Exercises:

\$18, 19

1. Let A, B, C, D be topological spaces and suppose $f: A \to B$ and $g: C \to D$ are continuous functions. Define a function $f \times g: A \times C \to B \times D$ by

$$(f \times g)(a, c) = ((f(a), g(c)))$$

Show that $f \times g$ is continuous when $A \times C$ and $B \times D$ are given the product topologies.

- 2. Let \mathbb{R} and \mathbb{R}^2 have their standard topologies.
 - (a) Show that the function $f: \mathbb{R}^2 \to \mathbb{R}$ defined by f(x, y) = xy is continuous.
 - (b) For each $n \in \mathbb{N}$, show that $p \colon \mathbb{R} \to \mathbb{R}$ defined by $p(x) = x^n$ is continuous.
- 3. Let X be a topological space and let Y be a set with an order relation \langle and the order topology. Suppose $f, g: X \to Y$ are continuous.
 - (a) Show that the set $\{x \in X \mid f(x) \le g(x)\}$ is closed in X.
 - (b) Show that the function $h: X \to Y$ defined by $h(x) := \min\{f(x), g(x)\}$ is continuous. [Hint: using the pasting lemma.]
- 4. Let \mathbb{R} have the standard topology. Consider

 $C = \{ (x_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}} \mid x_n \neq 0 \text{ for only finitely many } n \in \mathbb{N} \}.$

That is, C is the set of sequences that are eventually equal to zero.

- (a) Determine \overline{C} when $\mathbb{R}^{\mathbb{N}}$ has the box topology.
- (b) Determine \overline{C} when $\mathbb{R}^{\mathbb{N}}$ has the product topology.
- 5. Let \mathbb{R} have the standard topology and consider the functions $f, g: \mathbb{R} \to \mathbb{R}$ defined by

$$f(x) = \begin{cases} 1 & x \in \mathbb{Q} \\ 0 & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$$

and

 $g(x) = \begin{cases} \frac{1}{m} & x \in \mathbb{Q} \text{ with } x = \frac{n}{m} \text{ for } n \in \mathbb{Z} \text{ and } m \in \mathbb{N} \text{ sharing no common factors} \\ 0 & x \in \mathbb{R} \setminus \mathbb{Q} \end{cases}$

- (a) Show that \mathbb{Q} and $\mathbb{R} \setminus \mathbb{Q}$ are dense in \mathbb{R} .
- (b) Show that f is **not** continuous at any $x \in \mathbb{R}$.
- (c) Show that g is **not** continuous at any $x \in \mathbb{Q}$.
- (d) Show that g is continuous at every $x \in \mathbb{R} \setminus \mathbb{Q}$.