Exercises: (§2 and §3)

- 1. Let $f \colon A \to B$ be a function.
 - (a) For $A_0 \subset A$ and $B_0 \subset B$, show that $A_0 \subset f^{-1}(f(A_0))$ and $f(f^{-1}(B_0)) \subset B_0$.
 - (b) Show that f is injective if and only if $A_0 = f^{-1}(f(A_0))$ for all subsets $A_0 \subset A$.
 - (c) Show that f is surjective if and only if $f(f^{-1}(B_0)) = B_0$ for all subsets $B_0 \subset B$.
- 2. Let $f: A \to B$ be a function, $A_j \subset A$ for all $j \in \mathbb{Z}$, and $B_j \subset B$ for all $j \in \mathbb{Z}$. Prove the following:
 - (a) $A' \subset A_0 \implies f(A') \subset f(A_0)$
 - (b) $B' \subset B_0 \implies f^{-1}(B') \subset f^{-1}(B_0)$
 - (c) $f(\bigcup_{j\in\mathbb{Z}}A_j) = \bigcup_{j\in\mathbb{Z}}f(A_j)$
 - (d) $f^{-1}(\bigcup_{j\in\mathbb{Z}}B_j) = \bigcup_{j\in\mathbb{Z}}f^{-1}(B_j)$
 - (e) $f(\bigcap_{j\in\mathbb{Z}}A_j)\subset \bigcap_{j\in\mathbb{Z}}f(A_j)$, where equality holds if f is injective.
 - (f) $f^{-1}(\bigcap_{j\in\mathbb{Z}}B_j) = \bigcap_{j\in\mathbb{Z}}f^{-1}(B_j)$ always
- 3. Let C be a relation on a set A. For a subset $A_0 \subset A$, the **restriction** of C to A_0 is the relation defined by the subset $D := C \cap (A_0 \times A_0)$.
 - (a) For $a, b \in A$, show that aDb if and only if $a, b \in A_0$ and aCb.
 - (b) Show that if C is an equivalence relation on A, then D is an equivalence relation on A_0 .
 - (c) Show that if C is an order relation on A, then D is an order relation on A_0 .
 - (d) Show that if C is a partial order relation on A, then D is a partial order relation on A_0 .
- 4. Let $f : A \to B$ be onto. Define a relation on A by setting $a \sim a'$ if f(a) = f(a'). Show that \sim is an equivalence relation. Furthermore, show that there is a bijection between the equivalence classes of \sim and B.
- 5. We say two sets A and B have the same **cardinality** if there is a bijection of A with B. In this exercise, you will prove the Schröder-Bernstein Theorem: if there exist injections $f: A \to B$ and $g: B \to A$, then A and B have the same cardinality.
 - (a) Suppose $C \subset A$ and that there is an injection $f: A \to C$. Define $A_1 := A, C_1 := C$, and for n > 1 recursively define $A_n := f(A_{n-1})$ and $C_n := f(C_{n-1})$. Show that

$$A_1 \supset C_1 \supset A_2 \supset C_2 \supset A_3 \supset \cdots$$

and that $f(A_n \setminus C_n) = A_{n+1} \setminus C_{n+1}$ for all $n \in \mathbb{N}$.

(b) Using the notation from the previous part, show that $h: A \to C$ defined by

$$h(x) := \begin{cases} f(x) & \text{if } x \in A_n \setminus C_n \text{ for some } n \in \mathbb{N} \\ x & \text{otherwise} \end{cases}$$

is a bijection. [Hint: draw a picture.]

(c) Prove the Schröder–Bernstein Theorem.