Exercises: (§2 and §3)

1. Let $f: A \rightarrow B$ be a function.
(a) For $A_{0} \subset A$ and $B_{0} \subset B$, show that $A_{0} \subset f^{-1}\left(f\left(A_{0}\right)\right)$ and $f\left(f^{-1}\left(B_{0}\right)\right) \subset B_{0}$.
(b) Show that f is injective if and only if $A_{0}=f^{-1}\left(f\left(A_{0}\right)\right)$ for all subsets $A_{0} \subset A$.
(c) Show that f is surjective if and only if $f\left(f^{-1}\left(B_{0}\right)\right)=B_{0}$ for all subsets $B_{0} \subset B$.
2. Let $f: A \rightarrow B$ be a function, $A_{j} \subset A$ for all $j \in \mathbb{Z}$, and $B_{j} \subset B$ for all $j \in \mathbb{Z}$. Prove the following:
(a) $A^{\prime} \subset A_{0} \Longrightarrow f\left(A^{\prime}\right) \subset f\left(A_{0}\right)$
(b) $B^{\prime} \subset B_{0} \Longrightarrow f^{-1}\left(B^{\prime}\right) \subset f^{-1}\left(B_{0}\right)$
(c) $f\left(\cup_{j \in \mathbb{Z}} A_{j}\right)=\cup_{j \in \mathbb{Z}} f\left(A_{j}\right)$
(d) $f^{-1}\left(\cup_{j \in \mathbb{Z}} B_{j}\right)=\cup_{j \in \mathbb{Z}} f^{-1}\left(B_{j}\right)$
(e) $f\left(\cap_{j \in \mathbb{Z}} A_{j}\right) \subset \cap_{j \in \mathbb{Z}} f\left(A_{j}\right)$, where equality holds if f is injective.
(f) $f^{-1}\left(\cap_{j \in \mathbb{Z}} B_{j}\right)=\cap_{j \in \mathbb{Z}} f^{-1}\left(B_{j}\right)$ always
3. Let C be a relation on a set A. For a subset $A_{0} \subset A$, the restriction of C to A_{0} is the relation defined by the subset $D:=C \cap\left(A_{0} \times A_{0}\right)$.
(a) For $a, b \in A$, show that $a D b$ if and only if $a, b \in A_{0}$ and $a C b$.
(b) Show that if C is an equivalence relation on A, then D is an equivalence relation on A_{0}.
(c) Show that if C is an order relation on A, then D is an order relation on A_{0}.
(d) Show that if C is a partial order relation on A, then D is a partial order relation on A_{0}.
4. Let $f: A \rightarrow B$ be onto. Define a relation on A by setting $a \sim a^{\prime}$ if $f(a)=f\left(a^{\prime}\right)$. Show that \sim is an equivalence relation. Furthermore, show that there is a bijection between the equivalence classes of \sim and B.
5. We say two sets A and B have the same cardinality if there is a bijection of A with B. In this exercise, you will prove the Schröder-Bernstein Theorem: if there exist injections $f: A \rightarrow B$ and $g: B \rightarrow A$, then A and B have the same cardinality.
(a) Suppose $C \subset A$ and that there is an injection $f: A \rightarrow C$. Define $A_{1}:=A, C_{1}:=C$, and for $n>1$ recursively define $A_{n}:=f\left(A_{n-1}\right)$ and $C_{n}:=f\left(C_{n-1}\right)$. Show that

$$
A_{1} \supset C_{1} \supset A_{2} \supset C_{2} \supset A_{3} \supset \cdots
$$

and that $f\left(A_{n} \backslash C_{n}\right)=A_{n+1} \backslash C_{n+1}$ for all $n \in \mathbb{N}$.
(b) Using the notation from the previous part, show that $h: A \rightarrow C$ defined by

$$
h(x):= \begin{cases}f(x) & \text { if } x \in A_{n} \backslash C_{n} \text { for some } n \in \mathbb{N} \\ x & \text { otherwise }\end{cases}
$$

is a bijection. [Hint: draw a picture.]
(c) Prove the Schröder-Bernstein Theorem.

