise and uniformly on
each closed interval contained in R \ Z.

Lemma 9.23 For n ∈ N and x ∈ [0, 1] it holds the inequality

(−1)n
(
B2n(x)− B2n(0)

) ≥ 0 . (9.48)

Proof By Lemma 9.22 we know that for each n ∈ N and x ∈ [0, 1]

B2n(x) = (−1)n+1 (2n)!
∞∑

k=1

2 cos(2πkx)

(2πk)2n

and hence

B2n(0) = (−1)n+1 (2n)!
∞∑

k=1

2

(2πk)2n
.
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Thus it follows that

(−1)n
(
B2n(x)− B2n(0)

) = 2 (2n)!
∞∑

k=1

1− cos(2πkx)

(2πk)2n ≥ 0 .

This completes the proof.

Lemma 9.24 Let h ∈ Cm[0, 1],m ∈ N, be given. Then h can be represented in the
Bernoulli polynomial expansion

h(x) =
m∑

j=0

Bj(x)

j !
∫ 1

0
h(j)(t) dt − 1

m!
∫ 1

0
bm(x − t) h(m)(t) dt

=
∫ 1

0
h(t) dt +

m∑

j=1

Bj(x)

j !
(
h(j−1)(1)− h(j−1)(0)

) − 1

m!
∫ 1

0
bm(x − t) h(m)(t) dt .

(9.49)

In the case m = 2n+ 2, n ∈ N0, it holds for certain τ ∈ (0, 1)

∫ 1

0
h(t) dt = 1

2

(
h(0)+ h(1)

)−
n∑

j=1

B2j (0)

(2j)!
(
h(2j−1)(1)− h(2j−1)(0)

)

− B2n+2(0)

(2n+ 2)! h
(2n+2)(τ ) . (9.50)

Proof

1. We show the Bernoulli polynomial expansion (9.49) by induction with respect to
m. By (9.45) for b1 we get

∫ 1

0
b1(x − t) h′(t) dt =

∫ x

0
(x − t − 1

2
) h′(t) dt +

∫ 1

x

(x − t + 1

2
) h′(t) dt .

Then integration by parts leads to

∫ 1

0
b1(x − t) h′(t) dt =

∫ 1

0
h(t) dt + (

h(1)− h(0)
)
B1(x)− h(x)

such that (9.49) is shown for m = 1.
Assume that (9.49) is valid for some m ∈ N. Let h ∈ C(m+1)[0, 1] be

given. By the definition of the 1-periodic Bernoulli function bm we obtain for
the integral term in (9.49) that

∫ 1

0
bm(x−t) h(m)(t) dt =

∫ x

0
Bm(x−t) h(m)(t) dt+

∫ 1

x

Bm(x−t+1) h(m)(t) dt .
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Applying integration by parts, it follows by (9.40) and (9.42) that

1

m!
∫ 1

0
bm(x − t) h(m)(t) dt = −Bm+1(x)

(m+ 1)!
(
h(m)(1)− h(m)(0)

)

+ 1

(m+ 1)!
∫ 1

0
bm+1(x − t) h(m+1)(t) dt ,

i.e., (9.49) is also true for m+ 1.
2. For x = 0 and m = 2n+ 2, n ∈ N0, in (9.49) it follows by (9.44) and (9.43) that

∫ 1

0
h(t) dt = 1

2

(
h(0)+ h(1)

)−
n+1∑

j=1

B2j (0)

(2j)!
(
h(2j−1)(1)− h(2j−1)(0)

)

+ 1

(2n+ 2)!
∫ 1

0
B2n+2(t) h

(2n+2)(t) dt

= 1

2

(
h(0)+ h(1)

)−
n∑

j=1

B2j (0)

(2j)!
(
h(2j−1)(1)− h(2j−1)(0)

)

+ 1

(2n+ 2)!
∫ 1

0

(
B2n+2(t)− B2n+2(0)) h(2n+2)(t) dt .

From h(2n+2) ∈ C[0, 1], (9.48), and (9.41) it follows by the extended mean value
theorem for integrals that there exists one τ ∈ (0, 1) with

∫ 1

0

(
B2n+2(t)− B2n+2(0)) h(2n+2)(t) dt = h(2n+2)(τ )

∫ 1

0

(
B2n+2(t) − B2n+2(0)) dt

= −B2n+2(0) h(2n+2)(τ ) .

Thus (9.50) is shown.

Corollary 9.25 (Euler–Maclaurin Summation Formula) Let n ∈ N0 and N ∈
N\{1} be given. Then for h ∈ C2n+2[0, N] it holds the Euler–Maclaurin summation
formula

∫ N

0
h(t) dt = 1

2

(
h(0)+ h(N)

)+
N−1∑

k=1

h(k)−
n∑

j=1

B2j (0)

(2j)!
(
h(2j−1)(N)− h(2j−1)(0)

)

− N B2n+2(0)

(2n+ 2)! h(2n+2)(σ ) (9.51)

with one σ ∈ (0, N).
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Proof Repeated application of Lemma 9.24 to the integrals

∫ k+1

k

h(t) dt , k = 0, . . . , N − 1 ,

leads to

∫ N

0
h(t) dt =

N−1∑

k=0

∫ k+1

k

h(t) dt

= 1

2

(
h(0)+ h(N)

)+
N−1∑

k=1

h(k)−
n∑

j=1

B2j (0)

(2j)!
(
h(2j−1)(N)− h(2j−1)(0)

)

− B2n+2(0)

(2n+ 2)!
N−1∑

k=0

h(2n+2)(τk)

with τk ∈ (k, k+1). By the intermediate value theorem of h(2n+2) ∈ C[0, N] there
exists one σ ∈ (0, N) with

1

N

N−1∑

k=0

h(2n+2)(τk) = h(2n+2)(σ ) .

The Euler–Maclaurin summation formula (9.51) describes a powerful connection
between integrals and finite sums. By this formula, one can evaluate finite sums by
integrals which can be seen as follows:

Example 9.26 For arbitrary N ∈ N \ {1}, we consider the function h(t) := t2 for
t ∈ [0, N]. From (9.51) it follows that

∫ N

0
t2 dt = 1

2
N2 +

N−1∑

k=1

k2 − 1

6
N

and hence

N∑

k=1

k2 = 1

3
N3 + 1

2
N2 + 1

6
N = 1

6
N (N + 1) (2N + 1) .

Now we apply the Euler–Maclaurin summation formula (9.51) to the quadrature
of a 2π-periodic smooth function g. Obviously, the trapezoidal rule with equidistant
nodes 2πk

N
, k = 0, . . . , N − 1, coincides with the related rectangular rule

2π

N

N−1∑

k=0

g
(2πk

N

)
.
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We estimate the quadrature error for the rectangular rule with equidistant nodes. The
following lemma indicates that the simple rectangular rule with equidistant nodes
is very convenient for the quadrature of 2π-periodic, (2n + 2)-times continuously
differentiable functions.

Lemma 9.27 Let g ∈ C(2n+2)(T) with n ∈ N0 be given. Further let N ∈ N \ {1}
be fixed.

Then the quadrature error in the rectangular rule with equidistant nodes 2πk
N

,
k = 0, . . . , N − 1, can be estimated by

∣∣
∫ 2π

0
g(x) dx − 2π

N

N−1∑

k=0

g
(2πk

N

)∣∣ ≤ (2π)2n+3 B2n+2(0)

(2n+ 2)!N2n+2 ‖g(2n+2)‖C(T) .

Proof We apply the Euler–Maclaurin formula (9.51). The substitution x = 2π
N

t ∈
[0, 2π] for t ∈ [0, N] leads to h(t) := g

( 2π
N

t
)

for t ∈ [0, N]. From the assumption
g ∈ C(2n+2)(T) it follows that h ∈ C(2n+2)[0, N] fulfills the conditions h(j)(0) =
h(j)(N), j = 0, . . . , 2n+ 2. Thus by (9.51) we obtain that for certain ξ ∈ (0, 2π)

∫ 2π

0
g(x) dx − 2π

N

N−1∑

k=0

g
(2πk

N

) = − (2π)2n+3 B2n+2(0)

(2n+ 2)!N2n+2 g(2n+2)(ξ) .

For n = 0, Lemma 9.27 provides:

Corollary 9.28 For g ∈ C2(T) the quadrature error in the rectangular rule with
equidistant nodes 2πk

N
, k = 0, . . . , N − 1, can be estimated by

∣
∣
∫ 2π

0
g(x) dx − 2π

N

N−1∑

k=0

g
(2πk

N

)∣∣ ≤ (2π)3

12 N2 ‖g′′‖C(T) .

This result will now be used to estimate the error in the computation of the
Fourier coefficients

c�(f ) = 1

2π

∫ 2π

0
f (x) e−i� x dx , � ∈ Z ,

of a given function f ∈ C2(T). Setting g(x) := 1
2π f (x) e−i�x , we obtain

g′′(x) = 1

2π
e−i�x (

f ′′(x)− 2i� f ′(x)− �2 f (x)
)
.
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Denoting

f̂� := 1

N

N−1∑

k=0

f
(2πk

N

)
wk�

N

with wN = e−2π i/N , Corollary 9.28 leads to the estimate

|c�(f )− f̂�| ≤ (2π)3

12 N2 max
x∈[0, 2π]

(|f ′′(x)| + 2|� f ′(x)| + �2 |f (x)|) . (9.52)

Note that for � = −N
2 the upper bound of the quadrature error (9.52) is essentially

independent of N .
As known the Fourier coefficients c�(f ) are well approximated by f̂� only

for � = −N
2 , . . . , N

2 − 1. This follows from the aliasing formula (3.6) and
Corollary 3.4. Summarizing we can say that both 2π-periodicity and smoothness
of the given function f are essentially for small quadrature errors |c�(f ) − f̂�| for
all � = −N

2 , . . . , N
2 − 1.

9.4 Accelerating Convergence of Fourier Series

If a 2π-periodic function f is sufficiently smooth, then its Fourier series converges
rapidly to f and the related Fourier coefficients ck(f ) tend to zero as |k| → ∞ (see
Theorem 1.39). In this case, a Fourier partial sum Snf of low order n approximates
f quite accurately, since the approximation error

‖f − Snf ‖C[0, 2π] ≤
∑

|k|>n

|ck(f )|

will be small if the Fourier coefficients tend to zero rapidly enough. Otherwise,
if a 2π-periodic function f is only piecewise smooth, then its Fourier partial
sums Snf oscillate near a jump discontinuity of f by the Gibbs phenomenon (see
Theorem 1.42) and converge very slowly to f . Can one find a rapidly convergent
Fourier expansion of f , if f is only piecewise smooth?

In this section we describe two methods to accelerate the convergence of a
Fourier series. In the first method we represent a 2π-periodic, piecewise smooth
function f as a sum of a polynomial trend Tmf and a fast convergent Fourier series
of f − Tmf , since f − Tmf is sufficiently smooth by construction.

In the second method we consider a smooth function ϕ ∈ C∞(I) defined on
the interval I := [−1, 1]. Note that the 2-periodic extension of ϕ|[−1, 1) is only
piecewise smooth in general. Therefore we extend ϕ to a 2T -periodic, sufficiently
smooth function f with certain T > 1 such that f possesses a 2T -periodic, rapidly
convergent Fourier expansion.
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9.4.1 Krylov–Lanczos Method

First we consider 2π-periodic, piecewise smooth functions. A 2π-periodic function
f is called piecewise r-times continuously differentiable or piecewise Cr -smooth
with r ∈ N, if there exist finitely many nodes xj , j = 1, . . . , n, with 0 ≤ x1 < x2 <

. . . < xn < 2π and xn+1 := x1 + 2π so that f restricted to (xj , xj+1) belongs
to Cr [xj , xj+1] for each j = 1, . . . , n. By Cr [xj , xj+1] we mean the set of all
functions f with the properties that f , f ′, . . . , f (r) are continuous on (xj , xj+1)

and have continuous extensions on [xj , xj+1], i.e., there exist all one-sided finite
limits f (�)(xj + 0) and f (�)(xj+1 − 0) for � = 0, . . . , r .

The Fourier series of a 2π-periodic, piecewise smooth function which is smooth
on the interval [0, 2π) has usually slow convergence due to the fact that this function
has jumps at each point of 2π Z in general. If a 2π-periodic, piecewise Cr -smooth
function with n = 1 and x1 = 0 (see Fig. 9.6) is given, then the asymptotic behavior
of its Fourier coefficients

ck(f ) = 1

2π

∫ 2π

0
f (t) e−i kt dt , k ∈ Z ,

and the rate of convergence of its Fourier series depends only on the largest positive
integer m ≤ r which fulfills the condition

f (j)(0+ 0) = f (j)(2π − 0) , j = 0, . . . , m− 1 . (9.53)

As known a function f with condition (9.53) possesses a uniformly convergent
Fourier expansion.

Unfortunately, a 2π-periodic, piecewise Cr -smooth function with n = 1 and
x1 = 0 does not fulfill (9.53) in general. The corresponding Fourier series converges
extremely slow. In such a case, it has been proposed by A.N. Krylov and later by
Lanczos [219] to determine a 2π-periodic, piecewise polynomial Tmf such that
f − Tmf satisfies the condition (9.53).

Figure 9.6 shows the 2π-periodic, piecewise smooth function f with f (x) :=
sin 3x

4 for x ∈ [0, 2π) as well as its 2π-periodic trend T1f with (T1f )(x) :=
1
2 − x

2π for x ∈ (0, 2π) and (T1f )(0) := 0. Then we have f − T1f ∈ C(T) and
f − T1f /∈ C1(T).

Fig. 9.6 Linear trend
T1f (x) = −b1(

x
2π ) (red) of

the 2π-periodic, piecewise
smooth function f (blue)
defined by f (x) = sin 3x

4 for
x ∈ [0, 2π)

1

1

−2π 2π
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Theorem 9.29 (Krylov–Lanczos Method of Convergence Acceleration) For r ,
m ∈ N withm ≤ r , let f be a 2π-periodic, piecewise Cr -smooth function with only
one node x1 = 0 within [0, 2π). Then f can be split into the sum f = Tmf +Rmf

on R \ 2π Z, where

(Tmf )(x) :=
m∑

�=1

c0(f
(�))

(2π)�

�! b�
( x

2π

)
(9.54)

=
m−1∑

�=0

(
f (�)(2π − 0)− f (�)(0+ 0)

) (2π)�

(�+ 1)! b�+1
( x

2π

)
(9.55)

=
m−1∑

�=0

(
f (�)(0− 0)− f (�)(0+ 0)

) (2π)�

(�+ 1)! b�+1
( x

2π

)
(9.56)

is the 2π-periodic trend of f and where

(Rmf )(x) := c0(f )− (2π)m−1

m!
∫ 2π

0
bm

(x − t

2π

)
f (m)(t) dt ∈ Cm−1(T) (9.57)

possesses the uniformly convergent Fourier series

(Rmf )(x) = c0(f )+
∑

k∈Z\{0}

1

(i k)m
ck(f

(m)) ei k x . (9.58)

Proof

1. The Krylov–Lanczos method is mainly based on the Bernoulli polynomial ex-
pansion (9.49). Let g ∈ Cr [0, 2π] denote the r-times continuously differentiable
continuation of f restricted on (0, 2π). By substitution it follows from (9.49)
that g can be decomposed in the form g = T̃mg + R̃mg with

(T̃mg)(x) :=
m∑

�=1

c0
(
g(�)

) (2π)�

�! B�

( x

2π

)
,

(R̃mg)(x) := c0(g)− (2π)m−1

m!
( ∫ x

0
Bm

(x − t

2π

)
g(m)(t) dt

+
∫ 2π

x

Bm

(x − t + 2π

2π

)
g(m)(t) dt

)
.

Note that it holds c0(g) = c0(f ), g(j)(0) = f (j)(0 + 0) and g(j)(2π) =
f (j)(2π − 0) = f (j)(0 − 0) for j = 0, . . . ,m. By 2π-periodic extension
of g = T̃mg + R̃mg restricted on (0, 2π) we preserve the decomposition



488 9 Numerical Applications of DFT

f = Tmf + Rmf on R \ 2π Z, where Tmf and Rmf are defined by (9.54)
and (9.57), respectively.

Obviously, Tmf is a 2π-periodic, piecewise polynomial and Rmf is equal to
the sum of c0(f ) and a convolution of 2π-periodic functions

Rmf = c0(f )− (2π)m−1

m! bm
( ·

2π

) ∗ f (m) . (9.59)

2. Now we show that h := f − Tmf restricted to (0, 2π) fulfills the conditions

h(j)(0+ 0) = h(j)(2π − 0) , j = 0, . . . ,m− 1 .

Since h = Rmf , simple calculation shows that

h(0+ 0) = h(2π − 0) = c0(f )− (2π)m−1

m!
∫ 2π

0
Bm

( t

2π

)
f (m)(t) dt .

Differentiation of Tmf yields by (9.40) that

d

dx
(Tmf )(x) =

m−1∑

�=0

(
f (�)(2π − 0)− f (�)(0+ 0)

) (2π)�−1

�! B�

( x

2π

)

= c0(f
′)+ (Tm−1f

′)(x) .

Thus repeated differentiation provides

dj

dxj
(Tmf )(x) = c0(f

(j))+ (Tm−j f
(j))(x) , j = 2, . . . ,m− 1 .

Therefore we obtain that

h(j)(x) = f (j)(x)− (Tm−j f
(j))(x) = (Rm−j f

(j))(x) , j = 0, . . . ,m− 1 ,

and hence for each j = 0, . . . ,m− 1

h(j)(0+0) = h(j)(2π−0) = c0(f
(j))− (2π)m−j−1

(m− j)!
∫ 2π

0
Bm−j

(2π − t

2π

)
f (m−j)(t) dt .

This shows that h = Rmf ∈ Cm−1(T).
3. By the convolution property of the Fourier series (see Lemma 1.13) it follows

from (9.59) that

ck(Rmf )− c0(f ) = − (2π)m

m! ck
(
bm

( ·
2π

))
ck(f

(m)) k ∈ Z \ {0} .
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By Lemma 9.22 we know that

ck
(
bm

( ·
2π

)) = − m!
(2π ik)m

, k ∈ Z \ {0} ,

with c0
(
bm

( ·
2π

)) = 0. Thus we receive the Fourier expansion (9.58) of Rmf .
Since f − Tmf is piecewise Cr -smooth by assumption and since Rmf ∈
Cm−1(T) by step 2, the Fourier series (9.58) of Rmf converges uniformly on
R by the Theorem 1.34 von Dirichlet–Jordan.

Example 9.30 For m = 1

(T1f )(x) = (
f (2π − 0)− f (0+ 0)

)
b1

( x

2π

)

is the 2π-periodic linear trend of f . For m = 2 we preserve the 2π-periodic
quadratic trend

(T2f )(x) =
1∑

�=0

(
f (�)(2π − 0)− f (�)(0+ 0)

)
b�+1

( x

2π

)
.

Remark 9.31 Using the Krylov–Lanczos method, one can eliminate the influence
of the Gibbs phenomenon, since the jumps of f are correctly represented by
Tmf +Rmf . This idea has been widely studied for modified Fourier expansions and
the rate of uniform convergence is estimated too (see [17, 349] and the references
therein). The same procedure can be also applied to a highly correct computation
of Fourier coefficients of a piecewise smooth function f , see [349]. The Krylov–
Lanczos method is readily adapted to multivariate Fourier series in [1, 349].

Theorem 9.29 can be extended to an arbitrary 2π-periodic, piecewise Cr -smooth
function.

Theorem 9.32 For r , m ∈ N with m ≤ r , let f be a 2π-periodic, piecewise Cr -
smooth function with n distinct nodes xj ∈ [0, 2π), j = 1, . . . , n. Then f can be
split into the sum f = Tm,nf + Rmf on R \⋃n

j=1 ({xj } + 2π Z), where

(Tm,nf )(x) :=
n∑

j=1

m−1∑

�=0

(
f (�)(xj − 0)− f (�)(xj + 0)

) (2π)�

(�+ 1)! b�+1
(x − xj

2π

)

(9.60)

is the 2π-periodic trend of f and where Rmf ∈ Cm−1(T) defined by (9.57)
possesses the uniformly convergent Fourier series (9.58).

For a proof see [19, 98].

Remark 9.33 The Krylov–Lanczos method is also closely related to the recon-
struction of a 2π-periodic, piecewise Cr -smooth function f from given Fourier
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coefficients ck(f ) (see [19, 98]). This recovery is based on the fact that ck(f ) ≈
ck(Tm,nf ) for large |k|, since the contribution of ck(Rmf ) to ck(f ) is negligible for
large |k| by the smoothness of Rmf . Using

ck
(
b�+1

( · − xj

2π

)) =
{
− (�+1)!

(2π i k)�+1 e−i kxj k ∈ Z \ {0} ,
0 k = 0 ,

the Fourier coefficients ck(Tm,nf ) fulfill the equations

2π (i k)m ck(Tm,nf ) =
n∑

j=1

e−i kxj
m−1∑

�=0

(i k)m−�−1 (
f (�)(xj + 0)− f (�)(xj − 0)

)
.

Hence the distinct nodes xj and the associated jump magnitudes can be determined
by a Prony-like method (see Sect. 10.2).

9.4.2 Fourier Extension

Now we describe the second method for accelerating convergence of Fourier series.
Let ϕ ∈ C∞(I) with I := [−1, 1] be given, i.e., ϕ is infinitely differentiable in
(−1, 1) and all one-sided limits

ϕ(j)(−1+ 0) = lim
x→−1+0

ϕ(j)(x) , ϕ(j)(1− 0) = lim
x→1−0

ϕ(j)(x)

for each j ∈ N0 exist and are finite. In general, such a function does not fulfill the
property

ϕ(j)(−1+ 0) = ϕ(j)(1− 0) , j = 0, . . . , r − 1 ,

for certain r ∈ N. If ϕ(−1 + 0) �= ϕ(1 − 0), then the 2-periodic extension of the
function ϕ restricted on [−1, 1) is piecewise continuously differentiable with jump
discontinuities at odd points. Then by the Gibbs phenomenon (see Theorem 1.42)
the partial sums of the 2-periodic Fourier series oscillate near each odd point.
Further we observe a slow decay of the related Fourier coefficients and a slow
convergence of the 2-periodic Fourier series.

Remark 9.34 A simple method for accelerating convergence of Fourier series is
often used. Let f : R→ C be the 4-periodic function defined on [−1, 3) by

f (x) :=
{
ϕ(x) x ∈ [−1, 1] ,
ϕ(2− x) x ∈ (1, 3) .
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Then f is continuous on whole R and piecewise continuously differentiable on
[−1, 3]. By Theorem 1.34 of Dirichlet–Jordan, the extended function f possesses
a uniformly convergent, 4-periodic Fourier series. The drawback of this method is
the fact that f is not continuously differentiable in general.

For fixed T > 1, let T (2T )
n denote the linear span of the 2T -periodic exponentials

ei kπ ·/T , k = −n, . . . , n .

In the Fourier extension, one has to approximate a given function ϕ ∈ C∞[−1, 1]
by a 2T -periodic trigonometric polynomial of T (2T )

n . This Fourier extension
problem was studied in [171] and the references therein. We propose the following
fast Fourier extension.

In the first step we approximate the one-sided finite derivatives ϕ(j)(−1 + 0),
ϕ(j)(1 − 0) for j = 0, . . . , r − 1. Since these one-sided derivatives are very
often unknown, we compute these values by interpolation at Chebyshev extreme
points. Let N ∈ N be a sufficiently large power of two. Using the Chebyshev
polynomials (6.1),we interpolate the given function ϕ ∈ C∞(I) at the Chebyshev
extreme points x

(N)
j = cos jπ

N
, j = 0, . . . , N . Then the interpolation polynomial

ψ ∈PN can be expressed as

ψ = 1

2
c0 +

N−1∑

k=1

ck Tk + 1

2
cN TN (9.61)

with the coefficients

ck = 2

N

(1

2
ϕ(1)+

N−1∑

j=1

ϕ(x
(N)
j ) cos

jkπ

N
+ 1

2
ϕ(−1)

)
, k = 0, . . . , N .

Since N is a power of two, the coefficients ck can be calculated by a fast algorithm
of DCT–I (N + 1) (by means of Algorithm 6.28 or 6.35). Then we set cN := 2 cN .
By Theorem 6.26, the coefficients dk of the derivative

ψ ′ = 1

2
d0 +

N−1∑

k=1

dk Tk

can be recursively determined as

dN−1−k := dN+1−k + 2 (N − k) cN−k , k = 0, . . . , N − 1 ,

with dN+1 = dN := 0. Then

ψ ′(1− 0) = 1

2
d0 +

N−1∑

k=1

dk , ψ ′(−1+ 0) = 1

2
d0 +

N−1∑

k=1

(−1)k dk
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are approximate one-sided derivatives of ϕ at the endpoints ±1. Analogously, one
can calculate the higher order one-sided derivatives ψ(j), j = 2, . . . , r − 1, at the
endpoints±1.

In the second step we use two-point Taylor interpolation and we compute the
unique polynomial p ∈P2r−1 which fulfills the interpolation conditions

p(j)(1) = ψ(j)(1− 0) , p(j)(2T − 1) = ψ(j)(−1+ 0) , j = 0, . . . , r − 1 .

Now we describe briefly the two-point Taylor interpolation. Let a, b ∈ R be given
distinct points. Further let aj , bj ∈ R, j = 0, . . . , r − 1, be given values for fixed
r ∈ N. We consider the special Hermite interpolation problem

p(j)(a) = aj , p(j)(b) = bj , j = 0, . . . , r − 1 , (9.62)

for a polynomial p ∈ P2r−1. Then p is called two-point Taylor interpolation
polynomial , see [226, pp. 62–67].

Lemma 9.35 The two-point Taylor interpolation polynomial of (9.62) is uniquely
determined and can be expressed as

p =
r−1∑

j=0

(
aj h

(a,b,r)
j + bj h

(b,a,r)
j

) ∈P2r−1 , (9.63)

where

h
(a,b,r)
j (x) := (x − a)j

j !
(x − b

a − b

)r
r−1−j∑

k=0

(
r − 1+ k

k

)(x − a

b − a

)k

, j = 0, . . . , r−1 ,

denote the two-point Taylor basis polynomials which fulfill the conditions

( d�

dx�
h
(a,b,r)
j

)
(a) = δj−� ,

( d�

dx�
h
(a,b,r)
j

)
(b) = 0 , j , � = 0, . . . , r − 1 .

(9.64)

Proof First we show the uniqueness of the two-point Taylor interpolation poly-
nomial. Assume that q ∈ P2r−1 is another solution of the two-point Taylor
interpolation problem (9.62). Then p − q ∈ P2r−1 has two distinct zeros of order
r . By the fundamental theorem of algebra this implies that p = q .

From the structure of h(a,b,r)
j it follows immediately that

( d�

dx�
h
(a,b,r)
j

)
(b) = 0 , j , � = 0, . . . , r − 1 .
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By simple, but long calculations one can show that

( d�

dx�
h
(a,b,r)
j

)
(a) = δj−� , j , � = 0, . . . , r − 1 .

By (9.64) the polynomial (9.63) satisfies the interpolation conditions (9.62).

Example 9.36 For r = 1 we obtain that

h
(a,b,1)
0 (x) = x − b

a − b

and hence

p(x) = a0
x − b

a − b
+ b0

x − a

b − a
∈P1 .

In the case r = 2, we receive the two-point Taylor basis polynomials

h
(a,b,2)
0 (x) =

(x − b

a − b

)2 (
1+ 2

x − a

b − a

)
, h

(a,b,2)
1 (x) =

(x − b

a − b

)2
(x − a)

such that the two-point Taylor interpolation polynomial reads as follows:

p(x) = a0

(x − b

a − b

)2 (
1+ 2

x − a

b − a

)+ a1

(x − b

a − b

)2
(x − a)

+b0

(x − a

b − a

)2 (
1+ 2

x − b

a − b

)+ b1

(x − a

b − a

)2
(x − b) ∈P3 .

We apply the two-point Taylor interpolation in the case a := 1, b := 2T −1 with
certain T > 1, and

aj := ψ(j)(1− 0) , bj := ψ(j)(−1+ 0) , j = 0, . . . , r − 1 .

Then we introduce the 2T -periodic extension of the function ψ as

f (x) :=
{
ψ(x) x ∈ [−1, 1] ,
p(x) x ∈ (1, 2T − 1) .

(9.65)

Obviously, the 2T -periodic function f is contained in Cr−1(R). For r > 1, f can
be expressed by a rapidly convergent Fourier series.

In the third step we choose n ≥ N as a power of two and use 2T -periodic
trigonometric interpolation at equidistant nodes y� := −1+ T �

n
, � = 0, . . . , 2n− 1,

(see Lemma 3.7) in order to approximate f by a trigonometric polynomial

sn(x) =
n−1∑

k=1−n

s
(n)
k ei kπ x/T + s(n)n cos

nπ x

T
∈ T (2T )

n
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with the coefficients

s
(n)
k := 1

2n

2n−1∑

�=0

f (y�) e−π ik�/n , k = 1− n . . . , n .

We summarize this method:

Algorithm 9.37 (Fast Fourier Extension)
Input:N ∈ N \ {1}, n ∈ N power of two with n ≥ N , r ∈ N, T > 1, ϕ ∈ C∞(I).

1. By interpolation at Chebyshev extreme points x
(N)
j , j = 0, . . . , N , determine

the interpolation polynomial ψ ∈ PN in the form (9.61) by a fast algorithm
of DCT–I (N + 1), set cN := 2 cN , and calculate the one-sided derivatives
ψ(j)(−1+0) andψ(j)(1−0) for j = 0, . . . , r−1 recursively by Theorem 6.26.

2. Using two-point Taylor interpolation with the interpolation conditions

p(j)(1) = ψ(j)(1− 0) , p(j)(2T − 1) = ψ(j)(−1+ 0) , j = 0, . . . , r − 1 ,

calculate the interpolation polynomial p ∈ P2r−1 defined on the interval
[1, 2T − 1].

3. Form the 2T -periodic function (9.65) and use 2T -periodic trigonometric inter-
polation at equidistant nodes y� = −1 + T �

n
, � = 0, . . . , 2n − 1. Compute the

trigonometric polynomial sn ∈ T (2T )
n with the coefficients s(n)k , k = 1−n, . . . , n,

by a fast algorithm of DFT (2n).

Output: sn ∈ T (2T )
n with the coefficients s(n)k , k = 1− n, . . . , n.

Computational cost: O(n logn).

If we apply fast algorithms of DCT–I(N+1) and DFT(2n), then Algorithm 9.37 re-
quires only O(n logn) arithmetic operations for the computation of 2n coefficients
s
(n)
k . The following example shows the performance of this fast Fourier extension.

Example 9.38 We consider the smooth function ϕ(x) := x for x ∈ I . Note that the
2-periodic extension of ϕ is a piecewise linear sawtooth function. Choosing T = 2,
N = 10, and r = 5, the constructed 4-periodic Fourier extension f is contained in
C4(R). For n = 2t , t = 5, . . . , 13, we measure the error

‖ϕ − sn‖C(I) ≈ O(
logn

n4 ) .

Figure 9.7 illustrates this method.
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Fig. 9.7 Left: ϕ(x) = x for x ∈ I := [−1, 1] in blue and the two-point Taylor interpolation
polynomial p ∈ P9 on [1, 3] in red. Right: Maximum error ||ϕ − sn||C(I) . The observed
maximum error (with oversampling of 10) is in blue. The black dotted line illustrates the theoretical
convergence rate O(

log n

n4 )

9.5 Fast Poisson Solvers

Numerous problems of mathematical physics can be described by partial differential
equations. Here we consider only elliptic partial differential equations for a bivariate
function u(x, y). If Δ denotes the Laplace operator or Laplacian

(Δu)(x, y) := uxx(x, y)+ uyy(x, y) ,

then an important example is the Poisson equation

−(Δu)(x, y) = f (x, y)

with given function f (x, y). The Poisson equation governs the steady state in
diffusion processes, electrostatics, and ideal fluid flow. In electrostatics, solving
the Poisson equation amounts to finding the electric potential u for a given charge
density distribution f .

In the following, we want to solve the Dirichlet boundary value problem of the
Poisson equation in the open unit square Q := (0, 1)2. Thus we seek a function
u ∈ C2(Q) ∩ C(Q̄) with

− (Δu)(x, y) = f (x, y) , (x, y) ∈ Q,

u(x, y) = ϕ(x, y) , (x, y) ∈ ∂Q := Q̄ \Q, (9.66)

where f ∈ C(Q̄) and ϕ ∈ C(∂Q) are given functions.
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We start our considerations with the one-dimensional boundary value problem

− u′′(x) = f (x) , x ∈ (0, 1) (9.67)

with the boundary conditions u(0) = α, u(1) = β for given f ∈ C[0, 1] and α,
β ∈ R. For N ∈ N \ {1}, we form the uniform grid {xj : j = 0, . . . , N + 1} with
the grid points xj := j h and the grid width h := (N + 1)−1. Instead of (9.67) we
consider the discretization

− u′′(xj ) = f (xj ) , j = 1, . . . , N (9.68)

with u(0) = α, u(1) = β. Setting fk := f (xk) and uk := u(xk) for k =
0, . . . , N + 1, we approximate u′′(xj ), j = 1, . . . , N , by the central difference
quotient of second order

1

h2

(
uj−1 − 2 uj + uj+1

)
.

Then the corresponding discretization error can be estimated as follows:

Lemma 9.39 Let u ∈ C4[0, 1] be given. Then for each interior grid point xj ,
j = 1, . . . , N , we have

∣
∣u′′(xj )− 1

h2

(
uj−1 − 2 uj + uj+1

)∣∣ ≤ h2

12
‖u(4)‖C[0,1] . (9.69)

Proof By Taylor’s formula there exist ξj , ηj ∈ (0, 1) such that

uj−1 = u(xj − h) = uj − hu′(xj )+ h2

2
u′′(xj )− h3

6
u(3)(xj )+ h4

24
u(4)(xj − ξj h) ,

uj+1 = u(xj + h) = uj + hu′(xj )+ h2

2
u′′(xj )+ h3

6
u(3)(xj )+ h4

24
u(4)(xj + ηjh) .

Using the intermediate value theorem of u(4) ∈ C[0, 1], we obtain

1

2

(
u(4)(xj − ξjh)+ u(4)(xj + ηjh)

) = u(4)(xj + θjh)

with some θj ∈ (−1, 1). Summation of above expressions of uj−1 and uj+1 yields

uj−1 + uj+1 = 2 uj + h2 u′′(xj )+ h4

12
u(4)(xj + θjh)

and hence (9.69).
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If we replace each second derivative u′′(xj ) by the corresponding central
difference quotient, we get the following system of linear difference equations

−uj−1 + 2 uj − uj+1 = h2 fj , j = 1, . . . , N ,

with u0 = α, uN+1 = β. This is the so-called finite difference method. Introducing
the vectors u := (uj )

N
j=1 and g := (

h2 fj + α δj−1 + β δN−j

)N
j=1 as well as the

tridiagonal symmetric matrix

AN :=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2

⎞

⎟
⎟
⎟
⎟
⎟
⎠
∈ R

N×N ,

we obtain the linear system

AN u = g . (9.70)

Obviously, AN is weak diagonally dominant. Now we show that AN is positive
definite and therefore invertible.

Lemma 9.40 Let N ∈ N \ {1} be given. Then for all x ∈ R we have

AN s(x) = 4
(

sin
x

2

)2 s(x)+

⎛

⎜⎜
⎜
⎝

0
...

0
sin(N + 1)x

⎞

⎟⎟
⎟
⎠

, (9.71)

AN c(x) = 4
(

sin
x

2

)2 c(x)+

⎛

⎜⎜
⎜
⎜
⎜
⎝

cos x
0
...

0
cos(Nx)

⎞

⎟⎟
⎟
⎟
⎟
⎠

, (9.72)

with the vectors s(x) := (
sin(jx)

)N
j=1 and c(x) := (

cos(kx)
)N−1
k=0 .

Proof Let x ∈ R and j ∈ {1, . . . , N} be given. From

sin (j − 1)x = (cos x) sin (jx)− (sin x) cos (jx) ,

sin (j + 1)x = (cos x) sin (jx)+ (sin x) cos (jx)
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it follows that

− sin (j − 1)x + 2 (cos x) sin (jx)− sin (j + 1)x = 0

and hence

− sin (j − 1)x + 2 sin (jx)− sin (j + 1)x = 2 (1− cos x) sin (jx)

= 4
(

sin
x

2

)2 sin (jx) . (9.73)

Especially for j = 1 and j = N , we obtain

2 sin x − sin(2x) = 4
(

sin
x

2

)2
sin x ,

− sin (N − 1)x + 2 sin (Nx) = 4
(

sin
x

2

)2
sin (Nx)+ sin (N + 1)x .

Thus (9.73) indicates (9.71). Analogously, (9.72) can be shown.

Lemma 9.41 For N ∈ N \ {1}, the tridiagonal matrix AN is positive definite and
possesses the simple positive eigenvalues

σj := 4
(

sin
jπ

2 (N + 1)

)2
, j = 1, . . . , N , (9.74)

which are ordered in the form 0 < σ1 < . . . < σN < 4. An eigenvector related to
σj is

sj := s
( jπ

N + 1

)
, j = 1, . . . , N .

Proof For x = jπ
N+1 , j = 1, . . . , N , it follows from (9.71) that

AN sj = σj sj .

This completes the proof.

Since AN ∈ R
N×N is symmetric and since the eigenvalues of AN are simple, the

eigenvectors sj ∈ R
N are orthogonal. By

N∑

k=1

(
sin (kx)

)2 = N

2
−

(
cos (N + 1)x

)
sin (Nx)

2 sin x
, x ∈ R \ π Z ,
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we obtain for x = jπ
N+1 the equation

sj sj =
N∑

k=1

(
sin

jkπ

N + 1

)2 = N + 1

2
, j = 1, . . . , N ,

such that

sj sk = N + 1

2
δj−k , j, k = 1, . . . , N , (9.75)

where δj denotes the Kronecker symbol. With the eigenvectors sj , j = 1, . . . , N ,
we form the orthogonal sine matrix of type I

SI
N :=

√
2

N + 1

(
s1 | s2 | . . . | sN

) =
√

2

N + 1

(
sin

jkπ

N + 1

)N
j,k=1 ∈ R

N×N .

This matrix is symmetric and has by (9.75) the property

(
SI
N

)2 = IN (9.76)

such that
(
SI
N

)−1 = SI
N . We summarize:

Lemma 9.42 For N ∈ N \ {1}, the tridiagonal matrix AN can be diagonalized by
the sine matrix SI

N of type I in the form

SI
N AN SI

N = DN

with the invertible diagonal matrix DN := diag (σj )
N
j=1.

Applying Lemma 9.42 to the linear system (9.70), we obtain:

Theorem 9.43 The finite difference method of the boundary value problem (9.67)
leads to the linear system (9.70) which has the unique solution

u = SI
N D−1

N SI
N g . (9.77)

Remark 9.44 For a real input vector f = (fj )
N
j=1 ∈ R

N , the DST–I of length N can
be computed by DFT(2N + 2), see also Table 6.1 for a similar realisation. We want
to compute the vector f̂ = (

f̂k

)N
k=1 = SI

N f, i.e.

f̂k =
√

2

N + 1

N∑

j=1

fj sin
jkπ

N + 1
, k = 1, . . . , N .
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For this purpose, we form the odd vector a = (aj )
2N−1
j=0 ∈ R

2N by

aj :=
⎧
⎨

⎩

0 j = 0, N + 1 ,

fj j = 1, . . . , N ,

−f2N+2−j j = N + 2, . . . , 2N − 1

and calculate â = (
âk

)2N+1
k=0 = F2N+2 a. Simple calculation shows that Re âk = 0,

k = 1, . . . , N , and

f̂k = − 1√
2N + 2

Im âk , k = 1, . . . , N .

Remark 9.45 The linear system (9.70) can be solved in O(N) arithmetic operations
using the Cholesky factorization of the tridiagonal matrix AN . Otherwise, the
solution u of (9.70) can be calculated by two DST–I of length N and scaling.
The DST–I of length N can be realized by FFT of length 2N + 2. Thus we need
O(N logN) arithmetic operations for the computation of (9.77).

A similar approach can be used for other boundary value problems of (9.67) (see
[362, pp. 247–253] and [346]).

After these preliminaries, we present a numerical solution of the boundary value
problem of the Poisson equation (9.66) in the open unit square Q = (0, 1)2.

Example 9.46 The Poisson equation −(Δu)(x, y) = x2 + y2 for (x, y) ∈ Q with
the boundary conditions u(x, 0) = 0, u(x, 1) = − 1

2x
2, u(0, y) = sin y, u(1, y) =

e sin y − 1
2 y2 for x, y ∈ [0, 1] has the solution u(x, y) = ex sin y − 1

2 x2 y2.

We use a uniform grid of Q̄ with the grid points (xj , yk), j, k = 0, . . . , N + 1,
where xj := j h, yk := k h, and h := (N + 1)−1. In the case j, k ∈ {1, . . . , N},
we say that (xj , yk) ∈ Q is an interior grid point. Figure 9.8 shows the (interior)
grid points in the unit square for N = 5. Now we discretize the problem (9.66) and
consider

−(Δu)(xj , yk) = f (xj , yk) , j, k = 1, . . . , N ,

u(0, yk) = αk := ϕ(0, yk) , u(1, yk) = βk := ϕ(1, yk) , k = 0, . . . , N + 1 ,

u(xj , 0) = μj := ϕ(xj , 0) , u(xj , 1) = νj := ϕ(xj , 1) , j, k = 0, . . . , N + 1 .

Fig. 9.8 Grid points and
interior grid points in the unit
square

1

1
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Setting uj,k := u(xj , yk) and fj,k := f (xj , yk), we approximate (Δu)(xj , yk) at
each interior grid point (xj , yk) by the discrete Laplacian

(Δhu)(xj , yk) := 1

h2

(
uj−1,k + uj+1,k − 2 uj,k

)+ 1

h2

(
uj,k−1 + uj,k+1 − 2 uj,k

)

= 1

h2

(
uj−1,k + uj+1,k + uj,k−1 + uj,k+1 − 4 uj,k

)
(9.78)

Obviously, the discrete Laplacian is the sum of two central partial difference
quotients of second order.

Lemma 9.47 If u ∈ C4(Q̄), then for each interior grid point (xj , yk) we have the
estimate

∣
∣(Δu)(xj , yk)− (Δhu)(xj , yk)

∣
∣ ≤ h2

12

(∥
∥∂4u

∂x4

∥
∥
C(Q̄)

+ ∥
∥∂4u

∂y4

∥
∥
C(Q̄)

)
.

Similarly to the proof of Lemma 9.39, the above estimate can be shown by using
two-dimensional Taylor’s formula and intermediate value theorem. For shortness,
the proof is omitted here.

If we replace the Laplacian (Δu)(xj , yk) by the discrete Laplacian (9.78), we
obtain the following equation at each interior grid point

4 uj,k−uj−1,k−uj+1,k−uj,k−1−uj,k+1 = h2 fj,k , j, k = 1, . . . , N , (9.79)

where we include the boundary conditions. For the interior grid point (x1, y1) this
means that

4 u1,1 − u2,1 − u1,2 = h2 f1,1 + α1 + μ1 .

Setting

gj,k := h2 fj,k + αk δj−1 + βk δN−j + μj δk−1 + νj δN−k , j, k = 1, . . . , N ,

and introducing the vectors

u := (
u1,1, . . . , u1,N , . . . , uN,1, . . . , uN,N

) ∈ R
N2

,

g := (
g1,1, . . . , g1,N , . . . , gN,1, . . . , gN,N

) ∈ R
N2

,

and the Kronecker sum

MN2 := (
AN ⊗ IN

)+ (
IN ⊗ AN

) ∈ R
N2×N2

,

where ⊗ denotes the Kronecker product of matrices (see Sect. 3.4), from (9.79) we
obtain the linear system

MN2 u = g . (9.80)
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Then MN2 is a symmetric, weak diagonally dominant band matrix with bandwidth
2N − 1, where at most five nonzero entries are in each row. The fast Poisson solver
is mainly based on the diagonalization of MN2 by the Kronecker product SI

N ⊗ SI
N .

Lemma 9.48 The Kronecker sum MN2 can be diagonalized by the Kronecker
product SI

N ⊗ SI
N , i.e.

(
SI
N ⊗ SI

N

)
MN2

(
SI
N ⊗ SI

N

) =
((

DN ⊗ IN
)+ (

IN ⊗ DN

))
, (9.81)

where

(
DN ⊗ IN

)+ (
IN ⊗ DN

) = diag
(
μ1,1, . . . , μ1,N , . . . , μN,1, . . . , μN,N

)

is an invertible diagonal matrix with the main diagonal elements

μj,k = 4
(

sin
jπ

2 (N + 1)

)2 + 4
(

sin
jπ

2 (N + 1)

)2
, j, k = 1, . . . , N .

Proof Using the properties of the Kronecker product (see Theorem 3.42) and
Lemma 9.42, we obtain by (9.76) that

(
SI
N ⊗ SI

N

) (
AN ⊗ IN

) (
SI
N ⊗ SI

N

) = (
SI
N AN SI

N

)⊗ IN = DN ⊗ IN .

Analogously, we see that

(
SI
N ⊗ SI

N

) (
IN ⊗ AN

) (
SI
N ⊗ SI

N

) = IN ⊗ DN .

Hence the formula (9.81) is shown. By Lemma 9.42 we know that

DN = diag
(
σj

)N
j=1 .

From (9.74) we conclude that

μj,k = σj + σk = 4
(

sin
jπ

2 (N + 1)

)2 + 4
(

sin
kπ

2 (N + 1)

)2
, j, k = 1, . . . , N .

Obviously, all μj,k positive and fulfill 0 < μ1,1 ≤ μj,k < 8.

By Lemma 9.48, the matrix MN2 is invertible and its inverse reads by (9.81) as
follows:

M−1
N2 =

(
SI
N ⊗ SI

N

)
diag

(
μ−1

1,1, . . . , μ−1
N,N

) (
SI
N ⊗ SI

N

)
. (9.82)

Thus the linear system (9.80) is uniquely solvable.
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Theorem 9.49 The finite difference method of the boundary value problem (9.66)
leads to the linear system (9.80) which has the unique solution

u = M−1
N2 g = (

SI
N ⊗ SI

N

)
diag

(
μ−1

1,1, . . . , μ−1
N,N

) (
SI
N ⊗ SI

N

)
g . (9.83)

Remark 9.50 The vector u can be computed by two transforms with SI
N ⊗ SI

N and
scaling. We consider the transform

h := (
SI
N ⊗ SI

N

)
g = (

h1,1, . . . , h1,N , . . . , hN,1, . . . , hN,N

) ∈ R
N2

.

Then we receive by the definition of the Kronecker product SI
N ⊗ SI

N in Sect. 3.4

hm,n = 2

N + 1

N∑

j=1

N∑

k=1

gj,k sin
jmπ

N + 1
sin

knπ

N + 1
, m, n = 1, . . . , N ,

i.e., the matrix
(
hm,n

)N
m,n=1 is equal to the two-dimensional DST–I with size N ×

N which can be realized by a fast algorithm of the two-dimensional DFT of size
(2N + 2) × (2N + 2), if N + 1 is a power of two. Thus the computation requires
only O(N2 logN) arithmetic operations. This is now the fastest way to solve the
linear system (9.80).

We summarize:

Algorithm 9.51 (Fast Poisson Solver)
Input:N ∈ N \ {1}, N + 1 power of two, h = (N + 1)−1,
xj = j h, yk = k h, fj,k := f (xj , yk) for j, k = 1, . . . , N ,
αk := ϕ(0, yk), βk := ϕ(1, yk) for k = 1, . . . , N ,
μj := ϕ(xj , 0), νj := ϕ(xj , 1) for j = 1, . . . , N , where f ∈ C(Q̄) and ϕ ∈
C(∂Q).

1. Precompute the values

μ−1
m,n :=

(
4
(

sin
mπ

2 (N + 1)

)2 + 4
(

sin
nπ

2 (N + 1)

)2
)−1

, m, n = 1, . . . , N .

2 Form the values

gj,k := h2 fj,k + αk δj−1 + βk δN−j + μj δk−1 + νj δN−k , j, k = 1, . . . , N .

3. Using a fast algorithm of the two-dimensional DST–I with size N ×N , compute

g̃m,n := 2

N + 1

N∑

j=1

N∑

k=1

gj,k sin
jmπ

N + 1
sin

knπ

N + 1
, m, n = 1, . . . , N .
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4. Calculate

hm,n := μ−1
m,n g̃m,n , m, n = 1, . . . , N .

5. Using a fast algorithm of the two-dimensional DST–I with size N ×N , compute

ũj,k := 2

N + 1

N∑

m=1

N∑

n=1

hm,n sin
jmπ

N + 1
sin

knπ

N + 1
, j, k = 1, . . . , N .

Output: ũj,k approximate value of u(xj , yk) for j, k = 1, . . . , N .
Computational cost: O(N2 logN).

Remark 9.52 This method can be extended to a rectangular domain with different
step sizes in x- and y-direction. A similar approach can be used for other boundary
value problems of (9.66), see [346] and [362, pp. 247–253].

Under the assumption u ∈ C4(Q̄), we present an error analysis for this method.
The local discretization error at an interior grid point (xj , yk), j, k = 1, . . . , N , is
defined as

dj,k := −
(
Δhu

)
(xj , yk)− fj,k .

By Lemma 9.47, the local discretization error dj,k can be estimated by

|dj,k| ≤ c h2 , j, k = 1, . . . , N , (9.84)

with the constant

c := 1

12

(∥
∥∂4u

∂x4

∥
∥
C(Q̄)

+ ∥
∥∂4u

∂y4

∥
∥
C(Q̄)

)
.

Now we explore the error

ej,k := u(xj , yk)− ũj,k , j, k = 0, . . . , N + 1 ,

where ũj,k means the approximate value of u(xj , yk). By the boundary conditions
in (9.66) we have

e0,k = eN+1,k = ej,0 = ej,N+1 = 0 , j, k = 0, . . . , N + 1 .

From the definition of dj,k it follows that

−h2 (Δhu)(xj , yk)− h2 fj,k = h2 dj,k , j, k = 1, . . . , N .

Further we have by (9.79) that

4 ũj,k − ũj−1,k − ũj+1,k − ũj,k−1 − ũj,k+1 − h2 fj,k = 0 , j, k = 1, . . . , N .
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Subtracting of both equations yields

4 ej,k − ej−1,k − ej+1,k − ej,k−1 − ej,k+1 = h2 dj,k , j, k = 1, . . . , N .

Introducing the error vectors

e := (
e1,1, . . . , e1,N , . . . , eN,1, . . . , eN,N

) ∈ R
N2

,

d := (
d1,1, . . . , d1,N , . . . , dN,1, . . . , dN,N

) ∈ R
N2

,

we obtain the linear system

MN2 e = h2 d , (9.85)

which has the unique solution

e = h2 M−1
N2 d (9.86)

= h2 (
SI
N ⊗ SI

N

)
diag

(
μ−1

1,1, . . . , μ−1
N,N

) (
SI
N ⊗ SI

N

)
d .

Theorem 9.53 For a solution u ∈ C4(Q̄) of the boundary value problem (9.66),
the weighted Euclidean norm of the error vector e can be estimated by

1

N
‖e‖2 ≤ h2

96

(∥
∥∂4u

∂x4

∥
∥
C(Q̄)

+ ∥
∥∂4u

∂y4

∥
∥
C(Q̄)

)
.

Proof If
∥
∥M−1

N2

∥
∥

2 denotes the spectral norm of M−1
N2 , we receive by (9.86) that

‖e‖2 ≤ h2
∥
∥M−1

N2

∥
∥

2 ‖d‖2 .

Since SI
N is orthogonal and since 0 < μ1,1 ≤ μj,k for all j, k = 1, . . . , N , we

conclude that

∥
∥M−1

N2

∥
∥

2 = μ−1
1,1 =

1

8

(
sin

π

2 (N + 1)

)−2 ≤ 1

8
(N + 1)2 = 1

8
h−2 .

By (9.84) we have ‖d‖2 ≤ N c h2 and thus we obtain that

1

N
‖e‖2 ≤ c

8
h2 .

Remark 9.54 The fast Poisson solver of Algorithm 9.51 was derived from the finite
difference method. A different approach to an efficient numerical solution of (9.66)
with homogeneous boundary conditions, i.e., ϕ = 0, follows from the spectral
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method, since the functions sin(πjx) sin(πky) for j , k ∈ N are eigenfunctions
of the eigenvalue problem

−(Δu)(x, y) = λu(x, y) (x, y) ∈ Q,

u(x, y) = 0 , (x, y) ∈ ∂Q .

Thus we construct a numerical solution u of (9.66) with ϕ = 0 in the form

u(x, y) =
N∑

j=1

N∑

k=1

ûj,k sin(πjx) sin(πky)

such that

− (Δu)(x, y) =
N∑

j=1

N∑

k=1

ûj,k π
2(j2 + k2) sin(πjx) sin(πky) . (9.87)

Assume that f ∈ C(Q̄) with vanishing values on ∂Q is approximated by

N∑

j=1

N∑

k=1

f̂j,k sin(πjx) sin(πky) , (9.88)

where the coefficients f̂j,k are determined by the interpolation conditions

f (xm, yn) = fm,n =
N∑

j=1

N∑

k=1

f̂j,k sin
πjm

N + 1
sin

πkn

N + 1
, m, n = 1, . . . , N .

Using the orthogonal sine matrix SI
N =

√
2

N+1

(
sin jmπ

N+1

)N
j,m=1, we obtain

(
fm,n

)N
m,n=1 =

N + 1

2
SI
N

(
f̂j,k

)N
j,k=1 SI

N

and hence

(
f̂j,k

)N
j,k=1 =

2

N + 1
SI
N

(
fm,n

)N
m,n=1 SI

N .

Comparing (9.87) and (9.88), we set

ûj,k := f̂j,k

π2 (j2 + k2)
, j, k = 1, . . . , N .
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Finally we obtain the values um,n at all interior grid points (xm, yn) as

(
um,n

)N
m,n=1 =

N + 1

2π2 SI
N

( f̂j,k

j2 + k2

)N
j,k=1 SI

N .

See [369] for a discussion of the different eigenvalue solution.

A similar method based on a pseudospectral Fourier approximation and a
polynomial subtraction technique is presented in [12]. Fast Poisson solvers for
spectral methods based on the alternating direction implicit method are given in
[116].

9.6 Spherical Fourier Transforms

The Fourier analysis on the unit sphere S
2 := {x ∈ R

3 : ‖x‖2 = 1} has practical
significance, for example in tomography, geophysics, seismology, meteorology, and
crystallography. Spherical Fourier series are often used for numerical computations.
They have similar remarkable properties as the Fourier series on the torus T. Many
solution methods used in numerical meteorology for partial differential equations
are based on Fourier methods. The major part of the computation time is required
by the calculation of the partial sums of spherical Fourier series [43, p. 402].
Numerically stable, fast algorithms for discrete spherical Fourier transforms are
therefore of great interest.

Using spherical coordinates, each point x ∈ S
2 can be represented as

x = (sin θ cosφ, sin θ sin φ, cos θ) ,

where θ ∈ [0, π] is the polar angle and φ ∈ [0, 2π) is the azimuthal angle of
x. In other words, θ is the angle between the unit vectors (0, 0, 1) and x =
(x1, x2, x3)

 and φ is the angle between the vectors (1, 0, 0) and (x1, x2, 0).
Thus any function f : S2 → C can be written in the form f (θ, φ) with (θ, φ) ∈
[0, π] × [0, 2π). By L2(S

2) we denote the Hilbert space of square integrable
functions f defined on S

2, with

‖f ‖2
L2(S

2)
:= 1

4π

∫ 2π

0

( ∫ π

0
|f (θ, φ)|2 sin θ dθ

)
dφ <∞ .

The inner product of f , g ∈ L2(S
2) is given by

〈f, g〉L2(S2) :=
1

4π

∫ 2π

0

( ∫ π

0
f (θ, φ) g(θ, φ) sin θ dθ

)
dφ .
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First we introduce some special functions. For k ∈ N0, the kth Legendre polynomial
is defined as

Pk(x) := 1

2k k!
dk

dxk
(x2 − 1)k, x ∈ [−1, 1] .

Further the associated Legendre function Pn
k for n ∈ N0 and k ≥ n is given by

Pn
k (x) :=

√
(k − n)!
(k + n)! (1− x2)n/2 dn

dxn
Pk(x) , x ∈ [−1, 1] . (9.89)

Then the spherical harmonics Yn
k of degree k ∈ N0 and order n ∈ [−k, k] ∩ Z are

of the form

Yn
k (θ, φ) := P

|n|
k (cos θ) ei nφ . (9.90)

Note that associated Legendre functions and spherical harmonics are not uniformly
defined in the literature. The set {Yn

k : k ∈ N0 , n ∈ [−k, k] ∩ Z} forms an
orthogonal basis of L2(S

2), where we have

〈Yn
k , Ym

� 〉L2(S
2) =

1

2k + 1
δk−� δn−m .

An expansion of f ∈ L2(S
2) into a Fourier series with respect to the orthogonal

basis of spherical harmonics is called a spherical Fourier series. We say that a
function f ∈ L2(S

2) has the bandwidth N ∈ N, if f is equal to the partial sum
of the spherical Fourier series

f (θ, φ) =
N∑

k=0

k∑

n=−k

an
k (f ) Y n

k (θ, φ) . (9.91)

The spherical Fourier coefficients of f are given by

an
k (f ) := 〈f, Y n

k 〉L2(S2)

(〈Yn
k , Y n

k 〉L2(S2)

)−1

= 2k + 1

4π

∫ 2π

0

( ∫ π

0
f (θ, φ) Y n

k (θ, φ) sin θ dθ
)
dφ (9.92)

with respect to the orthogonal basis of the spherical harmonics. Sometimes, the
finite expansion in (9.91) is called a spherical polynomial of degree N .

We assume that f is given in the form (9.91). We are interested in a fast and
numerically stable algorithm for the evaluation of

f (θ�, φ�) =
N∑

k=0

k∑

n=−k

an
k (f ) Y n

k (θ�, φ�) , � = 0, . . . ,M − 1 , (9.93)
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at arbitrary points (θ�, φ�) ∈ [0, π] × [0, 2π) with given spherical Fourier
coefficients an

k (f ) ∈ C. Furthermore we are interested in the “adjoint problem,”
in the computation of

ǎn
k :=

M−1∑

�=0

f� Y
n
k (θ�, φ�) , k = 0, . . . , N; n = −k, . . . , k , (9.94)

for given data f� ∈ C.
First, we develop a fast algorithm for the problem (9.93). Then we obtain

immediately a fast algorithm for the adjoint problem (9.94) by writing the algorithm
in matrix–vector form and forming the conjugate transpose of this matrix product.
A fast algorithm for the adjoint problem will be needed for computing the spherical
Fourier coefficients (9.92) of the function f by a quadrature rule, see Sect. 9.6.4.

The direct computation of the M function values f (θ�, φ�) in (9.93) at arbitrarily
distributed points (θ�, φ�) on the unit sphere S

2 needs O(N2 M) arithmetical
operations and is denoted by discrete spherical Fourier transform, abbreviated as
DSFT. For special grids of the form

( sπ
T

,
tπ

T

) ∈ [0, π] × [0, 2π) , s = 0, . . . , T ; t = 0, . . . , 2T − 1 , (9.95)

with 2N+1 ≤ T ≤ 2�log2(N+1)�, there exist fast realizations of the DSFT, which we
denote by fast spherical Fourier transforms, abbreviated as FSFT. The first FSFT
has been developed by Driscoll and Healy [88], where the computational cost has
been reduced from O(N3) to O(N2 log2 N) flops. Further fast algorithms for that
purpose can be found in [43, 161, 242, 292, 345].

Remark 9.55 The essential drawback of the grid in (9.95) is the fact that the
corresponding points on S

2 are clustered near the north pole (0, 0, 1) and the
south pole (0, 0, −1). For many applications, such a restriction is not realistic.
Therefore it is necessary to develop algorithms for arbitrarily distributed points on
the unit sphere.

In the essential case of arbitrarily distributed points (θ�, φ�) ∈ [0, π] × [0, 2π),
� = 0, . . . ,M − 1, we speak about a nonequispaced discrete spherical Fourier
transform, abbreviated as NDSFT. The main idea is to combine the computation of
NDSFT with the NFFT, see Chap. 7. We will suggest a fast algorithm for NDSFT,
where the computational cost amounts to O(N2 (logN)2 + M) flops. We denote
such an algorithm as nonequispaced fast spherical Fourier transform, abbreviated
as NFSFT. We have the following relations to the transforms and algorithms on the
torus:
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Torus T Unit sphere S
2

DFT (see Chap. 3) DSFT

FFT (see Chap. 5) FSFT

NDFT (see Chap. 7) NDSFT

NFFT (see Chap. 7) NFSFT

The fundamental idea is the fast realization of a basis exchange, such that the
function in (9.91) can be approximately written in the form

f (θ, φ) ≈
N∑

n=−N

N∑

k=−N

cnk e2i k θ ei nφ (9.96)

with certain coefficients cnk ∈ C. In the second step we compute f at arbitrary points
(θ�, φ�) ∈ [0, π] × [0, 2π), � = 0, . . . ,M − 1, by using a two-dimensional NFFT,
see Algorithm 7.1.

In the following Sect. 9.6.1 we sketch a simple realization for an NDSFT. In
Sect. 9.6.2 we present an FSFT on a special grid. Then we describe an algorithm
for the fast and approximate evaluation of an NDSFT in Sect. 9.6.3. Finally in
Sect. 9.6.4, some results of fast quadrature and approximation on the unit sphere
are sketched.

9.6.1 Discrete Spherical Fourier Transforms

We follow the same lines as in [212]. For given spherical Fourier coefficients
an
k (f ) ∈ C with k = 0, . . . , N and n = −k, . . . , k in (9.91), we are interested

in the computation of M function values f (θ�, φ�), � = 0, . . . ,M − 1. To this end,
we interchange the order of summation in (9.91). Using (9.90) and the function

hn(x) :=
N∑

k=|n|
an
k (f ) P

|n|
k (x) , n = −N, . . . , N , (9.97)

we obtain the sum

f (θ�, φ�) =
N∑

k=0

k∑

n=−k

an
k (f ) Y n

k (θ�, φ�) =
N∑

n=−N

hn(cos θ�) ei nφ� . (9.98)

We immediately find a first algorithm for an NDSFT, i.e., for the evaluation of f

in (9.91) at arbitrarily distributed points (θ�, φ�) on the unit sphere S2.
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Algorithm 9.56 (NDSFT)
Input:N , M ∈ N, an

k (f ) ∈ C for k = 0, . . . , N and n = −k, . . . , k,
(θl, φl) ∈ [0, π] × [0, 2π) for � = 0, . . . ,M − 1.

1. Compute the values

hn(cos θ�) :=
N∑

k=|n|
an
k (f ) P

|n|
k (cos θ�) , � = 0, . . . ,M − 1 ,

for all n = −N, . . . , N by the Clenshaw Algorithm 6.19.
2. Compute the values

f (θ�, φ�) :=
N∑

n=−N

hn(cos θ�) ei nφ� , � = 0, . . . ,M − 1 .

Output: f (θ�, φ�) ∈ C, � = 0, . . . ,M − 1, function values of (9.91).
Computational cost: O(M N2).

9.6.2 Fast Spherical Fourier Transforms

In order to use the tensor product structure of the spherical harmonics Yn
k (θ, φ)

in (9.90), we develop a fast method for the computation of the discrete spherical
Fourier transform on special grid (DSFT). If we apply fast one-dimensional algo-
rithms with respect to θ and φ and the row–column method (see Algorithm 5.23),
then we obtain an FSFT.

We start with the task to compute the function in (9.91) for given spherical
Fourier coefficients an

k (f ) for k = 0, . . . , N and n = −k, . . . , k on the special
grid in (9.95). Considering hn in (9.97) we compute the values

hs,n := hn

(
cos

sπ

T

)
, s = 0, . . . , T , (9.99)

for n = −N, . . . , N and rewrite f in (9.91) as

f
(sπ
T

,
tπ

2T

) =
N∑

n=−N

hs,n ei n t/(2T ), t = 0, . . . , 2T − 1 . (9.100)

for all s = 0, . . . , T . The computation of the function values in (9.100) can be
realized by T + 1 DFT(2T ), and the obtained DSFT has a computational cost of
O(N3).

In order to speed up the computation for the DSFT, we compute for each
n = −N, . . . , N the sum in (9.99) with a fast Legendre function transform,
abbreviated as FLT. The idea for an FLT was proposed by Driscoll and Healy [88].
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The associated Legendre functions Pn
k fulfill the three-term recurrence relation

Pn
k+1(x) = vnk x Pn

k (x)+wn
k Pn

k−1(x), k = n, n+ 1, . . . , (9.101)

with the initial conditions

Pn
n−1(x) := 0 , P n

n (x) = λn (1− x2)n/2, λn :=
√
(2n)!

2n n! ,

and with the coefficients

vnk :=
2k + 1√

(k − n+ 1)(k + n+ 1)
, wn

k := −
√
(k − n)(k + n)√

(k − n+ 1)(k + n+ 1)
.

(9.102)

A useful idea is to define the associated Legendre functionsPn
k also for k = 0, . . . , n

by means of the modified three-term recurrence relation

Pn
k+1(x) = (αn

k x + βn
k ) P

n
k (x)+ γ n

k P n
k−1(x) (9.103)

for k ∈ N0 with

αn
0 :=

⎧
⎨

⎩

1 n = 0 ,

0 n odd ,

−1 n �= 0 even ,

αn
k :=

{
(−1)k+1 k = 1, . . . , n− 1 ,

vnk k = n, n+ 1, . . . ,

βn
k :=

{
1 k = 0, . . . , n− 1 ,

0 k = n, n+ 1, . . . ,
γ n
k :=

{
0 k = 0, . . . , n− 1 ,

wn
k k = n, n+ 1, . . . .

(9.104)

Here we set Pn
−1(x) := 0, and Pn

0 (x) := λn for even n and Pn
0 (x) := λn (1−x2)1/2

for odd n. For k ≥ n, this definition coincides with the recurrence (9.101). It can be
easily verified by (9.89) that Pn

k is a polynomial of degree k, if n is even. Further,
(1 − x2)−1/2Pn

k is a polynomial of degree k − 1, if n is odd. Using the recurrence
coefficients from (9.104) and introducing a shift parameter c ∈ N0, we define the
associated Legendre polynomials Pn

k (x, c), see (6.88), by

Pn−1(x, c) := 0 , P n
0 (x, c) := 1 ,

P n
k+1(x, c) = (αn

k+c x + βn
k+c) P

n
k (x, c)+ γ n

k+c P
n
k−1(x, c) , k ∈ N0 .

(9.105)

Now we can apply the discrete polynomial transform, see Sect. 6.5 and Al-
gorithm 6.61. Note that a straightforward implementation of this transform is
numerically unstable for large bandwidth. Therefore some stabilization steps are
necessary. Stabilized versions have been suggested in [195, 292, 293]. For further
approaches see [4, 155, 161, 173, 194, 242, 311, 345, 358, 359].
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The stabilization method presented in [293] requiresO(N2(logN)2) arithmetical
operations. For the computation of the sum in (9.100) we need for each s = 0, . . . , T
an FFT of length 2T . The proposed method is summarized in the following
algorithm.

Algorithm 9.57 (FSFT on the Special Grid in (9.95))
Input:N ∈ N, an

k (f ) ∈ C for k = 0, . . . , N and n = −k, . . . , k,
2N + 1 ≤ T ≤ 2�log2 (N+1)�.

1. Using FLT, compute the values

hs,n =
N∑

k=|n|
an
k (f ) P

|n|
k

(
cos

sπ

T

)

for all s = 0, . . . , T and n = −N, . . . , N .
2. Applying FFT, compute for all s = 0, . . . , T − 1 the values

f (
sπ

T
,
tπ

2T
) =

N∑

n=−N

hs,n eintπ/(2T ), t = 0, . . . , 2T − 1 .

Output: f
(
sπ
T
, tπ

2T

)
for s = 0, . . . , T and t = 0, . . . , 2T − 1 function values of f

in (9.91) on the grid in (9.95).
Computational cost: O

(
N2 (logN)2

)
.

9.6.3 Fast Spherical Fourier Transforms for Nonequispaced
Data

In this subsection we develop a fast algorithm for the NDSFT improving Algo-
rithm 9.56. The fast algorithm is denoted by NFSFT. We will start again with
the fast Legendre transform (FLT) in order to compute the basis exchange. Then
we will apply the two-dimensional NFFT, see Algorithm 7.1, in order to evaluate
the trigonometric polynomial at arbitrarily distributed points (θ�, φ�) ∈ [0, π] ×
[0, 2π), � = 0, . . . ,M − 1.

The spherical polynomial in (9.91) can be written for arbitrary (θ, φ) ∈ [0, π]×
[0, 2π) in the form

f (θ, φ) =
N∑

n=−N

hn(cos θ) ei nφ , (9.106)
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where hn is given in (9.97). For even |n|, we define the polynomial gn of degree N

by

gn(x) :=
N∑

k=|n|
an
k (f ) P

|n|
k (x) ∈PN . (9.107)

For odd |n|, we introduce the polynomial gn of degree N − 1 by

gn(x) := 1√
1− x2

N∑

k=|n|
an
k (f ) P

|n|
k (x) ∈PN−1 . (9.108)

As usual, we denote by PN the set of all polynomials of degree less or equal to N .
The relation to hn in (9.97) is given by

hn(cos θ) =
{
gn(cos θ) n even ,

(sin θ) gn(cos θ) n odd .
(9.109)

As in step 1 of Algorithm 9.57, we compute the data

gs,n := gn
(

cos
sπ

T

)
, s = 0, . . . , T ; n = −N, . . . , N , (9.110)

with 2N + 1 ≤ T ≤ 2�log2(N+1)� using an FLT. Then we compute the Chebyshev
coefficients ãn

k ∈ C in

gn(cos θ) =
{∑N

k=0 ã
n
k Tk(cos θ) n even ,

∑N−1
k=0 ãn

k Tk(cos θ) n odd ,
(9.111)

using the DCT–I Algorithm 6.28. We take into account that gn are trigonometric
polynomials of degree N or rather N − 1.

Applying the known relation

Tk(cos θ) = cos(k θ) = 1

2

(
ei k θ + e−i k θ

)
,

for even n we obtain the trigonometric polynomial

gn(cos θ) =
N∑

k=−N

bn
k ei k θ

with the Fourier coefficients

bn
k :=

⎧
⎨

⎩

ãn
0 k = 0 ,

1
2 ãn
|k| k �= 0 .

(9.112)
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For odd n it follows that gn(cos θ) is a trigonometric polynomial of degree N − 1,
since

hn(cos θ) = (sin θ)

N−1∑

k=−N+1

bn
k ei k θ

= 1

2i

(
ei θ − e−i θ)

N−1∑

k=−N+1

bn
k ei k θ =

N∑

k=−N

b̃n
k ei k θ

with

2i b̃n
k :=

⎧
⎪⎪⎨

⎪⎪⎩

−bn
k+1 k = −N, −N + 1 ,

bn
k−1 k = N − 1, N ,

bn
k−1 − bn

k+1 k = −N + 2, . . . , N − 2 .

(9.113)

Then we can write the trigonometric polynomial in (9.109) in the form

hn(cos θ) =
N∑

k=−N

cnk ei k θ (9.114)

with the Fourier coefficients

cnk :=
⎧
⎨

⎩

bn
k n even ,

b̃n
k n odd .

(9.115)

Inserting the sum in (9.114) into (9.106), we arrive at the representation

f (θ, φ) =
N∑

n=−N

N∑

k=−N

cnk ei k θ ei nφ (9.116)

with complex coefficients cnk ∈ C. We stress again that we have computed the dis-
crete Fourier coefficients cnk in (9.116) from the given spherical Fourier coefficients
an
k (f ) in (9.91) with an exact algorithm that requires O

(
N2 (logN)2

)
arithmetic

operations independently of the chosen points (θ�, φ�) ∈ [0, π] × [0, 2π).
Geometrically, this transform maps the sphere S to the “outer half” of the ring

torus given by

x = (
(r + sin θ) cosφ, (r + sin θ) sin φ, cos θ

)
, (θ, φ) ∈ [0, π] × [0, 2π)

with fixed r > 1. The “inner half” of the ring torus with the parameters (θ, φ) ∈
[π, 2π) × [0, 2π) is continued smoothly, see Fig. 9.9. We decompose f into an
even and odd function and construct the even–odd continuation, see Fig. 9.10 for
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Fig. 9.9 Topography of the earth (left) and the “outer half” of the ring torus (right), cf. Figure 5.1
in [212]

Fig. 9.10 The normalized spherical harmonic Y−2
3 (θ, φ), top: real part (left) and imaginary

part (right) of this normalized spherical harmonic on S
2, down: Normalized spherical harmonic

Y−2
3 (θ, φ) on a ring torus



9.6 Spherical Fourier Transforms 517

the normalized spherical harmonic

√
7 Y−2

3 (θ, φ) =
√

105

8
(sin θ)2 (cos θ) e−2i φ .

On the ring torus we illustrate this normalized spherical harmonic for (θ, φ) ∈
[0, 2π)2.

In the final step we compute f at arbitrary points by using a two-dimensional
NFFT, see Algorithm 7.1. We summarize:

Algorithm 9.58 (NFSFT)
Input:N , M ∈ N, an

k (f ) ∈ C for k = 0, . . . , N and n = −k, . . . , k,
(θ�, φ�) ∈ [0, π] × [0, 2π) for � = 0, . . . ,M − 1,
2N + 1 ≤ T ≤ 2�log2 (N+1)�.

1. Using FLT, compute the data

gn
(

cos
sπ

T

) :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

N∑

k=|n|
an
k (f ) P

|n|
k

(
cos

sπ

T

)
n even ,

1

sin sπ
T

N∑

k=|n|
an
k (f ) P

|n|
k

(
cos

sπ

T

)
n odd

for all n = −N, . . . , N and s = 0, . . . , T .
2. Compute the Chebyshev coefficients ãn

k in (9.111) for n = −N, . . . , N , by a fast
DCT–I algorithm, see Algorithm 6.28 or 6.35.

3. Determine the Fourier coefficients cnk by (9.112), (9.113), and (9.115) for k =
−N, . . . , N and n = −N, . . . , N .

4. Compute the function values

f (θ�, φ�) :=
N∑

n=−N

N∑

k=−N

cnk ei (k θ�+nφ�)

using a two-dimensional NFFT, see Algorithm 7.1.

Output: f (θ�, φ�) for � = 0, . . . ,M − 1.
Computational cost: O

(
N2 (logN)2 +M

)
.

Remark 9.59

1. Often we are interested in a real representation of real-valued function f ∈
L2(S

2) instead of (9.91). The real spherical Fourier series of a real-valued
function f ∈ L2(S

2) with bandwidth N is given by

f (θ, φ) =
N∑

k=0

(
a0
k Pk(cos θ)+

k∑

n=1

(
an
k cos(nφ)+ bn

k sin(nφ)
)
Pn
k (cos θ)

)
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with real coefficients an
k and bn

k . For the fast evaluation for this function in real
arithmetic one can develop similar algorithms. Instead of the NFFT one can use
the NFCT, see Algorithm 7.10 and the NFST, see Algorithm 7.12.

2. The algorithms of this section are part of the NFFT software, see [199, . . . /nfsft].
Furthermore there exists a MATLAB interface, see [199, . . . matlab/nfsft].

9.6.4 Fast Quadrature and Approximation on S
2

Finally we sketch some methods for the fast quadrature and approximation of
functions defined on the unit sphere S2 being relevant for solving partial differential
equations on the sphere, [43, Section 18.7]. In particular, partial sums (9.91)
of spherical Fourier series are used in applications. The bandwidth grows by
manipulating these series, e.g. by integration or multiplication.

An important subproblem is the projection onto a space of spherical polynomials
of smaller bandwidth. This task is known as spherical filtering, see [178]. Since the
computational cost of spherical filtering amounts to O(N3) flops for O(N2) points
on S

2, fast algorithms are of great interest. Jakob–Chien and Alpert [178] presented
a first fast algorithm for spherical filtering based on the fast multipole method,
which requires O(N2 logN) flops. Later this approach was improved by Yarvin
and Rokhlin [386]. Böhme and Potts suggested a method for spherical filtering
based on the fast summation method, see Algorithm 7.15 with the kernel 1/x, see
[37, 38]. This approach is easy to implement, it is based on the NFFT and requires
O(N2 logN) arithmetic operations. Furthermore, this method can be used for the
fast calculation of wavelet decompositions on S

2, see [37, 38].
In order to compute the spherical Fourier coefficients (9.92) by a quadrature

rule on S
2, we need to solve the adjoint problem, i.e., the fast evaluation of sums

in (9.94) for given function values f� = f (θ�, φ�) ∈ C, � = 0, . . . ,M−1. Note that
the obtained values ǎn

k in (9.94) do not exactly coincide with the spherical Fourier
coefficients an

k (f ) from (9.91) which are given in (9.92). Good approximations of
the spherical Fourier coefficients an

k (f ) can be obtained from sampled function
values f (θ�, φ�), � = 0, . . . ,M−1, at points (θ�, φ�) ∈ [0, π]×[0, 2π) provided
that a quadrature rule with weights w� and sufficiently high degree of exactness is
available, see also [121, 240, 241]. Then the sum (9.94) changes to

an
k (f ) =

M∑

�=1

w� f (θ�, φ�) Y
n
k (θ�, φ�) . (9.117)

The computation of spherical Fourier coefficients from discrete sampled data has
major importance in the field of data analysis on the sphere S

2. For special grids
on the sphere one can use the Clenshaw–Curtis quadrature with respect to cos θ ,
see Sect. 6.4.2, and equidistant points with respect to φ. Such quadrature rules have
been suggested in [88, 292].
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Theorem 9.60 Let f ∈ L2(S
2) be a bandlimited function of the form (9.91). Then

we can compute the spherical Fourier coefficients an
k (f ) for k = 0, . . . , N and

n = −k, . . . , k by the quadrature rule

an
k (f ) = 1

2j+1

T∑

s=0

T−1∑

t=0

εswsf

(
πs

T
,

2πt

T

)
Y−n
k

(
πs

T
,

2πt

T

)
(9.118)

with 2N ≤ T , ε0 = εT := 2−1, εs := 1; s = 1, . . . , T − 1, and with the Clenshaw–
Curtis weights, see Sect. 6.4.2,

ws := 1

T

T/2∑

u=0

εu
−2

4u2 − 1
cos

2suπ

T
, s = 0, . . . , T .

Proof By definition of f in (9.91), it suffices to consider the basis functions
f (θ, φ) = Ym

l (θ, φ), l = 0, . . . , N ; m = −l, . . . , l. Their Fourier coefficients
can be written as

an
k (f ) = 1

2

∫ 1

−1
P
|m|
l (x)P

|n|
k (x) dx · 1

2π

∫ 2π

0
ei(m−n)φ dφ . (9.119)

Now it follows for m, n = −N, . . . , N that

δm,n = 1

2π

∫ 2π

0
ei(m−n)φ dφ = 1

T

T−1∑

t=0

e2π i(m−n)t/T . (9.120)

Hence, for m �= n, the Fourier coefficients an
k (f ) vanish. For m = n, we verify that

P
|n|
l P

|n|
k is an algebraic polynomial of degree≤ 2N ≤ T such that Clenshaw–Curtis

quadrature gives

1

2

∫ 1

−1
P
|n|
l (x)P

|n|
k (x) dx =

T∑

s=0

εs wsP
|n|
l (cos

πs

T
) P

|n|
k (cos

πs

T
)

with the Chebyshev nodes cos πs
T

. Together with (9.119) and (9.120) this completes
the proof.

In many applications however, the distribution of the available data on the
sphere is predetermined by the underlying measurement process or by data storage
and access considerations. This often requires the use of techniques like spherical
hyperinterpolation, see [335], or approximate quadrature rules that differ from
classical quadrature formulas.

The implementation of the algorithm for computing an
k (f ) in (9.118), which is

the adjoint problem of the NFSFT in Algorithm 9.58, follows by writing the steps of
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Algorithm 9.58 in matrix–vector form and forming the conjugate transpose of this
matrix product, see [195]. In this way, one obtains a fast algorithm for the adjoint
problem which allows the efficient use of new quadrature schemes, see also [144].

Spherical t-Designs A spherical t-design is a finite point set on S
2 which provides

a quadrature rule on S
2 with equal weights being exact for spherical polynomials

up to degree t . Note that quadrature rules with equal weights are also known as
quasi-Monte Carlo rules. Based on the NFSFT and the algorithm of the adjoint
problem, we are able to evaluate spherical t-designs on S

2 for high polynomial
degree t ∈ N, see [140, 143]. The approach is based on computing local minimizers
of a certain quadrature error. This quadrature error was also used for a variational
characterization of spherical t-designs in [336].

It is commonly conjectured that there exist spherical t-designs with M ≈ 1
2 t

2

points, but a proof is unknown up to now. Recently, a weaker conjecture was
proved in [39], where the authors showed the existence of spherical t-designs with
M > c t2 points for some unknown constant c > 0. Moreover, in [64] it was
verified that for t = 1, . . . , 100, spherical t-designs with (t+1)2 points exist, using
the characterization of fundamental spherical t-designs and interval arithmetic. For
further recent developments regarding spherical t-designs and related topics, we
refer to the very nice survey article [13].

The construction of spherical t-designs is a serious challenge even for small
polynomial degrees t . For the minimization problem one can use several nonlinear
optimization methods on manifolds, like Newton and conjugate gradient methods.
By means of the NFSFT, evaluations of the approximate gradient and Hessian can
be performed by O

(
t2 log t + M (log ε)2

)
arithmetic operations, where ε > 0 is

a prescribed accuracy. Using these approaches, approximate spherical t-designs for
t ≤ 1000, even in the case M ≈ 1

2 t
2 have been presented in [141]. This method

has been also generalized to Gauss-type quadratures on S
2, where one does not

require a quadrature with equal weights, but can optimize the weights as well. In
this way, quadrature rules with a higher degree of exactness have been obtained
using the same number of sampling points. These nonlinear optimization methods
have been further generalized in order to approximate global extrema, see [142] and
to halftoning and dithering, see [145].

Scattered Data Approximation on S
2 Since the data collected on the surface of

the earth are available as scattered nodes only, least squares approximations and
interpolation of such data have attracted much attention, see, e.g., [43, 105, 121].
If we reconstruct a spherical polynomial of degree N ∈ N from sample values,
we can set up a linear system with M = (N + 1)2 interpolation constraints which
has to be solved for the unknown vector of Fourier coefficients of length (N + 1)2.
If the nodes for interpolation are chosen such that the interpolation problem has
always a unique solution, the sampling set is called a fundamental system. We can
relax the condition that the number of equations M coincides with the number of
unknowns (N + 1)2. Considering the overdetermined case M > (N + 1)2 or the
underdetermined case M < (N + 1)2 leads to better distributed singular values of
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the system matrix. Results using fast algorithms in combination with an iterative
solver were presented in [197]. For stability results see also [41, 249]. Scattered
data approximation using kernels is described in [121]. Employing radial kernels in
combination with the presented fast algorithms leads to a fast summation method
on the sphere as well, see [196].

FFT on the Rotation Group The theory of spherical Fourier transforms can be
extended to fast Fourier transforms on the rotation group SO(3). As known, SO(3)
is the group of all rotations about the origin of R3. During the past years, several
different techniques have been proposed for computing Fourier transforms on the
rotation group SO(3) motivated by a variety of applications, like protein–protein
docking [62] or texture analysis [57, 232, 320]. The spherical Fourier methods can
be generalized to Fourier methods on SO(3), see [207]. The algorithm to compute
an SO(3) Fourier synthesis is based on evaluating the Wigner-D functions D

m,n
� ,

which yield an orthogonal basis of L2(SO(3)). Using these Wigner-D functions, we
expand N-bandlimited functions f ∈ L2(SO(3)) into the sum

f =
N∑

k=0

k∑

m=−k

�∑

n=−�

a
m,n
k D

m,n
k . (9.121)

An algorithm for efficient and accurate evaluation of such N-bandlimited function
f ∈ L2(SO(3)) at arbitrary samples in SO(3) has been presented in [297].
For the scattered data approximation see [139] and for quadrature rules see
[140, 141]. These algorithms are also part of the freely available NFFT software
[199, ./examples/nfsoft]. Furthermore there exists a MATLAB interface, see [199,
./matlab/nfsoft].



Chapter 10
Prony Method for Reconstruction
of Structured Functions

The recovery of a structured function from sampled data is a fundamental problem
in applied mathematics and signal processing. In Sect. 10.1, we consider the
parameter estimation problem, where the classical Prony method and its relatives
are described. In Sect. 10.2, we study frequently used methods for solving the
parameter estimation problem, namely MUSIC (MUltiple SIgnal Classification),
APM (Approximate Prony Method), and ESPRIT (Estimation of Signal Parameters
by Rotational Invariance Technique). The algorithms for reconstructing exponential
sums will be derived for noiseless data and then extended to the case of noisy
data. The effectiveness the algorithms for noisy data depends in particular on the
condition of the involved Vandermonde matrices. We will deal with these stability
issues in Sect. 10.3.

In Sects. 10.4 and 10.5, we consider different applications of the Prony method.
We present an algorithm to recover spline functions from given samples of its
Fourier transform. Finally, we study a phase retrieval problem and investigate
the question whether a complex-valued function f can be reconstructed from the
modulus |f̂ | of its Fourier transform.

10.1 Prony Method

The following problem arises quite often in electrical engineering, signal process-
ing, and mathematical physics and is known as parameter estimation problem (see
[264, 284] or [235, Chapter 9]):

Recover the positive integer M , distinct parameters φj ∈ C with Imφj ∈
[−π, π), and complex coefficients cj �= 0, j = 1, . . . ,M , in the exponential sum

© Springer Nature Switzerland AG 2018
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of order M

h(x) :=
M∑

j=1

cj eφj x , x ∈ R , (10.1)

if noisy sampled data hk := h(k)+ ek , k = 0, . . . , N − 1, with N ≥ 2 M are given,
where ek ∈ C are small error terms. If Re φj = 0 for all j , then this problem is
called frequency analysis problem. In many applications, h(x) is an expansion into
damped exponentials, where Re φj ∈ [−α, 0] for small α > 0. Then the negative
real part of fj is the damping factor and the imaginary part of φj is the angular
frequency of the exponential eφj x .

In this problem, we have to detect the significant exponentials eφj of the signal
h. The classical Prony method works for noiseless sampled data of the exponential
sum (10.1) in the case of known order M . Following an idea of G.R. de Prony from
1795 (see [82]), we recover all parameters of the exponential sum (10.1), if sampled
data

h(k) :=
M∑

j=1

cj eφj k =
M∑

j=1

cj z
k
j , k = 0, . . . , 2M − 1 , (10.2)

are given, where zj := eφj are distinct points in C. We introduce the Prony
polynomial

p(z) :=
M∏

j=1

(z− zj ) =
M−1∑

k=0

pk z
k + zM , z ∈ C , (10.3)

with corresponding coefficients pk ∈ C. Further we define the companion matrix
CM(p) ∈ C

M×M of the Prony polynomial (10.3) by

CM(p) :=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 0 . . . 0 −p0

1 0 . . . 0 −p1

0 1 . . . 0 −p2
...

...
...

...

0 0 . . . 1 −pM−1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (10.4)

It is known that the companion matrix CM(p) has the property

det
(
z IM − CM(p)

) = p(z) ,

where IM ∈ C
M×M denotes the identity matrix. Hence the zeros of the Prony

polynomial (10.3) coincide with the eigenvalues of the companion matrix CM(p).
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Setting pM := 1, we observe the following relation for all m ∈ N0,

M∑

k=0

pk h(k +m) =
M∑

k=0

pk

( M∑

j=1

cj z
k+m
j

)

=
M∑

j=1

cj z
m
j

( M∑

k=0

pk z
k
j

)
=

M∑

j=1

cj z
m
j p(zj ) = 0 . (10.5)

Using the known values h(k), k = 0, . . . , 2M − 1, the formula (10.5) implies that
the homogeneous linear difference equation

M−1∑

k=0

pk h(k +m) = −h(M +m) , m = 0, . . . ,M − 1 , (10.6)

is satisfied. In matrix–vector notation, we obtain the linear system

HM(0)
(
pk

)M−1
k=0 = −(

h(M +m)
)M−1
m=0 (10.7)

with the square Hankel matrix

HM(0) :=

⎛

⎜
⎜
⎜
⎝

h(0) h(1) . . . h(M − 1)
h(1) h(2) . . . h(M)
...

...
...

h(M − 1) h(M) . . . h(2M − 2)

⎞

⎟
⎟
⎟
⎠
= (

h(k +m)
)M−1
k,m=0 . (10.8)

The matrix HM(0) is invertible, since the special structure (10.2) of the values h(k)

leads to the factorization

HM(0) = VM(z)
(
diag c

)
VM(z) ,

where the diagonal matrix diag c with c := (cj )
M
j=1 contains the nonzero coefficients

of (10.1) in the main diagonal, and where

VM(z) := (
z
j−1
k

)M
j,k=1 =

⎛

⎜
⎜
⎜
⎝

1 1 . . . 1
z1 z2 . . . zM
...

...
...

zM−1
1 zM−1

2 . . . zM−1
M

⎞

⎟
⎟
⎟
⎠

denotes the Vandermonde matrix generated by the vector z := (zj )
M
j=1. Since all zj ,

j = 1, . . . ,M , are distinct, the Vandermonde matrix VM(z) is invertible. Note that



526 10 Prony Method for Reconstruction of Structured Functions

by (10.2) we have

VM(z) c = (
h(k)

)M−1
k=0 . (10.9)

We summarize:

Algorithm 10.1 (Classical Prony Method)

Input:M ∈ N, sampled values h(k), k = 0, . . . , 2M − 1.

1. Solve the linear system (10.7).
2. Compute all zeros zj ∈ C, j = 1, . . . ,M , of the Prony polynomial (10.3), i.e.,

calculate all eigenvalues zj of the associated companion matrix (10.4). Form
rj := zj /|zj | and Reφj := ln |zj |, Imφj := Im(log rj ) ∈ [−π, π), j =
1, . . . ,M , where log is the principal value of the complex logarithm.

3. Solve the Vandermonde system (10.9).

Output: φj ∈ R+ i [−π, π), c = (cj )
M
j=1 ∈ C

M , j = 1, . . . ,M .

As shown, Prony’s idea is mainly based on the separation of the unknown param-
eters φj from the unknown coefficients cj . The main problem is the determination of
φj , since the coefficients cj are uniquely determined by the linear system (10.9). The
following remarks explain some extensions of the Prony method and connections to
related methods.

Remark 10.2 The Prony method can be also applied to the recovery of an extended
exponential sum

h(x) :=
M∑

j=1

cj (x) eφj x , x ≥ 0 ,

where cj (x) are polynomials of low degree. For simplicity, we sketch only the case
of linear polynomials cj (x) = cj,0 + cj,1x. With distinct zj = eφj , j = 1, . . . ,M ,
the corresponding Prony polynomial reads as follows:

p(z) :=
M∏

j=1

(z− zj )
2 =

2M−1∑

k=0

pk z
k + z2M . (10.10)

Assuming that the sampled values h(k), k = 0, . . . , 4M−1, are given, we can again
derive a relation

2M∑

k=0

pk h(k +m) = 0
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for m ∈ Z using that p(zj ) = p′(zj ) = 0 for zj = eφj . Thus, we have to solve the
linear system

2M−1∑

k=0

pk h(k + �) = −h(2M + �) , � = 0, . . . , 2M − 1 ,

and to compute all double zeros zj of the corresponding Prony polynomial in
(10.10). Introducing the confluent Vandermonde matrix

Vc
2M(z) :=

⎛

⎜⎜
⎜
⎜
⎜
⎝

1 0 . . . 1 0
z1 1 . . . zM 1
z2

1 2z1 . . . z2
M 2zM

...
...

...
...

z2M−1
1 (2M − 1)z2M−2

1 . . . z2M−1
M (2M − 1)z2M−2

M

⎞

⎟⎟
⎟
⎟
⎟
⎠

,

we finally have to solve the confluent Vandermonde system

Vc
2M(z) (c0,1, z1c1,1, . . . , cM,0, z1cM,1)

 = (
h(k)

)2M−1
k=0 .

Remark 10.3 The Prony method is closely related to Padé approximation (see
[370]). Let (fk)k∈N0 be a complex sequence with ρ := lim supk→∞ |fk |1/k < ∞.
The z-transform of such a sequence is the Laurent series

∑∞
k=0 fk z

−k which
converges in the neighborhood {z ∈ C : |z| > ρ} of z = ∞. Thus the z-transform
of each sequence (zkj )k∈N0 is equal to z

z−zj
, j = 1, . . . ,M . Since the z-transform is

linear, the z-transform maps the data sequence
(
h(k)

)
k∈N0

satisfying (10.2) for all
k ∈ N0 into the rational function

∞∑

k=0

h(k) z−k =
M∑

j=1

cj
z

z− zj
= a(z)

p(z)
, (10.11)

where p is the Prony polynomial (10.3) and a(z) := aM zM + . . .+ a1 z. Now we
substitute z for z−1 in (10.11) and form the reverse Prony polynomial rev p(z) :=
zM p(z−1) of degree M with rev p(0) = 1 as well as the reverse polynomial
rev a(z) := zM a(z−1) of degree at least M − 1. Then we obtain

∞∑

k=0

h(k) zk = rev a(z)

rev p(z)
(10.12)

converging in a neighborhood of z = 0. In other words, the rational function on the
right-hand side of (10.12) is an (M − 1,M) Padé approximant of the power series



528 10 Prony Method for Reconstruction of Structured Functions

∑∞
k=0 h(k) z

k with vanishing O(zM) term and we have

( ∞∑

k=0

h(k) zk
)

rev p(z) = rev a(z)

in a neighborhood of z = 0. Comparison of the coefficients of powers of z yields

M∑

k=M−m

pk h(k +m−M) = aM−m , m = 0, . . . ,M − 1 ,

M∑

k=0

pk h(k +m) = 0 , m ∈ N0 . (10.13)

Now Eq. (10.13) for m = 0, . . . ,M − 1 coincide with (10.6). Hence the Prony
method may also be regarded as a Padé approximation.

Remark 10.4 In signal processing, the Prony method is also known as the annihi-
lating filter method, or a method to recover signals with finite rate of innovation
(FRI), see, e.g., [87, 364]. For distinct zj = eφj and complex coefficients cj �= 0,
j = 1, . . . ,M , we consider the discrete signal h = (

hn

)
n∈Z with

hn :=
M∑

j=1

cj z
n
j , n ∈ Z . (10.14)

For simplicity, we assume that M is known. Then a discrete signal a = (an)n∈Z is
called an annihilating filter of the signal h, if the discrete convolution of the signals
a and h vanishes, i.e.,

(a ∗ h)n :=
∑

�∈Z
a� hn−� = 0 , n ∈ Z .

For the construction of an annihilating filter a we consider

a(z) :=
M∏

j=1

(
1− zj z−1) =

M∑

n=0

an z
−n , z ∈ C \ {0} ,

then a = (an)n∈Z with an = 0, n ∈ Z \ {0, . . . , M} is an annihilating filter of h in
(10.14). Note that a(z) is the z-transform of the annihilating filter a. Furthermore,
a(z) and the Prony polynomial (10.3) have the same zeros zj ∈ D, j = 1, . . . ,M ,
since zM a(z) = p(z) for all z ∈ C\{0}. Hence the Prony method and the method of
annihilating filters are equivalent. For details, see, e.g., [364]. Within the last years,
finite rate of innovation methods have found many applications, see, e.g., [29, 261].
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Remark 10.5 Prony methods arise also from problems of science and engineering,
where one is interested in predicting future information from previous ones using a
linear model. Let h = (hn)n∈N0 be a discrete signal. The linear prediction method,
see, e.g., [22], aims at finding suitable predictor parameters pj ∈ C such that the
signal value h�+M can be expressed as a linear combination of the previous signal
values hj , j = �, . . . , �+M − 1, i.e.

h�+M =
M−1∑

j=0

(−pj ) h�+j , � ∈ N0 .

Therefore these equations are also called linear prediction equations. Setting
pM := 1, we observe that this representation is equivalent to the homogeneous
linear difference equation (10.6). Assuming that

hk =
M∑

j=1

cj z
k
j , k ∈ N0 ,

we obtain the parameter estimation problem, i.e., the Prony polynomial (10.3) co-
incides with the negative value of the forward predictor polynomial. The associated
companion matrix CM(p) in (10.4) is hence equal to the forward predictor matrix.
Thus the linear prediction method can also be considered as a Prony method.

Unfortunately, the classical Prony method has some numerical drawbacks. Often
the order M of the exponential sum (10.1) is unknown. Further the classical Prony
method is known to perform poorly, when noisy sampled data are given, since
the Hankel matrix HM(0) and the Vandermonde matrix VM(z) are usually badly
conditioned. We will see that one can attenuate these problems by using more
sampled data. But then one has to deal with rectangular matrices.

10.2 Recovery of Exponential Sums

In this section, we present three efficient algorithms to solve the parameter
estimation problem. Let N ∈ N with N ≥ 2M be given, where M ∈ N denotes
the (unknown) order of the exponential sum in (10.1). For simplicity, we restrict
ourselves to the frequency analysis problem, where φj = iϕj with ϕj ∈ [−π, π).
We introduce the nonequispaced Fourier matrix, see Chap. 7,

AN,M := (
eiϕj (k−1))N,M

k, j=1 .

Note that AN,M coincides with the rectangular Vandermonde matrix

VN,M(z) := (
zk−1
j

)N,M

k, j=1
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with the vector z := (zj )
M
j=1, where zj = eiϕj , j = 1, . . . ,M , are distinct nodes

on the unit circle. Then the equations in (10.1) can be formulated in the following
matrix–vector form

VN,M(z) c = (
hk

)N−1
k=0 , (10.15)

where c = (cj )
M
j=1 is the vector of complex coefficients.

In practice, the order M of the exponential sum (10.1) is often unknown. Assume
that L ∈ N is a convenient upper bound of M and M ≤ L ≤ N − M + 1. In
applications, such an upper bound L of M is usually known a priori. If this is not
the case, then one can choose L ≈ N

2 . Later we will see that the choice L ≈ N
2 is

optimal in some sense. Often the sequence {h0, h1, . . . , hN−1} of (noisy) sampled
data is called a time series of lengthN . We form the L-trajectory matrix of this time
series

HL,N−L+1 :=
(
h�+m

)L−1, N−L

�,m=0 ∈ C
L×(N−L+1) (10.16)

with window lengthL ∈ {M, . . . , N−M+1}. Obviously HL,N−L+1 is a rectangular
Hankel matrix.

We consider this rectangular Hankel matrix first for noiseless data hk = h(k),
k = 0, . . . , N − 1, i.e.,

HL,N−L+1 =
(
h(�+m)

)L−1, N−L

�,m=0 ∈ C
L×(N−L+1) . (10.17)

The main step in the solution of the parameter estimation problem is to determine
the order M and to compute the parameters ϕj or alternatively the pairwise distinct
nodes zj = ei ϕj , j = 1, . . . ,M . Afterwards one can calculate the coefficient vector
c ∈ C

M as the solution of the least squares problem

min
c∈CM

‖VN,M(z) c− (
hk

)N−1
k=0 ‖2 .

By (10.2) the L-trajectory matrix (10.17) can be factorized in the following form:

HL,N−L+1 = VL,M(z) (diag c)VN−L+1,M(z) . (10.18)

We denote square matrices with only one index. Additionally we introduce the
rectangular Hankel matrices

HL,N−L(s) =
(
hs+�+m

)L−1, N−L−1
�,m=0 , s ∈ {0, 1} , (10.19)

for L ∈ {M, . . . , N −M}, i.e., HL,N−L(0) is obtained by removing the last column
of HL,N−L+1 and HL,N−L(1) by removing the first column of HL,N−L+1.
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Lemma 10.6 Let N ≥ 2M be given. For each window length L ∈ {M, . . . , N −
M + 1}, the rank of the L-trajectory matrix (10.17) of noiseless data is M . The
related Hankel matrices HL,N−L(s), s ∈ {0, 1}, possess the same rank M for each
window length L ∈ {M, . . . , N −M}.
Proof

1. As known, the square Vandermonde matrix VM(z) is invertible. Further we have

rank VL,M(z) =M , L ∈ {M, . . . , N −M + 1} , (10.20)

since rank VL,M(z) ≤ min {L, M} = M and since the submatrix
(
z
j−1
k

)M
j,k=1 of

VL,M(z) is invertible.
For L ∈ {M, . . . , N −M + 1}, we see by (10.20) that

rank VL,M(z) = rank VN−L+1,M(z) = M .

Thus the rank of the matrix (diag c)VN−L+1,M(z) is equal to M . Hence we
conclude that

rank HL,N−L+1 = rank
(

VL,M(z)
(
(diag c)VN−L+1,M(z)

))

= rank VL,M(z) = M .

2. By construction of the matrices HL,N−L(s) for s = 0, 1, the assumption follows
now from the corresponding factorizations

HL,N−L(0) = VL,M(z) (diag c)VN−L,M(z),

HL,N−L(1) = VL,M(z) (diag c) (diag z)VN−L,M(z) .

Consequently, the order M of the exponential sum (10.1) coincides with the rank
of the Hankel matrices in (10.17) and (10.19). Therefore, M can be computed as the
numerical rank of HL,N−L+1 if it is not known beforehand.

In the next two subsections, we will derive the most well-known methods to
solve the parameter estimation problem, MUSIC, approximate Prony method, and
ESPRIT.

10.2.1 MUSIC and Approximate Prony Method

MUSIC [323] and the approximate Prony method [282] are both based on a
singular value decomposition of the given Hankel matrix HL,N−L+1. The following
observations also show the close connections between these approaches.
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The ranges of HL,N−L+1 and VL,M(z) coincide in the noiseless case with M ≤
L ≤ N − M + 1 by (10.18). If L > M , then the range of VL,M(z) is a proper
subspace of CL. This subspace is called signal space SL. The signal space SL is
of dimension M and is generated by the M columns eL(ϕj ), j = 1, . . . ,M , where

eL(ϕ) :=
(
ei �ϕ)L−1

�=0 , ϕ ∈ [−π, π) .

Note that ‖eL(ϕ)‖2 =
√
L for each ϕ ∈ [−π, π). The noise spaceNL is defined as

the orthogonal complement of SL in C
L. The dimension of NL is equal to L−M .

By QL we denote the orthogonal projection of C
L onto the noise space NL.

Since eL(ϕj ) ∈ SL, j = 1, . . . ,M , and NL ⊥ SL, we obtain that

QL eL(ϕj ) = 0 , j = 1, . . . ,M .

For ϕ ∈ [−π, π) \ {ϕ1, . . . , ϕM}, the vectors eL(ϕ1), . . . , eL(ϕM), eL(ϕ) ∈ C
L

are linearly independent, since the (M+1)×(M+1) Vandermonde matrix obtained
by taking the first M + 1 rows of

(
eL(ϕ1) | . . . | eL(ϕM) | eL(ϕ)

)

is invertible for each L ≥ M+1. Hence eL(ϕ) /∈ SL=span {eL(ϕ1), . . . , eL(ϕM)},
i.e., QLeL(ϕ) �= 0.

Thus, once the orthogonal projection QL is known, the parameters ϕj can be
determined via the zeros of the noise-space correlation function

NL(ϕ) := 1√
L
‖QL eL(ϕ)‖2 , ϕ ∈ [−π, π) ,

since NL(ϕj) = 0 for each j = 1, . . . ,M and 0 < NL(ϕ) ≤ 1 for all ϕ ∈ [−π, π)\
{ϕ1, . . . , ϕM}. Alternatively, one can seek the peaks of the imaging function

JL(ϕ) :=
√
L ‖QL eL(ϕ)‖−1

2 , ϕ ∈ [−π, π) .

In this approach, we prefer the zeros or rather the lowest local minima of the noise-
space correlation function NL(ϕ).

We determine the orthogonal projection QL of CL onto the noise space NL using
the singular value decomposition (SVD) of the L-trajectory matrix HL,N−L+1, i.e.,

HL,N−L+1 = UL DL,N−L+1 WH
N−L+1 , (10.21)

where

UL =
(
u1 | . . . | uL

) ∈ C
L×L ,

WN−L+1 =
(
w1 | . . . |wN−L+1

) ∈ C
(N−L+1)×(N−L+1)
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are unitary and where

DL,N−L+1 = diag
(
σ1, . . . , σmin {L,N−L+1}

) ∈ R
L×(N−L+1)

is a rectangular diagonal matrix. The diagonal entries of DL,N−L+1 are arranged in
nonincreasing order

σ1 ≥ . . . ≥ σM > σM+1 = . . . = σmin {L,N−L+1} = 0 .

The columns of UL are the left singular vectors of HL,N−L+1, the columns of
WN−L+1 are the right singular vectors of HL,N−L+1. The nonnegative numbers
σk are called singular values of HL,N−L+1. The rank of HL,N−L+1 is equal to
the number of positive singular values. Thus we can determine the order M of the
exponential sum (10.1) by the number of positive singular values σj . Practically, for
noisy input data we will have to determine the numerical rank M of HL,N−L+1.

From (10.21) it follows that

HL,N−L+1 WN−L+1 = UL DL,N−L+1 , HH
L,N−L+1 UL = WN−L+1 DL,N−L+1 .

Comparing the columns in above equations, for each k = 1, . . . ,min {L, N−L+1}
we obtain

HL,N−L+1 wk = σk uk , HH
L,N−L+1 uk = σk wk .

Introducing the matrices

U(1)
L,M := (

u1 | . . . | uM

) ∈ C
L×M ,

U(2)
L,L−M := (

uM+1 | . . . | uL

) ∈ C
L×(L−M) ,

we see that the columns of U(1)
L,M form an orthonormal basis of SL and that

the columns of U(2)
L,L−M form an orthonormal basis of NL. Hence the orthogonal

projection onto the noise space NL has the form

QL = U(2)
L,L−M (U(2)

L,L−M)H .

Consequently, we obtain

‖QL eL(ϕ)‖2
2 = 〈QL eL(ϕ), QL eL(ϕ)〉 = 〈(QL)

2 eL(ϕ), eL(ϕ)〉
= 〈QL eL(ϕ), eL(ϕ)〉 = 〈U(2)

L,L−M (U(2)
L,L−M)H eL(ϕ), eL(ϕ)〉

= 〈(U(2)
L,L−M)H eL(ϕ), (U(2)

L,L−M)H eL(ϕ)〉 = ‖(U(2)
L,L−M)H eL(ϕ)‖2

2 .
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Hence the noise-space correlation function can be represented by

NL(ϕ) = 1√
L
‖(U(2)

L,L−M)H eL(ϕ)‖2

= 1√
L

( L∑

k=M+1

|uH
k eL(ϕ)|2

)1/2
, ϕ ∈ [−π, π) .

In MUSIC, one determines the locations of the lowest local minima of the noise-
space correlation function to achieve approximations of the parameters ϕj , see, e.g.,
[104, 202, 235, 323].

Algorithm 10.7 (MUSIC via SVD)

Input:N ∈ N with N ≥ 2 M , L ≈ N
2 window length,

h̃k = h(k)+ ek ∈ C, k = 0, . . . , N − 1, noisy sampled values in (10.1),
0 < ε & 1 tolerance.

1. Compute the singular value decomposition

HL,N−L+1 = ŨL D̃L,N−L+1 W̃H
N−L+1

of the rectangular Hankel matrix (10.16), where the singular values σ̃� are
arranged in nonincreasing order. Determine the numerical rank M of (10.16)
such that σ̃M ≥ ε σ̃1 and σ̃M+1 < εσ̃1. Form the matrix

Ũ(2)
L,L−M = (

ũM+1 | . . . | ũL

)

from the last L−M columns of ŨL.
2. Calculate the squared noise-space correlation function

ÑL(ϕ)
2 := 1

L

L∑

k=M+1

|ũH
k eL(ϕ)|2

on the equispaced grid { (2k−S)π
S

: k = 0, . . . , S − 1} for sufficiently large S ∈ N

by FFT.
3. The M lowest local minima of ÑL(

(2k−S)π
S

), k = 0, . . . , S − 1, yield the

frequencies ϕ̃1, . . . , ϕ̃M . Set z̃j := ei ϕ̃j , j = 1, . . . ,M .
4. Compute the coefficient vector c̃ := (c̃j )

M
j=1 ∈ C

M as solution of the least
squares problem

min
c̃∈CM

‖VN,M(z̃) c̃− (
h̃k

)N−1
k=0 ‖2 ,
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where z̃ := (
z̃j

)M
j=1 denotes the vector of computed nodes.

Output:M ∈ N, ϕ̃j ∈ [−π, π), c̃j ∈ C, j = 1, . . . ,M .

The approximate Prony method (APM) can be immediately derived from the
MUSIC method. We start with the squared noise-space correlation function

NL(ϕ)
2 = 1

L
‖(U(2)

L,L−M)H eL(ϕ)‖2
2

= 1

L

L∑

k=M+1

∣
∣uH

k eL(ϕ)
∣
∣2 , ϕ ∈ [−π, π) .

For noiseless data, all frequencies ϕj , j = 1, . . . ,M , are zeros of NL(ϕ)
2 and hence

especially zeros of

∣
∣uH

L eL(ϕ)
∣
∣2 .

Thus we obtain uH
L eL(ϕj ) = 0 for j = 1, . . . ,M . Note that uH

L eL(ϕ) can have

additional zeros. For noisy data we observe small values
∣
∣uH

L eL(ϕ)
∣
∣2 near ϕj .

Finally we determine the order M of the exponential sum (10.1) by the number
of sufficiently large coefficients in the reconstructed exponential sum.

Algorithm 10.8 (Approximate Prony Method (APM))

Input:N ∈ N with N ≥ 2 M , L ≈ N
2 window length,

h̃k = h(k)+ ek ∈ C, k = 0, . . . , N − 1, noisy sampled values of (10.1),
ε > 0 lower bound with |cj | ≥ 2 ε, j = 1, . . . ,M .

1. Compute the singular vector uL = (u�)
L−1
�=0 ∈ C

L of the rectangular Hankel
matrix (10.16).

2. Calculate

uH
L eL(ϕ) =

L−1∑

�=0

ū� ei �ϕ

on the equispaced grid { (2k−S)π
S

: k = 0, . . . , S − 1} for sufficiently large S ∈ N

by FFT.
3. Determine the lowest local minima ψj , j = 1, . . . , M̃ , of |u∗L eL(

(2k−S)π
S

)|2,
k = 0, . . . , S − 1. Set w̃j := eiψ̃j , j = 1, . . . , M̃ .
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4. Compute the coefficients d̃j ∈ C as least squares solution of the overdetermined
linear system

M̃∑

j=1

d̃j w̃j = hk , k = 0, . . . , N − 1 .

Delete all the w̃k with |d̃k| ≤ ε and denote the remaining nodes by z̃j , j =
1, . . . ,M .

5. Compute the coefficients c̃j ∈ C as least squares solution of the overdetermined
linear system

M∑

j=1

c̃j z̃j = hk , k = 0, . . . , N − 1 .

Output:M ∈ N, ϕ̃j ∈ [−π, π), c̃j ∈ C, j = 1, . . . ,M .

10.2.2 ESPRIT

Finally we sketch the frequently used ESPRIT method (see [284, 312]) which is also
based on singular value decomposition of the rectangular Hankel matrix. First we
assume that noiseless data h̃k = h(k), k = 0, . . . , N − 1, of (10.1) are given. The
set of all matrices of the form

z HL,N−L(0)−HL,N−L(1) , z ∈ C , (10.22)

with HL,N−L(0) and HL,N−L(1) in (10.19) is called a rectangular matrix pencil. If
a scalar z0 ∈ C and a nonzero vector v ∈ C

N−L satisfy

z0 HL,N−L(0) v = HL,N−L(1) v ,

then z0 is called an eigenvalue of the matrix pencil and v is called eigenvector. Note
that a rectangular matrix pencil may not have eigenvalues in general. The ESPRIT
method is based on the following result:

Lemma 10.9 Assume that N ∈ N with N ≥ 2 M and L ∈ {M, . . . , N − M}
are given. In the case of noiseless data, the matrix pencil (10.22) has the nodes
zj = eiϕj , j = 1, . . . ,M , as eigenvalues. Further, zero is an eigenvalue of (10.22)
with N − L−M linearly independent eigenvectors.



10.2 Recovery of Exponential Sums 537

Proof Let p denote the Prony polynomial (10.3) and let q(z) := zN−L−M p(z).
Then the companion matrix of q reads

CN−L(q) =
(
e1 | e2 | . . . | eN−L−1 | − q

)

with q := (
0, . . . , 0, p0, p1, . . . , pM−1

), where pk are the coefficients of p(z) in

(10.3). Here ek = (δk−�)
N−L−1
�=0 denote the canonical basis vectors of CN−L. By

(10.5) and (10.19) we obtain that

HL,N−L(0) q = −(
h(�)

)N−1
�=N−L

and hence

HL,N−L(0)CN−L(q) = HL,N−L(1) . (10.23)

Thus it follows by (10.23) that the rectangular matrix pencil in (10.22) coincides
with the square matrix pencil z IN−L − CN−L(q) up to a matrix factor,

zHL,N−L(0)−HL,N−L(1) = HL,N−L(0)
(
z IN−L − CN−L(q)

)
.

Now we have to determine the eigenvalues of the companion matrix CN−L(q). By

det
(
z IN−L − CN−L(q)

) = q(z) = zN−L−M
M∏

j=1

(z− zj )

the eigenvalues of CN−L(q) are zero and zj , j = 1, . . . ,M . Obviously, z = 0 is
an eigenvalue of the rectangular matrix pencil (10.22), which has L −M linearly
independent eigenvectors, since rank HL,N−L(0) = M by Lemma 10.6. For each
z = zj , j = 1, . . . ,M , we can compute an eigenvector v = (vk)

N−L−1
k=0 of

CN−L(q), if we set vN−L−1 = zj . Thus we obtain

(
zj HL,N−L(0)−HL,N−L(1)

)
v = 0 .

We have shown that the generalized eigenvalue problem of the rectangular matrix
pencil (10.22) can be reduced to the classical eigenvalue problem of the square
matrix CN−L(q).

We start the ESPRIT method by taking the singular value decomposition (10.21)
of the L-trajectory matrix HL,N−L+1 with a window length L ∈ {M, . . . , N −M}.
Restricting the matrices UL and WN−L+1 to

UL,M := (u1 | . . . |uM) ∈ C
L×M, WN−L+1,M := (w1 | . . . |wM) ∈ C(N−L+1)×M
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with orthonormal columns as well as the diagonal matrix DM := diag (σj )
M
j=1, we

obtain

HL,N−L+1 = UL,M DM WH
N−L+1,M .

Let now WN−L,M(0) be obtained by removing the last row, and WN−L,M(1) by
removing the first row of WN−L+1,M . Then, by (10.19), the two Hankel matrices
HL,N−L(0) and HL,N−L(1) in (10.19) can be simultaneously factorized in the form

HL,N−L(s) = UL,M DM WN−L,M(s)H , s ∈ {0, 1} . (10.24)

Since UL,M has orthonormal columns and since DM is invertible, the generalized
eigenvalue problem of the matrix pencil

z WN−L,M(0)H −WN−L,M(1)H , z ∈ C , (10.25)

has the same nonzero eigenvalues zj , j = 1, . . . ,M , as the matrix pencil in (10.22)
except for additional zero eigenvalues. Therefore, we determine the nodes zj , j =
1, . . . ,M , as eigenvalues of the matrix

FSVD
M := WN−L,M(1)H (

WN−L,M(0)H)+ ∈ C
M×M , (10.26)

where
(
WN−L,M(0)H

)+ denotes the Moore–Penrose pseudoinverse of the matrix
WN−L,M(0)H.

Analogously, we can handle the general case of noisy data h̃k = h(k)+ ek ∈ C,
k = 0, . . . , N − 1, with small error terms ek ∈ C, where |ek| ≤ ε1 and 0 <

ε1 & 1. For the Hankel matrix in (10.21) with the singular values σ̃1 ≥ . . . ≥
σ̃min {L,N−L+1} ≥ 0, we calculate the numerical rank M of HL,N−L+1 in (10.16)
taking σ̃M ≥ ε σ̃1 and σ̃M+1 < ε σ̃1 with convenient chosen tolerance ε. Using the
IEEE double precision arithmetic, one can choose ε = 10−10 for given noiseless
data. In the case of noisy data, one has to use a larger tolerance ε > 0.

For the rectangular Hankel matrix in (10.16) with noisy entries, we use its
singular value decomposition

HL,N−L+1 = ŨL D̃L,N−L+1 W̃H
N−L+1

and define as above the matrices ŨL,M , D̃M := diag
(
σ̃j

)M
j=1, and W̃N−L+1,M . Then

ŨL,M D̃M W̃H
N−L+1,M

is a low-rank approximation of (10.16). Analogously to WN−L,M(0), WN−L,M(1)
and (10.26), we introduce corresponding matrices W̃N−L,M(s), s ∈ {0, 1} and
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F̃SVD
M . Note that

K̃L,N−L(s) := ŨL,M D̃M W̃N−L,M(s)H , s ∈ {0, 1} (10.27)

is a low-rank approximation of H̃L,N−L(s). Thus the SVD-based ESPRIT algorithm
reads as follows:

Algorithm 10.10 (ESPRIT via SVD)

Input:N ∈ N with N ' 1,M ≤ L ≤ N −M , L ≈ N
2 ,M unknown order of (10.1),

hk = h(k)+ ek ∈ C, k = 0, . . . , N − 1, noisy sampled values of (10.1),
0 < ε & 1 tolerance.

1. Compute the singular value decomposition of the rectangular Hankel matrix
HL,N−L+1 in (10.16). Determine the numerical rank M of HL,N−L+1 such that
σ̃M ≥ ε σ̃1 and σ̃M+1 < εσ̃1. Form the matrices W̃N−L,M(s), s ∈ {0, 1}.

2. Calculate the square matrix F̃SVD
M as in (10.26) and compute all eigenvalues z̃j ,

j = 1, . . . ,M , of F̃SVD
M . Replace z̃j by the corrected value

z̃j
|z̃j | , j = 1, . . . ,M ,

and set ϕ̃j := log z̃j , j = 1, . . . ,M , where log denotes the principal value of the
complex logarithm.

3. Compute the coefficient vector c̃ := (c̃j )
M
j=1 ∈ C

M as solution of the least
squares problem

min
c̃∈CM

‖VN,M(z̃) c̃− (
h̃k

)N−1
k=0 ‖2 ,

where z̃ := (
z̃j

)M
j=1 denotes the vector of computed nodes.

Output:M ∈ N, ϕ̃j ∈ [−π, π), c̃j ∈ C for j = 1, . . . ,M .

Remark 10.11 One can avoid the computation of the Moore–Penrose pseudoinverse
in (10.26). Then the second step of Algorithm 10.10 reads as follows (see [286,
Algorithm 4.2]):

2′. Calculate the matrix products

ÃM := W̃N−L,M(0)H W̃N−L,M(0) , B̃M := W̃N−L,M(1)H W̃N−L,M(0)

and compute all eigenvalues z̃j , j = 1, . . . ,M , of the square matrix pencil z ÃM −
B̃M , z ∈ C, by the QZ-Algorithm (see [134, pp. 384–385]). Set ϕ̃j := log z̃j ,
j = 1, . . . ,M .

The computational cost of ESPRIT is governed by the SVD of the Hankel matrix
in the first step. For L ≈ N

2 , the SVD costs about 21
8 N3 + M2(21N + 91

3 M)

operations. In [286], a partial singular value decomposition of the Hankel matrix
based on Lanczos bidiagonalization is proposed that reduces the computational cost
to 18SN log2 N + S2(20N + 30S)+M2(N + 1

3M) operations. Here S denotes the
number of bidiagonalization steps.
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Remark 10.12 For various numerical examples as well as for a comparison between
Algorithm 10.10 and a further Prony-like method, see [266]. Algorithm 10.10 is
very similar to the Algorithm 3.2 in [285]. Note that one can also use the QR
decomposition of the rectangular Hankel matrix (10.16) instead of the singular
value decomposition. In that case one obtains an algorithm that is similar to the
matrix pencil method [170, 318], see also Algorithm 3.1 in [285]. The matrix pencil
method has been also applied to reconstruction of shapes from moments, see, e.g.,
[135]. In order to obtain a consistent estimation method, one can rewrite the problem
of parameter estimation in exponential sums as a nonlinear eigenvalue problem,
see, e.g., [45, 259] or the survey [391] and the references therein. The obtained
modification of the Prony method aims at solving the minimization problem

arg min

⎧
⎨

⎩

N−1∑

k=0

∣∣
∣hk −

M∑

j=1

cj eiϕj

∣∣
∣
2 : cj ∈ C, ϕj ∈ [−π, π), j = 1, . . . ,M

⎫
⎬

⎭
.

A slightly different approach has been taken in [331], where the 1-norm of errors∑N−1
k=0 |hk −∑M

j=1 cj eiϕj | is minimized instead of the Euclidean norm.

Remark 10.13 The numerical stability of the considered numerical methods
strongly depends on the condition number of the involved Vandermonde matrix
VN,M(z) = (zk−1

j )
N,M
k,j=1 with zj = eiϕj that appears in the factorization of the

rectangular Hankel matrices HL,N−L+1 in (10.18). Moreover VN,M also occurs
as the coefficient matrix in the overdetermined equation system to compute the
coefficient vector, see Step 4 in Algorithm 10.7, Step 5 in Algorithm 10.8 or Step
3 in Algorithm 10.10. In [21, 244, 287], the condition number of a rectangular
Vandermonde matrix with nodes on the unit circle is estimated. It has been shown
that this matrix is well conditioned, provided that the nodes zj are not extremely
close to each other and provided N is large enough. Stability issues are discussed in
a more detailed manner in Sect. 10.3.

Remark 10.14 The algorithms given in this section can be simply transferred to the
general parameter estimation problem (10.1), where we only assume that ϕj ∈ C

with Imϕj ∈ [−Cπ, Cπ) with some constant C > 0. Often, one has Re ϕj ∈
[−α, 0] with small α > 0. Rescaling of h(x) in (10.1) leads to hC(x) := h( x

C
),

where the wanted parameters ϕ̃j = ϕj/C satisfy Im ϕ̃j ∈ [−π, π). This implies
that one has to change the sampling stepsize, i.e., we have to employ the data hk =
hC(k) = h(k/C), k = 0, . . . , N − 1.

Remark 10.15 The given data sequence {h0, h1, . . . , hN−1} can be also interpreted
as time series. A powerful tool of time series analysis is the singular spectrum
analysis (see [136, 137]). Similarly as step 1 of Algorithm 10.10, this technique
is based on the singular value decomposition of a rectangular Hankel matrix
constructed upon the given time series hk . By this method, the original time
series can be decomposed into a sum of interpretable components such as trend,
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oscillatory components, and noise. For further details and numerous applications,
see [136, 137].

Remark 10.16 The considered Prony-like method can also be interpreted as a model
reduction based on low-rank approximation of Hankel matrices, see [236, 237]. The
structured low-rank approximation problem reads as follows: For a given structure
specification S : CK → C

L×N with L < N , a parameter vector h ∈ C
K and an

integer M with 0 < M < L, find a vector

ĥ∗ = arg min
{
‖h− ĥ‖ : ĥ ∈ C

K with rankS (ĥ) ≤ M
}

,

where ‖ · ‖ denotes a suitable norm in C
K . In the special case of a Hankel matrix

structure, the Hankel matrix S (h) = (h�+k)
L−1,N−1
�, k=0 is rank-deficient of order M

if there exists a nonzero vector p = (pk)
M−1
k=0 so that

M−1∑

k=0

pk h(m+ k) = −h(M +m)

for all m = 0, . . . , N +L−M− 1. Equivalently, the values h(k) can be interpreted
as function values of an exponential sum of order M in (10.1). The special kernel
structure of rank-deficient Hankel matrices can already be found in [165].

Remark 10.17 The d-dimensional parameter estimation problem with fixed d ∈
N \ {1} reads as follows:

Recover the positive integer M , distinct parameter vector ϕj ∈ [−π, π)d , and
complex coefficients cj �= 0, j = 0, . . . ,M , in the d-variate exponential sum of
order M

h(x) :=
M∑

j=1

cj ei ϕj · x ,

if noisy sampling values hk := h(k)+ ek, k ∈ I , are given, where ek ∈ C are small
error terms and I is a suitable finite subset of Zd .

Up to now, there exist different approaches to the numerical solution of the d-
dimensional parameter estimation problem. In [76, 276, 283, 330], this problem
is reduced by projections to several one-dimensional frequency analysis problems.
The reconstruction of multivariate trigonometric polynomials of large sparsity is
described in [298], where sampling data are given on a convenient rank-1 lattice.
Direct numerical methods to solve the multivariate Prony problem are subject of
very active ongoing research, see, e.g., [5, 99, 215, 216, 267, 316, 319, 330]. These
approaches are, for example, based on a direct generalization of the Prony method
leading to the problem of finding intersections of zero sets of multivariate polyno-
mials, see [215, 267], or exploit the relationship between polynomial interpolation,
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normal forms modulo ideals and H-bases [216, 319]. Other ideas can be understood
as direct generalization of ESPRIT or matrix pencil methods [5, 99], or are related
to low-rank decomposition of Hankel matrices [316].

10.3 Stability of Exponentials

In the last section we have derived three methods for recovery of exponential sums,
namely MUSIC, approximate Prony method, and ESPRIT. These methods work
exactly for noiseless data. Fortunately, they can be also applied for noisy data hk =
h(k) + ek, k = 0, . . . , N − 1, with error terms ek ∈ C provided that the bound
ε1 > 0 of all |ek| is small enough. This property is based on the perturbation theory
of the singular value decomposition of a rectangular Hankel matrix. Here we have
to assume that the frequencies ϕj ∈ [−π, π), j = 1, . . . ,M , are not too close to
each other, that the number N of given samples is sufficiently large with N ≥ 2 M ,
and that the window length L ≈ N

2 . We start with the following stability result, see
[172], [388, pp. 162–164] or [204, pp. 59–66].

Lemma 10.18 Let M ∈ N and T > 0 be given. If the ordered frequencies ϕj ∈ R,
j = 1, . . . ,M , satisfy the gap condition

ϕj+1 − ϕj ≥ q >
π

T
, j = 1, . . . ,M − 1 , (10.28)

then the exponentials ei ϕj ·, j = 1, . . . ,M , are Riesz stable in L2[0, 2T ], i.e., for
all vectors c = (cj )

M
j=1 ∈ C

M we have the Ingham inequalities

α(T ) ‖c‖2
2 ≤ ‖

M∑

j=1

cj ei ϕj ·‖2
L2[0, 2T ] ≤ β(T ) ‖c‖2

2 (10.29)

with positive constants

α(T ) := 2

π

(
1− π2

T 2q2

)
, β(T ) := 4

√
2

π

(
1+ π2

4T 2q2

)
,

where ‖f ‖L2[0,2T ] is given by

‖f ‖L2[0,2T ] :=
( 1

2T

∫ 2T

0
|f (t)|2 dt

)1/2
, f ∈ L2[0, 2T ] .
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Proof

1. For arbitrary c = (cj )
M
j=1 ∈ C

M let

h(x) :=
M∑

j=1

cj ei ϕj x , x ∈ [0, 2T ] . (10.30)

Substituting t = x − T ∈ [−T , T ], we obtain

f (t) =
M∑

j=1

dj ei ϕj t , t ∈ [−T , T ] ,

with dj := cj ei ϕj T , j = 1, . . . ,M . Note that |dj | = |cj | and

‖f ‖L2[−T , T ] = ‖h‖L2[0, 2T ] .

For simplicity, we assume that T = π . If T �= π , then we substitute s = π
T
t ∈

[−π, π] for t ∈ [−T , T ] such that

f (t) = f (
T

π
s) =

M∑

j=1

dj ei ψjs , s ∈ [−π, π] ,

with ψj := T
π
ϕj and conclude from the gap condition (10.28) that

ψj+1 − ψj = T

π

(
ϕj+1 − ϕj

) ≥ T

π
q > 1 .

2. For a fixed function k ∈ L1(R) and its Fourier transform

k̂(ω) :=
∫

R

k(t) e−i ω t dt , ω ∈ R ,

we see that

∫

R

k(t) |f (t)|2 dt =
M∑

j=1

M∑

�=1

dj d̄�

∫

R

k(t) e−i (ψ�−ψj ) t dt

=
M∑

j=1

M∑

�=1

dj d̄� k̂(ψ� − ψj ) .
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If we choose

k(t) :=
{

cos t
2 t ∈ [−π, π] ,

0 t ∈ R \ [−π, π] ,

then we obtain the Fourier transform

k̂(ω) = 4 cos(πω)

1− 4 ω2
, ω ∈ R \ {−1

2
,

1

2
} , (10.31)

with k̂(± 1
2 ) = π and hence

∫ π

−π

cos
t

2
|f (t)|2 dt =

M∑

j=1

M∑

�=1

dj d̄� k̂(ψ� − ψj) . (10.32)

3. From (10.32) it follows immediately that

∫ π

−π

|f (t)|2 dt ≥
M∑

j=1

M∑

�=1

dj d̄� k̂(ψ� − ψj ) .

Let S1 denote that part of the above double sum for which j = � and let S2 be
the remaining part. Clearly, by k̂(0) = 4 we get

S1 = 4
M∑

j=1

|dj |2 . (10.33)

Since k̂ is even and since 2 |dj d̄�| ≤ |dj |2 + |d�|2, there are constants θj,� ∈ C

with |θj,�| ≤ 1 and θj,� = θ̄�,j such that

S2 =
M∑

j=1

M∑

�=1
� �=j

|dj |2 + |d�|2
2

θj,� |k̂(ψ� − ψj )| =
M∑

j=1

|dj |2
( M∑

�=1
� �=j

Re θj,� |k̂(ψ� − ψj )|
)
.

Consequently, there exists a constant θ ∈ [−1, 1] such that

S2 = θ

M∑

j=1

|dj |2
( M∑

�=1
��=j

|k̂(ψ� − ψj )|
)
. (10.34)
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Since |ψ� −ψj | ≥ |�− j | q > 1 for � �= j by (10.28), we obtain by (10.31) that

M∑

�=1
��=j

|k̂(ψ� − ψj )| ≤
M∑

�=1
��=j

4

4 (�− j)2 q2 − 1
<

8

q2

∞∑

n=1

1

4n2 − 1

= 4

q2

∞∑

n=1

( 1

2n− 1
− 1

2n+ 1

)
= 4

q2 . (10.35)

Hence from (10.33)–(10.35) it follows that

1

2π

∫ π

−π

|f (t)|2 dt ≥ α(π)

M∑

j=1

|dj |2

with α(π) = 2
π

(
1− 1

q2

)
. In the case T �= π , we obtain α(T ) = 2

π

(
1− π2

T 2q2

)
by

the substitution in step 1 and hence

‖h‖2
L2[0, 2T ] ≥ α(T )

M∑

j=1

|cj |2 = α(T ) ‖c‖2
2 .

4. From (10.32)–(10.35) we conclude on the one hand

∫ π

−π

cos
t

2
|f (t)|2 dt ≥

∫ π/2

−π/2
cos

t

2
|f (t)|2 dt ≥

√
2

2

∫ π/2

−π/2
|f (t)|2 dt

and on the other hand

∫ π

−π

cos
t

2
|f (t)|2 dt =

M∑

j=1

M∑

�=1

k̂(ψ� − ψj) dj d̄�

≤ 4
M∑

j=1

|dj |2 + 4

q2

M∑

j=1

|dj |2 = 4
(

1+ 1

q2

) M∑

j=1

|dj |2 .

Thus we obtain

1

π

∫ π/2

−π/2
|f (t)|2 dt ≤ 4

√
2

π

(
1+ 1

q2

) M∑

j=1

|dj |2 . (10.36)
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5. Now we consider the function

g(t) := f (2t) =
M∑

j=1

dj e2iψj t , t ∈ [− π

2
,
π

2

]
,

where the ordered frequencies 2ψj satisfy the gap condition

2 ψj+1 − 2 ψj ≥ 2 q , j = 1, . . . ,M − 1 .

Applying (10.36) to the function g, we receive

1

2π

∫ π

−π

|f (t)|2 dt = 1

π

∫ π/2

−π/2
|g(t)|2 dt ≤ 4

√
2

π

(
1+ 1

4q2

) M∑

j=1

|dj |2 .

Hence β(π) = 4
√

2
π

(1 + 1
4q2 ) and β(T ) = 4

√
2

π
(1 + π2

4T 2q2 ) by the substitution
in step 1. Thus we obtain

‖h‖2
L2[0, 2T ] ≤ β(T )

M∑

j=1

|dj |2 = β(T ) ‖c‖2
2 .

This completes the proof.

Remark 10.19 The Ingham inequalities (10.29) can be considered as far-reaching
generalization of the Parseval equality for Fourier series. The constants α(T ) and
β(T ) are not optimal in general. Note that these constants do not depend on M . The
assumption q > π

T
is necessary for the existence of positive α(T ). Compare also

with [66, Theorems 9.8.5 and 9.8.6] and [216].

In the following, we present a discrete version of the Ingham inequalities (10.29)
(see [11, 228, 243]). For sufficiently large integer P > M , we consider the
rectangular Vandermonde matrix

VP,M(z) := (
zk−1
j

)P,M

k,j=1 =

⎛

⎜
⎜
⎜
⎝

1 1 . . . 1
z1 z2 . . . zM
...

...
...

zP−1
1 zP−1

2 . . . zP−1
M

⎞

⎟
⎟
⎟
⎠

with z = (zj )
M
j=1, where zj = ei ϕj , j = 1, . . . ,M , are distinct nodes on the

unit circle. Setting ϕj = 2π ψj , j = 1, . . . ,M , we measure the distance between
distinct frequencies ψj , ψ� by d(ψj − ψ�), where d(x) denotes the distance of
x ∈ R to the nearest integer, i.e.,

d(x) := min
n∈Z |x − n| ∈ [0, 1

2
] .
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Our aim is a good estimation of the spectral condition number of VP,M(z).
Therefore we assume that ψj , j = 1, . . . ,M , satisfy the gap condition

min {d(ψj − ψ�) : j, � = 1, . . . ,M, j �= �} ≥ Δ > 0 . (10.37)

The following discussion is mainly based on a generalization of Hilbert’s inequality
(see [11, 243]). Note that the Hilbert’s inequality reads originally as follows:

Lemma 10.20 For all x = (xj )
M
j=1 ∈ C

M we have Hilbert’s inequality

∣
∣

M∑

j,�=1
j �=�

xj x�

j − �

∣
∣ ≤ π ‖x‖2

2 .

Proof For an arbitrary vector x = (xj )
M
j=1 ∈ C

M , we form the trigonometric
polynomial

p(t) :=
M∑

k=1

xk ei k t

such that

|p(t)|2 =
M∑

k,�=1

xk x� ei (k−�) t .

Using

1

2π i

∫ 2π

0
(π − t) ei n t dt =

{
0 n = 0 ,
1
n

n ∈ Z \ {0} ,

we obtain

1

2π i

∫ 2π

0
(π − t) |p(t)|2 dt =

M∑

k,�=1
k �=�

xk x�

k − �
.

Note that |π − t| ≤ π for t ∈ [0, 2π]. From the triangle inequality and the Parseval
equality in L2(T) it follows that

1

2π

∣
∣
∫ 2π

0
(π − t) |p(t)|2 dt

∣
∣ ≤ 1

2

∫ 2π

0
|p(t)|2 dt = π

M∑

j=1

|xj |2 = π ‖x‖2
2 .
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The proof of generalized Hilbert’s inequality applies the following result:

Lemma 10.21 For all x ∈ R \ Z we have

(
sin(πx)

)−2 + 2
∣
∣cot(πx)

sin(πx)

∣
∣ ≤ 3

π2 d(x)2 . (10.38)

Proof It suffices to show (10.38) for all x ∈ (0, 1
2 ]. Substituting t = πx ∈ (0, π

2 ],
(10.38) means

3 (sin t)2 ≥ t2 (1+ 2 cos t) .

This inequality is equivalent to

3 (sinc t)2 ≥ 1+ 2 cos t , t ∈ [0, π

2
] ,

which is true by the behaviors of the concave functions 3 (sinc t)2 and 1 + 2 cos t
on the interval [0, π

2 ].
Theorem 10.22 (See [245, Theorem 1]) Assume that the distinct values ψj ∈ R,
j = 1, . . . ,M , satisfy the gap condition (10.37) with a constantΔ > 0.

Then the generalized Hilbert inequality

∣
∣

M∑

j,�=1
j �=�

xj x�

sin
(
π (ψj − ψ�)

)
∣
∣ ≤ 1

Δ
‖x‖2

2 (10.39)

holds for all x = (xj )
M
j=1 ∈ C

M .

Proof

1. Setting

sj,� :=
{[

sin
(
π (ψj − ψ�)

)]−1
j �= � ,

0 j = �

for all j , � = 1, . . . ,M , we form the matrix S := −i
(
sj,�

)M
j,�=1 which is

Hermitian. Let the eigenvalues of S be arranged in increasing order−∞ < λ1 ≤
. . . ≤ λM <∞. By the Rayleigh–Ritz theorem (see [169, pp. 234–235]) we have
for all x ∈ C

M with ‖x‖2 = 1,

λ1 ≤ xH S x ≤ λM .
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Suppose that λ ∈ R is such an eigenvalue of S with |λ| = max {|λ1|, |λM |}. Then
we have the sharp inequality

|xH S x| = ∣∣
M∑

j,�=1

xj x� sj,�
∣∣ ≤ |λ|

for all normed vectors x = (xj )
M
j=1 ∈ C

M . Now we show that |λ| ≤ 1
Δ

.

2. Related to the eigenvalue λ of S, there exists a normed eigenvector y = (yj )
M
j=1 ∈

C
M with S y = λ y, i.e.,

M∑

j=1

yj sj,� = i λ y� , � = 1, . . . ,M . (10.40)

Thus we have yH S y = λ yH y = λ. Applying the Cauchy–Schwarz inequality,
we estimate

|yH S y|2 = ∣
∣

M∑

j=1

yj
( M∑

�=1

y� sj,�
)∣∣2 ≤ ‖y‖2

2

( M∑

j=1

∣
∣

M∑

�=1

y� sj,�
∣
∣2)

=
M∑

j=1

∣
∣

M∑

�=1

y� sj,�
∣
∣2 =

M∑

j=1

M∑

�,m=1

y� ym sj,� sj,m

=
M∑

�,m=1

y� ym

M∑

j=1

sj,� sj,m = S1 + S2

with the partial sums

S1 :=
M∑

�=1

|y�|2
M∑

j=1

s2
j,� , S2 :=

M∑

�,m=1
��=m

y� ym

M∑

j=1

sj,� sj,m .

3. For distinct α, β ∈ R \ (π Z) we have

1

(sin α) (sin β)
= cotα − cotβ

sin(β − α)

such that for all indices with j �= �, j �= m, and � �= m we find

sj,� sj,m = s�,m
[

cot
(
π(ψj − ψ�)

)− cot
(
π(ψj − ψm)

)]
.



550 10 Prony Method for Reconstruction of Structured Functions

Now we split the sum S2 in the following way:

S2 =
M∑

�,m=1
��=m

y� ym

M∑

j=1
j �=� , j �=m

s�,m
[

cot
(
π(ψj − ψ�)

)− cot
(
π(ψj − ψm)

)]

= S3 − S4 + 2 Re S5

with

S3 :=
M∑

�,m=1
��=m

M∑

j=1
j �=�

y� ym s�,m cot
(
π(ψj − ψ�)

)
,

S4 :=
M∑

�,m=1
��=m

M∑

j=1
j �=m

y� ym s�,m cot
(
π(ψj − ψm)

)
,

S5 :=
M∑

j, �=1
j �=�

y� yj sj,� cot
(
π(ψj − ψ�)

)
.

Note that 2 ReS5 is the correction sum, since S3 contains the additional terms for
j = m and S4 contains the additional terms for j = �.

4. First we show that S3 = S4. From (10.40) it follows that

S3 =
M∑

�, j=1
��=j

y�
( M∑

m=1

ym s�,m
)

cot
(
π(ψj − ψ�)

) = −iλ
M∑

�, j=1
��=j

|y�|2 cot
(
π(ψj − ψ�)

)
.

Analogously, we see that

S4 =
M∑

j,m=1
j �=m

ym
( M∑

�=1

y� s�,m
)

cot
(
π(ψj − ψm)

) = −iλ
M∑

j,m=1
j �=m

|ym|2 cot
(
π(ψj − ψm)

)
.

Hence we obtain the estimate

|λ|2 = |yH S y|2 = S1 + S2 = S1 + 2 ReS5 ≤ S1 + 2 |S5| .



10.3 Stability of Exponentials 551

Using 2 |y� yj | ≤ |y�|2 + |yj |2, we estimate

2 |S5| ≤
M∑

j, �=1
j �=�

2 |y� yj | |sj,� cot
(
π(ψj − ψ�)

)|

≤ 2
M∑

j, �=1
j �=�

|y�|2 |sj,� cot
(
π(ψj − ψ�)

)|

such that

S1 + 2 |S5| ≤
M∑

j, �=1
j �=�

|y�|2
[
s2
j,� + 2 |sj,� cot

(
π(ψj − ψ�)

)|] .

By Lemma 10.21 we obtain

S1 + 2 |S5| ≤ 3

π2

M∑

�=1

|y�|2
M∑

j=1
j �=�

d(ψj − ψ�)
−2 = 3

π2

M∑

j, �=1
j �=�

d(ψj − ψ�)
−2 .

By assumption, the values ψj , j = 1, . . . ,M , are spaced from each other by at
least Δ, so that

M∑

j=1
j �=�

d(ψj − ψ�)
−2 < 2

∞∑

k=1

(k Δ)−2 = π2

3 Δ2

and hence

|λ|2 = S1 + S2 ≤ S1 + 2 |S5| < 1

Δ2
.

With the natural assumption that the nodes zj = e2π i ψj , j = 1, . . . ,M , are
well-separated on the unit circle, it can be shown that the rectangular Vandermonde
matrix VP,M(z) is well conditioned for sufficiently large P > M .

Theorem 10.23 (See [11, 228, 243, 278]) Let P ∈ N with P > max{M, 1
Δ
} be

given. Assume that the frequenciesψj ∈ R, j = 1, . . . ,M , satisfy the gap condition
(10.37) with a constantΔ > 0.

Then for all c ∈ C
M , the rectangular Vandermonde matrix VP,M(z) with z =

(zj )
M
j=1 satisfies the inequalities

(
P − 1

Δ

) ‖c‖2
2 ≤ ‖VP,M(z) c‖2

2 ≤
(
P + 1

Δ

) ‖c‖2
2 . (10.41)



552 10 Prony Method for Reconstruction of Structured Functions

Further the rectangular Vandermonde matrix VP,M(z) has a uniformly bounded
spectral norm condition number

cond2 VP,M(z) ≤
√

P Δ+ 1

P Δ− 1
.

Proof

1. Simple computation shows that

‖VP,M(z) c‖2
2 =

P−1∑

k=0

∣
∣

M∑

j=1

cj z
k
j

∣
∣2 =

P−1∑

k=0

M∑

j, �=1

cj c� e2π i (ψj−ψ�) k

=
P−1∑

k=0

( M∑

j=1

|cj |2 +
M∑

j, �=1
j �=�

cj c� e2π i (ψj−ψ�) k
)

= P ‖c‖2
2 +

M∑

j, �=1
j �=�

cj c�
( P−1∑

k=0

e2π i (ψj−ψ�) k
)
.

Determining the sum

P−1∑

k=0

e2π i (ψj−ψ�) k = 1− e2π i (ψj−ψ�) P

1− e2π i (ψj−ψ�)

= 1− e2π i (ψj−ψ�) P

2i eπ i (ψj−ψ�) sin
(
π (ψj − ψ�)

) = −e−π i (ψj−ψ�) − eπ i (ψj−ψ�) (2P−1)

2i sin
(
π (ψj − ψ�)

) ,

we obtain

‖VP,M(z) c‖2
2 = P ‖c‖2

2 −Σ1 +Σ2 (10.42)

with the sums

Σ1 :=
M∑

j, �=1
j �=�

cj c� e−π i (ψj−ψ�)

2i sin
(
π (ψj − ψ�)

) , Σ2 :=
M∑

j, �=1
j �=�

cj c� eπ i (ψj−ψ�) (2P−1)

2i sin
(
π (ψj − ψ�)

) .

The nodes zj = e2π i ψj , j = 1, . . . ,M , are distinct, since we have (10.37)
by assumption. Applying the generalized Hilbert inequality in (10.39) first with
xk := ck e−π i ψk , k = 1, . . . ,M , yields

|Σ1| ≤ 1

2 Δ

M∑

k=1

∣
∣ck e−π i ψk

∣
∣2 = 1

2 Δ
‖c‖2

2 , (10.43)
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and then with xk := ck eπ i ψk (2P−1), k = 1, . . . ,M , results in

|Σ2| ≤ 1

2 Δ

M∑

k=1

∣
∣ck eπ i ψk (2P−1)

∣
∣2 = 1

2 Δ
‖c‖2

2 . (10.44)

From (10.42)–(10.44) the assertion (10.41) follows by the triangle inequality.
2. Let μ1 ≥ . . . ≥ μM > 0 be the ordered eigenvalues of VP,M(z)H VP,M(z) ∈

CM×M . Using the Raleigh–Ritz theorem (see [169, pp. 234–235]) and (10.41),
we obtain that for all c ∈ C

M

(
P − 1

Δ

) ‖c‖2
2 ≤ μM ‖c‖2

2 ≤ ‖VP,M(z) c‖2
2 ≤ μ1 ‖c‖2

2 ≤
(
P + 1

Δ

) ‖c‖2
2

and hence

0 < P − 1

Δ
≤ λM ≤ λ1 ≤ P + 1

Δ
<∞ . (10.45)

Thus VP,M(z)H VP,M(z) is positive definite and

cond2 VP,M(z) =
√

μ1

μM

≤
√

P Δ+ 1

P Δ− 1
.

The inequalities (10.41) can be interpreted as discrete versions of the Ingham
inequalities (10.29). Now the exponentials e2π i ψj · are replaced by their discretiza-
tions

eP (ψj ) =
(
e2π i ψj k

)P−1
k=0 , j = 1, . . . ,M ,

with sufficiently large integer P > max{M, 1
Δ
}. Thus the rectangular Vandermonde

matrix can be written as

VP,M(z) = (
eP (ψ1) | eP (ψ2) | . . . | eP (ψM)

)

with z = (zj )
M
j=1, where zj = e2π i ψj , j = 1, . . . ,M , are distinct nodes on the unit

circle. Then (10.41) provides the discrete Ingham inequalities

(
P − 1

Δ

) ‖c‖2
2 ≤ ‖

M∑

j=1

cj eP (ϕj )‖2
2 ≤

(
P + 1

Δ

) ‖c‖2
2 (10.46)

for all c = (cj )
M
j=1 ∈ C

M . In other words, (10.46) means that the vectors eP (ϕj ),
j = 1, . . . ,M , are also Riesz stable.
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Corollary 10.24 With the assumptions of Theorem 10.23, the inequalities

(
P − 1

Δ

) ‖d‖2
2 ≤ ‖VP,M(z) d‖2

2 ≤
(
P + 1

Δ

) ‖d‖2
2 (10.47)

hold for all d ∈ C
P .

Proof The matrices VP,M(z) and VP,M(z) possess the same singular values μj ,
j = 1, . . . ,M . By the Rayleigh–Ritz theorem we obtain that

λM ‖d‖2
2 ≤ ‖VP,M(z) d‖2

2 ≤ λ1 ‖d‖2
2

for all d ∈ C
P . Applying (10.45), we obtain the inequalities in (10.47).

Remark 10.25 In [11, 21], the authors derive bounds on the extremal singular values
and the condition number of the rectangular Vandermonde matrix VP,M(z) with
P ≥ M and z = (zj )

M
j=1 ∈ C

M , where the nodes are inside the unit disk, i.e.,
|zj | ≤ 1 for j = 1, . . . ,M . In [278] it is investigated how the condition of the
Vandermonde matrix can be improved using a single shift parameter σ that transfers
ψj to σψj for j = 1, . . . ,M . This result is in turn applied to improve the stability
of an algorithm for the fast sparse Fourier transform.

Employing the Vandermonde decomposition of the Hankel matrix HL,N−L+1 we
obtain

HL,N−L+1 = VL,M(z) (diag c) (VN−L+1,M(z)) . (10.48)

Therefore, we can also derive the condition of the Hankel matrix HL,N−L+1.

Theorem 10.26 LetL, N ∈ NwithM ≤ L ≤ N−M+1 andmin {L, N−L+1} >
1
Δ
be given. Assume that the frequenciesψj ∈ R, j = 1, . . . ,M , are well-separated

at least by a constant Δ > 0 and that the nonzero coefficients cj , j = 1, . . . ,M , of
the exponential sum (10.1) satisfy the condition

0 < γ1 ≤ |cj | ≤ γ2 <∞ , j = 1, . . . ,M . (10.49)

Then for all y ∈ C
N−L+1 we have

γ 2
1 α1(L, N, Δ) ‖y‖2

2 ≤ ‖HL,N−L+1 y‖2
2 ≤ γ 2

2 α2(L, N, Δ) ‖y‖2
2 . (10.50)

with

α1(L, N, Δ) := (
L− 1

Δ

) (
N − L+ 1− 1

Δ

)
,

α2(L, N, Δ) := (
L+ 1

Δ

) (
N − L+ 1+ 1

Δ

)
.
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Further, the lowest (nonzero), respectively, largest singular value of HL,N−L+1 can
be estimated by

0 < γ1
√
α1(L, N, Δ) ≤ σM ≤ σ1 ≤ γ2

√
α2(L, N, Δ) . (10.51)

The spectral norm condition number of HL,N−L+1 is bounded by

cond2 HL,N−L+1 ≤ γ2

γ1

√
α2(L, N, Δ)

α1(L, N, Δ)
. (10.52)

Proof By the Vandermonde decomposition (10.48) of the Hankel matrix
HL,N−L+1, we obtain that for all y ∈ C

N−L+1

‖HL,N−L+1 y‖2
2 = ‖VL,M(z) (diag c)VN−L+1,M(z) y‖2

2 .

The estimates in (10.41) and the assumption (10.49) imply

γ 2
1

(
L− 1

Δ

) ‖VN−L+1,M(z) y‖2
2 ≤ ‖HL,N−L+1 y‖2

2

≤ γ 2
2

(
L+ 1

Δ

) ‖VN−L+1,M(z) y‖2
2 .

Using the inequalities in (10.47), we obtain (10.50). Finally, the estimates of the
extremal singular values and the spectral norm condition number of HL,N−L+1 are
a consequence of (10.50) and the Rayleigh–Ritz theorem.

Remark 10.27 For fixed N , the positive singular values as well as the spectral
norm condition number of the Hankel matrix HL,N−L+1 depend strongly on L ∈
{M, . . . , N −M + 1}. A good criterion for the choice of an optimal window length
L is to maximize the lowest positive singular value σM of HL,N−L+1. It was shown
in [287, Lemma 3.1 and Remark 3.3] that the squared singular values increase
almost monotonously for L = M, . . . , �N2 � and decrease almost monotonously for
L = �N2 �, . . . , N −M+ 1. Note that the lower bound (10.51) of the lowest positive
singular value σM is maximal for L ≈ N

2 . Further the upper bound (10.52) of the
spectral norm condition number of the exact Hankel matrix HL,N−L+1 is minimal
for L ≈ N

2 . Therefore we prefer to choose L ≈ N
2 as optimal window length.

Then we can ensure that σM > 0 is not too small. This observation is essential for
the correct detection of the order M in the first step of the MUSIC Algorithm and
ESPRIT Algorithm.
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10.4 Recovery of Structured Functions

The reconstruction of a compactly supported, structured function from the knowl-
edge of samples of its Fourier transform is a common problem in several scientific
areas such as radio astronomy, computerized tomography, and magnetic resonance
imaging.

10.4.1 Recovery from Fourier Data

Let us start with the problem of reconstruction of spline functions with arbitrary
knots.

For given m, n ∈ N, let tj ∈ R, j = 1, . . . ,m + n, be distinct knots with
−∞ < t1 < t2 < . . . < tm+n < ∞. A function s : R → R with compact
support supp s ⊆ [t1, tm+n] is a spline of order m, if s restricted on [tj , tj+1) is
a polynomial of degree m − 1 for each j = 1, . . . ,m + n − 1, if s(x) = 0 for all
x ∈ R \ [t1, tm+n], and if s ∈ Cm−2(R). The points tj are called spline knots. Note
that C0(R) := C(R) and that C−1(R) is the set of piecewise continuous functions.
Denoting with Sm[t1, . . . , tm+n] the linear space of all splines of order m relative
to the fixed spline knots tj , then dim Sm[t1, . . . , tm+n] = n. For m = 1, splines of
S1[t1, . . . , tn+1] are step functions of the form

s(x) :=
n∑

j=1

cj χ[tj ,tj+1)(x) , x ∈ R , (10.53)

where cj are real coefficients with cj �= cj+1, j = 1, . . . , n − 1, and where
χ[tj ,tj+1) denotes the characteristic function of the interval [tj , tj+1). Obviously, the
piecewise constant splines

B1
j (x) = χ[tj ,tj+1)(x) , j = 1, . . . , n

have minimal support in S1[t1, . . . , tn+1] and form a basis of the spline space
S1[t1, . . . , tn+1]. Therefore B1

j are called B-spline or basis spline of order 1.
Forming the Fourier transform

ŝ(ω) :=
∫

R

s(x) e−i x ω dx , ω ∈ R \ {0} ,
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of s(x) in (10.53) we obtain the exponential sum

h(ω) := iω ŝ(ω) =
n+1∑

j=1

(cj − cj−1) e−i ω tj

=
n+1∑

j=1

c1
j e−i ω tj , ω ∈ R \ {0} , (10.54)

with c0 = cn+1 := 0, c1
j := cj − cj−1, j = 1, . . . , n + 1, and h(0) := 0. First we

consider the recovery of a real step function (10.53) by given Fourier samples (see
[276]).

Lemma 10.28 Assume that a constant τ > 0 satisfies the condition tj τ ∈ [−π, π)

for j = 1, . . . , n+1. Then the real step function (10.53) can be completely recovered
by given Fourier samples ŝ(�τ ), � = 1, . . . , N with N ≥ n+ 1.

Proof By (10.54), the function h is an exponential sum of order n+1. Since s is real,
we have h(ω) = h(−ω). For given samples ŝ(�τ ), � = 1, . . . , N with N ≥ n + 1,
we can apply the reconstruction methods for the exponential sum h as described in
Sect. 9.2, where the 2N + 1 values

h(�τ) =

⎧
⎪⎪⎨

⎪⎪⎩

i � τ ŝ(�τ ) � = 1, . . . , N ,

ĥ(−�τ) � = −N, . . . ,−1 ,

0 � = 0

are given. In this way, we determine all spline knots tj and coefficients c1
j , j =

1, . . . , n+ 1. Finally, the coefficients cj of the step function (10.53) are obtained by
the recursion cj = cj−1 + c1

j , j = 2, . . . , n, with c1 = c1
1. Hence, the step function

in (10.53) can be completely reconstructed.

Remark 10.29 A similar technique can be applied, if the support [t1, tn+1] of the
step function (10.53) is contained in [−π, π] and some Fourier coefficients

ck(s) := 1

2π

∫ π

−π

s(x) e−i k x dx , k ∈ Z ,

are given. For the step function (10.53) we obtain

2π i ck(s) =
n+1∑

j=1

(cj − cj−1) e−i tj k , k ∈ Z \ {0} ,

2π c0(s) =
n∑

j=1

cj (tj+1 − tj ) .
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Thus one can determine the breakpoints tj and the coefficients cj by a method of
Sect. 10.2 using only the Fourier coefficients ck(s), k = 0, . . . , n+ 1.

This approach can be easily transferred to higher order spline functions of the
form

s(x) :=
n∑

j=1

cj B
m
j (x) , x ∈ R , (10.55)

where Bm
j , j = 1, . . . , n, is the B-spline of order m with arbitrary knots

tj , . . . , tj+m. The B-splines Bm
j , see [79, p. 90], satisfy the recurrence relation

Bm
j (x) = x − tj

tj+m−1 − tj
Bm−1

j (x)+ tj+1 − x

tj+m − tj+1
Bm−1

j+1 (x)

with initial condition B1
j (x) = χ[tj , tj+1)(x). The support of Bm

j is the interval
[tj , tj+m]. In the case m = 2, we obtain the hat function as the linear B-spline

B2
j (x) =

⎧
⎪⎨

⎪⎩

x−tj
tj+1−tj

x ∈ [tj , tj+1) ,
tj+1−x

tj+2−tj+1
x ∈ [tj+1, tj+2) ,

0 x ∈ R \ [tj , tj+2) .

As known, the linear B-splines B2
j , j = 1, . . . , n form a basis of the spline space

S2[t1, . . . , tn+2]. For m ≥ 3, the first derivative of Bm
j can be computed by

(Bm
j )′(x) = (m− 1)

( Bm−1
j (x)

tj+m−1 − tj
− Bm−1

j+1 (x)

tj+m − tj+1

)
, (10.56)

see [79, p. 115]. The formula (10.56) can be also applied for m = 2, if we replace
the derivative by the right-hand derivative. Then we obtain for the kth derivative of
s(x) in (10.55) with k = 1, . . . ,m− 1

s(k)(x) =
n∑

j=1

cj (B
m
j )(k)(x) =

n+k∑

j=1

cm−k
j Bm−k

j (x) , (10.57)

where the real coefficients cm−k
j can be recursively evaluated from cj using (10.56).

Hence the (m− 1)th derivative of s(x) in (10.55) is a real step function

s(m−1)(x) =
n+m−1∑

j=1

c1
j B

1
j (x) =

n+m−1∑

j=1

c1
j χ[tj , tj+1)(x) .
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Application of the Fourier transform yields

(iω)m−1 ŝ(ω) =
n+m−1∑

j=1

c1
j

iω

(
e−i ω tj − e−i ω tj+1

)
(10.58)

= 1

iω

n+m∑

j=1

c0
j e−i ωtj , (10.59)

where c0
j := c1

j − c1
j−1, j = 1, . . . , n + m, with the convention c1

0 = c1
n+m := 0.

Thus we obtain the exponential sum of order n+m

(iω)m ŝ(ω) =
n+m∑

j=1

c0
j e−i ω tj . (10.60)

Hence we can recover a real spline function (10.55) by given Fourier samples.

Theorem 10.30 Assume that s(x) possesses the form (10.55) with unknown coef-
ficients cj ∈ R \ {0} and an unknown knot sequence −∞ < t1 < t2 < . . . <

tn+m < ∞. Assume that there is a given constant τ > 0 satisfying the condition
tj τ ∈ [−π, π) for j = 1, . . . , n+m.

Then the real spline function s(x) in (10.55) of order m can be completely
recovered by given Fourier samples ŝ(�τ ), � = 1, . . . , N with N ≥ n+m.

Proof The Fourier transform of (10.55) satisfies Eq. (10.60) such that h(ω) :=
(iω)m ŝ(ω) is an exponential sum of order n+m. Using a reconstruction method of
Sect. 10.2, we compute the knots tj and the coefficients c0

j for j = 1, . . . , n + m.
Applying the formulas (10.56) and (10.57), we obtain the following recursion for
the coefficients ckj

ck+1
j :=

{
c0
j + c1

j−1 k = 0, j = 1, . . . , n+m− 1 ,

tm+1−k−tj
m−k

ckj + ck+1
j−1 k = 1, . . . ,m− 1, j = 1, . . . , n+m− k − 1

with the convention ck0 := 0, k = 1, . . . ,m. Then cmj , j = 1, . . . , n, are the
reconstructed coefficients cj of (10.55).

Remark 10.31 The above proof of Theorem 10.30 is constructive. In particular, if
n is unknown, but we have an upper bound of n, then the reconstruction method in
Sect. 10.2 will also find the correct knots tj and the corresponding coefficients cj
from N Fourier samples with N ≥ n+m, and the numerical procedure will be more
stable, see, e.g., [112, 266, 282].

In the above proof we rely on the fact that c0
j �= 0 for j = 1, . . . , n+m. If we have

the situation that c0
j0
= 0 for an index j0 ∈ {1, . . . , n+m}, then we will not be able

to reconstruct the knot tj0 . But this situation will only occur, if the representation
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(10.55) is redundant, i.e., if the spline in (10.55) can be represented by less than n

summands, so we will still be able to recover the exact function s. Observe that the
above recovery procedure always results in the simplest representation of s so that
the reconstructed representation of s of the form (10.55) does not possess redundant
terms.

Now we generalize this method and recover linear combinations of translates of
a fixed real function Φ ∈ C(R) ∩ L1(R)

f (x) :=
n∑

j=1

cj Φ(x + tj ) , x ∈ R , (10.61)

with real coefficients cj �= 0, j = 1, . . . , n, and shift parameters tj with −∞ <

t1 < . . . < tn < ∞. Assume that Φ is a low-pass filter function with a Fourier
transform Φ̂ that is bounded away from zero, i.e. |Φ̂(ω)| > C0 for ω ∈ (−T , T ) for
some positive constants C0 and T .

Example 10.32 As a low-pass filter function Φ we can take the centered cardinal
B-spline Φ = Mm of order m, see Example 9.1 with

M̂m(ω) = (
sinc

ω

2

)m �= 0 , ω ∈ (−2π, 2π) ,

the Gaussian function Φ(x) = e−x2/σ 2
, x ∈ R, with σ > 0, where the Fourier

transform reads as follows:

Φ̂(ω) = √π σ e−σ 2ω2/4 > 0 , ω ∈ R ,

the Meyer window Φ with T = 2
3 and the corresponding Fourier transform

Φ̂(ω) =

⎧
⎪⎪⎨

⎪⎪⎩

1 |ω| ≤ 1
3 ,

cos
(
π
2 (3|ω| − 1)

) 1
3 < |ω| ≤ 2

3 ,

0 ω ∈ R \ [− 2
3 ,

2
3 ] ,

or a real-valued Gabor function Φ(x) = e−α x2
cos(βx) with positive constants α

and β, where

Φ̂(ω) =
√

π

4 α

(
e−(β−ω)2/(4α) + e−(ω+β)2/(4α)) > 0 , ω ∈ R .

The Fourier transform of (10.61) yields

f̂ (ω) = Φ̂(ω)

n∑

j=1

cj ei ω tj , ω ∈ R . (10.62)
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Theorem 10.33 Let Φ ∈ C(R) ∩ L1(R) be a given function with |Φ̂(ω)| > C0
for all ω ∈ (−T , T ) with some C0 > 0 Assume that f (x) is of the form (10.61)
with unknown coefficients cj ∈ R\ {0}, j = 1, . . . , n and unknown shift parameters
−∞ < t1 < . . . < tn < ∞. Let h > 0 be a given constant satisfying |h tj | <
min {π, T } for all j = 1, . . . , n.

Then the function f can be uniquely recovered by the Fourier samples f̂ (�h),
� = 0, . . . , N with N ≥ n.

Proof Using the assumption on Φ̂, it follows from (10.62) that the function

h(ω) := f̂ (ω)

Φ̂(ω)
=

n∑

j=1

cj ei ω tj , ω ∈ (−T , T ) ,

is an exponential sum of order n. Hence we can compute all shift parameters tj and
coefficients cj , j = 1, . . . , n, by a reconstruction method given in Sect. 10.2.

10.4.2 Recovery from Function Samples

In this section we want to study the question, how to recover periodic structured
functions directly from given function values.

Let ϕ ∈ C(T) be an even, nonnegative function with uniformly convergent
Fourier expansion. Assume that all Fourier coefficients

ck(ϕ) = 1

2π

∫ π

−π

ϕ(x) e−i k x dx = 1

π

∫ π

0
ϕ(x) cos(kx) dx , k ∈ Z ,

are nonnegative and that ck(ϕ) > 0 for k = 0, . . . , N
2 , where N ∈ 2N is fixed. Such

a function ϕ is called a 2π-periodic window function.

Example 10.34 A well-known 2π-periodic window function is the 2π-
periodization

ϕ(x) :=
∑

k∈Z
Φ(x + 2πk) , x ∈ R , (10.63)

of the Gaussian function

Φ(x) := 1√
πb

e−(nx)2/b , x ∈ R ,

with some n ∈ N and b ≥ 1, where the Fourier coefficients are

ck(ϕ) = 1

2πn
e−b k2/(4n2) , k ∈ Z .
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Another window function is the 2π-periodization (10.63) of the centered cardinal
B-spline of order 2m

Φ(x) = M2m(nx) , x ∈ R ,

with some m, n ∈ N, where the Fourier coefficients are

ck(ϕ) = 1

2πn

(
sinc

k

2n

)2m
, k ∈ Z .

Further, a possible 2π-periodic window function is the 2π-periodization (10.63) of
the Kaiser–Bessel function , see [250, p. 80].

Φ(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

sinh(b
√

m2−n2x2)

π
√

m2−n2x2
|x| < m

n
,

b
π

x = ±m
n
,

sin(b
√

n2x2−m2)

π
√

n2x2−m2
|x| > m

n

with fixed m, n ∈ N and b = 1− 1
2α , α > 1, where the Fourier coefficients read as

follows:

ck(ϕ) =
{

1
2πn

I0(m
√
b2 − k2/n2) |k| ≤ n b ,

0 |k| > nb .

Here I0 denotes the modified Bessel function of order zero defined by

I0(x) :=
∞∑

k=0

x2k

4k (k!)2 , x ∈ R .

Now we consider a linear combination

f (x) :=
M∑

j=1

cj ϕ(x + tj ) (10.64)

of translates ϕ(·+ tj ) with nonzero coefficients cj ∈ C and distinct shift parameters

−π ≤ t1 < t2 < . . . < tM ≤ π .

Then we have f ∈ C(T). Let N ∈ 2N with N > 2M + 1 be given. We introduce
an oversampling factor α > 1 such that n = α N is a power of two. Assume that
perturbed, uniformly sampled data of (10.64)

f� = f
(2π�

n

)+ e� , � = 0, . . . , n− 1 , (10.65)
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are given, where the error terms e� ∈ C are bounded by |e�| ≤ ε1 with 0 < ε1 & 1.
Further we suppose that |cj | ' ε1 for all j = 1, . . . ,M .

Then we consider the following reconstruction problem, see [266]:
Determine the shift parameters tj ∈ [−π, π), the complex coefficients cj �= 0,

and the number M of translates in such a way that

f� ≈
M∑

j=1

cj ϕ
(2π�

n
+ tj

)
, � = 0, . . . , n− 1 .

Note that all reconstructed values of tj , cj , and M depend on ε1 and n.
This problem can be numerically solved in two steps. First we convert the given

problem into a frequency analysis problem (10.2) for an exponential sum by using
Fourier technique. Then the parameters of the exponential sum are recovered by the
methods of Sect. 10.2.

For the 2π-periodic function in (10.64), we compute the corresponding Fourier
coefficients

ck(f ) = 1

2π

∫ 2π

0
f (x) e−i k x dx = ( M∑

j=1

cj ei k tj
)
ck(ϕ) = h(k) ck(ϕ) (10.66)

with the exponential sum

h(x) :=
M∑

j=1

cj ei x tj , x ∈ R . (10.67)

In applications, the Fourier coefficients ck(ϕ) of the chosen 2π-periodic window
function ϕ are often explicitly known (see Example 10.34), where ck(ϕ) > 0 for
all k = 0, . . . , N

2 . Further the function (10.64) is sampled on a fine grid, i.e., we
are given noisy sampled data (10.65) on the fine grid { 2π�

n
: � = 0, . . . , n − 1} of

[0, 2π]. Then we can approximately compute the Fourier coefficients ck(f ), k =
−N

2 , . . . , N
2 , by discrete Fourier transform

ck(f ) ≈ 1

n

n−1∑

�=0

f
(2π�

n

)
e−2π i k �/n

≈ c̃k := 1

n

n−1∑

�=0

f� e−2π i k �/n .

For shortness we set

h̃k := c̃k

ck(ϕ)
, k = −N

2
, . . . ,

N

2
. (10.68)
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Then we obtain the following estimate of the error |h̃k − h(k)|:
Lemma 10.35 Let ϕ be a 2π-periodic window function. Further let c = (cj )

M
j=1 ∈

C
M and let (10.65) be the given noisy sampled data.
For each k = −N

2 , . . . , N
2 , the computed approximate value h̃k of h(k) satisfies

the error estimate

|h̃k − h(k)| ≤ ε1

ck(ϕ)
+ ‖c‖1 max

j=0,...,N/2

∑

�∈Z
��=0

cj+�n(ϕ)

cj (ϕ)
.

Proof The 2π-periodic function (10.64) has a uniformly convergent Fourier expan-
sion. Let k ∈ {−N

2 , . . . , N
2 } be an arbitrary fixed index. By the aliasing formula

(3.6) or the discrete Poisson summation formula (see [46, pp. 181–182]) we have

1

n

n−1∑

j=0

f
(2πj

n

)
e−2π i k j/n − ck(f ) =

∑

�∈Z
��=0

ck+�n(f ).

Using the simple estimate

1

n

∣∣
n−1∑

j=0

ej e−2π i k j/n
∣∣ ≤ 1

n

n−1∑

j=0

|ej | ≤ ε1

we conclude

|c̃k − ck(f )| ≤ ε1 +
∑

�∈Z\{0}
|ck+�n(f )| .

From (10.66) and (10.68) it follows that

h̃k − h(k) = 1

ck(ϕ)

(
c̃k − ck(f )

)

and hence

|h̃k − h(k)| = 1

ck(ϕ)

(
ε1 +

∑

�∈Z
��=0

|ck+�n(f )|) .

With (10.66) and

|h(k + �n)| ≤
M∑

j=1

|cj | = ‖c‖1 , � ∈ Z ,
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we obtain for all � ∈ Z that

|ck+�n(f )| = |h(k + �n)| ck+�n(ϕ) ≤ ‖c‖1 ck+�n(ϕ) .

Thus we receive the estimates

|h̃k − h(k)| ≤ ε1

ck(ϕ)
+ ‖c‖1

∑

�∈Z
��=0

ck+�n(ϕ)

ck(ϕ)

≤ ε1

ck(ϕ)
+ ‖c‖1 max

j=−N/2,...,N/2

∑

�∈Z
��=0

cj+�n(ϕ)

cj (ϕ)
.

Since the Fourier coefficients of ϕ are even, we obtain the error estimate of
Lemma 10.35.

Example 10.36 For a fixed 2π-periodic window function ϕ of Example 10.34, one
can estimate the expression

max
j=0,...,N/2

∑

�∈Z
��=0

cj+�n(ϕ)

cj (ϕ)
(10.69)

more precisely. Let n = α N be a power of two, where α > 1 is the oversampling
factor. For the 2π-periodized Gaussian function of Example 10.34,

e−bπ2 (1−1/α)
[
1+ α

(2α − 1) bπ2
+ e−2bπ2/α

(
1+ α

(2α + 1) bπ2

)]

is an upper bound of (10.69), see [338]. For the 2π-periodized centered cardinal
B-spline of Example 10.34,

4m

(2m− 1) (2α − 1)2m

is an upper bound of (10.69) (see [338]).
For the 2π-periodized Kaiser–Bessel function of Example 10.34, the expression

(10.69) vanishes, since ck(ϕ) = 0 for all |k| ≥ n.

Starting from the given noisy sampled data f�, � = 0, . . . , n − 1, we calculate
approximate values h̃k , k = −N

2 , . . . , N
2 , of the exponential sum (10.67). In the next

step we use the ESPRIT Algorithm 10.10 in order to determine the “frequencies”
tj (which coincide with the shift parameters of (10.64)) and the coefficients cj of
(10.67).
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Algorithm 10.37 (Recovery of Linear Combination of Translates)

Input:N ∈ 2N with N > 2M + 1, M unknown number of translates in (10.64),
L ≈ N

2 , n = α N power of two with α > 1,
f� ∈ C, � = 0, . . . , n− 1, noisy sampled data (10.65),
2π-periodic window function ϕ with ck(ϕ) > 0, k = 0, . . . , N

2 .

1. Apply FFT to compute for k = −N
2 , . . . , N

2

c̃k := 1

n

n−1∑

�=0

f� e2π ik�/n , h̃k := c̃k

ck(ϕ)
.

2. Apply Algorithm 10.10 to the rectangular Hankel matrix

H̃L,N−L+1 :=
(
h̃k+�−N/2

)L−1, N−L

k, �=0 ,

computeM ∈ N, tj ∈ [−π, π), and cj ∈ C for j = 0, . . . ,M .

Output:M ∈ N, tj ∈ [−π, π), cj ∈ C, j = 0, . . . ,M .

Remark 10.38 If the 2π-periodic window function ϕ is well-localized, i.e., if there
exists m ∈ N with 2 m & n such that the values ϕ(x) are very small for all x ∈
R \ (Im + 2π Z) with Im := [−2π m/n, 2π m/n], then ϕ can be approximated
by a 2π-periodic function ψ which is supported on Im + 2π Z. For a 2π-periodic
window function of Example 10.34, we form its truncated version

ψ(x) :=
∑

k∈Z
Φ(x + 2πk) χIm(x + 2πk) , x ∈ R ,

where χIm denotes the characteristic function of Im. For the 2π-periodized centered
cardinal B-spline of Example 10.34, we see that ϕ = ψ . For each � ∈ {0, . . . , n−1},
we define the index set

Jm,n(�) :=
{
j ∈ {1, . . . ,M} : 2π (�−m) ≤ n tj ≤ 2π (�+m)

}
.

Thus we can replace the 2π-periodic window function ϕ by its truncated version ψ

in Algorithm 10.37. Consequently we have only to solve the sparse linear system

∑

j∈Jm,n(�)

cj ψ
(2π�

n
+ tj

) = f� , � = 0, . . . , n− 1

in order to determine the coefficients cj . For further details and examples, see [266].
For other approaches to recover special structured functions by a small number

of function values, we refer to [265, 277].
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10.5 Phase Reconstruction

In this last section, we consider the following one-dimensional phase retrieval
problem. We assume that a signal f is either of the form

f (t) =
N∑

j=1

cj δ(t − tj ) , t ∈ R , (10.70)

with cj ∈ C for j = 1, . . . , N and real knots t1 < t2 < . . . < tN , where δ denotes
the Dirac distribution (see Example 4.36), or

f (t) =
N∑

j=1

cj Φ(t − tj ), t ∈ R , (10.71)

as in (10.64), where Φ is a known piecewise continuous function in L1(R). Observe
that a spline function of the form (10.55) with m ≥ 1 can also be written in the form
(10.71) with N +m instead of N terms using the truncated power function.

We want to study the question whether f can be reconstructed from the modulus
of its Fourier transform. In other words, for given |F (f )(ω)| = |f̂ (ω)|, ω ∈ R,
we aim at reconstructing all parameters tj and cj , j = 1, . . . , N , determining f .
Applications of the phase retrieval problem occur in electron microscopy, wave front
sensing, laser optics [326, 327] as well as in crystallography and speckle imaging
[305].

Unfortunately, the recovery of f is hampered by the well-known ambiguousness
of the phase retrieval problem. We summarize the trivial, always occurring ambigu-
ities, see also [25, 26].

Lemma 10.39 Let f be a signal of the form (10.70) or (10.71). Then

(i) the rotated signal ei αf for α ∈ R,
(ii) the time shifted signal f (· − t0) for t0 ∈ R, and

(iii) the conjugated and reflected signal f (− ·)
have the same Fourier intensity |F (f )| as f .
Proof For (i) we observe

|F (ei αf )(ω)| = |ei α| |f̂ (ω)| = |f̂ (ω)| .

Assertion (ii) follows from Theorem 2.5, since

|F (f (· − t0))(ω)| = |e−i t0 ω| |f̂ (ω)| = |f̂ (ω)| .
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Finally,

|F (f (−·))(ω)| = ∣
∣
∫

R

f (−t) e−i ω t dt
∣
∣ = |f̂ (ω)|

implies (iii).

We want to derive a constructive procedure to recover f from |f̂ | up to the
trivial ambiguities mentioned in Lemma 10.39. We observe that f in (10.70) has
the Fourier transform

f̂ (ω) =
N∑

j=1

cj e−i ω tj , ω ∈ R ,

and the known squared Fourier intensity |f̂ | is of the form

|f̂ (ω)|2 =
N∑

j=1

N∑

k=1

cj ck e−i ω(tj−tk) . (10.72)

Similarly, for f in (10.71), the squared Fourier intensity is a product of the
exponential sum in (10.72) and |Φ̂(ω)|2.

The recovery procedure consists now of two steps. First, we will employ the
Prony method to determine the parameters of the exponential sum |f̂ (ω)|2, i.e., the
knot differences tj − tk and the corresponding products cj ck. Then, in the second
step, we recover the parameters tj and cj , j = 1, . . . , N , to obtain f . In order to
be able to solve this problem uniquely, we need to assume that all knot differences
tj − tk are pairwise different for j �= k and that |c1| �= |cN |.
First Step: Recovery of the Autocorrelation Function |f̂ (ω)|2.

Since tj − tk are distinct for j �= k, the function |f̂ (ω)|2 can be written in the form

|f̂ (ω)|2 =
N(N−1)/2∑

�=−N(N−1)/2

γ� e−i ω τ� = γ0 +
N(N−1)/2∑

�=1

(
γ� e−i ω τ� + γ � ei ω τ�

)
,

(10.73)

where 0 < τ1 < τ2 < . . . < τN(N−1)/2 and τ−� = −τ�. Then, each τ�, � > 0,
corresponds to one difference tj − tk for j > k and γ� = cj ck . For � = 0 we have
τ0 = 0 and γ0 =∑N

j=1 |cj |2. Thus, |f̂ (ω)|2 is an exponential sum with N(N−1)+1
terms, and all parameters τ�, γ� can be reconstructed from the equidistant samples
|f̂ (k h)|, k = 0, . . . , 2(N − 1)N + 1, with sampling step 0 < h < π

τN(N−1)/2
using

one of the algorithms in Sect. 10.2.
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As shown in [26], we can exploit the knowledge that τ0 = 0, τ� = −τ−� and that
γ� = γ−� for � = 1, . . . , N(N − 1)/2. Therefore, instead of N(N − 1) + 1 real
values τ� and N(N−1)+1 complex values γ�, we only need to recover N(N−1)/2
real values τ� and complex values γ� for � = 1, . . . , N(N − 1)/2 as well as the real
value γ0. This can be already done using only the 3N(N −1)/2+1 intensity values
|f̂ (k h)|, k = 0, . . . , 3(N − 1)N/2. However, if more intensity values are available,
these should be used to stabilize the Prony method.

Second Step: Unique Signal Recovery.

Having determined the knot differences τ� as well as the corresponding coefficients
γ� in (10.73), we aim at reconstructing the parameters tj and cj , j = 1, . . . , N in
the second step, see [26].

Theorem 10.40 Let f be a signal of the form (10.70) or (10.71). Assume that the
knot differences tj − tk are distinct for j �= k and that the coefficients satisfy |c1| �=
|cN |. Further, let h be a step size satisfying 0 < h < π/(tj − tk) for all j �= k.

Then f can be uniquely recovered from its Fourier intensities |f̂ (k h)| for all
k = 0, . . . , 2(N − 1)N + 1 up to trivial ambiguities.

Proof We follow the idea in [26]. In the first step described above, we already have
obtained all parameters τ� and γ�, � = 0, . . . , N(N − 1)/2, to represent |f̂ (ω)|2
in (10.73). We denote by T := {τ� : � = 1, . . . , N(N − 1)/2} the list of positive
differences ordered by size. We need to recover the mapping � → (j, k) such that
τ� = tj − tk and γ� = cj ck and then extract the wanted parameters tj and cj ,
j = 1, . . . , N . This is done iteratively. Obviously, the maximal distance τN(N−1)/2
equals to tN − t1. Due to the shift ambiguity in Lemma 10.39 (ii), we can assume
that t1 = 0 and tN = τN(N−1)/2. Next, the second largest distance τN(N−1)/2−1
corresponds either to tN − t2 or to tN−1 − t1. Due to the trivial reflection and
conjugation ambiguity in Lemma 10.39 (iii), we can just fix tN−1 − t1 = tN−1 =
τN(N−1)/2−1. Thus, there exist a value τ�∗ = tN − tN−1 > 0 in T such that
τ�∗ + τN(N−1)/2−1 = τN(N−1)/2. Considering the corresponding coefficients, we
obtain

cN c1 = γN(N−1)/2 , cN−1 c1 = γN(N−1)/2−1 , cNcN−1 = γ�∗

and thus

|c1|2 =
γN(N−1)/2 γN(N−1)/2−1

γ�∗
, cN = γN(N−1)/2

c1
, cN−1 = γN(N−1)/2−1

c1
.

By Lemma 10.39 (i), f can be only recovered up to multiplication with a factor
with modulus 1. Therefore, we can assume that c1 is real and positive, then the
above equations allow us to recover c1, cN−1, and cN in a unique way.

We proceed by considering the next largest distance τN(N−1)/2−2 and notice that
it corresponds either to tN − t2 or to tN−2 − t1 = tN−2. In any case there exists a
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τ�∗ such that τ�∗ + τN(N−1)/2−2 = τN(N−1)/2 = tN . We study the two cases more
closely and show that they cannot be true both at the same time.

Case 1 If τN(N−1)−2 = tN − t2, then τ�∗ = t2 − t1 and γ�∗ = c2 c1. Further, using
γN(N−1)/2−2 = cN c2 we arrive at the condition

c2 = γ�∗

c1
= γN(N−1)/2−2

cN
. (10.74)

Case 2 If τN(N−1)−2 = tN−2 − t1, then τ�∗ = tN − tN−2 with coefficient γ�∗ =
cN cN−2. With γN(N−1)/2−2 = cN−2 c1 we thus find the condition

cN−2 = γ�∗

cN
= γN(N−1)/2−2

c1
. (10.75)

If both conditions (10.74) and (10.75) were true, then it follows that

∣
∣cN
c1

∣
∣ = ∣

∣γN(N−1)/2−2

γ�∗

∣
∣ = ∣

∣ c1

cN

∣
∣

contradicting the assumption |c1| �= |cN |. Therefore, only one of the equalities
(10.74) and (10.75) can be true, and we can determine either t2 and c2 or tN−2
and cN−2.

We remove now all differences τ� from the set T that correspond to recovered
knots and repeat the approach to determine the remaining knots and coefficients.

Remark 10.41

1. The assumptions needed for unique recovery can be checked during the algo-
rithm. If the number N of terms in f is known beforehand, then the assumption
that tj − tk are pairwise different for j �= k is not satisfied, if the Prony method
yields |f̂ (ω)|2 with less than N(N − 1) + 1 terms. The second assumption
|c1| �= |cN | can be simply checked after having determined these two values.

2. The problem of recovery of the sequence of knots tj from an unlabeled set
of differences is the so-called turnpike problem that requires a backtracking
algorithm with exponential complexity in worst case [225] and is not always
uniquely solvable, see [305].

We summarize the recovery of f from its Fourier intensities as follows:

Algorithm 10.42 (Phase Recovery from Fourier Intensities)

Input: Upper bound L ∈ N of the numberN of terms, step size h > 0,
Fourier intensities fk = |f̂ (h k)| ∈ [0, ∞) for k = 0, . . . , 2M ,

M > N(N − 1), accuracy ε > 0.

1. Set hk = |f̂ (h k)|2, if f is of the form (10.70) and hk = |f̂ (h k)/Φ̂(h k)|2, if f
is of the form (10.71). Apply Algorithm 10.8 to determine the knot distances τ�
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for � = −N(N − 1)/2, . . .N(N − 1)/2 in (10.73) in increasing order and the
corresponding coefficients γ�.

Update the reconstructed distances and coefficients by

τ� := 1

2
(τ� − τ−�) , γ� := 1

2
(γ� + γ−�) , � = 0, . . . , N(N − 1)/2 .

2. Set t1 := 0, tN := τN(N−1)/2, tN−1 := τN(N−1)/2−1. Find the index �∗ with
|τ�∗ − tN + tN−1| ≤ ε and compute

c1 :=
∣
∣γN(N−1)/2 γN(N−1)/2−1

γ�∗

∣
∣1/2

cN := γN(N−1)/2

c1
, cN−1 := γN(N−1)/2−1

c1
.

Initialize the list of recovered knots and coefficients T := {t1, tN−1, tN } and
C := {c1, cN−1, cN } and remove the used distances from T := {τ� : � =
1, . . . , N(N − 1)/2}.

3. For the maximal remaining distance τk∗ ∈ T determine �∗ with |τk∗ + τ�∗ − tN |
≤ ε.

3.1. If |τk∗ − τ�∗| > ε, then compute d1 = γk∗/c1, d2 = γ�∗/c1. If

|cN d1 − γ�∗ | < |cN d2 − γk∗| ,

then T := T ∪ { 1
2 (τk∗ + tN − τ�∗)} and C := C ∪ {d1} else T := T ∪

{ 1
2 (τ�∗ + tN − τk∗)} and C := C ∪ {d2}.

3.2. If |τk∗−τ�∗ | ≤ ε, then the knot distance belongs to the center of the interval.
Set T := T ∪ {tN/2}, C := C ∪ {γk∗/c1}.

Remove all distances between the new knot and the knots being recovered already
from T and repeat step 3 until T is empty.

Output: knots tj and coefficients cj of the signal f in (10.70) or (10.71).

Note that this algorithm is very expensive for larger N . The computational costs
are governed by Algorithm 10.8 in Step 1, which is here applied to an exponential
sum of the form (10.73) with N(N − 1)+ 1 terms.

Example 10.43 We consider a toy example to illustrate the method. We want to
recover the signal

f (t) = 2 δ(t)+ (5− i) δ(t − 3)+ (7+ i) δ(t − 5)

with the Fourier transform f̂ (ω) = 2+ (5− i) e−3i ω+ (7+ i) e−5i ω, i.e., we have to
recover the knots t1 = 0, t2 = 3, t3 = 5 and the coefficients c1 = 2, c2 = 5− i, and
c3 = 7+ i. Thus N = 3 and max |tj − tk| = 5. We can choose a step size h < π/5.
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Let us take here h = π/6. Note the considered signal is already “normalized” in
sense that t1 = 0 and c1 is positive. Each other signal of the form ei α f (t − t0) with
α, t0 ∈ R has the same Fourier intensity.

We assume that the Fourier intensities |f̂ (kπ/6)| for k = 0, . . . , L with L ≥ 13
are given. Exploiting symmetry properties, also the intensities |f̂ (k π/6)| for k =
0, . . . , 9 would be sufficient. The autocorrelation function |f̂ (ω)|2 is of the form

|f̂ (ω)|2 = (14− 2 i) e5i ω + (10+ 2 i) e3i ω + (34− 12 i) e2i ω

+18+ (34+ 12 i) e−2i ω + (10− 2 i) e−3i ω + (14+ 2 i) e−5i ω .

In the first step, we recover the frequencies τ0 = 0, τ1 = 2, τ2 = 3 and τ3 = 5 as
well as the coefficients γ0 = 18, γ1 = 34+ 12 i, γ2 = 10− 2 i, γ3 = 14+ 2 i from
the given samples using the Prony method.

In the second step, we conclude from the largest difference τ3 = 5 that t1 = 0
and t3 = 5. Here, we have already fixed the support of f . Indeed, any other solution
with t1 = t0, t3 = t0 + 5 is also correct by Lemma 10.39 (ii). Next, from τ2 = 3 we
conclude that t2 is either 3 or 2. Both solutions are possible, and indeed τ1 + τ2 =
τ3 = t3 − t1. For t2 = 3, we find

c1 :=
∣
∣γ3γ 2

γ1

∣
∣1/2 = ∣

∣ (14+ 2 i) (10+ 2 i)

34+ 12 i

∣
∣1/2 = 2 ,

c3 := γ3

c1
= 14+ 2 i

2
= 7+ i , c2 := γ2

c1
= 10− 2 i

2
= 5− i .

This solution recovers f .
For t2 = 2, we find c3 c1 = γ3, c2 c1 = γ1, and c3 c2 = γ2, and thus

|c1|2 =
∣
∣γ3γ 1

γ2

∣
∣ = ∣

∣ (14+ 2 i) (34− 12 i)

10− 2 i

∣
∣ = 50 .

Thus we find in this case

c1 =
√

50 , c2 = γ1

c1
= 34+ 12 i√

50
, c3 = γ3

c1
= 14+ 2 i√

50
.

However, this second solution

f2(t) =
√

50 δ(t)+ 34+ 12 i√
50

δ(t − 2)+ 14+ 2 i√
50

δ(t − 5)

is indeed the conjugated and reflected signal of f , translated by 5 and multiplied
with the factor ei α = 7−i√

50
, i.e.,

f2(t) = 7− i√
50

f (−t + 5) .
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Remark 10.44 Within the last years, phase retrieval problems have been extensively
studied. There exist many very different problem statements that are summarized
under the term “phase retrieval” but may be quite different in nature. The applica-
tions in physics usually require a signal or image recovery from Fourier or Fresnel
intensities. The problem is ill-posed because of many ambiguities and can only
be solved with a suitable amount of a priori knowledge about the solution signal.
Often, support properties, positivity or interference measurements can be used to
reduce the solution set. For the one-dimensional discrete phase retrieval problem,
we refer to the recent survey [25]. The two-dimensional case remains to be not
completely understood in general. Numerically, iterative projection algorithms are
mainly applied in practice, see [20, 231].



Appendix A
List of Symbols and Abbreviations

A.1 Table of Some Fourier Series

In this table all functions f : T → R are piecewise continuously differentiable.
In the left column, the 2π-periodic functions f are defined either on (−π, π) or
(0, 2π). If x0 is a point of jump discontinuity of f , then f (x0) := 1

2

(
f (x0 + 0)+

f (x0 − 0)
)
. In the right column the related Fourier series of f are listed. For the

main properties of Fourier series, see Lemmas 1.6 and 1.13. For the convergence of
the Fourier series, we refer to Theorem 1.34 of Dirichlet–Jordan.

Function f : T→ R Fourier series of f

f (x) = x, x ∈ (−π, π) 2
∑∞

n=1(−1)n+1 sin(nx)
n

f (x) = |x|, x ∈ (−π, π) π
2 − 4

π

∑∞
n=1

cos(2n−1)x
(2n−1)2

f (x) =
{

0 x ∈ (−π, 0) ,

x x ∈ (0, π)

π
4 − 2

π

∑∞
n=1

cos(2n−1)x
(2n−1)2 +∑∞

n=1(−1)n+1 sin(nx)
n

f (x) = x, x ∈ (0, 2π) π − 2
∑∞

n=1
sin(nx)

n

f (x) = x2, x ∈ (−π, π) π2

3 + 4
∑∞

n=1(−1)n cos(nx)
n2

f (x) = x (π − |x|), x ∈ (−π, π) 8
π

∑∞
n=1

sin (2n−1)x
(2n−1)3

f (x) =
{
−1 x ∈ (−π, 0) ,

1 x ∈ (0, π)

4
π

∑∞
n=1

sin(2n−1)x
2n−1

f (x) =
{

0 x ∈ (−π, 0) ,

1 x ∈ (0, π)

1
2 + 2

π

∑∞
n=1

sin(2n−1)x
2n−1

f (x) = π−x
2π , x ∈ (0, 2π) 1

π

∑∞
n=1

sin (nx)

n

f (x) = eax , x ∈ (−π, π)
sinh (aπ)

π

∑∞
n=−∞

(−1)n

a−in einx , a ∈ R \ {0}
(continued)
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Function f : T→ R Fourier series of f

f (x) = eax , x ∈ (0, 2π) e2aπ−1
2π

∑∞
n=−∞ 1

a−in einx , a ∈ R \ {0}
f (x) = | sin x|, x ∈ (−π, π) 2

π
− 4

π

∑∞
n=1

cos(2nx)
4n2−1

f (x) = | cos x|, x ∈ (−π, π) 2
π
− 4

π

∑∞
n=1

(−1)n cos(2nx)
4n2−1

f (x) =
{

0 x ∈ (−π, 0) ,

sin x x ∈ (0, π)

1
π
− 2

π

∑∞
n=1

cos(2nx)
4n2−1

+ 1
2 sin x

f (x) = x cos x, x ∈ (−π, π) − 1
2 sin x +∑∞

n=2(−1)n 2n
n2−1

sin(nx)

f (x) = x sin x, x ∈ (−π, π) 1− 1
2 cos x − 2

∑∞
n=2(−1)n 1

n2−1
cos(nx)

A.2 Table of Some Chebyshev Series

In this table all functions f : I → R are contained in L2,w(I), where I := [−1, 1]
and w(x) := (1 − x2)−1/2 for x ∈ (−1, 1). In the left column, the functions f

are listed. In the right column the related Chebyshev series are listed. The basic
properties of Chebyshev coefficients are described in Theorem 6.15. For the uniform
convergence of Chebyshev series, see Theorems 6.12 and 6.16. Note that for m ∈
N0, the mth Bessel function and the mth modified Bessel function of first kind are
defined on R by

Jm(x) :=
∞∑

k=0

(−1)k

k! (m+ k)!
(x

2

)m+2k
, Im(x) :=

∞∑

k=0

1

k! (m+ k)!
(x

2

)m+2k
.

Further a ∈ R \ {0} and b ∈ R are arbitrary constants.

Function f : I → R Chebyshev series 1
2 a0[f ] +∑∞

n=1 an[f ] Tn(x)

f (x) = |x| 2
π
− 4

π

∑∞
n=1

(−1)n

4n2−1
T2n(x)

f (x) = sgn x 4
π

∑∞
n=1

(−1)n−1

2n−1 T2n−1(x)

f (x) = √1+ x 2
√

2
π
− 4

√
2

π

∑∞
n=1

(−1)n

4n2−1
Tn(x)

f (x) = √1− x 2
√

2
π
− 4

√
2

π

∑∞
n=1

1
4n2−1

Tn(x)

f (x) = √1− x2 2
π
− 4

π

∑∞
n=1

1
4n2−1

T2n(x)

f (x) = arcsin x 4
π

∑∞
n=1

1
(2n−1)2 T2n−1(x)

f (x) = cos(ax) J0(a) + 2
∑∞

n=1(−1)n J2n(a) T2n(x)

f (x) = sin(ax) 2
∑∞

n=1(−1)n−1 J2n−1(a) T2n−1(x)

f (x) = cos(ax + b) J0(a) cos b + 2
∑∞

n=1 cos
(
b + nπ

2

)
Jn(a) Tn(x)

f (x) = sin(ax + b) J0(a) sin b + 2
∑∞

n=1 sin
(
b + nπ

2

)
Jn(a) Tn(x)

(continued)
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Function f : I → R Chebyshev series 1
2 a0[f ] +∑∞

n=1 an[f ] Tn(x)

f (x) = eax I0(a) + 2
∑∞

n=1 In(a) Tn(x)

f (x) = cosh(ax) I0(a) + 2
∑∞

n=1 I2n(a) T2n(x)

f (x) = sinh(ax) 2
∑∞

n=1 I2n−1(a) T2n−1(x)

f (x) = eax
2

ea/2 I0(
a
2 )+ 2 ea/2 ∑∞

n=1 In(
a
2 ) T2n(x)

f (x) = cos(a
√

1− x2) J0(a) + 2
∑∞

n=1 J2n(a) T2n(x)

f (x) = (1 + a2x2)−1 1√
1+a2

+ 2√
1+a2

∑∞
n=1

(−1)n a2n

(1+
√

1+a2)2n
T2n(x)

A.3 Table of Some Fourier Transforms

In this table all functions f : R → C are contained either in L1(R) or in L2(R).
In the left column, the functions f are listed. In the right column the related
Fourier transforms are listed. For the main properties of Fourier transforms, see
Theorems 2.5 and 2.15. See Theorems 2.10 and 2.23 for Fourier inversion formulas
of functions in L1(R) and L2(R), respectively. By Nm, Hn, and hn we denote the
cardinal B-spline of order m, the Hermite polynomial of degree n, and the nth
Hermite function, respectively.

Function f : R→ C Fourier transform f̂ (ω) = ∫
R
f (x) e−iωx dx

f (x) =
{

1 x ∈ (−L, L) ,

0 otherwise
2L sinc(Lω), L > 0

f (x) =
{

1− |x|
L

x ∈ (−L, L) ,

0 otherwise
L

(
sinc Lω

2

)2
, L > 0

f (x) = e−x2/2
√

2π e−ω2/2

f (x) = 1√
2πσ 2

e−x2/(2σ 2) e−σ 2ω2/2, σ > 0

f (x) = e−(a−ib) x2
√

π
a−ib exp −(a−ib) ω2

4 (a2+b2)
, a > 0, b ∈ R \ {0}

f (x) = e−a |x| 2a
a2+ω2 , a > 0

N1(x) =
{

1 x ∈ (0, 1) ,

0 otherwise
e−iω/2 sinc ω

2

Nm(x) = (Nm−1 ∗N1)(x) e−imω/2
(

sinc ω
2

)m
, m ∈ N \ {1}

Mm(x) = Nm(x + m
2 )

(
sinc ω

2

)m
, m ∈ N

hn(x) = Hn(x) e−x2/2
√

2π (−i)n hn(ω), n ∈ N0

(continued)
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Function f : R→ C Fourier transform f̂ (ω) = ∫
R
f (x) e−iωx dx

f (x) = L
π

sinc(Lx) f̂ (ω) =
⎧
⎨

⎩

1 ω ∈ (−L, L) ,

0 otherwise
L > 0

f (x) =
{

e−ax cos(bx) x > 0 ,

0 otherwise
a+iω

(a+iω)2+b2 , a > 0, b ≥ 0

f (x) = a
π (x2+a2)

e−a |ω|

A.4 Table of Some Discrete Fourier Transforms

In the left column of this table, the components of N-dimensional vectors a =
(aj )

N−1
j=0 ∈ C

N are presented. In the right column the components of the related

discrete Fourier transforms â = (âk)
N−1
k=0 = FN a of even length N ∈ 2N are listed,

where

âk =
N−1∑

j=0

aj w
jk
N , k = 0, . . . , N − 1 .

For the main properties of DFTs, see Theorem 3.26. By Remark 3.12 the DFT(N)

of the N-periodic sequences (aj )j∈Z is equal to the N-periodic sequences (âk)k∈Z.
In this table, n ∈ Z denotes an arbitrary fixed integer.

j th component aj ∈ C kth component âk of related DFT(N)

aj = δj modN âk = 1

aj = 1 âk = N δk modN

aj = δ(j−n) modN âk = wkn
N = e−2π ikn/N

aj = 1
2

(
δ(j+n) modN + δ(j−n) modN

)
âk = cos 2πnk

N

aj = 1
2

(
δ(j+n) modN − δ(j−n) modN

)
âk = i sin 2πnk

N

aj = w
jn

N âk = N δ(k+n) modN

aj = (−1)j âk = N δ(k+N/2) modN

aj = cos 2πjn
N

âk = N
2

(
δ(k+n) modN + δ(k−n) modN

)

aj = sin 2πjn
N

âk = iN
2

(
δ(k+n) modN − δ(k−n) modN

)

aj =
{

0 j = 0,
1
2 − j

N
j = 1, . . . , N − 1

âk =
{

0 k = 0,

− i
2 cot πk

N
k = 1, . . . , N − 1

(continued)
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j th component aj ∈ C kth component âk of related DFT(N)

aj =
{

1
2 j = 0,
j
N

j = 1, . . . , N − 1
âk =

{
N
2 k = 0,
i
2 cot πk

N
k = 1, . . . , N − 1

aj =

⎧
⎪⎨

⎪⎩

j
N

j = 0, . . . , N
2 − 1,

0 j = N
2 ,

j
N
− 1 j = N

2 + 1, . . . , N − 1

âk =
{

0 k = 0,
i
2 (−1)k cot πk

N
k = 1, . . . , N − 1

aj =

⎧
⎪⎨

⎪⎩

0 j ∈ {0, N
2 },

1 j = 1, . . . , N
2 − 1,

−1 j = N
2 + 1, . . . , N − 1

âk =
{

0 k = 0, 2, . . . , N − 2,

−2 i cot πk
N

k = 1, 3, . . . , N − 1

A.5 Table of Some Fourier Transforms of Tempered
Distributions

In the left column, some tempered distributions T ∈ S ′(Rd) are listed. In the right
column, one can see the related Fourier transforms T̂ = F T ∈ S ′(Rd). The
main properties of the Fourier transforms of tempered distributions are described
in Theorem 4.49. For the inverse Fourier transform F−1T ∈ S ′(Rd), see
Theorem 4.47. In this table we use the following notations x0 ∈ R

d , ω0 ∈ R
d ,

and α ∈ N
d
0 . If the Dirac distribution δ acts on functions with variable x, then we

write δ(x) ∈ R
d . Analogously, δ(ω) acts on functions with variable ω ∈ R

d .

Tempered distribution T ∈ S ′(Rd ) Fourier transform FT ∈ S ′(Rd )

δ(x) 1

δx0 (x) := δ(x − x0) e−i ω·x0

(Dα δ)(x) i|α| ωα

(Dα δ)(x − x0) i|α| ωα e−i ω·x0

1 (2π)d δ(ω)

xα (2π)d i|α| (Dα δ)(ω)

ei ω0·x (2π)d δ(ω − ω0)

xα ei ω0 ·x (2π)d i|α| (Dα δ)(ω − ω0)

cos(ω0 · x) (2π)d

2

(
δ(ω − ω0)+ δ(ω + ω0)

)

sin(ω0 · x) (2π)d

2i

(
δ(ω − ω0)− δ(ω + ω0)

)

e−‖x‖2
2/2 (2π)d/2 e−‖ω‖2

2/2

e−a ‖x‖2
2

(
π
a

)d/2
e−‖ω‖2

2/(4a) , a > 0
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Numbers and Related Notations

N Set of positive integers
N0 Set of nonnegative integers
Z Set of integers
R Set of real numbers
R+ Set of nonnegative numbers
C Set of complex numbers
T Torus of length 2π
T
d d-Dimensional torus of length 2π
[a, b] Closed interval in R

"x# Largest integer ≤ x for given x ∈ R

e Euler’s number
i Imaginary unit
arg a Argument of a ∈ C \ {0}
|a| Magnitude of a ∈ C

a Conjugate complex number of a ∈ C

Re a Real part of a ∈ C

Im a Imaginary part of a ∈ C

wN := e−2π i/N Primitive N-th root of unity
ϕ(n) Euler totient function of n ∈ N

δj Kronecker symbol with δ0 = 1 and δj = 0, j ∈ Z \ {0}
j mod N Nonnegative residue modulo N

δj mod N N-periodic Kronecker symbol
O Landau symbol
(Z/p Z)∗ Multiplicative group of integers modulo a prime p

F Set of binary floating point numbers
fl(a) Floating point number of a
u Unit roundoff in F

w̃k
N Precomputed value of wk

N

ln a Natural logarithm of a > 0 to the base e
log2 N Binary logarithm of N > 0 to the base 2

εN(k) Scaling factors with εN(0) = εN(N) =
√

2
2 and εN(k) = 1

for k = 1, . . . , N − 1
sgn a Sign of a ∈ R

α(t) Number of real additions required for an FFT for DFT(2t )

μ(t) Number of nontrivial real multiplications required for an
FFT for DFT(2t )

IN , JN Index set {0, . . . , N − 1} if not defined differently
k = (kt−1, . . . , k0)2 t-Digit binary number k ∈ JN with N = 2t and kj ∈ {0, 1}
ρ(k) Bit-reversed number of k ∈ JN with N = 2t

πN Perfect shuffle of JN with N = 2t

I d
N Multivariate index set {n = (nj )

d
j=1 : nj ∈ IN , j =

1, . . . , d}
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n := (nj )
d
j=1 Multivariate index

1d Vector of ones, 1d = (1, . . . , 1) ∈ Z
d

k mod N Nonnegative residue modulo N defined entrywise
k ◦ N Entrywise multiplication k ◦ N = (kjNj )

d
j=1

Λ(z,M) Rank-1 lattice generated by z ∈ Z
d and M ∈ Z

Λ⊥(z,M) Integer dual lattice of Λ(z,M)

Periodic Functions and Related Notations

f : T→ C Complex-valued 2π-periodic function
f (r) rth derivative of f
C(T) Banach space of continuous functions f : T→ C

Cr(T) Banach space of r-times continuously differentiable functions
f : T→ C

Cr(Td ) Banach space of d-variate r-times continuously differentiable func-
tions f : Td → C

Lp(T) Banach space of measurable functions f : T→ C with integrable
|f |p, p ≥ 1

Lp(T
d ) Banach space of d-variate measurable functions f : Td → C with

integrable |f |p, p ≥ 1
L2(T) Hilbert space of absolutely square-integrable functions f : T→ C

ei kx kth complex exponential with k ∈ Z

Tn Set of 2π-periodic trigonometric polynomials up to degree n

T (2T )
n Set of 2T -periodic trigonometric polynomials up to degree n

ck(f ) kth Fourier coefficient of f ∈ L1(T) or f ∈ L2(T)

ck(f ) kth Fourier coefficient of a d-variate function f ∈ L1(T
d ) or f ∈

L2(T
d )

c
(L)
k (f ) kth Fourier coefficient of an L-periodic function f

ĉk(f ) Approximate value of ck(f )

Snf nth partial sum of the Fourier series of f ∈ L2(T) or f ∈ L2(T
d )

ak(f ), bk(f ) kth real Fourier coefficients of f : T→ R

f ∗ g Convolution of f , g ∈ L1(T) or f , g ∈ L1(T
d)

Dn nth Dirichlet kernel
Fn nth Fejér kernel
σnf nth Fejér sum
V2n nth de la Vallée Poussin kernel
χ[a, b] Characteristic function of the interval [a, b]
V b
a (ϕ) Total variation of the function ϕ : [a, b] → C

S̃nf nth partial sum of the conjugate Fourier series of f
f (x0 ± 0) One-sided limits of the function f : T→ C at the point x0
cas Cosine-and-sine function cos+ sin
P2π 2π-Periodization operator
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SIf d-Variate Fourier partial sum of f ∈ L1(T
d ) with regard to

frequency index set I
ΠI span {eik·x : k ∈ I } space of multivariate trigonometric polynomi-

als supported on I

A (Td ) Weighted subspace of L1(T
d )

Hα,p(Td ) Periodic Sobolev space of isotropic smoothness

Sequences and Related Notations

x = (xk)k∈Z Sequence with complex entries xk
�∞(Z) Banach space of bounded sequences
�p(Z) Banach space of sequences x = (xk)k∈Z with

∑
k∈Z |xk|p < ∞,

p ≥ 1
�2(Z) Hilbert space of sequences x = (xk)k∈Z with

∑
k∈Z |xk|2 <∞

V x Forward shift of x
V−1x Backward shift of x
M Modulation filter
δ = (δk)k∈Z Pulse sequence
h = H δ Impulse response of linear, time-invariant filter H
h ∗ x Discrete convolution of sequences h and x

H(ω) Transfer function of linear, time-invariant filter H

Nonperiodic Functions Defined on R or R
d and Related

Notations

f : R→ C Complex-valued function
C0(R) Banach space of continuous functions f : R → C with

lim|x|→∞ f (x) = 0
C0(R

d) Banach space of d-variate continuous functions f : R → C

with lim‖x‖→∞ f (x) = 0
Cc(R) Subspace of compactly supported, continuous functions f :

R→ C

Cr(R) Subspace of r-times continuously differentiable functions f :
R→ C

Lp(R) Banach space of measurable functions f : R → C such that
|f |p is integrable over R for p ≥ 1

Lp(R
d) Banach space of d-variate measurable functions f : Rd → C

such that |f |p is integrable over Rd for p ≥ 1
L2(R) Hilbert space of absolutely square integrable functions f :

R→ C
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L2(R
d) Hilbert space of d-variate absolutely square integrable functions

f : Rd → C

S (Rd) Schwartz space of d-variate rapidly decreasing functions
S ′(Rd) Space of tempered distributions on S (Rd)

S
2 Unit sphere S2 = {x ∈ R

3 : ‖x‖2 = 1}
L2(S

2) Hilbert space of square integrable functions f on S
2

‖f ‖2 Energy of f ∈ L2(R)

f̂ = F f Fourier transform of f ∈ L1(R) or f ∈ L2(R) and f ∈ L1(R
d )

or f ∈ L2(R
d)

(f̂ )ˇ Inverse Fourier transform of f̂ ∈ L1(R) or f̂ ∈ L2(R) and
f̂ ∈ L1(R

d) or f̂ ∈ L2(R
d)

f ∗ g Convolution of f , g ∈ L1(R) or f , g ∈ L1(R
d )

sinc Cardinal sine function
Si Sine integral
Nm Cardinal B-spline of order m
Mm Centered cardinal B-spline of order m
M(k,�)(x1, x2) Tensor product of B-splines M(k,�)(x1, x2) = Mk(x1)M�(x2)

Bm
j B-spline of order m with arbitrary knots −∞ < tj < . . . <

tj+m <∞
Hn Hermite polynomial of degree n

hn nth Hermite function
Pk kth Legendre polynomial
Pn
k Associated Legendre function

Yn
k Spherical harmonics

Jν Bessel function of order ν
δ Dirac distribution
H f Hankel transform of f ∈ L2((0,∞))

Δu Laplace operator applied to a function u

supp f Support of f : R→ C

Δx0 f Dispersion of f ∈ L2(R) about the time x0 ∈ R

Δω0 f̂ Dispersion of f̂ ∈ L2(R) about the frequency ω0 ∈ R

(Fψ f )(b, ω) Windowed Fourier transform of f with respect to the window
function ψ

|(Fψ f )(b, ω)|2 Spectrogram of f with respect to the window function ψ

Fαf Fractional Fourier transform for f ∈ L2(R) with α ∈ R

LAf Linear canonical transform for f ∈ L2(R) with a 2-by-2
matrix A

Vectors, Matrices, and Related Notations

C
N Vector space of complex column vectors a = (aj )

N−1
j=0

a = (aj )
N−1
j=0 Column vector with complex components aj

a Transposed vector of a
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a Conjugate complex vector of a
aH Transposed conjugate complex vector of a
〈a, b〉 Inner products of a, b ∈ C

N

‖a‖2 Euclidean norm of a ∈ C
N

bk = (δj−k)
N−1
j=0 Standard basis vectors of CN for k = 0, . . . , N − 1

ek = (w
jk
N )N−1

j=0 Exponential vectors of CN for k = 0, . . . , N − 1

AN = (aj,k)
N−1
j,k=0 N-by-N matrix with complex entries aj,k

AN Transposed matrix of AN

AN Complex conjugate matrix of AN

AH
N Transposed complex conjugate matrix of AN

A−1
N Inverse matrix of AN

A+N Moore–Penrose pseudo-inverse of AN

IN N-by-N identity matrix
0 Zero vector and zero matrix, respectively
FN = (w

jk
N )N−1

j,k=0 N-by-N Fourier matrix with wN = e−2π i/N

1√
N

FN Unitary Fourier matrix

â = (âk)
N−1
k=0 Discrete Fourier transform of a ∈ CN , i.e., â = FN a

J′N N-by-N flip matrix
JN N-by-N counter-diagonal matrix
det AN Determinant of the matrix AN

tr AN Trace of the matrix AN

a ∗ b Cyclic convolution of a, b ∈ C
N

b0 = (δj )
N−1
j=0 Pulse vector

VN N-by-N forward-shift matrix
V−1

N N-by-N backward-shift matrix
IN − VN N-by-N cyclic difference matrix
h = HN b0 Impulse response vector of a shift-invariant, linear map

HN

MN N-by-N modulation matrix
a ◦ b Componentwise product of a, b ∈ C

N

circ a N-by-N circulant matrix of a ∈ C
N

(a0 | . . . | aN−1) N-by-N matrix with the columns ak ∈ C
N

diag a N-by-N diagonal matrix with the diagonal entries aj ,
where a = (aj )

N−1
j=0

AM,N = (aj,k)
M−1,N−1
j,k=0 M-by-N matrix with complex entries aj,k

AM,N ⊗ BP,Q Kronecker product of AM,N and BP,Q

a⊗ b Kronecker product of a ∈ C
M and b ∈ C

N

PN(L) L-stride permutation matrix with N = LM for integers
L, M ≥ 2

PN(2) Even-odd permutation matrix for even integer N
col AM,N Vectorization of the matrix AM,N

CI
N+1 (N + 1)-by-(N + 1) cosine matrix of type I
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CII
N , CIII

N , CIV
N N-by-N cosine matrix of type II, III, and IV, respectively

SI
N−1 (N − 1)-by-(N − 1) sine matrix of type I

SII
N , SIII

N , SIV
N N-by-N sine matrix of type II, III, and IV, respectively

HN N-by-N Hartley matrix
RN Bit-reversed permutation matrix for N = 2t

PN Perfect shuffle permutation matrix with N = 2t

DN Diagonal sign matrix diag ((−1)j )N−1
j=0

WN/2 Diagonal matrix diag (w
j
N)

N/2−1
j=0 for even integer N

diag (AN, BN) 2N-by-2N block diagonal matrix with diagonal entries
AN and BN

a(�) Periodization of a ∈ C
N with N = 2t and � ∈ {0, . . . , t}

Â = FN1 A FN2 Two-dimensional discrete Fourier transform of A ∈
C

N1×N2

|x| = (|xj |)N−1
j=0 Modulus of a vector x ∈ C

N

|A| = (|aj,k|)N1−1,N2−1
j,k=0 Modulus of matrix A ∈ C

N1×N2

‖A‖F Frobenius norm of matrix A
A ∗ B Cyclic convolution of A, B ∈ C

N1×N2

A ◦ B Entrywise product of matrices of A, B ∈ C
N1×N2

A⊕ B Block diagonal matrix diag (A, B)

n · x Inner product of n ∈ Z
d and x ∈ R

d

Fd
N d-Variate Fourier matrix Fd

N = (e−2π ik·j/N)j,k∈I dN
A(X, I) Multivariate Fourier matrix A(X, I) = (eik·x)x∈X,k∈I ∈

C
|X|×|I |

|I | Cardinality of finite index set I
CM(p) Companion matrix to the polynomial p of degree M

VM(z) Vandermonde matrix VM(z) = (z
j−1
k )Mj,k=1 generated

by z = (zk)
M
k=1.

Vc
2M(z) 2M-by-2M confluent Vandermonde matrix

VP,M(z) Rectangular P -by-M Vandermonde matrix VP,M(z) =
(z

j−1
k )

P,M
j,k=1

HM(0) M-by-M Hankel matrix
HL,M Rectangular L-by-M Hankel matrix
cond2 AL,M Spectral norm condition of an L-by-M matrix AL,M

Real-Valued Functions Defined on [−1, 1] and Related
Notations

C(I) Banach space of continuous functions f : I → R

Cr(I) Banach space of r-times continuously differentiable functions f :
I → R

C∞(I) Set of infinitely differentiable functions f : I → R
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I Closed interval [−1, 1]
L2,even(T) Subspace of even, real-valued functions of L2(T)

Pn Set of real algebraic polynomials up to degree n

Tk kth Chebyshev polynomial (of first kind)
Uk kth Chebyshev polynomial of second kind
w(x) Weight function (1 − x2)−1/2 for x ∈ (−1, 1) (if not defined

differently)
L2,w(I) Real weighted Hilbert space of functions f : I → R, where w |f |2 is

integrable over I
ak[f ] kth Chebyshev coefficient of f ∈ L2,w(I)

Cn f nth partial sum of the Chebyshev series of f ∈ L2,w(I)

T
[a,b]
k kth Chebyshev polynomial with respect to the compact interval [a, b]

x
(N)
j Chebyshev extreme points for fixed N and j = 0, . . . , N

z
(N)
j Chebyshev zero points for fixed N and j = 0, . . . , N − 1

�k kth Lagrange basis polynomial
a
(N)
k [f ] kth coefficient of the interpolating polynomial of f ∈ C(I) at

Chebyshev extreme points x
(N)
j for j = 0, . . . , N

Bm Bernoulli polynomial of degree m

b� �th 1-periodic Bernoulli function
h
a,b,r
j Two-point Taylor basis polynomials for the interval [a, b] and j =

0, . . . , r − 1
λN Lebesgue constant for polynomial interpolation at Chebyshev extreme

points x
(N)
j for j = 0, . . . , N

Abbreviations

APM Approximate Prony method, 535
DCT Discrete cosine transform, 151
DFT Discrete Fourier transform, 118
DFT(N) Discrete Fourier transform of length N , 120
DHT Discrete Hartley transform, 157
DSFT Discrete spherical Fourier transform, 510
DST Discrete sine transform, 151
ESPRIT Estimation of signal parameters via rotational invariance techniques, 536
FFT Fast Fourier transform, 231
FIR Finite impulse response system, 55
FLT Fast Legendre transform, 512
FRFT Fractional Fourier transform, 101
FSFT Fast spherical Fourier transform, 513
LFFT Lattice based FFT, 431
LTI Linear, time-invariant system, 53



A List of Symbols and Abbreviations 587

MUSIC Multiple signal classification, 531
NDCT Nonequispaced discrete cosine transform, 397
NDSFT Nonequispaced discrete spherical Fourier transform, 511
NDST Nonequispaced discrete sine transform, 397
NFCT Nonequispaced fast cosine transform, 399
NFFT Nonequispaced fast Fourier transform, 380
NFFT Nonequispaced fast Fourier transform transposed, 382
NFSFT Nonequispaced fast spherical Fourier transform, 517
NFST Nonequispaced fast sine transform, 402
NNFFT Nonequispaced FFT with nonequispaced knots in time and frequency

domain, 396
SO(3) Group of all rotations about the origin of R3, 521
STFT Short time Fourier transform, 96
SVD Singular value decomposition, 532
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Cardinal interpolation problem, 454
Cardinal Lagrange function, 457
Cardinal sine function, 63
Cascade summation, 237
Cauchy principal value, 69
Central difference quotient of second order,

496
Cesàro sum, 23
Characteristic function, 62
Characteristic polynomial, 251
Chebyshev coefficients, 314

decay, 319
Chebyshev extreme points, 310
Chebyshev polynomial

of first kind, 306
of second kind, 310

Chebyshev series, 315
Chebyshev zero points, 310
Chinese remainder theorem, 254, 274, 296
Circulant matrix, 137

basic, 139
Clenshaw algorithm, 322, 323
Clenshaw–Curtis quadrature, 358
Comb filter, 55
Commutation property

of the Kronecker product, 146
Companion matrix, 524
Complex exponential

multivariate, 160
univariate, 7

Componentwise product of vectors, 134
Computational cost, 232
Computation of Fourier coefficients

via attenuation factors, 476
Computation of Fourier transform

via attenuation factors, 467
Computation of two-dimensional DFT

via one-dimensional transforms, 225
Confluent Vandermonde matrix, 527
Constrained minimization problem, 418
Convergence in S (Rd ), 167
Convergence in S ′(Rd ), 183
Convergence theorem of Dirichlet–Jordan, 38
Convolution

of functions, 71
in �1(Z

d ), 461
multivariate, 175
multivariate periodic, 162
at nonequispaced knots, 404
of periodic functions, 16
univariate, 71
univariate periodic, 16

Convolution property
of DFT, 134

of Fourier series, 20
of Fourier transform, 72

Cooley–Tukey FFT, 239
Cosine matrix

nonequispaced, 397
of type I, 151
of type II, 153
of type III, 153
of type IV, 154

Cosine vectors
of type I, 151
of type II, 152
of type III, 153
of type IV, 154

Counter-identity matrix, 125
Cyclic convolution

multidimensional, 228
one-dimensional, 130
two-dimensional, 220

Cyclic convolution property
of multidimensional DFT, 229
of one-dimensional DFT, 134
of two-dimensional DFT, 222

Cyclic correlation
of two vectors, 273

Damped normal equation of second kind, 418
Decimation-in-frequency FFT, 241
Decimation-in-time FFT, 241
Degree of multivariate trigonometric

polynomial, 161
Digital filter, 52
Digital image, 217
Dirac comb, 199
Dirac distribution, 185
Dirichlet kernel, 163

modified, 116
Discrete convolution, 53
Discrete cosine transform

nonequispaced, 397
of type I, 152
of type II, 153
of type III, 153
of type IV, 155

Discrete Fourier transform
multidimensional, 214, 227
one-dimensional, 108
spherical, 509
two-dimensional, 217

Discrete Hartley transform, 157
Discrete Ingham inequalities, 553
Discrete Laplacian, 501
Discrete polynomial transform, 368
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Discrete signal, 52
Discrete sine transform

nonequispaced, 402
of type I, 156
of type II, 156
of type III, 156
of type IV, 156

Discrete trigonometric transform, 334
Dispersion of a function, 89
Distance of x ∈ R to the nearest integer, 546
Distribution

pv
( 1
x

)
, 190, 196

Divide-and-conquer technique, 233

Energy of a signal, 89
Entrywise product

of matrices, 220
multidimensional, 228

Euler–Maclaurin summation formula, 482
Even matrix, 224
Exponential matrix, 220
Exponential sequence, 52
Exponential sum, 394, 524
Extension

of bounded linear operator, 177

Far field sum, 406
Fast Fourier extension, 491, 494
Fast Fourier transform, 231

nonequispaced, 377, 380
nonequispaced transposed, 382
on the rotation group, 521
spherical, 513

Fast Gauss transform, 409
Fast Poisson solver, 502, 503
Fejér sum, 23
Fejér summation, 50
Filon–Clenshaw–Curtis quadrature, 364
Filter coefficients, 53
Finite difference method, 497
Finite rate of innovation, 528
FIR filter, 55
Forward shift, 52
Fourier coefficients, 9

approximate, 434
decay, 45
spherical, 508

Fourier extension, 491
Fourier inversion formula, 68, 80, 173, 177

of tempered distribution, 194

Fourier matrix, 119, 428
for multiple rank-1 lattice and index set I ,

444
nonequispaced, 383

Fourier partial sum, 9
Fourier–Plancherel transform, 178
Fourier series

of L-periodic function, 11
of 2π-periodic function, 11
real, 14
spherical, 508

Fourier transform, 62, 66, 79, 170, 176
discrete, 120
inverse multivariate, 173
kernel, 102
on L2(R

d ), 178
modulus, 62
phase, 62
properties, 64
spectral decomposition, 102
spherical, 507
of tempered distribution, 193

Fractional Fourier transform, 102
properties, 105

Frequency analysis problem, 524
Frequency domain, 62

of two-dimensional DFT, 219
Frequency index set, 422

difference set, 432
lp(Z

d ) ball, 440
Frequency variance, 93
Frobenius norm, 219
Function

of bounded variation, 32
Hölder continuous, 41
Lipschitz continuous, 41
piecewise continuously differentiable, 71
piecewise Cr -smooth, 486
piecewise r-times continuously

differentiable, 486
rapidly decreasing, 167
slowly increasing, 184

Gabor function, 560
Gabor transform, 96
Gamma function, 211
Gap condition, 547
Gaussian chirp, 66
Gaussian filter

discrete, 221
Gaussian function, 65, 390, 404, 560
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Gaussian window, 95
Gegenbauer polynomial, 366
Gelfand triple, 198
Generating vector

of rank-1 lattice, 429
Gentleman–Sande FFT, 257
Gibbs phenomenon, 49
Gram–Schmidt orthogonalization, 365

Hamming window, 96
Hamming window sequence, 58
Hankel matrix, 525, 530
Hankel transform, 182
Hanning window, 95
Hann window sequence, 57
Hartley matrix, 157
Hat function, 64
Heaviside function, 189
Heisenberg box, 98
Heisenberg’s uncertainty principle, 91
Hermite function, 81, 101
Hermite interpolation problem, 492
Hermite polynomial, 80
Hilbert’s inequality, 547

generalized, 548
Hilbert transform, 206
Horner scheme, 321
Hyperbolic cross

energy-norm based, 441
symmetric, 440

Ideal high-pass filter, 57
Ideal low-pass filter, 56
Imaging function, 532
Impulse response, 53
Inequality

Bernstein, 26
Bessel, 10
generalized Hilbert, 548
Heisenberg, 91
Hilbert, 547
Ingham, 542
Nikolsky, 26
Young, 17, 71

Inner product
in C

N1×N2 , 219
of multidimensional arrays, 227

In-place algorithm, 233
Integral

highly oscillatory, 364
Interior grid point, 500
Inverse discrete Fourier transform

multidimensional, 227
Inverse Fourier transform

of tempered distribution, 194
Inverse multiquadrix, 404
Inverse NDCT, 411
Inverse NDFT, 413
Inverse nonequispaced discrete transform, 410

Jacobi polynomial, 311, 365
Jordan’s decomposition theorem, 33
Jump discontinuity, 30
Jump sequence, 52

Kaiser–Bessel function, 393
Kernel, 20

de la Vallée Poussin kernel, 23, 25
Dirichlet kernel, 20, 25
Fejér kernel, 22, 25
summation kernel, 24

Kronecker product, 142
Kronecker sum, 148
Kronecker symbol, 110

multidimensional, 214
N-periodic, 110

Krylov–Lanczos method of convergence
acceleration, 487

Lagrange basis polynomial, 326
Lanczos smoothing, 50
Laplace operator, 495
Laplacian filter

discrete, 221
Largest integer smaller than or equal to n, 257
Lattice

integer dual, 429
Lattice size

of rank-1 lattice, 429
Lebesgue constant, 21

for polynomial interpolation, 355
Left singular vectors, 533
Legendre function transform

fast, 511
Legendre polynomial, 366, 508

associated, 512
Leibniz product rule, 172
Lemma of Riemann–Lebesgue, 30
Linear canonical transform, 106
Linear difference equation with constant

coefficients, 251
Linear filter, 52
Linear phase, 56
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Linear prediction equations, 529
Linear prediction method, 529
Local discretization error, 504
L-periodic function, 11
LTI filter, 53

Magnitude response, 55
Matrix pencil, 536

eigenvalue, 536
eigenvector, 536

Matrix representation of FFT, 234
Mean value of 2π-periodic function, 11
Mehler’s formula, 103
Method of attenuation factors

for Fourier coefficients, 476
for Fourier transform, 465

Metric of S (Rd ), 169
Meyer window, 560
Modified Dirichlet kernel, 355
Modulus, 12
Moiré effect, 88
Monic polynomial, 310
Monogenic signal, 212

amplitude, 212
Monte Carlo rule, 428, 520
Moore–Penrose pseudo-inverse, 141
Moving avering, 52
Multiquadrix, 404
Multivariate periodic function, 159
Multivariate trigonometric polynomial, 161

n–cycle, 244
Near field correction, 405
Near field sum, 406
Nesting method

for two-dimensional DFT, 279
NFFT, 382
Nikolsky inequality, 26
Node polynomial, 326
Noise space, 532
Noise-space correlation function, 532
Nonequispaced FFT

spherical, 517
Nonharmonic bandwidth, 394
Nonnegative residue modulo N , 110, 257, 463

of an integer vector, 215
Nonsingular kernel function, 403
Normwise backward stability, 297
Normwise forward stability, 298
Nyquist rate, 88

Odd matrix, 224
Oversampling, 88
Oversampling factor, 562

Padé approximant, 527
Padua points, 442
Parameter estimation problem, 523

multidimensional, 541
Parseval equality, 10, 78, 80, 164, 177

for Chebyshev coefficients, 315
for DFT, 134
for multidimensional DFT, 229
for two-dimensional DFT, 222

Partial sum of conjugate Fourier series, 44
Partition of unity, 116
Perfect shuffle, 242
Periodic function

of bounded variation, 34
piecewise continuously differentiable, 30

Periodic interpolation on uniform mesh, 469
Periodic Lagrange function, 469
Periodic signal, 52
Periodic Sobolev space

of isotropic smoothness, 425
Periodic tempered distribution, 199

Fourier coefficients, 202
Fourier series, 203

Periodic window function, 561
Periodization

of a function, 84
of multivariate function, 178
operator, 197
of a vector, 284

Periodized centered cardinal B-spline, 562
Periodized Gaussian function, 561
Periodized Kaiser–Bessel function, 562
Permutation

bit-reversed, 238
even-odd, 144
L-stride, 144
matrix, 143
2-stride, 144

Phase, 12
Phase recovery, 570
Phase response, 55
Pixel, 217
Poisson equation, 495
Poisson summation formula, 84, 179, 180

of Dirac comb, 200
Polar angle, 507
Polynomial representation of FFT, 234
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Power of sinc function, 392
Primitive N th root of unity, 108
Principle value, 190
Pulse sequence, 52

Quadratic Gauss sum, 128
Quadrature error, 358, 484
Quadrature rule

on the unit sphere, 518
Quadrature weights, 359
Quasi-Monte Carlo rule, 428, 520

Rader FFT, 271
Radial function, 180
Radix-2 FFT, 235
Radix-4 FFT, 264
Rank-1 Chebyshev lattices, 442
Rank-1 lattice, 429

multiple, 442
reconstructing, 432

Reconstructing multiple rank-1 lattice, 445
Rectangle function, 63
Rectangular pulse function, 16
Rectangular rule, 483
Rectangular window, 95
Rectangular window sequence, 57
Recursion, 233
Regularization procedure, 405
Restricted isometry constant, 384, 403
Restricted isometry property, 384, 403
Reverse Prony polynomial, 527
Riemann’s localization principle, 31, 70
Riesz stability

of exponentials, 542
Riesz transform, 211
Right singular vectors, 533
Row–column method

of multidimensional DFT, 281
of two-dimensional DFT, 226, 278

Sampling operator
uniform, 198

Sampling period, 86
Sampling rate, 86
Sampling theorem of Shannon–Whittaker–

Kotelnikov, 86
Sande–Tukey FFT, 236
Sawtooth function, 15
Schwartz space, 167

convergence, 167
metric, 169

Sequence of orthogonal polynomials, 365
Sequence of orthonormal polynomials, 365
Shifted Chebyshev polynomial, 322
Shift-invariant filter, 52
Shift-invariant space, 454
Short-time Fourier transform, 96
Signal compression, 100
Signal flow graph, 234
Signal space, 532
Sign function, 196
Simultaneous approximation, 357
Sinc function, 63, 389
Sine integral, 47
Sine matrix

of type I, 499
of type I, 155
of type II, 156
of type III, 156
of type IV, 156

Sine vectors, 155
Singular kernel function, 403
Singular spectrum analysis, 540
Singular value decomposition, 532
Singular values, 533
Software

discrete polynomial transform, 376
fast Fourier transform on SO(3), 521
fast summation, 410
FFTW, 250
inverse NFFT, 416
NFFT, 419
parallel FFT, 250
parallel NFFT, 419
spherical Fourier transform, 518

Space domain, 62
of two-dimensional DFT, 219

Sparse FFT, 447
Sparse vector, 384
Spectrogram, 96
Spectrum, 12, 62
Spherical design, 520
Spherical filtering, 518
Spherical Fourier transform, 507

fast, 509
nonequispaced discrete, 509

Spherical harmonics, 508
Spherical polynomial, 508
Spline, 556
Split–radix FFT, 266
Step function, 556
Stop band, 56
Sufficiently uniformly distributed points,

406
Sum representation of FFT, 234
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Support length of a vector, 286
Symbol of cardinal interpolation, 455

Tempered distribution, 183
derivative, 188
periodic, 199
product with smooth function, 187
reflection, 187
regular, 185
scaling, 186
translation, 186

Temporal variance, 93
Tensor product B-spline, 452
Theorem

aliasing formula, 111
of Banach–Steinhaus, 28
of Bedrosian, 210
of Bernstein, 41
Chinese remainder theorem, 254
of Dirichlet–Jordan, 38
of Fejér, 25
Fourier inversion, 177
Fourier inversion formula, 68
of Gibbs, 49
Heisenberg’s uncertainty principle, 91
Jordan decomposition, 33
of Krylov–Lanczos, 487
of Plancherel, 80, 178
Poisson summation formula, 84
of Riemann–Lebesque, 30
Riemann’s localization principle, 70
of Shannon–Whittaker–Kotelnikov, 86
of Weierstrass, 26

Thin-plate spline, 404
Three-direction box spline, 452
Three-direction mesh, 452
Three-term recurrence relation, 366
Time domain, 62

of two-dimensional DFT, 219
Time-frequency analysis, 95
Time-frequency atom, 96
Time-invariant filter, 52
Time series, 530, 540
Toeplitz matrix, 137, 141
Torus, 6, 378
Total variation, 32
Trace, 127

Trajectory matrix, 530
Transfer function, 54
Transmission band, 56
Transposed discrete polynomial transform, 368
Triangular window, 95
Trigonometric Lagrange polynomial, 115
Trigonometric polynomial, 8, 378

supported on I , 422
Truncation error, 386
2π-periodic function, 6
2π-periodic trend, 487
Two-point Taylor

interpolation, 405
interpolation polynomial, 492

Type-1 triangulation, 452

Ultraspherical polynomial, 366
Undersampling, 88

Vandermonde-like matrix, 368
Vandermonde matrix, 525, 529
Vector

with frequency band of short support, 286
M-sparse, 289
1-sparse, 283

Vectorization
of a d-dimensional array, 230
of a matrix, 145, 226

Weighted least squares problem, 417
Weighted normal equation of first kind, 418
Weight function, 423
Wiener algebra, 424
Windowed Fourier transform, 96
Window function, 95
Window length, 530
Winograd FFT, 275

Young inequality, 17, 71
generalized, 17, 72

z-transform, 527
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