Essential Coding Theory

Venkatesan Guruswami Atri Rudra! Madhu Sudan

March 15, 2019

IDepartment of Computer Science and Engineering, University at Buffalo, SUNY. Work supported by
NSF CAREER grant CCF-0844796.






Foreword

This book is based on lecture notes from coding theory courses taught by Venkatesan Gu-
ruswami at University at Washington and CMU; by Atri Rudra at University at Buffalo, SUNY
and by Madhu Sudan at Harvard and MIT.

This version is dated March 15, 2019. For the latest version, please go to

http://www.cse.buffalo.edu/faculty/atri/courses/coding-theory/book/

The material in this book is supported in part by the National Science Foundation under CA-
REER grant CCF-0844796. Any opinions, findings and conclusions or recomendations expressed
in this material are those of the author(s) and do not necessarily reflect the views of the National
Science Foundation (NSF).

©Venkatesan Guruswami, Atri Rudra, Madhu Sudan, 2018.
‘@ @@@ \ This work is licensed under the Creative Commons Attribution-NonCommercial-
NoDerivs 3.0 Unported License. To view a copy of this license, visit

http://creativecommons.org/licenses/by-nc-nd/3.0/ or send a letter to Creative Commons, 444
Castro Street, Suite 900, Mountain View, California, 94041, USA.


http://www.cse.buffalo.edu/faculty/atri/courses/coding-theory/book/
http://creativecommons.org/licenses/by-nc-nd/3.0/




Contents

I The Basics

1 The Fundamental Question
1.1 OVEIVIEW . . . . . ot e e e e e e e e e e e e e e e e e e e e
1.2 Some definitionsandcodes . . . . . . . .. ... .. e
1.3 Errorcorrection . . . . . . . . . . . . . e e e e e e e e e e e e
1.4 Distanceofacode . .. .. . . . . .. e e
1.5 HammingCode . . . . . . . . . .t e e e e e e
1.6 HammingBound . ... ... ... . . ... ... e e
1.7 Generalized HammingBound . .. ... ... ... ... ... ... .. .....
1.8 EXEICiSes . . . . . . . . i i e e e e e e e e e e e
1.9 BibliographicNotes . . . . . . . . . ... . . e

2 ALook at Some Nicely Behaved Codes: Linear Codes
2.1 FiniteFields . . . . . . . . . . e
2.2 Linear SubSpaces . . . . . . it e e e e e e e e
2.3 Propertiesof LinearCodes . . . . . . . . . . . it e e e
24 Hamming Codes . . . . . . . . . i ittt e e e
2.5 Familyofcodes . . ... ... . . . e e
2.6 Efficient Decoding of Hammingcodes. . . . . ... ... ... ... ... ......
2.7 DualofalinearCode .. ... ... .. .. ...
2.8 EXEICISES . . . . o o e e e e e e e
2.9 BibliographicNotes . . . . . . . . . . . e

3 Probability as Fancy Counting and the g-ary Entropy Function
3.1 ACrash CourseonProbability ............. ... ... ... ......
3.2 The Probabilistic Method . . ... ... ... ... .. .. . . . . .. ...
3.3 Theg-aryEntropyFunction. . . . . ... ... ... .. . .. ...
34 EBXEICISES . . . o ot it e e e
3.5 BibliographicNotes. . . . . . . . . ... . e

II The Combinatorics

4 What Can and Cannot Be Done-1

17

19
19
21
23
26
30
33
34
36
38

39
39
41
44
46
47
49
50
52
58

59
59
65
65
72
72

73

75



4.1 Asymptotic Version of the HammingBound . ... ... .. .............. 75

4.2 Gilbert-VarshamovBound . . . . .. ... ... ... .. L L o 76
4.3 SingletonBound . .. ... ... e 80
4.4 PlotkinBound . . . ... ... . . .. e e e 82
4.5 EXEICISES . . o v o i i i e e e e e e e e e e e e e e e e e e e e e e e 87
4.6 BibliographicNotes . . . . . . . . .. . . e 91
5 The Greatest Code of Them All: Reed-Solomon Codes 93
5.1 Polynomialsand FiniteFields . . . . . ... ... ... .. ... .. ... .. ... ... 93
52 Reed-SolomonCodes. . . . . ... ... ... 96
5.3 APropertyof MDSCodes . . ... ... ... e 99
54 EXEICISES . . . . o i i it i e e e e e e e e e e e e e e e e e 100
5.5 BibliographicNotes . . . . . . . . . . .. . e 108
6 What Happens When the Noise is Stochastic: Shannon’s Theorem 109
6.1 OverviewofShannonsResult . . ... ... ... ... ... ... .. . . . ...... 109
6.2 Shannon’s Noise Model . ... ... ... ... . ... . ... . .. 110
6.3 Shannon’sResultforBSC, . .. ... .......... ... ... ... .. .. ..., 113
6.4 Hammingvs.Shannon . . . .. . .. .. ... ittt 121
6.5 EXEICISES . . . . . . i i ittt e e e e e e e 122
6.6 BibliographicNotes. . . . . . . . .. .. . e 126
7 Bridging the Gap Between Shannon and Hamming: List Decoding 127
7.1 Hammingversus Shannon: partIl . ... ... ... ... ... ........... 127
7.2 ListDecoding . . . ... .. .. e 129
7.3 JohnsonBound ... ... ... . ... .. 131
7.4 List-Decoding Capacity . . . . . . . . v ittt it e e e 134
7.5 List Decoding from Random Errors . . ... .. ... ... ... ... .. .. ... 138
7.6 EXEICISES . . . . i i i i i it e e e e e e e e e e e e 141
7.7 BibliographicNotes. . . . . . . . . .. . e 146
8 What Cannot be Done-II 147
8.1 Elias-Bassalygobound . ... ... ... ... ... .. .. ... . 147
8.2 The MRRW bound: Abetterupperbound . . . . ... ... ... ............ 149
8.3 ABreather ... .. ... . ... 149
8.4 BibliographicNotes. . . . . . . . . . .. . e 150
III The Codes 151
9 When Polynomials Save the Day: Polynomial Based Codes 153
9.1 Thegeneric CONStruCtion . . . . . . .. ... .t ittt 154
9.2 Thelowdegreecase . ... ... ... ...t nnenenneen.. 155
9.3 Thecaseofthebinaryfield ............. ... .. .. . ... ... . ..., 157



9.4 Thegeneralcase. . .. . .. ... . . ittt
9.5 EXEICISES . . . . it i e e e
9.6 BibliographicNotes . . . . . . . . . .. e e

10 From Large to Small Alphabets: Code Concatenation
10.1 Code Concatenation . . . . . .. . ..o i vt v it ittt ittt
10.2 ZyablovBound . . . . .. ... e e e e
10.3 Strongly Explicit Construction . . . ... ... ... ... ...
10.4 EXEICISES . . . . o ottt e e e e e e e e e e e e e e e e
10.5 Bibliographic Notes . . . . . . . . . . . . . e e

11 Information Theory Strikes Back: Polar Codes
11.1 AchievingGapto Capacity . . . . . . . . . . ittt e
11.2 Reduction to Linear Compression . . . . . . . .. oo v v vt v v v vt e e
11.3 The Polarization Phenomenon . . . . ... ... ... ... .. ... . ... . .....
11.4 Polar codes, Encoderand Decoder . . . . . . . . . . . i i i i e
11.5 Analysis: Speed of Polarization . . . ... ... ... .. .. ... ... .. .. ...
11.6 Entropic Calculations . . .. ... .. .. . . e
11.7 Summary and additional information . . . . . . ... .. ... ... ... .. .. ...
I1.8 EXEICISES . . . . o o o e e e e e e e e
11.9 Bibliographic Notes . . . . . . . . . . . . e e

IV The Algorithms 209

12 Decoding Concatenated Codes
12.1 A Natural Decoding Algorithm . . . . .. ... ... ... ... . ...
12.2 Decoding From Errorsand Erasures . . . . .. .. ... ... ... .. .........
12.3 Generalized Minimum Distance Decoding . . . . ... ... ... ... ........
12.4 BibliographicNotes . . . . . . . . . . .. . . e

13 Efficiently Achieving the Capacity of the BSC,
13.1 Achieving capacityof BSC, . . . ... ... ... ... . o e
13.2 Decoding Error Probability . . ... ... ... ... .. .. ... .. . . ...
133 ThelnnerCode . .. ... ... . it
134 TheOuterCode . . . . .. . . o i e e e
13.5 Discussion and BibliographicNotes . . . . ... ... ... ... ... ......

14 Decoding Reed-Muller Codes
14.1 A natural decoding algorithm . . . . . .. ... ... ... ... ... o oL
14.2 Majority LogicDecoding . . . . . . . . .. .. . .. e e
14.3 Decoding by reduction to Reed-Solomon decoding . . . .. ... ...........
14.4 EXEICISES . . . . v v vttt e i e e e e e e e e e e
14.5 Bibliographic Notes . . . . . . . . . . i e e e e e e



15 Efficient Decoding of Reed-Solomon Codes 247

15.1 Unique decoding of Reed-Solomoncodes . ... .................... 247
15.2 List Decoding Reed-Solomon Codes . . . . . . ... ... ... ... 252
153 EXtENSIONS . . . o v vttt e e e e e e e e e e e e e e e e e 267
15.4 Bibliographic Notes . . . . . . . . . . . . e e 269
16 Efficiently Achieving List Decoding Capacity 271
16.1 Folded Reed-Solomon Codes . . . ... ... ... ... .. ... .. ... 271
16.2 List Decoding Folded Reed-Solomon Codes: T . . ... ... ... ........... 275
16.3 List Decoding Folded Reed-Solomon Codes: IT . . . . . ... ... ... ........ 278
16.4 Bibliographic Notes and Discussion . . . . . ... ... ... ... ... .. ...... 288
V The Applications 293
17 Cutting Data Down to Size: Hashing 295
17.1 Why Should You Care AboutHashing? . . . . . . ... ... ... ... ........ 295
17.2 Avoiding Hash Collisions . . . . . . . . .. ... . . it i it e e 297
17.3 Almost Universal Hash Function FamiliesandCodes . . . . . . ... ... ... ... 300
17.4 Data Possession Problem . . . . ... ... ... . ... . ... . 301
17.5 BibliographicNotes . . . . . . . . .. .. . . e e 305
18 Securing Your Fingerprints: Fuzzy Vaults 307
18.1 Some quick background on fingerprints . . .. ... ... ... ... o ... 307
18.2 The Fuzzy Vault Problem . . . . .. ... ... .. .. i i 309
18.3 TheFinal Fuzzy Vault. . . . . . . ... ... . .. . i i 312
18.4 BibliographicNotes . . . . . . . . . . .. . . e 314
19 Finding Defectives: Group Testing 315
19.1 Formalization of theproblem . . . . . ... ... ... ... .. ... ... . ... ... 315
19.2 Bounds on t%(d, N) . . . . o o o e e 317
19.3 Boundson t(d,N) . . . . . o v v i e e e e e e e e e e e e 318
19.4 Coding Theory and Disjunct Matrices . . . . . ... ... ... ... ... ....... 322
19.5 An Application in Data Stream Algorithms . . . . ... ... .............. 325
19.6 Summary ofbestknownbounds . . ... ... ... ... ... . .. . o oL 330
19.7 EXEICISES . . . . o o o e e e e e e e e e e 331
19.8 BibliographicNotes . . . . . . . . .. .. . . e 333
A Notation Table 343
B Some Useful Facts 345
B.1 Some Useful Inequalities . . ... ... ... .. ... . ... ..., 345
B.2 Some Useful Identitiesand Bounds . .. ... ... ... .. .............. 347



C Background on Asymptotic notation, Algorithms and Complexity 349

C.1 AsymptoticNotation . . .. ... .. .. i e 349
C.2 BoundingAlgorithmruntime. . . ... .. ... ... .. ... ... 351
C.3 Randomized Algorithms . . . . . . . .. .. . . . . e 355
C.4 EfficientAlgorithms . . .. . .. .. ... . e e 358
C.5 EXEICISES . . . ¢ v i it e e e e e e e e e e 362
C.6 BibliographicNotes. . . . . . . . . . . . . e 364
D Basic Algebraic Algorithms 365
D.1 Executive Summary. . . . . . . . . . .. e e e e e e e 365
D.2 Groups, Rings, Fields . . . . . . . . .. . e 365
D.3 Polynomials . . . ... ... .. 366
D.4 Vector SPACES . . . o v v v i e e e e e e e e e e e e e e e e e e e e 368
D5 FiniteFields . . . . . . . . . e 370
D.6 Algorithmic aspects of FiniteFields . .. ... ... ... ................ 376
D.7 Algorithmic aspects of Polynomials . .. ... ...................... 378
D.8 EXEICISes . . . . . e e e e e e e e 383
E Some Information Theory Essentials 385
E.l ENtropy . . . o v v o e e e e e e e e e e e 385
E.2 Jointand conditionalentropy . . . . . . . .. ... ... L o 387
E.3 Mutualinformation. . . . . ... ... ... .. 390



10



List of Figures

1.1 Decoding for Akash English, one gets “I need little little (traillmix." ... ... ... 19
1.2 CodiNG PIOCESS . v v v v v v e e e e e e e e e e e e e e e e e e e e e e 24
1.3 Bad example foruniquedecoding. . . . . . .. ... ... ... L Lo oL 29
1.4 Tlustration for proof of HammingBound . . . . . ... ... ... .. ... ...... 34
3.1 The g-aryEntropyFunction. . .. ... ... ... .. .. .. ... . ..., 66
4.1 The Hamming and GV bounds for binarycodes . . . . ... ... ... ........ 76
4.2 Anillustration of Gilbert’s greedy algorithm (Algorithm 6) for the first five iterations. 77
4.3 Construction of a new code in the proof of the Singletonbound. . . ... ... ... 80
4.4 The Hamming, GV and Singleton bound for binarycodes. . . . . ... ... .. ... 81
4.5 Rvso tradeoffs forbinarycodes . .. ... .. ... .. Lo L o o L 83
6.1 The communication ProCess . . . . .« v v v v v v i i it ettt e e e e e 110
6.2 Binary Symmetric Channel BSC,, . . . .. ......... ... ... . ..., 111
6.3 Binary Erasure Channel BEC, . . . . . . ... ... .. ... .. . . . . . .. 112
6.4 The sets Dy, partition the ambient space {0,1}". . . . . ... .. ... ... ...... 114
6.5 The shell Sy, of inner radius (1 —y)pn and outer radius (1 +y)pn. .. ... ... .. 115
6.6 Illustration of Proof of Shannon’s Theorem . . . . . ... ... ... .......... 117
7.1 Bad example of unique decodingrevisited . .. ... ... ... ... ... .. ..., 128
7.2 Comparing the Johnson Bound with Unique decoding and Singleton bounds . . . 134
7.3 Anerrorpattern . . . . . . . . .. e e e e e e e e e e e e e e 138
7.4 Tllustration of notation used in the proof of Theorem7.5.1 . . . . .. ... ... ... 140
7.5 An error pattern in the middle of theproof . . . . ... ... ... ... ........ 141
8.1 BoundsonRvso forbinarycodes . ... ... ... ... ... .. .. 148
10.1 Concatenated code Cout O Cin. « « v v v v v v vt e e e e e e e e e e e e e 168
10.2 The Zyablov bound for binarycodes . . . . .. ... ... ... ... ... ...... 170

11.1 The 2 x 2 Basic Polarizing Transform. Included in brown are the conditional entropies of the variables
11.2 The n x n Basic Polarizing Transform. . . . . .. ... ... ... ... ........ 183
11.3 Block structure of the Basic Polarizing Transform. Circled are a block at the 2nd level and two 2nd leve

12.1 Encoding and Decoding of Concatenated Codes . . . . . . ... ... ......... 212

11



12.2 All values of 0 € [g;, q;+1) lead to the same outcome . . . . .. ... ... ....... 219

13.1 Efficiently achieving capacity of BSC,. . ... ... ... .. ... . ... .. 222
13.2 Error Correction cannot decrease during “folding" . . ... ... ... ... ... .. 225
15.1 Areceived wordin2-Dspace . . . . . . . .. . i it e 248
15.2 The closest polynomial toareceivedword . . ... ... ... .. ........... 249
15.3 Error locator polynomial forareceivedword . . . . . .. ..... ... ........ 250
15.4 The tradeoff between rate R and the fraction of errors that can be corrected by Algorithm 22.256
15.5 A received word in 2-D space for the second Reed-Solomon . . . . ... ... . ... 257
15.6 An interpolating polynomial Q(X, Y) for the received word in Figure 15.5. . . . .. 258
15.7 The two polynomials that need to be output are showninblue. . . . . .. ... ... 258
15.8 The tradeoff between rate R and the fraction of errors that can be corrected by Algorithm 22 and Algo
15.9 Multiplicityof 1 . . . . . .. . e 261
15.10Multiplicityof 2 . . . . . . L e e 262
15.11Multiplicity of 3 . . . . . . L e e e e e e 262
15.12A received word in 2-D space for the third Reed-Solomon . . ... ... ... .... 263
15.13An interpolating polynomial Q(X, Y) for the received word in Figure 15.12. . . . . . 263
15.14The five polynomials that need to be output are showninblue. . . . . ... ... .. 264
16.1 Encoding for Reed-SolomonCodes . . . ... ... ... ... .. ... . ..... 272
16.2 Folded Reed-Solomon codeform=2 ... ... ... .. ... ... ... ...... 272
16.3 Folded Reed-Solomon code forgeneral m=1 . ... ... ............... 272
16.4 Error pattern underunfolding . . ... ... ... ... .. ... .. o o ... 273
16.5 Error patternunder folding . . . .. ... ... ... .. . . .. . e 274
16.6 Performance of Algorithm26 . . .. ... ... ... ... ... . ... .. .. 278
16.7 An agreementin position . . . . . . . . . .. Lo e e e e 279
16.8 More agreement with a slidingwindowofsize2.. . . . . .. ... ... ... ..... 279
16.9 Performance of Algorithm 27 . . . . ... ... .. ... .. .. . ... o 282
16.10An upper triangular system of linear equations . . . .. ... ... ... ....... 283
18.1 The minutiae are unordered and form a set, notavector. . .............. 309

19.1 Pick a subset S (not necessarily contiguous). Then pick a column j that is not present in S. There will
19.2 Construction of the final matrix Mc¢+ from M, and Mc, from Example 19.4.3. The rows in M¢+ that

E.1 Relationship between entropy, joint entropy, conditional entropy, and mutual information for two rar

12



List of Tables

3.1 Uniform distribution over F5*? along with values of four random variables. . . . . . 60
8.1 Highlevel summary ofresultsseensofar.. . . ... ... .. ... ........... 149
10.1 Strongly explicit binary codes that we have seensofar. . . . ... ... ........ 167
13.1 An overview of theresultsseensofar ... ... ... .. ... ... .. ........ 221
13.2 Summary of propertiesof Copeand Cir, . . . . v v o v o v it e e e 223

13



14



List of Algorithms

© & N O G Wi+~

—_ =
—_— O

W W W W I DN INNDNDDNDNDN - = = = =
WNH~OOWXONIO U R WNDHFHOWOWOWNO Ok WD

Error Detector for ParityCode . . . . . .. ... ... ... ... .. ... 26
Naive Maximum Likelihood Decoder . .. ... ... ... ... ............ 28
Naive Decoder for HammingCode . . . . . . ... ... ... ... ... .. ...... 49
Decoder forAny LinearCode . . . . ... ... ... .. . ... .. 50
Efficient Decoder for HammingCode . . . ... ... ... ... ... ... ...... 50
Gilbert’s Greedy Code Construction . . . ... ... ... ... ... 77
q°® time algorithm to compute a codeonthe GVbound . . .. ........... 89
Generating Irreducible Polynomial . . . . . ... ... ... ... ... 0L, 96
POLAR COMPRESSOR(Z,S) . . . . . o o e e s it e e 180
Successive Cancellation Decompressor SCD(W,P,S) . . ... ... ... ....... 181
BASIC POLAR ENCODER(Z;7,S) . . . v v v it e i e e e e et e e e 185
BASIC POLAR DECODER: BPD(W;m,p) . . . . o o o oo e e e e e e e 186
Natural Decoder for Copt0Cin « « v v v v v o e e e e e e e e e e e e e e e 212
Generalized Minimum Decoder (ver1) . ... ... ... ... .. ... ........ 216
Generalized Minimum Decoder (ver2) .. ... ... .. ... ... ... . ...... 218
Deterministic Generalized Minimum Decoder® . ... ... ... ........... 219
Decoder for efficiently achieving BSCp, capacity . . . . ................. 223
SIMPLE REED-MULLERDECODER . . . . . . . . oottt ittt e e e e 233
Majority Logic Decoder . . . ... ... .. ... . ... .. e 238
REED-SOLOMON-BASED DECODER . . . . . v v v v vttt it e et e e e e as 241
Welch-Berlekamp Algorithm . . . ... ... ... ... .. ... ... . .. .. ... 251
The First List Decoding Algorithm for Reed-Solomon Codes . . . . . ... ... ... 255
The Second List Decoding Algorithm for Reed-Solomon Codes . . . ... ... ... 259
The Third List Decoding Algorithm for Reed-Solomon Codes . . . . ... ... ... 264
Decoding Folded Reed-Solomon Codes by Unfolding . . . . ... ........... 273
The First List Decoding Algorithm for Folded Reed-Solomon Codes . . . . ... .. 276
The Second List Decoding Algorithm for Folded Reed-Solomon Codes . . . . . .. 280
The Root Finding Algorithm for Algorithm27 . ... ... .. .. ........... 287
Pre-Processing for Data Possession Verification . . ... ... ............. 301
Verification for Data Possession Verification . .. ... ... .............. 302
Decompression Algorithm . . . . . ... ... ... . L 302
Decompression Algorithm Using List Decoding . . . . ... ... ... ........ 304
UNLOCKD & v v e v e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e 311



34
35
36
37
38
39
40
41
42
43
44
45
46
47

0 103 G T 312
UNLOCKD & v v v v e e e e e e e e e e e e e e e e e e e e e e e e e e e e 313
Decoder for Separable Matrices . . ... ... ... ... ... .. 320
Naive Decoder for Disjunct Matrices. . . . . . . . . . . i it i i v it oo 322
Initialization . . . . . . . . .. e e 327
Update . . . . . e e e e e e e e e 327
ReportHeavyltems . . . . . . . . ... e 328
SimpleSearch . . . . . . .. . . . e 353
Sampling algorithm for GAPHAMMING . . .. ... ... .. ... ... ....... 357
An average-case algorithm for GAPHAMMING . . ... ... ... ... ........ 358
Exponential time algorithm for MAXLINEAREQ . ... ... ... ... ........ 359
Reduction from MAXCUT to MAXLINEAREQ . . . . . . . ... . ... 362
ROOT-FIND(Fg, ) + o o oo e 382
LINEAR-ROOT-FIND(Fg,8) .« -« v v o v oo 382

16



Partl

The Basics

17






Chapter 1

The Fundamental Question

1.1 Overview

Communication is a fundamental need of our modern lives. In fact, communication is some-
thing that humans have been doing for a long time. For simplicity, let us restrict ourselves to
English. It is quite remarkable that different people speaking English can be understood pretty
well: even if e.g. the speaker has an accent. This is because English has some built-in redun-
dancy, which allows for “errors" to be tolerated. This came to fore for one of the authors when
his two and a half year old son, Akash, started to speak his own version of English, which we will
dub “Akash English." As an example,

Figure 1.1: Decoding for Akash English, one gets “I need little little (trail)mix."
With some practice Akash’s parents were able to “decode" what Akash really meant. In fact,
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Akash could communicate even if he did not say an entire word properly and gobbled up part(s)
of word(s).

The above example shows that having redundancy in a language allows for communication
even in the presence of (small amounts of) differences and errors. Of course in our modern
digital world, all kinds of entities communicate (and most of the entities do not communicate
in English or any natural language for that matter). Errors are also present in the digital world,
so these digital communications also use redundancy.

Error-correcting codes (henceforth, just codes) are clever ways of representing data so that
one can recover the original information even if parts of it are corrupted. The basic idea is to
judiciously introduce redundancy so that the original information can be recovered even when
parts of the (redundant) data have been corrupted.

For example, when packets are transmitted over the Internet, some of the packets get cor-
rupted or dropped. Packet drops are resolved by the TCP layer by a combination of sequence
numbers and ACKs. To deal with data corruption, multiple layers of the TCP/IP stack use a form
of error correction called CRC Checksum [79]. From a theoretical point of view, the checksum
is a terrible code (for that matter so is English). However, on the Internet, the current dominant
mode of operation is to detect errors and if errors have occurred, then ask for retransmission.
This is the reason why the use of checksum has been hugely successful in the Internet. However,
there are other communication applications where re-transmission is not an option. Codes are
used when transmitting data over the telephone line or via cell phones. They are also used in
deep space communication and in satellite broadcast (for example, TV signals are transmitted
via satellite). Indeed, asking the Mars Rover to re-send an image just because it got corrupted
during transmission is not an option-this is the reason that for such applications, the codes
used have always been very sophisticated.

Codes also have applications in areas not directly related to communication. In particu-
lar, in the applications above, we want to communicate over space. Codes can also be used to
communicate over time. For example, codes are used heavily in data storage. CDs and DVDs
work fine even in presence of scratches precisely because they use codes. Codes are used in Re-
dundant Array of Inexpensive Disks (RAID) [15] and error correcting memory [14]. Sometimes,
in the Blue Screen of Death displayed by Microsoft Windows family of operating systems, you
might see a line saying something along the lines of “parity check failed"-this happens when
the code used in the error-correcting memory cannot recover from error(s). Also, certain con-
sumers of memory, e.g. banks, do not want to suffer from even one bit flipping (this e.g. could
mean someone’s bank balance either got halved or doubled-neither of which are welcomel).
Codes are also deployed in other applications such as paper bar codes; for example, the bar
code used by UPS called MaxiCode [13]. Unlike the Internet example, in all of these applica-
tions, there is no scope for “re-transmission."

In this book, we will mainly think of codes in the communication scenario. In this frame-
work, there is a sender who wants to send (say) kK message symbols over a noisy channel. The
sender first encodes the k message symbols into n symbols (called a codeword) and then sends

IThis is a bit tongue-in-cheek: in real life banks have more mechanisms to prevent one bit flip from wreaking
havoc.
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it over the channel. The receiver gets a received word consisting of n symbols. The receiver then
tries to decode and recover the original k message symbols. Thus, encoding is the process of
adding redundancy and decoding is the process of removing errors.

Unless mentioned otherwise, in this book we will make the following assumption:

The sender and the receiver only communicate via the channel.“ In other words, other than
some setup information about the code, the sender and the receiver do not have any other
information exchange (other than of course what was transmitted over the channel). In
particular, no message is more likely to be transmitted over another.

“The scenario where the sender and receiver have a “side-channel" is an interesting topic that has been
studied but is outside the scope of this book.

The fundamental question that will occupy our attention for almost the entire book is the
tradeoff between the amount of redundancy used and the number of errors that can be cor-
rected by a code. In particular, we would like to understand:

Question 1.1.1. How much redundancy do we need to correct a given amount of errors? (We
would like to correct as many errors as possible with as little redundancy as possible.)

Intuitively, maximizing error correction and minimizing redundancy are contradictory goals:
a code with higher redundancy should be able to tolerate more number of errors. By the end of
this chapter, we will see a formalization of this question.

Once we determine the optimal tradeoff, we will be interested in achieving this optimal
tradeoff with codes that come equipped with efficient encoding and decoding. (A DVD player
that tells its consumer that it will recover from a scratch on a DVD by tomorrow is not exactly
going to be a best-seller.) In this book, we will primarily define efficient algorithms to be ones
that run in polynomial time.?

1.2 Some definitions and codes

To formalize Question 1.1.1, we begin with the definition of a code.

Definition 1.2.1 (Code). A code of block length n over an alphabet X is a subset of . Typically,
we will use g to denote |Z|.°

Remark 1.2.1. We note that the ambient space X" can be viewed as a set of sequences, vectors
or functions. In other words, we can think of a vector (vy,...,v,) € Z” as just the sequence
v1,..., Uy (in order) or a vector tuple (vy, ..., v,) or as the function f : [n] — Z such that f(i) = v;.

2We are not claiming that this is the correct notion of efficiency in practice. However, we believe that it is a good
definition as the “first cut"— quadratic or cubic time algorithms are definitely more desirable than exponential time
algorithms: see Section C.4 for more on this.

3Note that g need not be a constant and can depend on n: we'll see codes in this book where this is true.
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Sequences assume least structure on X and hence are most generic. Vectors work well when ~
has some structure (and in particular is what is known as a field, which we will see next chapter).
Functional representation will be convenient when the set of coordinates has structure (e.g.,
[n] may come from a finite field of size n). For now, however, the exact representation does not
matter and the reader can work with representation as sequences.

We will also frequently use the following alternate way of looking at a code. Given a code
C c 2", with |C| = M, we will think of C as a mapping of the following form:

C:[M]—ZX".

In the above, we have used to notation [M] for any integer M = 1 to denote the set {1,2,..., M}.
We will also need the notion of dimension of a code.

Definition 1.2.2 (Dimension of a code). Given a code C < X", its dimension is given by

def
k= logq |C|.

Let us begin by looking at two specific codes. Both codes are defined over Z = {0, 1} (also
known as binary codes). In both cases |C| = 2% and we will think of each of the 16 messages as a
4 bit vector.

We first look at the so-called parity code, which we will denote by Cg. Given a message
(x1, X2, X3, X4) € {0, 1}4, its corresponding codeword is given by

Co(x1, X2, X3, X4) = (X1, X2, X3, X4, X1 ® X2 ® X3 D X4),

where the @ denotes the EXOR (also known as the XOR or Exclusive-OR) operator. In other
words, the parity code appends the parity of the message bits (or takes the remainder of the
sum of the message bits when divided by 2) at the end of the message. Note that such a code
uses the minimum amount of non-zero redundancy.

The second code we will look at is the so-called repetition code. This is a very natural code
(and perhaps the first code one might think of). The idea is to repeat every message bit a fixed
number of times. For example, we repeat each of the 4 message bits 3 times and we use C3 rep
to denote this code.

Let us now try to look at the tradeoff between the amount of redundancy and the number of
errors each of these codes can correct. Even before we begin to answer the question, we need
to define how we are going to measure the amount of redundancy. One natural way to define
redundancy for a code with dimension k and block length 7 is by their difference n — k. By this
definition, the parity code uses the least amount of redundancy. However, one “pitfall" of such
a definition is that it does not distinguish between a code with k = 100 and n = 102 and another
code with dimension and block length 2 and 4, respectively. Intuitively, the latter code is using
more redundancy. This motivates the following notion of measuring redundancy.

Definition 1.2.3 (Rate of a code). The rate of a code with dimension k and block length 7 is
given by
def k

n
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Note that the higher the rate, the lesser the amount of redundancy in the code. Also note that
as k < n, R < 1." Intuitively, the rate of a code is the average amount of real information in each
of the n symbols transmitted over the channel. So, in some sense, rate captures the complement
of redundancy. However, for historical reasons, we will deal with the rate R (instead of the more
obvious 1 - R) as our notion of redundancy. Given the above definition, Cg and C3 ., have rates
of % and % As was to be expected, the parity code has a higher rate than the repetition code.

We have formalized the notion of redundancy as the rate of a code as well as other param-
eters of a code. However, to formalize Question 1.1.1, we still need to formally define what it
means to correct errors. We do so next.

1.3 Error correction

Before we formally define error correction, we will first formally define the notion of encoding.

Definition 1.3.1 (Encoding function). Let C < X". An equivalent description of the code C is an
injective mapping E : [|C|] — X" called the encoding function.

Next we move to error correction. Intuitively, we can correct a received word if we can re-
cover the transmitted codeword (or equivalently the corresponding message). This “reverse"
process is called decoding.

Definition 1.3.2 (Decoding function). Let C < X" be a code. A mapping D : X" — [|C]] is called
a decoding function for C.

The definition of a decoding function by itself does not give anything interesting. What we
really need from a decoding function is that it recovers the transmitted message. This notion is
captured next.

Definition 1.3.3 (Error Correction). Let C < X" and let ¢ = 1 be an integer. C is said to be t-error-
correcting if there exists a decoding function D such that for every message m € [|C]|] and error
pattern e with at most ¢ errors, D (C(m) +e)) = m.

Figure 1.3 illustrates how the definitions we have examined so far interact.
We will also very briefly look at a weaker form of error recovery called error detection.

Definition 1.3.4 (Error detection). Let C < X" and let ¢ = 1 be an integer. C is said to be t-error-
detecting if there exists a detecting procedure D such that for every message m and every error
pattern e with at most ¢ errors, D outputs a 1 if (C(m) + e) € C and 0 otherwise.

Note that a ¢-error correcting code is also a t-error detecting code (but not necessarily the
other way round): see Exercise 1.1. Although error detection might seem like a weak error recov-
ery model, it is useful in settings where the receiver can ask the sender to re-send the message.
For example, error detection is used quite heavily in the Internet.

With the above definitions in place, we are now ready to look at the error correcting capa-
bilities of the codes we looked at in the previous section.

4Burther, in this book, we will always consider the case k > 0 and n < oo and hence, we can also assume that
R>0.
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m — Cm) | —» —» |y=C(m)+e —» m

encoding function ¢ decoding function
e

Figure 1.2: Coding process

1.3.1 Error-Correcting Capabilities of Parity and Repetition codes

In Section 1.2, we looked at examples of parity code and repetition code with the following
properties:

Co:q=2,k=4,n=5R=4/5.
ngrep:qzz,kzzl,n:12,R:1/3.

We will start with the repetition code. To study its error-correcting capabilities, we will con-
sider the following natural decoding function. Given a received word y € {0,1}'2, divide it up
into four consecutive blocks (y1, y2, ¥3, v4) where every block consists of three bits. Then, for
every block y; (1 =i < 4), output the majority bit as the message bit. We claim this decoding
function can correct any error pattern with at most 1 error. (See Exercise 1.2.) For example, if a
block of 010 is received, since there are two 0’s we know the original message bit was 0. In other
words, we have argued that

Proposition 1.3.1. C3 ¢y is a 1-error correcting code.

However, it is not too hard to see that C3 ., cannot correct two errors. For example, if both
of the errors happen in the same block and a block in the received word is 010, then the original
block in the codeword could have been either 111 or 000. Therefore in this case, no decoder can
successfully recover the transmitted message.”

Thus, we have pin-pointed the error-correcting capabilities of the C3 ;. code: it can cor-
rect one error, but not two or more. However, note that the argument assumed that the error
positions can be located arbitrarily. In other words, we are assuming that the channel noise
behaves arbitrarily (subject to a bound on the total number of errors). Obviously, we can model
the noise differently. We now briefly digress to look at this issue in slightly more detail.

Digression: Channel Noise. As was mentioned above, until now we have been assuming the
following noise model, which was first studied by Hamming:

SRecall we are assuming that the decoder has no side information about the transmitted message.
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Any error pattern can occur during transmission as long as the total number of er-
rors is bounded. Note that this means that the location as well as the nature® of the
errors is arbitrary.

We will frequently refer to Hamming’s model as the Adversarial Noise Model. It is important
to note that the atomic unit of error is a symbol from the alphabet. So for example, if the error
patternis (1,0, 1,0,0,0) and we consider the alphabet to be {0, 1}, then the pattern has two errors.
However, if our alphabet is {0, 113 (i.e. we think of the vector above as ((1,0,1),(0,0,0)), with
(0,0,0) corresponding to the zero element in {0, 11%), then the pattern has only one error. Thus,
by increasing the alphabet size we can also change the adversarial noise model. As the book
progresses, we will see how error correction over a larger alphabet is easier than error correction
over a smaller alphabet.

However, the above is not the only way to model noise. For example, we could also have
following error model:

No more than 1 error can happen in any contiguous three-bit block.

First note that, for the channel model above, no more than four errors can occur when a code-
word in C3 r¢p is transmitted. (Recall that in C3 ¢, each of the four bits is repeated three times.)
Second, note that the decoding function that takes the majority vote of each block can suc-
cessfully recover the transmitted codeword for any error pattern, while in the worst-case noise
model it could only correct at most one error. This channel model is admittedly contrived, but
it illustrates the point that the error-correcting capabilities of a code (and a decoding function)
are crucially dependent on the noise model.

A popular alternate noise model is to model the channel as a stochastic process. As a con-
crete example, let us briefly mention the binary symmetric channel with crossover probability
0 < p <1, denoted by BSC,,, which was first studied by Shannon. In this model, when a (binary)
codeword is transferred through the channel, every bit flips independently with probability p.

Note that the two noise models proposed by Hamming and Shannon are in some sense two
extremes: Hamming’s model assumes no knowledge about the channel (except that a bound
on the total number of errors is known’ while Shannon’s noise model assumes complete knowl-
edge about how noise is produced. In this book, we will consider only these two extreme noise
models. In real life, the situation often is somewhere in between.

For real life applications, modeling the noise model correctly is an extremely important
task, as we can tailor our codes to the noise model at hand. However, in this book we will
not study this aspect of designing codes at all, and will instead mostly consider the worst-case
noise model. Intuitively, if one can communicate over the worst-case noise model, then one
could use the same code to communicate over nearly every other noise model with the same
amount of noise.

6For binary codes, there is only one kind of error: a bit flip. However, for codes over a larger alphabet, say {0, 1,2},
0 being converted to a 1 and 0 being converted into a 2 are both errors, but are different kinds of errors.

7A bound on the total number of errors is necessary; otherwise, error correction would be impossible: see
Exercise 1.3.
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We now return to Cg and examine its error-correcting capabilities in the worst-case noise
model. We claim that Cg cannot correct even one error. Supposey = 10000 is the received word.
Then we know that an error has occurred, but we do not know which bit was flipped. This is
because the two codewords u = 00000 and v = 10001 differ from the received word y in exactly
one bit. As we are assuming that the receiver has no side information about the transmitted
codeword, no decoder can know what the transmitted codeword was.

Thus, from an error-correction point of view, Cy is a terrible code (as it cannot correct even
1 error). However, we will now see that Cg can detect one error. Consider Algorithm 1. Note that

Algorithm 1 Error Detector for Parity Code
INPUT: Received wordy = (y1, 2, V3, Y4, V5)
OuTtprUT: 1ifye Cg and 0 otherwise

Lb—y1©),y38 )18 s
2: RETURN 1® b > If there is no error, then b = 0 and hence we need to "flip" the bit for the
answer

when no error has occurred during transmission, y; = x; for 1 <i <4 and y5 = x1 & X & X3 ® Xy,
in which case b = 0 and we output 1® 0 = 1 as required. If there is a single error then either
yi=x;®1 (forexactlyone 1 <i <4)or y5 = x; ® X2 ® x3® x4 & 1. It is easy to check that in this
case, b = 1. Infact, one can extend this argument to obtain the following result (see Exercise 1.4).

Proposition 1.3.2. The parity code Cq can detect an odd number of errors.

Let us now revisit the example that showed that one cannot correct one error using Cs.
Recall, we considered two codewords in Cg, u = 00000 and v = 10001 (which are codewords
corresponding to messages 0000 and 1000, respectively). Now consider the scenarios in which
u and v are each transmitted and a single error occurs resulting in the received word r = 10000.
Thus, given the received word r and the fact that at most one error can occur, the decoder has
no way of knowing whether the original transmitted codeword was u or v. Looking back at the
example, it is clear that the decoder is “confused" because the two codewords u and v do not
differ in many positions. This notion is formalized in the next section.

1.4 Distance of a code

We now define a notion of distance that captures the concept that the two vectors u and v are
“close-by."

Definition 1.4.1 (Hamming distance). Given two vectors u,v € X" the Hamming distance be-
tween u and v, denoted by A(u, V), is the number of positions in which u and v differ.

The Hamming distance is a distance in a very formal mathematical sense: see Exercise 1.5.
Note that the definition of Hamming distance just depends on the number of differences and
not the nature of the difference. For example, consider the vectors u and v from the previous
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section. One can see that their Hamming distance is A(u,v) = 2. Now consider the vector w =
01010. Note that even though v # w, we have that the Hamming distance A(u,w) = 2.

Armed with the notion of Hamming distance, we now define another important parameter
of a code.

Definition 1.4.2 (Minimum distance). Let C < X". The minimum distance (or just distance) of
C is defined to be
d= min A(cy,cy)
c1#ceC

It is easy to check that the repetition code Cs ¢y has distance 3. Indeed, any two distinct
messages will differ in at least one of the message bits. After encoding, the difference in one
message bit will translate into a difference of three bits in the corresponding codewords. We
now claim that the distance of Cg is 2. This is a consequence of the following observations. If
two messages m; and my differ in at least two places then A(Cg(m;), Ce(my)) = 2 (even if we
just ignored the parity bits). If two messages differ in exactly one place then the parity bits in
the corresponding codewords are different which implies a Hamming distance of 2 between
the codewords. Thus, Cg has smaller distance than Cs ., and can correct less number of errors
than Cs ;.p. This suggests that a larger distance implies greater error-correcting capabilities.
The next result formalizes this intuition.

Proposition 1.4.1. Given a code C, the following are equivalent:
1. C has minimum distance d = 2,
2. Ifd is odd, C can correct (d —1)/2 errors.
3. C can detectd —1 errors.

8

4. C can correctd — 1 erasures.

Remark 1.4.1. Property (2) above for even d is slightly different. In this case, one can correct up
to % —1 errors but cannot correct % errors. (See Exercise 1.6.)

Before we prove Proposition 1.4.1, let us apply it to the codes Cg and Cs ;e which have
distances of 2 and 3 respectively. Proposition 1.4.1 implies the following facts that we have
already proved:

* (3 rep can correct 1 error (Proposition 1.3.1).
e (Cg can detect 1 error but cannot correct 1 error (Proposition 1.3.2).

The proof of Proposition 1.4.1 will need the following decoding function. Maximum like-
lihood decoding (MLD) is a well-studied decoding method for error correcting codes, which

81n the erasure noise model, the receiver knows where the errors have occurred. In this model, an erroneous
symbol is denoted by “?", with the convention that any non-? symbol is a correct symbol.
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outputs the codeword closest to the received word in Hamming distance (with ties broken arbi-
trarily). More formally, the MLD function denoted by Dy;;p : Z" — C is defined as follows. For
everyye X",

DMwWﬁﬂ%%%MQW

Algorithm 2 is a naive implementation of the MLD.

Algorithm 2 Naive Maximum Likelihood Decoder
INPUT: Received wordy € X"
OUTPUT: Db (y)

1: Pick an arbitrary c € C and assign z — ¢
2: FOR every ¢’ € C such that ¢ # ¢ DO

3: IF A(c/,y) < A(z,y) THEN

4 z—c

5: RETURN z

Proof of Proposition 1.4.1 We will complete the proofin two steps. First, we will show that if
property 1 is satisfied then so are properties 2,3 and 4. Then we show that if property 1 is not
satisfied then none of properties 2,3 or 4 hold.

1. implies 2. Assume C has distance d. We first prove 2 (for this case assume that d =27 +1).
We now need to show that there exists a decoding function such that for all error patterns with
at most ¢ errors it always outputs the transmitted message. We claim that the MLD function
has this property. Assume this is not so and let ¢; be the transmitted codeword and let y be the
received word. Note that

Aly,c1) < t. (1.1)

As we have assumed that MLD does not work, D1 p(y) = ¢2 # ¢;. Note that by the definition of
MLD,
Ay, c2) = Ay, c1). (1.2)

Consider the following set of inequalities:

A(c,€2) = A(ep,y) + Aer,y) (1.3)
< 2A(cy,y) (1.4)
<2t (1.5)
=d-1, (1.6)

where (1.3) follows from the triangle inequality (see Exercise 1.5), (1.4) follows from (1.2) and
(1.5) follows from (1.1). (1.6) implies that the distance of C is at most d — 1, which is a contra-
diction.
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1. implies 3. We now show that property 3 holds, that is, we need to describe an algorithm
that can successfully detect whether errors have occurred during transmission (as long as the
total number of errors is bounded by d — 1). Consider the following error detection algorithm:
check if the received word y = ¢ for some c € C (this can be done via an exhaustive check). If
no errors occurred during transmission, y = ¢, where ¢; was the transmitted codeword and the
algorithm above will accept (as it should). On the other hand if 1 < A(y,¢;) < d -1, then by the
fact that the distance of C is d, y ¢ C and hence the algorithm rejects, as required.

1. implies 4. Finally, we prove that property 4 holds. Lety € (Z U {2})" be the received word.
First we claim that there is a unique ¢ = (cy,...,c,) € C that agrees with y (i.e. y; = c; for ev-
ery i such that y; # ?). (For the sake of contradiction, assume that this is not true, i.e. there
exists two distinct codewords ¢y, ¢, € C such that both ¢; and ¢, agree with y in the unerased
positions. Note that this implies that c¢; and c, agree in the positions i such that y; # ?. Thus,
A(cy,¢2) < {ily; = %l < d -1, which contradicts the assumption that C has distance d.) Given
the uniqueness of the codeword c € C that agrees with y in the unerased position, an algorithm
to find c is as follows: go through all the codewords in C and output the desired codeword.

—11. implies —12. For the other direction of the proof, assume that property 1 does not hold,
that is, C has distance d — 1. We now show that property 2 cannot hold: i.e., for every decoding
function there exists a transmitted codeword c; and a received word y (where A(y,c;) < (d—1)/2)
such that the decoding function cannot output c¢;. Let ¢; # ¢, € C be codewords such that
A(cy,¢2) = d —1 (such a pair exists as C has distance d — 1). Now consider a vector y such that
A(y,c1) = A(y,c2) = (d —1)/2. Such ay exists as d is odd and by the choice of ¢; and c,. Below is
an illustration of such a y (matching color implies that the vectors agree on those positions):

_ d-1
n-d+1 d-1

U Ul S Dy R

‘-y

Figure 1.3: Bad example for unique decoding.

Now, since y could have been generated if either of ¢; or ¢, were the transmitted codeword,
no decoding function can work in this case.’

9Note that this argument is just a generalization of the argument that Cg cannot correct 1 error.
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—1. implies 3. For the remainder of the proof, assume that the transmitted word is ¢; and
there exists another codeword c, such that A(cy,¢;) = d — 1. To see why property 3 is not true,
let y = c,. In this case, either the error detecting algorithm detects no error, or it declares an
error when c; is the transmitted codeword and no error takes place during transmission.

- 1. implies 74. We finally argue that property 4 does not hold. Let y be the received word in

which the positions that are erased are exactly those where ¢, and c; differ. Thus, given y both

c; and c; could have been the transmitted codeword, and no algorithm for correcting (at most

d — 1) erasures can work in this case. [ |
Proposition 1.4.1 implies that Question 1.1.1 can be reframed as

Question 1.4.1. What is the largest rate R that a code with distance d can have?

We have seen that the repetition code Cs ;¢ has distance 3 and rate 1/3. A natural follow-up
question (which is a special case of Question 1.4.1) is to ask

Question 1.4.2. Can we have a code with distance 3 and rate R > % 2

1.5 Hamming Code

With the above question in mind, let us consider the so-called Hamming code, which we will
denote by Cy. Given a message (x1, X2, X3, X4) € {0, 1}4, its corresponding codeword is given by

Cr (X1, X2, X3, X4) = (X1, X2, X3, X4, X2 ® X3 X4, X1 © X3 D Xg, X1 ® X2 ® Xg).
It is easy to check that this code has the following parameters:
Cn:q=2,k=4,n=7,R=4/7.

We will show shortly that Cy has a distance of 3. We would like to point out that we could
have picked the three parities differently. The reason we mention the three particular parities
above is due to historical reasons. We leave it as an exercise to define an alternate set of parities
such that the resulting code still has a distance of 3: see Exercise 1.9.

Before we move on to determining the distance of Cpy, we will need another definition.

Definition 1.5.1 (Hamming Weight). Let g = 2. Given any vectorve {0,1,2,...,g — 1}", its Ham-
ming weight, denoted by wt(v) is the number of non-zero symbols in v.
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For example, if v= 01203400, then wt(v) = 4.
We now look at the distance of Cy.

Proposition 1.5.1. Cy has a distance of 3.

Proof. We will prove the claimed property by using two properties of Cp:

min wt(c) =3, 1.7
ceCy,c#0
and
min wit(c)= min A(cy,C) (1.8)
ceCy,c#0 c1#ceCy

The proof of (1.7) follows from a case analysis on the Hamming weight of the message bits. Let
us use X = (x1, X2, X3, X4) to denote the message vector.

e Case 0: If wt(x) =0, then Cy(x) = 0, which means we do not have to consider this code-
word.

e Case 1: If wt(x) = 1 then at least two parity check bits in (x,® x3® Xy, X1 D X2 ® X4, X1 © X3 D X4)
are 1 (see Exercise 1.10). So in this case, wt(Cy(x)) = 3.

e Case 2: If wt(x) = 2 then at least one parity check bit in (x, ® X3 ® x4, X1 ® X2 ® X4, X1 S X3 D Xy4)
is 1 (see Exercise 1.11). So in this case, wt(Cgy(x)) = 3.

e Case 3: If wt(x) = 3 then obviously wt(Cy(x)) = 3.

Thus, we can conclude that rCnin#)wt(c) > 3. Further, note that wt(Cg(1,0,0,0)) = 3, which
celCpy,C

along with the lower bound that we just obtained proves (1.7).

We now turn to the proof of (1.8). For the rest of the proof, let x = (x1, X2, x3,%4) and y =
(¥1, 2, ¥3, ¥a) denote the two distinct messages. Using associativity and commutativity of the &
operator, we obtain that

Cux)+Ch(y) =Cygx+y),

where the “+" operator is just the bit-wise @ of the operand vectors'®. Further, it is easy to verify
that for two vectors u,v e {0,1}", A(u,v) = wt(u+v) (see Exercise 1.12). Thus, we have

min A(Cypx),Ch(y))= min wit(Cygx+y))
x#ye{0,1}4 x#ye{0,1}4

= min wit(CyX)),
x#0€{0,1}4
where the second equality follows from the observation that {x+y|x #y € {0, 1}""} = {x € {0, 1} |x #

0}. Recall that wt(Cy(x)) = 0 ifand only ifx = 0 and this completes the proof of (1.8). Combining
(1.7) and (1.8), we conclude that Cy has a distance of 3. O

E.g. (0,1,1,0) +(1,1,1,0) = (1,0,0,0).
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The second part of the proof could also be shown in the following manner. It can be verified
easily that the Hamming code is the set {x- Gy|x € {0,1}*}, where Gy is the following matrix
(where we think x as a row vector).'!

G =

o - O O
- o O O
— - - O

1
0
1
1

o O O -
o O - O
—_— O =

In fact, any binary code (of dimension k and block length n) that is generated'? by a k x n
matrix is called a binary linear code. (Both Cg and C3 ;. are binary linear codes: see Exer-
cise 1.13.) This implies the following simple fact.

Lemma 1.5.2. For any binary linear code C and any two messagesx andy, C(x) + C(y) = C(x+Yy).

Proof. For any binary linear code, we have a generator matrix G. The following sequence of
equalities (which follow from the distributivity and associativity properties of the Boolean EXOR
and AND operators) proves the lemma.

Cx)+Cy)=x-G+y-G
=x+y)-G
=Cx+y)

O

We stress that in the lemma above, x and y need notbe distinct. Note that due to the fact that
be b =0 for every b € {0, 1}, x+x = 0, which along with the lemma above implies that C(0) = 0.13
We can infer the following result from the above lemma and the arguments used to prove (1.8)
in the proof of Proposition 1.5.1.

Proposition 1.5.3. For any binary linear code, its minimum distance is equal to minimum Ham-
ming weight of any non-zero codeword.

Thus, we have seen that Cy has distance d = 3 and rate R = % while Cs ;¢ has distance d =3
and rate R = % Thus, the Hamming code is provably better than the repetition code (in terms
of the tradeoff between rate and distance) and thus, answers Question 1.4.2 in the affirmative.
The next natural question is

Question 1.5.1. Can we have a distance 3 code with a rate higher than that of Cy?

Hypdeed (x7, x2, X3,X4) - Gy = (X1, X2, X3, X4, X2 ® X3 ® Xgq, X1 D X3 D X4, X1 D X2 ® X4), as desired.
12That is, C = {x- G|x € {0, 1}¥}, where addition is the & operation and multiplication is the AND operation.
13This of course should not be surprising as for any matrix G, we have 0- G = 0.
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We will address this question in the next section.

1.6 Hamming Bound

Now we switch gears to present our first tradeoff between redundancy (in the form of the di-
mension of a code) and its error-correction capability (in the form of its distance). In particular,
we will first prove a special case of the so-called Hamming bound for a distance of 3.

We begin with another definition.

Definition 1.6.1 (Hamming Ball). For any vector x € [g]",
B(x,e) ={ye[ql"|Axy) < e}.
Next, we prove an upper bound on the dimension of every code with distance 3.

Theorem 1.6.1 (Hamming bound for d = 3). Every binary code with block length n, dimension
k, distance d = 3 satisfies
k=n-log,(n+1).

Proof. Given any two codewords, ¢; # ¢, € C, the following is true (as C has distance'* 3):
B(c;,1) N B(cy, 1) = @. (1.9
See Figure 1.4 for an illustration. Note that for all x € {0, 1}"* (see Exercise 1.16),
|IB(x,1)|=n+1. (1.10)

Now consider the union of all Hamming balls centered around some codeword. Obviously, their
union is a subset of {0, 1}". In other words,

B, | <2". (1.11)

ceC

As (1.9) holds for every pair of distinct codewords,

U B(c, 1)‘ =Y |B(c, 1)

ceC ceC
=) (n+1) (1.12)

ceC
=2k mn+1), (1.13)

14 Agsume that y€ B(cy,1) N B(cy, 1), thatis A(y, ¢;) < 1 and A(y, ¢2) < 1. Thus, by the triangle inequality A(c;, cp) <
2 < 3, which is a contradiction.
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{0, 13"

Figure 1.4: Hamming balls of radius 1 are disjoint. The figure is technically not correct: the balls
above are actually balls in the Euclidean space, which is easier to visualize than the Hamming
space.

where (1.12) follows from (1.10) and (1.13)) the fact that C has dimension k. Combining (1.13)
and (1.11), we get
2k(n+1) <2,

or equivalently
ke 2
T n+l

Taking log, of both sides we get the desired bound:
k<n-log,(n+1).
O

Thus, Theorem 1.6.1 shows that for n = 7, Cy has the largest possible dimension for any
binary code of block length 7 and distance 3 (as for n = 7, n—log,(n +1) = 4). In particular,
it also answers Question 1.5.1 for n = 7 in the negative. Next, will present the general form of
Hamming bound.

1.7 Generalized Hamming Bound

We start with a new notation.

Definition 1.7.1. A code C < X" with dimension k and distance d will be called a (n, k, d)s code.
We will also refer it to as a (n, k, d)|5| code.

We now proceed to generalize Theorem 1.6.1 to any distance d.
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Theorem 1.7.1 (Hamming Bound for any d). For every (n, k,d), code

42
2 n )
k<n-log,| 3 ( _)(q_ i .

i=0 \!
Proof. The proof is a straightforward generalization of the proof of Theorem 1.6.1. For nota-
tional convenience, let e = [(dz;l)J . Given any two codewords, c; # ¢, € C, the following is true

(as C has distance' d):

B(c;,e) N B(cy,e) = @. (1.14)
We claim that for all x € [g]",
e n .
|Bx,e)| =) (l.)(q—l)’. (1.15)
i=0

Indeed any vector in B(x, e) must differ from x in exactly 0 < i < e positions. In the summation
('Z) is the number of ways of choosing the differing i positions and in each such position, a
vector can differ from x in g — 1 ways.

Now consider the union of all Hamming balls centered around some codeword. Obviously,
their union is a subset of [g]". In other words,

UBl(ce)

ceC

<q". (1.16)

As (1.14) holds for every pair of distinct codewords,

Bl(ce)

ceC

=) |B(c,e)|

ceC
k e
i=0

where (1.17) follows from (1.15) and the fact that C has dimension k. Combining (1.17) and
(1.16) and taking log,, of both sides we will get the desired bound:

k< n—logq(z (’Z)(q— 1)i).
i=0

n i
; (g-1), (1.17)

O

Note that the Hamming bound gives a partial answer to Question 1.4.1. In particular, any
code of distance d can have rate R at most

|0, (£ ()@ - 1))
n

Further, the Hamming bound also leads to the following definition:

15A¢sume thatye B(c;,e)nB(cy, e), thatis A(y,c;) < eand A(y, ¢2) < e. Thus, by the triangle inequality, A(c;, cp) <
2e <d -1, which is a contradiction.
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Definition 1.7.2. Codes that meet Hamming bound are called perfect codes.

Intuitively, a perfect code leads to the following perfect “packing": if one constructs Ham-
ming balls of radius [%J around all the codewords, then we would cover the entire ambient
space, i.e. every possible vector will lie in one of these Hamming balls.

One example of perfect code is the (7,4, 3), Hamming code that we have seen in this chapter
(so is the family of general Hamming codes that we will see in the next chapter). A natural

question to ask is if

Question 1.7.1. Other than the Hamming codes, are there any other perfect (binary) codes?

We will see the answer shortly.

1.8 Exercises

Exercise 1.1. Show that any ¢-error correcting code is also t-error detecting but not necessarily
the other way around.

Exercise 1.2. Prove Proposition 1.3.1.

Exercise 1.3. Show that for every integer 7, there is no code with block length 7 that can handle
arbitrary number of errors.

Exercise 1.4. Prove Proposition 1.3.2.

Exercise 1.5. A distance function on X" (i.e. d: X" x X" — R) is called a metric if the following
conditions are satisfied for every x,y,z€ X"

1. dx,y) =0.

2. dix,y)=0ifand onlyifx=Yy.

3. dx,y) =d(y,x).

4. d(x,z) < d(x,y) + d(y,z). (This property is called the triangle inequality.)

Prove that the Hamming distance is a metric.

Exercise 1.6. Let C be a code with distance d for even d. Then argue that C can correct up to
d/2 -1 many errors but cannot correct d/2 errors. Using this or otherwise, argue that if a code
C is t-error correctable then it either has a distance of 27 + 1 or 27 + 2.

Exercise 1.7. In this exercise, we will see that one can convert arbitrary codes into code with
slightly different parameters:
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1. Let C be an (n, k,d), code with d odd. Then it can be converted into an (n+1,k,d + 1)»
code.

2. Let Cbe an (n, k,d)s code. Then it can be converted into an (n—1, k,d — 1)s code.

Note: Other than the parameters of the code C, you should not assume anything else about the
code. Also your conversion should work for every n, k,d = 1.

Exercise 1.8. In this problem we will consider a noise model that has both errors and erasures. In
particular, let C be an (n, k, d)s code. As usual a codeword c € C is transmitted over the channel
and the received word is a vector y € (XU {?})”, where as before a ? denotes an erasure. We will
use s to denote the number of erasures in y and e to denote the number of (non-erasure) errors
that occurred during transmission. To decode such a vector means to output a codeword c € C
such that the number of positions where ¢ disagree with y in the n — s non-erased positions is
at most e. For the rest of the problem assume that

2e+s<d. (1.18)
1. Argue that the output of the decoder for any C under (1.18) is unique.

2. Let C be a binary code (but not necessarily linear). Assume that there exists a decoder D
that can correct from < d/2 many errors in T'(n) time. Then under (1.18) one can perform
decoding in time O(T (n)).

Exercise 1.9. Define codes other than Cy with k=4,n =7 and d = 3.
Hint: Refer to the proof of Proposition 1.5.1 to figure out the properties needed from the three parities.

Exercise 1.10. Argue that if w(x) = 1 then at least two parity check bits in (x; ® x3 ® x4, X1 ® X2 &
X4,X1 D X3 D X4) are 1.

Exercise 1.11. Argue that if wt(x) = 2 then at least one parity check bit in (x, & x3 ® x4, X1 ® X &
X4, X1 D X3 D Xy) is 1.

Exercise 1.12. Prove that for any u,ve {0,1}", A(u,v) = wt(u+v).
Exercise 1.13. Argue that Cg and C3 .p are binary linear codes.

Exercise 1.14. Let G be a generator matrix of an (n, k, d), binary linear code. Then G has at least
kd ones in it.

Exercise 1.15. Argue that in any binary linear code, either all all codewords begin with a 0 of
exactly half of the codewords begin with a 0.

Exercise 1.16. Prove (1.10).
Exercise 1.17. Show that there is no binary code with block length 4 that achieves the Hamming

bound.
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Exercise1.18. *) There are n people in a room, each of whom is given a black/white hat chosen
uniformly at random (and independent of the choices of all other people). Each person can see
the hat color of all other people, but not their own. Each person is asked if (s)he wishes to guess
their own hat color. They can either guess, or abstain. Each person makes their choice without
knowledge of what the other people are doing. They either win collectively, or lose collectively.
They win if all the people who don'’t abstain guess their hat color correctly and at least one
person does not abstain. They lose if all people abstain, or if some person guesses their color
incorrectly. Your goal below is to come up with a strategy that will allow the n people to win
with pretty high probability. We begin with a simple warmup:

(a) Argue that the n people can win with probability at least %

Next we will see how one can really bump up the probability of success with some careful mod-
eling, and some knowledge of Hamming codes. (Below are assuming knowledge of the general
Hamming code (see Section 2.4). If you do not want to skip ahead, you can assume that n =7
in the last part of this problem.

(b) Lets say that a directed graph G is a subgraph of the n-dimensional hypercube if its vertex
set is {0,1}"" and if u — v is an edge in G, then u and v differ in at most one coordinate.
Let K(G) be the number of vertices of G with in-degree at least one, and out-degree zero.
Show that the probability of winning the hat problem equals the maximum, over directed
subgraphs G of the n-dimensional hypercube, of K(G)/2".

(c) Using the fact that the out-degree of any vertex is at most n, show that K(G)/2" is at most

— for any directed subgraph G of the n-dimensional hypercube.

(d) Show that if n = 2" — 1, then there exists a directed subgraph G of the n-dimensional hy-
3 n__n
percube with K(G)/2" = =5
Hint: This is where the Hamming code comes in.

1.9 Bibliographic Notes

Coding theory owes its origin to two remarkable papers: one by Shannon and the other by Ham-
ming [52] both of which were published within a couple of years of each other. Shannon’s paper
defined the BSC,, channel (among others) and defined codes in terms of its encoding func-
tion. Shannon’s paper also explicitly defined the decoding function. Hamming’s work defined
the notion of codes as in Definition 1.2.1 as well as the notion of Hamming distance. Both the
Hamming bound and the Hamming code are (not surprisingly) due to Hamming. The specific
definition of Hamming code that we used in this book was the one proposed by Hamming and
is also mentioned in Shannon’s paper (even though Shannon’s paper pre-dates Hamming’s).

The notion of erasures was defined by Elias.

One hybrid model to account for the fact that in real life the noise channel is somewhere
in between the extremes of the channels proposed by Hamming and Shannon is the Arbitrary
Varying Channel (the reader is referred to the survey by Lapidoth and Narayan [66]).

38



Chapter 2

A Look at Some Nicely Behaved Codes:
Linear Codes

Let us now pause for a bit and think about how we can represent a code. In general, a code
C:[q]* — [g]" can be stored using ng* symbols from [g] (n symbols for each of the g* code-
words) or nqk log g bits. For constant rate codes, this is exponential space, which is prohibitive
even for modest values of k like k = 100. A natural question is whether we can do better. Intu-
itively, the code must have some extra structure that would facilitate a succinct representation.
We will now look at a class of codes called linear codes that have more structure than general
codes which leads to some other nice properties. We have already seen binary linear codes in
Section 1.5, thatis: C < {0, 1}" is linear code if for all ¢1, ¢, € C, ¢; + ¢ € C, where the “+" denotes
bit-wise XOR.

Definition 2.0.1 (Linear Codes). Let g be a prime power (i.e. g = p°® for some prime p and
integer s=1). C<{0,1,...,q—1}" is a linear code if it is a linear subspace of {0,1,...,qg - 1}"". If C
has dimension k and distance d then it will be referred to as an [n, k, d] 4 or just an [n, k], code.

Of course, the above definition is not complete because we have not yet defined a linear
subspace. We do that next.

2.1 Finite Fields

To define linear subspaces, we will need to work with (finite) fields. At a high level, we need
finite fields since when we talk about codes, we deal with finite symbols/numbers and we want
to endow these symbols with the same math that makes arithmetic over real numbers work.
Finite fields accomplish this precise task. We begin with a quick overview of fields.

Informally speaking, a field is a set of elements on which one can do addition, subtraction,
multiplication and division and still stay in the set. More formally,

Definition 2.1.1. A field [ is given by a triple (S, +,), where S is the set of elements and +, - are
functions F x F — F with the following properties:
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* CLOSURE: For every a,b € S, we have botha+beSanda-beS.

* ASSOCIATIVITY: + and - are associative: that is, for every a,b,c€ S, a+ (b+c)=(a+b)+c
anda-(b-c)=(a-b)-c.

e COMMUTATIVITY: + and - are commutative: that is, for every a,b € S, a+ b = b+ a and
a-b="b-a.

e DISTRIBUTIVITY: - distributes over +: that is, for every a,b,c€ S, a-(b+c)=a-b+a-c.

* IDENTITIES: There exists special elements 0 and 1 in S such that the following holds for
everyacS:a+0=aanda-1=a.

* INVERSES: For every a € S, there exists its unique additive inverse —a such that a + (—a) =
0. Also for every a € S\ {0}, there exists its unique multiplicative inverse a~! such that
-1
a-a - =1.

With the usual semantics for + and -, R (set of real number) is a field, but Z (set of integers)
is not a field as division of two integers results in a rational number that need not be an inte-
ger (the set of rational numbers itself is a field though: see Exercise 2.1). In this course, we will
exclusively deal with finite fields. As the name suggests these are fields with a finite set of ele-
ments. (We will overload notation and denote the size of a field |F| = |S|.) The following is a well
known result.

Theorem 2.1.1 (Size of Finite Fields). The size of any finite field is p* for prime p and integer
s=1.

One example of a finite field that we have seen is the field with S = {0, 1}, which we will
denote by [, (we have seen this field in the context of binary linear codes). For F,, addition
is the XOR operation, while multiplication is the AND operation. The additive inverse of an
element in [F; is the number itself while the multiplicative inverse of 1 is 1 itself.

Let p be a prime number. Then the integers modulo p form a field, denoted by [, (and also
by Z,), where the addition and multiplication are carried out modulo p. For example, consider
F7, where the elements are {0,1,2,3,4,5,6}. We have (4+3) mod7 =0and 4-4 mod7 = 2.
Further, the additive inverse of 4 is 3 as (3+4) mod 7 = 0 and the multiplicative inverse of 4 is 2
as4-2 mod7=1.

More formally, we prove the following result.

Lemma 2.1.2. Let p be a prime. ThenF, = ({0,1,...,p—1},+p,-p) is a field, where +, and -, are
addition and multiplication modulo p.

Proof. The properties of associativity, commutativity, distributivity and identities hold for in-
tegers and hence, they hold for [F,. The closure property follows since both the “addition" and
“multiplication" are done modulo p, which implies that for any a,b € {0,...,p—1}, a+,b,a-, b€
{0,..., p—1}. Thus, to complete the proof, we need to prove the existence of unique additive and
multiplicative inverses.
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Fix an arbitrary a € {0,...., p — 1}. Then we claim that its additive inverse is p—a mod p. Itis
easy to check that a+ p—a =0 mod p. Next we argue that this is the unique additive inverse.
To see this note that the sequence a,a+1,a+2,...,a+ p —1 are p consecutive numbers and
thus, exactly one of them is a multiple of p, which happens for b= p—a mod p, as desired.

Now fixan a € {1,..., p — 1}. Next we argue for the existence of a unique multiplicative uni-
verse a~1. Consider the set of numbers T = {a ‘pblb € {1,...,p—1}}. We claim that all these
numbers are unique. To see this, note that if this is not the case, then there exist b; # b, €
{0,1,...,p—1} such that a- by = a- b, mod p, which in turn implies that a- (b; — b,) =0 mod p.
Since a and b; — b, are non-zero numbers, this implies that p divides a- (b; — b,). Further, since
a and |b; — b, | are both at most p—1, this implies that multiplying a and (b; —b2) mod p results
in p, which is a contradiction since p is prime. Thus, we have argued that |T| = p — 1 and since
each number in T is in [p — 1], we have that T = [p — 1]. Thus, we can conclude that there exists
aunique element b such that a-b=1 mod p and thus, b is the required a™ . O

One might think that there could be different finite fields with the same number of elements.
However, this is not the case:

Theorem 2.1.3. For every prime power q there is a unique finite field with q elements (up to
isomorphism').

Thus, we are justified in just using [, to denote a finite field on g elements.

2.2 Linear Subspaces

We are finally ready to define the notion of a linear subspace.

Definition 2.2.1 (Linear Subspace). For any non-empty subset S < Fy is a linear subspace if the
following properties hold:

1. Foreveryx,y€ S, x+y € S, where the addition is vector addition over [ (that is, do addi-
tion component wise over [ ).

2. Foreverya€el,andxe€ S, a-x€ §, where the multiplication is done component-wise over
F,.
q

Here is a (trivial) example of a linear subspace of [ng
§1=1{(0,0,0),(1,1,1),(2,2,2),(3,3,3),(4,4,4)}. 2.1)

Note that for example (1,1,1) +(3,3,3) = (4,4,4) € S; and 2- (4,4,4) = (3,3,3) € S; as required
by the definition. Here is another somewhat less trivial example of a linear subspace over [ng

S, =1{(0,0,0),(1,0,1),(2,0,2),(0,1,1),(0,2,2),(1,1,2),(1,2,0),(2,1,0), (2,2, 1). (2.2)
Note that (1,0,1) + (0,2,2) = (1,2,0) € S, and 2- (2,0,2) = (1,0, 1) € S, as required.

! An isomorphism ¢ : S — S’ is amap (such that F = (S, +,-) and F’ = (S',®, ) are fields) where for every a;, a; € S,
we have ¢(a; + az) = ¢p(ar) ® Pp(az) and ¢(a; - az) = Pp(ay) o Pp(ay).
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Remark 2.2.1. Note that the second property implies that 0 is contained in every linear sub-
space. Further for any subspace over [, the second property is redundant: see Exercise 2.4.

Before we state some properties of linear subspaces, we state some relevant definitions.

Definition 2.2.2 (Span). Given a set B = {vy,...,vy}. The span of B is the set of vectors

l
{Z a;-vila; € F, forevery i € [6]}.

i=1

Definition 2.2.3 (Linear independence of vectors). We say that vy, vy, ... vy are linearly indepen-
dentif for every 1 <i < k and for every (k—1)-tuple (ay, ay, ..., a;i-1,ai+1,..., a) € [F’;_l,

Vi ZWVi+...+a;-1Vi—1+ Aj+1Vi+1 + ... + Qi V.
In other words, v; is not in the span of the set {vy,...,v;_1,Vii1,...,Vu}.
For example the vectors (1,0,1),(1,1,1) € S, are linearly independent.

Definition 2.2.4 (Rank of a matrix). The rank of matrix in [F’;Xk is the maximum number of

linearly independent rows (or columns). A matrix in [F’(;X " with rank min(k, n) is said to have full
rank.

One can define the row (column) rank of a matrix as the maximum number of linearly in-
dependent rows (columns). However, it is a well-known theorem that the row rank of a matrix
is the same as its column rank. For example, the matrix below over [3 has full rank (see Exer-
cise 2.5):

L0 1). 2:3)

GZ:(O 11

Any linear subspace satisfies the following properties (the full proof can be found in any
standard linear algebra textbook).

Theorem 2.2.1. IfS<F," is a linear subspace then
1. |S| = g* for some k = 0. The parameter k is called the dimension of S.

2. Thereexists at least one set of vectorsvy, ..., Vi € S called basis elements such that everyxe S
can be expressed asx = ayvy + a;va + ... + ayvy, where a; € F4 for1 <i < k. In other words,
there exists a full rank k x n matrix G (also known as a generator matrix) with entries from
F, such that everyx € S, x = (ay, ap, ...ax) - G where

<—V1—>
<—V2—>

G=

<—Vk—>
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3. There exists a full rank (n — k) x n matrix H (called a parity check matrix) such that for
everyxe S, Hx = 0.

4. G and H are orthogonal, that is, G- HT =0.
Proof Sketch.

Property 1. We begin with the proof of the first property. For the sake of contradiction, let
us assume that qk <|S| < qk“, for some k = 0. Iteratively, we will construct a set of linearly
independent vectors B < S such that |B| = k + 1. Note that by the definition of a linear subspace
the span of B should be contained in S. However, this is a contradiction as the size of the span
of Bis at least® gk*1 > |S].

To complete the proof, we show how to construct the set B in a greedy fashion. In the first
step pick v; to be any non-zero vector in S and set B — {v;} (we can find such a vector as |S| >
qk > 1). Now say after the step ¢ (for some ¢ < k), |B| = t. Now the size of the span of the current
Bis q' < g* < |S|. Thus there exists a vector v;4, € S\ B that is linearly independent of vectors
in B. Set B — BU {v;;1}. Thus, we can continue building B until | B| = k+ 1, as desired.

Property 2. We first note that we can pick B = {vy,..., v} to be any set of k linearly indepen-
dent vectors- this just follows from the argument above for Property 1.1. This is because the
span of B is contained in S. However, since |S| = g* and the span of B has g* vectors, the two
have to be the same.

Property 3. Property 3 above follows from another fact that every linear subspace S has a null
space N < Fg such that for everyx € Sand y € N, (x,y) = 0. Further, it is known that N itself is
a linear subspace of dimension n — k. (The claim that N is also a linear subspace follows from
the following two facts: for every x,y,z € [FZ, (i) x,y+2z) = (X,y) +(x,2) and (ii) for any a € [,
(x, ay) = a-(x,y).) In other words, there exists a generator matrix H for it. This matrix H is called
the parity check matrix of S.

Property 4. See Exercise 2.8. O

As examples, the linear subspace S; in (2.1) has as one of its generator matrices

Gi=(11 1)
and as one of its parity check matrices
1 2 2
Hl_( 2 21 )

Further, the linear subspace S, in (2.2) has G, as one of its generator matrices and has the fol-
lowing as one of its parity check matrices

Hy=(11 2).

Finally, we state another property of linear subspaces that is useful.

2See Exercise 2.7.
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Lemma 2.2.2. Given matrix G of dimension k x n that is a generator matrix of subspace S, and
matrix H of dimension (n— k) x n that is a parity check matrix of subspace S, such that GH" =0,
then S; = Ss.

Proof. We first prove that S; < S,. Given any c € S;, there exists x € [F'f, such that ¢ =xG. Then,
H-c"=H-xG)" =HGx" = (GHT) x" =0,

which implies that c € Sy, as desired.

To complete the proof note that as H has full rank, its null space (or S») has dimension
n—(n— k) = k (this follows from a well known fact from linear algebra called the rank-nullity
theorem). Now as G has full rank, the dimension of S; is also k. Thus, as S; € S,, it has to be the
case that §; = S,.° O

2.3 Properties of Linear Codes

Theorem 2.2.1 gives two alternate characterizations of an [n, k] 4 linear code C:

* Cis generated by its k x n generator matrix G. As an example that we have already seen,
the [7,4,3], Hamming code has the following generator matrix:

o~ O O
—_ o O O
— - O

1
0
1
1

O OO -
o O = O
—_— O =

e (Cisalso characterized by an (n— k) x n parity check matrix H. We claim that the following
matrix is a parity check matrix of the [7,4, 3], Hamming code:

0001111
H=|10 1 10 011
1 01 01 01

Indeed, it can be easily verified that G- H” = 0. Then Lemma 2.2.2 proves that H is indeed
a parity check matrix of the [7,4, 3], Hamming code.

We now look at some consequences of the above characterizations of an [n, k], linear code
C. We started this chapter with a quest for succinct representation of a code. Note that both the
generator matrix and the parity check matrix can be represented using O(n?) symbols from [
(which is much smaller than the exponential representation of a general code). More precisely
(see Exercise 2.10),

31fnot, S; S, which implies that that |S2| = |S1] + 1. The latter is not possible if both S; and S, have the same
dimension.
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Proposition 2.3.1. Any [n, k], linear code can be represented with min(nk, n(n— k)) symbols
fromF,.

There is an encoding algorithm for C that runs in O(n?) (in particular O(kn)) time- given a
message m € X, the corresponding codeword C(m) = m- G, where G is the generator matrix of
C. (See Exercise 2.11.)

Proposition 2.3.2. For any [n, k] linear code, given its generator matrix, encoding can be done
with O(nk) operations over[F.

There is an error-detecting algorithm for C that runs in O(n?). This is a big improvement
over the naive brute force exponential time algorithm (that goes through all possible codewords
ce C and checks ify = ¢). (See Exercise 2.12.)

Proposition 2.3.3. For any [n, k14 linear code, given its parity check matrix, error detection can
be performed in O(n(n - k)) operations over[,.

Next, we look at some alternate characterizations of the distance of a linear code.

2.3.1 On the Distance of a Linear Code

We start with the following property, which we have seen for the special case of binary linear
codes (Proposition 1.5.3).

Proposition 2.3.4. Fora|n,k,d], codeC,

d=minwt(c).
ceC,
c£0
Proof. To show that d is the same as the minimum weight we show that d is no more than the
minimum weight and d is no less than the minimum weight.

First, we show that d is no more than the minimum weight. We can see this by considering
A(0,c’) where ¢’ is the non-zero codeword in C with minimum weight; its distance from 0 is
equal to its weight. Thus, we have d < wt(c'), as desired.

Now, to show that d is no less than the minimum weight, consider ¢; # ¢z € C such that
A(ci,c2) = d. Note that ¢; — ¢ € C (this is because —ca = —1-¢, € C, where —1 is the additive
inverse of 1 in F4 and ¢; — ¢z = ¢; + (—¢2), which in in C by the definition of linear codes). Now
note that wt(c; —c2) = A(cy, ¢2) = d, since the non-zero symbols in ¢; — ¢, occur exactly in the
positions where the two codewords differ. Further, since ¢; # ¢y, ¢; — ¢ # 0, which implies that
the minimum Hamming weight of any non-zero codeword in C is at most d. O

Next, we look at another property implied by the parity check matrix of a linear code.

Proposition 2.3.5. Forany [n, k,d], code C with parity check matrix H, d is the minimum num-
ber of linearly dependent* columns in H.

4A set of vectors is linearly dependent if it is not linearly independent.
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Proof. By Proposition 2.3.4, we need to show that the minimum weight of a non-zero codeword
in C is the minimum number of linearly dependent columns. Let ¢ be the minimum number of
linearly dependent columns in H. To prove the claim we will show that t < d and ¢ = d.

For the first direction, Let ¢ # 0 € C be a codeword with wt(c) = d. Now note that, by the
definition of the parity check matrix, H-c” = 0. Working through the matrix multiplication, this
gives us that Y7, ¢; H', where

1ot T 1
H=| H' H> ... H' ... H"
[ | |

and ¢ = (cy, ..., cy). Note that we can skip multiplication for those columns for which the corre-
sponding bit c; is zero, so for this to be zero, those H I with ¢; # 0 are linearly dependent. This
means that d = ¢, as the columns corresponding to non-zero entries in ¢ are one instance of
linearly dependent columns.

For the other direction, consider the minimum set of columns from H, H1, H, ..., H that
are linearly dependent. This implies that there exists non-zero elements cgl,...,cgt € F4 such
that c;.l_ Hi4+. . .+ c;.tH it = 0. (Note that all the c;.j are non-zero as no set of less than ¢ columns

are linearly dependent.) Now extend c:.l, ) C;} to the vector ¢’ such that c}. =0for j&{iy,..., iz}

Note that we have H - (c/) T'—0and thus, we have ¢’ € C. This in turn implies that d < wt(c) = ¢
(where recall ¢ is the minimum number of linearly independent columns in H). O

2.4 Hamming Codes

We now change gears and look at the general family of linear codes, which were discovered by
Hamming. So far we have seen the [7,4, 3], Hamming code (in Section 1.5). In fact, for any r = 2
thereis a [2" —1,2" — r — 1,3], Hamming code. Thus in Section 1.5, we have seen this code for
r=23.

Definition 2.4.1. Define the r x (2" — 1) matrix H, over [, such that the ith column Hi, 1<is<
2" —1, is the binary representation of i (note that such a representation is a vector in {0, 1}").

For example, for the case we have seen (r = 3),
0001111
H;=|0 1 1 0 0 1 1}{.
1010101

Note that by its definition, the code that has H, as its parity check matrix has block length 2" — 1
and dimension 2" — r — 1. This leads to the formal definition of the general Hamming code.

Definition 2.4.2. The [2"—1,2" —r—1], Hamming code, denoted by Cy » has parity check matrix
Hr .
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In other words, the general [2" — 1,2" — r — 1], Hamming code is the code
fce{o, 11> ' H, ¢’ =0}.

Next we argue that the above Hamming code has distance 3 (in Proposition 1.5.1, we argued
this for r = 3).

Proposition 2.4.1. The Hamming code [2" —1,2" — r —1,3], has distance 3.

Proof. No two columns in H, are linearly dependent. If they were, we would have H. + H. =
0, but this is impossible since they differ in at least one bit (being binary representations of
integers, i # j). Thus, by Proposition 2.3.5, the distance is at least 3. It is at most 3, since (e.g.)
H!+H2+H =0. O

Now note that under the Hamming bound for d = 3 (Theorem 1.6.1), k < n—log,(n+1), so
forn=2" -1, k<2" —r—1. Hence, the Hamming code is a perfect code. (See Definition 1.7.2.)

In Question 1.7.1, we asked which codes are perfect codes. Interestingly, the only perfect
binary codes are the following:

* The Hamming codes which we just studied.

e The trivial [n, 1, n], codes for odd n (which have 0" and 1" as the only codewords): see
Exercise 2.22.

* Two codes due to Golay [36].

2.5 Family of codes

Until now, we have mostly studied specific codes, that is, codes with fixed block lengths and
dimension. The only exception was the “family" of [2" —1,2" — r —1,3], Hamming codes (for
r = 2) that we studied in the last section. We will see shortly, when we do an asymptotic study
of codes, that it makes more sense to talk about a family of codes. First, we define the notion of
family of codes:

Definition 2.5.1 (Family of codes). Let g = 2. Let {n;};>; be an increasing sequence of block
lengths and suppose there exists sequences {k;};>; and {d;};>1 such that for all i = 1 there exists
an (n;, k;,d;)4 code C;. Then the sequence C = {C;};>; is a family of codes. The rate of C is
defined as
.| ki
R(C)=lim {—¢.
1—00 7

n;

The relative distance of C is defined as

0(C) = lim {é}

i—oo | N
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For example, Cy; the family of Hamming code is a family of codes with n; =2/ —1,k; = 2/ —
i—1,d; =3 and thus,

i
R(Cp)=lim1-——=1,
(Cr =t

and

5(Cyp) = lim 3 __o
i—oo 21 —
We will mostly work with families of codes from now on. This is necessary as we will study the
asymptotic behavior of algorithms for codes, which does not make sense for a fixed code. For
example, when we say that a decoding algorithm for a code C takes O(n?) time, we would be
implicitly assuming that C is a family of codes and that the algorithm has an O(n?) running time
when the block length is large enough. From now on, unless mentioned otherwise, whenever
we talk about a code, we will be implicitly assuming that we are talking about a family of codes.

Given that we can only formally talk about asymptotic run time of algorithms, we now also
state our formal notion of efficient algorithms:

We'll call an algorithm related to a code of block length 7 to be efficient, if it runs in time
polynomial in 7.

For all the specific codes that we will study in this book, the corresponding family of codes
will be a “family" in a more natural sense. By this we mean that all the specific codes in a family
of codes will be the “same" code except with different parameters. A bit more formally, we will
consider families {C;};>1, where given only the ‘index’ i, one can compute a sufficient descrip-
tion of C; efficiently.”

Finally, the definition of a family of codes allows us to present the final version of the big
motivating question for the book. The last formal version of the main question we considered
was Question 1.4.1, where we were interested in the tradeoff of rate R and distance d. The
comparison was somewhat unfair because R was a ratio while d was an integer. A more appro-
priate comparison should be between rate R and the relative distance 6. Further, we would be
interested in tackling the main motivating question for families of codes, which results in the
following final version:

Question 2.5.1. What is the optimal tradeoff between R(C) and 6 (C) that can be achieved by
some code family C?

SWe stress that this is not always going to be the case. In particular, we will consider “random" codes where this
efficient constructibility will not be true.
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2.6 Efficient Decoding of Hamming codes

We have shown that the Hamming code has a distance of 3 and thus, by Proposition 1.4.1, can
correct one error. However, this is a combinatorial result and does not give us an efficient al-
gorithm. One obvious candidate for decoding is the MLD function. Unfortunately, the only
implementation of MLD that we know is the one in Algorithm 2, which will take time 20
where 7 is the block length of the Hamming code. However, we can do much better. Consider
the following simple algorithm: given the received word y, first check if it is indeed a valid code-
word. If it is, we are done. Otherwise, flip each of the n bits and check if the resulting vector is
a valid codeword. If so, we have successfully decoded from one error. (If none of the checks are
successful, then we declare a decoding failure.) Algorithm 3 formally presents this algorithm
(where Cy ; is the [2" —1,2" — r — 1,3], Hamming code).®

Algorithm 3 Naive Decoder for Hamming Code
INPUT: Received word y
OuTPUT: cif A(y,c) <1elseFail

1: IFy€e Cy,r THEN

2 RETURN 'y

3: FORi=1...nDO

4  y <—y+e; > e; is the ith standard basis vector
5 IFy € Cy , THEN

6 RETURNY

7: RETURN Fail

It is easy to check that Algorithm 3 can correct up to 1 error. If each of the checksy’ € Cy ,
can be done in T'(n) time, then the time complexity of the proposed algorithm will be O(n T (n)).
Note that since Cp, is a linear code (and dimension k = n — O(log n)) by Proposition 2.3.3, we
have T(n) = O(nlogn). Thus, the proposed algorithm has running time O(n?logn).

Note that Algorithm 3 can be generalized to work for any linear code C with distance 21t +
1 (and hence, can correct up to t errors): go through all possible error vectors z € [g]" (with
wt(z) < t) and check if y — z is in the code or not. Algorithm 4 presents the formal algorithm
(where Cis an [n, k,2t + 1] 4 code).

The number of error patterns z considered by Algorithm 4 is” ¥!_, (7)(g - 1)* < O((ng)").
Further by Proposition 2.3.3, Step 4 can be performed with O(n?) operations over Fg4. Thus, Al-
gorithm 4 runs with O(n’*2g") operations over 4, which for g being a small polynomial in n,
is n9" operations. In other words, the algorithm will have polynomial running time for codes
with constant distance (though the running time would not be practical even for moderate val-
ues of 7).

6Formally speaking, a decoding algorithm should return the transmitted message x but Algorithm 3 actually
returns Cy - (x). However, since Cp, is a linear code, it is not too hard to see that one can obtain x from Cp, (x) in
O(n®) time: see Exercise 2.23. Further, for Cu,r one can do this in O(n) time: see Exercise 2.24.

"Recall (1.15).
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Algorithm 4 Decoder for Any Linear Code
INPUT: Received word y
OutrUT: ce CifA(y,c) < telseFail

1: FORi=0...tDO
2 FOR S € [n] such that |S| =i DO

3 FORZE [FZ such that wt(zs) = wt(z) = i DO
4: IFy—ze€ C THEN

5 RETURNY—Z

6: RETURN Fail

However, it turns out that for Hamming codes there exists a decoding algorithm with an
O(n?) running time. To see this, first note that if the received word y has no errors, then H, -y’ =
0. If not, then y = c + e;, where c € C and e; is the unit vector with the only nonzero element at
the i-th position. Thus, if Hi stands for the i-th column of H,,

H,-y" =H,-c¢’ +H, ()" =H,-(e)" =H.,

where the second equality follows as H, - ¢’ = 0, which in turn follows from the fact that c € C.
In other words, H, -y’ gives the location of the error. This leads to Algorithm 5.

Algorithm 5 Efficient Decoder for Hamming Code
INPUT: Received word y
OuTPUT: cifA(y,c) <1lelseFail

1: b «— Hr 'yT.

2: Let i € [n] be the number whose binary representation is b
3: IFy—e; € Cy THEN

4 RETURN Yy —e€;

5: RETURN Fail

Note that H, is an r x n matrix where n = 2" — 1 and thus, r = ©(logn). This implies Step 1 in
Algorithm 5, which is a matrix vector multiplication can be done in time O(nlogn). By a similar
argument and by Proposition 2.3.3 Step 3 can be performed in O(nlogn) time, and therefore
Algorithm 5 overall runs in O(nlogn) time. Thus,

Theorem 2.6.1. The[n=2"-1,2" —r—1,3], Hamming code is 1 -error correctable. Furthermore,
decoding can be performed in time O(nlogn).

2.7 Dual of a Linear Code
Until now, we have thought of parity check matrix as defining a code via its null space. However,

we are not beholden to think of the parity check matrix in this way. A natural alternative is to use
the parity check matrix as a generator matrix. The following definition addresses this question.
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Definition 2.7.1 (Dual of a code). Let H be a parity check matrix of a code C, then the code
generated by H is called the dual of C. For any code C, its dual is denoted by C*.

It is obvious from the definition that if C is an [n, k]4 code, then Clisan [n,n- kl4 code.
The first example that might come to mind is Ci], +» which is also known as the Simplex code
(we will denote it by Cg;,, ). Adding an all 0’s column to H, and using the resulting matrix as
a generating matrix, we get the Hadamard code (we will denote it by Cr,4,7). We claim that
Csim,r and Cyqq,, are [2" — 1,7,2" "1, and [27,r,2"71], codes respectively. The claimed block
length and dimension follow from the definition of the codes, while the distance follows from
the following result.

Proposition 2.7.1. Cs;;,,r and Craa,r both have distances of2" 1.

Proof. We first show the result for Cp44 . In fact, we will show something stronger: every non-
zero codeword in Cp,q4 » has weight exactly equal to 271 (the claimed distance follows from
Proposition 2.3.4). Consider a message x # 0. Let its ith entry be x; = 1. x is encoded as

_ HO Hl HZ’—I
C—(xl;x2y---;xr)( r’ rrecey r ))

where Hi is the binary representation of 0 < j < 2" — 1 (that is, it contains all the vectors in
{0,1}"). Further note that the jth bit of the codeword c is (x, H/). Group all the columns of the
generator matrix into pairs (u,v) such that v=u+e; (i.e. vand u are the same except in the ith
position). Notice that this partitions all the columns into 2" ~! disjoint pairs. Then,

X, V) =Xu+e;)=Xuw+(xe;)=xu+x =&u+l.

Thus we have that exactly one of (x,v) and (x,u) is 1. As the choice of the pair (u, v) was arbitrary,
we have proved that for any non-zero codeword c such that ¢ € Cp,q, wt(c) =271,

For the simplex code, we observe that all codewords of C,44 3 are obtained by padding a 0 to
the beginning of the codewords in Cs;;,, which implies that all non-zero codewords in Cs;,»
also have a weight of 2"~1, which completes the proof. O

We remark that the family of Hamming code has a rate of 1 and a (relative) distance of 0
while the families of Simplex/Hadamard codes have a rate of 0 and a relative distance of 1/2.
Notice that both code families either have rate or relative distance equal to 0. Given this, the
following question is natural special case of Question 2.5.1:

Question 2.7.1. Does there exist a family of codes C such that R(C) > 0 and 6(C) > 0 hold
simultaneously?

Codes that have the above property are called asymptotically good.
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2.8 Exercises

Exercise 2.1. Prove that the set of rationals (i.e. the set of reals of the form %, where both a and
b # 0 are integers), denoted by Q, is a field.

Exercise 2.2. Let g be a prime power. Let x € [, such that x ¢ {0,1}. Then prove that for any
n<qg-1:

i xi _ xn+1 -1 .
i=0 x—1
Exercise 2.3. The main aim of this exercise is to prove the following identity that is true for any
aely:
al=a (2.4)

To make progress towards the above we will prove a sequence of properties of groups. A group G
is a pair (S, o) where the operator o : Gx G — G such that o is commutative® and the elements of S
are closed under o. Further, there is a special element ( € S that is the identity element and every
element a € S has an inverse element b € S such that ao b = 1. Note that a finite field F, consists
of an additive group with the + operator (and 0 as additive identity) and a multiplicative group
on the non-zero elements of F; (which is also denoted by Fg) with the - operator (and 1 as the
multiplicative identity).’

For the rest of the problem let G = (S,-) be a multiplicative group with |G| = m. Prove the
following statements.

1. For any f € G, let o(B) be the smallest integer o such that ° = 1. Prove that suchan o < m
always exists. Further, argue that T = {1, ,..., 87!} also forms a group. (T,-) is called a
sub-group of G and o(p) is called the order of p.

2. For any g € G, define the coset (w.r.t. T) as

gT={g-PIBeT}.

Prove thatif g-h~! € Tthen gT = hT and gTnhT = @ otherwise. Further argue that these
cosets partition the group G into disjoint sets.

3. Argue that for any g € G, we have |gT|=|T]|.

4. Using the above results or otherwise, argue that for any f € G, we have
" =1.
5. Prove (2.4).

Exercise 2.4. Prove that for g = 2, the second condition in Definition 2.2.1 is implied by the first
condition.

8Technically, G is an abelian group.
9Recall Definition 2.1.1.
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Exercise 2.5. Prove that G, from (2.3) has full rank.

Exercise 2.6. In this problem we will look at the problem of solving a system of linear equa-
tions over [,. That is, one needs to solve for unknowns x,..., x, given the following m linear
equations (where a; j,b; €Fyforl<i<mand 1< j<n):

ajnx1+ajpXxg+ -+ aypXn = bl.

az1xX1+ag2Xp+---+day pXy = bg.

am,lxl + Clmyzxg + .-+ am,nx;fl = bm

1. (Warm-up) Convince yourself that the above problem can be stated as A-x” =b”, where
Ais an m x n matrix over F,, X € [FZ andbe FZ?.

2. (Upper Triangular Matrix) Assume n = m and that A is upper triangular, i.e. all diagonal
elements (a; ;) are non-zero and all lower triangular elements (a; ;, i > j) are 0. Then
present an O(n?) time!? algorithm to compute the unknown vector x.

3. (Gaussian Elimination) Assume that A has full rank (or equivalently a rank of n.)

(a) Prove that the following algorithm due to Gauss converts A into an upper triangular
matrix. By permuting the columns if necessary make sure that a;,; # 0. (Why can
one assume w.l.o.g. that this can be done?) Multiply alltows 1 <i <n mth o and
then subtract a; ; from the (i, j)th entry 1 < j < n. Recurse with the same algorlthm
on the (n—1) x (n—1) matrix A’ obtained by removing the first row and column from
A. (Stopwhen n=1.)

(b) What happens if A does not have full rank? Show how one can modify the algorithm
above to either upper triangulate a matrix or report that it does not have full rank.
(Convince yourself that your modification works.)

(c) Call a system of equations A-x’ = b’ consistent if there exists a solution to x € Fg-
Show that there exists an O(n®) algorithm that finds the solution if the system of
equations is consistent and A has full rank (and report “fail" otherwise).

4. (m < n case) Assume that A has full rank, i.e. has a rank of m. In this scenario either the
system of equations is inconsistent or there are g~ solutions to x. Modify the algorithm
from above to design an O(m?n) time algorithm to output the solutions (or report that the
system is inconsistent).

* Note that in case the system is consistent there will be g~ solutions, which might
be much bigger than O(m?n). Show that this is not a problem as one can represent
the solutions as system of linear equations. (I.e. one can have n— m “free" variables
and m “bound" variables.)

10For this problem, any basic operation over [, takes unit time.
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5. (m > n case) Assume that A has full rank, i.e. a rank of n. In this scenario either the
system of equations is inconsistent or there is a unique solution to x. Modify the algorithm
from above to design an O(m?n) time algorithm to output the solution (or report that the
system is inconsistent).

6. (Non-full rank case) Give an O(m?n) algorithm for the general case, i.e. the m x n matrix A
need not have full rank. (The algorithm should either report that the system of equations
is inconsistent or output the solution(s) to x.)

Exercise 2.7. Prove that the span of k linearly independent vectors over [, has size exactly q~.

Exercise 2.8. Let G and H be a generator and parity check matrix of the same linear code of
dimension k and block length n. Then G- HT = 0.

Exercise 2.9. Let C be an [n, k], linear code with a generator matrix with no all zeros columns.
Then for every position i € [n] and «a € F,, the number of codewords ¢ € C such that ¢; = a is
exactly g*~1.

Exercise 2.10. Prove Proposition 2.3.1.
Exercise 2.11. Prove Proposition 2.3.2.
Exercise 2.12. Prove Proposition 2.3.3.

Exercise 2.13. A set of vector S < F is called r-wise independent if for every set of positions
I with |I| = ¢, the set S projected to I has each of the vectors in [Ff7 appear the same number
of times. (In other words, if one picks a vector (sy,..., ;) from S at random then any of the ¢
random variables are uniformly and independently random over F).

Prove that any linear code C whose dual C* has distance d* is (d* - 1)-wise independent.

Exercise 2.14. A set of vectors S < [FéC is called e-biased sample space if the following property
holds. Pick a vector X = (xy, ..., x;) uniformly at random from S. Then X has bias at most ¢, that
is, for every I < [k],

<E.

Pr(Zx,-zO)—Pr(inzl)

iel iel

We will look at some connections of such sets to codes.

1. Let C be an [n, k]2 code such that all non-zero codewords have Hamming weight in the
1

range [(3 —¢€) n, (% +¢) n]. Then there exists an £-biased space of size n.
2. Let C be an [n, k], code such that all non-zero codewords have Hamming weight in the
range [(3 — ) n, (3 +7) n] for some constant 0 <y < 1/2. Then there exists an ¢-biased

. =¥
space of size nO0 1og1/e)),

Exercise 2.15. Let C be an [n, k,d], code. Lety = (y1,..., y») € (F; U {2)" be a received word"'
such that y; =2 for at most d — 1 values of i. Present an O(n®) time algorithm that outputs a
codeword ¢ = (cy,...,c,) € C that agrees with y in all un-erased positions (i.e., ¢; = y; if y; #?) or
states that no such c exists. (Recall that if such a c exists then it is unique.)

1A ? denotes an erasure.
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Exercise 2.16. In the chapter, we did not talk about how to obtain the parity check matrix of a
linear code from its generator matrix. In this problem, we will look at this “conversion" proce-
dure.

(a) Prove that any generator matrix G of an [n, k]; code C (recall that G is a k x n matrix) can
be converted into another equivalent generator matrix of the form G’ = [I;|A], where I is
the k x k identity matrix and A is some k x (n — k) matrix. By “equivalent," we mean that
the code generated by G’ has a linear bijective map to C.

Note that the code generated by G’ has the message symbols as its first k symbols in the
corresponding codeword. Such codes are called systematic codes. In other words, every
linear code can be converted into a systematic code. Systematic codes are popular in
practice as they allow for immediate access to the message symbols.

(b) Given an k x n generator matrix of the form [I;|A], give a corresponding (n — k) x n par-
ity check matrix. Briefly justify why your construction of the parity check matrixis correct.

Hint: Try to think of a parity check matrix that can be decomposed into two submatrices: one will be closely

related to A and the other will be an identity matrix, though the latter might not be a k x k matrix).
(c) Use part (b) to present a generator matrix for the [2" —1,2" — r — 1,3], Hamming code.

Exercise 2.17. So far in this book we have seen that one can modify one code to get another
code with interesting properties (for example, the construction of the Hadamard code from the
Simplex code from Section 2.7 and Exercise 1.7). In this problem you will need to come up with
more ways of constructing new codes from existing ones.

Prove the following statements (recall that the notation (n, k, d),; code is used for general
codes with qk codewords where k need not be an integer, whereas the notation [n, k, d]; code
stands for a linear code of dimension k):

1. If there exists an (n, k, d)»>m code, then there also exists an (nm, km, d’' = d)» code.
2. If there exists an [n, k, d],m code, then there also exists an [nm, km,d’ = d]» code.
3. If there exists an [n, k, d] ; code, then there also existsan [n—d, k-1, d = [d/q1]4 code.

4. If there exists an [n, k, 61 code, then for every m = 1, there also exists an (n", k/m, (1 - (1-6)") - n"™)
code.

5. Ifthere exists an [, k, 6 nl, code, then for every odd m = 1, there also exists an [n", k, % (1-a-28™)-n
code.

Note: In all the parts, the only things that you can assume about the original code are only the
parameters given by its definition— nothing else!
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Exercise 2.18. Let Cy be an [n, k;,d,]4 code and C; be an [n, k, d2]; code. Then define a new
code as follows:
Cre G ={(c1,c1 +¢2)lcy € Cy, e € Gl

Next we will prove interesting properties of this operations on codes:

1. If G; is the generator matrix for C; for i € [2], what is a generator matrix for C; © C,?

2. Arguethat Cye Cyisan [2n,k; + ko, d dZEfmin(Zdl, dp)]4 code.

3. Assume there exists algorithms «¢; for code C; for i € [2] such that: (i) «/; can decode from
e errors and s erasures such that 2e+ s < dj and (ii) «% can decode from [(d>—1)/2] errors.
Then argue that one can correct [(d — 1)/2] errors for C; 6 C,.

Hint: Given a received word (y1,y2) € [Ff; X [Ff; first apply </ ony2 —y;. Then create an intermediate received
word for <.

4. We will now consider a recursive construction of a binary linear code that uses the e op-
erator. For integers 0 < r < m, we define the code C(r, m) as follows:

* C(r,r) =} and C(0,r) is the code with only two codewords: the all ones and all
zeroes vector in [},

e Forl<r<m,C(rrm)=C(rhm-1)eC(r-1,m-1).
Determine the parameters of the code C(r, m).

Exercise 2.19. Let C; be an [ny, k1,d;]» binary linear code, and C an [ng, k2, d2] binary linear
code. Let C < F'; "2 he the subset of n; x n, matrices whose columns belong to C; and whose
rows belong to C». C is called the tensor of C; and C, and is denoted by C; ® C,.

Prove that C is an [n; ny, k; ko, dy d], binary linear code.

Exercise 2.20. In Section 2.4 we considered the binary Hamming code. In this problem we will
consider the more general g-ary Hamming code. In particular, let g be a prime power and r = 1
be an integer. Define the following r x n matrix H, ,, where each column is an non-zero vector
from Fj, such that the first non-zero entry is 1. For example,

0111
H3’2_(1 01 2)

In this problem we will derive the parameters of the code. Define the generalized Hamming
code Cy,,4 to be the linear code whose parity check matrix is H, ;. Argue that

r

1. The block length of Cy,;,4 is n = 2__11.

2. Cp,q,r has dimension n—r.

3. Cp,q,r has distance 3.
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Exercise 2.21. Design the best 6-ary code (family) with distance 3 that you can.

Hint: Start with a 7-ary Hamming code.

Exercise2.22. Prove that the [n, 1, 1], code for odd n (i.e. the code with the all zeros and all ones
vector as it only two codewords) attains the Hamming bound (Theorem 1.7.1).

Exercise 2.23. Let C be an [n, k], code with generator matrix G. Then given a codeword c€ C
one can compute the corresponding message in time 0(kn?).

Exercise 2.24. Given a c € Cy r, one can compute the corresponding message in time O(n).

Exercise 2.25. Let C be an (n, k)4 code. Prove that if C can be decoded from e errors in time
T (n), then it can be decoded from n + ¢ errors in time O((ng)¢ - T(n)).

Exercise 2.26. Show that the bound of kd of the number of ones in the generator matrix of any
binary linear code (see Exercise 1.14) cannot be improved for every code.

Exercise2.27. Let C be alinear code. Then prove that (C*)" = C.

Exercise 2.28. Note that for any linear code C, the codewords 0 is in both C and C L. Show that
there exists a linear code C such that it shares a non-zero codeword with C*.

Exercise2.29. We go into a bit of diversion and look at how finite fields are different from infinite
fields (e.g. R). Most of the properties of linear subspaces that we have used for linear codes (e.g.
notion of dimension, the existence of generator and parity check matrices, notion of duals) also
hold for linear subspaces over R.'> One trivial property that holds for linear subspaces over
finite fields that does not hold over R is that linear subspaces over [, with dimension k has size
g* (though this is a trivial consequence that F are finite field while R is an infinite field). Next,
we consider a more subtle distinction.
Let S € R" be a linear subspace over R and let S* is the dual of S. Then show that

SnsSt=1{o}.

By contrast, linear subspaces over finite fields can have non-trivial intersection with their duals
(see e.g. Exercise 2.28).

Exercise 2.30. Alinear code C is called self-orthogonal if C < C*. Show that
1. The binary repetition code with even number of repetitions is self-orthogonal.
2. The Hadamard code Cp,g4, is self-orthogonal.
Exercise 2.31. Alinear code C is called self dual if C = C*. Show that for
1. Any self dual code has dimension n/2.
2. Prove that the following code is self-dual

{(x,%)|x € F5}.

12 linear subspace S € R" is the same as in Definition 2.2.1 where all occurrences of the finite field 4 is replaced
by R.
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Exercise 2.32. Given a code C a puncturing of C is another code C’' where the same set of po-
sitions are dropped in all codewords of C. More precisely, if C < £" and the set of punctured
positions is P < [n], then the punctured code is {(c;) ¢pl(c1,...,cpn) € C}.

Prove that a linear code with no repetitions (i.e. there are no two positions i # j such that for
every codeword c € C, ¢; = ¢;) is a puncturing of the Hadamard code. Hence, Hadamard code is
the “longest" linear code that does not repeat.

Exercise 2.33. In this problem we will consider the long code. For the definition, we will use the
functional way of looking at the ambient space as mentioned in Remark 1.2.1. A long code of
dimension k is a binary code such that the codeword corresponding to x = F¥, is the function
f:10, l}zk — {0,1} defined as follows. For any m € {0, 1}[F§, we have f((mq) ,¢pk) = mx. Derive the
parameters of the long code. ’

Finally, argue that the long code is the code with the longest block length such that the
codewords do not have a repeated coordinate (i.e. there does not exists i # j such that for every
codeword ¢, ¢; = ¢;). (Contrast this with the property of Hadamard code above.)

2.9 Bibliographic Notes

Finite fields are also called Galois fields (another common notation for F4 is GF(g)), named

after Evariste Galois, whose worked laid the foundations of their theory. (Galois led an extremely

short and interesting life, which ended in death from a duel.) For a more thorough treatment

refer to any standard text on algebra or the book on finite fields by Lidl and Niederreiter [69].
The answer to Question 1.7.1 was proved by van Lint [101] and Tietavainen [100].
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Chapter 3

Probability as Fancy Counting and the g-ary
Entropy Function

In the first half of this chapter, we will develop techniques that will allow us to answer questions
such as

Question 3.0.1. Does there exist a (2,2,1], code?

We note that the answer to the above question is trivially yes: just pick the generator matrix
to be the 2 x 2 identity matrix. However, we will use the above as a simple example to illustrate
a powerful technique called the probabilistic method.

As the name suggests, the method uses probability. Before we talk more about the proba-
bilistic method, we do a quick review of the basics of probability that we will need in this book.

3.1 A Crash Course on Probability

In this book, we will only consider probability distributions defined over finite spaces. In par-
ticular, given a finite domain D, a probability distribution is defined as a function

p:D—[0,1] such that ) p(x) =1,
xeD
where [0, 1] is shorthand for the interval of all real numbers between 0 and 1. In this book, we
will primarily deal with the following special distribution:
Definition 3.1.1 (Uniform Distribution). The uniform distribution over D, denoted by %p, is
given by

1
Up(x) = DI for every x e D.

DI

Typically we will drop the subscript when the domain D is clear from the context.
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G | %G | Voo | Vou | Vio | Vi | G %G [ Voo | Vor | Vio| V1|

88 = | 0] 0] 00O ég = 0] 0|11
g? = 0] 1]0 |1 é? w |0 1] 1|2
?8 &= 0] 1]0 |1 18 = |0 1|10
?? = 0| 2] 0|2 i? =0 2|11
gé = 00|11 éé = |00 | 2|2
81 = | 0] 1] 10 éi = 0] 1] 2]1
?é = 0] 1] 1|2 }é = o] 1] 2]1
?1 &= 02|11 ii = o 2]2]0

Table 3.1: Uniform distribution over [F%X2 along with values of four random variables.

For example, consider the domain D = F%XZ, i.e. the set of all 2 x 2 matrices over F,. (Note
that each such matrix is a generator matrix of some [2,2], code.) The first two columns of Ta-
ble 3.1 list the elements of this D along with the corresponding probabilities for the uniform
distribution.

Typically, we will be interested in a real-valued function defined on D and how it behaves
under a probability distribution defined over D. This is captured by the notion of a random
variable:

Definition 3.1.2 (Random Variable). Let D be a finite domain and I c R be a finite' subset. Let
p be a probability distribution defined over D. A random variableis a function:

V:D-— I
The expectation of V is defined as

E[V]=) pl)-V(x).

xeD

For example, given (i, j) € {0,1}?, let V;; denote the random variable V;;(G) = wt((i, j)- G),
for any G € F5*. The last four columns of Table 3.1 list the values of these four random variables.
In this book, we will mainly consider binary random variables, i.e., with I = {0, 1}. In partic-
ular, given a predicate or event E over D, we will define its indicator variable to be a function

n general, I need not be finite. However, for this book this definition suffices.
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1 : D — {0, 1} such that for any x € D:

1 if E(x) =true
Tg(x) = .
0 otherwise.

el 3 v )

In most cases we will shorten this notation to 1g(y) or simply Tg. Finally, sometimes we will
abuse notation and use E instead of 1.

As a further use of indicator variables, consider the expectations of the four indicator vari-
ables:

For example,

1

[E[ﬂyoo:o]:lﬁ-ﬁz 1.
1 1

E[Tvy=0] = Tt 3.1)
1 1

E[Tvp=0] = e (3.2)
1 1

E[Tv;,=0] = 4e= T (3.3)

3.1.1 Some Useful Results

Before we proceed, we record a simple property of indicator variables that will be useful. (See
Exercise 3.1.)

Lemma 3.1.1. Let E be any event. Then
E[T1g] =Pr[E is true].
Next, we state a simple yet useful property of expectation of a sum of random variables:

Proposition 3.1.2 (Linearity of Expectation). Given random variablesV,...,V,, defined over the
same domain D and with the same probability distribution p, we have

> Vi| =) EVil.
i=1 i=1

Proof. For notational convenience, define V = V; +--- + V},,. Thus, we have

E

E[V] = Z V(x)-p(x) (3.4)
xeD
=Y D Viw | px (3.5)
xeD \i=1
m
=) > Vi(x)-px) (3.6)
i=1xeD
= Z E[V;]. (3.7)



In the equalities above, (3.4) and (3.7) follow from the definition of expectation of a random
variable. (3.5) follows from the definition of V and (3.6) follows by switching the order of the
two summations. O

As an example, we have
3
E[“V01:0+HV10:0+HV11=0] = Z (3.8)
Frequently, we will need to deal with the probability of the union of events. We will use the

following result to upper bound such probabilities:

Proposition 3.1.3 (Union Bound). Given m binary random variables Ay, ..., Ay, we have

e

Pr

m
<) Pr[4;=1].
i=1

Proof. For every i € [m], define
S;i={xeD|A;(x) =1}.

Then we have
m
Pri|\ Ai|= 1} = ) pw (3.9)
i=1 xEU?ilsi
m
<) ) pW (3.10)
i=1xeS;
m
=) Pr[4; =1]. (3.11)
i=1

In the above, (3.9) and (3.11) follow from the definition of S;. (3.10) follows from the fact that
some of the x € U;S; get counted more than once. O

We remark that the union bound is tight when the events are disjoint. (In other words, using
the notation in the proof above, when S; N S; = @ for every i # j.)

As an example, let A} = Ty, =0, A2 = Ty,y=0 and Az = 1y;,=o. Note that in this case the event
AV Ay v As is the same as the event that there exists a non-zero m € {0, 1}* such that wt(m-G) =
0. Thus, the union bound implies (that under the uniform distribution over [F%XZ)

3
Pr [There exists an m € {0, 1}*\ {(0,0)}, such that wt(mG) = 0] < T (3.12)
Finally, we present two bounds on the probability of a random variable deviating signifi-
cantly from its expectation. The first bound holds for any random variable:

Lemma 3.1.4 (Markov Bound). LetV be a non-zero random variable. Then for any t > 0,

E[V]
Pr[V=t¢] < T

In particular, forany a =1,

Pr[V=a-E[V]] = é.
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Proof. The second bound follows from the first bound by substituting ¢ = a-E[V]. Thus, to
complete the proof, we argue the first bound. Consider the following sequence of relations:

E(VI= ) i-Pr[V=il+ ) i-Pr[V=i] (3.13)
i€(0,1) i€[t,00)
> i-Pr[V=i] (3.14)
i=t
> ) Pr[V=i] (3.15)
ixt
=t-Pr[V = 1]. (3.16)

In the above relations, (3.13) follows from the definition of expectation of a random variable and

the fact that V is positive. (3.14) follows as we have dropped some non-negative terms. (3.15)

follows by noting that in the summands i = £. (3.16) follows from the definition of Pr[V = £].
The proof is complete by noting that (3.16) implies the claimed bound. O

The second bound works only for sums of independent random variables. We begin by
defining independent random variables:

Definition 3.1.3 (Independence). Two random variables A and B are called independent if for
every a and b in the ranges of A and B respectively, we have

Pr[A=anB=D>b]=Pr[A=a]-Pr[B=b].

For example, for the uniform distribution in Table 3.1, let A denote the bit Gy o and B denote
the bit Gy ;. It can be verified that these two random variables are independent. In fact, it can be
verified all the random variables corresponding to the four bits in G are independent random
variables. (We'll come to a related comment shortly.)

Another related concept that we will use is that of probability of an event happening condi-
tioned on another event happening:

Definition 3.1.4 (Conditional Probability). Given two events A and B defined over the same
domain and probability distribution, we define the probability of A conditioned on B as

Pr[A and B]

Pr[A|B] =
Pr[B]

For example, note that
4/16 1
Pr[Tyy,=11Go,0 =0] = T2 -3
The above definition implies that two events A and B are independent if and only if Pr[A] =
Pr[A|B]. We will also use the following result later on in the book (see Exercise 3.2):

Lemma 3.1.5. For any two events A and B defined on the same domain and the probability
distribution:
Pr[A] = Pr[A|B]-Pr[B] + Pr[A|~B] - Pr[~B].
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Next, we state the deviation bound. (We only state it for sums of binary random variables,
which is the form that will be needed in the book.)

Theorem 3.1.6 (Chernoff Bound). Let X, ..., X;, be independent binary random variables and
define X =) X;. Then the multiplicative Chernoff bound sates that for0 < e <1,

Pr{|X —E(X)| > eE(X)] < 2¢ € EX/3
and the additive Chernoff bound states that
Pr{|X —E(X)|>em] <2e € M2,

We omit the proof, which can be found in any standard textbook on randomized algorithms.

Finally, we present an alternate view of uniform distribution over product spaces and then
use that view to prove a result that we will use later in the book. Given probability distributions
p1 and p, over domains D; and D, respectively, we define the product distribution p; x p» over
D; x D, as follows: every element (x, y) € D; x D, under p; x p; is picked by choosing x from
D; according to p; and y is picked independently from D, under p,. This leads to the following
observation (see Exercise 3.4).

Lemma 3.1.7. For any m = 1, the distribution %p, xp,x--xp,, is identical’ to the distribution
OZZ[DI X%IDZ Xoeee X%[[pm.

For example, the uniform distribution in Table 3.1 can be described equivalently as follows:
pick each of the four bits in G independently and uniformly at random from {0, 1}.
We conclude this section by proving the following result:

Lemma 3.1.8. Given a non-zero vectorm € [F’(; and a uniformly random k x n matrix G over [,
the vectorm- G is uniformly distributed over F.

Proof. Letthe (j,i)thentryin G (1< j<k,1<i<n)bedenoted by g;;. Note that as G is a ran-
dom k x n matrix over 4, by Lemma 3.1.7, each of the g;; is an independent uniformly random
element from F,. Now, note that we would be done if we can show that for every 1 <i < n, the
ith entry in m- G (call it b;) is an independent uniformly random element from F,. To finish
the proof, we prove this latter fact. If we denote m = (m,..., my), then b; = Z?Zl m;gji. Note
that the disjoint entries of G participate in the sums for b; and b; for i # j. Given our choice of
G, this implies that the random variables b; and b; are independent. Hence, to complete the
proof we need to prove that b; is a uniformly independent element of ;. The rest of the proof
is a generalization of the argument we used in the proof of Proposition 2.7.1.

Note that to show that b; is uniformly distributed over F, it is sufficient to prove that b;
takes every value in F, equally often over all the choices of values that can be assigned to
g1i,&i,---,8ki- Now, as m is non-zero, at least one of the its element is non-zero. Without
loss of generality assume that m; # 0. Thus, we can write b; = myg; + Z?:z m;gji. Now, for

every fixed assignment of values to g2;, g3;,..., gk (note that there are g*~! such assignments),
b; takes a different value for each of the g distinct possible assignments to gi; (this is where we
use the assumption that m; # 0). Thus, over all the possible assignments of g1;,..., g, b; takes
each of the values in [ exactly g*~! times, which proves our claim. O

2We say two distributions p; and p, on D are identical if for every x € D, p1(x) = p2(x).
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3.2 The Probabilistic Method

The probabilistic method is a very powerful method in combinatorics which can be used to
show the existence of objects that satisfy certain properties. In this course, we will use the prob-
abilistic method to prove existence of a code € with certain property 2. Towards that end, we
define a distribution 2 over all possible codes and prove that when € is chosen according to 2:

Pr [ has property 22| > 0 or equivalently Pr [¢ doesn’t have property 2] < 1.

Note that the above inequality proves the existence of € with property £2.

As an example consider Question 3.0.1. To answer this in the affirmative, we note that the
set of all [2,2], linear codes is covered by the set of all 2 x 2 matrices over F,. Then, we let 2 be
the uniform distribution over F5*2. Then by Proposition 2.3.4 and (3.12), we get that

. 3
Pr [Thereisno [2,2,1], code] = - <1,
OZZ[szz 4

2
which by the probabilistic method answers the Question 3.0.1 in the affirmative.
For the more general case, when we apply the probabilistic method, the typical approach
will be to define (sub-)properties Py, ..., P,, such that &2 = Py A P, A Ps... A P, and show that for
everyl<i<m:

Pr [ doesn't have property P;] = Pr [P_,] < %

Finally, by the union bound, the above will prove that® Pr[% doesn’t have property 2] < 1, as
desired.

As an example, an alternate way to answer Question 3.0.1 in the affirmative is the following.
Define P; = Ty, 1, P2 = ly,=1 and P3 = 1y;,>1. (Note that we want a [2,2], code that satisfies
Py A Py A P3.) Then, by (3.1), (3.2) and (3.3), we have for i € [3],

Pr % doesn’t have property P;] = Pr [E] =

NI
A
W =~

as desired.

Finally, we mention a special case of the general probabilistic method that we outlined
above. In particular, let 2 denote the property that the randomly chosen %€ satisfies f(€) < b.
Then we claim (see Exercise 3.5) that E[f(C)] < b implies that Pr[€6 has property £2] > 0. Note
that this implies that E[ f(C)] < b implies that there exists a code % such that f(C) < b.

3.3 The g-ary Entropy Function

We begin with the definition of a function that will play a central role in many of our combina-
torial results.

SNotethat P=P VvV Py V-V Py,.
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Definition 3.3.1 (g-ary Entropy Function). Let g be an integer and x be a real number such that
g =2and 0 < x < 1. Then the g-ary entropy function is defined as follows:

Hy(x) = xlog, (g —1) — xlog,(x) — (1 - x)log, (1 - x).

Figure 3.1 presents a pictorial representation of the H, function for the first few values of g.
For the special case of g = 2, we will drop the subscript from the entropy function and denote
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Figure 3.1: A plot of H;(x) for g = 2,3 and 4. The maximum value of 1 is achieved at x =1-1/gq.

H,(x) by just H(x), thatis, H(x) = —xlogx — (1 — x)log(1 — x), where log x is defined as log, (x)
(we are going to follow this convention for the rest of the book).

Under the lens of Shannon’s entropy function, H(x) denotes the entropy of the distribution
over {0, 1} that selects 1 with probability x and 0 with probability 1 — x. However, there is no
similar analogue for the more general H,(x). The reason why this quantity will turn out to be
so central in this book is that it is very closely related to the “volume" of a Hamming ball. We
make this connection precise in the next subsection.

3.3.1 Volume of Hamming Balls

It turns out that in many of our combinatorial results, we will need good upper and lower
bounds on the volume of a Hamming ball. Next we formalize the notion of the volume of a
Hamming ball:

Definition 3.3.2 (Volume of a Hamming Ball). Let ¢ =2 and n = r = 1 be integers. Then the
volume of a Hamming ball of radius r is given by

i=0

Voly(r,n) =|Bg(0,r)| =) (’Z)(CI— D’
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The choice of 0 as the center for the Hamming ball above was arbitrary: since the volume
of a Hamming ball is independent of its center (as is evident from the last equality above), we
could have picked any point as the center.

We will prove the following result:

Proposition 3.3.1. Let q =2 be an integerand0<p <1 - % be a real number. Then:
i) Voly(pn,n) < q"'P"; and
(ii) for large enoughn, Vol,(pn,n) = qu(p)n_"(”).

Proof. We start with the proof of (7). Consider the following sequence of relations:

1 = (p+Q-p)”*

nn\ . .
= ; pra-p" (3.17)

'§||
o

. . n .
= ' n pl(l_p)n—l+ Z (n)pl(l_p)n—l

i=pn+l

Il
(=)
~

pia-pnt (3.18)

v
D3
S

~
1l
o
~

g 1)(’9)(1 Py

I
hgE
=

~
Il
(=)
~

. (q—l)i(l—p)”(#)

I
D3
=

izo\! (g-1A-p)
pn (4 ) p pn
> “Dig-pt|——— 3.19
= L) vaep ((q—l)(l—p)) (3.19)
pn pn
-y 'll (q-1' (qpl) (1-p)-pn (3.20)
i=0
> Voly(pn,n)g P, (3.21)

In the above, (3.17) follows from the binomial expansion (3.18) follows by dropping the second

sum and (3.19) follows from the facts that m <1 (as’ p<1-1/q). Rest of the steps except

(3.21) follow from rearranging the terms. (3.21) follows as q_Hq(p)” (q 1) 1- p)(1 pin,
(3.21) implies that
1=Voly(pn, n)q_H‘f(p)”,

which proves ().

4Indeed, note that m < 1listrueif % < qT_l, which in turn is true if p < qT_l, where the last step follows
from Lemma B.2.1.



We now turn to the proof of part (ii). For this part, we will need Stirling’s approximation for
n! (Lemma B.1.2).
By the Stirling’s approximation, we have the following inequality:

nj\_ n!
pn|  (pmi((1-p)n)!

S (n/e)” _ 1 M= Ao (p) == p)m)
(pnle)P (1 -p)nle)d=P"  gpd-p)n
1
), (3.22)

M (M=A2(pn)=2A2((A-p)n)

V2np(l-p)n

Now consider the following sequence of relations that complete the proof:

where ¢(n) =

Vols(pn,n) = (pnn)(q— Dl (3.23)
(g—1P"

pPr(1—p)d-pn ) (3.24)

> qu(P)ﬂ—O(n). (325)

In the above (3.23) follows by only looking at one term. (3.24) follows from (3.22) while (3.25)
follows from the definition of H,(-) and the fact that for large enough n, £(n) is g~°". O

Next, we consider how the g-ary entropy function behaves for various ranges of its parame-
ters.

3.3.2 Other Properties of the g-ary Entropy function

We begin by recording the behavior of g-ary entropy function for large q.

Proposition 3.3.2. For small enoughe,1—Hgy(p) 21— p—¢ forevery0<p <1-1/q if and only
ifq is2901/9),

Proof. We first note that by definition of H;(p) and H(p),
Hg(p) = plog,(q—1) - plog, p—(1-p)log,(1-p)
= plog,(g—-1)+ H(p)/log, q.

Now if g = 21/¢, we get that
Hg(p)=p+e

aslog,(q—1) =1 and H(p) < 1. Thus, we have argued that for g = 21¢ we have 1 — Hy(p) =
1-p —¢, as desired.
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Next, we consider the case when g = 2°(/¢). We begin by claiming that for small enough ¢,

if g =1/€* then log,(g-1)=1-e.

Indeed, log,(g—1) = 1+ (1/Ing)In(1~1/¢) = 1 - o(ql}lq),5 which is at least 1 — ¢ for g = 1/¢2

(and small enough ¢).
Finally, if g = 2°(2), then for fixed 0,

H(p)/logqg =¢-w(1).
Then for g = 2°(2) (but q = 1/£?) we have
plogq(q—l) +H(p)/logg=p—e+e-w(l)>p+e,

which implies that
1-Hg4(p)<1-p-—g,

as desired. For g < 1/&?, Lemma 3.3.3 shows that 1 — Hy(p) <1-Hy2(p) <1-p—¢,asdesired.
O

We will also be interested in how H,;(x) behaves for fixed x and increasing g:
Lemma 3.3.3. Let g =2 be an integer and let0 < p <1—1/q, then for any real m = 1 such that
19!
g" > (1+—) , (3.26)
q-1

we have
Hy(p) = Hym(p).

Proof. Note that H;(0) = Hym(0) = 0. Thus, for the rest of the proof we will assume that p €
0,1-1/q].
As observed in the proof of Proposition 3.3.2, we have

_ log(g—1) L H(o)

H. = . .
10V =P" " logq ? logq
Using this, we obtain
log(g—1) log(q™ - 1)) ( 1 1 )
H, —H m = — H _ .
a(p) =~ Hym(p)=p logq mlogq +Hip) logg mloggq
The above in turn implies that
1 H(p)
’ -mlogq - (Hy(p) — Hym(p)) =log(qg—1)" —log(g™ — 1) + p (m-1)

5The last equality follows from the fact that by Lemma B.2.2, for 0 < x < 1, In(1 — x) = —O(x).
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H1-1/
>log(g—1)" —log(g™ -1) + (—q)(m -1) (3.27)
1-1/q
q logg
=1 -1D"-1 m_1 -1 {log——+ ——
oglg—1) oglqg )+ (m )(qu—l+q—l
—].m m=1 m—1
q"-1 \g-1

m—1
—1-g™l.ga1

qm-1
>0 (3.28)

In the above (3.27) follows from the fact that H(p)/p is decreasing® in p and that p <1-1/g4.
(3.28) follows from the claim that

—

m—

(@-1-q7" 24

Indeed the above follows from (3.26).
Finally, note that (3.28) completes the proof. O

Since (1+1/x)* < e (by Lemma B.2.5), we also have that (3.26) is also satisfied for m = 1 +
ﬁ. Further, we note that (3.26) is satisfied for every m = 2 (for any g = 3), which leads to the
following (also see Exercise 3.6):

Corollary 3.3.4. Let g = 3 be an integer and let0 < p <1-1/q, then for any m = 2, we have

Hy(p) = Hym(p).

Next, we look at the entropy function when its input is very close to 1.

Proposition 3.3.5. For small enough € >0,
1 2
Hgy 1—5—8 <1-c4¢€,

where cy is a constant that only depends on q.

Proof. The intuition behind the proof is the following. Since the derivative of H,(x) is zero at
x=1-1/gq, in the Taylor expansion of H;(1 —1/q - ¢) the £ term will vanish. We will now make
this intuition more concrete. We will think of g as fixed and 1/¢ as growing. In particular, we
will assume that € < 1/¢q. Consider the following equalities:

H;1-1/g-¢)= —(l—l—s)log (w)—(lﬂz)log (l+£)
! q 1\ g-1 q “\q

6Indeed, H(p)/p =log(1/p) — (1/p —1)log(1l — p). Note that the first term is deceasing in p. We claim that the
second term is also decreasing in p- this e.g. follows from the observation that —(1/p—1)In(1-p) = (1—-p)(1 +
p/2'+p?/3!+--)=1-p/2—p?(1/2-1/3!) —--- is also decreasing in p.
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_ 1( &g 1 1—(£q)/(q—1))
= logq(q(l q_l))+(q+8)logq( 1+2q

1 — —
=1-— ln(l— £q )— (l+£)ln(1 ea)/(q 1))]
Ing qg-1 q 1+eq
) £q e2q® 1 £q
= 1+o0(e%) - - - 2—(—+€)(—
g-1 2(g-1) q q-1
2.2 2,2
_i_gq+ﬂ)] (3.29)
Z(q 1)? 2
1
= 1+o0(e?) - £q eq
Ing| g-1 2(q- 1)2
1 23 _
o35S )
q g-1  2(qg-1?
2 204 _ 2
= 1+0(?) - [— o Ed _gal )] (3.30)
Ing| 2(g—-12% g-1 2(gq-1)>
2.2
=1- S — +0(e?)
2lng(g-1)
__eq
4lng(g-1)
(3.31)
(3.29) follows from the fact that for |x| < 1, In(1 + x) = x — x2/2 + x3/3 —... (Lemma B.2.2) and
by collecting the £* and smaller terms in o(£?). (3.30) follows by rearranging the terms and by
absorbing the £ terms in o(£?). The last step is true assuming ¢ is small enough. O
Next, we look at the entropy function when its input is very close to 0.
Proposition 3.3.6. For small enough € >0,
1 0=0 g <es[ )
€)= -elog|—1|.
a logg © 8¢
Proof. By definition
Hg(e) = elog, (g —1) +elog,(1/€) + (1 - ¢)log,(1/(1 - &)).
Since all the terms in the RHS are positive we have
Hg,(e) = elog(1/€)/logq. 3.32)

Further, by Lemma B.2.2, (1 —¢) 1ogq(1/(1 —¢)) < 2¢/In g for small enough €. Thus, this implies
that

2+In(g-1) 1 1
Hy(e) < €+ -eln|—|. (3.33)
Ing Ing €
(3.32) and (3.33) proves the claimed bound.
O
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We will also work with the inverse of the g-ary entropy function. Note that H,(-) on the
domain [0,1—1/q] is a bijective map into [0, 1]. Thus, we define H;l (y) = x such that Hy(x) = y
and 0 < x <1 -1/q. Finally, we will need the following lower bound:

Lemma 3.3.7. Forevery0<y<1-1/q and for every small enough ¢ >0,
H;l(y—ez/c;) > Hgl(y) —E,
where c; > 1 is a constant that depends only on q.
Proof. Itis easy to check that H;l (y) is a strictly increasing convex function when y € [0, 1]. This

implies that the derivative of H; 1(y) increases with y. In particular, (H; Hh) = (H; 1y/ (y) for
Hy'0-Hg'(y=0) _

every 0 < y < 1. In other words, for every 0 < y < 1, and (small enough) 6 > 0, —F — <
H'W)-H;'(1-6

%. Proposition 3.3.5 along with the facts that H,' (1) = 1-1/q and H, is increasing
completes the proof if one picks ci, =max(1,1/¢c4) and 6 = 52/027. O

3.4 Exercises

Exercise3.1. Prove Lemma 3.1.1.
Exercise 3.2. Prove Lemma 3.1.5.

Exercise 3.3. In this exercise, we will see a common use of the Chernoff bound (Theorem 3.1.6).
Say we are trying to determine an (unknown) value x € F to which we have access to via a ran-
domized algorithm < that on input (random) input r € {0,1}" outputs an estimate </ (r) of x
such that

1
=x] ==+,

Prr [A(r) = x] 2 Y
forsome0 <y < % Then show that for any # = 1 with O (#) calls to &« one can determine x with
probability at least 1 — e~ .
Hint: Call o with independent random bits and take majority of the answer and then use the Chernoff bound.
Exercise 3.4. Prove Lemma 3.1.7.
Exercise 3.5. Let 22 denote the property that the randomly chosen ¥ satisfies f(¥) < b. Then
E[f(C)] < b implies that Pr[€ has property £2] > 0.

Exercise 3.6. Show that forany Q=g =2 and p <1-1/g, we have Hp(p) < Hy(p).

3.5 Bibliographic Notes

Shannon was one of the very early adopters of probabilistic method (and we will see one such
use in Chapter 6). Later, the probabilistic method was popularized Erdds. For more on proba-
bilistic method, see the book by Alon and Spencer [3].

Proofs of various concentration bounds can e.g. be found in [23].
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Chapter 4

What Can and Cannot Be Done-I

In this chapter, we will try to tackle Question 2.5.1. We will approach this trade-off in the fol-
lowing way:

If we fix the relative distance of the code to be 0, what is the best rate R that we can
achieve?

Note that an upper bound on R is a negative result, while a lower bound on R is a positive result.

In this chapter, we will consider only one positive result, i.e. a lower bound on R called the
Gilbert-Varshamov bound in Section 4.2. In Section 4.1, we recall a negative result that we have
already seen— Hamming bound and state its asymptotic version to obtain an upper bound on
R. We will consider two other upper bounds: the Singleton bound (Section 4.3), which gives
a tight upper bound for large enough alphabets (but not binary codes) and the Plotkin bound
(Section 4.4).

4.1 Asymptotic Version of the Hamming Bound

We have already seen an upper bound in Section 1.7 due to Hamming. However, we had stated
this as an upper bound on the dimension k in terms of n, g and d. We begin by considering the
trade-off between R and 6 given by the Hamming bound. Recall that Theorem 1.7.1 states the
following:

k log, Vol ( [%J ,n)

—=1
n n

Recall that Proposition 3.3.1 states following lower bound on the volume of a Hamming ball:
Volq ( [%J ’n) > qu(%)n—o(n),

which implies the following asymptotic version of the Hamming bound:

R< 1—Hq(g) +o(1).

See Figure 4.1 for a pictorial description of the Hamming bound for binary codes.
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Hamming bound
GV bound

Figure 4.1: The Hamming and GV bounds for binary codes. Note that any point below the GV
bound is achievable by some code while no point above the Hamming bound is achievable by
any code. In this part of the book we would like to push the GV bound as much up as possible
while at the same time try and push down the Hamming bound as much as possible.

4.2 Gilbert-Varshamov Bound

Next, we will switch gears by proving our first non-trivial lower bound on R in terms of 6. (In
fact, this is the only positive result on the R vs 6 tradeoff question that we will see in this book.)
In particular, we will prove the following result:

Theorem 4.2.1 (Gilbert-Varshamov Bound). Let g = 2. For every0 <6 <1 - é, and 0 < € <
1 - Hy(b), there exists a code with rate R > 1 — H,;(6) — € and relative distance 6.

The bound is generally referred to as the GV bound. For a pictorial description of the GV
bound for binary codes, see Figure 4.1. We will present the proofs for general codes and linear
codes in Sections 4.2.1 and 4.2.2 respectively.

4.2.1 Greedy Construction

We will prove Theorem 4.2.1 for general codes by the following greedy construction (where
d = dn): start with the empty code C and then keep on adding vectors not in C that are at Ham-
ming distance at least d from all the existing codewords in C. Algorithm 6 presents a formal
description of the algorithm and Figure 4.2 illustrates the first few executions of this algorithm.

We claim that Algorithm 6 terminates and the C that it outputs has distance d. The latter
is true by step 2, which makes sure that in Step 3 we never add a vector c¢ that will make the
distance of C fall below d. For the former claim, note that, if we cannot add v at some point, we
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Algorithm 6 Gilbert’s Greedy Code Construction
INPUT: n,q,d
OuTPUT: A code C < [g]" of distance d == 11

1: C—¢@

2: WHILE there exists a v € [g]"” such that A(v,c) = d for every ce C DO
3: Addvto C

4: RETURN C

N
N\

[q1"

Figure 4.2: An illustration of Gilbert’s greedy algorithm (Algorithm 6) for the first five iterations.

cannot add it later. Indeed, since we only add vectors to C, if a vector v € [g]" is ruled out in a
certain iteration of Step 2 because A(c,v) < d, then in all future iterations, we have A(v,c) < d
and thus, this v will never be added in Step 3 in any future iteration.

The running time of Algorithm 6 is g°"""). To see this, note that Step 2 in the worst-case could
be repeated for every vector in [g]”, that is at most g’ times. In a naive implementation, for each
iteration, we cycle through all vectors in [g]” and for each vector v € [g]", iterate through all (at
most g") vectors ¢ € C to check whether A(c,v) < d. If no such c exists, then we add v to C.
Otherwise, we move to the next v. However, note that we can do slightly better- since we know
that once a vis “rejected" in an iteration, it'll keep on being rejected in the future iterations, we
can fix up an ordering of vectors in [g]" and for each vector v in this order, check whether it can
be added to C or not. If so, we add v to C, else we move to the next vector in the order. This
algorithm has time complexity O(ng®"), which is still g®".

Further, we claim that after termination of Algorithm 6

U B(,d-1)=[q]".
ceC

This is because if the above is not true, then there exists a vector v e [g]"\ C, such that A(v,¢) = d
and hence v can be added to C. However, this contradicts the fact that Algorithm 6 has termi-
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nated. Therefore,

|J B(c,d- 1)‘ =q".
ceC

It is not too hard to see that

Y IB(c,d-1)|=

ceC

| B(c,d- 1)' ,
ceC
which by (4.1) implies that

Y IB(c,d-1)|=q"
ceC

or since the volume of a Hamming ball is translation invariant,

Voly(d—-1,n) = q".
q

ceC

Since }.cec Volg(d —1,n) = Voly(d -1, n)-|C|, we have
ql’l
Voly(d—-1,n)

ql’l
nHg(5)

IC]

q

"1~ Ha®)

as desired. In the above, (4.2) follows from the fact that

A

Voly(d-1,n) < Voly(6n,n)
an,,((S)’

IA

(4.1)

(4.2)

(4.3)

where the second inequality follows from the upper bound on the volume of a Hamming ball in

Proposition 3.3.1.

Itis worth noting that the code from Algorithm 6 is not guaranteed to have any special struc-
ture. In particular, even storing the code can take exponential space. We have seen in Proposi-
tion 2.3.1 that linear codes have a much more succinct representation. Thus, a natural question

is:

Question 4.2.1. Do linear codes achieve the R = 1 — Hy(6) tradeoff that the greedy construc-

tion achieves?

Next, we will answer the question in the affirmative.
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4.2.2 Linear Code Construction

Now we will show that a random linear code, with high probability, lies on the GV bound. The
construction is a use of the probabilistic method (Section 3.2).

By Proposition 2.3.4, we are done if we can show that there exists a k x n matrix G of full rank
(for k = (1 - Hy(6) — €)n) such that

For everym € [Flf, \ {0}, wt(mG) = d.

We will prove the existence of such a G by the probabilistic method. Pick a random linear code
by picking a random k x n matrix G where each of kn entries is chosen uniformly and indepen-
dently at random from F,. Fixm € [F’f, \ {0}. Recall that by Lemma 3.1.8, for arandom G, mG is a
uniformly random vector from [FZ. Thus, we have

Voly(d—-1,n)
qn
nHy(5)

qn

Priwt(mG) < d]

q

<

) (4.4)

where (4.4) follows from (4.3). Thus, by the union bound (Lemma 3.1.3)

Pr(There exists a non-zerom, wt(mG) <d] < q*qg "1 ~Ha@)

q—e-n,
where the equality follows by choosing k = (1 - H,;(6) —€)n. Since g~¢" < 1, by the probabilistic
method, there exists a linear code C with relative distance §.

All that’s left is to argue that the code C has dimension at least k = (1 — H;(6) — €) n. To show
this, we need to show that the chosen generator matrix G has full rank. Note that there is a non-
zero probability that a uniformly matrix G does not have full rank. There are two ways to deal
with this. First, we can show that with high probability a random G does have full rank, so that
IC| = qk . Further, the proof above has already shown that, with high probability, the distance is
greater than zero, which implies that distinct messages will be mapped to distinct codewords
and thus |C| = qk . In other words, C does indeed have dimension k, as desired

Discussion. We now digress a bit to discuss some consequences of the proofs of the GV bound.
We first note that the probabilistic method proof shows something stronger than Theo-
rem 4.2.1: mostlinear codes (with appropriate parameters) meet the Gilbert-Varshamov bound.
Note that we can also pick a random linear code by picking a random (n - k) x n parity check
matrix. This also leads to a proof of the GV bound: see Exercise 4.1.
Finally, we note that Theorem 4.2.1 requires 6 < 1 — %. An inspection of Gilbert and Var-

shamov’s proofs shows that the only reason the proof required that 6 < 1 — % is because it is

needed for the volume bound (recall the bound in Proposition 3.3.1)- Vol;(6n, n) < qta@n_to
hold. It is natural to wonder if the above is just an artifact of the proof or, for example:
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Figure 4.3: Construction of a new code in the proof of the Singleton bound.

Question 4.2.2. Does there exists a code with R > 0 and d > 1 — é?

We will return to this question in Section 4.4.

4.3 Singleton Bound

We will now change gears again and prove an upper bound on R (for fixed §). We start by proving
the Singleton bound.

Theorem 4.3.1 (Singleton Bound). For every (n, k,d), code,
k=sn-d+1.

Proof. Let ¢;,¢p,...,cp be the codewords of an (n, k,d); code C. Note that we need to show
M < q"%*1, To this end, we define c; to be the prefix of the codeword c; of length n—d +1 for
every i € [M]. See Figure 4.3 for a pictorial description.

We now claim that for every i # j, c’i # c’j. For the sake of contradiction, assume that there
exits an i # j such that ¢} = ¢/.. Notice this implies that ¢; and c; agree in all the first n—d +
1 positions, which in turn implies that A(c;,¢;) < d — 1. This contradicts the fact that C has
distance d. Thus, M is the number of prefixes of codewords in C of length n —d + 1, which
implies that M < g"~9*! as desired. O
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Figure 4.4: The Hamming, GV and Singleton bound for binary codes.

Note that the asymptotic version of the Singleton bound states that k/n<1-d/n+1/n. In
other words,

R=<1-6+0(1).

Figure 4.4 presents a pictorial description of the asymptotic version of the Singleton bound.
It is worth noting that the bound is independent of the alphabet size. As is evident from Fig-
ure 4.4, the Singleton bound is worse than the Hamming bound for binary codes. However, this
bound is better for larger alphabet sizes. In fact, we will look at a family of codes called Reed-
Solomon codes in Chapter 5 that meets the Singleton bound. However, the alphabet size of the
Reed-Solomon codes increases with the block length n. Thus, a natural follow-up question is
the following:

Question 4.3.1. Given a fixed q = 2, does there exist a q-ary code that meets the Singleton
bound?

We'll see an answer to this question in the next section.
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4.4 Plotkin Bound

In this section, we will study the Plotkin bound, which will answer Questions 4.2.2 and 4.3.1.
We start by stating the bound.

Theorem 4.4.1 (Plotkin bound). The following holds for any code C < [q]" with distance d:
1. Ifd= (1 - %) n,|C| <2qn.

qd

1
2. Ifd> (1 - a) n|Cls 2.

Note that the Plotkin bound (Theorem 4.4.1) implies that a code with relative distance 6 >
1- é, must necessarily have R = 0, which answers Question 4.2.2 in the negative.

Before we prove Theorem 4.4.1, we make a few remarks. We first note that the upper bound
in the first part of Theorem 4.4.1 can be improved to 2n for g = 2. (See Exercise 4.12.) Second, it
can be shown that this bound is tight. (See Exercise 4.13.) Third, the statement of Theorem 4.4.1
gives a trade-off only for relative distance greater than 1 —1/¢g. However, as the following corol-
lary shows, the result can be extended to work for 0 <4 <1—-1/4. (See Figure 4.5 for an illustra-
tion for binary codes.)

Corollary 4.4.2. For any q-ary code with relative distance0 <6 <1 — %,

q

Rsl—(—
q-1

)5+ o(1).

Proof. Define d = 6n. The proof proceeds by shortening the codewords. We group the code-
qd
7-1
this choice of n’ makes sense.) In particular, for any x € [g] n=1'define the ‘prefix code’

words so that they agree on the first n— n’ symbols, where n’ = L J — 1. (We will see later why

Cx={(ch_ns1y---cn) 1 (c1...cn) €C,(Cy...Cp—py) =X}

For all x, Cy has distance d as C has distance d.! Additionally, it has block length n' < (%) d
and thus, d > (1 - %) n'. By Theorem 4.4.1, this implies that

d
Gl ————=<qd, (4.5)

qd—(q-1)

where the second inequality follows from the fact that gd — (g — 1)’ is an integer.
Note that by the definition of Cy:

ICl= ) G,

xe[q]"—"'

11f for some x, ¢ # ¢3 € Cy, A(cy,¢2) < d, then A((x,¢1), (X, ¢2)) < d, which implies that the distance of C is less
than d (as by definition of Cy, both (%, ¢;), (x,¢2) € C), which in turn is a contradiction.
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Figure 4.5: The current bounds on the rate R vs. relative distance ¢ for binary codes. The GV
bound is a lower bound on R while the other three bounds are upper bounds on R.

which by (4.5) implies that

|C| < Z qd _ qn—n’ . qd < qn—%d+o(n) _ qn(l—(i-%ﬂ)(l)).
xe[q]"‘”/
In other words, R<1— (%) 8 + o(1) as desired. O

Note that Corollary 4.4.2 implies that for any g-ary code of rate R and relative distance 6
(where g is a constant independent of the block length of the code), R < 1 - 6. In other words,
this answers Question 4.3.1 in the negative.

Let us pause for a bit at this point and recollect the bounds on R versus 6 that we have proved
till now. Figure 4.5 depicts all the bounds we have seen till now (for g = 2). The GV bound is
the best known lower bound at the time of writing of this book. Better upper bounds are known
and we will see one such trade-off (called the Elias-Bassalygo bound) in Section 8.1.

Now, we turn to the proof of Theorem 4.4.1, for which we will need two more lemmas. The
first lemma deals with vectors over real spaces. We quickly recap the necessary definitions.
Consider a vector v in R”, that is, a tuple of n real numbers. This vector has (Euclidean) norm

vl = \/vf + V5 +...+ V3, and is a unit vector if and only if its norm is 1. The inner product of
two vectors, u and v, is (u,v) =Y ; u; - v;. The following lemma gives a bound on the number of
vectors that can exist such that every pair is at an obtuse angle with each other.

Lemma 4.4.3 (Geometric Lemma). Letvy,vy,...,V;, € RN be non-zero vectors.
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L. If<v;,v;) <0 foralli# j, thenm<2N.
2. Letv; be unit vectors for1 < i < m. Further, if (v;,v;) < —e <0 foralli # j, thenm <1+ %.2

(Item 1 is tight: see Exercise 4.14.) The proof of the Plotkin bound will need the existence of a
map from codewords to real vectors with certain properties, which the next lemma guarantees.

Lemma 4.4.4 (Mapping Lemma). Let C < [q]". Then there exists a function f : C — R such
that

1. Foreveryce C,|f(c)ll=1.

2. Foreveryc) #cp such thatcy,c; € C,(f(cy), f(c2))=1- (%) (W)
We defer the proofs of the lemmas above to the end of the section. We are now in a position
to prove Theorem 4.4.1.

Proof of Theorem 4.4.1 Let C = {c},cp,...,cy}. Forall i # j,

q \Alcicj) ( q ) d

), ))Y<1- <l-[———.
(Fen. ftej)) (q—l) n q-1)n

The first inequality holds by Lemma 4.4.4, and the second holds as C has distance d.

For part 1, if d = (1 - %) n= (q_ql)n, then forall i # j,

(flen), fep)<0

and so by the first part of Lemma 4.4.3, m < 2ng, as desired.
For part 2, d > (qT_l) nandso forall i # j,

. (agq)\d__ M)
(fle), fej) =1 (q_l)n_ ( (g—=1Dn

. d_ef qd—(g-1)n
and, since € = ( G=Dn

(g-Dn _ qd .
7d—(G-Dn — gd—(g—Dn’ a8 desired -

) > 0, we can apply the second part of Lemma 4.4.3. Thus, m <1+

4.4.1 Proof of Geometric and Mapping Lemmas

Next, we prove Lemma 4.4.3.

2Note that since v; and v ;j are both unit vectors, (v;,v;) is the cosine of the angle between them.
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Proof of Lemma 4.4.3. We begin with a proof of the first result. The proof is by induction on
n. Note that in the base case of N = 0, we have m = 0, which satisfies the claimed inequality
m<2N.

In the general case, we have m = 1 non-zero vectors vy, ...,V € RY such that for every i # j,

(vi,vj) <0. (4.6)

Since rotating all the vectors by the same amount does not change the sign of the inner
product (nor does scaling any of the vectors), w.l.o.g. we can assume thatv,, = (1,0,...,0). For
1 <i < m-1, denote the vectors as v; = («@;,y;), for some a; e Randy; € RN-1, Now, for any
iZ1,(v,viy=1-a; +Z;.Z2 0 = a;. However, note that (4.6) implies that (v;,v;) <0, which in turn
implies that

a; <0. 4.7)

Next, we claim that at most one ofyy,...,y;;—1 can be the all zeroes vector, 0. If not, assume
w.l.o.g., thaty; =y, =0. This in turn implies that

(V1,V2) = a1 - az +(y1,¥2)
=a;-a2+0
=a;-az
>0,

where the last inequality follows from the subsequent argument. As v; = (a1,0) and v, = (a3, 0)
are non-zero, this implies that a1, a» # 0. (4.7) then implies that a1, a» < 0. However, (v{,v2) >0
contradicts (4.6).
Thus, w.l.o.g., assume that vy, ...,v,,_» are all non-zero vectors. Further, note that for every
i #jelm=2],y;,y;» =(v;,Vj)—a;-a; < (v;V;) < 0. Thus, we have reduced problem on m
vectors with dimension N to an equivalent problem on m—2 vectors with dimension dimension
N —1. If we continue this process, we can conclude that every loss in dimension of the vector
results in twice in loss in the numbers of the vectors in the set. Induction then implies that
m < 2N, as desired.
We now move on to the proof of the second part. Define z =v; +... +v,,. Now consider the
following sequence of relationships:
u m
lzl? = Z v % + ZZ(V,-,VJ-> =m+2- ( 5 ) (—&)=m(l—em+e).
i=1

i<j

The inequality follows from the facts that each v; is a unit vector and the assumption that for
every i # j, (vi.vj) < —¢. As|z|* = 0,

m(l—-em+e¢e)=0.

Since m = 1, we have that
l-em+e=0
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or
em<1l+e.

Thus, we have m <1+ %, as desired. a
Finally, we prove Lemma 4.4.4.

Proof of Lemma 4.4.4. We begin by defining a map ¢ : [q] — R with certain properties. Then
we apply ¢ to all the coordinates of a codeword to define the map f : RY — R4 that satisfies the
claimed properties. We now fill in the details.

Define ¢ : [q] — RY as follows. For every i € [g], we define

11 —(g-1 1
¢u):<—,ﬂn”—gl—lpn—>.
q 4 q q
——

ithposition

That is, all but the i’th position in ¢ (i) € RY has a value of 1/q and the ith position has value
-(g-1)/gq.
Next, we record two properties of ¢ that follow immediately from its definition. For every
i €lql,
(-1 (g-1* (g-D
= > + > = .
q q q

(p(i)z (4.8)
Also forevery i # j € [q],

. (g-2 20g-1) 1
(D), Pp(j)) = - =——.

(4.9)

We are now ready to define our final map f: C — R"9. For every ¢ = (cy, ..., ¢,) € C, define

q .
nig-1)

fle)= (plcr), plca), ..., Pplen)).

q
n(g-1)
To complete the proof, we will show that f satisfies the claimed properties. We begin with

condition 1. Note that

(The multiplicative factor is to ensure that f(c) for any c € C is a unit vector.)

n
I @2 = (q_ql)n'_zl|¢(i)|2 -1,
i=

where the first equality follows from the definition of f and the second equality follows from
(4.8).

We now turn to the second condition. For notational convenience, define ¢; = (x1,...,X;)
and ¢, = (y1,...,¥n)- Consider the following sequence of relations:

(Fen, fen) = 3 (G F)
/=1
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=| ¥ (oxaouo)+ ¥ <<P(xz)"l’(yf’)>]'( ; )

| O:x0# Ve l:xp=y, nig-1)
22 ) )
= — |t : (4.10)
_Z:xgz;éyg( q [:xgzzy[ q n(q_l)
[ -1 g-1 q
= A(C1,Cz)(—)+(Tl—A(C1,C2))( ) ( ) (4.11)
| q q n(qg—-1)

=1—A(01y02)( q )[l+q—_1]
nig-1))1lq q

(L) (Aee)
B g-1 n )

as desired. In the above, (4.10) is obtained using (4.9) and (4.8) while (4.11) follows from the
definition of the Hamming distance. g

4.5 Exercises

Exercise 4.1. Picka (n— k) x n matrix H over F, at random. Show that with high probability the
code whose parity check matrix is H achieves the GV bound.

Exercise4.2. Recall the definition of an e-biased space from Exercise 2.14. Show that there exists
an e-biased space of size O(k/&?).

Hint: Recall part 1 of Exercise 2.14.

Exercise 4.3. Argue that a random linear code as well as its dual both lie on the corresponding
GV bound.

Exercise4.4. In Section 4.2.2, we saw that random linear code meets the GV bound. It is natural
to ask the question for general random codes. (By arandom (n, k) ; code, we mean the following:
for each of the g* messages, pick a random vector from [q]”. Further, the choices for each
codeword is independent.) We will do so in this problem.

1. Prove that arandom g-ary code with rate R > 0 with high probability has relative distance
0= Hc; 1(1 = 2R - ¢). Note that this is worse than the bound for random linear codes in
Theorem 4.2.1.

2. Prove that with high probability the relative distance of a random g-ary code of rate R is
at most H[; 1(1=2R) + ¢. In other words, general random codes are worse than random
linear codes in terms of their distance.

Hint: Use Chebyshev’s inequality.

Exercise 4.5. We saw that Algorithm 6 can compute an (n, k), code on the GV bound in time
q°". Now the construction for linear codes is a randomized construction and it is natural to
ask how quickly can we compute an [n, k]; code that meets the GV bound. In this problem,
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we will see that this can also be done in g°"? deterministic time, though the deterministic
algorithm is not that straight-forward anymore.

1. Argue that Theorem 4.2.1 gives a q°*”” time algorithm that constructs an [n, k], code
on the GV bound. (Thus, the goal of this problem is to “shave" off a factor of k from the
exponent.)

2. A kxn Toeplitz Matrix A= {Ai,j}f:’l ”j:1 satisfies the property that A; j = A;_1 j—1. In other
words, any diagonal has the same value. For example, the following is a 4 x 6 Toeplitz

matrix:
1 2 3 456
71 2 3 45
8 71 2 3 4
9 8 71 2 3

A random k x n Toeplitz matrix T € [F’;X" is chosen by picking the entries in the first row
and column uniformly (and independently) at random.

Prove the following claim: For any non-zero m € [F’fl, the vector m- T is uniformly dis-
tributed over Fp, that is for every y € Fy, Pr [m-T=y]=q".

3. Briefly argue why the claim in part 2 implies that a random code defined by picking its
generator matrix as a random Toeplitz matrix with high probability lies on the GV bound.

4. Conclude that an [n, k], code on the GV bound can be constructed in time qo(k”’).

Exercise 4.6. Show that one can construct the parity check matrix of an [n, k]4 code that lies on
the GV bound in time g®".

Exercise 4.7. So far in Exercises 4.5 and 4.6, we have seen two constructions of [, k]; code on
the GV bound that can be constructed in g°” time. For constant rate codes, at the time of
writing of this book, this is fastest known construction of any code that meets the GV bound.
For k = o(n), there is a better construction known, which we explore in this exercise.

We begin with some notation. For the rest of the exercise we will target a distance of d = 0 n.
Given a message m € [F’; and an [n, k], code C, define the indicator variable:

1 ifwt(Cm))<d

Wm(C) = { 0  otherwise.

Further, define
DO = ) Wn(C.
meF%\{0}

We will also use D(G) and Wi, (G) to denote the variables above for the code C generated by G.

Given an k x n matrix M, we will use M’ to denote the ith column of M and M=’ to denote
the column submatrix of M that contains the first i columns. Finally below we will use ¢ to
denote a uniformly random k x n generator matrix and G to denote a specific instantiation of
the generator matrix. We will arrive at the final construction in a sequence of steps. In what
follows define k < (1 — H;(6)) n for large enough n.
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1. Argue that C has a distance d if and only if D(C) < 1.
2. Argue thatE[D(¥9)] < 1.

3. Argue that for any 1 < i < n and fixed k x n matrix G,

mink | D)9~ = G=/, 4™ :v] <E [D(%)I%Si - G='|.

veEq

4. We are now ready to define the algorithm to compute the final generator matrix G: see Al-
gorithm 7. Prove that Algorithm 7 outputs a matrix G such that the linear code generated

Algorithm 7 ¢g°® time algorithm to compute a code on the GV bound
INPUT: Integer parameters 1 < k # n such that k < (1 - H;(6)n)
OUTPUT: An k x n generator matrix G for a code with distance 6 n

—

: Initialize G to be the all 0Os matrix > This initialization is arbitrary
FOReveryl <i<nDO
Gl — argminve[F’; E [D(@)MS’ — Gsz,(gzﬂ :V]

4: RETURN G

by G is an [n, k,6n],; code. Conclude that this code lies on the GV bound.

5. Finally, we will analyze the run time of Algorithm 7. Argue that Step 2 can be implemented
in poly (n, g*) time. Conclude Algorithm 7 can be implemented in time poly (7, g*).

Hint: It might be useful to maintain a data structure that keeps track of one number for every non-zero
me [Ff‘/ throughout the run of Algorithm 7.

Exercise 4.8. In this problem we will derive the GV bound using a graph-theoretic proof, which
is actually equivalent to the greedy proof we saw in Section 4.2.1. Let1<d <nand g =1 be
integers. Now consider the graph G, 4 4 = (V, E), where the vertex set is the set of all vectors in
[g]". Given two vertices u # v € [g]”, we have the edge (u,v) € E if and only if A(u,v) < d. An
independent set of a graph G = (V, E) is a subset I < V such that for every u # v € I, we have that
(u,v) is not an edge. We now consider the following sub-problems:

1. Argue that any independent set C of G,, 4,4 is a g-ary code of distance d.

2. The degree of a vertex in a graph G is the number of edges incident on that vertex. Let A
be the maximum degree of any vertexin G = (V, E).Then argue that G has an independent

: V]
set of size at least VS L

3. Using parts 1 and 2 argue the GV bound.
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Exercise 4.9. In this problem we will improve slightly on the GV bound using a more sophisti-
cated graph-theoretic proof. Let G, 4, and N and A be as in the previous exercise (Exercise 4.8).
So far we used the fact that G, 4 4 has many vertices and small degree to prove it has a large in-
dependent set, and thus to prove there is a large code of minimum distance d. In this exercise
we will see how a better result can be obtained by counting the number of “triangles” in the
graph. A triangle in a graph G = (V, E) is a set {u, v, w} < V of three vertices such that all three
vertices are adjancent, i.e., (i, v), (v, w), (w, u) € E. For simplicity we will focus on the case where
g =2 and d = n/5, and consider the limit as n — co.

1. Prove that a graph on N vertices of maximum degree A has at most O(NA?) triangles.

2. Prove that the number of triangle in graph G, 4 » is at most

2.y (")-39.
0<e<3d/2\ €

Hint: Fix u and let e count the number of coordinates where at least one of v or w disagree
with u. Prove that e is at most 3d/2.

3. Simplify the expression in the case where d = n/5 to show that the number of triangles in
Gp,nis,2 18 O(N - A% for some n>0.

4. A famous result in the “probabilistic method” shows (and you don’t have to prove this),
that if a graph on N vertices of maximum degree A has at most O(N - A>™") triangles,
then it has an independent set of size Q(% logA). Use this result to conclude that there
is a binary code of block length n and distance n/5 of size Q(n2"/ (n75))' (Note that this
improves over the GV-bound by an Q(n) factor.)

Exercise 4.10. Use part 2 from Exercise 1.7 to prove the Singleton bound.

Exercise4.11. Let C be an (n, k, d) ; code. Then prove that fixing any n—d + 1 positions uniquely
determines the corresponding codeword.

Exercise 4.12. Let C be a binary code of block length n and distance n/2. Then |C| < 2n. (Note
that this is a factor 2 better than part 1 in Theorem 4.4.1.)

Exercise4.13. Prove that the bound in Exercise 4.12 is tight-i.e. there exists binary codes C with
block length n and distance n/2 such that |C| = 2n.

Exercise 4.14. Prove that part 1 of Lemma 4.4.3 is tight.

Exercise 4.15. In this exercise we will prove the Plotkin bound (at least part 2 of Theorem 4.4.1)
via a purely combinatorial proof.

Given an (n, k, d) 4 code C with d > (1 - é) n define

S: Z A(clyCZ)-

c1#£ceC

For the rest of the problem think of C has an |C| x n matrix where each row corresponds to a
codeword in C. Now consider the following:
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1. Looking at the contribution of each column in the matrix above, argue that
1 2
S<|1-—|-n|C|".
q

2. Look at the contribution of the rows in the matrix above, argue that

S=|CI(C|-1)-d.

3. Conclude part 2 of Theorem 4.4.1.

Exercise 4.16. In this exercise, we will prove the so called Griesmer Bound. For any [n, k,d],
prove that

k-1 d
n= — .
L7l

Hint: Recall Exercise 2.17.
Exercise4.17. Use Exercise 4.16 to prove part 2 of Theorem 4.4.1 for linear codes.

Exercise 4.18. Use Exercise 4.16 to prove Theorem 4.3.1 for linear code.

4.6 Bibliographic Notes

Theorem 4.2.1 was proved for general codes by Edgar Gilbert ([35]) and for linear codes by Rom
Varshamov ([102]). Hence, the bound is called the Gilbert-Varshamov bound. The Singleton
bound (Theorem 4.3.1) is due to Richard C. Singleton [92]. For larger (but still constant) values
of g, better lower bounds than the GV bound are known. In particular, for any prime power
g = 49, there exist linear codes, called algebraic geometric (or AG) codes that outperform the
corresponding GV bound®. AG codes out of the scope of this book. One starting point could be
the following [56].

The proof method illustrated in Exercise 4.15has a name- double counting: in this specific
case this follows since we count S in two different ways.

3The lower bound of 49 comes about as AG codes are only defined for g being a square (i.e. g = (¢')?) and it
turns out that ¢’ = 7 is the smallest value where AG bound beats the GV bound.
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Chapter 5

The Greatest Code of Them All:
Reed-Solomon Codes

In this chapter, we will study the Reed-Solomon codes. Reed-Solomon codes have been studied
alot in coding theory. These codes are optimal in the sense that they meet the Singleton bound
(Theorem 4.3.1). We would like to emphasize that these codes meet the Singleton bound not
just asymptotically in terms of rate and relative distance but also in terms of the dimension,
block length and distance. As if this were not enough, Reed-Solomon codes turn out to be more
versatile: they have many applications outside of coding theory. (We will see some applications
later in the book.)

These codes are defined in terms of univariate polynomials (i.e. polynomials in one un-
known/variable) with coefficients from a finite field F,. It turns out that polynomials over [,
for prime p, also help us define finite fields [ s, for s > 1. To kill two birds with one stone!, we
first do a quick review of polynomials over finite fields. Then we will define and study some
properties of Reed-Solomon codes.

5.1 Polynomials and Finite Fields
We begin with the formal definition of a (univariate) polynomial.

Definition 5.1.1. Let F4 be a finite field with g elements. Then a function F(X) =372, f; X i fie
[, is called a polynomial.

For our purposes, we will only consider the finite case; that is, F(X) = Z?:o fi X' for some
integer d > 0, with coefficients f; € F, and f; # 0. For example, 2X3+X?+5X+6is a polynomial
over 7.

Next, we define some useful notions related to polynomials. We begin with the notion of
degree of a polynomial.

INo birds will be harmed in this exercise.
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Definition 5.1.2. For F(X) = Z?:o fiX I with fa #0, we call d the degree of F(X). We denote the
degree of the polynomial F(X) by deg(F).

For example, 2X3 + X% + 5X + 6 has degree 3.
LetF4[X] be the set of polynomials over F 4, that is, with coefficients from [F ;. Let F(X), G(X) €
F4[X] be polynomials. Then F,[X] has the following natural operations defined on it:

Addition:
max(deg(F),deg(G))

F(X)+G(X) = Y (fi + g X,
i=0
where the addition on the coefficients is done over ;. For example, over [, X + (1+X) =
X-(1+1)+1-(0+1)=1 (recall that over F», 1 +1=0).2

Multiplication:

FX)-GX)= )

deg(F)+deg(G) (min(i,deg(F))
i=0

pj-qi- j) X',
j=0
where all the operations on the coefficients are over [,;. For example, over F», X(1 + X) =
X+X?% (1+X)? =1+2X + X? = 1 + X2, where the latter equality follows since 2 = 0 mod 2.

Next, we define a root of a polynomial.
Definition 5.1.3. a €[, is a root of a polynomial F(X), if F(a) = 0.

For instance, 1 is a root of 1 + X2 over F.
We will also need the notion of a special class of polynomials, which are analogous to how
prime numbers are special for natural numbers.

Definition 5.1.4. A polynomial F(X) is irreducible if for every G;(X), G»(X) such that F(X) =
G1(X)G2(X), we have min(deg(G;),deg(G2)) =0

For example, 1 + X2 is not irreducible over F», as (1 + X)(1+ X) = 1+ X2. However, 1 + X + X?
is irreducible, since its non-trivial factors have to be from the linear terms X or X + 1. However,
it is easy to check that neither is a factor of 1+ X + X2. (In fact, one can show that 1+ X + X?
is the only irreducible polynomial of degree 2 over [F,— see Exercise 5.1.) A word of caution: if
a polynomial E(X) € F4[X] has no root in Fg, it does not mean that E(X) is irreducible. For
example consider the polynomial (1 + X + X?)2 over F,- it does not have any root in F» but it
obviously is not irreducible.

Just as the set of integers modulo a prime is a field, so is the set of polynomials modulo an
irreducible polynomial:

Theorem 5.1.1. Ler E(X) be an irreducible polynomial with degree at least 2 over F,, p prime.
Then the set of polynomials inF,[X] modulo E(X), denoted by F,[X]/E(X), is a field.

2This will be a good time to remember that operations over a finite field are much different from operations over
integers/reals. For example, over reals/integers X + (X +1) =2X +1.
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The proof of the theorem above is similar to the proof of Lemma 2.1.2, so we only sketch the
proof here. In particular, we will explicitly state the basic tenets of F,[X]/E(X).

* Elements are polynomials in [, [X] of degree at most s — 1. Note that there are p°® such
polynomials.

¢ Addition: (F(X) + G(X)) mod E(X) = F(X) mod E(X) + G(X) mod E(X) = F(X) + G(X).
(Since F(X) and G(X) are of degree at most s — 1, addition modulo E(X) is just plain poly-
nomial addition.)

e Multiplication: (F(X)-G(X)) mod E(X) is the unique polynomial R(X) with degree at
most s — 1 such that for some A(X), R(X) + A(X)E(X) = F(X)-G(X)

e The additive identity is the zero polynomial, and the additive inverse of any element F(X)
is —F(X).

e The multiplicative identity is the constant polynomial 1. It can be shown that for every
element F(X), there exists a unique multiplicative inverse (F(X))!.

For example, forp=2and E(X) =1 +X+X?, F»[X]/(1+ X+ X?) has as its elements {0, 1, X, 1 +
X}. The additive inverse of any element in Fo[X]/(1+ X + X?) is the element itself while the
multiplicative inverses of 1, X and 1 + X in F»[X]/(1 + X + X?) are 1,1 + X and X respectively.

A natural question to ask is if irreducible polynomials exist for every degree. Indeed, they
do:

Theorem 5.1.2. Forall s =2 andF, there exists an irreducible polynomial of degree s overF . In

N
fact, the number of such irreducible polynomials is © (%)

The result is true even for general finite fields F, and not just prime fields but we stated the
version over prime fields for simplicity. Given any monic ® polynomial E(X) of degree s, it can be
verified whether it is an irreducible polynomial by checking if gcd(E(X), X9 "~ X) = E(X). This
is true as the product of all monic irreducible polynomials in F ;[ X] of degree exactly s is known
to be the polynomial X9 — X. Since Euclid’s algorithm for computing the gcd(F(X), G(X)) can
be implemented in time polynomial in the minimum of deg(F) and deg(G) and log g (see Sec-
tion D.7.2), this implies that checking whether a given polynomial of degree s over [F,[X] is
irreducible can be done in time poly(s,log g).

This implies an efficient Las Vegas algorithm* to generate an irreducible polynomial of de-
gree s over F,. Note that the algorithm is to keep on generating random polynomials until it
comes across an irreducible polynomial (Theorem 5.1.2 implies that the algorithm will check
O(p*) polynomials in expectation). Algorithm 8 presents the formal algorithm.

The above discussion implies the following:

3Le. the coefficient of the highest degree term is 1. It is easy to check that if E(X) = es X+ e;_1 X5 ' +---+ 1 is
irreducible, then es‘l - E(X) is also an irreducible polynomial.

A Las Vegas algorithm is a randomized algorithm which always succeeds and we consider its time complexity
to be its expected worst-case run time.
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Algorithm 8 Generating Irreducible Polynomial
INPUT: Prime power g and an integer s > 1
OuTPUT: A monic irreducible polynomial of degree s over [,

1: b0

2: WHILE b=0DO

3: F(X)— X+ le.;é fi X', where each f;is chosen uniformly at random from Fg.
4. 1Fged(F(X), X7 — X) = F(X) THEN

5: b—1.

6: RETURN F(X)

Corollary 5.1.3. There is a Las Vegas algorithm to generate an irreducible polynomial of degree s
over anyF 4 in expected time poly(s,logq).

Now recall that Theorem 2.1.3 states that for every prime power p?*, there a unique field [ s.
This along with Theorems 5.1.1 and 5.1.2 imply that:

Corollary 5.1.4. The field F s isF,[X]/E(X), where E(X) is an irreducible polynomial of degree
S.

5.2 Reed-Solomon Codes

Recall that the Singleton bound (Theorem 4.3.1) states that for any (n, k,d) 4 code, k< n—d +1.
Next, we will study Reed-Solomon codes, which meet the Singleton bound, i.e. satisfy k = n—
d +1 (but have the unfortunate property that g = n). Note that this implies that the Singleton
bound is tight, at least for g = n.

We begin with the definition of Reed-Solomon codes.

Definition 5.2.1 (Reed-Solomon code). Let [, be a finite field. Let ay,a»,...a, be distinct el-
ements (also called evaluation points) from [, and choose n and k such that k < n < g. We
define an encoding function for Reed-Solomon code as RS : [FZ — [ as follows. A message
m = (mg, my, ..., mr_1) with m; € F, is mapped to a degree k — 1 polynomial.

where

k-1 ,
fmX) =) mX". (5.1)
i=0

Note that fi(X) € F4[X] is a polynomial of degree at most k — 1. The encoding of m is the
evaluation of fi,(X) atall the a;’s:

RS(m) = (fm(al),fm(az)»---: fm(an)) .

We call this image Reed-Solomon code or RS code. A common special case is n = g — 1 with the

set of evaluation points being [F* Ly {0}.
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For example, the first row below are all the codewords in the [3,2]3 Reed-Solomon codes
where the evaluation points are F3 (and the codewords are ordered by the corresponding mes-
sages from F3 in lexicographic order where for clarity the second row shows the polynomial
fm(X) for the corresponding m € [Fg in gray):

0,00, 1,11, (222, (12, 1,20, (2,01, (021, (1,02), (210
0, 1, 2, X, X+1, X+2, 2X, 2X+1, 2X+2

Notice that by definition, the entries in {a}, ..., a,} are distinct and thus, must have n < q.
We now turn to some properties of Reed-Solomon codes.

Claim 5.2.1. RS codes are linear codes.

Proof. The proof follows from the fact that if a € F; and f(X), g(X) € F4[X] are polynomials of
degree < k—1, then af(X) and f(X) + g(X) are also polynomials of degree < k—1. In particular,
let messages m; and my be mapped to fi, (X) and fu, (X) where fi, (X), fm,(X) € F4[X] are
polynomials of degree at most k — 1 and because of the mapping defined in (5.1), it is easy to
verify that:

Jmy (X) + fny (X) = fimy+m, (XD,

and
afml (X) = faml (X).

In other words,
RS(ml) + RS(mz) = RS(m1 + m2)

aRS(m;) = RS(am;).
Therefore RS is a [n, k] 4 linear code. O
The second and more interesting claim is the following:

Claim 5.2.2. RS isa[n, k,n—k+1], code. That is, it matches the Singleton bound.

The claim on the distance follows from the fact that every non-zero polynomial of degree
k —1 over F,4[X] has at most k-1 (not necessarily distinct) roots, which we prove first (see
Proposition 5.2.3 below). This implies that if two polynomials agree on more than k — 1 places
then they must be the same polynomial- note that this implies two polynomials when evaluated
at the same 7n points must differ in atleast n—(k—1) = n—k+1 positions, which is what we want.

Proposition 5.2.3 (“Degree Mantra"). A nonzero polynomial f(X) of degree t over a field T ; has
at most t rootsinfg

Proof. We will prove the theorem by induction on ¢. If £ = 0, we are done. Now, consider f(X)
of degree 1 > 0. Let a € F; be a root such that f(a) = 0. If no such root «a exists, we are done. If
there is a root «, then we can write

0 = (X - a)g(X)
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where deg(g) = deg(f) — 1 (i.e. X —a divides f(X)). Note that g(X) is non-zero since f(X) is
non-zero. This is because by the fundamental rule of division of polynomials:

fX)=(X-a)g(X)+R(X)

where deg(R) < 0 (as the degree cannot be negative this in turn implies that deg(R) = 0) and
since f(a) =0,
f(a) =0+ R(a),

which implies that R(a) = 0. Since R(X) has degree zero (i.e. it is a constant polynomial), this
implies that R(X) = 0.

Finally, as g(X) is non-zero and has degree ¢ — 1, by induction, g(X) has at most ¢ — 1 roots,
which implies that f(X) has at most 7 roots. O

We are now ready to prove Claim 5.2.2

Proof of Claim 5.2.2. We start by proving the claim on the distance. Fix arbitrary m; # my €
[F’L;. Note that f, (X), fm,(X) € F4[X] are distinct polynomials of degree at most k — 1 since

mj; Zm, € [F’g. Then fm, (X) — fm,(X) # 0 also has degree at most k — 1. Note that w#(RS(my) —
RS(m;)) = A(RS(m;), RS(my)). The weight of RS(my) — RS(m;) is n minus the number of zeroes
in RS(my) — RS(m;), which is equal to n minus the number of roots that fi, (X) — fm,(X) has
among {ay,...,@,}. That s,

A(RS(my), RS(my)) = n—|{a; | fm, (@i) = fm, (@)}l

By Proposition 5.2.3, fm, (X) — fm,(X) has at most k — 1 roots. Thus, the weight of RS(my) —
RS(m;) isatleast n— (k—1) = n—k+ 1. Therefore d = n— k + 1, and since the Singleton bound
(Theorem 4.3.1) implies that d < n—k+1, we have d = n—k+1.° The argument above also shows
that distinct polynomials fm, (X), fm,(X) € F4[X] are mapped to distinct codewords. (This is
because the Hamming distance between any two codewords is at least n— k+1 = 1, where the
last inequality follows as k < n.) Therefore, the code contains qk codewords and has dimension
k. The claim on linearity of the code follows from Claim 5.2.1. a

Recall that the Plotkin bound (Corollary 4.4.2) implies that to achieve the Singleton bound,
the alphabet size cannot be a constant. Thus, some dependence of g on n in Reed-Solomon
codes is unavoidable.

Let us now find a generator matrix for RS codes (which exists by Claim 5.2.1). By Defi-
nition 5.2.1, any basis fm,,..., fm, 0f polynomial of degree at most k — 1 gives rise to a basis
RS(my,),...,RS(my) of the code. A particularly nice polynomial basis is the set of monomials
L,X,..X,.,X*1 The corresponding generator matrix, whose ith row (numbering rows from
Otok—1)is

i i i i
(ay, as, ooy @y ey a,)

and this generator matrix is called the Vandermonde matrix of size k x n:

5See Exercise 5.3 for an alternate direct argument.

98



1 1 1 1 1 1
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2 2 2 2
aq a5 a]. ay,
i i i i
o o, a]. a,
k-1 k-1 k-1 k-1

o a, aj a,

The class of codes that match the Singleton bound have their own name, which we define
and study next.

5.3 AProperty of MDS Codes

Definition 5.3.1 (MDS codes). An (n, k, d) 4 code is called Maximum Distance Separable (MDS)
ifd=n—-k+1.

Thus, Reed-Solomon codes are MDS codes.
Next, we prove an interesting property of an MDS code C < X" with integral dimension k.
We begin with the following notation.

Definition 5.3.2. For any subset of indices S < [n] of size exactly k and a code C < X", Cs is the
set of all codewords in C projected onto the indices in S.

MDS codes have the following nice property that we shall prove for the special case of Reed-
Solomon codes first and subsequently for the general case as well.

Proposition 5.3.1. Let C < X" of integral dimension k be an MDS code, then for all S < [n] such
that |S| = k, we have |Cs| = sk,

Before proving Proposition 5.3.1 in its full generality, we present its proof for the special case of
Reed-Solomon codes.

Consider any S < [n] of size k and fix an arbitrary v = (vy,..., V) € [F’(;, we need to show that
there exists a codeword c € RS (assume that the RS code evaluates polynomials of degree at
most k—1 over ay,...,a, < Fg4) such that cs = v. Consider a generic degree k — 1 polynomial
F(X) =Yk f;X". Thus, we need to show that there exists F(X) such that F(a;) = v; forall i €
S, where |S| = k.

For notational simplicity, assume that S = [k]. We think of f;’s as unknowns in the equations
that arise out of the relations F(a;) = v;. Thus, we need to show that there is a solution to the

following system of linear equations:
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aq a; d U2
2 2 2

( po pl pk—l ) al al- ak — (2]
k-1 k-1 k-1

061 al- ak Vi

The above constraint matrix is a Vandermonde matrix and is known to have full rank (see Ex-
ercise 5.7). Hence, by Exercise 2.6, there always exists a unique solution for (py,..., px-1). This
completes the proof for Reed-Solomon codes.

Next, we prove the property for the general case which is presented below

Proof of Proposition 5.3.1. Consider a |C| x n matrix where each row represents a codeword
in C. Hence, there are |C| = |Z|* rows in the matrix. The number of columns is equal to the
block length 7 of the code. Since C is Maximum Distance Separable, its distance d = n—k + 1.

Let S < [n] be of size exactly k. It is easy to see that for any ¢’ # ¢/ € C, the corresponding

projections cé and cg € Cs are not the same. As otherwise A(c!,¢/) < d—1, which is not possible
as the minimum distance of the code C is d. Therefore, every codeword in C gets mapped to a
distinct codeword in Cg. As a result, |Cg| = |C| = |Z|F. As Cs < =¥, this implies that Cg = >k as
desired. a

Proposition 5.3.1 implies an important property in pseudorandomness: see Exercise 5.8 for
more.

5.4 Exercises

Exercise 5.1. Prove that X2 + X + 1 is the unique irreducible polynomial of degree two over .
Exercise 5.2. Argue that any function f:F, — [, is equivalent to a polynomial P(X) € F;[X] of
degree at most g — 1: that s, for every a € |,

f(a) =P(a).
Exercise 5.3. For any [n, k]; Reed-Solomon code, exhibit two codewords that are at Hamming
distance exactly n—k + 1.

Exercise5.4. Let RSg; [n, k] denote the Reed-Solomon code over [, where the evaluation points
isF, (i.e. n = q). Prove that

1
(RS, [, k1) = RSt [n,n~ k],

that is, the dual of these Reed-Solomon codes are Reed-Solomon codes themselves. Conclude
that Reed-Solomon codes contain self-dual codes (see Exercise 2.31 for a definition).

Hint: Exercise 2.2 might be useful.
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Exercise5.5. Since Reed-Solomon codes are linear codes, by Proposition 2.3.3, one can do error
detection for Reed-Solomon codes in quadratic time. In this problem, we will see that one can
design even more efficient error detection algorithm for Reed-Solomon codes. In particular, we
will consider data streaming algorithms (see Section 19.5 for more motivation on this class of al-
gorithms). A data stream algorithm makes a sequential pass on the input, uses poly-logarithmic
space and spend only poly-logarithmic time on each location in the input. In this problem we
show that there exists a randomized data stream algorithm to solve the error detection problem
for Reed-Solomon codes.

1. Give arandomized data stream algorithm that given as input a sequence (i1, ay),..., (in, a,) €
[m] x 4 that implicitly defines y € [F;”, where for any ¢ € [m], y, = Zje[n]”j:g ay, decides
whether y = 0 with probability at least 2/3. Your algorithm should use O(log g(m + n))
space and polylog(g(m + n)) time per position of y. For simplicity, you can assume that
given an integer ¢ = 1 and prime power ¢, the algorithm has oracle access to an irreducible
polynomial of degree ¢ over .

Hint: Use Reed-Solomon codes.

2. Given [g, k]; Reed-Solomon code C (i.e. with the evaluation points being [;), present a
data stream algorithm for error detection of C with O(log g) space and polylogq time per
position of the received word. The algorithm should work correctly with probability at
least 2/3. You should assume that the data stream algorithm has access to the values of k
and g (and knows that C has [ as its evaluation points).

Hint: Part 1 and Exercise 5.4 should be helpful.

Exercise5.6. We have defined Reed-Solomon in this chapter and Hadamard codes in Section 2.7.
In this problem we will prove that certain alternate definitions also suffice.

1. Consider the Reed-Solomon code over a field [, and block length n = g — 1 defined as
RSr: [, k,n—k+11={(p(1), p(@),..., p(@”"™") | p(X) €F[X] has degree < k- 1}

where «a is the generator of the multiplicative group F* of F.

Prove that

RSg: [n,k,n—k+1] = {(Co, €1y Cn1) EF* | c(@’)=0for1<l<n-k,

where c(X) =co+ 1 X + -+ cp XY . (5.2)

Hint: Exercise 2.2 might be useful.

2. Recall that the [27,1,2" 1], Hadamard code is generated by the r x 2" matrix whose ith (for
0 <i<2"-1) column is the binary representation of i. Briefly argue that the Hadamard

6This means that Fy=11, a,...,a’ 1. Further, a” = 1.
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codeword for the message (m;, my,...,m;) € {0,1}" is the evaluation of the (multivariate)
polynomial m; Xy + my Xo +--- + m, X, (where Xj,..., X, are the r variables) over all the
possible assignments to the variables (Xj,..., X;) from {0,1}".

Using the definition of Hadamard codes above (re)prove the fact that the code has dis-
tance 2" 1.

Exercise 5.7. Prove that the k x k Vandermonde matrix (where the (i, j)th entry is aj.) has full
rank (where ay,..., aj are distinct).

Exercise5.8. AsetSc FZ is said to be a ¢t-wise independent source (for some 1 < ¢ < n) if given a
uniformly random sample (Xj, ..., X,;) from S, the n random variables are ¢-wise independent:
i.e. any subset of ¢ variables are uniformly independent random variables over F,. We will
explore properties of these objects in this exercise.

1. Argue that the definition of ¢-wise independent source is equivalent to the definition in
Exercise 2.13.

2. Argue that for any k = 1, any [n, k], code C is a 1-wise independent source.
3. Prove that any [n, k]; MDS code is a k-wise independent source.

4. Using part 3 or otherwise prove that there exists a k-wise independent source over [, of
size at most (2n)¥. Conclude that k(log, n + 1) uniformly and independent random bits
are enough to compute n random bits that are k-wise independent. Improve the bound
slightly to show that k(log, n —log,log, n + O(1))-random bits are enough to generate k-
wise independent source over [F;.

5. For 0 < p < 1/2, we say the n binary random variables Xj,..., X, are p-biased and ¢-
wise independent if any of the f random variables are independent and Pr(X; =1] = p
for every i € [n]. For the rest of the problem, let p be a power of 1/2. Then show that
any f-log,(1/p)-wise independent random variables can be converted into ¢-wise in-
dependent p-biased random variables. Conclude that one can construct such sources
with tlog,(1/p)(1 +log, n) uniformly random bits. Then improve this bound to #(1 +
max(log,(1/p),log, n)) uniformly random bits.

Exercise 5.9. In many applications, errors occur in “bursts"-i.e. all the error locations are con-
tained in a contiguous region (think of a scratch on a DVD or disk). In this problem we will use
how one can use Reed-Solomon codes to correct bursty errors.

An error vector e € {0,1}" is called a ¢-single burst error pattern if all the non-zero bits in e
occur in the range [i,i + t — 1] for some 1 < i < n = t + 1. Further, a vector e € {0,1}" is called a
(s, t)-burst error pattern if it is the union of at most s ¢-single burst error pattern (i.e. all non-
zero bits in e are contained in one of at most s contiguous ranges in [n]).

We call a binary code C < {0, 1}" to be (s, t)-burst error correcting if one can uniquely decode
from any (s, f)-burst error pattern. More precisely, given an (s, f)-burst error pattern e and any
codeword c € C, the only codeword ¢’ € C such that (c +e) — ¢’ is an (s, f)-burst error pattern
satisfies ¢’ = c.
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1. Argue thatif Cis (st)-error correcting (in the sense of Definition 1.3.3), then it is also (s, 1)-

burst error correcting. Conclude that for any € > 0, there exists code with rate Q(e?) and
block length n that is (s, £)-burst error correcting for any s,  such that s- t < (1 —¢€) - n.

2. Argue that for any rate R > 0 and for large enough n, there exist (s, f)-burst error correcting

_p_ 1 . .
aslongass-f < (1154),1 andtr=Q (%) In particular, one can correct from %—E fraction

of burst-errors (as long as each burst is “long enough") with rate Q(¢) (compare this with
item 1).

Hint: Use Reed-Solomon codes.

Exercise 5.10. In this problem we will look at a very important class of codes called BCH codes’.
LetF =[F,m. Consider the binary code Cpcy defined as RSg[n, k,n—k+1]1nF7.

1.

Prove that Cpcy is a binary linear code of distance at least d = n— k + 1 and dimension at
least n—(d —1)log,(n+1).

Hint: Use the characterization (5.2) of the Reed-Solomon code from Exercise 5.6.

. Prove a better lower bound of n — [%] log,(n + 1) on the dimension of Cpcy.

Hint: Try to find redundant checks among the “natural” parity checks defining Cgcp).

. For d =3, Cgcp is the same as another code we have seen. What is that code?

For constant d (and growing n), prove that Cgcy have nearly optimal dimension for dis-
tance d, in that the dimension cannot be n — tlog,(n + 1) for < %.

Exercise5.11. Show thatforl <k <n, [g-‘ log, (n+1) random bits are enough to compute rn-bits
that are k-wise independent. Note that this is an improvement of almost a factor of 2 from the
bound from Exercise 5.8 part 4 (and this new bound is known to be optimal).

Hint: Use Exercises 2.13 and 5.10.

Exercise 5.12. In this exercise, we continue in the theme of Exercise 5.10 and look at the inter-
section of a Reed-Solomon code with [} to get a binary code. Let F = Fom. Fix positive integers
d,nwith(d-1)m<n<2™ andasetS ={a;,as,...,a;} of n distinct nonzero elements of F. For
avectorv=(vy,..., V) € (F*)" of n not necessarily distinct nonzero elements from [, define the
Generalized Reed-Solomon code GRSy 4 as follows:

GRSy, g = {(vip(a1), vap(az),...,vpp(ay) | p(X) € F[X] has degree < n—d} .

1. Prove that GRSgy 4 is an [n,n—d +1,d]f linear code.

2. Argue that GRSgy 4 N7 is a binary linear code of rate at least 1 — (d_%.

"The acronym BCH stands for Bose-Chaudhuri-Hocquenghem, the discoverers of this family of codes.
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3. Letce [Fg be a nonzero binary vector. Prove that (for every choice of d, S) there are at most
(2™ —1)"~*1 choices of the vector v for which ¢ € GRSg.y, 4.

4. Using the above, prove that if the integer D satisfies Vol,(n,D - 1) < (2™ - D41 (where
Vol,(n,D—1) = Z?: ‘01 (%)), then there exists a vector v € (F*)" such that the minimum dis-
tance of the binary code GRSsy 4 N[} is at least D.

5. Using parts 2 and 4 above (or otherwise), argue that the family of codes GRSgy 4 N[
contains binary linear codes that meet the Gilbert-Varshamov bound.

Exercise 5.13. In this exercise we will show that the dual of a GRS code is a GRS itself with dif-
ferent parameters. First, we state the obvious definition of GRS codes over a general finite field
[, (as opposed to the definition over fields of characteristic two in Exercise 5.12). In particular,
define the code GRSg v, 4 as follows:

GRSsyv,a,q = {(v1p(ar), v2p(@2),..., vpp(ay)) | p(X) € F4[X] has degree < n—d} .

Then show that .
(GRSS,v,d,q) :GRSS,V’,n—d+2,q,

where v' € [FZ is a vector with all non-zero components.

Exercise 5.14. In Exercise 2.16, we saw that any linear code can be converted in to a systematic
code. In other words, there is a map to convert Reed-Solomon codes into a systematic one. In
this exercise the goal is to come up with an explicit encoding function that results in a systematic
Reed-Solomon code.

In particular, given the set of evaluation points ay,...,a,, design an explicit map f from
[F’; to a polynomial of degree at most k — 1 such that the following holds. For every message

me [F’(;, if the corresponding polynomial is fy(X), then the vector ( fm(@));/, has the message
m appear in the corresponding codeword (say in its first k positions). Further, argue that this
map results in an [n, k,n— k + 1] 4 code.

Exercise 5.15. In this problem, we will consider the number-theoretic counterpart of Reed-
Solomon codes. Let 1 < k < n be integers and let p; < p» < --- < p, be n distinct primes.
Denote K = H;‘:l pi and N = H;?ZI pi- The notation Z), stands for integers modulo M, i.e.,
the set {0,1,..., M —1}. Consider the Chinese Remainder code defined by the encoding map
E:Zg— Zp, xZp, x-+-x Zp, defined by:

E(m)=(m mod p;, m mod p,, ---, m mod p,).

(Note that this is not a code in the usual sense we have been studying since the symbols at
different positions belong to different alphabets. Still notions such as distance of this code make
sense and are studied in the question below.)

Suppose that m; # my,. For 1 < i < n, define the indicator variable b; = 1 if E(m,); # E(my);
and b; = 0 otherwise. Prove that [T, pf"' > N/K.

Use the above to deduce that when m; # my, the encodings E(m;) and E(m,) differ in at
least n— k + 1 locations.
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Exercise5.16. In this problem, we will consider derivatives over a finite field F,. Unlike the case
of derivatives over reals, derivatives over finite fields do not have any physical interpretation
but as we shall see shortly, the notion of derivatives over finite fields is still a useful concept. In
particular, given a polynomial f(X) = Zfzo fi X" over F4, we define its derivative as

-1 )
=) G+ fix1-X".
i=0

Further, we will denote by £ (X), the result of applying the derivative on f i times. In this
problem, we record some useful facts about derivatives.

1. Define R(X,Z) = f(X+2)=Y!_ ri(X)-Z. Thenforany j = 1,

X = j-riX).

2. Using part 1 or otherwise, show that for any j = char(F,),® f/)(X) = 0.

3. Let j < char(F,). Further, assume that forevery0 < i < j, f@(a) =0forsome a € Fg4. Then
prove that (X — a)’ divides f(X).

4. Finally, we will prove the following generalization of the degree mantra (Proposition 5.2.3).
Let f(X) be anon-zero polynomial of degree ¢ and m < char(F,). Then there exists at most
| L] distinct elements a € F; such that ) (a) =0 for every 0 < j < m.

Exercise 5.17. In this exercise, we will consider a code that is related to Reed-Solomon codes
and uses derivatives from Exercise 5.16. These codes are called derivative codes.

Let m = 1 be an integer parameter and consider parameters k > char(F,) and n such that
m < k < nm. Then the derivative code with parameters (n, k, m) is defined as follow. Consider
any message m € [F’t; and let fi, (X) be the message polynomial as defined for the Reed-Solomon
code. Let ay, ..., a, € [, be distinct elements. Then the codeword for m is given by

fm(al) fm(az) fm(an)
Dan P o P
Oy V@) e @)

Prove that the above code is an [n, %, n-— [%J ] -code (and is thus MDS).
qm

Exercise 5.18. In this exercise, we will consider another code related to Reed-Solomon codes
that are called Folded Reed-Solomon codes. We will see a lot more of these codes in Chapter 16.

Let m = 1 be an integer parameter and let ay, ..., a, € F, are distinct elements such that for
some element y € F7, the sets

{an, a;y, aiy?,...,a;iy™ 1, (5.3)

8(:har([Fq) denotes the characteristic of ;. That is, if g = p°® for some prime p, then char(F,;) = p. Any natural
number i in F is equivalent to i mod char(F).
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are pair-wise disjoint for different i € [n]. Then the folded Reed-Solomon code with parameters
(m,k,n,y,ai,...,ay) is defined as follows. Consider any message m € [F’j, and let fi, (X) be the
message polynomial as defined for the Reed-Solomon code. Then the codeword for m is given
by:

fm(al) fm(aZ) fm(an)
Jm(a1-y) fm(az-y) - fmlap-y)
fm(ar Y™ fml@z-y™hH - fulan-y™hH

Prove that the above code is an [n, %, n- [%J ] -code (and is thus, MDS).
qm

Exercise 5.19. In this problem we will see that Reed-Solomon codes, derivative codes (Exer-
cise 5.17) and folded Reed-Solomon codes (Exercise 5.18) are all essentially special cases of
a large family of codes that are based on polynomials. We begin with the definition of these
codes.

Let m = 1 be an integer parameter and define m < k < n. Further, let E;(X),..., E,;(X) be
n polynomials over F,, each of degree m. Further, these polynomials pair-wise do not have
any non-trivial factors (i.e. gcd(E;(X), E;(X)) has degree 0 for every i # j € [n].) Consider any
message m € [F’f7 and let fip(X) be the message polynomial as defined for the Reed-Solomon
code. Then the codeword for m is given by:

(fm(X) mod Ey(X), fm(X) mod Ex(X), ..., fm(X) mod E,(X)).

In the above we think of fi,(X) mod E;(X) as an element of F,». In particular, given given a
polynomial of degree at most m — 1, we will consider any bijection between the g" such poly-
nomials and F,». We will first see that this code is MDS and then we will see why it contains
Reed-Solomon and related codes as special cases.

1. Prove that the above code is an [n, %, n-— [%J ] -code (and is thus, MDS).
qm
2. Letay,...,ay € [, be distinct elements. Define E;(X) = X — a;. Argue that for this special
case the above code (with m = 1) is the Reed-Solomon code.

3. Let ay,...,ay € F4 be distinct elements. Define E;(X) = (X — a;)". Argue that for this
special case the above code is the derivative code (with an appropriate mapping from
polynomials of degree at most m —1 and [z, where the mapping could be different for
each i € [n] and can depend on E;(X)).

4. Let ay,...,a, € Fy be distinct elements and y € [F;'; such that (5.3) is satisfied. Define
E;(X) = ]'[;?1:_01 X—-a; -)/j ). Argue that for this special case the above code is the folded
Reed-Solomon code (with an appropriate mapping from polynomials of degree at most
m—1 and Fg', where the mapping could be different for each i € [n] and can depend on
E;(X)).
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Exercise5.20. In this exercise we will develop a sufficient condition to determine the irreducibil-
ity of certain polynomials called the Eisenstein’s criterion.

Let F(X,Y) be a polynomial of F;. Think of this polynomial as over X with coefficients as
polynomials in Y over F,. Technically, we think of the coefficients as coming from the ring of
polynomials in Y over F,. We will denote the ring of polynomials in Y over [, as F,(Y) and we
will denote the polynomials in X with coefficients from F;(Y) as F,(Y)[X].

In particular, let

FX,Y)=X"+ fim1(Y)- X"+ 4+ fo(V),

where each f;(Y) € F4(Y). Let P(Y) be a prime for F4;(Y) (i.e. P(Y) has degree at least one and
if P(Y) divides A(Y)-B(Y) then P(Y) divides at least one of A(Y) or B(Y)). If the following
conditions hold:

(i) P(Y)divides f;(Y) forevery 0 <i < ¢t; but
(ii) P?(Y) does not divide f,(Y)

then F(X,Y) does not have any non-trivial factors over F,(Y)[X] (i.e. all factors have either
degree ¢ or 0 in X).
In the rest of the problem, we will prove this result in a sequence of steps:

1. For the sake of contradiction assume that F(X,Y) =G(X,Y)- H(X,Y) where
h %) .
GX,Y)=) g(V)-X"and H(X,Y) =Y hi(Y)- X,
i=0 i=0
where 0 < 11, £ < t. Then argue that P(Y) does not divide both of go(Y) and ho(Y).
For the rest of the problem WLOG assume that P(Y) divides go(Y) (and hence does not
divide hy(Y)).

2. Argue that there exists an i * such that P(Y) divide g;(Y) for every 0 < i < i* but P(Y) does
not divide g;+(Y) (define g,(Y) =1).

3. Argue that P(Y) does not divide f;(Y). Conclude that F(X,Y) does not have any non-
trivial factors, as desired.

Exercise 5.21. We have mentioned objects called algebraic-geometric (AG) codes, that general-
ize Reed-Solomon codes and have some amazing properties: see for example, Section 4.6. The
objective of this exercise is to construct one such AG code, and establish its rate vs distance
trade-off.

Let p be a prime and g = p?. Consider the equation

YP+Y = xP*! (5.4)
over [Fq.
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. Prove that there are exactly p3 solutions in F; x F, to (5.4). Thatis, if S< Ff, is defined as

s={(@p ey B+ p=a}
then |S| = p3.

. Prove that the polynomial F(X,Y) = Y? + Y — XP*! is irreducible over Fy.

Hint: Exercise 5.20 could be useful.

. Let n = p3. Consider the evaluation map ev: Fq(X, Y] — Fg defined by

ev(f)=(f(a,p):(a,P)ES).

Argue that if f # 0 and is not divisible by Y” + Y — XP*1 then ev(f) has Hamming weight
atleast n—deg(f)(p + 1), where deg(f) denotes the total degree of f.
Hint: You are allowed to make use of Bézout’s theorem, which states that if f,g € F,[X, Y] are nonzero

polynomials with no common factors, then they have at most deg(f)deg(g) common zeroes.

. For an integer parameter ¢ > 1, consider the set %, of bivariate polynomials
Fo={f eFylX,Y]|deg(f) < ¢,degy(f) < p}
where degy (f) denotes the degree of f in X.

Argue that % is an [ ;-linear space of dimension (/ +1)(p +1) — w.

. Consider the code C <[y for n= p® defined by
C={ev(f) | feZF} .

Prove that C is a linear code with minimum distance at least n—¢(p + 1).

. Deduce a construction of an [n, k] ; code with distance d = n—-k+1-p(p—-1)/2.

(Note that Reed-Solomon codes have d = n — k + 1, whereas these codes are off by p(p —
1)/2 from the Singleton bound. However they are much longer than Reed-Solomon codes,
with a block length of n = ¢%/2, and the deficiency from the Singleton bound is only o(n).)

5.5 Bibliographic Notes

Reed-Solomon codes were invented by Irving Reed and Gus Solomon [84]. Even though Reed-
Solomon codes need g = n, they are used widely in practice. For example, Reed-Solomon codes
are used in storage of information in CDs and DVDs. This is because they are robust against
burst-errors that come in contiguous manner. In this scenario, a large alphabet is then a good
thing since bursty errors will tend to corrupt the entire symbol in F, unlike partial errors, e.g.
errors over bits. (See Exercise 5.9.)

It is a big open question to present a deterministic algorithm to compute an irreducible

polynomial of a given degree with the same time complexity as in Corollary 5.1.3. Such results
are known in general if one is happy with polynomial dependence on g instead of log gq. See the
book by Shoup [91] for more details.
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Chapter 6

What Happens When the Noise is Stochastic:
Shannon’s Theorem

Shannon was the first to present a rigorous mathematical framework for communication, which
(as we have already seen) is the problem of reproducing at one point (typically called the “re-
ceiver" of the channel) a message selected at another point (called the “sender" to the channel).
Unlike Hamming, Shannon modeled the noise stochastically, i.e. as a well defined random pro-
cess. He proved a result that pin-pointed the best possible rate of transmission of information
over a very wide range of stochastic channels. In fact, Shannon looked at the communication
problem at a higher level, where he allowed for compressing the data first (before applying any
error-correcting code), so as to minimize the amount of symbols transmitted over the channel.
In this chapter, we will study some stochastic noise models most of which were proposed
by Shannon. We then prove an optimal tradeoff between the rate and fraction of errors that are
correctable for a specific stochastic noise model called the Binary Symmetric Channel.

6.1 Overview of Shannon’s Result

Shannon introduced the notion of reliable communication' over noisy channels. Broadly, there
are two types of channels that were studied by Shannon:

* (Noisy Channel) This type of channel introduces errors during transmission, which result
in an incorrect reception of the transmitted signal by the receiver. Redundancy is added
at the transmitter to increase reliability of the transmitted data. The redundancy is taken
off at the receiver. This process is termed as Channel Coding.

* (Noise-free Channel) As the name suggests, this channel does not introduce any type of
error in transmission. Redundancy in source data is used to compress the source data at
the transmitter. The data is decompressed at the receiver. The process is popularly known
as Source Coding.

IThat is, the ability to successfully send the required information over a channel that can lose or corrupt data.
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Figure 6.1 presents a generic model of a communication system, which combines the two con-
cepts we discussed above.

Source Channel
Message ————

Encoder Encoder
BRI
Ve
=N
= !
PO
Source Channel | |

(Decoded) Message+— Decoder Decoder

Figure 6.1: The communication process

In Figure 6.1, source coding and channel coding are coupled. In general, to get the optimal
performance, it makes sense to design both the source and channel coding schemes simultane-
ously. However, Shannon’s source coding theorem allows us to decouple both these parts of the
communication setup and study each of these parts separately. Intuitively, this makes sense:
if one can have reliable communication over the channel using channel coding, then for the
source coding the resulting channel effectively has no noise.

For source coding, Shannon proved a theorem that precisely identifies the amount by which
the message can be compressed: this amount is related to the entropy of the message. We will
not talk much more about source coding in in this book. (However, see Exercises 6.10, 6.11
and 6.12.) From now on, we will exclusively focus on the channel coding part of the commu-
nication setup. Note that one aspect of channel coding is how we model the channel noise. So
far we have seen Hamming’s worst case noise model in some detail. Next, we will study some
specific stochastic channels.

6.2 Shannon’s Noise Model

Shannon proposed a stochastic way of modeling noise. The input symbols to the channel are
assumed to belong to some input alphabet & , while the channel outputs symbols from its out-
put alphabet % . The following diagram shows this relationship:

% 3 x —[channel |~ y e

The channels considered by Shannon are also memoryless, that is, noise acts independently
on each transmitted symbol. In this book, we will only study discrete channels where both the
alphabets & and % are finite. For the sake of variety, we will define one channel that is contin-
uous, though we will not study it in any detail later on.

110



The final piece in specification of a channel is the transition matrix M that governs the pro-
cess of how the channel introduces error. In particular, the channel is described in the form of
a matrix with entries as the crossover probability over all combination of the input and output
alphabets. For any pair (x,y) € X x %, let Pr(y|x) denote the probability that y is output by the
channel when x is input to the channel. Then the transition matrix is given by M(x, y) = Pr(y|x).
The specific structure of the matrix is shown below.

M=|--- Pr(ylx)

Next, we look at some specific instances of channels.

Binary Symmetric Channel (BSC). Let0 < p < 1. The Binary Symmetric Channel with crossover
probability p or BSC,, is defined as follows. & =% = {0,1}. The 2 x 2 transition matrix can nat-
urally be represented as a bipartite graph where the left vertices correspond to the rows and
the right vertices correspond to the columns of the matrix, where M(x, y) is represented as the
weight of the corresponding (x, y) edge. For BSC,, the graph is illustrated in Figure 6.2.

lI-p

1-p
Figure 6.2: Binary Symmetric Channel BSC,,

The corresponding transition matrix would look like this:
0 1
0(l1-p p
I\ p 1-pf
In other words, every bit is flipped with probability p. We claim that we need to only con-
sider the case when p < %, i.e. if we know how to ensure reliable communication over BSC,, for
p< %, then we can also handle the case of p > % (See Exercise 6.1.)

g-ary Symmetric Channel (¢SC). We now look at the generalization of BSC,, to alphabets of
size g=2. Let0< p <1-21. (Aswith the case of BSC,, we can assume that p < 1— 1_see
Exercise 6.2.) The g-ary Symmetric Channel with crossover probability p, or gSC,, is defined
as follows. & =% = [g]. The transition matrix M for gSC, is defined as follows.

1-p ify=x

M(x,y)={ & ify#x

In other words, every symbol is retained as is at the output with probability 1—p and is distorted
to each of the g — 1 possible different symbols with equal probability of %.
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Binary Erasure Channel (BEC) In the previous two examples that we saw, & = % . However,
this might not always be the case.

Let 0 < a < 1. The Binary Erasure Channel with erasure probability « (denoted by BEC,) is
defined as follows. & ={0,1} and % = {0, 1, 2}, where ? denotes an erasure. The transition matrix

is as follows:
l-«a
; ©

1 — )

a

Figure 6.3: Binary Erasure Channel BEC,,

In Figure 6.3 any missing edge represents a transition that occurs with 0 probability. In other
words, every bit in BEC,, is erased with probability a (and is left unchanged with probability
1-a).

Binary Input Additive Gaussian White Noise Channel (BIAGWN). We now look at a channel
that is continuous. Let o = 0. The Binary Input Additive Gaussian White Noise Channel with
standard deviation o or BIAGWN,, is defined as follows. & = {—1,1} and % = R. The noise is
modeled by the continuous Gaussian probability distribution function. The Gaussian distribu-
tion has lots of nice properties and is a popular choice for modeling noise continuous in nature.
Given (x, y) € {-1,1} x R, the noise y — x is distributed according to the Gaussian distribution of
mean of zero and standard deviation of . In other words,

Pe(y 1) = a\;ﬁ .eXp(_ ((yz;f)z))

6.2.1 Error Correction in Stochastic Noise Models

We now need to revisit the notion of error correction from Section 1.3. Note that unlike Ham-
ming’s noise model, we cannot hope to always recover the transmitted codeword. As an ex-
ample, in BSC,, there is always some positive probability that a codeword can be distorted into
another codeword during transmission. In such a scenario no decoding algorithm can hope
to recover the transmitted codeword. Thus, in some stochastic channels there is always some
decoding error probability (where the randomness is from the channel noise): see Exercise 6.14
for example channels where one can have zero decoding error probability. However, we would
like this error probability to be small for every possible transmitted codeword. More precisely,
for every message, we would like the decoding algorithm to recover the transmitted message
with probability 1 — f(n), where lim,,_.o, f(n) — 0; that s, f(n) is o(1). Ideally, we would like to
have f(n) = 272, We will refer to f(n) as the decoding error probability.
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6.2.2 Shannon’s General Theorem

Recall that the big question of interest in this book is the tradeoff between the rate of the code
and the fraction of errors that can be corrected. For stochastic noise models that we have seen,
it is natural to think of the fraction of errors to be the parameter that governs the amount of
error that is introduced by the channel. For example, for BSC,, we will think of p as the fraction
of errors.

Shannon’s remarkable theorem on channel coding was to precisely identify when reliable
transmission is possible over the stochastic noise models that he considered. In particular, for
the general framework of noise models, Shannon defined the notion of capacity, which is a
real number such that reliable communication is possible if and only if the rate is less than the
capacity of the channel. In other words, given a noisy channel with capacity C, if information is
transmitted at rate R for any R < C, then there exists a coding scheme that guarantees negligible
probability of miscommunication. On the other hand if R > C, then regardless of the chosen
coding scheme there will be some message for which the decoding error probability is bounded
from below by some constant.

In this chapter, we are going to state (and prove) Shannon’s general result for the special case
of BSC,,.

6.3 Shannon’s Result for BSC,,

We begin with a notation. For the rest of the chapter, we will use the notation e ~ BSC;, to
denote an error pattern e that is drawn according to the error distribution induced by BSC,,. We
are now ready to state the theorem.

Theorem 6.3.1 (Shannon’s Capacity Theorem for BSC). For real numbers p, € such that0 < p < %
and0<e¢ < % — p, the following statements are true for large enough n:

1. There exists a real § > 0, an encoding function E : {0,1}* — {0,1}"* and a decoding function
D :{0,1}" — {0,1}* where k < |(1- H(p+¢))n|, such that the following holds for every
me {0, l}k:

Pr [D(E(m)+e))#m]< 270n,
e~BSC),

2. Ifk = [(1- H(p) + €)n] then for every pair of encoding and decoding functions, E : {0,1}F —
{0,1}" and D : {0,1}" — {0, 1}¥, there exists m € {0, 1}* such that

1
Pr [D(E(m)+e)) #m]=—.
e~BSC, 2
Note that Theorem 6.3.1 implies that the capacity of BSC,, is 1 — H(p). It can also be shown

that the capacity of gSC, and BEC, are 1 - H;(p) and 1 — a respectively. (See Exercises 6.6

and 6.7.)

The entropy function appears in Theorem 6.3.1 due to the same technical reason that it

appears in the GV bound: the entropy function allows us to use sufficiently tight bounds on the
volume of a Hamming ball (Proposition 3.3.1).
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6.3.1 Proof of Converse of Shannon’s Capacity Theorem for BSC

We start with the proof of part (2) of Theorem 6.3.1. (Proof of part (1) follows in the next section.)

For the proof we will assume that p > 0 (since when p =0, 1 — H(p) + € > 1 and so we have
nothing to prove). For the sake of contradiction, assume that the following holds for every m €
{0, 1}*:

Pr [D(E(m)+e)#m]< 1

e~BSC, 2

Define Dy, to be the set of received words y that are decoded to m by D, that is,
D ={y|D(y) =m}.

The main idea behind the proof is the following: first note that the sets Dy, partition the
entire space of received words {0, 1}"* (see Figure 6.4 for an illustration) since D is a function.

{0, 13"

Figure 6.4: The sets Dy, partition the ambient space {0, 1}".

Next we will argue that since the decoding error probability is at most a 1/2, then Dy, for
every m € {0, 1}¥ is “large." Then by a simple packing argument, it follows that we cannot have
too many distinct m, which we will show implies that k < (1- H(p)+¢€)n: a contradiction. Before
we present the details, we outline how we will argue that Dy, is large. Let S, be the shell of radius
[((1-y)pn,(1+7y)pn] around E(m), that is,

Sm=B(Em),(1+y)pn)\B(Em),1-y)pn).

We will set y > 0 in terms of € and p at the end of the proof. (See Figure 6.5 for an illustra-
tion.) Then we argue that because the decoding error probability is bounded by 1/2, most of
the received words in the shell Sy, are decoded correctly, i.e. they fall in Dy,. To complete the
argument, we show that number of such received words is indeed large enough.

Fix an arbitrary message m € {0,1}F. Note that by our assumption, the following is true
(where from now on we omit the explicit dependence of the probability on the BSC,, noise for
clarity):

PriE(m)+e¢ D] <-—. (6.1)

1
2
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Figure 6.5: The shell S, of inner radius (1 —y) pn and outer radius (1 +y)pn.

Further, by the (multiplicative) Chernoff bound (Theorem 3.1.6),
PriE(m) +eg Sy <2 20", 6.2)

(6.1) and (6.2) along with the union bound (Proposition 3.1.3) imply the following:

1
Pr{E(m) +e¢ DN Sl < 5 + 2~
The above in turn implies that
]. —Q 21’1) ].
Pr[E(m)+e€DmnSm]2§—2 Y 24_1’ (6.3)

where the last inequality holds for large enough n. Next we upper bound the probability above
to obtain a lower bound on | Dy N Spyl-
It is easy to see that

Pr{E(m)+e € Dy NSml < |Dm N Sml - Pmax

where

pmaxzmgler[E(m)+e:y] = pt1-pn .
YEOm

max
de[(1-y)pn,(1+y)pn]
In the above, the second equality follows from the fact that all error patterns with the same
Hamming weight appear with the same probability when chosen according to BSC,,. Next, note
that p4(1 — p)"“ is decreasing in d for p < %.2 Thus, we have

1—p\rP" 1—p\Yrn
Pmax = p(l—)/)l?n(l _ p)n—(l—y)pn — (_p) . ppn(l _ p)(l—p)n — (Tp) 2—nH(p).

2Indeed p4(1 - p)* 4 = (p/(1 - p)¢1 - p)"* and the bound p < % implies that the first exponent is at most 1,
which implies that the expression is decreasing in d.

115



Thus, we have shown that
1-p\rP"
Pr(E(m) +e € Dm N Sml < |Dm N Sml - (—) 2~ nHp)
p
which, by (6.3), implies that

1 1-— -ypn
Dy S| = —-(—p) 2nH(p), 6.4)
al p

Next, we consider the following sequence of relations:

2" Y |Dml (6.5)

me{0,1}F

Y. |DmN Sml

me{0,1}¥

1/(1 -yYpn

Z("l) Y pHn (6.6)
P me{0,1}k

_ 2k—2_2H(p)n—yplog(1/p—l)n

vV

v

> pk+Hpin—en 6.7)

In the above, (6.5) follows from the fact that for m; # my, Dy, and Dy, are disjoint. (6.6) follows
from (6.4). (6.7) follows for large enough n and if we pick y = £ ) . (Note thatas0< p < 1,

Yy =0(e).)
(6.7) implies that k < (1 — H(p) + €)n, which is a contradiction. The proof of part (2) of The-
orem 6.3.1 is complete.

2plog(%—1

Remark 6.3.1. It can be verified that the proof above can also work if the decoding error prob-
ability is bounded by 1 - 2-P" (instead of the 1/2 in part (2) of Theorem 6.3.1) for small enough
B =pe)>0.

Next, we will prove part (1) of Theorem 6.3.1.

6.3.2 Proof of Positive Part of Shannon’s Theorem

Proof Overview. The proof of part (1) of Theorem 6.3.1 will be done by the probabilistic
method (Section 3.2). In particular, we randomly select an encoding function E : {0,1}F —
{0,1}"*. That is, for every m € {0, 11k pick E (m) uniformly and independently at random from
{0,1}". D will be the maximum likelihood decoding (MLD) function. The proof will have the
following two steps:

e (Step 1) For any arbitrary m € {0, 1}, we will show that for a random choice of E, the prob-
ability of failure, over BSC,, noise, is small. This implies the existence of a good encoding

function for any arbitrary message.
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 (Step 2) We will show a similar result for all m. This involves dropping half of the code
words.

Note that there are two sources of randomness in the proof:

1. Randomness in the choice of encoding function E and

2. Randomness in the noise.

We stress that the first kind of randomness is for the probabilistic method while the second
kind of randomness will contribute to the decoding error probability.

“Proof by picture" of Step 1. Before proving part (1) of Theorem 6.3.1, we will provide a pic-
torial proof of Step 1. We begin by fixing m € {0,1}*. In Step 1, we need to estimate the following
quantity:

Eg| Pr [D(E(m)+e)#m]|.
e~BSC),

By the additive Chernoff bound (Theorem 3.1.6), with all but an exponentially small proba-
bility, the received word will be contained in a Hamming ball of radius (p + €') n (for some €' > 0
that we will choose appropriately). So one can assume that the received word y with high prob-
ability satisfies A(E(m),y) < (p +€)n. Given this, pretty much the only thing to do is to estimate
the decoding error probability for such a y. Note that by the fact that D is MLD, an error can
happen only if there exists another message m’ such that A(E(m’),y) < A(E(m),y). The latter
event implies that A(E(m’),y) < (p + €')n (see Figure 6.6).

-

Figure 6.6: Hamming balls of radius (p + ¢') n and centers E (m) and y) illustrates Step 1 in the
proof of part (1) of Shannon’s capacity theorem for the BSC.

Thus, the decoding error probability is upper bounded by

Vol ((p+¢€')n,n) 2H/P)n
! ! _ ~
o ble [E(m) € By, (p+)n)] = o ~

’
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where the last step follows from Proposition 3.3.1. Finally, by the union bound (Proposition 3.1.3),
the existence of such a “bad" m' is upper bounded by = w,

29 35 desired.

which by our choice of k is

The Details. For notational convenience, we will use y and E (m) + e interchangeably:

y=E(m)+e.

That s, y is the received word when E (m) is transmitted and e is the error pattern.
We start the proof by restating the decoding error probability in part (1) of Shannon’s capac-
ity theorem for BSC,, (Theorem 6.3.1) by breaking up the quantity into two sums:

Pr [D(Em+e)#ml= 3 Pr[ylEm)] Ipyzm
e~BSC, YEB(E(m),(p+e")n)

+ Y Pr[ylE(m)] - Ipgy)#m,
y¢B(E(m),(p+€')n)

where 1p(y)#m is the indicator function for the event that D(y) # m given that E(m) was the
transmitted codeword and we use y|E(m) as a shorthand for “y is the received word given that
E(m) was the transmitted codeword." As Ip(y)zm < 1 (since it takes a value in {0, 1}) and by the
(additive) Chernoff bound (Theorem 3.1.6) we have

Pr [D(E(m)+e)#m]< Y Pr[ylE(m)] - Ip(y)m + o~ €V’ni2.
e85y yeB(E(m),(p+e)n)

In order to apply the probabilistic method (Section 3.2), we will analyze the expectation
(over the random choice of E) of the decoding error probability, which by the upper bound
above satisfies

Eg| Pr [D(Em)+e)#m]|< e—(e’)Zn/Z_,_ Z Pr [ylE(m)]-[EE [HD(Y)¢m] . (6.8)
e~BSC, yeB(Em), (p+e')n) e~BSC,

In the above, we used linearity of expectation (Proposition 3.1.2) and the fact that the distribu-
tions on e and E are independent.

Next, for a fixed received word y and the transmitted codeword E(m) such that A(y, E(m)) <
(p +€')n we estimate Eg [1p(y)zm|. Since D is MLD, we have

E¢ [1otyrim] = Pr 1oy eml EGm] < 3 Pr[A(E(m).y) <A (EGm)y) E@m)], 69

m’'#m

where in the above “|E(m)" is short for “being conditioned on E(m) being transmitted" and the
inequality follows from the union bound (Proposition 3.1.3) and the fact that D is MLD.
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Noting that A(E(m'),y) < A(E(m),y) < (p + &')n (see Figure 6.6), by (6.9) we have

Eg [Ipp#m| = ) Pr[E(m’) e B(y,(p+¢£) n) [E@m)]

m’#m

Bly, (p+€)n
_ Z | (v (’;n ) )| (6.10)
m’'#m

oH(p+e')n
< Z — (6.11)
m’#m
<2k_2—n0—fﬂp+5n
<pn(1-H(p+e))-n(1-H(p+e)) (6.12)
_p-n(H(p+e)-H(p+e')) (6.13)

In the above, (6.10) follows from the fact that the choice for E(m’) is independent of E(m).
(6.11) follows from the upper bound on the volume of a Hamming ball (Proposition 3.3.1), while
(6.12) follows from our choice of k.

Using (6.13) in (6.8), we get

Ep| Pr [D(E(m)+e)#m]| <e )12 4 pn(H(pre)-H(p+e) Y Pr [ylE(m)]
e~BSC, yEB(E(m),(p+¢&)n)

<o~ ()02 | o-n(H(p+e)-H(p+e)) < 2-0'n (6.14)

where the second inequality follows from the fact that

Y Pr[ylEm)]< ) Pr[ylEm)]=1
YeB(E(m),(p+€')n) ye{0,1}”

and the last inequality follows for large enough n, say €’ = £/2 and by picking 6’ > 0 to be small
enough. (See Exercise 6.3.)

Thus, we have shown that for any arbitrary m the average (over the choices of E) decoding
error probability is small. However, we still need to show that the decoding error probability is
exponentially small for all messages simultaneously. Towards this end, as the bound holds for
each m, we have
<270,

[Em [EE

e~BS

Pr [D(E(m)+e) #m]
Cp

The order of the summation in the expectation with respect to m and the summation in the
expectation with respect to the choice of E can be switched (as the probability distributions are
defined over different domains), resulting in the following expression:

Eg < 2—6’n.

Em [ Pr [D(E(m)+e)#m)]
e~BSC,

By the probabilistic method, there exists an encoding function E* (and a corresponding
decoding function D*) such that
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Em| Pr [D*(E*(m)+e)#m]|<279"
e~BSC,,

(6.15)

(6.15) implies that the average decoding error probability is exponentially small. However,
recall we need to show that the maximum decoding error probability is small. To achieve such
a result, we will throw away half of the messages, i.e. expurgate the code. In particular, we will
order the messages in decreasing order of their decoding error probability and then drop the
top half. We claim that the maximum decoding error probability for the remaining messages is

2.279'n_Next, we present the details.

From Average to Worst-Case Decoding Error Probability. We begin with the following “aver-

aging" argument.
Claim 6.3.2. Let the messages be ordered asmj,my,...,m, and define

Pi= Pr [D(Em;)+e)#m;].

e~BSC,
Assume that Py < P> < ... < P, and (6.15) holds, then P,x-1 <2- 2-0'n
Proof. By the definition of P;,

1 2
— ) Pi=En Pr [D(E +
2’“,-221 1=Em, P (D(E(m)+e)#m]

< 2—6’11’
where (6.16) follows from (6.15). For the sake of contradiction assume that
Py >2.2707",
So,

k k
1 2 1 2
Pz
283

(6.16)

(6.17)

(6.18)

(6.19)

(6.20)

where (6.18) follows by dropping half the summands from the sum. (6.19) follows from (6.17)
and the assumption on the sortedness of P;. The proof is now complete by noting that (6.20)

contradicts (6.16).
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Thus, our final code will have my,...,m,.-1 as its messages and hence, has dimension k' =
k—1. Defined =6"+ % In the new code, maximum error probability is at most 279", Also if we
picked k < [(1-H(p+¢))n| +1, then k' < [(1- H(p+¢)) n|, as required. This completes the
proof of Theorem 6.3.1.

We have shown that a random code can achieve capacity. However, we do not know of even
a succinct representation of general codes. A natural question to ask is if random linear codes
can achieve the capacity of BSC,. The answer is yes: see Exercise 6.4.

For linear code, representation and encoding are efficient. But the proof does not give an
explicit construction. Intuitively, it is clear that since Shannon’s proof uses a random code it
does not present an ‘explicit’ construction. Below, we formally define what we mean by an
explicit construction.

Definition 6.3.1. A code C of block length 7 is called explicit if there exists a poly(n)-time al-
gorithm that computes a succinct description of C given n. For linear codes, such a succinct
description could be a generator matrix or a parity check matrix.

We will also need the following stronger notion of an explicitness:

Definition 6.3.2. A linear [n, k] code C is called strongly explicit, if given any index pair (i, j) €
[k] x [n], there is a poly(log n) time algorithm that outputs G; ;, where G is a generator matrix of
C.

Further, Shannon’s proof uses MLD for which only exponential time implementations are
known. Thus, the biggest question left unsolved by Shannon’s work is the following.

Question 6.3.1. Can we come up with an explicit construction of a code of rate 1 — H(p + €)
with efficient decoding and encoding algorithms that achieves reliable communication over
BSC,?

p

As a baby step towards the resolution of the above question, one can ask the following ques-
tion:

Question 6.3.2. Can we come up with an explicit construction with R >0 and p > 0?

Note that the question above is similar to Question 2.7.1 in Hamming’s world. See Exercise 6.13
for an affirmative answer.

6.4 Hamming vs. Shannon

As a brief interlude, let us compare the salient features of the works of Hamming and Shannon
that we have seen so far:
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HAMMING SHANNON
Focus on codewords itself Directly deals with encoding and decoding functions
Looked at explicit codes Not explicit at all
Fundamental trade off: rate vs. distance Fundamental trade off: rate vs. error
(easier to get a handle on this)
Worst case errors Stochastic errors

Intuitively achieving positive results in the Hamming world is harder than achieving positive
results in Shannon’s world. The reason is that the adversary in Shannon’s world (e.g. BSC,) is
much weaker than the worst-case adversary in Hamming’s world (say for bits). We make this
intuition (somewhat) precise as follows:

Proposition 6.4.1. Let0<p < % and0< e < % — p. Ifan algorithm A can handle p + € fraction of
worst case errors, then it can be used for reliable communication over BSC,,

—Ezn
Proof. By the additive Chernoff bound (Theorem 3.1.6), with probability = 1-e™ 2, the fraction
of errors in BSC,, is < p + &. Then by assumption on A, it can be used to recover the transmitted
message. O

Note that the above result implies that one can have reliable transmission over BSC,, with
any code of relative distance 2p + € (for any € > 0).

A much weaker converse of Proposition 6.4.1 is also true. More precisely, if the decoding
error probability is exponentially small for the BSC, then the corresponding code must have
constant relative distance (though this distance does not come even close to achieving say the
Gilbert-Varshamov bound). For more see Exercise 6.5.

6.5 Exercises

Exercise6.1. Let (E, D) be a pair of encoder and decoder that allows for successful transmission
over BSC,, forevery p < % Then there exists a pair (E’, D') that allows for successful transmission
over BSC, for any p' > 1/2. If D is (deterministic) polynomial time algorithm, then D’ also has
to be a (deterministic) polynomial time algorithm.

Exercise6.2. Let (E, D) be a pair of encoder and decoder that allows for successful transmission
over gSC, for every p <1 - %. Then there exists a pair (E’, D) that allows for successful trans-
mission over gSC,, for any p' > 1 - % If D is polynomial time algorithm, then D’ also has to be
a polynomial time algorithm though D’ can be a randomized algorithm even if D is determin-
istic.?

Exercise 6.3. Argue that in the positive part of Theorem 6.3.1, one can pick § = ©(¢?). That is,
for 0 < p < 1/2 and small enough ¢, there exist codes of rate 1 — H(p) — € and block length n that
can be decoded with error probability at most 2-9€” over BSC,.

3A randomized D’ means that given a received word y the algorithm can use random coins and the decoding
error probability is over both the randomness from its internal coin tosses as well as the randomness from the
channel.
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Exercise 6.4. Prove that there exists linear codes that achieve the BSC,, capacity. (Note that in
Section 6.3 we argued that there exists not necessarily a linear code that achieves the capacity.)

Hint: Modify the argument in Section 6.3: in some sense the proof is easier.

Exercise 6.5. Prove that for communication on BSC,, if an encoding function E achieves a max-
imum decoding error probability (taken over all messages) that is exponentially small, i.e., at
most 277" for some y > 0, then there exists a § = §(y, p) > 0 such that the code defined by E has
relative distance at least . In other words, good distance is necessary for exponentially small
maximum decoding error probability.

Exercise 6.6. Prove that the capacity of the gSCp, is 1 — Hy(p).

Exercise 6.7. The binary erasure channel with erasure probability a has capacity 1 — a. In this
problem, you will prove this result (and its generalization to larger alphabets) via a sequence of
smaller results.

1. For positive integers k < n, show that less than a fraction g*~" of the k x n matrices G
over [, fail to generate a linear code of block length n and dimension k. (Or equivalently,
except with probability less than qk_”, the rank of a random k x n matrix G over F is k.)

Hint: Try out the obvious greedy algorithm to construct a k x n matrix of rank k. You will see that you will
have many choices every step: from this compute (a lower bound on) the number of full rank matrices that

can be generated by this algorithm.

2. Consider the g-ary erasure channel with erasure probability a (gEC,, forsome @, 0 < a <
1): the input to this channel is a field element x € F;, and the output is x with probability
1 —a, and an erasure ‘?’ with probability a. For a linear code C generated by an k x n
matrix G over Fg, let D: (F, U {?})" — C U {fail} be the following decoder:

C if y agrees with exactly one c € C on the unerased entries in [
fail otherwise

D@:{

Foraset J < {1,2,...,n}, let Per;(G|]) be the probability (over the channel noise and choice
of arandom message) that D outputs fail conditioned on the erasures being indexed by J.
Prove that the average value of Pe(G|J) taken over all G € [F';>< " isless than qk"”” 3

3. Let Perr(G) be the decoding error probability of the decoder D for communication using
the code generated by G on the gEC,. Show that when k = Rn for R < 1 - «, the average
value of P, (G) over all k x n matrices G over F, is exponentially small in 7.

4. Conclude that one can reliably communicate on the gEC,, at any rate less than 1 —a using
a linear code.

Exercise6.8. Consider a binary channel whose input/output alphabet is {0, 1}, where a 0 is trans-
mitted faithfully as a 0 (with probability 1), but a 1 is transmitted as a 0 with probability % and a
1 with probability 1/2. Compute the capacity of this channel.
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Hint: This can be proved from scratch using only simple probabilistic facts already stated/used in the book.

Exercise 6.9. Argue that Reed-Solomon codes from Chapter 5 are strongly explicit codes (as in
Definition 6.3.2).

Exercise 6.10. In this problem we will prove a special case of the source coding theorem. For
any 0 < p < 1/2, let 2(p) be the distribution on {0, 1}", where each of the n bits are picked
independently to be 1 with probability p and 0 otherwise. Argue that for every € > 0, strings
from 2(p) can be compressed with H(p + €) - n bits for large enough n.

More precisely show that for any constant 0 < p < 1/2 and every € > 0, for large enough
n there exists an encoding (or compression) function E : {0,1}" — {0,1}* and a decoding (or
decompression) function D: {0,1}* — {0,1}" such that*

1. For everyxe€ {0,1}", D(E(X)) =X, and

2. Ex—ap IEX)|] < H(p +¢€) - n, where we use |E(x)| to denote the length of the string E(x).
In other words, the compression rateis H(p + €).

Hint: Handle the “typical" strings from 2 and non-typical strings separately.

Exercise6.11. Show that if there is a constructive solution to Shannon’s channel coding theorem
with E being a linear map, then there is a constructive solution to Shannon’s source coding
theorem in the case where the source produces a sequence of independent bits of bias p.

More precisely, let (E, D) be an encoding and decoding pairs that allows for reliable com-
munication over BSC,, with exponentially small decoding error and E is a linear map with rate
1 — H(p) — €. Then there exists a compressing and decompressing pair (E’, D’) that allows for
compression rate H(p) + ¢ (where compression rate is as defined in part 2 in Exercise 6.10). The
decompression algorithm D’ can be randomized and is allowed exponentially small error prob-
ability (where the probability can be taken over both the internal randomness of D’ and 2(p)).
Finally if (E, D) are both polynomial time algorithms, then (E’, D’) have to be polynomial time
algorithms too.

Exercise 6.12. Consider a Markovian source of bits, where the source consists of a 6-cycle with
three successive vertices outputting 0, and three successive vertices outputting 1, with the prob-
ability of either going left (or right) from any vertex is exactly 1/2. More precisely, consider
a graph with six vertices vy, v1,..., Us such that there exists an edge (v;, V(j+1) mods) for every
0 < i < 5. Further the vertices v; for 0 < i < 3 are labeled ¢(v;) = 0 and vertices v; for3 < j <6
are labeled ¢(v;) = 1. Strings are generated from this source as follows: one starts with some
start vertex up (which is one of the v;’s): i.e. the start state is up. Any any point of time if the
current state if u, then the source outputs ¢(u). Then with probability 1/2 the states moves to
each of the two neighbors of u.
Compute the optimal compression rate of this source.

“We use {0,1}* to denote the set of all binary strings.
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Hint: Compress “state diagram" to a minimum and then make some basic observations to compress the source

information.

Exercise 6.13. Given codes C; and C, with encoding functions E; : {0, 135 — {0,1}™ and E,:
{0,11k2 — {0,1}™ let E; ® E, : {0,1}K1*k2 — {0, 1}"1*"™2 be the encoding function obtained as fol-
lows: view a message m as a k; x k; matrix. Encode the columns of m individually using the
function E; to get an n; x k, matrix m’. Now encode the rows of m’ individually using E, to get
an n; x ny matrix that is the final encoding under E; ® E; of m. Let C; ® C, be the code associated
with Ej ® E, (recall Exercise 2.19).

For i = 3, let H; denote the 2 —1,2 —j - 1,3],-Hamming code. Let C; = H; ® C;_; with
Cs = H3 be a new family of codes.

1. Give a lower bound on the relative minimum distance of C;. Does it go to zero as i — co?
2. Give alower bound on the rate of C;. Does it go to zero as i — co?

3. Consider the following simple decoding algorithm for C;: Decode the rows of the rec'd
vector recursively using the decoding algorithm for C;_;. Then decode each column ac-
cording to the Hamming decoding algorithm (e.g. Algorithm 5). Let §; denote the proba-
bility of decoding error of this algorithm on the BSC,,. Show that there exists a p > 0 such
thatd; — 0as i — oo.

Hint: First show that §; < 4"5;{1.

Exercise6.14. We consider the problem of determining the best possible rate of transmission on
a stochastic memoryless channel with zero decoding error probability. Recall that a memoryless
stochastic channel is specified by a transition matrix M s.t. M(x, y) denotes the probability of y
being received if x was transmitted over the channel. Further, the noise acts independently on
each transmitted symbol. Let D denote the input alphabet. Let R(M) denote the best possible
rate for a code C such that there exists a decoder D such that for every c € C, Pr[D(y) # c] =0,
where y is picked according to the distribution induced by M when c is transmitted over the
channel (i.e. the probability that y is a received word is exactly []}__, M(c;, y;) where C has block
length n). In this exercise we will derive an alternate characterization of R(M).

We begin with some definitions related to graphs ¢ = (V, E). An independent set S of ¢4 is a
subset S € V such that there is no edge contained in S, i.e. forevery u #ve S, (u,v) ¢ E. For a
given graph ¢, we use a (%) to denote the size of largest independent set in ¢. Further, given
an integer n = 1, the n-fold product of ¢, which we will denote by ¢", is defined as follows:
@" = (V" E", where ((uy,..., up), (vy,...,vy)) € E' if and only if for every i € [n] either u; = v; or
(uj,vi) €E.

Finally, define a confusion graph %n = (V, E) as follows. The set of vertices V = D and for
every x1 # x2 €D, (x, y) € E if and only if there exists a y such that M(x, y) # 0 and M(x,, y) # 0.
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1. Prove that .
= lim =- ny) 5
RM) = lim —-logp (@ (%)) 6.21)

2. A clique coverfor a graph ¢ = (V, E) is a partition of the vertices V = {V1,..., V;} (i.e. V; and
V; are disjoint for every i # j € [c] and U;V; = V) such that the graph induced on V; is a
complete graph (i.e. for every i € [c] and x # y € V;, we have (x, y) € E). We call c to be the
size of the clique cover V1, ..., V. Finally, define v(¥) to be the size of the smallest clique
cover for 4. Argue that

a@"<a@" <v)".

Conclude that
logp @(¥4) < R(M) <logp, v(¥). (6.22)

3. Consider any transition matrix M such that the corresponding graph 6, = % is a 4-cycle
(i.e. the graph ({0,1,2,3}, E) where (i,i + 1 mod4) € E for every 0 < i < 3). Using part 2 or
otherwise, argue that R(M) = %

4. Consider any transition matrix M such that the corresponding graph 65 = % is a 5-cycle
(i.e. the graph ({0,1,2,4}, E) where (i,i + 1 mod5) € E for every 0 < i < 4). Using part 2
or otherwise, argue that R(M) = % -logs5. (This lower bound is known to be tight: see
Section 6.6 for more.)

6.6 Bibliographic Notes

Shannon’s results that were discussed in this chapter appeared in his seminal 1948 paper [89].
All the channels mentioned in this chapter were considered by Shannon except for the BEC
channel, which was introduced by Elias.

The proof method used to prove Shannon’s result for BSC;, has its own name- “random
coding with expurgation.”

Elias [27] answered Question 6.3.2 (the argument in Exercise 6.13 is due to him).

SIn literature, R(M) is defined with log p replaced by log,. We used the definition in (6.21) to be consistent with
our definition of capacity of a noisy channel. See Section 6.6 for more.
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Chapter 7

Bridging the Gap Between Shannon and
Hamming: List Decoding

In Section 6.4, we made a qualitative comparison between Hamming and Shannon’s world. We
start this chapter by doing a more quantitative comparison between the two threads of coding
theory. In Section 7.2 we introduce the notion of list decoding, which potentially allows us to
go beyond the (quantitative) results of Hamming and approach those of Shannon’s. Then in
Section 7.3, we show how list decoding allows us to go beyond half the distance bound for any
code. Section 7.4 proves the optimal trade-off between rate and fraction of correctable errors via
list decoding. Finally, in Section 7.5, we formalize why list decoding could be a useful primitive
in practical communication setups.

7.1 Hamming versus Shannon: partII

Let us compare Hamming and Shannon theories in terms of the asymptotic bounds we have

seen so far (recall rate R = % and relative distance 6 = %).

e Hamming theory: Can correct < g fraction of worse case errors for codes of relative dis-
tance 6. By the Singleton bound (Theorem 4.3.1),

0<1-R,

which by Proposition 1.4.1 implies that p fraction of errors can be corrected has to satisfy

1-R
p<—0u.

2

The above can be achieved via efficient decoding algorithms for example for Reed-Solomon
codes (we'll see this later in the book).

e Shannon theory: In gSC,, for 0 < p < 1-1/¢, we can have reliable communication with
R <1-Hy(p). It can be shown that
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( bad examples

:\bad examples

Figure 7.1: In this example vectors are embedded into Euclidean space such that the Euclidean
distance between two mapped points is the same as the Hamming distance between vectors.
c1,C2,c3,¢4 are codewords. The dotted lines contain the “bad examples," that is, the received
words for which unique decoding is not possible.

1. 1- Hy(p) <1- p (thisis left as an exercise); and

2. 1-Hy(p) = 1- p—g¢, for large enough g-in particular, g = 200/9) (Proposition 3.3.2).
Thus, we can have reliable communication with p ~ 1 - R on gSC,, for large enough g.

There is a gap between Shannon and Hamming world: one can correct twice as many errors
in Shannon’s world. One natural question to ask is whether we can somehow “bridge" this gap.
Towards this end, we will now re-visit the the bad example for unique decoding (Figure 1.3) and
consider an extension of the bad example as shown in Figure 7.1.

Recall that y and the codewords ¢; and ¢, form the bad example for unique decoding that
we have already seen before. Recall that for this particular received word we can not do error
recovery by unique decoding since there are two codewords c; and ¢, having the same distance
g from vector y. On the other hand, the received word z has an unique codeword ¢; with dis-
tance p > g. However, unique decoding does not allow for error recovery from z. This is because
by definition of unique decoding, the decoder must be able to recover from every error pattern
(with a given Hamming weight bound). Thus, by Proposition 1.4.1, the decoded codeword can-
not have relative Hamming distance larger than 6/2 from the received word. In this example,
because of the received word y, unique decoding gives up on the opportunity to decode z.

Let us consider the example in Figure 7.1 for the binary case. It can be shown that the
number of vectors in dotted lines is insignificant compared to volume of shaded area (for large
enough block length of the code). The volume of all Hamming balls of radius g around all the
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2% codewords is roughly equal to:
zkan(g)’

which implies that the volume of the shaded area (without the dotted lines) is approximately

equal to:
on _ gkonH(),

In other words, the volume when expressed as a fraction of the volume of the ambient space is
roughly:
1 -2 "A-HE-R), (7.1)

where k = Rn and by the Hamming bound (Theorem 1.3) R<1 - H(g). fR<1- H(g) then
second term of (7.1) is very small. Therefore the number of vectors in shaded area (without
the bad examples) is almost all of the ambient space. Note that by the stringent condition on
unique decoding none of these received words can be decoded (even though for such received
words there is a unique closest codeword). Thus, in order to be able to decode such received
vectors, we need to relax the notion of unique decoding. We will consider such a relaxation
called list decoding next.

7.2 List Decoding

The new notion of decoding that we will discuss is called list decoding as the decoder is allowed
to output a list of answers. We now formally define (the combinatorial version of) list decoding:

Definition 7.2.1. Given0<p<1,L=1,acode C < X"is (p, L)-list decodable if for every received
wordye X",
{ce ClAy,0)<pn}| <L

Given an error parameter p, a code C and a received word y, a list-decoding algorithm
should output all codewords in C that are within (relative) Hamming distance p from y. Note
that if the fraction of errors that occurred during transmission is at most p then the transmitted
codeword is guaranteed to be in the output list. Further, note that if C is (p, L)-list decodable
then the algorithm will always output at most L codewords for any received word. In other
words, for efficient list-decoding algorithm, L should be a polynomial in the block length n
(as otherwise the algorithm will have to output a super-polynomial number of codewords and
hence, cannot have a polynomial running time). Thus, the restriction of L being at most some
polynomial in 7 is an a priori requirement enforced by the fact that we are interested in effi-
cient polynomial time decoding algorithms. Another reason for insisting on a bound on L is
that otherwise the decoding problem can become trivial: for example, one can output all the
codewords in the code. Finally, it is worthwhile to note that one can always have an exponential
time list-decoding algorithm: go through all the codewords in the code and pick the ones that
are within p (relative) Hamming distance of the received word.

Note that in the communication setup, we need to recover the transmitted message. In
such a scenario, outputting a list might not be useful. There are two ways to get around this
“problem":
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1. Declare a decoding error if list size > 1. Note that this generalizes unique decoding (as
when the number of errors is at most half the distance of the code then there is a unique
codeword and hence, the list size will be at most one). However, the gain over unique
decoding would be substantial only if for most error patterns (of weight significantly more
than half the distance of the code) the output list size is at most one. Fortunately, it can
be show that:

* For random codes, with high probability, for most error patterns, the list size is at
most one. In other words, for most codes, we can hope to see a gain over unique
decoding. The proof of this fact follows from Shannon’s proof for the capacity for
qSC: the details are left as an exercise.

* In Section 7.5, we show that the above behavior is in fact general: i.e. for any code
(over a large enough alphabet) it is true that with high probability, for most error
patterns, the list size is at most one.

Thus, using this option to deal with multiple answers, we still deal with worse case errors
but can correct more error patterns than unique decoding.

2. If the decoder has access to some side information, then it can use that to prune the list.
Informally, if the worst-case list size is L, then the amount of extra information one needs
is O(logL). This will effectively decrease' the dimension of the code by O(logL), so if L
is small enough, this will have negligible effect on the rate of the code. There are also
application (especially in complexity theory) where one does not really care about the
rate being the best possible.

Recall that Proposition 1.4.1 implies that /2 is the maximum fraction of errors correctable
with unique decoding. Since list decoding is a relaxation of unique decoding, it is natural to
wonder

Question 7.2.1. Can we correct more than 6/2 fraction of errors using list decoding?

and if so

Question 7.2.2. What is the maximum fraction of errors correctable using list decoding?

In particular, note that the intuition from Figure 7.1 states that the answer to Question 7.2.1
should be yes.

'Note that side information effectively means that not all possible vectors are valid messages.
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7.3 Johnson Bound

In this section, we will indeed answer Question 7.2.1 in the affirmative by stating a bound due
to Johnson. To setup the context again, recall that Proposition 1.4.1 implies that any code with
relative distance 6 is (6/2,1)-list decodable.

Notice that if we can show a code for some e > [%J is (e/n,n°W)-list decodable, then
(combinatorially) it is possible to list decode that code up to e errors. We'll show by proving the
Johnson bound that this is indeed the case for any code.

Theorem 7.3.1 (Johnson Bound). Let C < [q]" be a code of distance d. If p < J4 (%), thenCisa
(p, qdn)-list decodable code, where the function ] ; () is defined as

Jq(a)z(l—é)(k@).

Proof (for q = 2). The proof technique that we will use has a name: double counting. The main
idea is to count the same quantity in two different ways to get both an upper and lower bound
on the same quantity. These bounds then imply an inequality and we will derive our desired
bound from this inequality.

We have to show that for every binary code C < {0, 1}" with distance d (i.e. for every ¢; #c¢; €
C, A(cy,¢2) = d) and everyye {0,1}", |B(y,e)C| < 2dn.

Fix arbitrary C and y. Let c1,...,cy € B(y, e). We need to show that M < 2dn. Define ¢ =
c; —yfor 1 <i< M. Then we have the following:

(i) wi(c)) <eforl<i=< M becausec;€ B(y,e).
(ii) A(c’i,c’j) > d for every i # j because A(c;,¢j) = d.

Define
§=2 Alc;c)).
i<j
We will prove both an upper and a lower bound on S from which we will extract the required
upper bound on M. Then from (ii) we have

S= (]\24)61 (7.2)

Consider the n x M matrix (c’lT, .. ,cg\g). Define m; as the number of 1’s in the i-th row for
1 < i < n. Then the i-th row of the matrix contributes the value m;(M — m;) to S because this
is the number of 0-1 pairs in that row. (Note that each such pair contributes one to S.) This
implies that

S=) mi(M-my). (7.3)
i=1
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Define

Note that
n M
Z m; = Z wt(c;) <eM,
where the inequality follows From (i) above. Thus, we have
e<e.

Using the Cauchy-Schwartz inequality (i.e., (x,y) < |x|| - [|yl| for x,y € R") by taking x =
(my,---,my), y=Q1/n,---,1/n), we have

n \2 n
(Lm’) s(z mf)l. (7.4)
i=1 n

n

Thus, from (7.3)

n 5)2
e
S=Y mi(M-my)=Me-Y mi<Mé———=M(@E-—), (7.5)
i=1 i=1 n n

where the inequality follows from (7.4). By (7.2) and (7.5),

-2 _
MZ(é_e_) L MM-D
n 2
which implies that
- dn B 2dn 3 2dn
T dn-2né+2e 2dn-n?+n2-4né+4é (n-2&)2-nn-2d)

- 2dn
T (n-2e0)2%-nn-2d’

(7.6)

where the last inequality follows from the fact that ¢ < e. Then from

e 1( Zd)
—<—=|1-1/1——1,
n 2 n

n—-2e>+v/nn-2d).

we get

In other words
(n—2e)%>>nn-2d).

Thus, (n—2e)?2 —n(n—2d) = 1 because n, e are all integers and therefore, from (7.6), we have
M < 2dn as desired. O
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Next, we prove the following property of the function J4(-), which along with the Johnson
bound answers Question 7.2.1 in the affirmative.

Lemma 7.3.2. Let g =2 be an integer and let0 < x<1— %. Then the following inequalities hold:

]q(x)zl—\/l—ng,

where the second inequality is tight for x > 0.

Proof. We start with by proving the inequality

(1—5)(1— 1_;__“1)21_m.

Indeed, both the LHS and RHS of the inequality are zero at x = 0. Further, it is easy to check

that the derivatives of the LHS and RHS are - 1 — and \/ll—_x respectively. The former is always
T g1

larger than the latter quantity. This implies that the LHS increases more rapidly than the RHS,

which in turn proves the required inequality.

The second inequality follows from the subsequent relations. As x = 0,

2
l-x+—=21-1x,
4

which implies that
xX\2
(1 - —) =1-x,
2
which in turn implies the required inequality. (Note that the two inequalities above are strict
for x > 0, which implies that 1 —v1 - x > x/2 for every x > 0, as desired.) O

Theorem 7.3.1 and Lemma 7.3.2 imply that for any code, list decoding can potentially cor-
rect strictly more errors than unique decoding in polynomial time, as long as ¢g is at most some
polynomial in n (which will be true of all the codes that we discuss in this book). This answers
Question 7.2.1 in the affirmative. See Figure 7.2 for an illustration of the gap between the John-
son bound and the unique decoding bound.

Theorem 7.3.1 and Lemma 7.3.2 also implies the following “alphabet-free" version of the
Johnson bound.

Theorem 7.3.3 (Alphabet-Free Johnson Bound). Ife < n—+vn(n—d), then any code with dis-
tance d is (e/ n, gnd)-list decodable for all the q.

A natural question to ask is the following:
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Figure 7.2: The trade-off between rate R and the fraction of errors that can be corrected. 1 —vR
is the trade-off implied by the Johnson bound. The bound for unique decodingis (1 - R)/2 while
1 - R is the Singleton bound (and the list decoding capacity for codes over large alphabets).

Question 7.3.1. Is the Johnson bound tight?

The answer is yes in the sense that there exist linear codes with relative distance é such
that we can find Hamming ball of radius larger than J;(6) with super-polynomially many code-
words. On the other hand, in the next section, we will show that, in some sense, it is not tight.

7.4 List-Decoding Capacity

In the previous section, we saw what can one achieve with list decoding in terms of distance of
a code. In this section, let us come back to Question 7.2.2. In particular, we will consider the
trade-off between rate and the fraction of errors correctable by list decoding. Unlike the case of
unique decoding and like the case of BSC,, we will be able to prove an optimal trade-off.

Next, we will prove the following result regarding the optimal trade-off between rate of a
code and the fraction of errors that can be corrected via list decoding.

Theorem 7.4.1. Letq=2,0<p<1-— %, and € > 0. Then the following holds for codes of large
enough block length n:

(i) IfR<1- Hy(p) — ¢, then there exists a (p, O (1))-list decodable code.

(i) IfR>1- Hy(p) +¢, every (p, L)-list decodable code has L = g*".
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Thus, the List-decoding capacity2 is 1 - H,(p) (where p is the fraction of errors). Further,
this fully answers Question 7.2.2. Finally, note that this exactly matches capacity for gSC, and
hence, list decoding can be seen as a bridge between Shannon’s world and Hamming’s world.
The remarkable aspect of this result is that we bridge the gap between these worlds by allowing
the decoder to output at most O(1/¢) many codewords.

7.4.1 Proofof Theorem 7.4.1

We begin with the basic idea behind the proof of part (i) of the theorem.

As in Shannon’s proof for capacity of BSC,,, we will use the probabilistic method (Section 3.2).
In particular, we will pick a random code and show that it satisfies the required property with
non-zero probability. In fact, we will show that a random code is (p, L)-list decodable with high
probability as long as:

1
R<1-H, - —
q(p) I

The analysis will proceed by proving that probability of a “bad event" is small. “Bad event"
means there exist messages mg,my,---,my € [g]%" and a received code y € [g]” such that:

A(C@m;),y)) < pn,forevery0<i<L.

Note that if a bad event occurs, then the code is not a (p, L)-list decodable code. The probability
of the occurrence of any bad event will then be calculated by an application of the union bound.

Next, we restate Theorem 7.4.1 and prove a stronger version of part (i). (Note that L = [H in
Theorem 7.4.2 implies Theorem 7.4.1.)

Theorem 7.4.2 (List-Decoding Capacity). Let g = 2 be an integer, and 0 < p < 1— % be a real
number.

(i) Let L =1 be an integer, then there exists an (p, L)-list decodable code with rate
R=<1-H,(p) !
< q(p) =7
(ii) For every(p,L) code of rate1 — Hy(p) + ¢, it is necessary that L = 20en)
Proof. We start with the proof of (i). Pick a code C at random where
k 1
IC| =q", where k < I—Hq(p)—z n.

That is, as in Shannon’s proof, for every message m, pick C(m) uniformly and independently at
random from [g]".

2Actually the phrase should be something like “capacity of worst case noise model under list decoding" as the
capacity is a property of the channel. However, in the interest of brevity we will only use the term list-decoding

capacity.
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Givenye [g]",and my,---,my € [q]k, the tuple (y,my,---,m;) defines a bad event if
C(m;) € B(y,pn),0<i<L.

Note that a code is (p, L)-list decodable if and only if there does not exist any bad event.
Fixye [g]" and mg,---,m[ € [q]k.
Note that for fixed i, by the choice of C, we have:

Voly(pn,n)
—— <

z g "oy, (7.7)

Pr[C(m;) € B(y,pn)] =

where the inequality follows from the upper bound on the volume of a Hamming ball (Proposi-
tion 3.3.1). Now the probability of a bad event given (y,my,--- ,my) is

Pr

L
/\ C(m;) € B(y, pn)
i=0

L
= [[PrlCm;) € B(y,pn)] < g "=V~ Ha @), (7.8)
0

where the equality follows from the fact that the random choices of codewords for distinct mes-
sages are independent and the inequality follows from (7.7). Then,

k
Pr[ There is abad event] < ¢" 7 gD Hale) (7.9)
L+1
< qann(LH)q—n(L+1)(1—Hq(P)) (7.10)
q—n(L+1)[1—H,,(p)—ﬁ—R]
< g LHDO-Hy(p)- =1+ Hy(p)+1] (7.11)
= q_%
< 1

In the above, (7.9) follows by the union bound (Lemma 3.1.3) with (7.8) and by counting the

number of y’s (which is ¢"), and the number of L+ 1 tuples (which is ( L“’Jrk ))- (7.10) follows from
the fact that ({) < a” and k = Rn. (7.11) follows by assumption R < 1 - H,(p) — 1. The rest of the
steps follow from rearranging and canceling the terms. Therefore, by the probabilistic method,

there exists C such that it is (p, L)-list decodable.

Now we turn to the proof of part (ii). For this part, we need to show the existence ofay € [g]"
such that |Cn B(y, pn)| is exponentially large for every C of rate R > 1 — H,(p) + €. We will again
use the probabilistic method to prove this result.

Pick y € [g]" uniformly at random. Fix c € C. Then

Pr[c e B(y, pn)] Prly € B(c, pn)]

Volg(pn, n)
_ T (7.12)
> q—n(l—Hq(p))—O(n)’ (7.13)



where (7.12) follows from the fact that y is chosen uniformly at random from [g]” and (7.13)
follows by the lower bound on the volume of the Hamming ball (Proposition 3.3.1).
We have

E[|ICnB(y,pn)ll

Y Elleen(y,om)] (7.14)

ceC

= ) Pr[ce B(y,pn)]

ceC

Z q—n(l—Hq(pHO(n)) (7.15)

ceC
qn[R—1+Hq(p)—o(1)]

q

v

Q(en)

v

(7.16)

In the above, (7.14) follows by the linearity of expectation (Proposition 3.1.2), (7.15) follows
from (7.13), and (7.16) follows by choice of R. Hence, by the probabilistic method, there exists y
such that |B(y,pn) N Cl| is qﬂ(”), as desired. O

The above proof can be modified to work for random linear codes. (See Exercise 22.)

We now return to Question 7.3.1. Note that by the Singleton bound, the Johnson bound im-
plies that for any code one can hope to list decode from about p < 1 — v/R fraction of errors.
However, this trade-off between p and R is not tight. Note that Lemma 3.3.2 along with Theo-
rem 7.4.1 implies that for large g, the list decoding capacity is 1 — R > 1 - v/R. Figure 7.2 plots
and compares the relevant trade-offs.

Finally, we have shown that the list decoding capacity is 1 — H,(p). However, we showed the
existence of a code that achieves the capacity by the probabilistic method. This then raises the
following question:

Question 7.4.1. Do there exist explicit codes that achieve list decoding capacity?

Also the only list decoding algorithm that we have seen so far is the brute force algorithm that
checks every codeword to see if they need to be output. This also leads to the follow-up question

Question 7.4.2. Can we achieve list decoding capacity with efficient list decoding algorithms?

A more modest goal related to the above would be the following:
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Question 7.4.3. Can we design an efficient list decoding algorithm that can achieve the John-
son bound? In particular, can we efficiently list decode a code of rate R from 1 — /R fraction
of errors?

7.5 List Decoding from Random Errors

In this section, we formalize the intuition we developed from Figure 7.1. In particular, recall
that we had informally argued that for most error patterns we can correct beyond the 6 /2 bound
for unique decoding (Proposition 1.4.1). Johnson bound (Theorem 7.3.1) tells us that one can
indeed correct beyond 6/2 fraction of errors. However, there are two shortcomings. The first is
that the Johnson bounds tells us that the output list size is gd n but it does not necessarily imply
that for most error patterns, there is unique by closest codewords (i.e. one can uniquely recover
the transmitted codeword). In other words, Johnson bound is a “true" list decoding result and
tells us nothing about the behavior of codes on the “average." The second aspect is that the
Johnson bound holds for up to 1 — V1 -6 fraction of errors. Even though it is more than 6/2 for
every 0 > 0, the bound e.g. is not say twice the unique decoding bound for every é > 0.

Next we show that for any code with relative distance 6 (over a large enough alphabet size)
for most error patterns, the output of a list decoder for any fraction of errors arbitrarily close to
6 will have size one. In fact, the result is somewhat stronger: it show that even if one fixes the
error locations arbitrarily, for most error patterns the output list size is one.

Theorem 7.5.1. Lete > 0 be a real and q = 22V be an integer. Then the following is true for any
0< 6 <1-1/q and large enough n. Let C <{0,1,...q — 1}"" be a code with relative distance 6 and
let Sc [n] such that|S| = (1 —-p)n, where(0<p <6 —¢).

Then, for all c € C and all but a g~ *¢™ fraction of error patterns, e € {0,1...q — 1} such that

es=0andwt(e)=pn (7.17)
the only codeword within Hamming distance pn of ¢ + e is c itself.
For illustration of the kinds of error pattern we will deal with, see Figure 7.3.

S

Figure 7.3: Illustration of the kind of error patterns we are trying to count.

Before we present the proof, we present certain corollaries (the proofs of which we leave as
exercises). First the result above implies a similar result of the output list size being one for the
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following two random noise models: (i) uniform distribution over all error patterns of weight
pn and (ii) gSC,. In fact, we claim that the result also implies that any code with distance at
least p + ¢ allows for reliable communication over gSC,,. (Contrast the 2p + € distance that was
needed for a similar result that was implied by Proposition 6.4.1.)

Finally, we present a lemma (the proof is left as an exercise) that will be crucial to the proof
of Theorem 7.5.1.

Lemma 7.5.2. Letbe C bean (n, k,d) 4 code. If we fix the values in n—d +1 out of the n positions
in a possible codeword, then at most one codeword in C can agree with the fixed values.

Proof of Theorem 7.5.1. For the rest of the proof, fixa c € C. For notational convenience define
&s to be the set of all error patterns e such that es =0 and wt(e) = pn. Note that as every error
position has (g — 1) non-zero choices and there are pn such positions in [n] \ S, we have

1&sl = (g —1)P". (7.18)

Call an error pattern e € & as bad if there exists another codeword ¢’ # ¢ such that

A(d,c+e) < pn.

Now, we need to show that the number of bad error patterns is at most
g~ E"8l.

We will prove this by a somewhat careful counting argument.
We begin with a definition.

Definition 7.5.1. Every error pattern e is associated with a codeword c(e), which is the closest
codeword which lies within Hamming distance pn from it.

For a bad error pattern we insist on having c(e) # c— note that for a bad error pattern such a
codeword always exists. Let A be the set of positions where c(e) agrees with ¢+ e.

The rest of the argument will proceed as follows. For each possible A, we count how many
bad patterns e are associated with it (i.e. ¢+ e and c(e) agree exactly in the positions in A). To
bound this count non-trivially, we will use Lemma 7.5.2.

Define a real number «a such that |A| = an. Note that since c(e) and c + e agree in at least
1 — p positions,

azl-p=1-6+e. (7.19)

For now let us fix A with |A| = an and to expedite the counting of the number of bad error
patterns, let us define two more sets:
A1 =ANS,
and

A = A\ Ay.
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.
n

Figure 7.4: lllustration of notation used in the proof of Theorem 7.5.1. Positions in two different
vectors that agree have the same color.

See Figure 7.4 for an illustration of the notation that we have fixed so far.
Define f such that
|[A1l = Bn. (7.20)

Note that this implies that
|A2] = (@ — B)n. (7.21)

Further, since A; € A, we have
p<a.

To recap, we have argued that every bad error pattern e corresponds to a codeword c(e) # ¢
and is associated with a pair of subsets (A;, A2). So, we fix (A;, A2) and then count the number
of bad e ’s that map to (A, A2). (Later on we will aggregate this count over all possible choices
of (A1, Az).)

Towards this end, first we overestimate the number of error patterns e that map to (A;, Ay)
by allowing such e to have arbitrary values in [n] \ (SU A). Note that all such values have to be
non-zero (because of (7.17). This implies that the number of possible distinct e[\ (sua,) is at
most

(- l)n—ISI—IAzl — qn—(l—p)n—(oc—ﬁ)n, (7.22)

where the equality follows from the given size of S and (7.21). Next fix a non-zero x and let us
only consider error patterns e such that

€n\(Suay) = X.

Note that at this stage we have an error pattern e as depicted in Figure 7.5.
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Figure 7.5: Illustration of the kind of error patterns we are trying to count now. The ? denote
values that have not been fixed yet.

Now note that if we fix c(e) 4,, then we would also fix e, (as (c+e) 4, = (c(e)) 4,). Recall that
c is already fixed and hence, this would fix e as well. Further, note that

cle)a, =(c+te)y =cy,.

This implies that c(e) 4, is already fixed and hence, by Lemma 7.5.2 we would fix c(e) if we fix (say
the first) (1-6)n+1-|A;| positions in c(e) 4,. Or in other words, by fixing the first (1-6) n+1—| A |
positions in e 4,, e would be completely determined. Thus, the number of choices for e that have
the pattern in Figure 7.5 is upper bounded by

qU-OnH1-lail 2 (g )(-On+l-fn (7.23)

where the equality follows from (7.20).
Thus, by (7.22) and (7.23) the number of possible bad error patterns e that map to (A, A»)
is upper bounded by

(q _ 1)n—(l—p)n—an+ﬁn+(1—6)n+1—ﬁn < (q _ 1)pn—£n+1 — (q _ 1)—£n+1|£>s|

M

where the inequality follows from (7.19) and the equality follows from (7.18).
Finally, summing up over all choices of A = (A}, A2) (of which there are at most 2"), we get
that the total number of bad patterns is upper bounded by

1
en
—== 4

21 (g 1) |&g| < g NEal = g A 18],

where the first inequality follows from g —1 = /g (which in turn is true for g = 3) while the
last inequality follows from the fact that for g = Q(1/¢) and large enough n, %< £¢. This
completes the proof. a

It can be shown that Theorem 7.5.1 is not true for g = 2°(/¢), The proof is left as an exercise.

7.6 Exercises

Exercise 7.1. Show that with high probability, a random linear code is (p, L)-list decodable code
as long as

R=<1-H4(p)— (7.24)

flog, (L+ 1)1’
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Hint: Think how to fix (7.8) for random linear code.

Exercise 7.2. In this exercise we will see how we can "fix" the dependence on L is the rate of
random linear codes from Exercise 7.1. In particular, we will consider the following family of
codes that are somewhere between linear and general codes and are called pseudolinear codes,
which are defined as follows.

Let g be a prime power and let 1 < k < n and L = 1 be integers. Then an (n, k, L, r, q)-family
of pseudolinear codes is defined as follows. Let H be the parity check matrix of an [g* — 1, g* -
1-r,L+1], linear code and H' be an extension of H with the first column being 0 (and the
rest being H). Every code in the family is indexed by a matrix A € F7™". Fix such a A. Then the

corresponding code Cj is defined as follows. For any x € FX, we have
CA (X) =A- H;p

where H., is the column corresonding to x, when though of as an integer between 0 and g* — 1.
Next, we will argue that random pseudolinear codes have near optimal list decodability:

1. Fixnon-zero messages mi,...my. Then for a random code Cj from an (n, k, L, r, q)-family
of pseudolinear code family, the codewords Ca(m,),...,Ca(m;) are independent random
vectors in [FZ.

2. Define (n, k, L, q)-family of pseudolinear codes to be (n, k, L, O(kL), g)-family of pseudo-
linear codes. Argue that (n, k, L, g)-family of pseudolinear codes exist.
Hint: Exercise 5.10 might be helpful.

3. Lete >0and g = 2 be a prime power. Furtherlet0 < p <1—1/q. Then for a large enough
n and k such that

k o1 - Ho(0) 1
—_— = p— _—— — 8’
n aP L
arandom (n, k, L, q)-pesudolinear code is (p, L)-list decodable.

4. Show that one can construct a (p, L)-list decodable pseudolinear code with rate at least
1-Hy(p) - 1 —€in %1% time.

Hint: Use method of conditional expectations.

Exercise 7.3. In this exercise we will consider a notion of “average" list decoding that is closely
related to our usual notion of list decoding. As we will see in some subsequent exercises, some-
times it is easier to work with this average list decoding notion.

1. We begin with an equivalent definition of our usual notion of list decoding. Argue that
a code C is (p, L) list decodable if and only if for every y € [g]” and every subset of L+ 1
codewords ¢y, ...,c; we have that

A(y,c;) > pn.
J?fgi (y,ci) > pn
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2. We define a code C to be (p, L)-average list decodable if for every y € [g]" and L+ 1 code-
words ¢y, ...,c; we have

1 L
—. Y Aly,ci .
7 i§:0 (y.ci) > pn

Argue that if C is (p, L)-average list decodable then it is also (p, L)-list decodable.

3. Argue thatif Cis (p, L)-list decodable then it is also (o(1—-7v), [L/y])-average list decodable
(forany 0 <y < p).

Exercise7.4. In Section 7.5 we saw that for any code one can correct arbitrarily close to relative
distance fraction of random errors. In this exercise we will see that one can prove a weaker
result. In particular let 2 be an arbitrary distribution on B,;(0, pn). Then argue that for most
codes, the list size with high probability is 1. In other words, show that for 1 — o(1), fraction of
codes C we have that for every codeword ce C

Pr [IB4(c+e,pn)nC|>1] =0(D).
e—

Hint: Adapt the proof of Theorem 6.3.1 from Section 6.3.2.

Exercise7.5. We call a code (p, L)-erasure list-decodableis informally for any received word with
atmost p fraction of erasures at most L codewords agree with it in the unerased positions. More
formally, an (n, k) 4-code C is (p, L)-erasure list-decodable if for every y € [q](l_p)n and every
subset T < [n] with |T| = (1 — p)n, we have that

[{ceCler=y}| < L.

In this exercise you will prove some simple bounds on the best possible rate for erasure-list
decodable code.

1. Argue that if C has distance d then itis (%, 1)-erasure list decodable.

2. Show that there exists a (p, L)-erasure list decodable code of rate

L Hgy(p)
— . (1-0)—- -,
L+1 (1=p) L Y
foranyy > 0.
3. Argue that there exists a linear (p, L)-erasure list decodable code with rate

]_1 Hq(p)
. (1-p) - —
7 (1-p) 71

)

where J = {1ogq(L+ 1)1 and y > 0.

4. Argue that the bound in item 2 is tight for large enough L by showing that if a code of rate
1—p +e€is (p, L)-erasure list decodable then L is 2%,
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Exercise 7.6. In this exercise we will see an alternate characterization of erasure list-decodable
code for linear codes, which we will use to show separation between linear and non-linear code
in the next exercise.

Given a linear code C < Fj and an integer 1 < r < n, define the r’th generalized Hamming
distance, denoted by d,(C), as follows. First given a set D < FY, we define the support of D as
the union of the supports of vectors in D. More precisely

supp(D) = {i| there exists (uy, ..., u,) € S such that u; # 0}.

Then d, (C) is size of the smallest support of all r-dimensional subcodes of C.
Argue the following:

1. (Warmup) Convince yourself that d; (C) is the usual Hamming distance of C.
2. Prove that Cis (pn, L)-erasure list-decodable if and only if d; + llog, LI (C) > pn.

Exercise 7.7. In this exercise we use the connection between generalized Hamming distance
and erasure list decodability from Exercise 7.6 to show an “exponential separation”" between
linear and non-linear codes when it comes to list decoding from erasure.

Argue the following:

1. Let C be an [n, k]; code. Then show that the average support size of r-dimensional sub-

codes of C is exactly
g -1 IC|

. ‘n
g ICl-1

2. From previous part or otherwise, conclude that if for an [n, k]; code C we have d,(C) >
n(l1-g~"), then we have
d,(C
Cl < r(C) _
d,(C)—n(l-qg7")
Note that the above bound for r = 1 recovers the Plotkin bound (second part of Theo-
rem4.4.1).

3. Argue that any (family) of code C with d,(C) =4, - n, its rate satisfies:

r

R(C)=s1-

P -0, +0(1).

Hint: Use a the result from previous part on a code related to C.

4. Argue that for small enough ¢ > 0, any linear (1 — ¢, L)-erasure list decodable code with
positive rate must have L = Q(1/¢).

5. Argue that there exist (1 — ¢, O(log(1/¢€)))-erasure list decodable code with positive (in fact
Q(¢g)) rate. Conclude that there exists non-linear codes that have the same erasure list
decodability but with exponentially smaller list sizes than linear codes.
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Exercise 7.8. In this exercise we will prove an analog of the Johnson bound (Theorem 7.3.1) but
for erasure list-decodable codes. In particular, let C be an (n, k,6n), code. Then show that for

. q q
any € >0, Cisan ((m —E) 0, G-De

)—erasure list decodable.

Hint: The Plotkin bound (Theorem 4.4.1) might be useful.
Exercise?7.9. Let Cbe a g-ary (p, L)-(average) list decodable of rate R, then show that there exists
another (p, L)-(average) list decodable code with rate at least
R+ Hg(A) —1-o0(1),
for any A € (p, 1 —1/q] such that all codewords in C’' have Hamming weight exactly An.
Hint: Try to translate C.

Exercise7.10. In this exercise, we will prove a lower bound on the list size of list decodable codes
that have optimal rate. We do this via a sequence of following steps:

1. Let C < [g]" be a (p, L — 1)-list decodable code such that all codewords have Hamming

weight exactly An for
1
A=p+—-pt.
pPrsiP
Then prove that
212

Hint: It might be useful to use the following result due to Erdds [29] (where we choose the variables to match
the relevant ones in the problem). Let «/ be a family of subsets of [n]. Then if every A € «f has size at least

21%/AL, then there exist distinct A, ..., A; € o such that mfZIA; has size at least %

2. Argue that any g-ary (p, L — 1)-list decodable code C (for large enough block length) has
L
rate at most 1 — Hy(p) — bp,4- pT for some constant b, , that only depends on p and q.

Hint: Use the previous part and Exercise 7.9.

3. Argue thatany g-ary (p, L)-list decodable C with rate 1- H;(p) —& mush satisfy L = Q, ,(log(1/¢)).

Exercise 7.11. It follows from Theorem 7.4.1 that a random code of rate 1 — H,(p) — & with high
probability is (p, O(1/¢€))-list decodable. On the other hand, the best lower bound on the list
size for codes of rate 1 — Hy(p) — € (for constant p, q) is Q(log(1/¢)) (as we just showed in Exer-
cise 7.10). It is natural to wonder if one can perhaps do a better argument for random codes. In
this exercise, we will show that our argument for random codes is the best possible (for random
codes). We will show this via the following sequence of steps:

1. Let C be a random (n, k), code of rate 1 - H;(p) — €. For any y € [g]" and any subset
S < [q]* of size L+ 1, define the random event &(y,S) that for every m € S, C(m) is at
Hamming distance at most pn fromy. Define

w=> &y9).
Y,S

Argue that C is (p, L)-list decodable if and only if W = 0.
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2. Define
p=q"-Voly(pn,n).
Argue that

1 L+1 k(L+1)
E[W]Em'# q"-q .

3. Argue that
L+1

0.2 (Z) < qZI’l . Z (L+ 1)2(L+1) . qk(2L+2—€) 'IJZL_[_HS.
/=1

Hint: Analyze the probability of both events &(y, S) and &(z, T) happening together for various intersection
sizes ¢ =|SN T].

4. Argue that Cis (p, I_Zg(p) )-list decodable with probability at most g

Hint: Use Chebyschev’s inequality.

—Qpe(n) .

7.7 Bibliographic Notes

List decoding was defined by Elias [28] and Wozencraft [105].

The result showing that for random error patterns, the list size with high probability is one
for the special case of Reed-Solomon codes was shown by McEliece [72]. The result for all codes
was proved by Rudra and Uurtamo [86]

In applications of list decoding in complexity theory (see for example [97],[38, Chap. 12]),
side information is used crucially to prune the output of a list decoding algorithm to compute
a unique answer.

Guruswami [37] showed that the answer to Question 7.3.1 is yes in the sense that there ex-
ist linear codes with relative distance 6 such that we can find Hamming ball of radius larger
than J;(6) with super-polynomially many codewords. This result was proven under a number-
theoretic assumption, which was later removed by [47].

(7.24) implies that there exist linear codes with rate 1 — H,(p) — ¢ that are (p, g°/®)-list
decodable. (This is also true for most linear codes with the appropriate parameters.) However,
for a while just for g = 2, we knew the existence of (p, O(1/ 8))—list decodable codes [41] (though
it was not a high probability result). Guruswami, Hastad and Kopparty resolved this “gap" by
showing that random linear codes of rate 1 — H,(p) — € are (p, O(1/¢))-list decodable (with high
probability) [40].
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Chapter 8

What Cannot be Done-I1

In this brief interlude of a chapter, we revisit the trade-offs between rate and relative distance
for codes. Recall that the best (and only) lower bound on R that we have seen is the GV bound
and the best upper bound on R that we have have seen so far is a combination of the Plotkin
and Hamming bounds (see Figure 4.5). In this chapter, we will prove the final upper bound on
R in this book due to Elias and Bassalygo. Then we will mention the best known upper bound
on rate (but without stating or proving it). Finally, we will conclude by summarizing what we
have seen so far and laying down the course for the rest of the book.

8.1 Elias-Bassalygo bound

We begin with the statement of a new upper bound on the rate called the Elias-Bassalygo bound.

Theorem 8.1.1 (Elias-Bassalygo bound). Every q-ary code of rate R, distanced, and large enough
block length, satisfies the following:

R<1-H,;(J46))+o(1)

See Figure 8.1 for an illustration of the Elias-Bassalygo bound for binary codes. Note that
this bound is tighter than all the previous upper bounds on rate that we have seen so far.
The proof of Theorem 8.1.1 uses the following lemma:

Lemma 8.1.2. Given a q-ary code, C < [q]"and 0 < e < n, there exists a Hamming ball of radius

) C|Vol,(e, .
e with at leastll(;# codewords in it.

Proof. We will prove the existence of the required Hamming ball by the probabilistic method.
Pick a received word y € [g]" at random. It is easy to check that the expected value of | B(y, e)NC|

is ICIVZW. (We have seen this argument earlier in the proof of part (ii) of Theorem 7.4.2.)
This by the probabilistic method implies the existence of ay € [¢]" such that
IC|Vol, (e, n)
By,e)nClz —————,
as desired. O
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Figure 8.1: Singleton, Hamming, Plotkin, GV and Elias-Bassalygo bounds on rate versus dis-
tance for binary codes.

Proof of Theorem 8.1.1. Let C < [g]" be any code with relative distance §. Define e = nJ, q(6)—
1. By Lemma 8.1.2, there exists a Hamming ball with 98 codewords such that the following
inequality is true:

B> |C| VolZ (e, n).
q
By our choice of e and the Johnson bound (Theorem 7.3.1), we have

PB < qdn.

Combining the upper and lower bounds on 28 implies the following

IC| < qnd.q—n < g"(1-HqUq@®)+oM)
Vol,(e,n)

where the second inequality follows from our good old lower bound on the volume of a
Hamming ball (Proposition 3.3.1) and the fact that gdn < gn® < q°""" for large enough n. This
implies that the rate R of C satisfies:

R<1-H;(J4@®)+0(),

as desired. O
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8.2 The MRRW bound: A better upper bound

The MRRW bound (due to McEliece, Rodemich, Rumsey and Welch) is based on a linear pro-
gramming approach introduced by Delsarte to bound the rate of a code. The MRRW bound
is a better upper bound than the Elias-Bassalygo bound (though we will not state or prove the
bound in this book). However, there is a gap between the Gilbert-Varshamov (GV) bound and
the MRRW bound. The gap still exists to this day. To give one data point on the gap, consider
6 = —¢ (think of ¢ — 0), the GV bound gives alower bound on R of Q (¢2) (see Proposition 3.3.5),
while the MRRW bound gives an upper bound on R of O (¢?1og(1)).

8.3 A Breather

Let us now recap the combinatorial results that we have seen so far. Table 8.1 summarizes what
we have seen so far for binary codes in Shannon’s world and Hamming’s world (under both
unique and list decoding settings).

’ Shannon \ Hamming ‘
| BSC, \ Unique \ List |
1-H(p) is capacity R=1-H(5) 1 - H(p) is list decoding capacity
R< MRRW
Explicit codes at capacity? | Explicit Asymptotically good codes? Explicit codes at capacity?
Efficient decoding algorithm? Efficient decoding algorithms? Efficient decoding algorithms?

Table 8.1: High level summary of results seen so far.

For the rest of the section, we remind the reader about the definition of explicit codes (Def-
inition 6.3.1) and strongly explicit codes (Definition 6.3.2).

We begin with BSC,,. We have seen that the capacity of BSC, is 1 — H(p). The most nat-
ural open question is to obtain the capacity result but with explicit codes along with efficient
decoding (and encoding) algorithms (Question 6.3.1).

Next we consider Hamming’s world under unique decoding. For large enough alphabets,
we have seen that Reed-Solomon codes (Chapter 5) meet the Singleton bound (Theorem 4.3.1).
Further, the Reed-Solomon codes are strongly explicit'. The natural question then is

Question 8.3.1. Can we decode Reed-Solomon codes up to half its distance?

For smaller alphabets, especially binary codes, as we have seen in the last section, there is a
gap between the best known lower and upper bounds on the rate of a code with a given relative

IThe proof s left as an exercise.
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distance. Further, we do not know of an explicit construction of a binary code that lies on the
GV bound. These lead to the following questions that are still wide open:

Open Question 8.3.1. What is the optimal trade-off between R and 6 ?

Open Question 8.3.2.

Does there exist an explicit construction of (binary) codes on the GV bound?

If we scale down our ambitions, the following is a natural weaker version of the second ques-
tion above:

Question 8.3.2. Do there exist explicit asymptotically good binary codes?

We also have the following algorithmic counterpart to the above question:

Question 8.3.3. If one can answer Question 8.3.2, then can we decode such codes efficiently
from a non-zero fraction of errors?

For list decoding, we have seen that the list decoding capacity is 1 — H;(p). The natural
open questions are whether we can achieve the capacity with explicit codes (Question 7.4.1)
along with efficient list decoding algorithms (Question 7.4.2).

In the remainder of the book, we will focus on the questions mentioned above (and sum-
marized in the last two rows of Table 8.1).

8.4 Bibliographic Notes

The McEliece-Rodemich-Rumsey-Welch (MRRW) bound was introduced in 1977 in the paper
[73].
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Chapter 9

When Polynomials Save the Day:
Polynomial Based Codes

As we saw in Chapter 5, The Reed-Solomon codes give a remarkable family of codes with op-
timal dimension vs. distance tradeoff. They even match the Singleton bound (recall Theo-
rem 4.3.1), get k = n—d + 1 for a code of block length 7, distance d and dimension k. However
they achieve this remarkable performance only over large alphabets, namely when the alpha-
bet size g = n. In fact, so far in this book, we have not seen any explicit asymptotically good
code other than a Reed-Solomon code. This naturally leads to the following question (which is
a weaker form for Question 8.3.2):

Question 9.0.1. Do there exist explicit asymptotically good codes for small alphabets q < n?

In this chapter we study an extension of Reed-Solomon codes, called the (generalized) Reed-
Muller codes, that lead to codes over smaller alphabets while losing in the dimension-distance
tradeoff (but under certain settings do answer Question 9.0.1 in the affirmative).

The main idea is to extend the notion of functions we work with, to multivariate functions.
(See Exercise 5.2 for equivalence between certain Reed-Solomon codes and univariate func-
tions.) Just working with bivariate functions (functions on two variables), allows us to get codes
of block length n = g2, and more variables can increase the length further for the same alpha-
bet size. We look at functions of total degree at most r. Analysis of the dimension of the code
reduces to simple combinatorics. Analysis of the distance follows from “polynomial-distance”
lemmas, whose use is ubiquitous in algebra, coding theory and computer science, and we de-
scribe these in the sections below. We start with the generic construction.
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9.1 The generic construction

Recall that for a monomial X4 = Xfll -dez . --X,‘f{” its total degree is d; + do + -+ + d,,. We next
extend this to the definition of the degree of a polynomial:

Definition 9.1.1. The total degree of a polynomial P(X) = Y 4 cqX over F, (i.e. every cg € Fy) is
the maximum over d such that cq # 0, of the total degree of X4. We denote the total degree of P
by deg(P).

For example, the degree of the polynomial 3X3Y* + X°+ Y% is 7.

In turns out that when talking about Reed-Muller codes, it is convenient to switch back and
forth between multivariate functions and multivariate polynomials. We can extend the notion
above to functions from Fg' — F,. For f :Fg' — F, let deg(f) be the minimal degree of a polyno-
mial P € Fy4[Xj,..., X;] (where Fy[Xj,..., X;,] denotes the set of all m-variate polynomials with
coefficients from F) such that f(a) = P(a) for every a € F. Note that since (by Exercise 2.3) for
every a € F, we have a9 — a = 0, it follows that a minimal degree polynomial does not contain
monomials with degree more than g — 1 any single variable. In what follows,

Definition 9.1.2. We use degy.(p) to denote the degree of polynomial p in variable X; and
degy, (f) to denote the degree of (the minimal polynomial corresponding to) a function f in
variable X;.

For example deg, (3X3Y* + X° + Y®) = 5 and deg, (3X3Y* + X° + Y% = 6. Further, in this
notation we have for every function f:Fg' — Fg, degy, (f) = g — 1 forevery i € [m].

Reed-Muller codes are given by three parameters: a prime power g and positive integers m
and r, and consist of the evaluations of m-variate polynomials of degree at most r over all of
the domain F7'.

Definition 9.1.3 (Reed-Muller Codes). The Reed-Muller code with parameters g, m, r, denoted
RM(q, m, 1), is the set of evaluations of all m-variate polynomials in F,[X,..., X;;] of total de-
gree at most r and individual degree at most g — 1 over all points in Fz'. Formally

RM(q,m,r) S { £ : Fiy —Fgldeg(f) <r}.

For example consider the case of m = g =2 and r = 1. Note that all bivariate polynomials
over [, of degree at most 1 are 0, 1, X;, X, 1+ X3, 1 + X, X7 + X and 1+ X; + X». Thus, we have
that (where the evaluation points for (X, X») are ordered as (0, 0), (0, 1), (1,0), (1, 1)):

RM(2,2,1) ={(0,0,0,0),(1,1,1,1),(0,0,1,1),(0,1,0,1),(1,1,0,0),(1,0,1,0),(0,1,1,0), (1,0,0,1)}.

Also note that RM(g, m, 1) is almost the Hadamard code (see Exercise 5.6).

The Reed-Muller code with parameters (g, m,r) clearly has alphabet F, and block length
n = q™. Also it can be verified that RM(q, m, r) is a linear code (see Exercise 9.1.) This leads to
the following question, which will be the primary focus of this chapter:
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Question 9.1.1. What are the dimension and distance of an RM(q, m, r) code?

The dimension of the code is the number of m-variate monomials of degree at most r, with
the condition that degree in each variable is at most g — 1. No simple closed form expression
for this that works for all choices of g, m and r is known, so we will describe the effects only in
some cases. The distance analysis of these codes takes a little bit more effort and we will start
with two simple settings before describing the general result.

9.2 The low degree case

We start by considering RM(qg, m, r) when r < g, i.e., the degree is smaller than the field size. We
refer to this setting as the “low-degree” setting.

Dimension. The dimension of RM(q, m,r) in the low-degree case turns out to have a nice
closed form, since we do not have to worry about the constraint that each variable has degree
at most g — 1: this is already imposed by restricting the total degree to at most r < g — 1. This
leads to a nice expression for the dimension:

m+r
r

Proposition 9.2.1. The dimension of the Reed Muller code RM(q, m, r) equals (""") whenr < q.

Proof. The dimension equals the size of the set

m
D= {(dl,...,dm) €Z™|d;=0forallie[m],) d;i< r}, 9.1)
i=1

since for every (dy, ..., d;;) € D, the monomial del . -X,f,i{" is a monomial of degree at most r and
these are all such monomials. The closed form expression for the dimension follows by a simple
counting argument. (See Exercise 9.2). O

Distance. Next we turn to the analysis of the distance of the code. To understand the distance
we will first state and prove a simple fact about the number of zeroes a multivariate polynomial
can have. (We will have three versions of this in this chapter - with the third subsuming the first
(Lemma 9.2.2) and second (Lemma 9.3.1), but the first two will be slightly simpler to state and
remember.)

Lemma 9.2.2 (Polynomial Zero Lemma (low-degree case)). Let f € F4[Xj,..., X;;] be a non-zero
polynomial with deg(f) < r. Then the fraction of zeroes of f is at most é, ie.,

facFrIf@=0)
< —.
qm q
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We make couple of remarks. First note that the above lemma for m =1 is the degree mantra
(Proposition 5.2.3). We note that for every m = 1 the above lemma is tight (see Exercise 9.3).
However, there exists polynomials for which the lemma is not tight (see Exercise 9.4).

Proof of Lemma 9.2.2. Note that the lemma statement is equivalent to saying that the probabil-
ity that f(a) = 0 is at most de6l) \when a = (a1,..., am) is chosen uniformly at random from Fz'.
We claim that this holds by induction on m.

We will prove the lemma by induction on m = 1. Note that the base case follows from the
degree mantra (Proposition 5.2.3). Now consider the case of m > 1 (and we assume that the
lemma is true for m — 1). To apply inductive hypothesis we first write f as a polynomial in X},

with coefficients that are themselves polynomials in Xj,..., X;,_;. So let
f=pX%S+AXE+... fiX],
where each f;(X;,..., X;y-1) is a polynomial from F,[Xj,..., X;,-1] and deg(f;) < r —i. Further-
more let ¢ be the largest index such that f; is not zero. Now we consider picking a € F7' in two
steps: We first pick (ay,..., an,-1) uniformly at random from F?‘l, and then we pick a,, uni-
formly from . Let
flrmam-V (X ) = folay,..., am-1) X%+ +...frlar,..., am-1) X5,
We consider two possible events:
ébl = {(aly---yam)lf[(alr-'-ram—l) = O}

and

By the inductive hypothesis, we have that
-1
Pri&y] < ’7, 9.2)

since deg(f;) <r—tand f; #0.
For every (ay,...,am-1) € [FZ’_1 such that fy(ay,...,an-1) # 0 we also have that the univariate

t

Pr[é,] = 9.3)

Finally, we claim that if neither &) nor &, occur, then f(a) # 0. This is immediate from the defi-
nitions of &, and &>, since if f(ay, ..., a,) =0, it must either be the case that f;(a,,...,a;,;-1) =0
(corresponding to &;) or it must be that f;(ay,..., am,_1) # 0 and f@ -1 (q,) =0 (covered by
&>). Note that this implies that Pr,[f(a) = 0] < Pr[&; U &>]. The lemma now follows from the fact
that r
lilr[f(a) =0]<Pr(& ué&] <Pr[&;]+Pri(é] < 5,

where the second inequality follows from the union bound (Proposition 3.1.3) and the final
inequality follows from (9.2) and (9.3). O
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Comparison with other codes

The lemmas above, while quite precise may not be fully transparent in explaining the asymp-
totics of the performance of the Reed-Muller codes, or contrast them with other codes we have
seen. We mention a few basic facts here to get a clearer comparison.

If we set m =1 and r = k — 1, then we get the Reed-Solomon codes evaluated on all of F,
(see Chapter 5). If we set m = k—1, r =1 and g = 2, then we get family of extended Hadamard
codes (extended by including all Hadamard codewords and their complements). For more on
this, see Exercise 5.6.

Thus Reed-Muller codes generalize some previously known codes - some with large alpha-
bets and some with small alphabets. Indeed if we wish the alphabet to be small compared to
the block length, then we can pick m to be a constant. For instance if we choose m =2, we get
codes of length n over an alphabets of size y/n, while for any choice of relative distance &, the

2
code has rate %. In general for larger values of m, the code has alphabet size n

a-6"
m!

1/m and rate

—- (See Exercise 9.5.) Thus for small values of m and fixed positive distance 6 < 1 there is
arate R > 0 such that, by choosing q appropriately large, one get codes on infinitely long block
length 7 and alphabet n!'/” with rate R and distance &, which answers Question 9.0.1 in the
affirmative.

This is one of the simplest such families of codes with this feature. We will do better in later
in the book (e.g. Chapter 10), and indeed get alphabet size g independent of n with R > 0 and
6 > 0. But for now this is best we have.

9.3 The case of the binary field

Next we turn to a different extreme of parameter choices for the Reed-Muller codes. Here we fix
the alphabet size g = 2 and see what varying m and r gets us.

Since we will prove a stronger statement later in Lemma 9.4.1, we only state the distance of
the code RM(2, m, r) below, leaving the proof to Exercise 9.6.

Lemma 9.3.1 (Polynomial distance (binary case)). Let f be a non-zero polynomial fromF,[X;...., Xyl
with degy (f) <1 for every i € [m]. Then |facF}'|f(a) # 0}| = 28U/,

Further, it can be established that the bound in Lemma 9.3.1 is tight (see Exercise 9.7).

The dimension of the code is relatively straightforward to analyze. The dimension is again
given by the number of monomials of degree at most r. Since the degree in each variable is
either zero or one, this just equals the number of subsets of [m] of size at most r. Thus we have:

Proposition 9.3.2. For any r < m, the dimension of the Reed-Muller code RM(2, m, r) is exactly
r m
=0 ( i )

Lemma 9.3.1 and Proposition 9.3.2 imply the following result:

Theorem 9.3.3. For every r < m, the Reed-Muller code RM(2, m, r) is a code of block length 2™,
dimension Y.!_, (") and distance2™~".
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Again, to get a sense of the asymptotics of this code, we can fix T > 0 and set r = 7- m and
let m — oo. In this case we get a code of block length 7 (for infinitely many 7) with rate roughly
nf™-1 and distance n~" (see Exercise 9.8). So both the rate and the distance tend to zero at a
rate that is a small polynomial in the block length but the code has a constant sized alphabet.
(Note that this implies that we have made some progress towards answering Question 8.3.2.)

9.4 The general case

We now turn to the general case, where ¢ is general and r is allowed to be larger than g — 1. We
will try to analyze the dimension and distance of this code. The distance turns out to still have
a clean expression, so we will do that first. The dimension does not have a simple expression
describing it exactly, so we will give a few lower bounds that may be generally useful (and are
often asymptotically tight).

9.4.1 The general case: Distance

Lemma 9.4.1 (Polynomial distance (general case)). Let f be a non-zero polynomial fromF4[X....

with degXl, (f) = g—1 foreveryi€ [m] and deg(f) < r. Furthermore, let s, t be the unique non-
negative integers such that t < q — 2 and

s(g—D+t=r

Then

r

{ae [Fq’"lf(a) A0} =(q—10)-q" =g 7T,

r

Hence, RM(q, m, r) has distance at least qm_ﬁ.

Before proving the lemma we make a few observations: The above lemma clearly generalizes
both Lemma 9.2.2 (which corresponds to the case s = 0) and Lemma 9.3.1 (where g =2, s=r—1
and ¢ = 1). In the general case the second lower bound is a little simpler and it shows that the
probability that a polynomial is non-zero at a uniformly chosen point in F7' is at least g ™" Itq=1,
Finally, we note that Lemma 9.4.1 is tight for all settings of parameters (see Exercise 9.9).

Proof of Lemma 9.4.1. The proof is similar to the proof of Lemma 9.2.2 except we take advan-
tage of the fact that the degree in a single variable is at most g — 1. We also need to prove some
simple inequalities.

As in the proof of Lemma 9.2.2 we prove that for a random choice of a = (ay, ..., a,) € F,
the probability that f(a) # 0 is at least

(g—1)- 6]_(S+1). (9.4)

Note that in contrast to the proof of Lemma 9.2.2 we focus on the good events — the polynomial
being non-zero — rather than on the bad events.
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We prove the lemma by induction on m. In the case of m = 1 we have by the degree mantra
(Proposition 5.2.3) that the probability that f(a;) # 0 is at least %. Ifr<g-1wehaves=0
and ¢ = r and so the expression in (9.4) satisfies

G-1-q' = % < Prlf(ar) #0l.

If r = g—1wehave s =1 and ¢ =0, but then again we have that (9.4) equals

—~_4-@-D

q-q < Pr(f(ay) #0],

where the inequality follows from the degree mantra.
Now we turn to the inductive step. Assume the hypothesis is true for (m — 1)-variate poly-

nomials and let f = ¥"_ ;X! where f; € F4[Xi,..., Xp-1] with f;, #0. Note 0< b < g—1 and

deg(fp) <r —b. Let & be the event of interest to us, i.e.,
& =A(a,...,am)lf(a1,...,am) # O}.

Let
éal = {((lly---,am—1)|fb((l1y---yam—l) # 0}

We first bound Pr[&181]. Fix ay, ..., an—1 such that fy(ay,...,an,-1) # 0 and let

b .
P(Z2)=)_ fila,...,am-1)Z".
i=0

Note P is a non-zero polynomial of degree b and we have

Pr(f(ai,...,am) =0lay,..., am-1] = PriP(am) # 01.

Since by the degree mantra, a univariate polynomial of degree b has at most b roots, we have

q-b

Pr(P(am) #0] =
am q

We conclude b
Pri&|&1=1-—.
q

Next we will bound Pr [&;]. This will allow us to lower bound the probability of & since
Pr[&] =Pr[& and &1] =Pr[&;] -Pr(&]&1].

Recall that deg(fp) < 1 —b. Write r —b=s'(g— 1) + ' where §', /' 2 0 and ¢’ < g — 2. By induction
we have
Pr(&] =Prlfy(ar,...,am-1) #01 = (g—t)- g~ V.
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Putting the two bounds together, we get

b (q ) —(S +].)

Pr(&] =Pr [éa|(g)1 1-Pr| 31]

We are now left with a calculation to verify that the bound above is indeed lower bounded

by (g - 1) - g “™V and we do so in Claim 9.4.2 using the facts that t,t' < g—2, b<qg-1, 1 =
s(g—1)+t,and r— b = s'(q—1)+ t'. In the claim further below (Claim 9.4.3), we also prove
(g—1)-q~*Y = g7/ and this concludes the proof of the lemma. O

Claim 9.4.2. Ifq,r1,s,t,5,t', b are non-negative integers such thatr = s(q—1)+t, r—b=s'(qg -
D+t,t,' <g—-2andb< q-1 then we have

q-n

b (q- ) (S+1)>(q 0 q—(s+1).

Proof. The proof breaks up in to two cases depending on s — s". Note that an equivalent defini-

tion of s and s’ are that these are the quotients when we divide r and r — b respectively by g — 1.

Since 0 < b < g — 1, it follows that either s’ = s or s’ = s— 1. We consider the two cases separately.
If s = s’ we have ¢ = t' + b and then it suffices to show that

970 —tysq-'+ D).

In turn this is equivalent to showing
(g-b)g-t)=qlq—(t'+D).
But this is immediate since the expression on the left is
(G-b)(g-t)=qg*—b+t)g+bt' =q(g—(b+1)+bt' = q(qg—(b+1)),

where the final inequality uses bt’ = 0.

If s = s’ + 1 we have a bit more work. Here we have 7+ g —1 = ¢ + b and it suffices to show
that

q;b (g-1t)- — = —(t
g-t)-g=(q-1)=2qg—-(t'+b+1)).

Write ¢—b = a and g —t' = 8. The expression on the left above simplifies to @8 and on the right
to a+ p—1. Since b, t' < g—1, we also have «a, f = 1. So it suffices to show that af = a + f— 1.
This is true since af=a +a(f—1) and we have a(f—1) = f—1sincea=1and f—1=0.

We thus conclude that the inequality holds for both s = s’ and s = s’ + 1 and this yields the
claim. O

Claim 9.4.3. Let q,1,s,t be non-negative real numbers such that q =2, r =s(g—1)+tand t <
qg—2. Then
(q _ t) . q—(s+l) > q—r/(q—l)-
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We remark that while the inequality is quite useful, the proof below is not particularly in-
sightful. We include it for completeness, but we recommend that the reader skip it unless nec-
essary.

Proof of Claim 9.4.3. We have four parameters in the inequality above. We will simplify it in
steps removing parameters one at a time. First we get rid of r by substituting r = s(g—1) + ¢. So
it suffices to prove:

(q_ 1) .q—(s+1) > q—(s(q—l)+t)/(q—1) — q—s.q—t/(q—l).

We can get rid of g~° from both sides (since the remaining terms are non-negative) and so it
suffices to prove:
q-—1 > g ta-1),
q

Let f4(1) = é +¢g~"/@@=Y 1, The inequality above is equivalent to proving fq()=0for0=r=<
g — 2. We use some basic calculus to prove the above. Note that the first and second derivatives
of f, with respect to  are given by f; (1) = 1 ln‘iq‘” 9=V and f7 (1) = (In(q)/(q - 1))* g~t/a-D,
In particular the second derivative is always posmve which means f(#) is maximized at one of
the two end points of the interval 7 € [0, g —2]. We have f,;(0) =0 < 0 as desired and so it suffices

to prove that
fq(q_z) — q—(q—z)/(q—l) _ g <0.
q

Multiplying the expression above by g we have that it suffices to show g'/“~! < 2 which in
turn is equivalent to proving g < 297! for every g = 2. The final inequality follows easily from
Bernoulli’s inequality (Lemma B.1.4) 1+ kx < (1 + x)* which holds for every x = -1 and k > 1. In
our case we substitute x = 1 and k = g — 1 to conclude g < 297! as desired. O

9.4.2 The general case: Dimension

For integers g, m, r let

m
Sqmr = {d: (dy,...,dn)€Z2™0<d;<qg—1forallie€[m] and,Z d; < r} (9.5)
i=1
and let
Kq,m,r = |Sq,m,r|-
We start with the following, almost tautological, proposition.

Proposition 9.4.4. For every prime power q and integers m = 1 and r = 0, the dimension of the
codeRM(q, m, 1) is Kg m,r-
Proof. Follows from the fact that for every d = (dy,...,dm) € Sg m,r the associated monomial

x4 = del ---Xd’” is a monomial of degree at most r and individual degree at most g — 1. Thus
these monomials (i.e., their evaluations) form a basis for the Reed-Muller code RM(q, m, r). (See
Exercise 9.10.) O
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The definition of K, does not give a good hint about its growth so below we give a few
bounds on Ky, , r that help estimate its growth. Specifically the proposition below gives a lower

bound K ,,, . and an upper bound K, q m,r 0N Kg m r that are (1) given by simple expressions and

(2) within polynomial factors of each other for every setting of g, m, and r.

Proposition 9.4.5. Forintegersq=2, m=1andr =0, let

el

_ é{ max{qm/Z q™ ; m,(q—1)m-— r} ifr=(q—1)m/2
max{("), 3 ([2”’"” } if r<(g-1mi2

q,m,r —
Then there are universal constants cy, ¢, (c1 < 3.1 and ¢, < 8.2 suffice) such that

and let

c
qur—qurSqur—Cl ( qmr)2

Proof. We tackle the inequalities in order of growing complexity of the proof. In our bounds we
use the fact that K, ;,,, is monotone non-decreasing in g as well as r (when other parameters
are fixed)- see Exercise 9.11.

First we prove Kg p,r < Kq m,r- On the one hand we have

Kq,m r=s Kq,m (g-Hm = qm,

which follows by ignoring the total degree restriction and on the other hand we have

m+r
Kq,mr < Kymr = r ’

whereas here we ignored the individual degree restriction.
Next we show K , . < Kg,m,r. First we consider the case r = (q —1)m/2. Here we argue
via symmetry. Consider a map that maps vectors d = (d,...,dp) € Z™ with 0 < d; < g to d=
(g-1-dy,...,q-1 —im). The map d — d is a one-to-one map which maps vectors with }_; d; >
r to vectors with };d; < (g —1)m —r. In other words either d € {0,...,q —1}"" is in S,  Or

de Sq,m,(g-1ym-r» thus establishing
Kgmr=q" = Kgmg-1ym-r-
Since r = (q —1)m/2 we have (g —1)m —r < r and so
Kgmr = Kgm,(g-1ym-r»

which in turn implies
Kgm,r=q™12.
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This establishes K 1, = Kq mr when r = (q — 1)m/2. Next, turning to the case r < (g —1)m/2,

firstlet ¢’ = |22 | We have
Kq,m r= Kq m,r = (q')m/Z

since r = (¢’ — 1)m/2, and this yields

L(|2r+m|[\"
Kq,mr—(‘?)m/z_a( J)

Finally we also have

i=0\ !
thus establishing Kg m,r = K, ,, - when r < (q - 1)m/2
Finally we turn to the inequalities showing K

" (m m
Kq,m,rZKZ,m,r:Z )Z( )»

mr <c-( qm,)CZ. Ifr = (q—1)m/2 we have

qm < K— < K+ < m
7 = Sgm,r = HNqmr =
establishing K, ;, m,r < 2K, . Next we consider the case r < m/2. In this case we have

- m r r
qum,rz(r)z(m/r) =2".

On the other hand we also have

m+r (e(m+r))r (e-(3/2)-m)r (3e)r (m)r
< < == -[—]| .
r r r 2 r

From 2" < K, ,, - we get (¥)" < (K ,, )'°®6¢?_ Combining with (2)" < K, and K}, . <
(") we get
3e\" (myr
Kmrs (?) () = g OB
. Finally, we consider the case m/2 < r < (g —1)m/2. In this range we have
{2r+mJ {ZrJ r m+r
=1+|—|z1+—= .
m m m m
Thus
_ 1({2r+mJ)m 1 m+rym 1(3)’"
Ky ) SYLALARRETEI
amr =2 m 2\ m 212
On the other hand we have
- m+r| _ e(m+r) m_em.(m+r)m
amr =\ |5\ T m - m
Again we have (Z££)™ < 2Kq m.rand e < (ZK;m,r)logZ(f"e/Z) and so K}/ ,, , < 2K, ;) H1088¢/2),
Thus in all cases we have K ,,, . < ¢1- (K, ) for ¢ = 1+log,(3e/2) <3.1and c; =2% <8.2, as
desired. O
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We now give a few examples of codes that can be derived from the bounds above, to illus-
trate the variety offered by Reed-Muller codes. In each of the cases we set one or more of the
parameters among alphabet size, rate, (relative) distance or absolute distance to a constant and
explore the behavior in the other parameters. In all cases we use Lemma 9.4.1 to lower bound
the distance and Proposition 9.4.5 to lower bound the dimension.

Example 9.4.6 (RM Codes of constant alphabet size and (relative) distance.). Fixq andr < g—1
and consider m — oco. Then the Reed-Muller codes RM(q, m,r) are [N, K, D], codes with block
length N = g™, distance D =6 - N for 6 =1—r/q, with dimension

K= = .
r r

In other words Reed-Muller codes yield codes of constant alphabet size and relative distance with
dimension growing as an arbitrary polynomial in the logarithm of the block length.

Example 9.4.7 (Binary RM Codes of rate close to 1 with constant (absolute) distance.). Fixq =2
and d and let m — oco. Then the Reed-Muller codes RM(2, m, m — d) are [N, K, D]» codes with
N=2" D=2%and

K=N-

(logzil\l+d) > N - (log, N)*.

(See Exercise 9.12 for bound on K.) Note that the rate — 1 as N — oco.

Example 9.4.8 (RM codes of constant rate and relative distance over polynomially small al-
phabets.). Given any € > 0 and let m = E] and now consider g — oo with r = q/2. Then the
Reed-Muller codes RM(q, m,r) are [N, K, D], codes with N = q™, D = % and

K=

1(q+m)m221 N

2\ m mmn

Expressed in terms of N and ¢, the codes have length N, dimension Q (e” £)- N and relative dis-
tance 1/2 over an alphabet of size N*.

Another natural regime is to consider the case of constant rate 1/2: see Exercise 9.13 for
more.

Finally we mention a range of parameters that has been very useful in the theory of com-
puter science. Here the alphabet size is growing with N, but very slowly. But the code has a fixed
relative distance and dimension that is polynomially related to the block length.

Example 9.4.9 (RM Codes over polylogarithmic alphabets with polynomial dimension.). Given
O0<e<l, letq—ooandletr=ql2 and m = q°. Then the Reed-Muller codes RM(q, m,r) are
[N, K, D], codes with N = q™, D = % and

]. q + m m ]. 1—5 m ]. 1—8

K== > =—.N!"¢,

() 25 )" =3

Expressed in terms of N and e, the codes have length N, dimension Q(N'~¢) and relative distance

1/2 over an alphabet of size (log N)'/¢. (See Exercise 9.14 for claim on the bound on q.)

m
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9.5 Exercises

Exercise9.1. Argue that any RM(q, m, r) is a linear code.

Exercise9.2. Argue that for D as defined in (9.1), we have

o=(")

Exercise9.3. Show that Lemma 9.2.2 is tight in the sense that for every prime power g and inte-
gers m=1and 1< r < g - 1, there exists a polynomial with exactly r - g™ ! roots.

Exercise 9.4. Show that Lemma 9.2.2 is not tight for most polynomials. In particular show
that for every prime power g and integers m =1 and 1 < r < g — 1, a random polynomial in
Fq(Xy,..., Xl of degree r has g™ ! expected number of roots.

Exercise 9.5. Show that the Reed-Muller codes of Section 9.2 give rise to codes of relative dis-

tance & (for any 0 < § < 1) and block length 7 such that they have alphabet size of {/n and rate
-6
m!

Exercise 9.6. Prove Lemma 9.3.1.
Exercise9.7. Prove that the lower bound in Lemma 9.3.1 is tight.

Exercise 9.8. Show that there exists a binary RM code with block length 7, rate nf®¥~! and
relative distance n " forany 0 <7 < 1/2.

Exercise 9.9. Prove that the (first) lower bound in Lemma 9.4.1 is tight for all settings of the
parameters.

Exercise 9.10. Prove that the evaluations of X4 for every d € Sg,m,r (as in (9.5)) form a basis for
RM(q, m,r).

Exercise 9.11. Argue that Ky, , is monotone non-decreasing in g as well as r (when other pa-
rameters are fixed).

Exercise9.12. Argue the claimed bound on K in Example 9.4.7.

Exercise 9.13. Figure out a RM code that has rate % and has as large a distance as possible and
as small an alphabet as possible.

Exercise 9.14. Prove the claimed bound on g in Example 9.4.9.

Exercise 9.15. In this problem we will talk about the dual of Reed-Muller codes, which turn out
to be Reed-Muller codes (with a different degree) themselves. We do so in a sequence of sub-
problems:

1. Showthatforl<sj<g-1

Y al#£0

ael,

ifand onlyif j = g—1.

Hint: Use Exercise 2.2.
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2. Arguethatforanym=1and1<j,...,jm<qg-1,

m .
> [ld=o

(Clyeey cm)e[qu i=1
ifandonlyif jy=jo=---=jn=qg-1.
3. Using the above or otherwise, show that forany 0 < r < (q — 1) — s, we have

RM(q, m,r)* =RM(q, m,m(g—1)—r—1).

9.6 Bibliographic Notes

We point out that the original code considered by Reed and Muller is the one in Section 9.3.
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Chapter 10

From Large to Small Alphabets: Code
Concatenation

Recall Question 8.3.2 that we had asked before: Is there an explicit asymptotically good binary
code (that is, rate R > 0 and relative distance § > 0)? In this chapter, we will consider this ques-
tion when we think of explicit code in the sense of Definition 6.3.1 as well as the stronger notion
of a strongly explicit code (Definition 6.3.2).

Let us recall all the (strongly) explicit codes that we have seen so far. (See Table 10.1 for an
overview.)

Code 0
Hamming 1—0(10%) 0(2)
Hadamard 0] (10%) %
Reed-Solomon % (1 Oé n)

Table 10.1: Strongly explicit binary codes that we have seen so far.

Hamming code (Section 2.4), which has rate R = 1 — O(logn/n) and relative distance 6 =
O(1/n) and the Hadamard code (Section 2.7), which has rate R = O(logn/n) and relative dis-
tance 1/2. Both of these codes have extremely good R or 6 at the expense of the other param-
eter. Next, we consider the Reed-Solomon code (of say R = 1/2) as a binary code, which does
much better- 6 = @, as we discuss next.

Consider the Reed-Solomon over F,s for some large enough s. Itis possible to getan [, 55
Reed-Solomon code (i.e. R = 1/2). We now consider a Reed-Solomon codeword, where every
symbol in F,s is represented by an s-bit vector. Now, the “obvious” binary code created by view-
ing symbols from [F»s as bit vectors as above is an [ns, %, g + 1] ) code!. Note that the distance
%\,), where N = ns is the block length of the final binary code. (Recall
that n=2°and so N = nlogn.)

of this code is only @(

IThe proof s left as an exercise.
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The reason for the (relatively) poor distance is that the bit vectors corresponding to two
different symbols in F,s may only differ by one bit. Thus, d positions which have different Fys
symbols might result in a distance of only d as bit vectors.

To fix this problem, we can consider applying a function to the bit-vectors to increase the
distance between those bit-vectors that differ in smaller numbers of bits. Note that such a func-
tion is simply a code! We define this recursive construction more formally next. This recursive
construction is called concatenated codes and will help us construct (strongly) explicit asymp-
totically good codes.

10.1 Code Concatenation

Forg=2,k=1and Q= qk, consider two codes which we call outer code and inner code:
Cout: [QIX — [QIY,

Cin: [q)* — (1"

Note that the alphabet size of Cy; exactly matches the number of messages for Ci,. Then given
m = (my,..., mg) € [Q]X, we have the code Cyyi o Cin : [g]¥K — [g]"N defined as

Cout © Cin(m) = (Cin (Cout(m)1), ..., Cin(Court (M) n)),

where
Cout(m) = (Coye(m)y, ..., Cour(m) n) .

This construction is also illustrated in Figure 10.1.

my |mp | oot oTTToToooooo mg
¢ COth
Coutm)] | Coue(m)y | -------------------- Cour(m) y
¢ Cin ¢ Cin ¢ Cin
Cin (Cout(m)1) | Cin (Cout(m)p) | -------------------- Cin (Cout(m) )

Figure 10.1: Concatenated code Cyy © Ciy.

We now look at some properties of a concatenated code.

Theorem 10.1.1. If Cyy is an (N, K, D)qk code and Ci, is an (n, k,d) 4 code, then Coyt o Ciy is an
(nN, kK, dD)4 code. In particular, if Cout (Cin resp.) has rate R (r resp.) and relative distance 6 o
(Oin resp.) then Coyt o Cin has rate Rr and relative distance 6 oyt - Oin.
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Proof. The first claim immediately implies the second claim on the rate and relative distance of
Cout © Cin- The claims on the block length, dimension and alphabet of Cy o Ci, follow from the
definition.? Next we show that the distance is at least dD. Consider arbitrary m; # m, € [QIX.
Then by the fact that Cyy has distance D, we have

A (Cout (M), Coyt (M2)) = D. (10.1)

Thus for each position 1 < i < N that contributes to the distance above, we have

A(Ci (Cout (ml)i)»cin (Cout (mz)z)) >d, (10.2)

as Cjp has distance d. Since there are at least D such positions (from (10.1)), (10.2) implies
A (Cout © Cin (my), Coyt © Cin (M) = dD.
The proof is complete as the choices of m; and my were arbitrary. O

If Ci, and Cyy are linear codes, then so is Cyy¢ © Cin, which can be proved for example, by
defining a generator matrix for Cyy o Cj, in terms of the generator matrices of Ci, and Cyy¢. The
proofis left as an exercise.

10.2 Zyablov Bound

We now instantiate an outer and inner codes in Theorem 10.1.1 to obtain a new lower bound on
the rate given a relative distance. We'll initially just state the lower bound (which is called the
Zyablov bound) and then we will consider the explicitness of such codes.

We begin with the instantiation of Cy,. Note that this is a code over a large alphabet and
we have seen an optimal code over large enough alphabet: Reed-Solomon codes (Chapter 5).
Recall that the Reed-Solomon codes are optimal because they meet the Singleton bound 4.3.1.
Hence, let us assume that C,, meets the Singleton bound with rate of R, i.e. Cyy has relative
distance 6,4 > 1 — R. Note that now we have a chicken and egg problem here. In order for
Cout © Cin to be an asymptotically good code, Cj, needs to have rate r > 0 and relative distance
Oin > 0 (i.e. Cj, also needs to be an asymptotically good code). This is precisely the kind of code
we are looking for to answer Question 8.3.2! However the saving grace will be that k can be
much smaller than the block length of the concatenated code and hence, we can spend “more"
time searching for such an inner code.

Suppose Cj, meets the GV bound (Theorem 4.2.1) with rate of r and thus with relative dis-
tance 0, = H;l(l —r) —¢, for some € > 0. Then by Theorem 10.1.1, Cyy o Ci has rate of rR and

0=(1- R)(H;l (1-r) —¢€). Expressing R as a function of § and r, we get the following:

5
:1__1—.
H'(-r)-¢

2Technically, we need to argue that the g¥X messages map to distinct codewords to get the dimension of kK.
However, this follows from the fact, which we will prove soon, that Cyy o Ci, has distance dD = 1, where the in-
equality follows for d, D = 1.
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Zyablov bound
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Figure 10.2: The Zyablov bound for binary codes. For comparison, the GV bound is also plotted.

Then optimizing over the choice of r, we get that the rate of the concatenated code satisfies

0
R = max r 1—1— ,
0<r<1-Hg(6+¢) HC; 1-rn-¢

where the bound of r <1 - H,(6 +¢) is necessary to ensure that % > 0. This lower bound on the
rate is called the Zyablov bound. See Figure 10.2 for a plot of this bound for binary codes.

To get a feel for how the bound behaves, consider the case when § = % —£. We claim that
the Zybalov bound states that 2 = Q (). (Recall that the GV bound for the same § has a rate of
Q(e).) The proof of this claim is left as an exercise.

Note that the Zyablov bound implies that for every § > 0, there exists a (concatenated) code
with rate R > 0. However, we already knew about the existence of an asymptotically good code

by the GV bound (Theorem 4.2.1). Thus, a natural question to ask is the following:

Question 10.2.1. Can we construct an explicit code on the Zyablov bound?

We will focus on linear codes in seeking an answer to the question above because linear codes
have polynomial size representation. Let Coy be an [NV, K] Reed-Solomon code where N =
Q —1 (evaluation points being [Fg with Q = g%). This implies that k = ©(log N). However we still
need an efficient construction of an inner code that lies on the GV bound. We do not expect
to construct such a Cj, in time poly(k) as that would answer Open Question 8.3.2! However,
since k = O(log N), note that an exponential time in k algorithm is still a polynomial (in N) time
algorithm.
There are two options for this exponential (in k) time construction algorithm for Cjy:
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* Perform an exhaustive search among all generator matrices for one satisfying the required
property for Cj,. One can do this because the Varshamov bound (Theorem 4.2.1) states
that there exists a linear code which lies on the GV bound. This will take g°*™ time.
Using k = rn (or n = O(k)), we get gO%m = gO**) = NOUogN) \which is upper bounded by
(nIN)©Uog("N) '3 quasi-polynomial time bound.

e The second option is to construct Cj, in qo(”) time and thus use (nN)°Y time overall. See
Exercise 10.1 for one way to construct codes on the GV bound in time g°®.

Thus,
Theorem 10.2.1. We can construct a code that achieves the Zyablov bound in polynomial time.

In particular, we can construct explicit asymptotically good code in polynomial time, which
answers Question 10.2.1 in the affirmative.

A somewhat unsatisfactory aspect of this construction (in the proof of Theorem 10.2.1) is
that one needs a brute force search for a suitable inner code (which led to the polynomial con-
struction time). A natural followup question is

Question 10.2.2. Does there exist a strongly explicit asymptotically good code?

10.3 Strongly Explicit Construction

We will now consider what is known as the Justesen code. The main insight in these codes is that
if we are only interested in asymptotically good codes, then the arguments in the previous sec-
tion would go through even if (i) we pick different inner codes for each of the N outer codeword
positions and (ii) most (but not necessarily all) inner code lie on the GV bound. It turns out that
constructing an “ensemble" of codes such that most of the them lie on the GV bound is much
easier than constructing a single code on the GV bound. For example, the ensemble of all linear
codes have this property- this is exactly what Varshamov proved. However, it turns out that we
need this ensemble of inner codes to be a smaller one than the set of all linear codes.

Justesen code is concatenated code with multiple, different linear inner codes. Specifically,
it is composed of an (V, K, D) g+ outer code Cyyt and different inner codes Ci"n :1<i=<N. For-

.,CY), is defined as follows:

given a message m € [q , let the outer codeword be denoted by (cy,...,cN) def Cout(m). Then
Cout© (Chy..., CNY(m) = (CL (c1), CZ (c2), ..., C. (en)).

in’**
We will need the following result.

mally, the concatenation of these codes, denoted by Cg © (Ciln, ..
k]K

Theorem 10.3.1. Lete > 0. There exists an ensemble of inner codes Ciln, Cﬁl, oo Cilr\lf of rate L, where

N = g* -1, such that for at least (1 — €) N values of i, C. has relative distance = H;l (3 —¢).
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In fact, this ensemble is the following: for @ € [F:l .» the inner code Ci‘fl : Ff, — [Fflk is defined as

C{ (x) = (x, ax). This ensemble is called the Wozencraft ensemble. We claim that C{ for every
ace [FZ . is linear and is strongly explicit. (The proof if left as an exercise.)

10.3.1 Justesen code

For the Justesen code, the outer code Cy, is a Reed-Solomon code evaluated over F*, of rate

R, 0 < R < 1. The outer code Cyy has relative distance 6,y = 1 — R and block length of N =
qk — 1. The set of inner codes is the Wozencraft ensemble {Ci‘fl}aepk from Theorem 10.3.1. So
q

the Justesen code is the concatenated code C* def out © (CL, C? .,CiIX) with the rate g. The

in” ~in’**
following proposition estimates the distance of C*.
Proposition 10.3.2. Lere > 0. C* has relative distance at least 1 - R—¢)- H,"' (5 — ¢)

Proof. Consider m! #m? e (I]:qk)K. By the distance of the outer code |S| = (1 — R) N, where
S ={ilCout(m"); # Cou(m®);}.

Call the ith inner code goodif C! has distance at least d & H, !(3 —¢€)-2k. Otherwise, the inner
code is considered bad. Note that by Theorem 10.3.1, there are at most ¢ N bad inner codes. Let
Sg be the set of all good inner codes in S, while Sy, is the set of all bad inner codes in S. Since
Sp<eN,

|Sgl =S| =1Spl =(1—R—¢€)N. (10.3)

For each good i € S, by definition we have
A(CL, (Cour (")), Chy (Cou (m?),)) = . (10.4)
Finally, from (10.3) and (10.4), we obtain that the distance of C* is at least

1
(1—R—£)-Nd:(1—R—5)H;1(5—5)N-2k,

as desired. O

Since the Reed-Solomon codes as well as the Wozencraft ensemble are strongly explicit, the
above result implies the following:

Corollary 10.3.3. The concatenated code C* from Proposition 10.3.2 is an asymptotically good
code and is strongly explicit.

Thus, we have now satisfactorily answered Question 10.2.2 modulo Theorem 10.3.1, which
we prove next.
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Proof of Theorem 10.3.1. Fixy = (y;,y2) € [Fék \ {0}. Note that this implies thaty; =0andy, =0
are not possible. We claim that y € C for at most one a € F;‘k. The proof is by a simple case
analysis. First, note thatif y € C7, then it has to be the case thaty, = a -y;.

_®

e Case 1:y; #0andy, # 0, thenye C7, where a Vi

e Case 2:y; #0 andy, =0, theny ¢ C for every a € [F;‘k (as ay; # 0 since product of two
elements in [, also belongs to F_, ).

e Case 3:y; =0andy, #0, theny¢ C forevery a € [F;k (as ay; =0).

Now assume that wt(y) < H;l (1-é€)n. Note thatifye CJ, then C is “bad”(i.e. has relative
distance < H;l (% —¢)). Sincey € C{ for at most one value of a, the total number of bad codes

is at most

~1(1 (1
Hylwt(y) <Hq1(§—g).2k} < Volq(qu(E—s)-Zk,Zk)

< gHaHy' G-en 2k (10.5)
_ q@—g)-zk

qk

q2£k
<e(gF-1) (10.6)
=¢N. (10.7)

In the above, (10.5) follows from our good old upper bound on the volume of a Hamming ball
(Proposition 3.3.1) while (10.6) is true for large enough k. Thus for at least (1 — &) N values of «,
CZ has relative distance at least H,! (5 —¢), as desired. O

By concatenating an outer code of distance D and an inner code of distance d, we can ob-
tain a code of distance at least = Dd (Theorem 10.1.1). Dd is called the concatenated code’s de-
sign distance. For asymptotically good codes, we have obtained polynomial time construction
of such codes (Theorem 10.2.1, as well as strongly explicit construction of such codes (Corol-
lary 10.3.3). Further, since these codes were linear, we also get polynomial time encoding. How-
ever, the following natural question about decoding still remains unanswered.

Question 10.3.1. Can we decode concatenated codes up to half their design distance in poly-
nomial time?
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10.4 Exercises

Exercise10.1. In Section 4.2.1, we saw that the Gilbert construction can compute an (n, k) ; code
in time g°"”. Now the Varshamov construction (Section 4.2.2) is a randomized construction
and it is natural to ask how quickly can we compute an [n, k], code that meets the GV bound.
In this exercise, we will see that this can also be done in g°" deterministic time, though the
deterministic algorithm is not that straight-forward anymore.

1. (A warmup) Argue that Varshamov’s proof gives a g®*™ time algorithm that constructs
an [n, k] code on the GV bound. (Thus, the goal of this exercise is to “shave" off a factor
of k from the exponent.)

2. A kx n Toeplitz Matrix A= {Ai,j}f:’l ”jzl satisfies the property that A; j = A; 1 j-1. In other
words, any diagonal has the same value. For example, the following is a 4 x 6 Toeplitz

matrix:
1 2 3 456
71 2 3 45
8 71 2 3 4
9 8 71 2 3

A random k x n Toeplitz matrix T € [F’;X" is chosen by picking the entries in the first row
and column uniformly (and independently) at random.

Prove the following claim: For any non-zero m € [Fg, the vector m- T is uniformly dis-
tributed over F}}, that is for everyy e Fj, Pr[m- T =y] = g7".

(Hint: Write down the expression for the value at each of the 7 positions in the vectorm- T
in terms of the values in the first row and column of T. Think of the values in the first row

and column as variables. Then divide these variables into two sets (this “division" will
depend on m) say S and S. Then argue the following: for every fixed y € Fj and for every

fixed assignment to variables in S, there is a unique assignment to variables in S such that
m7T =vy.)

3. Briefly argue why the claim in part (b) implies that a random code defined by picking its
generator matrix as a random Toeplitz matrix with high probability lies on the GV bound.

4. Conclude that an [n, k], code on the GV bound can be constructed in time 20(k+n),

10.5 Bibliographic Notes

Code concatenation was first proposed by Forney([30].
Justesen codes were constructed by Justesen [58]. In his paper, Justesen attributes the Wozen-
craft ensemble to Wozencraft.
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Chapter 11

Information Theory Strikes Back: Polar
Codes

We begin by recalling Question 13.4.1, which we re-produce for the sake of completeness:

Question 11.0.1. Can we get to within € of capacity for BSC,, (i.e. rate 1 — H(p) — €) via codes
with block length and decoding times that are poly(1/¢)?

In this chapter we introduce Polar codes, a class of codes developed from purely information-
theoretic insights. We then show how these codes lead to aresolution of Question 11.0.1, namely
how to get arbitrarily close to capacity on the binary symmetric channel with block length, and
decoding complexity growing polynomially in the inverse of the gap to capacity. This answers
in the affirmative one of the most crucial questions in the Shannon setting.

This chapter is organized as follows. We define the precise question, after some simplifi-
cation, in Section 11.1. In the same section, we discuss why the simplified question solves a
much more general problem. We then switch the problem from an error-correction question to
a linear-compression question in Section 11.2. This switch is very straightforward but very use-
ful in providing insight into the working of Polar codes. In Section 11.3 we introduce the idea of
polarization, which provides the essential insight to Polar codes. (We remark that this section
onwards is based on notions from Information Theory. The reader unfamiliar with the theory
should first consult Appendix E to get familiar with the basic concepts.) In Section 11.4 we then
give a complete description of the Polar codes, and describe the encoding and decoding algo-
rithms. In Section 11.5 we then describe the analysis of these codes. We remark that the only
complex part of this chapter is this analysis and the construction and algorithms themselves
are quite simple (and extremely elegant) modulo this analysis.
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11.1 Achieving Gap to Capacity

The goal of this section is to present a simple question that formalizes what it means to achieve
capacity with polynomial convergence, and to explain why this is the right question (and how
answering this positively leads to much more powerful results by standard methods).

Recall that for p € [0,1/2) the BSC,, is the channel that takes as input a sequence of bits X =
(X1,...,Xy) and outputs the sequence Y = (Y7,..., ;) where for each i, X; = Y; with probability
1-p and X; # Y; with probability p; and this happens independently for each i € {1,...,n}. We
use the notation Z = (73, ..., Z,) € Bern(p)" to denote the error pattern, so that Y =X+Z.

Our target for this chapter is to prove the following theorem:

Theorem 11.1.1. For every p € [0,1/2) there is a polynomial ny(-) such that for every € > 0 there
exist k,n and an encoder E : [FéC — [} and decoder D : ) — [FéC satisfying the following conditions:

Length and Rate The codes are short, and the rate is close to capacity, specifically, 1/e < n <
no(l/e) andk =1 - H(p) —¢) - n.

Running times The encoder and decoder run in time O(nlogn) (where the O(-) notation hides a
universal constant independent of p and €).

Failure Probability The probability of incorrect decoding is at most €. Specifically, for everym e
F,
’ Pr m#D(E@m)+Z)]<e.
ZeBern(p)®

Theorem 11.1.1 is not the ultimate theorem we may want for dealing with the binary sym-
metric channel. For starters, it does not guarantee codes of all lengths, but rather only of one
fixed length 7 for any fixed choice of €. Next, Theorem 11.1.1 only guarantees a small probabil-
ity of decoding failure, but not one that say goes to zero exponentially fast in the length of the
code. The strength of the theorem is (1) its simplicity - it only takes one parameter € and delivers
a good code with rate € close to capacity and (2) Algorithmic efficiency: the running time of the
encoder and decoder is a polynomial in 1/¢. It turns out both the weaknesses can be addressed
by applying the idea of concatenation of codes (Chapter 10) while preserving the strength. We
present the resulting theorem, leaving the proof of this theorem from Theorem 11.1.1 as an ex-
ercise. (See Exercise 11.1.)

Theorem 11.1.2. There exists polynomially growing functions ny : 0,11 = Z* and T : 7" — 7~
such that for all p € [0,1], € > 0 there exists § > 0, a function k : Z* — 7" and an ensemble of
function E = {E,}, and D = {D,},, such that for all n € Z* with n = ny(1/¢) the following hold:

1. The codes are €-close to capacity: Specifically, k = k(n) = (1- H(p) —€)n, E,: [FIZC — [} and
Dy :F} —Fk.

2. The codes correct p-fraction of errors with all but exponentially small probability: Specifi-
cally

Pr [Dp(EnX) +Z) #X] <exp(—6n).
Z~Bern(p)" X~U F¥)

3. Encoding and Decoding are efficient: Specifically E, and D,, run in time at most T (n/¢).

176



11.2 Reduction to Linear Compression

In this section we change our problem from that of coding for error-correction to compress-
ing a vector of independent Bernoulli random variables i.e., the error-pattern. (Recall that we
encountered compression in Exercise 6.10). We show that if the compression is linear and the
decompression algorithm is efficient, then this turns into a linear code with efficient decod-
ing (this is the converse of what we saw in Exercise 6.11). By virtue of being linear the code is
also polynomial time encodable, given the generator matrix. We explain this simple connection
below.

For n = m, we say that a pair (H, D) where He F}*", and D : F}" — [} forms an 7-error linear
compression scheme for Bern(p)” if H has rank m and

Pr [DZ-H)#Z]<T.
Z~Bern(p)"

We refer to the ratio %+ as the (compression) rate of the scheme (recall Exercise 6.10).
Proposition 11.2.1. Let (H, D) be a t-error linear compression scheme for Bern(p)" with H €
F3*™. Letk=n—mandletG e F’Z”” and G* : [F;”k be full-rank matrices such thatG-H = 0 and
G-G* =1 (the k x k identity matrix). Then the encoder E : [Fé“ — [} given by
E(X)=X-G
and the decoder D' : F} — F’zc given by
D'(Y)=(Y-D(Y-H))-G"

satisfy for everym € [Fg:

Pr m#D'(Em)+Z)]<rt.
ZeBern(p)"

Remark11.2.1. 1. Recall that straightforward linear algebra implies the existence of matri-
ces G and G* above (see Exercise 11.2).

2. Note that the complexity of encoding is simply the complexity of multiplying a vector by
G. The complexity of decoding is bounded by the complexity of decompression plus the
complexity of multiplying by G*. In particular if all these operations can be carried out in
O(nlogn) time then computing E and D’ takes O(nlogn) time as well.

3. Note that the above proves the converse of Exercise 6.11. These two results show that (at
least for linear codes), channel and source coding are equivalent.

Proof. Suppose D(Z-H) = Z. Then we claim that if Z is the error pattern, then decoding is
successful. To see this, note that

D'(E(m)+Z) =(E(m) +Z— D((E(m) + Z) -H)) -G" (11.1)
=(E(m)+Z-D(Z-H))-G" (11.2)
=(Em)+Z-7))-G* (11.3)
=E(m)-G*
=m. (11.4)
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In the above (11.1) follows by definition of D’, (11.2) follows from the fact that Em)-H=m-G-
H =0, (11.3) follows by assumption that D(Z-H) = Z and (11.4) follows since E(m) = m-G and
G-G* =1. Thus the probability of a decoding failure is at most the probability of decompression
failure, which by definition is at most 7, as desired. O

Thus our updated quest from now on will be to

Question 11.2.1. Design a linear compression scheme for Bern(p)”" of rate at most H(p) + €.

See Exercise 11.3 on how one can answer Question 11.2.1 with a non-linear compression
scheme.

In what follows we will introduce the polarization phenomenon that will lead us to such a
compression scheme.

11.3 The Polarization Phenomenon

11.3.1 Information Theory Review

The only information theoretic notions that we need in this chapter are that of Entropy (see
Definition E.1.1) and Conditional Entropy (Definition E.2.2). We use the notations H(X) to de-
note the entropy of a variable X and H(X|Y) to be the conditional entropy, conditioned on Y.
The main properties of these notions we will use are the chain rule (see Theorem E.2.2):

H(X,Y)=H(Y)+ H(X|Y),
the fact that conditioning does not increase entropy (see Lemma E.2.4):
H(XY) < H(X).

We also use the basic fact that the uniform distribution maximizes entropy (see Lemma E.1.2)
and so

H(X) <log|Q|

if Q denotes the support of X. A final fact that will be useful to keep in mind as we develop the
polar codes is that variables with low entropy are essentially determined, and variables with low
conditional entropy are predictable. We formalize this (with very loose bounds) below.

Proposition 11.3.1. Leta =0.

1. Let X be a random variable with H(X) < a. Then there exists x such thatPrx[X # x] < a.
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2. Let (X,Y) bejointly distributed variables with H(X|Y) < a. Then the function

A(y) = argmax{Pr[X = x|Y = yl}

satisfies
Pr [X#A(Y)] =a.
(X,Y)

We defer the proof to Section 11.6.1.

11.3.2 Polarized matrices and decompression

We now return to the task of designing a matrix H (and corresponding matrices G and G*) such
that the map Z — Z-H is a good compression scheme. As such we are seeking rectangular
matrices with some extra properties, but in this section we will convert this question into a
question about square invertible matrices.

For an invertible matrix P € F}*" we consider its effect on Z = (Zy,..., Z,) ~ Bern(p)". Let
W = (W,...,W,) be given by W = Z-P. Now consider the challenge of predicting the W;’s as they
arrive online. So when attempting to predict W; we get to see

W, = (Wy,...,Wi_1)

and can use this to predict W;. For arbitrary matrices (in particular the identity matrix), seeing
W; gives us no advantage on predicting W;. A matrix will be considered polarized if for an
appropriately large fraction of i’s, W; is highly predictable from W;.

To formalize the notion of highly predictable we turn to information theory and simply re-
quire H(W;|W.;) < T for some very small parameter 7 of our choice.! How many i’s should be
very predictable? Let

S=8; ={ie[nl|HW;|Ws;) = 7}

denote the set of unpredictable bits. An entropy calculation tells us how small we can hope S
would be. Since P is invertible, we have (see Exercise 11.4):

HW)=H(Z)=n-H(p), (11.5)

But by the chain rule we have

HW) =Y HW;W.,)
i=1

<) HW;W.)+nt (11.6)
ieS

<) HW))+nt (11.7)
ieS

<|S|+ nt. (11.8)

Eventually we will set 7 = o(1/n).
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In the above, (11.6) follows by using definition of S and that |[{i ¢ S}| < n, (11.7) follows from the
fact that conditioning does not increase entropy and (11.8) follows from the fact that uniformity
maximizes entropy and so H(W;) < 1. We thus conclude that |S| = H(p)-n—nt = H(p) - n. So
the smallest that the set S can be is H(p) - n and we will allow an en additive slack to get the
following definition.

Definition 11.3.1 (Polarizing matrix, unpredictable columns). We say that an invertible matrix
PeF}*" is (¢,7)-polarizing for Bern(p)" if for W=Z-P and

S=S;={i e [n]|[HW;Ws;) =7}

we have |S| < (H(p) + €)n. We refer to the set S as the set of unpredictable columns of P (and
{Wiles as the unpredictable bits of W).

We next show how to get a compression scheme from a polarizing matrix (without necessar-
ily having an efficient decompressor). The idea is simple: the compressor simply outputs the
“unpredictable” bits of W. Let Wg = (W;) ;ecs, the compression of Z is simply (Z-P)s. For the sake
of completeness, we record this in Algorithm 11.

Algorithm 9 POLAR COMPRESSOR(Z, S)

INPUT: String Z € [} and subset S < [n]

OuTtpUT: Compressed string W € [F'ZS| > Assumes a polarizing matrix P € F}*"

1: RETURN (Z-P)g

Equivalently if we let Ps denote the 7 x |S| matrix whose columns correspond to indices in S,
then the compression of Z is Z - Pg. So Pg will be the matrix H we are seeking. Before turning to
the decompression, let us also specify G and G* for this construction above. Indeed Exercise 2?2
shows that G = (P™!); and G* = Pg. In particular, the complexity of multiplying by P and P~
dominate the cost of the matrix multiplications needed in the encoding and decoding.

We finally turn to the task of describing the decompressor corresponding to compression
with a polarizing matrix P with unpredictable columns S. The method is a simple iterative one,
based on the predictor from Proposition 11.3.1 and is presented in Algorithm 10.

Next we argue that Algorithm 10 has low failure probability:

Lemma 11.3.2. IfP is (¢, 7)-polarizing for Bern(p)" with unpredictable columns S, then the suc-
cessive cancellation decoder has failure probability at mostt - n, i.e.,

Pr [Z#SCD((Z-P)s,P,S)]<71-n.
ZeBern(p)"

Thus if P is (¢,e/ n)-polarizing for Bern(p)" then the failure probability of the successive cancel-
lation decoder is at most €.

2Note that the Successive Cancellation Decompressor, and Decompressors in general are not expected to work
correctly on every input. So the INPUT/OUTPUT relations don'’t fully capture the goals of the algorithm. In such
cases, in the rest of the chapter we will include a PERFORMANCE PARAMETER which we wish to minimize that
attempts to capture the real goal of the algorithm.
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Algorithm 10 Successive Cancellation Decompressor SCD(W, P, S)

INPUT: SC[n], WeF5 and P e F)*"

OUTPUT: Z€F} such that (Z-P)s=W

PERFORMANCE PARAMETER: ° Prz-Bem(p)n[SCD((Z- P)s, P, S) # Z] (smaller is better)

1: FORIi=1to n DO
IF i € S THEN

2

3 Wi — W
4: ELSE

5

6:

W; — argmaxyep, {Pr[W; = bIW<; = W]}

RETURNZ — P~ 1. W

Proof. Let W = Z-P. Note that by Step 3 in Algorithm 10, we have for every i € S, W; = W;. For
any i ¢ S, by Proposition 11.3.1 applied with X = W;, Y =W;, a = T we get that

Pr(W; # A'Wep)] <7,
where A(-) is the corresponding function defined for i ¢ S. By a union bound, we get that

Pr(3is.t. W; # AW ) <T-n.

Note that by step 5 in Algorithm 10 and the definition of Al(-), we have W; = Ai(W<i). But
if W # W there must exists a least i such that W; # W;. Thus we get Pr[W # W] < 77 and so
probability that SCD(Ws, P, S) # Z is at most T 7. O

To summarize this section we have learned that to prove Theorem 11.1.1 it suffices to answer
the following question.

Question 11.3.1. Find an (¢,&/n)-polarizing matrix P € F}*" with n is bounded by a poly-
nomial in 1/e; where SCD (potentially a re-implementation of Algorithm 10) as well as mul-
tiplication and inversion by P takes O(nlogn) time.

Next we describe the idea behind the construction, which will answer the above question.

11.3.3 A polarizing primitive

Thus far in the chapter we have essentially only been looking at the problem from different
perspectives, but not yet suggested an idea on how to get the codes (or compression schemes)
that we desire (i.e. answer Question 11.3.1. It is this section that will provide the essence of the
idea, which is to start with a simple and basic polarization step, and then iterate it appropriately
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Z4q Z,+ 7,

H(p) H(2p(1 —p))
Z > L)
H(p) 2H(p) —H(2p(1 —p))

Figure 11.1: The 2 x 2 Basic Polarizing Transform. Included in brown are the conditional en-
tropies of the variables, conditioned on variables directly above them.

many times to get a highly polarized matrix. Indeed it is this section that will explain the term
polarization (and why we use this term to describe the matrices we seek).

Recall that the ultimate goal of polarization is to start with many independent bits 7,..., Z,
which are independent and slightly unpredictable (if p is small), and to produce some linear
transform that concentrates all the unpredictability into a fewer set of bits. In our basic primi-
tive we will try to do this with two bits. So we have Z;, Z, such that H(Z,) = H(Z,) = p and we
wish to produce two bits Wi, W5 such that at least one of these is less predictable than either
of Z;’s. Since there are only 4 possible linear combinations of two bits (over F,) and three are
trivial (0, Z;, and Z,) we are left with only one candidate function namely Z; + Z,. So we will
set Wy = Z; + Z,. For W, we are left with the trivial functions: 0 carries no information and so
is ruled out. Without loss of generality, the only remaining choice is W> = Z,. So we look at this
transformation: P, : (21, Z») — (Wy, Wh) = (Z1 + Z,, Z»). (See Figure 11.1.)

This is an invertible linear transformation given by the matrix

10
p=(} 9

H(Wy,Wo) =2H(p). (11.9)

So (see Exercise 11.5):

But some examination shows that H(W;) > H(Z;), H(Z,). In particular the probability that W) is
lis2p(1—-p) € (p,1/2) and since H(-) is monotone increasing in this interval (see Exercise 11.6)
it follows that H(W1) > H(p) = H(Z,) = H(Z,). Thus W is less predictable than either of the
input bits; and now, thanks to the chain rule

HW,|Wh) = HWy, Wo) — HWW) = H(Zy, Z,) — HWy) = H(Z)) + H(Z)) - HWh) < H(Z1), H(Z).

In other words multiplying by P, has separated the entropy of two equally entropic bits, into a
more entropic bit and a (conditionally) less entropic one. But of course this may be only slight
polarization and what we are hoping for is many bits that are almost completely determined by
preceding ones.

To get more polarization we apply this 2 x 2 operation repeatedly. Specifically, let P, (7, Z,) =
(L1 + 2o, 7). Then we let Py(241, 2o, Z3, Z4) = (Wh, Wh, W3, Wy) = (P2(Uq, Us),P2(Us, Uy)) where
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Figure 11.2: The n x n Basic Polarizing Transform.

(U1, Up) =Py(Zy1, Z3) and (Us, Uy) = P2(Z,, Z4). Thus the bit Wy = Z; + Z, + Z3 + Z4 has higher
entropy than say Z; or even U; = Z; + Z3, whereas W, = Z, conditioned on (W;, W,, W3) can be
shown to have much lower entropy than Z, (unconditionally) or even U, = Z; conditioned on
Us.

The composition above can be extended easily to n bit inputs, when 7 is a power of two, to
get a linear transform P, (See Figure 11.2. We will also give this transformation explicitly in the
next section).

Itis also clear that some bits will get highly entropic due to these repeated applications of P».
What is remarkable is that the polarization is nearly “perfect” - most bits W; have conditional
entropy (conditioned on (W}) j<;) close to 1, or close to 0. This leads to the simple construction
of the polarizing matrix we will describe in the next section. A striking benefit of this simple
construction is multiplying a vector by P only takes O(nlogn) time, and so does multiplying by
the inverse of P. And most importantly a version of SCD (Algorithm 10) is also computable in
time O(nlogn) and this leads to an overall compression and decompression algorithms running
in time O(nlogn), which we describe in the next section.

We note that one missing element in our description is the challenge of determining the
exact set of indices S that include all the high-conditional-entropy bits. We will simply skirt
the issue and assume that this set is known for a given matrix P and given to the compres-
sion/decompression algorithms. So this leads to a non-uniform solution to compression and
decompression problem, as well as the task of achieving Shannon capacity on the binary sym-
metric channel. We stress that this is not an inherent problem with the polarization approach.
An explicit algorithm to compute S (or a small superset of S) is actually known and we discuss
this in Section 11.7.
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11.4 Polar codes, Encoder and Decoder

We begin with the description of polar codes along with the statement of the main results in Sec-
tion 11.4.1. We explicitly state the encoding algorithm and analyze its runtime in Section 11.4.2.
We present the decoder as well as its proof of correctness in Section 11.4.3.

11.4.1 The Code and Polarization Claims

We are now ready to describe the code.

Definition 11.4.1 (Basic polarizing matrix). We define the n x n polarization matrix P,, recur-
sively for n = 2,4,8,..., by describing the linear map P,:Z— Z-P,. Forn=2and Z € [F% we
define P,(Z) = (Z; + Z», 7). Forn=2"and Z = (U,V) for U,Ve [F;”2 we define

Pu(Z) = (Ppj2(U+V), Pyia(V)).

Exercise 11.7 talks about explicit description of P, as well as some extra properties.
In Section 11.5 we show that this matrix polarizes fast as n — oco. The main theorem we will
prove is the following:

Theorem 11.4.1 ((Polynomially) Strong Polarization). Fix p € (0,1/2) and constant c. There ex-
ists a polynomial function ng such that for every € > 0 there exists n = 2" with 1/e < n < ny(1/¢)
and a set E < [n] with |E| < (¢/2)-n such that for every i € E, the conditional entropy H(W;|W.;) €
(n™¢1—-n"°). Furthermore, if we let S = {i € [n]|H(W;|W.;) = n" ¢} then |S| < (H(p) +¢€) - n and
the matrix P, is (¢,1/n°)-polarizing for Bern(p)" with unpredictable columns S.

This theorem allows us to choose the threshold on how close to zero the conditional en-
tropy of the polarized bits can be, and this threshold can be the inverse of an arbitrarily high
degree polynomial in n. We will prove Theorem 11.4.1 in Section 11.5, which will be quite tech-
nical. But with the theorem in hand, it is quite simple to complete the description of the Basic
Polar Code along with the associated encoding and decoding algorithms, and to analyze their
performance.

Definition 11.4.2 (Basic Polar (Compressing) Code). Given p and € < 1/4, let n and S < [n] be
as given by Theorem 11.4.1 for ¢ = 2. Then the Basic Polar Code with parameters p and € maps
ZeF} to Py(Z)s.

Proposition 11.4.2 (Rate of the Basic Polar Code). Forevery p € (0,1/2) and € > 0, the rate of the
Basic Polar Code with parameters p and ¢ is at most H(p) +¢.*

11.4.2 Encoding

The description of the map P, (Z) is already explicitly algorithmic, modulo the computation of
the set S. For the sake of concreteness we write the algorithm below in Algorithm 11, assuming
S is given as input, and argue its running time.

3We will be using P,, to denote the n x n matrix and P, to denote the corresponding linear map that acts on Z.
“Recall that we are trying to solve the compression problem now.
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Algorithm 11 BASIC POLAR ENCODER(Z; 1, S)
INPUT: npowerof2,ZeF} and S < [n]
OutpUT: Compression W € [Fg of Z given by W = (P, (Z)) s

1: RETURN W = (P(n,Z))s

2: function P(n,Z)

3 IF n =1 THEN

4: RETURN Z

5 ELSE

6 LetU=(2,...,Zy) and V= (Z,/241,...,Zp)
7 RETURN (P(n/2,U+V),P(n/2,V))

Proposition 11.4.3. The running time of the BASIC POLAR ENCODER algorithm is O(nlogn).

Proof. If T(n) denotes the running time of the algorithm on inputs of length n, then T'(-) satis-
fies the recurrence T'(n) =2T(n/2) + O(n), which implies the claimed runtime. O

11.4.3 Decoding

Note that a polynomial time algorithm to compute Pr[W,- = b|W; :W<i] given b € F, and
W, € [Fé‘1 would lead to a polynomial time implementation of the SUCCESSIVE CANCELLATION
DECOMPRESSOR (Algorithm 10). However, we will go a step better and exploit the nice structure
of the Basic Polarizing Matrix to get an O(nlogn) algorithm without much extra effort. The key
insight to this faster decoder is that the decoder works even if Z ~ Bern(p;) x --- x Bern(p,), i.e.,
even when the bits of Z are not identically distributed, as long as they are independent. This
stronger feature allows for a simple recursive algorithm. Specifically we use the facts that

1. If Z; ~ Bern(p;) and Z, ~ Bern(p.) are independent then Z; + Z, is a Bernoulli random
variable. Let b*(p1, p2) denote the bias (i.e., probability of being 1) of Z; + Z, (and so
71+ Zy ~Bern(p* (p1, p2)) (see Exercise 11.8).

2. If Z; ~ Bern(p;) and Z, ~ Bern(p,) are sampled conditioned on Z; + Z, = a (for some
a € F») then Z, is still a Bernoulli random variable. Let b!(p1, p2, a) denote the bias of Z,
conditioned on Z; + Z, = a. (Note that b/ (p1, p2,0) is not necessarily equal to b (p1,p2,1).)
See Exercise 11.9 for more.

We now use the functions b* and b' defined above to describe our decoding algorithm. We
switch our notation slightly to make for a cleaner description. Rather than being given the
vector Wg € [F'zsl, we assume that our decoder is given as input a vector W € (F, U {2})" where
W; =?ifand onlyif i ¢ S.

The main idea behind the decoding algorithm is that to complete W to a vector in F}, we
can first focus on computing

WIL,...,n/21 S (..., W)
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It will turn out that we can use the fact that W[1,...,n/2] = Pp2(Z],..., Z) ,) where® Z! € Bern(b* (p, p))
are independent. This problem can be solved by recursion, and if we compute also the Z’s
along the way, then we can turn to computing W(n/2+1,...,n]l = Py;2(Zn/2+1,-..,Z,) but now

Z; is no longer drawn from Bern(p). Instead we have Z; ~ Bern(b! (p, p, Zlf_mz)) but the Z;’s are

still independent. The stronger recursive condition allows us to also solve this problem recur-
sively. Details are given in Algorithm 12.

Algorithm 12 BASIC POLAR DECODER: BPD(W; 1, p)

INPUT: npowerof2, We (F,u{?))?and0<p<1/2

OUTPUT: Ze [ such that for every i either W; =2 or (Z-P); =W;
PERFORMANCE PARAMETER: Prz-pern(p)n[Z # BPD((Z-Py)s; n, p)]

1: (Z;Wyp) ~: RPDM; n, (pr“' ’p))
2: RETURN Z

3: function RECURSIVE POLAR DECODER: RPD((W; n, (py, ..., pn)))
INPUT: We (Fou{?)" and py,...,pr€[0,1].
OuTpUT: Z,W € F} with W= P,(Z) and (W) =Ws. p = (p1,...,pn) € [0,1]". > Z is the main
output while W and p will help us reason about correctness.
PERFORMANCE PARAMETER: Prz-pemn(p)x--xBern(p,) [Z # Z] where Z is the first element of the
triple output by RPD((Z-P,)s; 11, (p1, ..., Pn))

4 IF n=1and Wj € F» THEN
5: RETURN (Wy, Wy, p1)
6: ELSE IF n =1 and W; =2 THEN
7: RETURN (1,1, py) if p; = 1/2 and (0,0, p;) otherwise
8: ELSE >n=2
9: W= (WD, W®) where W, W®@ ¢ (F, u {2})"/?
10: FORi=1ton/2DO
11: let g; = b* (pi, Puso+i)
12: Let X,W!, p)) = RECURSIVE POLAR DECODER(WY; n/2, (q,..., Gns2))
13: FORi=1ton/2DO
14: let r; = b'(pi, pnio+ir Xi)
15: Let (Y,W?, p'?)) = RECURSIVE POLAR DECODER(W®@; n/2, (11, ..., Tn/2))
16: LetZ=X+Y,Y),andlet W= (W!,W?) and p = (p™"), p©@)
17: RETURN (Z,W, p)

We assume that p* and p' can be computed in constant time, and with this assumption it is
straightforward to see that the above algorithm also has a running time of O(nlogn), by using
the same recursive analysis that we used in the proof of Proposition 11.4.3. The correctness is a
bit more involved and we argue this in the next lemma.

5Note that this follows from definition of P,,.

186



Lemma 11.4.4. LetZ ~ Bern(p;) x---xBern(p,), andW = P,,(Z). Further letW' = (W/,...,W)) be
given by W! = W; ifi € S and W =? otherwise. Let (Z,W, p) = RECURSIVE POLAR DECODER(W'; 72, (p1, ..., Pn)).
Then, if HW;|W.;) <t foreveryi ¢S, we have the following:

(1) Foreveryi, it is the case that Prz[W; = 1|W; =W, = Qi-
@) Prz[W#W| <7n.
(3) Prz|Z#Z] <1n.

Note that part (3) of Lemma 11.4.4 proves the same decoding error bound that we proved in
Lemma 11.3.2 for the SUCCESSIVE CANCELLATION DECODER (Algorithm 10).

Proof of Lemma 11.4.4. The main part of the lemma is part (1). Part (2) follows almost immedi-
ately from part (1) and Proposition 11.3.1. And part (3) is straightforward. We prove the parts in
turn below.

We begin by first arguing that for every n that is a power of two:

W=P,2). (11.10)

For the base case of n = 1, lines 5 and 7 show that W; = Z; as desired.® Byinduction (and lines 12
and 15) we have that W! = P,,;»(X) and W? = P,,;»(Y). Finally, line 16 implies that (the second
equality follows from the definition of P},):

Pp(Z) = Pp(X+Y,Y) = (PpjaX+Y+Y), Pp2(V) = (WHLW?) =W,

as desired.

Part (1) follows by induction on n. If n = 1 (where say we call RPD((W}), 1, (p'l'))) then the
claim follows since here we have p; = p}, Wi = Z; and Z; ~ Bern(p}). For larger values of n, we
consider two cases (below we have Z = (U, V)).

If i < n/2 then we have that W; = P,,;»(U + V); (via definition of P;;). Furthermore (U +V) ~
Bern(q;) x --- x Bern(qy,/2). Thus by the inductive claim, the recursive call RECURSIVE POLAR
DECODER(W'[1,...,1n/2];n/2,(q,...,qns2) satisfies
pi= PE-D

= Pr [Vvi21|w<i:W<i]
(U+V)~Bern(q;) x-+-xBern(¢y/2)

= Pr (Wi =1[W.; =W;]
Z~Bern(py)x---xBern(py)
as desired. (In the above, the first equality follows from the algorithm definition and the third
equality follows from the definition of g;.)
Now if i > n/2, note that the condition W([1,...,n/2] =WI[1,...,n/2] is equivalent to the con-
dition that U +V =X (since WI[1,...,1n/2] = P,;;/»(U+V) and X = P;}Z(V\I[l,...,n/Z]), where the

6Note that when defining P,,, the base case was n = 2 but note that if we started with n = 1 and define P, (Z) = W,
then the resulting definition is the same as on the we saw in Definition 11.4.1.

187



latter equality follows from (11.10) and the fact that the map P/, is invertible). And now from
definition of P, we have W[n/2+1,...,n] = Py;»(V). Conditioning on U +V = X implies that
V ~ Bern(r;) x --- x Bern(r,/2) — this is exactly how r;’s were defined. Thus we have

Pr (Wi =1|W; :W<i]
Z~Bern(py)x---xBern(py)

= Pr [Pni2oV)i—ni2 = 1UPni2(WI1,...,i —n/2=11=W[n/2+1,...,i-1]and U+ V =X].
V~Bern(ry) xBern(ry/2)
By induction again on the recursive call to RECURSIVE POLAR DECODER(W'[1/2+1,...,nl; n/2,(ry,..., n/2))
we have the final quantity above equals pgz_)n /o = Pi (Where the last equality follows from the al-
gorithm definition). This concludes the proof of part (1).

Part (2) follows from Proposition 11.3.1. We first note that if i € S, then by line 5 of the
algorithm we have W; = W;. Now assume i ¢ S. We claim that W; = 1 if and only if p; =
Prz[W; = 1|W_; = W.;] = 1/2. To see this note that p; = p;. when RECURSIVE POLAR DECODER
is called on the input (W}, 1, p}). Then the claim follows from line 7 of the algorithm. Thus
W; = argmax,p, {{Pr(W; = b|W.; = W_;]. By Proposition 11.3.1, applied to the variables X = W;
and Y =W, ; with a =7 we get

Pr(W; # W;|W.; = W] <.
By a union bound over i, we thus have
Pr(Ji € [n]s.t. W; # Wi[Wo; =W, ;] < Tn.

But if W # W there must exist a least index i such that W; # W; and so we have PrilW # W] < tn
concluding proof of part (2).

For part (3), note that by (11.10), if W =W (which holds with probability at least 1 — 77 from
part (2)), we have Z = P} (W) = P;;}(W) = Z as desired. O

The correctness of BASIC POLAR DECODER (Algorithm 12) follows immediately and we state
this explicitly below (see Exercise 11.10).

Corollary 11.4.5. For every inputn= 2", p € [0,1/2) and W € (F, U {2)", the BASIC POLAR DE-
CODER (Algorithm 12) runs in time O(nlogn) and computes an outputZ € [Fg such that P,(Z); =
W; holds for every i for which W; #2. Furthermore if (1) Z ~ Bern(p)", (2) Ws = P,,(Z)s and (3)
H(W;|W;) < T foreveryi ¢S thenPrz[Z#7Z] < Tn.

To summarize the claims of this section, Theorem 11.4.1 guarantees the existence of a po-
larizing matrix as desired to satisfy the information-theoretic conditions of Question 11.3.1.
And Proposition 11.4.3 and Corollary 11.4.5 ensure that the encoding and descoding times are
O(nlogn). This allows us to complete the proof of Theorem 11.1.1 (modulo the proof of Theo-
rem 11.4.1 — which will be proved in the next section).

Proof of Theorem 11.1.1. Recall from Proposition 11.2.1 and Question 11.3.1 that it suffices to
find, given p € [0,1/2) and € > 0, an (¢, &/n)-polarizing matrix P € F*" with n bounded by a
polynomial in 1/¢; such that multiplication by P and decompression take O(nlogn) time.
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Theorem 11.4.1 applied with parameters p, € and ¢ = 2 yields n and the matrix P =P, € F}*"
that is (¢,1/n?)-polarizing. Since Theorem 11.4.1 also guarantees £ > 1/n, we have that P, is
(¢,€/n)-polarizing. Furthermore we have that there exists a set S < [n] with |S| < (H(p) + &)n
such that H(W5|Ws) < e when W =Z-P and Z ~ Bern(p)". Given such a set S we have, by Propo-
sition 11.4.3, that the time to compress Z € F} to (Z-P,)s is O(nlogn). Finally Corollary 11.4.5
asserts that a decompression Z can be computed given (Z-P,)s in time O(nlogn) and Z equals
Z with probability at least 1 — € thereby completing the proof of Theorem 11.1.1. O

11.5 Analysis: Speed of Polarization

We now turn to the most crucial aspect of polarization - the fact that it happens, and it is fast
enough to deliver polynomial convergence to capacity. In this section we first give an overview
of how we will think about polarization. We will then analyze the convergence by first explor-
ing what happens in a single polarization step (i.e., the action of P,) and then showing how the
local effects aggregate after log, n steps of polarization. This will lead us to the proof of Theo-
rem11.4.1.

11.5.1 Overview of Analysis

We start by setting up some more notation. Recall n = 27, In this section it will be convenient
for us to give names to intermediate variables {Zi(] )}(,-E[n],oS j<p that are computed during the
computation of P, (7,,...,Z,). Let Zl.(O) =Zi. Forl<j<t,let

(9, 72

i+2t7J

) =Pz N, 200y = (20 4 2D 70T, (11.11)

i+20-7 i+20-17 Tig2t-]

for every i € [n] such that i and i + 2!~/ are in the same “block at the jth’ level. i.e., [i/277+1] =
[(i +2177)/277%1], (Alternatively one could say i and i + 2"~/ as in the same dyadic interval of
size 217/+1 ) Further,

Definition 11.5.1. We will say that a pair (7, i') are jth-level siblings if they are in the same block
atthe jthleveland i’ =i +2'7/.

Note that if one unravels the recursion in (11.11), then if Z;, Z; are on the LHS, then (i, i’)
are siblings at the jth level.
We now claim that (see Exercise 11.11):

P,z =(Z7,...,Zz"). (11.12)

Figure 11.3 illustrates the block structure of P,, and the notion of jth level blocks and siblings at
the jth level. o

In what follows we will pick a random i € [n] and analyze the conditional entropy of Z l.(] ) |Z(<]3
as j progresses from 0 to ¢ (we independently pick i for different values of j). Indeed let

X;=HZ"z)).
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Figure 11.3: Block structure of the Basic Polarizing Transform. Circled are a block at the 2nd
level and two 2nd level siblings.

Clearly Xy = H(p) since Zl.(o) = Z; isindependent of Z.; and is distributed according to Bern(p).
In what follows we will show that for every constant c if ¢ is a sufficient large then with high
probability over the choice of i, X; ¢ (n"¢,1—n"°). To track the evolution of X j as j increases,
we will first try to analyze local polarization which will study how X; compares with X;_;. Def-
inition 11.5.2 below captures the desired effect of a local step, and the following lemma asserts
that the operator P, does indeed satisfy the conditions of local polarization.

Definition 11.5.2 (Local Polarization). A sequence of random variables Xj,..., Xj,..., with X; €
[0,1] is locally polarizing if the following conditions hold:

(1) (Unbiased): For every j, and a € [0,1] we have E[X;11]X; = al = a.

(2) (Variance in the middle): For every 7 > 0, there exists § = 6(7) > 0 such that for all j, we
have: If X; € (7,1 -1) then X, — X;| = 6.

(3) (Suction at the ends): For every ¢ < oo, there exists 7 = 7(c) > 0 such that (i) if X; <7 then
Pr(X;1 < X;/c] 2 1/2; and similarly (ii) if 1 - X; <7 then Pr((1 - X;; = (1 - X;)/c] = 1/2.

We further say a sequence is simpleif for every sequence ay, ..., aj, conditioned on Xy = ay,..., X; =
aj, there are two values a* and a' such that X j+1 takes value a* with probability 1/2 and a with
probability 1/2.

Lemma 11.5.1 (Local Polarization). The sequence Xy, ..., Xj,..., with X; = H(Zl.(j)IZS;) where i
is drawn uniformly from [n] is a simple and locally polarizing sequence.

We will prove Lemma 11.5.1 in Section 11.5.2 but use it below. But first let us see what it does
and fails to do. While local polarization prevents the conditional entropies from staying static,
it doesn’t assert that eventually all conditional entropies will be close to 0 or close to 1, the kind
of strong polarization that we desire. The following definition captures our desire from a strong
polarizing process, and the lemma afterwards asserts that local polarization does imply strong
polarization.
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Definition 11.5.3 ((Polynomially) Strong Polarization). A sequence of random variables Xy, Xi,..., X;,...

with X; € [0,1] strongly polarizes if for all y > 0 there exist @ <1 and 8 < oo such that for all r we
have
PriX;e(y', 1-yDH1<p-a’.

Lemma 11.5.2 (Local vs. Global Polarization). Ifa sequence Xy, ..., X,..., with X; € 10,1] is sim-
ple and locally polarizing, then it is also strongly polarizing.

Armed with Lemmas 11.5.1 and 11.5.2, proving Theorem 11.4.1 is just a matter of setting
parameters.

Proof of Theorem 11.4.1. We assume without loss of generality that ¢ = 1. (Proving the theorem
for larger ¢ implies it also for smaller values of ¢.) Given p and c =1, lety =27°. Let f < oo
and a < 1 be the constants given by the definition of strong polarization (Definition 11.5.3) for
this choice of y. We prove the theorem for ny(x) = max{8x,2(2fx) llog(l/a)Ty  Note that ng is a

polynomial in x. Given £ >0, let ¢ = max{ |log(8/¢e)], Pﬁféﬁ%ﬂ } so that

n=2'< max{s/e,z : (2/3/5)1“0%‘”“)} = np(1/e).

Note that the choice of ¢ gives f-a’ < e/2 and y' =27 = n~°. We also have n > 4/¢ and thus
2n~¢<2n~! < ¢/2. We show that for this choice and ¢ and n, the polarizing transform P, has the
desired properties — namely that the set S of variables of noticeably large conditional entropy
is of small size.

We first show that the set of variables with intermediate conditional entropies is small. Let
us recall some notations from above, specifically (11.11). Let (Zl.(] )) denote the intermediate
results of the computation W = P, (Z) = (Zm, ety Z,(f)), and let X; = H(Zl.(j) IZ(<j;) for a uniformly
random choice of i € [n]. By Lemmas 11.5.1 and 11.5.2 we have that the sequence Xy, ..., X;,...
is strongly polarizing. By the definition of strong polarization, we have that

Pr [HW;Wo) e (n61-n"%] =Pr [H(Z}”|zf§) €y’ 1- yf)]
i€[n] i

=Pr[X,e (y',1-y"]

< Ba’

<¢e/2.

Thus we have that the set E = {i € [n]|H(W;|W,;) € (n™¢,1—n"°)} satisfies |E| < en/2.
Finally, we argue the “Further" part. Indeed, we have
nH(p)= Y HW;W.) = Y HW;[W.) = (S|-|EN(1-n"9),
i€[n] ieS\E

where the first equality follows from the chain rule and the last inequality follows from defini-
tions of S and E. Re-arranging one gets that

nH(p)
1-n~¢

|S| < +en/2<nH(p)(1+2n ) +en/2<nH(p)+e¢n.

It remains to prove Lemmas 11.5.1 and 11.5.2 which we prove in the rest of this chapter.
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11.5.2 Local Polarization

To understand how X; compares with X;_;, we start with some basic observations about these
variables, or more importantly the variables Zl.(j ) and Zl.(j N (recall (11.11)). Let i and i’ be jth
level siblings, so that (Zl.(j ),Zl.(,j )) = Pz(Zl.(j _1),Zl.(,j _D). Our goal is to compare the pairs of con-
ditional entropies (H(z”|ZY)), H(z]\ZY))) with (H(z!™"127Y), H(Z]™"12Y7Y)). The col-
lection of variables involved and conditioning seem messy, so let us look at the structure of P,
more carefully to simplify the above. We do this by noticing the Zl.(j ) is really independent of

most Zl.(,j ) (at least for small values of j) and in particular the set of variables that Zl.(j Y and

Zl.(,j - depend on are disjoint. Furthermore these two variables, and the sets of variables that
they depend on are identically distributed. Next, we present the details.
We begin with a useful notation. Given i € [n =2/ and0< j < r, let

Sz] = {kE[n”l_k mod 21~ ]}

Note that the ¢1, £, € S; j need not be siblings at the jth level.

Proposition 11.5.3. For every1 < j < t and jth level siblings i and i’ with i < i’ the following
hold:

(D) Si,j=S8ij=8ij-1USi j-1.

) .. )
@) {Zk |k € S,-,j} is zndepenclentof{Z,C |k¢5i,j}-
3)

{keS; j_1,k<i}

_ (G-D5(-1
N H(Z lZ{keS,j,k<l})

H(Z” DlZ” Ny _ H(Z(] 020D )

€9

H(Z(] 1’|Z” Wh_opg

Z(] l)lz(] 1
{keS/] 1k<z}

_ (=-D(-D
B H(Z |Z{k€S, i» k<z})

)

DDy _ (DN
H(Zl |Z<i)_H(Zi |Z{k€5i,j,k<i})

_ (D)5 G-1
- H(Zl |Z{keS,,],k<l}) ’
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(6)

D7) AL (/)
Z |Z /) — ( i’ |{Z }UZ{kesl],k<l})
- H Z(j)|{Z }UZ(] Y
il {keS; j,k<i} |

Proof. Part (1) follows from the definition of S; ; and the definition of siblings. Indeed, since
i' = i+2"J, we have i = i’ mod 2/, which implies the first equality. The second equality
follows from the observations that k; = k» mod 2/~/*! implies k; = k, mod 2/7/ (this in turn
implies S; j-1,Si,j-1 € S;,;) and that if k =i mod 21=J*1 then k # i’ mod 2~/ and vice versa
(which in turn implies that S; ;-1 and S; j_; are disjoint. Part (2) follows from the fact that (see
Exercise 11.12):

Lemma 11.5.4. For every i, the set {Z,(Cj) |k € S,-,j} is determined completely by {Zkl ke Si,j},

and the Z;’s are all independent. The first equality in part (3) follows immediately from part
(2), and the second uses part (1) and the fact that Zl.(]_l) is independent of {Z|k € S j_1, k < i}
(the latter claim follows from the fact that S; ;1 and Sy j_; as disjoint, as argued in the proof of
part (1) above). The first equality in part (4) is similar, whereas the second uses the additional
fact that S;7 j_ contains no elements between i and i’. Indeed the latter observation implies

that H Z(] DzU-D = H|ZYU™VzV=V . But by part (2), 2" is independent
{kesy oy ke<i'} i {kesy oy s} i
of Zl.(j and hence we have H Z(] 1)IZ(] D =H Z(] l)IZ(] 1 . The second
{kESr] 1k<z} {keS/] 1k<z}

equality in (4) then follows from parts (1) and (2). The first equalities in parts (5) and (6) are
similar to the first equality in part (3) with part (6) using the fact that {k€ Sy jlk<i’ }={itu
{k € S; jlk < i}. The second equality follows from the fact that (see Exercise 11.13):

. P : G-1 )
Lemma 11.5.5. Thereisaone-to-one map from the variablesZ ke, k<i} to thevariablesZ kes, ki)’
and so conditioning on one set is equivalent to conditioning on the other. O

To summarize the effect of Proposition 11.5.3 above, let us name the random variables U =
Zl.(]_l) andV = Zi(,]_D and furtherlet A = {Z,ij_l)lk €S;j-1,k< i} and B = {Z,(C]_le €S j-1,k< i’}.
By the proposition above, the conditional entropies of interest (i.e., those of i and i’) at the
(j — Dth stage are H(U|A) and H(V|B). On the other hand the conditional entropies of interest
one stage later (i.e., at the jth stage) are H(U + V| A, B) and H(V|A, B, U). (Here we use that fact
that P»,(U,V) = (U + V,V).) By part (2) of Proposition 11.5.3 we also have that (U, A) and (V, B)
are independent of each other. Finally, by examination we also have that (see Exercise 11.14)

Lemma 11.5.6. (U, A) and (V, B) are identically distributed.
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So our concern turns to understanding the local polarization of two independent and iden-
tically distributed bits. If one could ignore the conditioning then this is just a problem about
two bits (U, V) and their polarization when transformed to (U + V, V).

In the following lemma, we show how in the absence of conditioning these variables show
local polarization effects. (For our application it will be useful for us to allow the variables to
be not identically distributed, though still independent.) Suppose H(U) = H(p;) and H(V) =
H(p»), then notice that H(U + V) = H(p; o p2) where

prop2 € pi(l-p2)+pa(1- py).

In the following lemma we show how H(p; o p») relates to H(p;) and H(p>).
Lemma 11.5.7. Let py, p2 € [0,1/2] with py < p2 and 1 € (0,1/2). Then we have:

(1) H(p1op2) = H(p2).

(2) There exists 0 = 0(t) > 0 such that if H(p1), H(p2) € (1,1 —1) then

H(p1op2)— H(p2) 20.
(3) If H(p1), H(p2) <1 then
H(piop2) = (1-9/1og(1/7))(H(p1) + H(p2)).
In particular, for every c < oo, ifT <279 then

H(p1) + H(p2) — H(p10 p2) = (H(p1) + H(p2))/ c.

(4) IfH(p1),H(p2)=1—-1andt <1- H(1/4) then
H(pyop2) 21-201(1 - H(p2)).
In particular, for every ¢’ < oo, if 1 < 1/(20c¢’) then

1-H(piopz) <(1-H(pa)/c.

We defer the proof of the above lemma to Section 11.6.2.

The lemma above essentially proves that H(U + V) satisfies the requirements for local polar-
ization relative to H(U) and H(V), but we still need to deal with the conditioning with respect
to A and B. We do this below using some careful applications of Markov’s inequality.

Lemma 11.5.8. If (U, A) and (V, B) are identical and independent random variables with U,V
being elements of F» with H(U|A) = H(V|B) = H(p), then the following hold:

(1) Foreveryt >0 there exists 0 >0 such that if H(p) € (1,1 - 1) then

HU+VI|A,B)= H(p)+0.
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(2) For every ¢ < oo there exists T > 0 such that if H(p) <1 then
HWU+VI|AB)=((2-1/c)H(p),
and if H(p) 2 1—1 then

HWU+V|AB)=1-1/c(1-H(p)).

Proof. Let p, = Pr[U = 1|A = a] so that H(p) = H(U|A) = Ea[H(pA)l. Similarly let g3, = Pr[V =
1|B = b]. In what follows we consider what happens when A and B are chosen at random. If
H(pa) and H(gp) are close to their expectations, then the required polarization comes from
Lemma 11.5.7. But if H(p4) or H(gp) can deviate significantly from their expectation, then
polarization happens simply due to the fact that one of them is much larger than the other and
HU+V|A=a,B=>b)=max{H(p,), H(qp)}. The details are worked out below.

We start with part (1). Let 6(-) be the function from part (2) of Lemma 11.5.7 so that if
H(p1), H(p2) € (p,1—p) then H(py o p2) — H(p2) = 0(p). Given 7 > 0 let 8; = 0(r/2). We prove
this part for 6 = min{%l, %} > 0.

Let

r = 1j}lf[H(PA) =1/2],

ro :I;lr[H(pA) €(T/2,1-1/2)],

and
r3= I;r[H(pA) =1-1/2].

(Note that since (U, A) and (V, B) are identically and independently distributed if one replaces
pa by gp in the above equalities, then the equalities still remain valid. We will be implicitly
using this for the rest of the proof.) Since r; + r» + r3 = 1, at least one of them must be greater
than or equal to 1/3. Suppose r, = 1/3, then we have with probability at least 1/9, both H(p,) €
(t/2,1—-7/2)and H(qp) € (t/2,1—-71/2). Let a, b be such that H(p,), H(qp) € (t/2,1—1/2). Then,
since U +V ~ Bern(p, o pp), by Lemma 11.5.7 part (2),

HU+V|A=a,B=b)=H(pg,) + 0.
And by Lemma 11.5.7 part (1), we have for all a, b,
HU+V|A=a,B=b)= H(p,).

Putting it together, we have
1 0,
HU+VIAB)=Ealpal + 5 -0, =H(p)+ R

Next we consider the case where r3 = 1/3. Now consider the probability that Pra[H(p,) <
1 —7]. Notice that

l—rzH(p)2(1—r3—1;r[H(pA)Sl—r])-(l—r)+r3-(1—r/2).
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Rearranging we conclude
rsT -

T
2(1-1) 6
Thus with probability at least /18 we have A such that H(p4) < (1-71) and B such that H(gp) =

1—-1/2. Let a,b be such that H(p,) < 1-1 and H(qp) = 1 —1/2. We have (from part (1) of
Lemma 11.5.7)

I;r[H(pA) =s1l-7]=z

HU+V|A=a,B=a)=H(qp) zH(paH%-

We conclude that in this case

T2 T2
H(U+VIAB)2Ez[H(pa)l+ —=H(p) + —.
( 14, B) 2EalH(p] + 22 = H(p) + o2

The case r; = 1/3 is similar and also yields
H(U +V|A,B) = H(p) +1°/36.

Thus in all cases we have
HU+V|AB)=H(p)+0,

which completes the proof of part (1).

We now turn to part (2). We only prove the case where H(p) < 7. The case where H(p) 2 1-1
is similar and we omit that part (see Exercise 11.15). Given ¢ < oo, let 7’ = 7(4¢) be the constant
from part (3) of Lemma 11.5.7 for constant 4c, so that if H(p;), H(p,) < 1’ then

1
H(piop2) = (1 - E) -(H(p1) + H(p2)).

Now let 7 = 27—; and H(p) < 7. Define
a= liir [H(pa) =7'].

By Markov’s inequality (Lemma 3.1.4) we have a < 1/(2c¢). Let

Y=Ea[H(pa)lH(pa) =7'].
and
§=Es[H(pa)|H(pa) <7'].

We have
H(p)=ya+6(1-a). (11.13)

We divide our analysis into four cases depending on whether H(p4) = 7’ or not, and whether
H(gp) = 7’ or not. Let S;; denote the event that H(p4) =7’ and H(gp) = 1’ and Syy denotes the
event that H(p4) <7’ and H(gp) < 7'. Define S1o and Sp; similarly.
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We start with the case of S1o. Let a, b be such that H(p,) = v’ and H(qg;) < t'. We have by part
(1) of Lemma 11.5.7, HU+ V|A=a,B =b) = HU|A= a) = H(p,) (and similarly H{U + V|A =
a, B = b) = H(qp). Thus taking expectation after conditioning on (A4, B) € S;¢p we have

EcaB)aBes,, [HU+VIA B =E[H(pa)|H(pa) =1'| =7.

Similarly we have

Ea B4 BeSy [HU+VIAB) =y
as well as

EaB)aBes, [HU+VI|AB)] =y.
Note that S;; U S1o U Sg1 happen with probability 2a — a®>. Now we turn to Soy. Let a,b be
such that H(p,), H(qp) < t’. By Lemma 11.5.7 part (3) we have HU + V|A=a,B=b) = (1 -
1/(40)) (H(pa) + H(qp)). Taking expectations conditioned on (A, B) € Sop we get

1
Ea,B)1(A,B)eSy [H(U + V|A,B)] = (1 - 4—0) (Ea[H(pa)|H(pa) <7'| +Ep[H(gp)|H(gp) <T'])

= (1 —i) -20.
4c

Note finally that Syy happens with probability (1 — )2. Combining the four cases we have
H(U + A|A,B) = 2a - a®)y + (1 - a)? (1 - 4%) (26)
=2ay+(1-a)26 —a’y —(@)(1-a)d — 4% ‘1-a)?26
=2H(p)—a-H(p) - i-(l -a)((1-a)d).

In the above, the last equality follows from (11.13). Part (2) now follows by using (1-a)d < H(p)
(which in turn follows from (11.13)) and a < 1/(2¢). O

We are now ready to prove the local polarization lemma.

Proof of Lemma 11.5.1. Recall that X; = Ej.(p [ZI(])]. Let X; = H(p). Note that conditioned on
the value of X, for any (j+1)-level siblings i < i’, I is equally likely to equal i or i’. Conditioning
on I € {i, '}, with probability 1/2, I = i and with probability 1/2 I = i’. Let U = Zl.(]), V= Zl.(,]),
a={zlk<ikes;;}and B={2 k< keSy | thenif I =i, X; = H(UIA) (this follows
from Lemma 11.5.3 part (3)) and if I = i’ then X; = H(V|B) (this follows from Lemma 11.5.3 part
(4)). Furthermore if I = i then X;,; = H(U + V| A, B) (this follows from (11.11) and parts (1) and
(5) from Lemma 11.5.3) and if I = i’ then Xj+1 = H(V|A, B,U) (this follows from (11.11), parts
(1) and (6) from Lemma 11.5.3 and the fact that V|U and V|U + V have the same distribution).
With this setup, we are now ready to prove that the sequence Xy, X1, ..., satisfy the conditions
of local polarization, and furthermore are simple.
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We argue the conditions hold for each conditioning I € {i, i’} and so hold without the con-
ditioning (the latter holds because the pairs {i, i’} make a disjoint cover of [xn] and hence for a
random I ~ [n] is equally likely to fall in one of these pairs). The condition E[X;,|X; = al = a
follows from the fact that there is a bijection from (U, V) to (U + V, V), and so

HU+V|AB)+ H(VIA,B,U)=HWU|A)+ H(V|B).

Indeed, note that 2a is the RHS and 2X, is the LHS of the above equality.
Now note that (see Exercise 11.16):

Lemma 11.5.9. (U, A) and (V, B) are independently and identically distributed.

The variance in the middle condition follows from Lemma 11.5.8 part (1) and the suction at
the ends condition follows from Lemma 11.5.8 part (2). Finally simplicity follows from the fact
that with probability 1/2, X; = H(U + V| A, B) and with probability 1/2, X; = H(V|A,B,U). O

11.5.3 Local vs. Global Polarization

Finally we prove Lemma 11.5.2 which shows that simple local polarization implies strong polar-
ization. We prove this part in two phases. First, we show that in the first ¢/2 steps, the sequence
shows moderate polarization — namely, with all but exponentially small probability X;/, is an
inverse exponential in ¢, but with a small constant base (so X; ¢ ((x{ ;11— a{) for some a7 < 1, but
a; is close to 1). Next we show that conditioned on this moderate polarization, the sequence
gets highly polarized (so X; ¢ (y’,1 - y") foranyy > 0 of our choice), again with an exponentially
small failure probability. We start with part (1).
In what follows, let y > 0 be given and let

8
c:max{4,L}.
16

Let T = 7(c) be given by condition (3) of the definition of Local Polarization (Definition 11.5.2)
and

0 :min{l—l,ﬁ(r)}
c

where 0(7) is the constant given by condition (2) of the same definition.
We start with the first phase. We consider a potential function

(,b]' dgfmin{\/;,\/l—Xj}.

We first notice that ¢; is expected to drop by a constant factor in each step of polarization.
Lemma 11.5.10.
92
E(pjalgy=al=(1-3:) @
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Proof. Without loss of generality assume X; < 1/2 (see Exercise 11.17) and so a = ¢; = /X; and
so X; = a*. Using the simplicity of the sequence X, ... as well as the fact that E [ X +1lXj=al=
a, we have that there exists § such that X;,; = a* + 6 with probability 1/2 and a* - § with
probability 1/2. Furthermore, if X; < 7, by the unbiasedness and suctions at the ends condi-
tions, we have 6 = (1 —1/¢)a? and if X j > 7 by the variance in the middle condition, we have
8 =0(1) = 6(1)a?. Thus in either case we have

5=0a°. (11.14)
We now bound E [¢j+1] as follows:

Elpjar] <E[\/Xjnr
= %\/a2+6+1/2\/ a’-9o

a ( 0 62 0 62 )
<—[1+—=- 1-— -
2 2a> 16a* 2a*> 16a*
62
B a( - 16a4)
02
<a (1 - —) .
16
In the above, the first inequality follows from Lemma B.1.5 while the second inequality follows
from (11.14). O

Lemma 11.5.11 (Weakly Polynomial Polarization). There exists a; < 1 such that for all even t,
we have
Pr(X;p € (al,1-a)] <ai.

Proof. We first prove by induction on j that

[E[¢j]s(1—f—;)j.

This is certainly true for j = 0 since ¢ < 1. For higher j, by Lemma 11.5.10 we have

as claimed. Let



and a; = v/f (note that a; < 1). By our claim, we have E [¢112] < B'. By Markov’s inequality
(Lemma 3.1.4), we now get that

IBI
Pr [g[)t/g = a{] =< — = .
@

Finally we note that if ¢/» < a! then X;/» ¢ (a%',1 - a7') and so in particular X;/, ¢ (al,1-al).
We conclude that the probability that X;/, € (@],1 - a}) is at most a}, yielding the lemma. O

We now turn to phase two of the polarization. Here we use the fact that if X;/» is much
smaller than 7, then X is very unlikely to become larger than 7 for any ¢/2 < j < . Furthermore
if it does not ever become larger than 7 then X; is very likely to be close to its expected value
(which grows like y?). The following lemmas provide the details. In the following recall that
7 = 1(c) where ¢ = 4.

Lemma 11.5.12. Forall A >0, if Xo < A, then the probability there exists j >0 such that X; = T is
at most Alt. Similarly if Xo = 1 — A, then the probability there exists j > 0 such that X; <1—-1 is
at mostA/t.

The lemma above is a special case of Doob’s inequality for martingales. We give the (simple)
proof below.

Proof. We give the proof for the case Xy < A. The case Xy = 1 — A is symmetrical (see Exer-
cise 11.18). Notice that we wish to show that for every integer 7 > 0

Prl max{X;}=1| < A/t.

0<t<T

Let us create a related sequence of variables Y; as follows. Let Yo = Xpandfori=1,if Y;_; <7
then Y; = X;, else Y; = Y;_;. Note that for every i and a, by the simplicity of X;’s, we have
E[Y;|Y;—1 = al = a. Note further that maxo<;<7{X;} = 7 if and only if Y7 = 7. Thus

E[Y
=PriYr=1]< ! T],
T

Prl max{X;}=7

O0=t=<T

where the final inequality is Markov’s inequality (Lemma 3.1.4). But
ElYr]=E[Yr-1]=---=E[Yol =E[Xo] = A
and this yields the lemma. O

Lemma 11.5.13 (Weak to Strong Polarization). There exists ay < 1 such that for every A > 0 if
Xo € (A,1—A), then the probability that X,/ € (y',1—vy") is at most A/t + a.

Proof. Again we consider the case Xy < A with the other case being symmetrical (see Exer-
cise 11.19).

Let Z; = 1if X; < X;_; and 0 otherwise. For simple sequences, notice that Z;’s are indepen-
dent and 1 with probability 1/2. Let Z =} lt /: 21 Z;. We consider two possible “error” events. & is
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the event that there exists 1 < j < #/2 such that X; > 7, and & is the event that Z < ¢/8. Note
that by Lemma 11.5.12, &, happens with probability at most A/t and (by the Chernoff bounds-
Theorem 3.1.6) &, happens with probability at most &, for some a; < 1. Now, if event &, does
not occur, then

Xp <2272 Xy <2t2¢77,

The first inequality follows from the subsequent argument. Using simplicity, we have with prob-
ability 1/2, X; < (1/¢) Xy < Xo/4 (because of the suction at the ends condition) and with proba-
bility 1/2 X; < 2X) (this follows the bound in the other case and the unbiasedness of the X;s).
Further if &, also does not occur we have

Xyp <22 c718 <yt
by the choice of ¢ = 1/(2/y»*. O

Proof of Lemma 11.5.2. Recall that we wish to show, given y > 0, that there exists a < 1 and
B < oo such that for all  we have

Pr(X,e(y’,1-7")] =B a’.

Let @; < 1 be the constant from Lemma 11.5.11. Let a» < 1 be the constant from Lemma 11.5.13.
We prove this for @« = max{a;,az} <land f=2+1/7 <oo.

Let & be the event that X;/, € (a},1—a!). By Lemma 11.5.11 we have that Pr[&] < a]. Now
conditioned of & not occurring, using Lemma 11.5.13 with A = a!, we have Pr [ X; € (y!,1-y")] <
a!/T + aj. Thus putting the two together we get

4 t

a a
Pr[Xte(Ytrl_Yt)]Sa{+—1+d55at+—+a’t:ﬂ~at,

T T

as desired. O

11.6 Entropic Calculations

In this section, we present the omitted proofs on various properties of entropy and probability
that mostly need some calculations.

11.6.1 Proof of Proposition 11.3.1

We begin with the first part, which is a straightforward calculation expanding the definition.
For any i in the support of X, let p; denote Prx[X = i] and let x = argmax;{p;} be the value
maximizing this probability. Let p, = 1 —y. We wish to show that y < . We now perform some
crude calculations that lead us to this bound.

If y <1/2 we have

a = H(X)
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=) pilo !
i P gPi
1

> ) pilog— (11.15)
i#x i

> ) pilog
i;c l LjzxPj

1
= -1
(2ol

=vy-logl/y
>y, (11.17)

(11.16)

as desired. In the above, (11.15) follows since all summands are non-negative, (11.16) follows
since for every i # x, p; <} jx, pj and (11.17) follows since y < 1/2 and so log1/y = 1.
Now if y > 1/2 we have a much simpler case since now we have

a= HX)
Y. pilog—
ipl gPi
1
=) pilog— (11.18)
i Px
1
=log — (11.19)
gpx
1
=log—
-y
> 1. (11.20)

(In the above, (11.18) follows since p; < py, (11.19) follows since } ; p; = 1 and (11.20) follows
from the assumption thaty = 1/2.) But y is always at most 1 so in this case alsowe havea =1 >y
as desired.

We now consider the second part, which follows from the previous part via a simple averag-
ing argument. Given y and i, let p; , = Prx[X = i|Y = y] and let x,, = argmax;{p;,,} be the value
maximizing this probability. Let y, =1 - py ,, and note that y = Ey[yy]. Letay = H(X|Y = y)
and note again we have a = Ey[ay]. By the first part, we have for every y, y, < a, and so it
follows that

Y=Eylyyl <Eylay]l =a.

11.6.2 ProofofLemma11.5.7

The lemma follows in a relatively straightforward manner with parts (3) and (4) using Lemma B.2.3.
Part (1) is immediate from the monotonicity of the entropy function in the interval [0, 1/2]
(see Exercise 11.6). For 0 < py, p2 <1/2 we have p» < p; o p2 <1/2 and so (see Exercise 11.20)

H(p1 o p2) = H(pa). (11.21)
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Next we turn to part (2). Let Hl(x) = p such that 0 < p < 1/2 such that H(p) = x. Note H!
is well defined and satisfies H~!(x) >0ifx>0and H '(x) <1/2ifx < 1. Let

a=a@)=H @A -2H'1-1)

and
B=B@m=2H'0-11-H'1-1)
and
y =y() =log((1-p)/P).

Note that @ > 0 and < 1/2 and so y > 0. We prove that H(p; o p2) — H(p2) = a -y, and this will
yield part (2) for@ =0(t) =a-y > 0.
First note that since H(p1), H(p2) € (7,1 —1), we have p;, p2 € (H Y1), H (1 - 1)). Thus

propz—p2=p2(1-2p1)+p1—p2=p1(1-2p) 2 H ' ()1 -2H'(1-1)) = .

Next we consider min,<g<p,0p, {H'(9)}. Note that by Exercise 11.21 H'(g) = log((1 - ¢)/q) and
this is minimized when g is maximum. The maximum value of g = p; o p» is in turn maximized
by using the maximum values of p1, p, = H™!(1 - 1). Thus we have that Ming,<g<pop, (H' ()} =
H'(B) = y. By elementary calculus we now conclude that

H(piop2)—h(p2) =(p1op2—p2): min {H’(q)}za-y:H.
p2=q=p1op2

This concludes the proof of part (2).

Next we move to part (3). For this we first describe some useful bounds on H(p). On the one
hand we have H(p) = plog1/p. For p <1/2 we also have —(1 - p)log(1-p) = (1/In2)(1 - p)(p+
p?) < (1/In2)p < 2p. And so we have H(p) < p(2+logl/p).

Summarizing, we have for p < 1/2,

plog(1/p) < H(p) < plog(1/p) +2p. (11.22)
We now consider H(p;) + H(p2) — H(p1 o p2). We have

H(p1) + H(p2) — H(p1 0 p2)
< p1(log(1/p1) +2) + p2(log(1/ p2) +2) — (p1 0 p2)1og(1/(p1 0 p2)) (11.23)
< p1(og(1/p1) +2) + p2(log(1/ p2) +2) — (p1 + p2 —2p1p2) log(1/(2p2)) (11.24)
= p1log(2p2/p1) + p21og(2p2/ p2) + 2p1p2log(1/2p2)) + 2(p1 + p2)

< p1log(p2/p1) +2p1p2log(1/(p2)) + 6p2 (11.25)
<2p1H(p2) +7p2 (11.26)
<2p1H(p2) + 7H(p2)/1og(1/p2) (11.27)
<9H(p,)/log(1/1). (11.28)

In the above, (11.23) follows from (11.22), (11.24) follows from the fact that pyopy < p1 + p2 <
2py, (11.25) follows from the fact that 3(p; +p2) < 6p», (11.26) follows from the fact that p; log(p./p1) <
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p2, (11.27) follows from (11.22) and (11.28) follows from the subsequent argument. Indeed by
definition of 7 and (11.22) we have p,log(1/p,) < 7. Using the fact that p, < 1/2, this implies
that p, < 7, which in turn implies log(1/p») = log(1/7). Similarly, we have p;log(1/p;) < 1,
which again with p; <1/2, we have p; <7 < 1/log(1/1) (where the second equality uses the fact
that 7 < 1/2). This concludes the proof of part (3).

Finally we turn to part (4). Here we let H(p;) =1—-y; and p; = 1/2— x; for i € {1,2}. Since
T<1-H(1/4) and H(p;) =1 -1, we have x; < 1/4. By Lemma B.2.4, we have 1 —5x2< H(Q1/2-
x) < 1— x? for x < 1/4. Returning to our setup if 1 — 7 = H(1/4) and 1 - y; = H(p;) = 11, and
pi =1/2—-x;, then l—xl? >1-y;,s0

Xi < VYi. (11.29)

Furthermore, py o p, =1/2—-2x;x, and

H(piop2)=H(1/2-2x1x2)
>1-20(x1x2)*
=>1-2011)2
=1-20(01- H(p))A - H(p2))
=1-207(1- H(p2)),

where the second inequality follows from (11.29). This yields part (4).

11.7 Summary and additional information

In this chapter we showed how a very simple phenomenon leads to a very effective coding
and decoding mechanism. Even the idea of reducing error-correction to compression is novel,
though perhaps here the novelty is in the realization that this can idea can be put to good use.
The idea of using polarization to create a compression scheme, as well as the exact procedure
to create polarization are both radically novel, and remarkably effective.

Our description of this compression mechanism is nearly complete. The one omission is
that we do not show which columns of the matrix P,, should be used to produce the compressed
output — we only showed that a small subset exists. The reader should know that this aspect
can also be achieved effectively, and this was first shown by Tal and Vardy [98], and adapted to
the case of strong polarization by Guruswami and Xia. Specifically there is a polynomial time
algorithm that given p, € and c outputs n < poly(1/¢), P, € F’z“” and a set S < [n] such that
P, is (¢, n™°)-polarizing for Bern(p)” with unpredictable columns S, and |S| < (H(p) + €)n. The
details are not very hard given the work so far, but still out of scope of this chapter.

Our analysis of local polarization differs from the literature in the absence of the use of “Mrs.
Gerber’s Lemma” due to Wyner and Ziv, which is a convexity claim that provides a convenient
way to deal with conditional entropies (essentially implying that the conditioning can be ig-
nored). In particular, it yields the following statement whose proof can be found as Lemma 2.2
in [21].
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Lemma 11.7.1. If (U, A) and (V,B) are independent and U,V are binary valued random vari-
ables with H(U|A) = H(p) and H(V|B) = H(q), then HU + V|A,B) 2 H(p(1 - q) + q(1 — p)).

The proof of the lemma uses the convexity of the function H(ao H ~1(x)) which turns out to
have a short, but delicate and technical proof which led us to omit it here. This lemma would
be a much cleaner bridge between the unconditioned polarization statement (Lemma 11.5.7)
and its conditional variant (Lemma 11.5.8). Unfortunately Lemma 11.7.1 is known to be true
only in the binary case whereas our proof method is applicable to larger alphabets (as shown
by Guruswami and Velingker [49]).

11.8 Exercises

Exercise11.1. Prove Theorem 11.1.2 (assuming Theorem 11.1.1).
Exercise 11.2. Argue that the matrices G and G* in Proposition 11.2.1 exist.

Exercise 11.3. Show that there exists a non-linear comrepssion scheme for Bern(p)” of rate at
most H(p) + €.

Exercise 11.4. Prove (11.5).
Exercise11.5. Prove (11.9).
Exercise 11.6. Show that H(p) is monotonically increasing for 0 < p < %

Exercise 11.7. Give an explicit description of the polarizing matrix P, such that P,(Z) =Z-P,,.
Further, prove that P,, is its own inverse.

Exercise 11.8. Show that
p*(p1,p2) = pr1—p2) + (1 - p1)p2.
Exercise11.9. Show that

p'(p1,p2,0) = p1p2/ (p1p2 + (1= p1) (1 - p2))

and

p'(p1,p2, 1) = (1= pO)p2/ (1= p1)pz2 + pr(1 = p2)).
Exercise 11.10. Prove Corollary 11.4.5.
Exercise 11.11. Prove (11.12).
Exercise 11.12. Prove Lemma 11.5.4.
Exercise11.13. Prove Lemma 11.5.5.
Exercise11.14. Prove Lemma 11.5.6.
Exercise 11.15. Prove part (2) of Lemma 11.5.8 for the case H(p) =1 —1.
Exercise11.16. Prove Lemma 11.5.9.

Exercise11.17. Prove Lemma 11.5.10 for the case Xj> 1/2.
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Exercise11.18. Prove Lemma 11.5.12 when X, =1-A.
Exercise11.19. Prove Lemma 11.5.13 when X, > A.
Exercise 11.20. Prove (11.21).

Exercise 11.21.
H'(q) =log((1-q)/g).

11.9 Bibliographic Notes

Polar codes were invented in the remarkable paper by Arikan [4] where he showed that they
achieve capacity in the limit of large block lengths n — co with O(nlogn) encoding time and
O(nlogn) decoding complexity via the successive cancellation decoder. In particular, Arikan
proved that the transform PJ’ is polarizing in the limit of # — oo, in the sense that for any fixed
Y >0, the fraction of indices for which H(W; | W.;) € (y,1—7), where W = P? 'Z, is vanishing for
large ¢. In fact, Arikan showed that one could take y = y(#) = 27°*/4, which led to an upper bound
of n-y = 0(1/n'*) (block) decoding error probability for the successive cancellation decoder.
Soon afterwards, Arikan and Teletar proved that one can take y < 2-0@") for any 8 < 1/2, which

led to improved decoding error probability of 277" as a function of the block length n = 2!. The
fall-off of the parameter y in n was referred to as the “rate” of (limiting) polarization.

These works considered the basic 2 x 2 transform P, and binary codes. More general trans-
forms, and non-binary codes, were considered later in [88, 64, 74]. These results showed that
limiting polarization is universal, as long as some minimal conditions are met by the basic ma-
trix being tensored.

The 2012 survey by Sasoglu is an excellent and highly recommended resource for some of
the early works on polarization and polar codes [21]. Polar codes were widely described as the
first constructive capacity achieving codes. Further, polarization was also found to be a versatile
technique to asymptotically resolve several other fundamental problems in information theory
such as lossless and lossy source coding problem, coding for broadcast, multiple access, and
wiretap channels, etc.

However, none of these works yield effective finite length bounds on the block length n
needed to achieve rates within € of capacity, i.e., a rate at least 1 — h(p) — € for the binary sym-
metric channel with crossover probability p. Without this it was not clear in what theoretical
sense polar codes are better than say Forney’s construction, which can also get within any de-
sired £ > 0 of capacity, but have complexity growing exponentially in 1/£> due to the need for
inner codes of length 1/ that are decoded by brute-force.

A finite length analysis of polar codes, and strong polarization where the probability of not
polarizing falls off exponentially in #, and thus is polynomially small in the block length n =
2!, was established in independent works by Guruswami and Xia [50] and Hassani, Alishahi,
and Urbanke [54]. The latter tracked channel “Bhattacharyya parameters” whereas the former
tracked conditional entropies (as in the present chapter) which are a bit cleaner to deal with as
they form a martingale. This form of fast polarization made polar codes the first, and so far only
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known, family with block length and complexity scaling polynomially in 1/¢ where ¢ is the gap
to capacity,

This analyis of strong polarization in the above works applied only to the 2 x 2 transofrm
and binary case. The strong polarization of the basic 2 x 2 transform was also established for
all prime alphabets in [49], leading to the first construction of codes achieving the symmetric
capacity of all discrete memoryless channels (for prime alphabets) with polynomial complexity
in the gap to capacity. However, these analyses relied on rather specific inequalities (which were
in particular somewhat painful to establish for the non-binary case) and it was not clear what
exactly made them tick.

The recent work of the authors and Btasiok and Nakkiran [5] gave a modular and concep-
tually clear analysis of strong polarization by abstracting the properties needed from each local
step to conclude fast global polarization. This made the demands on the local evolution of the
conditional entropies rather minimal and qualitative, and enabled showing strong polarization
and polynomially fast convergence to capacity for the entire class of polar codes, not just the
binary 2 x 2 case. We followed this approach in this chapter, and in particular borrowed the
concepts of variance in the middle and suction at the ends for local polarization from this work.
However, we restrict attention to the basic 2 x 2 transform, and the binary symmetric channel,
and gave elementary self-contained proofs of the necessary entropic inequalities needed to es-
tablish the properties required of the local polarization step.

Another difference in our presentation is that we described the successive cancellation de-
coder for the polarizing transform P£’, which leads to clean recursive description based on a
more general primitive of decoding copies of independent but not necessary identical random
variables. In contrast, in many works, including Arikan’s original paper [4], the decoding is de-
scribed for the transform followed by the bit reversal permutation. The polarization property
of the bit reversed transform is, however, notationally simpler to establish. Nevertheless, the
transform Pf’ ! commutes with the bit reversal permutation, so both the transforms, with or
without bit reversal, end up having identical polarization properties.
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Part IV

The Algorithms
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Chapter 12

Decoding Concatenated Codes

In this chapter we study Question 10.3.1. Recall that the concatenated code Cyy; o Ci, consists of
an outer [N, K, D]Q:qk code Coyt and an inner [n, k, d]; code Cin, where Q = O(N). (Figure 12.1
illustrates the encoding function.) Then Cyy o Ci, has design distance Dd and Question 10.3.1
asks if we can decode concatenated codes up to half the design distance (say for concatenated
codes that we saw in Section 10.2 that lie on the Zyablov bound). In this chapter, we begin
with a very natural unique decoding algorithm that can correct up to Dd/4 errors. Then we
will consider a more sophisticated algorithm that will allow us to answer Question 10.3.1 in the
affirmative.

12.1 A Natural Decoding Algorithm

We begin with a natural decoding algorithm for concatenated codes that “reverses" the encod-
ing process (as illustrated in Figure 12.1). In particular, the algorithm first decodes the inner
code and then decodes the outer code.

For the time being let us assume that we have a polynomial time unique decoding algo-
. N K
rithm D¢, : [g*]" — [g*]" for the outer code that can correct up to D/2 errors.

This leaves us with the task of coming up with a polynomial time decoding algorithm for the
inner code. Our task of coming up with such a decoder is made easier by the fact that the
running time needs to be polynomial in the final block length. This in turn implies that we
would be fine if we pick a decoding algorithm that runs in singly exponential time in the inner
block length as long as the inner block length is logarithmic in the outer code block length.
(Recall that we put this fact to good use in Section 10.2 when we constructed explicit codes on
the Zyablov bound.) Note that the latter is what we have assumed so far and thus, we can use
the Maximum Likelihood Decoder (or MLD) (e.g. its implementation in Algorithm 2, which we
will refer to as Dc, ). Algorithm 13 formalizes this algorithm.

It is easy to check that each step of Algorithm 13 can be implemented in polynomial time.
In particular,
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Figure 12.1: Encoding and Decoding of the concatenated code Cyyt o Cin. Dc,,, iS a unique
decoding algorithm for Cyy: and Dc,, is a unique decoding algorithm for the inner code (e.g.

MLD).

Algorithm 13 Natural Decoder for Cyy¢ o Cip,

INPUT: Received wordy = (y1,---,yn) € [¢"]"

OUTPUT: Message m’ € [gF]

N
1Y = () yy) €[q*]” where

22 m' — Dc,, (V)
3: RETURN m’

Cin (¥}) = De,, (i) 1=i<N.
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1. The time complexity of Step 1 is O(nqk), which for our choice of k = O(log N) (and con-
stant rate) for the inner code, is (nN)°® time.

2. Step 2 needs polynomial time by our assumption that the unique decoding algorithm
Dc,,, takes NOW time.

Next, we analyze the error-correction capabilities of Algorithm 13:

Proposition 12.1.1. Algorithm 13 can correct < DTd many errors.

Proof. Let m be the (unique) message such that A (Coyc o Cin (m),y) < 2.
We begin the proof by defining a bad event as follows. We say a bad event has occurred (at

position 1 < i < N) if y; # Cin (Coue (m);). More precisely, define the set of all bad events to be
B = {iIJ’i # Cin (Cout (m)i)}-

Note that if |98| < 2, then the decoder in Step 2 will output the message m. Thus, to com-
plete the proof, we only need to show that |28| < D/2. To do this, we will define a superset
%' 2 A and then argue that | 8’| < D/2, which would complete the proof.

Note that if A (y;, Cin (Cout (M) ) < % then i ¢ 98 (by the proof of Proposition 1.4.1)- though
the other direction does not hold. We define 28’ to be the set of indices where i € %’ if and only
if

d
A (J/i; Cin (Cout (m)l)) = E

Note that B < %'.

Now by definition, note that the total number of errors is at least |2/ - g. Thus, if | 2’| = %,
then the total number of errors is at least % . % = DTd, which is a contradiction. Thus, |%'| < %,
which completes the proof. O

Note that Algorithm 13 (as well the proof of Proposition 12.1.1) can be easily adapted to work
for the case where the inner codes are different, e.g. Justesen codes (Section 10.3).
Thus, Proposition 12.1.1 and Theorem 12.3.3 imply that

Theorem 12.1.2. There exist an explicit linear code on the Zyablov bound that can be decoded
up to a fourth of the Zyablov bound in polynomial time.

This of course is predicated on the fact that we need a polynomial time unique decoder for
the outer code. Note that Theorem 12.1.2 implies the existence of an explicit asymptotically
good code that can be decoded from a constant fraction of errors.

We now state two obvious open questions. The first is to get rid of the assumption on the
existence of D¢, ,:

Question 12.1.1. Does there exist a polynomial time unique decoding algorithm for outer
codes, e.g. for Reed-Solomon codes?
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Next, note that Proposition 12.1.1 does not quite answer Question 10.3.1. We move to an-
swering this latter question next.

12.2 Decoding From Errors and Erasures

Now we digress a bit from answering Question 10.3.1 and talk about decoding Reed-Solomon
codes. For the rest of the chapter, we will assume the following result.

Theorem 12.2.1. An [N, K], Reed-Solomon code can be corrected from e errors (or s erasures) as
longas e < =5 (or s < N—K +1) in O(N®) time.

We defer the proof of the result on decoding from errors to Chapter 15 and leave the proof
of the erasure decoder as an exercise. Next, we show that we can get the best of both worlds by
correcting errors and erasures simultaneously:

Theorem 12.2.2. An [N, K], Reed-Solomon code can be corrected from e errors and s erasures in
O(N3) time as long as
2e+s<N-K+1. (12.1)

Proof. Given areceived wordy € (F, U {2})" with s erasures and e errors, lety’ be the sub-vector
with no erasures. This implies thaty' € [Fﬁ,v ~% is a valid received word for an [N — s, K 14 Reed-
Solomon code. (Note that this new Reed-Solomon code has evaluation points that correspond-
ing to evaluation points of the original code, in the positions where an erasure did not occur.)
Now run the error decoder algorithm from Theorem 12.2.1 ony’. It can correcty’ as long as

(N-s)—-K+1
e<f.

This condition is implied by (12.1). Thus, we have proved one can correct e errors under (12.1).
Now we have to prove that one can correct the s erasures under (12.1). Let z’ be the output after
correcting e errors. Now we extend z' toz € (F4U {2)N in the natural way. Finally, run the erasure
decoding algorithm from Theorem 12.2.1 on z. This works as long as s < (N — K + 1), which in
turn is true by (12.1).

The time complexity of the above algorithm is O(N®) as both the algorithms from Theo-
rem 12.2.1 can be implemented in cubic time. O

Next, we will use the above errors and erasure decoding algorithm to design decoding algo-
rithms for certain concatenated codes that can be decoded up to half their design distance (i.e.
up to Dd/2).
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12.3 Generalized Minimum Distance Decoding

Recall the natural decoding algorithm for concatenated codes from Algorithm 13. In particular,
we performed MLD on the inner code and then fed the resulting vector to a unique decoding
algorithm for the outer code. A drawback of this algorithm is that it does not take into account
the information that MLD provides. For example, it does not distinguish between the situations
where a given inner code’s received word has a Hamming distance of one vs where the received
word has a Hamming distance of (almost) half the inner code distance from the closest code-
word. It seems natural to make use of this information. Next, we study an algorithm called the
Generalized Minimum Distance (or GMD) decoder, which precisely exploits this extra informa-
tion.

In the rest of the section, we will assume Cyyt to be an [N, K, D] gk code that can be decoded
(by Dc,,,) from e errors and s erasures in polynomial time as long as 2e + s < D. Further, let Ci,,
be an [n, k, d] 4 code with k = O(log N) which has a unique decoder D¢,, (which we will assume
is the MLD implementation from Algorithm 2).

We will in fact look at three versions of the GMD decoding algorithm. The first two will be
randomized algorithms while the last will be a deterministic algorithm. We will begin with the
first randomized version, which will present most of the ideas in the final algorithm.

12.3.1 GMD algorithm- I

Before we state the algorithm, let us look at two special cases of the problem to build some
intuition.

Consider the received word y = (y1,..., yn) € [g"]" with the following special property: for
every i such that 1 < i < N, either y; = y:. or A(y,-,y:.) > d/2, where y; = MLDc, (y;). Now we
claim that if A(y, Cout © Cin) < dD/2, then there are < D positions in y such that A(y;, Cin( y;)) >
d/2 (we call such a position bad). This is because, for every bad position i, by the definition of
¥, A(yi, Cin) 2 d/2. Now if there are = D bad positions, this implies that A(y, Cout© Cin) 2 dD/2,
which is a contradiction. Now note that we can decode y by just declaring an erasure at every
bad position and running the erasure decoding algorithm for C,, on the resulting vector.

Now consider the received word y = (y,..., yn) with the special property: for every i such
that i € [N], y; € Cin. In other words, if there is an error at position i € [N], then a valid codeword
in Cip gets mapped to another valid codeword y; € Ci,. Note that this implies that a position
with error has at least d errors. By a counting argument similar to the ones used in the previous
paragraph, we have that there can be < D/2 such error positions. Note that we can now decode
y by essentially running a unique decoder for Cy,¢ 0n'y (or more precisely on (xi, ..., xy), where
Vi = Cin(x;)).

Algorithm 14 generalizes these observations to decode arbitrary received words. In particu-
lar, it smoothly “interpolates" between the two extreme scenarios considered above.

Note that if y satisfies one of the two extreme scenarios considered earlier, then Algorithm 14
works exactly the same as discussed above.

By our choice of D¢, and Dc¢,,, it is easy to see that Algorithm 14 runs in polynomial time
(in the final block length). More importantly, we will show that the final (deterministic) version
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Algorithm 14 Generalized Minimum Decoder (ver 1)

INPUT: Received wordy = (y1,--, yn) € [¢"]"
OUTPUT: Message m’ € [qk]K

: FOR1<i<NDO
Vi <= Dc,, (yi).
w; hmin(A(y;,yi),%).

1
2
3
4:  With probability %, set y! —?, otherwise set y' — x, where y; = Cin(x).
5
6

: m' — D¢, (y"), where y” = (y/,..., ).
: RETURN m’

of Algorithm 14 can do unique decoding of Cy o Ci, up to half of its design distance.
As a first step, we will show that in expectation, Algorithm 14 works.

Lemma 12.3.1. Lety be a received word such that there exists a codeword CyyoCin(m) = (cy,...,CN) €
[g™1N such that A(Cyyt o Cin(m),y) < DTd. Further, ify" has e’ errors and s' erasures (when com-
pared with Cyy o Cin(m)), then

E[2¢ +5'] < D.

Note that if 2¢’ + s’ < D, then by Theorem 12.2.2, Algorithm 14 will output m. The lemma
above says that in expectation, this is indeed the case.

Proof of Lemma 12.3.1. Forevery1<i< N, define e; = A(y;, ¢;). Note that this implies that

N

D
S e <24 (12.2)
i-1 2

Next for every 1 < i < N, we define two indicator variables:

?_
Xi — ﬂy;/:?,
and
Xi =10, (/" #c; and y!'#2-
We claim that we are done if we can show that for every 1 <i < N:
2e;
E[2Xf+X;] < 7’. (12.3)
Indeed, by definition we have: ¢’ = ¥ X and s’ = ZXE. Further, by the linearity of expectation
i i
(Proposition 3.1.2), we get
2
E[2¢'+5'] < EZei <D,
i
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where the inequality follows from (12.2).

To complete the proof, we will prove (12.3) by a case analysis. Towards this end, fix an arbi-
trary1<i < N.
Case 1: (c; = y}) First we note that if y!’ #2 then since ¢; = y;, we have X7 = 0. This along with
the fact that Pr[ =?] = 1mp11es

E[X;]=Pr[X;=1]=
and
E[X?] =PriXf=1] =
Further, by definition we have
_ d
w; =min (A(yQ,yi), E) < AWy, yi) = Alci, yi) = ei.

The three relations above prove (12.3) for this case.
Case 2: (c; # y;) As in the previous case, we still have

E[X]]= .

Now in this case, if an erasure is not declared at position 7, then X? = 1. Thus, we have

2wl
d -

E[X{] =Pr[X;=1]=1-

Next, we claim that as ¢; # y;,
e+ w;= d, (12.4)
which implies
2w; 2e;
<
d

E[2Xf+ X, | =2~ o
as desired.
To complete the proof, we show (12.4) via yet another case analysis.

Case 2.1: (w; = A(y;,yl-) < d/2) By definition of e;, we have
ei+wi =AMy, c)+ AW, yi) = Aci,y) =d

where the first inequality follows from the triangle inequality and the second inequality follows
from the fact that C;, has distance d.
Case 2.2: (w; = g < A(y}, y1)) As y! is obtained from MLD, we have

Ay, yi) < Alci, yi)-
This along with the assumption on A(y?, y;), we get

QU

= Aei,y) 2 A} = 5

This in turn implies that
ei+w;>d,

as desired. O

217



12.3.2 GMD Algorithm- II

Note that Step 4 in Algorithm 14 uses “fresh" randomness for each i. Next we look at another
randomized version of the GMD algorithm that uses the same randomness for every i. In par-
ticular, consider Algorithm 15.

Algorithm 15 Generalized Minimum Decoder (ver 2)

INPUT: Received wordy = (y1,--,yn) € [q”]N
OUTPUT: Message m' € [g¥]"

1: Pick 0 € [0, 1] uniformly at random.

2: FOR1<i<NDO

3 yi—Dc,(y)

4 w; «—min(A(yg,yi),g).

Ifo < %, set y! —?, otherwise set y!' — x, where y; = Cin(x).

m' — D¢, (y"), wherey” = (y{,..., y3)-
7: RETURN m’

We note that in the proof of Lemma 12.3.1, we only use the randomness to show that

2w;
Prly) =t ==
In Algorithm 15, we note that
2w; 2w;
P ”:? =P 9 O,—Z)]:—l,
r[y! =?]=Pr|0¢ . ”

as before (the last equality follows from our choice of 8). One can verify that the proof of
Lemma 12.3.1 can be used to show the following lemma:

Lemma 12.3.2. Lety be a received word such that there exists a codeword Cy,oCin(m) = (cy,...,CN) €
g™ such that A(Coyq o Cin(m),y) < DTd. Further, ify" has €' errors and s' erasures (when com-
pared with Cyyt o Cin(m)), then

Ep [2¢'+ '] < D.

Next, we will see that Algorithm 15 can be easily “derandomized."

12.3.3 Derandomized GMD algorithm

Lemma 12.3.2 along with the probabilistic method shows that there exists a value 8* € [0, 1] such
that Algorithm 15 works correctly even if we fix 0 to be 6* in Step 1. Obviously we can obtain
such a 8* by doing an exhaustive search for 6. Unfortunately, there are uncountable choices of
0 because 0 € [0, 1]. However, this problem can be taken care of by the following discretization
trick.
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Define Q ={0,1} U {%, e ZM}. Then because for each i, w; = min(A(yg,yl-), d/2), we have

Q:{O;l}U{CIl,;Clm}

where q1 < g2 < --- < g, for some m < [QJ Notice that for every 0 € [q;, gi+1), just before Step

5|
6, Algorithm 15 computes the same y”. (See Figure 12.2 for an illustration as to why this is the
case.)

0 |
Everything here is not an erasure ! l ! Everything gets ?

0 0 qz qi-1 qi Gi+1 1

Y

Figure 12.2: All values of 6 € [g;, g;+1) lead to the same outcome

Thus, we need to cycle through all possible values of 8 € Q, leading to Algorithm 16.

Algorithm 16 Deterministic Generalized Minimum Decoder*

INPUT: Received wordy = (y1,--,yn) € [¢"]"
OUTPUT: Message m’ € [gF]

1 Q— {241, 2ENY {0, 1},
2: FOR6O € Q DO
FOR1<i<NDO

¥; = Dc,, (y2).
. ! d
wi hmln(A(y,-,yi),g).

m’e — Dc,, (y"), wherey” = (y{,..., y})-

3
4
5
6: If6 < %, set y! —?, otherwise set y!' — x, where y; = Cin ().
7
8: RETURN my, for 6* = argmingeq A (Couc© Cin (mj),y)

Note that Algorithm 16 is Algorithm 15 repeated |Q| times. Since |Q| is O(n), this implies
that Algorithm 16 runs in polynomial time. This along with Theorem 10.2.1 implies that

Theorem 12.3.3. For every constant rate, there exists an explicit linear binary code on the Zyablov
bound. Further, the code can be decoded up to half of the Zyablov bound in polynomial time.

Note that the above answers Question 10.3.1 in the affirmative.

12.4 Bibliographic Notes

Forney in 1966 designed the Generalized Minimum Distance (or GMD) decoding [31].
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Chapter 13

Efficiently Achieving the Capacity of the
BSC,

Table 13.1 summarizes the main results we have seen so far for (binary codes).

Shannon Hamming
Unique Decoding List Decoding
Capacity 1- H(p) (Thm 6.3.1) > GV (Thm 4.2.1) 1- H(p) (Thm 7.4.1)
< MRRW (Sec 8.2)
Explicit Codes ? Zyablov bound (Thm 10.2.1) ?
Efficient Algorithms ? % Zyablov bound (Thm 12.3.3) ?

Table 13.1: An overview of the results seen so far

In this chapter, we will tackle the open questions in the first column of Table 13.1. Recall that
there exist linear codes of rate 1 — H(p) — ¢ such that decoding error probability is not more than
2791 5 = O(e?) on the BSC) (Theorem 6.3.1 and Exercise 6.3). This led to Question 6.3.1, which
asks if we can achieve the BSC,, capacity with explicit codes and efficient decoding algorithms?

13.1 Achieving capacity of BSC,

We will answer Question 6.3.1 in the affirmative by using concatenated codes. The main intu-
ition in using concatenated codes is the following. As in the case of construction of codes on
the Zyablov bound, we will pick the inner code to have the property that we are after: i.e. a
code that achieves the BSC,, capacity. (We will again exploit the fact that since the block length
of the inner code is small, we can construct such a code in a brute-force manner.) However,
unlike the case of the Zyablov bound construction, we do not know of an explicit code that is
optimal over say the gSC,, channel. The main observation here is that the fact that the BSC,,
noise is memory-less can be exploited to pick the outer code that can correct from some small
but constant fraction of worst-case errors.
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Before delving into the details, we present the main ideas. We will use an outer code Cyy; that
has rate close to 1 and can correct from some fixed constant (say y) fraction of worst-case errors.
We pick an inner code Cj, that achieves the BSC,, capacity with parameters as guaranteed by
Theorem 6.3.1. Since the outer code has rate almost 1, the concatenated code can be made
to have the required rate (since the final rate is the product of the rates of Cyy; and Cy,). For
decoding, we use the natural decoding algorithm for concatenated codes from Algorithm 13.
Assume that each of the inner decoders has a decoding error probability of (about) y. Then the
intermediate received word y’ has an expected y fraction of errors (with respect to the outer
codeword of the transmitted message), though we might not have control over where the errors
occur. However, we picked C,; so that it can correct up to y fraction of worst-case errors. This
shows that everything works in expectation. To make everything work with high probability (i.e.
achieve exponentially small overall decoding error probability), we make use of the fact that
since the noise in BSC,, is independent, the decoding error probabilities of each of the inner
decodings is independent and thus, by the Chernoff bound (Theorem 3.1.6), with all but an
exponentially small probability y’ has ©(y) fraction of errors, which we correct with the worst-
case error decoder for Cyy¢. See Figure 13.1 for an illustration of the main ideas. Next, we present
the details.

ma my | ~—~~""""""TTTTTTTTooos mg
Can correct <y worst-case errors ~----.-._. A\# Dyt
! I _____ !
Y! N Y yN
tDin ﬁ} in ¢ Din
i /,/”‘ ''''' ]
B \‘\ e
\.\. »\ /'/
y o | A 7.
. . !
; !

N ,

Ind\ependént decoding error probability é)f < %

Figure 13.1: Efficiently achieving capacity of BSC,,.

We answer Question 6.3.1 in the affirmative by using a concatenated code Cyy¢ o Ci,, with the
following properties (where y > 0 is a parameter that depends only on € and will be fixed later
on):

(i) Cout: The outer code is a linear [N, K],+ code with rate R = 1 — %, where k = O(logN).
Further, the outer code has a unique decoding algorithm D, that can correct at most y
fraction of worst-case errors in time To(N).

(i) Cin: The inner code is a linear binary [n, k], code with a rate of r = 1 — H(p) — €/2. Further,
there is a decoding algorithm Dj, (which returns the transmitted codeword) that runs in
time Tj, (k) and has decoding error probability no more than % over BSCy,.
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Table 13.2 summarizes the different parameters of Cyy¢ and Cy,.

Dimension | Block | g Rate Decoder | Decoding Decoding
length time guarantee
Cout K N 2k 1-% Dout Tout(N) <y fraction of
Worst-case errors
Cn | k=0O(ogN) n 2 | 1-H(p) - % D Tin(k) <! decoding error
probability over BSC,,

Table 13.2: Summary of properties of Cyy¢ and Ci,
Suppose C* = Cyyt © Cin. Then, it is easy to check that
R(C)=R-r> (1—5)-(1—H(p)—f) >1- H(p)—¢,
2 2

as desired.

For the rest of the chapter, we will assume that p is an absolute constant. Note that this
implies that k = ©(n) and thus, we will use k and » interchangeably in our asymptotic bounds.
Finally, we will use A4 = nN to denote the block length of C*.

The decoding algorithm for C* that we will use is Algorithm 13, which for concreteness we
reproduce as Algorithm 17.

Algorithm 17 Decoder for efficiently achieving BSC,, capacity

INPUT: Received wordy= (y1,--,yn) € [q”]N
OUTPUT: Message m' € [g¥]"

N
1y = () € [4]" where
Cin (y;) = Din (J/i) 1<i<N.

2: m’ — Dout (yj)
3: RETURN m’

Note that encoding C* takes time
O(N°k*) + O(Nkn) < O(N°n®) = O(AN?),
as both the outer and inner codes are linear'. Further, the decoding by Algorithm 17 takes time

N - Tin (k) + Tout (N) < poly(IV),

INote that encoding the outer code takes O(N?) operations over F k- The term O(N?k?) then follows from the
fact that each operation over [ gk can be implemented with O(k?) operations over Fg.
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where the inequality is true as long as
Tout(N) = N and T, (k) = 290, (13.1)

Next, we will show that decoding via Algorithm 17 leads to an exponentially small decoding
error probability over BSC,,. Further, we will use constructions that we have already seen in this
book to instantiate Cyy¢ and Cj, with the required properties.

13.2 Decoding Error Probability

We begin by analyzing Algorithm 17.
By the properties of Dy, for any fixed i, there is an error at y; with probability < % Each
such error is independent, since errors in BSC), itself are independent by definition. Because of

this, and by linearity of expectation, the expected number of errors iny’ is < %
Taken together, those two facts allow us to conclude that, by the (multiplicative) Chernoff

bound (Theorem 3.1.6), the probability that the total number of errors will be more than yN
N

. _IN . . ..
is at most e” & . Since the decoder D, fails only when there are more than y N errors, this is

also the final decoding error probability. Expressed in asymptotic terms, the error probability is
N
Z_Q(YT) .

13.3 The Inner Code

We find Cj, with the required properties by an exhaustive search among linear codes of di-
mension k with block length n that achieve the BSC,, capacity by Shannon’s theorem (Theo-
rem 6.3.1). Recall that for such codes with rate 1 — H(p) - §, the MLD has a decoding error
log(1)

Y

probability of 2-0En (Exercise 6.3). Thus, if k is at least Q ( 8

" ), Exercise 6.3 implies the exis-

tence of a linear code with decoding error probability at most % (which is what we need). Thus,
with the restriction on k from the outer code, we have the following restriction on k:

1
0 (log(;)

= )SkSO(logN).

Note, however, that since the proof of Theorem 6.3.1 uses MLD on the inner code and Al-
gorithm 2 is the only known implementation of MLD, we have T, = 29 (which is what we
needed in (13.1). The construction time is even worse. There are 20m generator matrices; for
each of these, we must check the error rate for each of 2* possible transmitted codewords, and
for each codeword, computing the decoding error probability requires time 20”2 Thus, the
construction time for Gy, is 200",

2To see why the latter claim is true, note that there are 2" possible received words and given any one of these
received words, one can determine (i) if the MLD produces a decoding error in time 2°%® and (ii) the probability
that the received word can be realized, given the transmitted codeword in polynomial time.
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Figure 13.2: Error Correction cannot decrease during “folding." The example has k = 2 and a
pink cell implies an error.

13.4 The Outer Code

We need an outer code with the required properties. There are several ways to do this.

One option is to set Cyy to be a Reed-Solomon code over F,« with k = ©®(log N) and rate 1 - g
Then the decoding algorithm D, could be the error decoding algorithm from Theorem 12.2.2.
Note that for this Dy, we can sety = % and the decoding time is Tou(N) = O(N3).

Till now everything looks on track. However, the problem is the construction time for Cjj,
which as we saw earlier is 20™). Our choice of n implies that the construction time is 20008° M) <

NOUgM ‘wwhich of course is not polynomial time. Thus, the trick is to find a Coy; defined over a
smaller alphabet (certainly no larger than 20(10gN)) This is what we do next.

13.4.1 Using a binary code as the outer code

The main observation is that we can also use an outer code which is some explicit binary linear
code (call it C') that lies on the Zyablov bound and can be corrected from errors up to half its
design distance. We have seen that such a code can be constructed in polynomial time (Theo-
rem 12.3.3).

Note that even though C’ is a binary code, we can think of C’ as a code over [, in the obvious
way: every k consecutive bits are considered to be an element in F,« (say via a linear map). Note
that the rate of the code does not change. Further, any decoder for C’ that corrects bit errors
can be used to correct errors over F,c. In particular, if the algorithm can correct § fraction of
bit errors, then it can correct that same fraction of errors over F,c. To see this, think of the
received word as y € (o) "'k, where N' is the block length of C’ (as a binary code), which is at
a fractional Hamming distance at most p away from c € (F,)" "Ik Here c is what once gets by
“folding" consecutive k bits into one symbol in some codeword ¢’ € C'. Now consider y' € FYY |
which is just “unfolded" version of y. Now note that each symbol in y that is in error (w.r.t. ¢)
leads to at most k bit errors iny’ (w.r.t. ¢/). Thus, in the unfolded version, the total number of

errors is at most .

N
k-p-—=p-N.
P =0

(See Figure 13.2 for an illustration for k = 2.) Thus to decode y, one can just “unfold" y toy’ and
use the decoding algorithm for C’ (which can handle p fraction of errors) ony'.

225



We will pick Coy¢ to be C' when considered over F,«, where we choose

k=0|—;

bgﬁ)

Further, Doy, is the GMD decoding algorithm (Algorithm 16) for C'.

Now, to complete the specification of C*, we relate y to €. The Zyablov bound gives 6oyt =
(1- R)H (1 -r), where R and r are the rates of the outer and inners codes for C’. Now we can
set 1 — R = 2,/y (which implies that R = 1-2,/y) and H™'(1 - r) = /¥, which implies that r is®
1-0 (\/)7 log %) Since we picked Dgy; to be the GMD decoding algorithm, it can correct % =y
fraction of errors in polynomial time, as desired.

The overall rate of Coy is simply R-r = (1-2,/y) - (1 -0 (ﬁlog%)). This simplifies to 1 —
0] (ﬁlog ()l/)) Recall that we need this to be at least 1 — % Thus, we would be done here if we

could show that € is Q (\/? log %), which would follow by setting
y=¢€".

13.4.2 Wrapping Up

We now recall the construction, encoding and decoding time complexity for our construction

* . . . on?) . . . . O(%logz(l))
of C*. The construction time for Cy, is 2 , which substituting for n, is 27\ ¢’J. The
construction time for C,,;, meanwhile, is only poly(V). Thus, our overall, construction time is

L 1og?(L
poly(A) + 20(64 log (f)].
As we have seen in Section 13.1, the encoding time for this code is O(.4#?), and the decoding

1 log(1
time is NOW 4+ N.200) = poly(A) + N -20(62 log(s)). We also have shown that the decoding error

N
probability is exponentially small: 27005 = -

result:

. Thus, we have proved the following
Theorem 13.4.1. For every constant p and0 < & <1— H(p), there exists a linear code C* of block
length A and rate at least 1 — H(p) — €, such that

(@ C* can be constructed in time poly(A) +20€);

(b) C* can be encoded in time O(A?); and

(c) There exists apoly(N)+ N - 20€™) fime decoding algorithm that has an error probability
of at most 270N over the BSCy.

3Note that r =1 - H(,/y) = 1 + \/¥log /¥ + 1 - /) log(1 — /7). Noting that log(1 — /¥) = —/¥ — ©(y), we can
deduce that r =1 - O(y/ylog(1/7)).
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Thus, we have answered in the affirmative Question 6.3.1, which was the central open ques-
tion from Shannon’s work. However, there is a still somewhat unsatisfactory aspect of the result
above. In particular, the exponential dependence on 1/¢ in the decoding time complexity is not
nice. This leads to the following question:

Question 13.4.1. Can we bring the high dependence on € down to poly(%) in the decoding
time complexity?

13.5 Discussion and Bibliographic Notes

Forney answered Question 6.3.1 in the affirmative by using concatenated codes. (As was men-
tioned earlier, this was Forney’s motivation for inventing code concatenation: the implication
for the rate vs. distance question was studied by Zyablov later on.)

We now discuss Question 13.4.1. For the binary erasure channel, the decoding time com-
plexity can be brought down to A" - poly(%) using LDPC codes, specifically a class known as Tor-
nado codes developed by Luby et al. [71]. The question for binary symmetric channels, however,
is still open. Recently there have been some exciting progress on this front by the construction
of the so-called Polar codes.

We conclude by noting an improvement to Theorem 13.4.1. We begin with a theorem due to
Spielman:

Theorem 13.5.1 ([94]). For every small enough B > 0, there exists an explicit Cy,; of rate - and

1+
) errors, and has O(N) encoding and decoding.

2

block length N, which can correct Q) ((102—1)2
B

Clearly, in terms of time complexity, this is superior to the previous option in Section 13.4.1.
Such codes are called “Expander codes.” One can essentially do the same calculations as in

Section 13.4.1 with y = © ( logf(zl /E)).4 However, we obtain an encoding and decoding time of

1
N 2PN Thus, even though we obtain an improvement in the time complexities as compared
to Theorem 13.4.1, this does not answer Question 13.4.1.

4This is because we need 1/(1 + 8) = 1 — £/2, which implies that § = O(¢).
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Chapter 14

Decoding Reed-Muller Codes

In this chapter we describe decoding algorithms for the Reed-Muller codes, introduced in Chap-
ter 9. Recall that these are the codes obtained by evaluations of multivariate polynomials over
all possible assignments to the variables. We will see several decoding algorithms for these
codes, ranging from simplistic ones that correct a constant fraction of the minimum distance
(with the constant depending on g), to algorithms based on more sophisticated concepts that
correct up to half the minimum distance.

To elaborate on the above, recall that the Reed-Muller code with parameters g, m,r is the

set of functions

RM(q, m, 1) d:ef{f JF— Fyldeg(f) < r}.

The minimum distance distance of the code is

def s
Agm,r = (q_t)‘qm s 1,

where s, t satisfy r = s(g—1)+ tand 0 < < g — 2 (recall Lemma 9.4.1). We will first describe an

algorithm to correct - A, » for some constant € > 0 that depends only on ¢g. Later we will give
Agm,r—1

> J €ITors.

algorithms that correct {

14.1 A natural decoding algorithm

The main insight behind our first decoding algorithm is the simple fact that the degree of poly-
nomials does not increase on affine substitutions. Let us introduce this notion and then explain
why this might be useful in building decoding algorithms.

Definition 14.1.1. A one-dimensional s-variate affine form a€ F4[Z,,..., Zs] is a polynomial of
the form a(/,...,Z5) = le':l a;Z; + ap. In other words an affine form is a polynomial of degree
at most 1. An m-dimensional s-variate affine form A ={a,..., a;) is simply an m-tuple of one-
dimensional affine forms.

For example Ay = (Z1 + Z», Z1, Z») is a 3-dimensional 2-variate affine form over [F,.
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Definition 14.1.2. Given an m-variate polynomial P € F4[Xj, ..., X;] and an m-dimensional s-
variate affine form A = (ay,..., am) € (F4[Z])™ where Z = (Z,,..., Z), the affine substitution of
Ainto P is given by the polynomial Po A€ F4[Z] given by (Po A)(Z) = P(a,(Z),..., am(Z)).

Let Ag be the affine form as above and let Py(X;, X5, X3) = X1 Xo + X3 X, X3+ X3 over [F,. Then
we have

(Poo Ag)(Z1, Zp) = (Z1+ Z) 2y +(Z1+ Zo) Zy Zo+ Ty = Zi+ 2y o+ 72 T+ 2y 2o+ Ty = 21+ 2y Zo+ 2,

where the last equality follows since we are working over [».

Notice that the notion of affine substitutions extends to functions naturally, viewing both
f and A as functions (given by the evaluations of corresponding polynomials) in the definition
above.

Affine substitutions have nice algebraic, geometric, and probabilistic properties and these
combine to give us the decoding algorithm of this section. We introduce these properties in
order.

Proposition 14.1.1 (Degree of Affine Substitutions). Affine substitutions do not increase the de-
gree of a polynomial. Specifically, if A is an affine form, then for every polynomial P, we have
deg(Po A) < deg(P).

Proof. The proof is straightforward. First note that for any single monomial M =[], X lr " the
affine substitution Mo A= H;’i ,ai(Z) 'i has degree at most deg(M). Next note that if we write a
general polynomial as a sum of monomials, say P =Y ,,ca - M, then the affine substitution is
additive and so Po A=} j;cp (Mo A). The proposition now follows from the fact that

deg(Po A) =deg(}_cu(Mo A)) < mﬁx{deg(Mo A)} < mNaI.xdeg(M)} = deg(P).
M

O

We remark that the bound above can be tight (see Exercise 14.1) and that the result above
generalizes to the case when we replace each term by a degree d-polynomial instead of a degree
1-polynomial (see Exercise 14.2).

Next we turn to the geometric aspects of affine substitutions. These aspects will be essential
for some intuition, though we will rarely invoke them formally.

One way to view affine substitutions into functions is that we are viewing the restriction of a
function on a small subset of the domain. For example, when s = 1, then an affine substitution
Ainto a function f, restricts the domain of the function to the set {A(z)|z € F4;} where A(z) is of
the form az +b for some a,b € . This set forms a line in F7' with slope a and passing through
the point b. When s becomes larger, we look at higher dimensional (affine) subspaces such as
planes (s = 2) and cubes (s = 3). While lines, planes and cubes are not exactly the same as in the
Euclidean space they satisfy many similar properties and this will be used to drive some of the
probabilistic thinking below.

In what follows we will be looking restrictions of two functions f and g on small-dimensional
affine subspaces. On these subspaces we would like to argue that f and g disagree roughly as
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often as they do on [FZl. To do so, we use the fact that “random” affine substitutions sample
uniformly from Fz'. We formalize this below.

Consider a uniform choice of an affine form A(z) =Mz +b, i.e., where M e Fg"** and b e F
are chosen uniformly and independently from their respective domains. (Note that this allows
M to be ofless than full rank with positive probability, and we will allow this to keep calculations
simple and clean. We do warn the reader that this can lead to degenerate lines and subspaces -
e.g., when M is the zero matrix then these subspaces contain only one point.)

Proposition 14.1.2. (1) Fixz € Fy. Then, for a uniformly random A, the point A(z) is dis-
tributed uniformly inFg'.

(2) FixzeFy\{0} andx € F'. and let A be chosen uniformly subject to the condition A(0) =x.
Then the point A(z) is distributed uniformly inFg'. Consequently, for every pair of functions
f.g: F? — [F4, we have

Pr(foA@ # go A@)] = 8(f,8).

Proof. Let A(z) =Mz +b where M e F""* and b € F " are chosen uniformly and independently.
For part (1), we use the fact that for every fixed M and z, Mz +b is uniform over Fg' when b is
uniform. In particular, for every y € [ 7' we have

l:)r [Mz+b=y]= l:)r [b=y-Mz|] =g
Since this holds for every M, it follows that
Pr [Mz+b=y|=g"
br[Mz+b=y]=¢

and so we conclude that A(z) = Mz +y is uniformly distributed over Fg'.
For part (2), note that the condition A(0) = x implies b =x. So, for fixed y € F”*, we have

I\IH)[A(Z) =y| A0) =x] :I;[r[Mz+x:y].

Now let z = (z,,..., z5) and denote the columns of M by Mj,..., M; so that
Mz =2z My +---+ z; M.

Since z # 0 we must have some z; # 0 and let i be the largest such index. We note that for every
choice of My, ..., M;_1, Mj1,..., My, the probability, over the choice of M; that Mz+x=yis g~ ",
since this happens if and only if M; = zl.‘1 (y—(z1My +---z;—_1M;_; + x), and this event happens
with probability g~"". Averaging over the choices of the remaining columns of M, we still have

Pr |A(z) =y | A(0)=x| =Pr|Mz+x=y|=q""",
Pr[A@ =yl A©@) =x] =Pr[Mz+x=y]=¢q
thus establishing that A(z) is distributed uniformly over F7’ even when conditioned on A(0) = x.
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Finally to see the final implication of part (2), fix functions f, g: [F;” and let

E={yerrify #8m},
so that §(f, g) = Pry [y € E|. We have

Pr [foA(@) #goA@)] = PriA@ € ],
but since A(z) is uniform in F7' even given A(0) =x, we have
PriA(z) € F) = Pr [ye E]=6(f, &),

as claimed. O

14.1.1 The Actual Algorithm

Now we explain why affine substitutions might help in decoding the Reed-Muller code. Recall
that the decoding problem for the Reed-Muller codes is the following:

* Input: Parameters ¢, m, r and e (bound on number of errors) and a function f: Fg' —
Fyg.
q

* Output: Polynomial P € F4[Xj,..., X;,] with deg(P) < r such that [{x € F!|f(x) #
P} <e.

One way to recover the desired polynomial P is to output its value at every given point x €
Fz'. (This works provided the polynomial P to be output is uniquely determined by f and the
number of errors, and that is the setting we will be working with.) In what follows we will do
exactly this. The main idea behind the algorithm of this section is the following: We will pick an
affine form A such that A(0) = x and attempt to recover the polynomial Po A. Evaluating Po A(0)
gives us P(x) and so this suffices, but why is the task of computing P o A any easier? Suppose
we use an s-variate form A for small s. Then the function P o A is given by g° values with s < m
this can be a much smaller sized function and so brute force methods would work faster. But
an even more useful observation is that if A is chosen at random such that A(0) = x, then most
of the g° points (in fact all but one) are random points and so unlikely to be erroneous. In
particular for any fixed non-zero z, we would have with high probability f o A(z) = Po A(z),
where the probability is over the choice of A, assuming the number of errors is small. Since
q°® < g™ one can apply a union bound over the roughly g°* choices of z to (hopefully) establish
that all the points z € [Ff] \ {0} are not errors, and if this happens a further hope would be that
Po Ais uniquely determined by its values on FZI \ {0}. The two hopes are in tension with each

other — the former needs small values of s and the latter needs s to be large; and so we pick

an intermediate s, specifically s = [%ﬂ , where both conditions are realized and this yields the

algorithm below. We describe the algorithm first and then explain this choice of parameters
later.
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Algorithm 18 SIMPLE REED-MULLER DECODER

INPUT: r<m,0<e< % . qm_“’“)’(q_m, and function f: [FZ? —Fy.

OUuUTPUT: Polynomial P € F4[Xj,..., X;,] with deg(P) < r such that |{x € [F’Z,?If(x) #ZPX)} <e,if
such a polynomial exists and NULL otherwise

FORXE [ng DO
g(x) =LOCAL-DECODE-RM-SIMPLE(X, f).

m
RETURN INTERPOLATE (q, m,g,r, [Fq )

procedure LOCAL-DECODE-RM-SIMPLE(X, f)
Repeat LOCAL-DECODE-RM-SIMPLE-ITER(X, f) O(mlogqg) times and return most fre-
quent answer.

procedure LOCAL-DECODE-RM-SIMPLE-ITER(X, f)
Lets — L’IL_H
Select an m-dimensional s-variate affine form A uniformly conditioned on A(0) =x.
g — INTERPOLATE (q, s,foAr, Ff7 \ {0})

IF g iS NULL THEN
g0
RETURN g(0).

procedure INTERPOLATE(q, m, f,T1,S) > Returns a polynomial P € F,(4,..., Zy) such that
deg(P) <r and P(x) = f(x) for every x € S and return NULL is no such P exists. > See
comments in Section 14.1.2 for more on how this algorithm can be implemented.

233



The detailed algorithm is given as Algorithm 18. Roughly the algorithm contains two loops.
The outer loop enumerates x € F and invokes a subroutine LOCAL-DECODE-RM-SIMPLE that
determines P(x) correctly with very high probability. This subroutine creates an inner loop
which invokes a less accurate subroutine LOCAL-DECODE-RM-SIMPLE-ITER, which computes
P(x) correctly with probability %, many times and reports the most commonly occurring an-
swer. The crux of the algorithm is thus LOCAL-DECODE-RM-SIMPLE-ITER. This algorithm
picks a random affine form A such that A(0) = x and assumes that f o A(z) = P o A(z) for ev-
ery non-zero z. Based on this assumption it interpolates the polynomial P o A and returns
Po A(0) = P(A(0)) = P(x).

The crux of the analysis is to show that the assumption holds with probability at least % over
the random choice of A provided the number of errors is small. We will undertake this analysis
next.

14.1.2 Analysis of the simple decoding algorithm

We first show that each invocation of LOCAL-DECODE-RM-SIMPLE-ITER succeeds with high
probability:

Lemma 14.1.3. Let P €F4[X, ..., Xm] be a polynomial of degree at most r and let f :F g —F4 be
such that

1
e= X FIf) # P < o g7+,

Then, for everyx € F*, the probability that LOCAL-DECODE-RM-SIMPLE-ITER(f,X) returns P(X)
is at least 2/3.
Proof. Recall s = [%ﬂ andso e < @. We use this condition in the analysis below.

Fixze [Fﬁl \ {0}. Since A was picked conditioned on A(0) = x, by part (2) of Proposition 14.1.2
we have that A(z) is a uniformly random element of [’ (and in particular this is independent
of x). So the probability that f(A(z)) # P(A(z)) is exactly q%. Taking the union bound over all
ze [y \ {0} we get that

s s e e 1
l?qr dze [Fq \{0}s.t. f(A@) #P(A@)|<(g"—-1)- q_’” < g 3 (14.1)
So, with probability at least 2, we have that foA(z) = Po A(z) for everyz € F;\{0}. We argue below
that if this holds, then LOCAL-DECODE-RM-SIMPLE-ITER(f,X) returns P(x) and this proves the
lemma.

Since Po Ais a polynomial in F4[Z1,..., Z] of degree at most r that agrees with fo A on ev-
ery z € F \ {0}, we have that the there exists at least one polynomial satisfying the condition of
the final interpolation step in LOCAL-DECODE-RM-SIMPLE-ITER(f,x). It suffices to show that
this polynomial is unique, but this follows from Exercise 14.4, which asserts that §(Po A, h) = %

for every polynomial h € F4[2,..., Z;] of degree at most r, provided r < (g —1)s. (Note that

our choice of s = [%H ensures this.) In particular this implies that every pair of polynomi-

als disagree on at least two points in [Fﬁ7 and so on at least one point in [Ff7 \ {0}. Thus Po A s
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the unique polynomial that fits the condition of the interpolation step in LOCAL-DECODE-RM-
SIMPLE-ITER(f,X) and so this subroutine returns P(x) with probability at least % O

We note that one can push the % fraction of errors to % —v forany 0 <y < 1/2 with a success
probability of % + 7 (see Exercise 14.5).

With Lemma 14.1.3 in hand, some routine analysis suffices to show the correctness of the
Simple Reed-Muller Decoder (Algorithm 18) and we do so in the theorem below.

Theorem 14.1.4. The Simple Reed-Muller Decoder (Algorithm 18) is a correct (i randomized) poly-
nomial in n time algorithm decoding the Reed-Muller codeRM(q, m, 1) frome < 5-q™~ [+ D/(a=1]
errors.

Proof. Fix P € F4[Xj,..., Xj»] be a polynomial of degree at most r and f : [FZ1 — [F4 such that

ezl{xe[F |f(x);ép(x)}|<_ g 1r+D@=D1,

Further fix x € g". Lemma 14.1.3 asserts that a call to LOCAL-DECODE-RM-SIMPLE-ITER(f,X)
returns P(x) with probability at least % By an application of the Chernoff bounds (in par-
ticular, see Exercise 3.3), the majority of the O(mloggq) calls to LOCAL-DECODE-RM-SIMPLE-
ITER(f, x) is P(x) except with probability exp(-mlogq) and by setting the constant in the O(-)
appropriately, we an ensure this probability is at most q . We thus conclude that for every
fixed x € [Fm the probability that LOCAL-DECODE-RM- SIMPLE(f,x) does not return P(x) is at

most %. By the union bound, we could that the probability that there exists x € Fz’ such that
LOCAL-DECODE-RM-SIMPLE(f,X) # P(x) is at most 3. Thus with probability at least % the algo-
rithm computes P (x) correctly for every x and thus the interpolation returns P with probability
at least %

The running time of the algorithm is easy to establish. Let Ti,((n) denote the time it takes
to interpolate to find the coefficients of a polynomial P given its n evaluations. It is well-known
that Tjy is a polynomial with near linear running time. (See Remarks on Interpolation below.)
We have that the LOCAL-DECODE-RM-SIMPLE-ITER takes time at most Tin¢(g°) per invocation,
and thus LOCAL-DECODE-RM-SIMPLE takes O(m - Tint(q°) -log q) steps per invocation. Since
LOCAL-DECODE-RM-SIMPLE is executed g times by the overall algorithm, the overall run-
ning time is bounded by Tih(g"™) + O(m - g™ - Tine(qg°)log q). Expressed in terms of n = g™ and
emax = 9" */3 and crudely bounding interpolation cost by a cubic function, this translates into
arunning time of on3+0 ( logn O

Remarks on Interpolation. As mentioned in the proof above, the running time of the algo-
rithm depends on the running time of the two interpolation steps in the algorithm DECODE-
RM-SIMPLE. To get polynomial time algorithms for either step, it suffices to note that interpo-
lation is just solving a system of linear equations and thus can always be solved in cubic time
by Gaussian elimination (see Exercise 14.6). To make the steps more efficient, one can use the
structure of polynomial interpolation to get some speedups for the first interpolation step (see
Section 14.5). For the second, since we are only interested in evaluating P o A(0), interpolation
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is a bit of overkill. It turns out one can explicitly determine the exact linear form which de-
scribes Po A(0) in terms of {Po A(z)|z € [ \ {0}} and this turns out to be extremely simple: In fact
Po A(0)=- Zze[qu\{o} Po A(z) (see Exercise 14.7).

Remark on Fraction of Errors corrected. The number of errors corrected by the Simple Reed-
Muller Decoder, 5 - g™~ "7+D/@=D1 js complex and requires some explanation. It turns out that

this quantity is closely related to the distance of the code. For s = [%ﬂ if we now let ¢ be such
that r = s(g—1) — ¢ (note that this is different from the way we did this splitting in Lemma 9.4.1),
then from Lemma 9.4.1 we have that the distance of the code RM(q, m, r) is (t + 1)g"*~* where

1 <t<q-1 (see Exercise 14.8). So in particular the distance of the code is between g * and
_ 1 qm—s
qm S+

. In contrast, our algorithm corrects “5— errors, which is at least a %—fraction of the
distance of the code. Ideally we would like algorithms correcting up to % as many errors as the
distance, and this algorithm falls short by a “constant” factor, if g is a constant. In the rest of the
chapter we will try to achieve this factor of %

14.2 Majority Logic Decoding

The algorithm of the previous section corrects errors up to a constant fraction of the distance
(with the constant depending on ¢, but not on m or r) but is not the best one could hope for.
In this section we develop an algorithm that corrects the optimal number of errors over F,. The
main idea is to continue to explore the function over “affine subspaces” but now the substi-
tutions will be much simpler. Specifically they will be of the form x; = b; for many different
choices of i where b; € F». This will leave us with a function on the unset variables and while we
won't be able to determine the function completely on the remaining variables, we will be able
to determine some coefficients and this will allow us to make progress.

The main idea driving this algorithm is the following proposition about degree r polynomi-
als.

Proposition 14.2.1. Let P € F2[Xy,..., X;] be of degree r and let C € Fy be the coefficient of the
monomial [1;_, X; in P. Then, for everyb € F}'™", it is the case that Yacr; P(a,b) = C.

Proof. Let Py(Xy,...,X;) = P(Xy,...,X;,b), i.e., Py is P restricted to the subspace X; = b; for
r < i < m. Note that the coefficient of the monomial X; --- X, in P, remains C, since all other
monomial now have degree strictly less than r after the substitutions X; = b;. (Note that we
used the fact that P has degree at most r to make this assertion.) So we can write P, = C-
X -+ X + g where deg(g) < r. We wish to show that

Y Ph@=) C-

I1 aj)+ Y g@=_cC.
j=1

acl) acl) acl)
We first note that the first summation is trivially C since all terms except when a; =---=a, =1
evaluate to zero and the term corresponding to a; = --- = a, = 1 evaluates to C. The proposition
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now follows from Exercise 14.7 which asserts that for every polynomial g of degree less than r,
the summation Y aer; 8(@) =0. O

As such the proposition above only seems useful in the error-free setting — after all, it as-
sumes P is given correctly everywhere. But it extends to the setting of a small number of er-
rors immediately. Note that if a function f disagrees with polynomial P on at most e points
in [}’ then there are at most e choices of b € FJ'~" for which Y aer; f(a,b) does not equal C.
In particular, if e < 2™77/2 then the majority of choices of b lead to the correct value of C.
(And remarkably, for the class of degree r polynomials, this is exactly one less than half the
distance of the associated code.) Of course, the monomial []}_, X; is not (very) special. The
same reasoning allows us to compute the coefficient of any monomial of degree r. For example
majoritybe[an-r{ZadF; f(a,b)} gives the coefficient of X --- X}, and majoritybE[ng-r{Zae[Fé f(b,a)}
(note the exchange of a and b) gives the coefficient of X,;,_,+1--- X;;,. (See Exercise 14.9.) With
appropriate notation for substituting a and b into the right places, we can calculate any other
monomial of degree r as well. And then downward induction on r allows us to compute coef-
ficients of lower degree monomials. This leads us to the algorithm described next. For the sake
of completeness we also give the full analysis afterwards.

14.2.1 The Majority Logic Decoding Algorithm
We start with some notation that will help us describe the algorithm more precisely.
Definition 14.2.1. For S < [m] we let X5 denote the monomial [[;c5 X;.

Definition 14.2.2. For S < [m] with |S| = ¢ and vectors a € F, and b € F)'~/, let (S — a,S — b)
denote the vector whose coordinates in S are given by a and coordinates in S are given by b.

Definition 14.2.3. For S < [m] with |S| = ¢ and vectors a € F, and b € FJ*~/, let (S — a,§ — b)
denote the evaluation of f on (S — a,S — b). In other words, let S = {iy,..., i;} with iy < i;,; and
let S = {j1,..., jm—¢} With ji < jks1. Then f(S —a, S —b) = f(c) where c € F}" is the vector such
that ¢;, = ax and c;, = by.

The majority logic decoder details are presented in Algorithm 19.

14.2.2 The analysis

We next argue that the algorithm MAJORITY LOGIC DECODER (Algorithm 19) correct up to half
the errors for the RM(2, m, r) code.

Lemma 14.2.2. On input f : F)' — [, that disagrees with a polynomial Q € F2[X,..., Xp] of
degree at most r on at most e < % 27T points, the algorithm MAJORITY LOGIC DECODER()
correctly outputs Q.

Proof. Let Q(X) = Ysc(m CsXs and let Q;(X) = Xgcmy 51> CsXs. We argue by downward in-
duction on ¢ (from r + 1 down to 0) that Q; = P; where P,’s are the polynomials computed by
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Algorithm 19 Majority Logic Decoder
INPUT: r<m,0<e< 32", and function f :F}" — F».
OuTPUT: Output P such deg(P) <r and |[{x e F}'|P(x) # f(x)}| < e.

Pry1 <0
FOR t = r downto 0 DO
ft—=f—Pi

FOR every S < [m] with |S| = £ DO
FOR everyb e F)'"* DO
Csb — Laer: f1(S — a,§—b).
Cs — majority, {Csb}
Pt — Pri1+ X scimy,s1=t Cs Xs
RETURN Pgy

our algorithm. The base case is obvious since P;;; = Qr4+1 = 0. Assume now that P41 = Q4
and so we have that f; = f — P;,; disagrees with Q — Q;4+; on at most e points. (See Exer-
cise 14.10.) We now argue that for every subset S < [m] with |S| = ¢, Cs = Cg. Fix such a set
S. For b € F'~%, we refer to the partial assignment S — b as a “subcube” corresponding to the
points {(S—a,S—b)lac [Fg}. We say that a subcube S — b is in error if there exists a such that
fi(S—a,S —b)#(Q-Qs1)(S —a,S —b). By Proposition 14.2.1, we have that if a subcube is
notin error then Cgp, = C ’S, since C g is the coefficient of X in the polynomial (Q — Q;+1) (Whose
degree is at most t). Furthermore at most e subcubes can be in error (see Exercise 14.11). Fi-
nally, since the total number of subcubes is 2"~ = 2™~" > 2¢ we thus have that a majority of
subcubes are not in error and so Cs = majorityy, {Csp} = C.
Thus we have for every S with |S| = ¢ that Cg = C’S and so Q; = Py, giving the inductive step.
So we have for every ¢, P; = Q; and in particular Py = Qg = Q as desired.
O

The running time of the algorithm is easy to see as being at most n = 2™ times the number
of coefficients of a degree r polynomial, whichis }!_, ('l") < nin the binary case. Thus O(n?) is
a crude upper bound on the running time of this algorithm. Note that this algorithm corrects

up to exactly L%J errors where d = 27" is the minimum distance of RM(2, m, r). (Since d is

even, this quantity equals % — 1.) We thus have the following theorem.

Theorem 14.2.3. For every0 < r < m, The Majority Logic Decoder (Algorithm 19), corrects up to
% — 1 errors in the Reed-Muller code, RM(2, m, 1), in O(n?) time, where n = 2" is the block length
of the code and d = 2"~ is its minimum distance.

14.3 Decoding by reduction to Reed-Solomon decoding

The algorithms described so far were based on very basic ideas, but they have their limitations.
The SIMPLE REED-MULLER DECODER (Algorithm 18) fails to correct errors up to half the min-
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imum distance. And the majority logic algorithm (Algorithm 19) seems to work only over F»
(where the monomial structure is especially simple). The final algorithm we give uses a slightly
more sophisticated algebraic idea, but then ends up yielding an almost ‘trivial’ reduction to
Reed-Solomon decoding. (It is trivial in the sense that the reduction algorithm almost does no
work.) The resulting reduction can use any algorithm for Reed-Solomon decoding including
any of the ones from Chapter 15.

The crux of the reduction is a natural bijection between the vector space Fg' and the field
F4m. This bijection converts the space of functions {f|F7' — F4} to the space of functions {f :
Fygm — Fgt S {f : Fgm — F4m}. Algorithmically, it is important that the bijection only acts on the
domain and so almost no work is needed to convert a function g € {f|Fg' — F} to its image
G e {f :Fgm — F4m} under the bijection. Thus Reed-Muller codes get transformed to a subcode
of some Reed-Solomon code, and corrupted Reed-Muller codewords get mapped to corrupted
Reed-Solomon codewords. Now comes the algebraic part: namely, analyzing how good is the
distance of the so-obtained Reed-Solomon code, or equivalently upper bounding the degree
of the polynomials G obtained by applying the bijection to g € RM(gq, m,r). It turns out the
bijection preserves the distance exactly and so algorithms correcting the Reed-Solomon code
up to half its distance does the same for the Reed-Muller code.

In the rest of this section we first describe the ‘nice’ bijection ® from F,» — Fg* and intro-
duce a parameter called the extension degree that captures how good the bijection is. Then,
we analyze the extension degree of the bijection map and show that it ends up mapping Reed-
Muller codes to Reed-Solomon codes of the same distance, and thus an algorithm to decode
Reed-Solomon codes with errors up to half the distance of the code also yield algorithms to
decode Reed-Muller code with errors up to half the distance of the code.

14.3.1 Abijection from [’ vs. F;n

The bijections we will eventually work with in this section will be linear-bijections. We introduce
this concept first.

Definition 14.3.1. A function ®:F;m — F' is said to be an [ 4-linear bijection if
1. ®isabijection, i.e., ®(u) = ®(v) = u = v for every u, v € Fym.

2. ®isFg4-linear, i.e., forevery a, f € F; and u, v € Fym itis the case that ®(au+ fv) = a®(u) +
pO(v).

(Above and throughout this section it will be useful to remember that F; S F;» and so oper-
ations such as au for a € F; and u € Fym are well-defined.)

Note that a linear bijection @ : Fym — [FZl can be viewed as m functions (®,...,®,,) with
®; :Fym — g so that ®(u) = (P (w),..., P, (u)). Furthermore each ®; is a linear function from
Fym — F,4 and since F; S F4m, ®; can be viewed as a polynomial in [ ;= [Z] (see Exercise 14.12).
Our proposition below recalls the basic properties of such linearized polynomials.

Proposition 14.3.1. There exists an F,-linear bijection from Fgm to Fy'. If ® = (®y,..., D) :
Fgm — Fg' is an F4-linear bijection then each ®;(Z) is a trace function. Specifically there exist
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A1..., Am € Fgm, which are linearly independent overF 4, such that®;(Z) =Tr(A1; Z) = Z}?“:_Ol /1?] qu.
In particular deg(®;) = g™ and ®@ is alinearized polynomial (i.e., only non-zero coefficients are
for monomials of the form Z%' ).

Proof. Given a bijection ® the fact that it is a Trace function follows from Proposition D.5.17,
which implies its degree and linearized nature (see Exercise 14.13). All that remains to show
is that a linear bijection exists. We claim that if Ay,...,A4,, € F4m are F,-linearly independent
then ® = (®y,...,Dy,), with ®;(Z) = Tr(A; Z), is a F; linear bijection. Linearity follows from the
linearity of Trace so all we need to verify is that this is a bijection. And since the domain and
range of ® have the same cardinality, it suffices to show that @ is surjective. Consider the set

S={(@W)|ueFgm} F.

By the linearity of @, S is a subspace of F'. If S # F' (i.e., if @ is not surjective) we must have
that elements of S satisfy some non-trivial constraint, i.e., there exists (a1, ..., @) € F5'\ {0} such
that Z;.Zl a;Bi =0forevery (B,...,Bm) € S (see Exercise 14.14). But now consider

Y a;i®i(2)=) a;Tr(A;2) :Tr((Zai/li)-Z), (14.2)
i i i

where the last equality follows from the fact that Tr is a linear map (see Proposition D.5.17). On
the one hand (see Exercise 14.15) this is a non-zero polynomial in Z of degree at most qm_l,
while on the other hand it evaluates to zero on every u € Fym, which contradicts the degree
mantra. We conclude @ is surjective, and hence it is an [;-linear bijection. O

Our goal is to use a linear bijection from @ : F;m — Fg' (any such bijection will do for us)
to convert functions whose domain is FZQ (which is the case for codewords of the Reed-Muller
code) to functions whose domain is F4n. Specifically, given f:Fg' — F; and @ : Fgm — F, let
fo®:Fym— [F(T be the function (f o ®)(u) = f(D(w)).

Key to the utility of this transformation is the analysis of how this blows up the degree of
the underlying polynomials. Recall that for a function F : Fgm — Fym, its degree is defined to be
the degree of the (unique) polynomial P € [Fym[Z] with deg(P) < g™ such that P(u) = F(u) for
every u € Fgm. Our main challenge henceforth is to understand the question: If f: Fz' — Fg is
a degree r polynomial, how large can the degree of f o ® be? We do not answer this question
right away, but define the parameter quantifying this effect next, and then design and analyze a
Reed-Muller decoding algorithm in terms of this parameter.

Definition 14.3.2. For prime power g and non-negative integers m and r, let the extension
degree of r over Fym, denoted Ry, (r), be the maximum degree of p o ® over all choices of p €
Fq(Xi,..., Xm] (or the associated function p : Fg' — F) of degree at most r and over all F;-linear
bijections ® :Fym — F.

Our algorithm and its analysis are quite natural modulo the analysis of R, ,,,(r) and we de-
scribe them below.
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Algorithm 20 REED-SOLOMON-BASED DECODER
INPUT: g, r<m(q—1),0=<e<(q"™ —Rgm(r))/2, and function f:Fg' —Fg.
OuTpUT: Output p such deg(p) <r and |{x € [FZ”P(x) #f(x)} <e.
Let @:F4m — Fg' be an F4-linear bijection
FOR u € Fgm DO
F(u) < f(®(w)
Let P be the output of decoding F using Reed-Solomon codes by Algorithm 21 > With inputs
k=Rgym(r)+1, n=q"™ and n pairs (u, F(u)) for every u € Fym.
FOR u€Fg' DO
pw) — P(@7' (w)
RETURN p

We note that the decoder here outputs a polynomial p € F,[Xj,..., X;;] in terms of its func-
tion representation. If a coefficient representation is desired one can use some interpolation
algorithm to convert it. Other than such interpolation, most of the transformation above is
mostly syntactic, since a normal representation of F 4= is already in the form of vectors in Fy' via
some [ 4-linear bijection. The only real work is in the call to the Reed-Solomon decoder.

Below we show that the algorithm above is correct for e < (g — Ry, (1)) /2. The crux of the
analysis is in showing that this quantity is actually half the distance of the Reed-Muller code,
and we defer that analysis to the next section.

Proposition 14.3.2. Let f:Fg' — F4 be any function and let g : Fg' — F 4 be a degreer polynomial
suchthatl{u e Fg'| f (u) # g(w}| < e < (9" —Rg,m(r))/2. Then REED-SOLOMON-BASED DECODER(f)
returns g

Proof. Let G = go®. Then we have that deg(G) < R, »(r) and we have that {v € Fym|F(v) #
G} < e< (g™ - Ry m(r))/2. Since the distance of the Reed-Solomon code with N = g™ and
K=Rpyg(r)+1is N-K+1=¢g" Ry n,(r) and e is less than half the distance, we have that
G is the unique polynomial with this property, and so the Reed-Solomon decoder must return
P =G. We conclude that p=Po®~! = Go®™! = g, as desired. O

14.3.2 Analysis of Extension Degree

We start with a simple warmup result that already leads to an optimal algorithm for decoding
when r < g.

Proposition 14.3.3. Ry ,,(r) <r-g™ .

Proof. The proof following immediately from the definition and the fact that linear functions
are polynomials of degree g™ . Specifically, let p € F4[Xi,..., Xl be of degree at most r and
let ® = (®y,...,P,,) be an F,-linear bijection. Then since each ®; is a polynomial of degree
g™ ! we have that p(®;(2),...,®,,(Z)) is a polynomial of degree at most r - g™ !. Finally since
the reduction modulo (29" — Z) does not increase the degree we have p o ® is a polynomial of
degree at most r - q’”‘l, as desried. O
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Corollary 14.3.4. Ifr < q then REED-SOLOMON-BASED DECODER decodes RM(q, m, r) up to half
its minimum distance.

Proof. By Lemma 9.2.2 we have that the distance of the Reed-Muller code RM(q, m, r) is (g —
r)-g". From Proposition 14.3.3 we have that REED-SOLOMON-BASED DECODER decodes pro-
vided e < (¢ = Ry q(r)/2=(q" —r-q™ 1)/2=(q-1)-q"™ '/2, ie., up to half the minimum
distance. O]

Finally we turn to the general case (i.e. r = g). For this part, the crude bound that the
degree of fo® is at most g™ ! -deg(f) is no longer good enough. This bound is larger than g™,
whereas every function has degree at most g”” — 1. To get the ‘right’ degree bound on the degree
of fo®, we now need to use the fact that we can reduce any polynomial modulo (Z7" - Z) and
this leaves the underlying function on F;» unchanged. Thus from this point on we will try to
understand the degree of fo® (mod Z9 "-7). Using this reduction properly we will eventually
be able to get the correct bound on the degree of f o ®. We state the bound next and then work
our way towards proving it.

Lemma 14.3.5. Letr =s(q—1)+t where0<t<q—1. Then Ry ;m(r)=q™ —(g—1)g™ L.

We first state the immediate consequence of Lemma 14.3.5 to the error-correction bound of
the Reed-Solomon-based decoder.

Theorem 14.3.6. For every prime power ¢, integers m =1 and 0 < r < m(q — 1), the REED-
SOLOMON-BASED DECODER decodes RM(q, m, r) up to half its minimum distance.

Proof. Letr =s(q—1)+twith 0 <t < g—1. By the polynomial distance lemma (Lemma 9.4.1)
we have that the distance of the Reed-Muller code RM(q, m, 1) is (g — 1) - g™ *~!. Combining
Proposition 14.3.2 with Lemma 14.3.5 we have that REED-SOLOMON-BASED DECODER decodes
provided e < (g™ = Rp,q(r))/2 = (g — 1) - "™ 571/2, i.e., up to half the minimum distance of
RM(q, r, m). O

The proof of Lemma 14.3.5 is somewhat involved and needs some new notions. We intro-
duce these notions next.

Definition 14.3.3 (q-degree). For integer d, let dy, d;, d>, ... denote its expansion in base ¢, i.e.,
d=%%2, di;q" and 0 < d; < q for every i. For a monomial Z¢, define its g-degree, denoted
degq(Zd), to be the quantity }7° d;. For a polynomial p(Z) = ¥4 caZ?, define its g-degree,
denoted degq(p), to be maxdwd?go{degq(Zd)}.

For example deg, (X8 + X3 + X + 1) = deg, (X>) = 2.

We describe some basic properties of g-degree below. Informally, the proposition below
proves (in parts (1)-(3)) that the g-degree behaves just like the regular degree when it comes
to addition, multiplication and reduction modulo Z 4™ _ 7. Note that while parts (1) and (2)
are natural, part (3) is already special in that it only holds for reduction modulo some special
polynomials. Finally part (4) of the proposition allows us to related the g-degree of a polynomial
with its actual degree and this will come in useful when we try to bound the degree of f o ®(
(mod 2)9" - Z).
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Proposition 14.3.7. Forevery a, 3 € Fym and P, Py, P; € Fym[Z] we have:
(1) degq(apl + fPy) < max{degq(Pl),degq (Py)}.
) degq(Pl -Py) < degq(Pl) + degq(Pg).

(3) deg,(P (mod Z 1"~ 7)) < deg, (P). (Note that here the total degree deg(P) can be strictly
greater than q™.)

(4) deg(P) < q™ anddeg,(P)=s(q—1)+ 1t for0=t<q—1implies

m—s—1

deg(P)< g™ -(g—1tq

Proof. Part (1) is immediate from the definition since the monomials of aP; + P, is in the
union of the monomials of P; and P,. Next, note that due to part (1), it suffices to prove parts

(2)-(4) for monomials.
For part (2) for monomials, we wish to show that that deg, (Z 4.7 < deg oz dy 4 deg,(Z°).

Letd=}; diq', e=Y; e;g' andlet f =d+e=Y, fiq'. Then it can be verified that for every i we
have Z;:o fis Z;:O(d i+ ej) (see Exercise 14.16) and this eventually implies

deg, (Z7) =) fi=) (dj+e)) = deg,(29) +deg, (Z°). (14.3)
j j

i itmp M\ mod m
For part (3), note that since Z9 :((un J) ) ,

(i mod m)

79 (mod z9" - 2)= 2719

So

i mod m)

244" mod (29" - 7) = z%4' . (14.4)
We conclude that for d = ¥; d; q' with 0 < d; < g we have:
deg, (Zd mod (qu - Z)) =deg, (Zzl'diqi mod (qu - Z))
< deg, 7500 ™)
<) deg, (Zdiq
i

:Zdi
1

:degq (Zd),

i modm)

as desried. In the above, the first inequality follows from Exercise 14.17 and the second inequal-
ity follows from part (2) while the final two equalities follows from definition of deg (-).

Finally we turn to part (4), which compares the (actual) degree of a polynomial to its g-
degree. Again it suffices to prove for monomials. Let d < g™ be given by d = Z;’Z)l d;q'. Subject
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to the condition ) ;d; < s(q — 1) + ¢, we note that d is maximized when d;;,—; = --- = dp—s =
(g—1) and d,,_s_1 = t (see Exercise 14.18) in which case we get d + (g — )g" %! = g™, or
d:qm_(q_t)qm—s—l. ]

Our next lemma relates the degree of a multivariate function f: Fz' — Fy to the g-degree of
f o® for alinear bijection ®.

Lemma 14.3.8. For every polynomial p € F4[X;,..., Xi,] and every [, -linear bijection, we have
degq(p o®) < deg(p).

Proof. By Proposition 14.3.7, part (1), it suffices to prove the lemma for the special case of
monomials. Fix a monomial M(X,...,Xp) = X{*--- X, with ¥ ;r; = r. Also fix an F4-linear
bijection ® = (@y,...,D,,). Let M denote the univariate polynomial Mo® (mod Z9" — Z). Note
that Mo ®(Z) = []*, ®;(Z)"". And note further that deg, (®;(Z2)) = 1 for every i. By Proposi-
tion 14.3.7 part (2), we now conclude that degq( ;’il D;(2) ’i) < ?21 r; = r. Finally by Proposi-
tion 14.3.7 part (3) we have that

deg, (M) = deg, (MoCD (mod Z9" — Z)) <deg, (Mo®) <,

as desried. O

We are now ready to prove Lemma 14.3.5 which asserts that R, (s(q—1)+ 1) = ¢ — (q -
t)qm—s—l.

Proof of Lemma 14.3.5. We focus on proving Ry m(s(q—1)+ 1) < g™ — (g — t)g™ *~'. The other
direction follows from Exercise 14.19. Fix a polynomial p € F4[Xj,..., X;;] of degree at most
r =s(g—1) + t and consider the function po®:F;m — F,m. This corresponds to the polynomial
p(Z) = p@1(Z),...,®,(Z)) mod (29" - Z). By Lemma 14.3.8 we have that deg,(p) < r. And
by construction deg(p) < g". So by Proposition 14.3.7, part (4), we have that deg(p) < g™ — (g —
)™ 571, yielding the lemma.

O

14.4 Exercises

Exercise 14.1. Show that if g > deg(f), then for any polynomial P € F,[Xj,..., X;,], there exists
an m-dimensional affine form A such that deg(P o A) = deg(P).

Exercise 14.2. An s-variate d-form is a polynomial a(Zy, ..., Z,,) of degree at most d. Note that
d =1 gives Definition 14.1.1. Similar to Definition 14.1.1 one can define an m-dimensional s-
variate d-form {(ay, ..., a;). Finally, given such a d-form analogous to Definition 14.1.2, for an
m-variate polynomial P one can define Po A.
Prove that
deg(Po A) < d-deg(P).

Exercise 14.3. Prove that for every pair z; # z, € [}, for a random affine form A, A(z;) and A(z))
are distributed uniformly and independently over Fg'.
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Exercise 14.4. Show that any two distinct polynomials in F;[Z3,..., Zs] of degree at most r <
q(s—1) differ in at least two positions x € F.

Hint: Use the polynomial distance lemma (Lemma 9.4.1).

Exercise 14.5. Let P € F4[Xj,...,X;;] be a polynomial of degree at most r, 0 <y < % and let
[ :Fg' — Fq be such that

e=|{xe Fgﬂf(x) #PX)}| < (% _Y) ,qm—f(rﬂ)/(q—l)]'

Then, for everyx e F?, the probability that LOCAL-DECODE-RM-SIMPLE-ITER(f,X) returns P(x)
is at least % +7.

Exercise 14.6. Let g :F)' — F, and integer 0 < r < m(q—1) -1 be given. Then one can in O (g°™)
operations compute a polynomial P € F,[Xj,..., X;;,] of degree at most r such that for every
xelFg', P(x) = g(x) (if such a polynomial exists).

Hint: Use Exercise 2.6.
Exercise 14.7. 1f P:F; — Fg is a polynomial of degree r < s(¢ — 1) then
PO)=- ) P@.

2eF\ {0}

Hint: Use Exercise 9.15.
Exercise 14.8. Let r = s(g — 1) — t. Then RM(q, s, r) has distance at least (¢t + 1)g"*°.

Exercise 14.9. Let f : F}* — F, differ from a degree r polynomial P (of degree r) in <2™~""! o-
cations. Show that majoritybe[anfr {Zaeth f(a,b)} gives the coefficient of X; - X, in P(Xq,..., X;;)

and maj oritybe[Fén-r {Zaeth f(b,a)} (note the exchange of a and b) gives the coefficient of X;,_,4+1--- X
in P(X31,..., Xm).

Exercise 14.10. Let f,g:Fg' — [, disagree in e positions x € F¢'. Then for any function h: Fg' —
F4, the functions f — h and g — h also disagree in e positions.

Exercise 14.11. Let f,g: FZ? — [F4 disagree in e positions x € [qu. Fix a subset S < [m] of size t.
Argue that there are at most e values of b € [FZl_t for which there isan a € [Ff] such that f(S —

a,S—b)#g(S—aS—b).

Exercise 14.12. Let ®: F4m — F7 be alinear bijection. How that
1. ®canbeviewed as m functions (®y,...,Dy,) with ®; : Fym — F, so that ®(u) = (D1 (w), ..., Ppm(w)).

2. Furthermore each @; is a linear function from F,m — F, and each ®; can be viewed as a
polynomial in F;m [Z].

Exercise 14.13. Show that a linear-bijection is a linearized polynomial of degree g™ *.

Exercise14.14. Argue thatifalinear subspace S [Fq’" of dimension < m, then there (a;,...,a,,) €
[qu \{0} such that Y- | a; B; = 0 for every (By,..., Bm) € S.
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Exercise 14.15. Argue that the polynomial Tr((}_; a;A;) - Z) from (14.2) is
1. Non-zero and has degree at most g™!; and

2. Evaluatesto zeroon all u € Fgm.

Exercise 14.16. Let (do, dy,...) and (eg,e,...) be d and ein base g = 2. Let f =d +e = Yifiq'.
Then show that for every i we have Z;‘zo fis Z;zo(dj +ej).

Hint: Use induction.

Exercise 14.17. Show that
deg, (ZZid"qi mod (Z"m - Z)) <deg, (ZZfd"qi mOdm) .

Exercise 14.18. Show that subject to the condition ¥ ' d; < s(g—1) + ¢, thatd = X" 1 d;g' is
maximized When dm_l == dm_s = (q - 1) and dm_s_l = t.

Exercise 14.19. T < F, be a set of size t. Consider the polynomial

PXpye, X)) = (XI =D (X3 =) [T K - @)

aceT

Note that deg(p) = s(g—1) + ¢.

m—s—1

1. Prove that for every linear bijection @, we have deg(po®) = g™ — (g —1t)q
Hint: How many zeroes does p have? What does this say about the degree of p o ®?

2. Conclude that Ry, (r) = g™ — (g — )™ *~!, where r = s(g — 1) + r where 0< r < g — 1.

14.5 Bibliographic Notes

We start with the history of the Majority Logic Decoder, Algorithm 19. This algorithm is the first
non-trivial algorithm in coding theory, dating back to the paper of Reed [83] from 1954. Indeed
the codes were proposed by Muller [75] and the reason Reed’s name is associated with the codes
is due to the decoding algorithm. Despite their “in hindsight” simplicity, the algorithm is partic-
ularly clever and subtle. One proof of the subtlety is in the fact that the algorithm doesn’t seem
to extend immediately to non-binary settings — indeed even extending to the ternary case ends
up involving some careful reasoning (and is settled in the work of Kim and Kopparty [61]).

See [103, Chapter 10] for details on near-linear time polynomial interpolation algorithm.

The Simple Reed-Muller Decoder, Algorithm 18, originates from the work of Beaver and
Feigenbaum [7] and Lipton [70]. (We note that neither paper mentions the codes by name,
and only consider the case r < g.) Subsequent works by Gemmell et al. [32] and Gemmell and
Sudan [34] extended these algorithms to correct a number of errors close to (but not matching)
half the distance of the code. These algorithms also played a central role in the theory of “locally
decodable codes” that we will describe later in Chapter 22.

Finally, the Reed-Solomon-based Decoder, Algorithm 20, is due to Pellikaan and Wu [78],
who gave this algorithm in the context of “list-decoding”.
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Chapter 15

Efficient Decoding of Reed-Solomon Codes

So far in this book, we have shown how to efficiently decode explicit codes up to half of the
Zyablov bound (Theorem 12.3.3) and how to efficiently achieve the capacity of the BSC,, (The-
orem 13.4.1). The proofs of both of these results assumed that one can efficiently do unique
decoding for Reed-Solomon codes up to half its distance (Theorem 12.2.1). In this chapter, we
present such a unique decoding algorithm. Then we will generalize the algorithm to a list de-
coding algorithm that efficiently achieves the Johnson bound (Theorem 7.3.1).

15.1 Unique decoding of Reed-Solomon codes

Consider the [n, k, d = n—k+1]4 Reed-Solomon code with evaluation points (a1, -, a5). (Recall
Definition 5.2.1.) Our goal is to describe an algorithm that corrects up to e < "‘Tk“ errors in
polynomial time. Lety = (y1,---, yn) € F}, be the received word. We will now do a syntactic shift
that will help us better visualize all the decoding algorithms in this chapter better. In particular,
we will also think of y as the set of ordered pairs {(a1, y1), (@2, y2), ..., (@n, Yn)}, thatis, we think of
y as a collection of “points" in “2-D space." See Figure 15.1 for an illustration. From now on, we
will switch back and forth between our usual vector interpretation of y and this new geometric
notation.

Further, let us assume that there exists a polynomial P(X) of degree at most k — 1 such that
A (y, (P (a,-))le) < e. (Note that if such a P(X) exists then it is unique.) See Figure 15.2 for an
illustration.

We will use reverse engineering to design a unique decoding algorithm for Reed-Solomon
codes. We will assume that we somehow know P(X) and then prove some identities involving
(the coefficients of) P(X). Then to design the algorithm we will just use the identities and try
to solve for P(X). Towards this end, let us assume that we also magically got our hands on a
polynomial E(X) such that

E(a;)=0ifand onlyif y; # P (a;).
E(X) is called an error-locator polynomial. We remark that there exists such a polynomial of
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1+ @
L 6, 4 =2 2\ | 4\ | 6\ |
T T T 1 @i

n=14,k=2,e=6

Figure 15.1: An illustration of a received word for a [14,2] Reed-Solomon code
(we have implicitly embedded the field F; in the set {-7,...,7}). The evalua-
tions points are (-7,-5,—-4,-3,-2,-1,0,1,2,3,4,5,6,7) and the received word is
(-7,5,—-4,-3,2,—4,0,1,-2,3,4,—-5,-2,7).

degree at most e. In particular, consider the polynomial:

EX)= ] X-a).
ityi#P(a;)

See Figure 15.3 for an illustration of the E(X) corresponding to the received word in Figure 15.1.

Now we claim that forevery 1 <i <n,
ViE(a;) =P(a;) E(a;). (15.1)

To see why (15.1) is true, note that if y; # P («;), then both sides of (15.1) are 0 (as E(a;) = 0).
On the other hand, if y; = P (a;), then (15.1) is obviously true.

All the discussion above does not seem to have made any progress as both E(X) and P(X)
are unknown. Indeed, the task of the decoding algorithm is to find P(X)! Further, if E(X) is
known then one can easily compute P(X) from y (the proof is left as an exercise). However,
note that we can now try and do reverse engineering. If we think of coefficients of P(X) (of
which there are k) and the coefficients of E(X) (of which there are e + 1) as variables, then we
have n equations from (15.1) in e + k + 1 variables. From our bound on e, this implies we have
more equations than variables. Thus, if we could solve for these unknowns, we would be done.
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Vi PX)=X

n=14,k=2,e=6

Figure 15.2: An illustration of the closest codeword P(X) = X for the received word from Fig-
ure 15.1. Note that we are considering polynomials of degree 1, which are “lines."

However, there is a catch— these n equations are quadratic equations, which in general are NP-
hard to solve. However, note that for our choice of e, we have e+ k—1 <« n. Next, we will exploit
this with a trick that is sometimes referred to as linearization. The idea is to introduce new
variables so that we can convert the quadratic equations into linear equations. Care must be
taken so that the number of variables after this linearization step is still smaller than the (now
linear) n equations. Now we are in familiar territory as we know how to solve linear equations
over a field (e.g. by Gaussian elimination). (See section 15.4 for some more discussion on the

hardness of solving quadratic equations and the linearization technique.)

To perform linearization, define N (X) def P(X)-E(X). Note that N (X) is a polynomial of

degree less than or equal to e + k — 1. Further, if we can find N (X) and E (X), then we are done.
This is because we can compute P(X) as follows:

N (X)

P(X)= X

The main idea in the Welch-Berlekamp algorithm is to “forget" what N(X) and E(X) are
meant to be (other than the fact that they are degree bounded polynomials).

15.1.1 Welch-Berlekamp Algorithm

Algorithm 21 formally states the Welch-Berlekamp algorithm.
As we have mentioned earlier, computing E(X) is as hard as finding the solution polynomial
P(X). Also in some cases, finding the polynomial N(X) is as hard as finding E(X). E.g., given
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- N .
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\ =~ ~ vy,

N -~ = -

E(X) is the produc o}ihese lines

n=14,k=2,e=6

Figure 15.3: An illustration of the the error locator polynomial E(X) = (X +5)(X +2)(X + 1)(X —
2)(X —5)(X — 6) for the received word from Figure 15.1. Note that E(X) is the product of the
green lines.

N(X) andy (such that y; # 0 for 1 < i < n) one can find the error locations by checking positions

where N(a;) = 0. While each of the polynomials E(X) , N(X) is hard to find individually, the

main insight in the Welch-Berlekamp algorithm is that computing them together is easier.
Next we analyze the correctness and run time of Algorithm 21.

Correctness of Algorithm 21. Note that if Algorithm 21 does not output fail, then the algo-
rithm produces a correct output. Thus, to prove the correctness of Algorithm 21, we just need
the following result.

Theorem 15.1.1. If(P(a;))}, is transmitted (where P(X) is a polynomial of degree at most k—1)
and at most e < ”‘Tk“ errors occur (i.e. Aly,(P(a;))!_,) < e), then the Welch-Berlekamp algo-
rithm outputs P(X).

The proof of the theorem above follows from the subsequent claims.
Claim 15.1.2. There exist a pair of polynomials E*(X) and N*(X) that satisfy Step 1 such that

N'(X) _
Hod = P(X).

Note that now it suffices to argue that ]12"]11 88 = % for any pair of solutions ((V (X), E; (X))

and (N2 (X), E2(X)) that satisfy Step 1, since Claim 15.1.2 above can then be used to see that ratio
must be P(X). Indeed, we will show this to be the case:
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Algorithm 21 Welch-Berlekamp Algorithm

INPUT: n=>k=>1,0<e< ”‘Tk“ and n pairs {(a;, y;)}!_, with «; distinct

OuTPUT: Polynomial P(X) of degree at most k — 1 or fail.

1: Compute a non-zero polynomial E(X) of degree exactly e, and a polynomial N(X) of degree
at most e + k — 1 such that
ViE(a;)=N(a;) 1<i=sn. (15.2)

IF E(X) and N(X) as above do not exist or E(X) does not divide N(X) THEN
RETURN fail

P(X) — 553

IF Ay, (P(@;))}_,) > e THEN
RETURN fail

ELSE
RETURN P(X)

Claim 15.1.3. If any two distinct solutions (E1(X), N1(X)) # (E2(X), N2(X)) satisfy Step 1, then

they will satisfy
N (X)  Na(X)

E1(X) E(X)'

Proof of Claim 15.1.2. We just take E*(X) to be the error-locating polynomial for P(X) and let
N*(X) = P(X)E*(X) where deg(N* (X)) < deg(P(X))+deg(E* (X)) < e+k—1. In particular, define
E*(X) as the following polynomial of degree exactly e:

E*(x) = x A0 PEedl) T (X -ay). (15.3)
1<i<nl|y;#P(a;)

By definition, E* (X) is a non-zero polynomial of degree e with the following property:
E* (a,-) =0 iff Yi 75 P(ai).

We now argue that E*(X) and N*(X) satisfy (15.2). Note that if E*(a;) = 0, then N*(a;) =

P(aj)E*(a;) = y;E* (a;) =0. When E* (a;) # 0, we know P(a;) = y; and so we still have P(a;)E* (a;) =

yiE*(a;), as desired. O

Proof of Claim 15.1.3. Note that the degrees of the polynomials N;(X)E>(X) and N»(X)E;(X)
are at most 2e + k — 1. Let us define polynomial R(X) with degree at most 2e + k — 1 as follows:

R(X) = N1 (X) E2(X) — N2(X) E7 (X). (15.4)
Furthermore, from Step 1 we have, for every i € [n],
Ni(ai) =yiEi(a;) and Nz(a;) =yiEx(a;). (15.5)
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Substituting (15.5) into (15.4) we getfor 1 <i < n:

R(a;) = (yiEi(ai))Ex(a;) — (yiEz(a;))Er(a;)
= 0.

The polynomial R(X) has n roots and

deg(R(X)) < e+k—-1+e
= 2e+k-1
< n,

Where the last inequality follows from the upper bound on e. Since deg(R(X)) < n, by the degree
mantra (Proposition 5.2.3) we have R(X) = 0. This implies that N, (X) E>(X) = N»(X)E; (X). Note

that as E; (X) # 0 and E»(X) # 0, this implies that ]]}]11 88 = %, as desired. O

Implementation of Algorithm 21. In Step 1, N(X) has e + k unknowns and E(X) has e+ 1
unknowns. For each 1 < i < n, the constraint in (15.2) is a linear equation in these unknowns.
Thus, we have a system of n linear equations in 2e + k+ 1 < n + 2 unknowns. By claim 15.1.2,
this system of equations have a solution. The only extra requirement is that the degree of the
polynomial E(X) should be exactly e. We have already shown E(X) in equation (15.3) to satisfy
this requirement. So we add a constraint that the coefficient of X¢ in E(X) is 1. Therefore, we
have 7 + 1 linear equation in at most n + 1 variables, which we can solve in time O(n®), e.g. by
Gaussian elimination.

Finally, note that Step 4 can be implemented in time o) by “long division.” Thus, we have
proved

Theorem 15.1.4. Forany (n, k], Reed-Solomon code, unique decoding can be done in O(n3) time

up to % = %k number of errors.

Recall that the above is a restatement of the error decoding part of Theorem 12.2.1. Thus,
this fills in the final missing piece from the proofs of Theorem 12.3.3 (decoding certain concate-
nated codes up to half of their design distance) and Theorem 13.4.1 (efficiently achieving the
BSC, capacity).

15.2 List Decoding Reed-Solomon Codes

Recall Question 7.4.3, which asks if there is an efficient list decoding algorithm for a code of rate
R > 0 that can correct 1 — v/R fraction of errors. Note that in the question above, explicitness is
not an issue as e.g., a Reed-Solomon code of rate R by the Johnson bound is (1 - VR, O(n?))-list
decodable (Theorem 7.3.1).

We will study an efficient list decoding algorithm for Reed-Solomon codes that can correct
up to 1 — /R fraction of errors. To this end, we will present a sequence of algorithms for (list)
decoding Reed-Solomon codes that ultimately will answer Question 7.4.3.
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Before we talk about the algorithms, we restate the (list) decoding problem for Reed-Solomon
codes. Consider any [n, k]; Reed-Solomon code that has the evaluation set {ay, ..., @} Below
is a formal definition of the decoding problem for Reed-Solomon codes:

e Input: Received wordy = (y1,..., yn), ¥i € Fq and error parameter e = n — t.

* Output: All polynomials P(X) € F;[X] of degree at most k — 1 such that P(«a;) = y; for
at least ¢ values of i.

Our main goal of course is to make t as small as possible.

k. We looked at the Welch-

Berlekamp algorithm in Algorithm 21, which we restate below in a slightly different form (that
will be useful in developing the subsequent list decoding algorithms).

n
We begin with the unique decoding regime, where ¢ >

* Step 1: Find polynomials N(X) of degree k + e — 1, and E(X) of degree e such that

N(a;)=yiE(a;), foreveryl<i<n

e Step 2: If Y-P(X) divides Q(X, Y) = YE(X)—-N(X), then output P(X) (assuming A(y, (P(ai));.’zl) <
e).

Note that Y —P(X) divides Q(X, Y) in Step 2 above if and only if P(X) = %, which is exactly
what Step 4 does in Algorithm 21.

15.2.1 Structure of list decoding algorithms for Reed-Solomon

Note that the Welch-Berlekamp Algorithm has the following general structure:
 Step 1: (Interpolation Step) Find non-zero Q(X, Y) such that Q(a;,y;) =0,1<i < n.

* Step 2: (Root Finding Step) If Y — P(X) is a factor of Q(X, Y), then output P(X) (assuming
it is close enough to the received word).

In particular, in the Welch-Berlekamp algorithm we have Q(X, Y) = Y E(X)—-N(X) and hence,
Step 2 is easy to implement.

All the list decoding algorithms that we will consider in this chapter will have the above
two-step structure. The algorithms will differ in how exactly Step 1 is implemented. Before we
move on to the details, we make one observation that will effectively “take care of" Step 2 for us.
Note that Step 2 can be implemented if one can factorize the bivariate polynomial Q(X, Y) (and
then only retain the linear factors of the form Y — P(X)). Fortunately, it is known that factoring
bivariate polynomials can be done in polynomial time (see e.g. [59]). We will not prove this
result in the book but will use this fact as a given.

Finally, to ensure the correctness of the two-step algorithm above for Reed-Solomon codes,
we will need to ensure the following:
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* Step 1 requires solving for the co-efficients of Q(X, Y). This can be done as long as the
number of coefficients is greater than the the number of constraints. (The proof of this
factis left as an exercise.) Also note that this argument is a departure from the correspond-
ing argument for the Welch-Berlekamp algorithm (where the number of coefficients is
upper bounded by the number of constraints).

* In Step 2, to ensure that for every polynomial P(X) that needs to be output Y — P(X) di-
vides Q(X, Y), we will add restrictions on Q(X, Y). For example, for the Welch-Berlekamp
algorithm, the constraint is that Q(X, Y) has to be of the form Y E(X) — N(X), where E(X)
and N(X) are non-zero polynomials of degree e and at most e + k — 1 respectively.

Next, we present the first instantiation of the algorithm structure above, which leads us to
our first list decoding algorithm for Reed-Solomon codes.

15.2.2 Algorithm 1

The main insight in the list decoding algorithm that we will see is that if we carefully control the
degree of the polynomial Q(X,Y), then we can satisfy the required conditions that will allow
us to make sure Step 1 succeeds. Then we will see that the degree restrictions, along with the
degree mantra (Proposition 5.2.3) will allow us to show Step 2 succeeds too. The catch is in
defining the correct notion of degree of a polynomial. We do that next.

First, we recall the definition of maximum degree of a variable.

Definition 15.2.1. degy(Q) is the maximum degree of X in Q(X, Y). Similarly, degy (Q) is the
maximum degree of Y in Q(X, Y)

For example, for Q(X,Y) = X?V3 + X*Y? degy(Q) = 4 and degy (Q) = 3. Given degy(Q) = a
and degy (Q) = b, we can write
QX, V)= Y XY,
0<i<a,
0<j<b
where the coefficients c¢;; € ;. Note that the number of coefficients is equal to (a+ 1) (b + 1).
The main idea in the first list decoding algorithm for Reed-Solomon code is to place bounds
on deg(Q) and degy (Q) for Step 1. The bounds are chosen so that there are enough variables
to guarantee the existence of a Q(X, Y) with the required properties. We will then use these
bound along with the degree mantra (Proposition 5.2.3) to argue that Step 2 works. Algorithm 22
presents the details. Note that the algorithm generalizes the Welch-Berlekamp algorithm (and
follows the two step skeleton outlined above).

Correctness of Algorithm 22. To ensure the correctness of Step 1, we will need to ensure that
the number of coefficients for Q(X, Y) (which is (¢ + 1)(n/¢ + 1)) is larger than the number of
constraints in (15.6 (which is 7). Indeed,

([+1)-(;+1)>€-g:n.
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Algorithm 22 The First List Decoding Algorithm for Reed-Solomon Codes
INPUT: n=2k=1,¢=1,e=n-tand n pairs {(ai,yi)};.?:1
OuTpUT: (Possibly empty) list of polynomials P(X) of degree at most k — 1

1: Find a non-zero Q(X,Y) with degy (Q) < ¢,degy (Q) < ; such that
Qa;,yi)=0,1<i=<n. (15.6)

22 L—¢

3: FOR every factor Y — P(X) of Q(X,Y) DO

4: IF A(y, (P(a,-))?zl) <eand deg(P) < k—1 THEN
5 Add P(X) to L.

6: RETURN L

To argue that the final L in Step 6 contains all the polynomials P(X) that need to be output.
In other words, we need to show that if P(X) of degree < k—1 agrees with Y in at least ¢ positions,
then Y — P(X) divides Q(X, Y). Towards this end, we define

RO % Qx, PX)).

Note that Y — P(X) divides Q(X, Y) if and only if R(X) = 0. Thus, we need to show R(X) = 0. For
the sake of contradiction, assume that R(X) # 0. Note that

deg(R) = degy(Q)+deg(P)-degy(Q) (15.7)
nk-1)
< /+ VA (15.8)

On the other hand, if P(a;) = y; then (15.6) implies that
Q(a;, yi) = Qa;, P(a;)) =0.

Thus, «; is aroot of R(X). In other words R has at least ¢ roots. Note that the degree mantra
(Proposition 5.2.3) this will lead to a contradiction if £ > deg(R), which will be true if
nlk-1)
>0+ .
¢
If we pick ¢ = v/ n(k —1), we will have ¢t > 2v/n(k —1). Thus, we have shown

Theorem 15.2.1. Algorithm 22 can list decode Reed-Solomon codes of rate R from 1 - 2+v/R frac-
tion of errors. Further, the algorithm can be implemented in polynomial time.

The claim on the efficient run time follows as Step 1 can be implemented by Gaussian elim-
ination and for Step 3, all the factors of Q(X, Y) (and in particular all linear factors of the form
Y — P(X)) can be computed using e.g. the algorithm from [59].

The bound 1 - 2V/R is better than the unique decoding bound of % for R < 0.07. This is
still far from the 1 — v/R fraction of errors guaranteed by the Johnson bound. See Figure 15.2.2
for an illustration.
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Figure 15.4: The tradeoff between rate R and the fraction of errors that can be corrected by
Algorithm 22.

15.2.3 Algorithm 2

To motivate the next algorithm, recall that in Algorithm 22, in order to prove that the root

finding step (Steps 3-6 in Algorithm 22) works, we defined a polynomial R(X) def Q(X, P(X)).

In particular, this implied that deg(R) < degy(Q) + (k—1) - degy (Q) (and we had to select ¢ >
deg(Q) + (k—1)-degy (Q)). One shortcoming of this approach is that the maximum degree of
X and Y might not occur in the same term. For example, in the polynomial X 2y3 4+ X*4Y?2, the
maximum X and Y degrees do not occur in the same monomial. The main insight in the new
algorithm is to use a more “balanced" notion of degree of Q(X, Y):

Definition 15.2.2. The (1, w) weighted degree of the monomial X'Y/ is i + wj. Further, the
(1, w)-weighted degree of Q(X,Y) (or just its (1, w) degree) is the maximum (1, w) weighted
degree of its monomials.

For example, the (1,2)-degree of the polynomial XY3 + X*Y is max(1+3-2,4+2-1) = 7. Also
note that the (1,1)-degree of a bivariate polynomial Q(X, Y) is its total degree (or the “usual"
definition of degree of a bivariate polynomial). Finally, we will use the following simple lemma
(whose proof we leave as an exercise):

Lemma 15.2.2. Let Q(X,Y) be a bivariate polynomial of (1, w) degree D. Let P(X) be a polyno-
mial such that deg(P) < w. Then we have

deg(Q(X,P(X))) < D.
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Note that a bivariate polynomial Q(X, Y) of (1, w) degree at most D can be represented as

follows:
QX,Y) e Z Ci,inYj,
i+wj<D
i,j=0
where ¢; j € Fy.

The new algorithm is basically the same as Algorithm 22, except that in the interpolation
step, we compute a bivariate polynomial of bounded (1, k — 1) degree. Before we state the pre-
cise algorithm, we will present the algorithm via an example. Consider the received word in
Figure 15.5.

n=14,k=2,e=9

Figure 15.5: An illustration of a received word for the [14,2] Reed-Solomon code from Fig-
ure 15.1 (where again we have implicitly embedded the field [ in the set {-7,...,7}). Here we
have considered e =9 errors which is more than what Algorithm 21 can handle. In this case, we
are looking for lines that pass through at least 5 points.

Now we want to interpolate a bivariate polynomial Q(X,Y) with a (1,1) degree of 4 that
“passes" through all the 2-D points corresponding to the received word from Figure 15.5. Fig-
ure 15.6 shows such an example.

Finally, we want to factorize all the linear factors Y — P(X) of the Q(X, Y) from Figure 15.6.
Figure 15.7 shows the two polynomials X and —X such that Y — X and Y + X are factors of
Q(X,Y) from Figure 15.6.

We now precisely state the new list decoding algorithm in Algorithm 23.

Proof of Correctness of Algorithm 23. As in the case of Algorithm 22, to prove the correctness
of Algorithm 23, we need to do the following:
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LyX,Y)=Y-X

@i

E(X,Y)=Y?/16+X%/49-1

“il[X,Y):Y-kX
QX Y)=L1(X,Y) L(X,Y)-E(X,Y)
n=14,k=2,e=9

Figure 15.6: An interpolating polynomial Q(X, Y) for the received word in Figure 15.5.

Ly(X,Y)=Y-X

@

E(X,Y)=Y?/16+ X%/49-1
.

il[X,Y):Y-#X
QX,Y)=L1(X,Y) - Ly(X,Y)-E(X,Y)
n=14,k=2,e=9

Figure 15.7: The two polynomials that need to be output are shown in blue.

* (Interpolation Step) Ensure that the number of coefficients of Q(X, Y) is strictly greater
than n.

* (Root Finding Step) Let R(X) def Q(X, P(X)). We want to show that if P(a;) = y; for at least

t values of i, then R(X) =0.

To begin with, we argue why we can prove the correctness of the root finding step. Note that
since Q(X, Y) has (1, k — 1) degree at most D, Lemma 15.2.2 implies that

deg(R) < D.

Then using the same argument as we used for the correctness of the root finding step of Algo-
rithm 22, we can ensure R(X) = 0 if we pick

t>D.
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Algorithm 23 The Second List Decoding Algorithm for Reed-Solomon Codes
INPUT: n=k=1,D=1,e=n-tand n pairs {(a,-,y,-)}?:1
OuTpUT: (Possibly empty) list of polynomials P(X) of degree at most k — 1

1: Find a non-zero Q(X, Y) with (1, k— 1) degree at most D, such that

Qaj,y)=0,1<i=<n. (15.9)

2 L—¢

3: FOR every factor Y — P(X) of Q(X, Y) DO

4 TFA(y,(P(a)} ) <eand deg(P) < k—1 THEN
5 Add P(X) to L.

6: RETURN L

Thus, we would like to pick D to be as small as possible. On the other hand, Step 1 will need D
to be large enough (so that the number of variables is more than the number of constraints in
(15.9). Towards that end, let the number of coefficients of Q(X,Y) be

N =@, Pli+(k-1j<D,i,jez"}|

To bound A, we first note that in the definition above, j < L%J . (For notational convenience,
define ¢ = [%J .) Consider the following sequence of relationships

Dj

D—(k-
H=) Y 1
i=0
=) D—-(k-1)j+1)

4 14
=Y D+ -(k-1)_j

j=0 j=0
D+l +1) - (k-Dlte+1 Dj(“ 1
- %(21”2— (k—1)0)
/+1
> (T) (D+2) (15.10)

D(D+2)
>

= m (15.11)

In the above, (15.10) follows from the fact that ¢ < —k’? T and (15.11) follows from the fact that
D
= -—1<.
-1
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Thus, the interpolation step succeeds (i.e. there exists a non-zero Q(X, Y) with the required

properties) if
D(D +2)

>
2(k-1)

D= [\/2(k— 1)n]

n.

The choice

suffices by the following argument:

D(D+2) D? 2(k-1n
> = =n
2k—=1) ~ 2(k-1) 2(k-1

Thus for the root finding step to work, we need ¢ > [v2(k —1)n], which implies the following
result:

Theorem 15.2.3. Algorithm 2 can list decode Reed-Solomon codes of rate R from up to1 —v2R
fraction of errors. Further, the algorithm runs in polynomial time.

Algorithm 2 runs in polynomial time as Step 1 can be implemented using Gaussian elimi-
nation (and the fact that the number of coefficients is O(n)) while the root finding step can be
implemented by any polynomial time algorithm to factorize bivariate polynomials. Further, we
note that 1 — v/2R beats the unique decoding bound of (1 - R)/2 for R < 1/3. See Figure 15.2.3
for an illustration.

T
Unique Decoding bound
Johnson bound
Algorithm 1 sseseees
Algorithm 2

0.8 -

06 % % -

Figure 15.8: The tradeoff between rate R and the fraction of errors that can be corrected by
Algorithm 22 and Algorithm 23.
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15.2.4 Algorithm 3

Finally, we present the list decoding algorithm for Reed-Solomon codes, which can correct 1 —
VR fraction of errors. The main idea is to add more restrictions on Q(X,Y) (in addition to its
(1, k — 1)-degree being at most D). This change will have the following implications:

e The number of constraints will increase but the number of coefficients will remain the
same. This seems to be bad as this results in an increase in D (which in turn would result
in an increase in t).

* However, this change will also increases the number of roots of R(X) and this gain in the
number of roots more than compensates for the increase in D.

In particular, the constraint is as follows. For some integer parameter r = 1, we will insist on
Q(X,Y) having r roots at (a;, y;),1 <i<n.

To motivate the definition of multiplicity of a root of a bivariate polynomial, let us consider
the following simplified examples. In Figure 15.9 the curve Q(X, Y) = Y — X passes through the

Y
A

(0,0

Figure 15.9: Multiplicity of 1

origin once and has no term of degree 0.

In Figure 15.10, the curve Q(X, Y) = (Y — X)(Y + X) passes though the origin twice and has
no term with degree at most 1.

In Figure 15.11, the curve Q(X,Y) = (Y - X)(Y + X) (Y —2X) passes through the origin thrice
and has no term with degree at most 2. More generally, if r lines pass through the origin, then
note that the curve corresponding to their product has no term with degree at most r — 1. This
leads to the following more general definition:

Definition 15.2.3. Q(X, Y) has r roots at (0,0) if Q(X, Y) doesn’t have any monomial with degree
atmostr —1.
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Y+ X ‘
Y-X
=X

0)
Figure 15.10: Multiplicity of 2
Y
Y+X ‘ Y-2X

Y-X
=X

0)

Figure 15.11: Multiplicity of 3

The definition of a root with multiplicity r at a more general point follows from a simple
translation:

Definition 15.2.4. Q(X, Y) has r roots at (a, ) if Qq,(X, Y) def Q(x+a, y+p) has rrootsat (0,0).

Before we state the precise algorithm, we will present the algorithm with an example. Con-
sider the received word in Figure 15.12.

Now we want to interpolate a bivariate polynomial Q(X, Y) with (1,1) degree 5 that “passes
twice" through all the 2-D points corresponding to the received word from Figure 15.12. Fig-
ure 15.13 shows such an example.

Finally, we want to factorize all the linear factors Y — P(X) of the Q(X, Y) from Figure 15.13.
Figure 15.14 shows the five polynomials of degree one are factors of Q(X, Y) from Figure 15.13.
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Vi

n=10,k=2,e=6

Figure 15.12: An illustration of a received word for the [10,2] Reed-Solomon code (where we
have implicitly embedded the field F, in the set {-9,...,11}). Here we have considered e = 6
errors which is more than what Algorithm 23 can decode. In this case, we are looking for lines

that pass through at least 4 points.

n=10,k=2,e=6

Figure 15.13: An interpolating polynomial Q(X, Y) for the received word in Figure 15.12.

(In fact, Q(X, Y) exactly decomposes into the five lines.)
Algorithm 24 formally states the algorithm.

Correctness of Algorithm 24. To prove the correctness of Algorithm 24, we will need the fol-
lowing two lemmas (we defer the proofs of the lemmas above to Section 15.2.4):

Lemma 15.2.4. The constraints in (15.12) imply (" ;1) constraints for each i on the coefficients of
QX,Y).
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n=10,k=2,e=6

Figure 15.14: The five polynomials that need to be output are shown in blue.

Algorithm 24 The Third List Decoding Algorithm for Reed-Solomon Codes
INPUT: n=2k=1,D=1,r=1,e=n-tand n pairs {(cx,-,y,-)}?:1
OuTPUT: (Possibly empty) list of polynomials P(X) of degree at most k—1

1: Find a non-zero Q(X, Y) with (1, k— 1) degree at most D, such that
Q(a;, yi) =0, with multiplicity r forevery 1 <i < n. (15.12)

2 L—¢

3: FOR every factor Y — P(X) of Q(X,Y) DO

4 TFA(y,(P(a)} ) <eand deg(P) < k—1 THEN
5 Add P(X) to L.

6: RETURN L

Lemma 15.2.5. R(X) d:efQ(X,P(X)) has r roots for every i such that P(a;) = y;. In other words,

(X —a;)" divides R(X).

Using arguments similar to those used for proving the correctness of Algorithm 23, to argue
the correctness of the interpolations step we will need

D(D +2) r+1
—>n ,
2(k—-1) ( 2 )

where the LHS is an upper bound on the number of coefficients of Q(X,Y) as before from
(15.11) and the RHS follows from Lemma 15.2.4. We note that the choice

D= [\/(k—l)nr(r—l)-‘
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works. Thus, we have shown the correctness of Step 1.

For the correctness of the root finding step, we need to show that the number of roots of
R(X) (which by Lemma 15.2.5 is at least r¢) is strictly bigger than the degree of R(X), which
from Lemma 15.2.2 is D. That is we would be fine we if have,

tr>D,

which is the same as

which in turn will follow if we pick

t= {\/(k—l)n(l—%” .

If we pick r = 2(k — 1) n, then we will need

t>{\/(k—1)n—%—‘>[m1,

where the last inequality follows because of the fact that ¢ is an integer. Thus, we have shown

Theorem 15.2.6. Algorithm 24 can list decode Reed-Solomon codes of rate R from up to 1 — /R
fraction of errors. Further, the algorithm runs in polynomial time.

The claim on the run time follows from the same argument that was used to argue the poly-
nomial running time of Algorithm 23. Thus, Theorem 15.2.6 shows that Reed-Solomon codes
can be efficiently decoded up to the Johnson bound. For an illustration of fraction of errors
correctable by the three list decoding algorithms we have seen, see Figure 15.2.3.

A natural question to ask is if Reed-Solomon codes of rate R can be list decoded beyond
1 — V/R fraction of errors. The answer is still not known:

Open Question 15.2.1. Given a Reed-Solomon code of rate R, can it be efficiently list decoded
beyond 1 — /R fraction of errors?

Recall that to complete the proof of Theorem 15.2.6, we still need to prove Lemmas 15.2.4
and 15.2.5, which we do next.

Proof of key lemmas

Proof of Lemma 15.2.4. Let o
QX,Y)= Z C,',leY]
i,j
i+(k-1)j<D
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and
QupX,Y)=Q(X+a,Y +p) = ch.“'fX"Yf.
ij
We will show that

. a, . . .
@ c; jﬁ are homogeneous linear combinations of ¢; ;’s.

r+1

(i) If Qq,p(X,Y) has no monomial with degree < r, then that implies ( 5

CK,,B,
ij S.

) constraints on
¢

Note that (i) and (ii) prove the lemma. To prove (i), note that by the definition:

QupX, V)= c;’"jﬁX” yi (15.13)
ij
= Y ayX+alv+p) (15.14)
i,,j,
i"+(k-1)j'<D

Note that, if i > i’ or j > j', then c?’jﬁ doesn’t depend on ¢ By comparing coefficients of X’ Y/
from (15.13) and (15.14), we obtain

af _ i"\(J' inj
Ci,j - IZ Ci/vj/ l ] a IB’
i'>i

J>j

which proves (i). To prove (ii), recall that by definition Qg (X, Y) has no monomial of degree

< r. In other words, we need to have constraints cf‘]ﬁ =0if i+ j < r—1. The number of such
constraints is

- r+1
W@, pli+j<r-1, i,jeZ—0}|:( ) )

where the equality follows from the following argument. Note that for every fixed value of 0 <
j =<r—1,icantake r — j values. Thus, we have that the number of constraints is

=1 L r+1
j=0 /=1
as desired. O

We now re-state Lemma 15.2.5 more precisely and then prove it.

Lemma 15.2.7. Let Q(X,Y) be computed by Step 1 in Algorithm 24. Let P(X) be a polynomial
of degree < k — 1, such that P(a;) = y; for at least t > % many values of i, then Y — P(X) divides
QX,Y).
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Proof. Define

RX) E Qx, POO).

As usual, to prove the lemma, we will show that R(X) = 0. To do this, we will use the following
claim.

Claim 15.2.8. If P(a;) = yi, then (X — ;)" divides R(X), that is a; is a root of R(X) with multi-
plicityr.
Note that by definition of Q(X, Y) and P(X), R(X) has degree < D. Assuming the above claim

is correct, R(X) has at least ¢ r roots. Therefore, by the degree mantra (Proposition 5.2.3), R(X)
is a zero polynomial as ¢ - r > D. We will now prove Claim 15.2.8. Define

Pg;,y,(X) d:efP(X"'ai)—J’iy (15.15)
and
Ray () € RX + ) (15.16)
=QX+a;,P(X+a;)) (15.17)
= QX +aj, Py, (X) + yi) (15.18)
= Qa;,y; (X, Pa;,y, (X)), (15.19)

where (15.17), (15.18) and (15.19) follow from the definitions of R(X), Pg;,y,(X) and Qq;,, (X, Y)
respectively.

By (15.16) if Rg;,y,(0) = 0, then R(a;) = 0. So, if X divides Ry, ,,(X), then X — a; divides R(X).
(This follows from a similar argument that we used to prove Proposition 5.2.3.) Similarly, if X"
divides R, y,(X), then (X —a ;) divides R(X). Thus, to prove the lemma, we will show that X"
divides Ry, y, (X). Since P(a;) = y; when a; agrees with y;, we have Py, ;,(0) = 0. Therefore, X is
aroot of Py, y,(X), thatis, Py, y,(X) = X - g(X) for some polynomial g(X) of degree at most k—1.
We can rewrite

Ry (X) = Y ey X (Pay (X)) = 3 e X7 (Xg (X))
i'j

’
o~ U]
ihj ’

i Yi
7j,
degree < r. Thus X" divides Ry, y,(X), since Ry, ,(x) has no non-zero monomial X¢ for any
/<r. O

Now for every i’, j’ such that c;f # 0, we have i’ + j' = r as Qg,,),(X, Y) has no monomial of

15.3 Extensions
We now make some observations about Algorithm 24. In particular, the list decoding algorithm

is general enough to solve more general problems than just list decoding. In this section, we
present an overview of these extensions.
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Recall that the constraint (15.12) states that Q(X,Y) has r = 0 roots at (a;,y;), 1 <i < n.
However, our analysis did not explicitly use the fact that the multiplicity is same for every i. In
particular, given non-zero integer multiplicities w; = 0, 1 < i < n, Algorithm 24 can be general-
ized to output all polynomials P(X) of degree at most k — 1, such that

Z w; >, | (k- 1)nZ(wl+l)

i:P(a;)=y;

(We leave the proof as an exercise.) Note that till now we have seen the special case w; =r,
l<i<n.

Further, we claim that the a;’s need not be distinct for the all of the previous arguments to
go through. In particular, one can generalize Algorithm 24 even further to prove the following
(the proof is left as an exercise):

Theorem 15.3.1. Given integer weights w; o for every1 < i < n and a € F, in polynomial time
one can output all P(X) of degree at most k — 1 such that

i i=0aclF

ZWin(ai)> (k— l)nZZ(Wza+l)

This will be useful to solve the following generalization of list decoding called soft decoding.

Definition 15.3.1. Under soft decoding problem, the decoder is given as input a set of non-
negative weights w; 4(1 <i < n,a € F;) and a threshold W = 0. The soft decoder needs to output
all codewords (cy, ¢y, ..., cy,) in g-ary code of block length 7 that satisfy:

n
Z Wi, =z W.
i=1

Note that Theorem 15.3.1 solve the soft decoding problem with

W=, (k- 1)nZZ(wla+1)

i=0a€elF

Consider the following special case of soft decoding where w; ,, =1 and w;, = 0 for a € F\
{yi} (1 =i < n). Note that this is exactly the list decoding problem with the received word
(¥1,..-,¥n)- Thus, list decoding is indeed a special case of soft decoding. Soft decoding has
practical applications in settings where the channel is analog. In such a situation, the “quan-
tizer” might not be able to pinpoint a received symbol y; with 100% accuracy. Instead, it can
use the weight w; , to denote its confidence level that ith received symbol was a.

Finally, we consider a special case of soft called list recovery, which has applications in de-
signing list decoding algorithms for concatenated codes.
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Definition 15.3.2 (List Recovery). Given S; € F4, 1 < i < n where |S;| < ¢, output all [n, k],
codewords (cy,...,c,) such that ¢; € S; for at least ¢ values of i. If for every valid input the
number of such codewords is at most L, then the corresponding code is called (1 - t/n,¢,L)-
list recoverable.

We leave the proof that list decoding is a special case of soft decoding as an exercise. Finally,
we claim that Theorem 15.3.1 implies the following result for list recovery (the proofis left as an
exercise):

Theorem 15.3.2. Givent > +/(k—1)¢n, the list recovery problem with agreement parameter t for
[n, kl4 Reed-Solomon codes can be solved in polynomial time.

15.4 Bibliographic Notes

In 1960, before polynomial time complexity was regarded as an acceptable notion of efficiency,
Peterson designed an O(N?) time algorithm for the unique decoding of Reed-Solomon codes [80].
This algorithm was the first efficient algorithm for unique decoding of Reed-Solomon codes.
The Berlekamp-Massey algorithm, which used shift registers for multiplication, was even more
efficient, achieving a computational complexity of O(N?). Currently, an even more efficient
algorithm, with a computational complexity of O (Npoly(log N)), is known [82].

The Welch-Berlekamp algorithm, covered under US Patent [104], has a running time com-
plexity of O(N?). We will follow a description of the Welch-Berlekamp algorithm provided by
Gemmell and Sudan in [33].

Héstad, Philips and Safra showed that solving a system of quadratic equations (even those
without any square terms like we have in (15.1)) over any field [, is NP-hard [55]. (In fact, it is
even hard to approximately solve this problem: i.e. where one tries to compute an assignment
that satisfies as many equations as possible.) Linearization is a trick that has been used many
times in theoretical computer science and cryptography. See this blog post by Dick Lipton for
more on this.

Algorithm 23 is due to Sudan [96] and Algorithm 24 is due to Guruswami and Sudan [48].
Near-linear time implementations of these list decoding algorithms are also known [2].

It is natural to ask whether Theorem 15.3.2 is tight for list recovery, i.e. generalize Open
Question 15.2.1 to list recovery. It was shown by Guruswami and Rudra that Theorem 15.3.2 is
indeed the best possible list recovery result for Reed-Solomon codes [43]. Thus, any algorithm
that answers Open Question 15.2.1 in some sense has to exploit the fact that in the list decoding
problem, the a;’s are distinct. Recently it was shows by Rudra and Wootters that at least combi-
natorially, Reed-Solomon codes (with random evaluation points) are list decodable beyond the
Johnson bound [87]. On the flip side, there are limits known on list decoding Reed-Solomon
codes (both unconditional ones due to Ben-Sasson et al. [8] as well as those based on hardness
of computing discrete log in the worst-case due to Cheng and Wan [16]) but none of them are
close to the Johnson bound (especially for constant rate Reed-Solomon codes).
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Chapter 16

Efficiently Achieving List Decoding Capacity

In the previous chapters, we have seen these results related to list decoding:

* Reed-Solomon codes of rate R > 0 can be list-decoded in polynomial time from 1 - vR
errors (Theorem 15.2.6). This is the best algorithmic list decoding result we have seen so
far.

* There exist codes of rate R > 0 that are (1-R—¢,0 (%))—list decodable for g = 29(3) (and
in particular for g = poly(n)) (Theorem 7.4.1 and Proposition 3.3.2). This of course is the
best possible combinatorial result.

Note that there is a gap between the algorithmic result and the best possible combinatorial
result. This leads to the following natural question:

Question 16.0.1. Are there explicit codes of rate R > 0 that can be list-decoded in polynomial
time from 1 — R — € fraction of errors for q < poly(n)?

In this chapter, we will answer Question 16.0.1 in the affirmative.

16.1 Folded Reed-Solomon Codes

We will now introduce a new type of code called the Folded Reed-Solomon codes. These codes
are constructed by combining every m consecutive symbols of a regular Reed-Solomon code
into one symbol from a larger alphabet. Note that we have already seen such a folding trick
when we instantiated the outer code in the concatenated code that allowed us to efficiently
achieve the BSC,, capacity (Section 13.4.1). For a Reed-Solomon code that maps [F’; — [y, the
corresponding Folded Reed-Solomon code will map F’f] - [FZ,’,{". We will analyze Folded Reed-

Solomon codes that are derived from Reed-Solomon codes with evaluation {1,7,y2,y3,...,y" 1},
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HOEECEEGEECE o oY |

Figure 16.1: Encoding f(X) of degree < k-1 and coefficients in [ ; corresponding to the symbols
in the message.

where y is the generator of F; and n < g — 1. Note that in the Reed-Solomon code, a message is
encoded as in Figure 16.1.

For m = 2, the conversion from Reed-Solomon to Folded Reed-Solomon can be visualized
as in Figure 16.2 (where we assume n is even).

f ) o | fod o™ | foy™h
fa | fod e
oy o) fo™h

Figure 16.2: Folded Reed-Solomon code for m =2

For general m = 1, this transformation will be as in Figure 16.3 (where we assume that m
divides n).

f oy o o o™ | fo™h
f fo™ fy?m fiy™m
f(,y) f(,)/m+l) f(,)/2m+l) f(’}/n_m"'l)
fa™h | feAmh | e fo™h

Figure 16.3: Folded Reed-Solomon code for general m =1

More formally, here is the definition of folded Reed-Solomon codes:

Definition 16.1.1 (Folded Reed-Solomon Code). The m-folded version of an [n, k] ; Reed-Solomon
code C (with evaluation points {1,7,...,y7""!}), call it C’, is a code of block length N = n/m over
F4m, where n < g — 1. The encoding of a message f(X), a polynomial over F, of degree at most
k-1, has as its j'th symbol, for 0 < j < n/m, the m-tuple (f (y/™), f (y/™*1),---, f (y/™*™1)).
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In other words, the codewords of C’ are in one-one correspondence with those of the Reed-
Solomon code C and are obtained by bundling together consecutive m-tuple of symbols in
codewords of C.

16.1.1 The Intuition Behind Folded Reed-Solomon Codes

We first make the simple observation that the folding trick above cannot decrease the list de-
codability of the code. (We have already seen this argument earlier in Section 13.4.1.)

Claim 16.1.1. If the Reed-Solomon code can be list-decoded from p fraction of errors, then the
corresponding folded Reed-Solomon code with folding parameter m can also be list-decoded from
p fraction of errors.

Proof. The idea is simple: If the Reed-Solomon code can be list decoded from p fraction of
errors (by say an algorithm <), the Folded Reed-Solomon code can be list decoded by “unfold-
ing" the received word and then running <« on the unfolded received word and returning the
resulting set of messages. Algorithm 25 has a more precise statement.

Algorithm 25 Decoding Folded Reed-Solomon Codes by Unfolding

INPUT: Y: ((yl,ly---’yl,m)y---y (yn/m,l»---,J/n/m,m)) € [}:anm
OUTPUT: Alist of messages in F¥

1: Y’ - (J/1,1,---,J/l,m,---,J’n/m,ly---;J/n/m,m) € [FZ
2: RETURN &/ (y')

The reason why Algorithm 25 works is simple. Let m € [F’(; be a message. Let RS(m) and
FRS(m) be the corresponding Reed-Solomon and folded Reed-Solomon codewords. Now for
every i € [n/m], if FRS(m); # (¥;1,..., Yin/m) thenin the worst-case for every j € [n/m], RS(m) ;-1)n/m+j #
Yi,j: i.e. one symbol disagreement over F,» can lead to at most m disagreements over [,. See
Figure 16.4 for an illustration.

fa | fod LG
fo | ¥ fo"™h
fa fm %) o) fam | fo"h

Figure 16.4: Error pattern after unfolding. A pink cell means an error: for the Reed-Solomon
code it is for RS(m) with y’ and for folded Reed-Solomon code it is for FRS(m) with y

This implies that for any m € [F’L; if A(y,FRS(m)) < p- -7, then A(y',RS(m)) < m-p- 7> =p

m

‘n,
which by the properties of algorithm <« implies that Step 2 will output m, as desired. O
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The intuition for a strict improvement by using Folded Reed-Solomon codes is that if the
fraction of errors due to folding increases beyond what it can list-decode from, that error pat-
tern does not need to be handled and can be ignored. For example, suppose a Reed-Solomon
code that can be list-decoded from up to % fraction of errors is folded into a Folded Reed-
Solomon code with m = 2. Now consider the error pattern in Figure 16.5.

f f | o) | o) SR LG R (!
fo | ofed | O
fm | fod fo"h

Figure 16.5: An error pattern after folding. The pink cells denotes the location of errors

The error pattern for Reed-Solomon code has % fraction of errors, so any list decoding al-
gorithm must be able to list-decode from this error pattern. However, for the Folded Reed-
Solomon code the error pattern has 1 fraction of errors which is too high for the code to list-
decode from. Thus, this “folded" error pattern case can be discarded from the ones that a list
decoding algorithm for folded Reed-Solomon code needs to consider. This is of course one
example— however, it turns out that this folding operation actually rules out a lot of error pat-
terns that a list decoding algorithm for folded Reed-Solomon code needs to handle (even be-
yond the current best 1 — v/R bound for Reed-Solomon codes). Put another way, an algorithm
for folded Reed-Solomon codes has to solve the list decoding problem for the Reed-Solomon
codes where the error patterns are “bunched" together (technically they're called bursty er-
rors). Of course, converting this intuition into a theorem takes more work and is the subject
of this chapter.

Wait a second... The above argument has a potential hole- what if we take the argument to
the extreme and "cheat" by setting m = n where any error pattern for the Reed-Solomon code
will result in an error pattern with 100% errors for the Folded Reed-Solomon code: thus, we
will only need to solve the problem of error detection for Reed-Solomon codes (which we can
easily solve for any linear code and in particular for Reed-Solomon codes)? It is a valid concern
but we will “close the loophole" by only using a constant m as the folding parameter. This
will still keep g to be polynomially large in n and thus, we would still be on track to answer
Question 16.0.1. Further, if we insist on smaller list size (e.g. one independent of n), then we can
use code concatenation to achieve capacity achieving results for codes over smaller alphabets.
(See Section 16.4 for more.)

General Codes. We would like to point out that the folding argument used above is not specific
to Reed-Solomon codes. In particular, the argument for the reduction in the number of error
patterns holds for any code. In fact, one can prove that for general random codes, with high
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probability, folding does strictly improve the list decoding capabilities of the original code. (The
proofis left as an exercise.)

16.2 List Decoding Folded Reed-Solomon Codes: 1

We begin with an algorithm for list decoding folded Reed-Solomon codes that works with agree-
ment t ~ mRN. Note that this is a factor m larger than the RN agreement we ultimately want.
In the next section, we will see how to knock off the factor of m.

Before we state the algorithm, we formally (re)state the problem we want to solve:

e Input: An agreement parameter 0 < ¢ < N and the received word:

Yo Ym Yn-m n
_ . . . mxN _
y= : : : € [Fq , N= P
Ym-1 Yem-1 Yn-1

* Output: Return all polynomials f(X) € F,[X] of degree at most k — 1 such that for at
least t valuesof 0<i< N

f(ymi) Ymi
: = : (16.1)

f(Ym(iH)_l) Ym(i+1)-1

The algorithm that we will study is a generalization of the Welch-Berlekamp algorithm (Al-
gorithm 21). However unlike the previous list decoding algorithms for Reed-Solomon codes
(Algorithms 22, 23 and 24), this new algorithm has more similarities with the Welch-Berlekamp
algorithm. In particular, for m = 1, the new algorithm is exactly the Welch-Berlekamp algo-
rithm. Here are the new ideas in the algorithm for the two-step framework that we have seen in
the previous chapter:

e Step 1: We interpolate using (m + 1)-variate polynomial, Q(X, Y1,..., Y;;), where degree of
each variable Y; is exactly one. In particular, for m = 1, this interpolation polynomial is
exactly the one used in the Welch-Berlekamp algorithm.

 Step 2: As we have done so far, in this step, we output all "roots" of Q. Two remarks are in
order. First, unlike Algorithms 22, 23 and 24, the roots f(X) are no longer simpler linear
factors Y — f(X), so one cannot use a factorization algorithm to factorize Q(X, Y1, ..., Yi,).
Second, the new insight in this algorithm, is to show that all the roots form an (affine)
subspace,! which we can use to compute the roots.

1An affine subspace of [FZ isaset {v+ulue S}, where S < [FZ is a linear subspace and ve [F’f,.
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Algorithm 26 has the details.

Algorithm 26 The First List Decoding Algorithm for Folded Reed-Solomon Codes
INPUT: An agreement parameter 0 < ¢ < N, parameter D = 1 and the received word:

Yo Ym Yn-m n

— . . ce : Eﬂ;me, N: _

y : : : q -
Ym-1 Yem-1 Yn-1

OuTtpuT: All polynomials f(X) € F,[X] of degree at most k — 1 such that for at least ¢ values of
0<i<N

f(Ymi) Ymi
: = : (16.2)
f(Ym(HD_l) Ym(i+1)-1
1: Compute a non-zero Q(X, Yy,..., Y,,) where
QX, Y1,.... YY) =A(X)+ A1 X)Y1 + Ao(X) Yo +---+ A (X) Yy
with deg(Ag) = D+ k—1and deg(A;) < D for 1 < j < msuch that
QY™ Ymir+*» Ymi+1-1) =0, YO<i<N (16.3)

22 L—¢

3: FOR every f(X) € F4[X] such that Q(X, f(X), f(¥X), f(y*X),..., f(y" 1 X)) =0 DO
4: IF deg(f) < k—1 and f(X) satisfies (16.2) for at least ¢ values of i THEN

5: Add f(X) to L.

6: RETURN L

Correctness of Algorithm 26. In this section, we will only concentrate on the correctness of
the algorithm and analyze its error correction capabilities. We will defer the analysis of the
algorithm (and in particular, proving a bound on the number of polynomials that are output by
Step 6) till the next section.

We first begin with the claim that there always exists a non-zero choice for Q in Step 1 using
the same arguments that we have used to prove the correctness of Algorithms 23 and 24:

Claim 16.2.1. If(m+1) (D+1)+k—1> N, then there exists a non-zero Q (X, Y1,...Yy,) that satis-
fies the required properties of Step 1.

Proof. Asin the proof of correctness of Algorithms 22, 23 and 24, we will think of the constraints
in (16.3) as linear equations. The variables are the coefficients of A;(X) for 0 < i < m. With the
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stipulated degree constraints on the A;(X)’s, note that the number of variables participating in
(16.3) is
D+k+mD+D)=(m+1)D+1)+k-1.

The number of equations is N. Thus, the condition in the claim implies that we have strictly
more variables then equations and thus, there exists a non-zero Q with the required properties.
O

Next, we argue that the root finding step works (again using an argument very similar to
those that we have seen for Algorithms 22, 23 and 24):

Claim 16.2.2. Ift > D+ k-1, then all polynomial f (X) € F4[X] of degree at most k — 1 that agree
with the received word in at least t positions is returned by Step 6.

Proof. Define the univariate polynomial

RX)=Q(X,f(X), f(yX), ../ (¥ ' X)).
Note that due to the degree constraints on the A;(X)’s and f(X), we have
deg(R)<sD+k-1,

since deg(f(y' X)) = deg(f(X)). On the other hand, for every 0 < i < N where (16.1) is satisfied
we have

R (Ymi) =Q (Ymi’J’mi»---er(Hl)—l) =0,

where the first equality follows from (16.1), while the second equality follows from (16.3). Thus
R(X) has at least t roots. Thus, the condition in the claim implies that R(X) has more roots then
its degree and thus, by the degree mantra (Proposition 5.2.3) R(X) =0, as desired. O

Note that Claims 16.2.1 and 16.2.2 prove the correctness of the algorithm. Next