х	-1	0	1
	 		—
У	5	7	9

Table 1: The data for Problem 1.

х	0	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$
У	1	1	-1	-1

Table 2: The data for Problem 6.

Exercises: (Chapter 6 §4, §12, and Notes)

- 1. Find a natural cubic spline function whose knots are $t_0 = -1, t_1 = 0$, and $t_2 = 1$ and that takes on the values in Table 1.
- 2. By taking real and imaginary parts in a suitable complex exponential equation, prove that the following two equations hold. Let k, n be positive integers.

$$\frac{1}{n} \sum_{j=0}^{n-1} \cos\left(\frac{2\pi jk}{n}\right) = \begin{cases} 1 & \text{if } k \text{ divides } n \\ 0 & \text{otherwise} \end{cases}$$
$$\frac{1}{n} \sum_{j=0}^{n-1} \sin\left(\frac{2\pi jk}{n}\right) = 0.$$

•

- 3. Prove the following useful identities involving complex conjugation. Let $z_1, z_2 \in \mathbb{C}$.
 - (a) Show that $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$.
 - (b) Show that $\overline{z_1 z_2} = \overline{z_1} \ \overline{z_2}$.
 - (c) Show that $|z_1|^2 = z_1 \overline{z_1}$.
 - (d) Show that $|z_1 + z_2|^2 = |z_1|^2 + |z_2|^2 + 2\text{Re}(z_1\overline{z_2})$. Here, Re (a + bi) = a. That is, Re (a + bi) is the *real part* of the complex number a + bi.
- 4. Let $z \in \mathbb{C}$ be nonzero. Show that

$$z^{-1} := \frac{1}{z} = \frac{\bar{z}}{|z|^2}.$$

5. Prove that the normalized DFT matrix, $F \in \mathbb{C}^{n \times n}$, with entries given by

$$F_{\omega,j} = e^{\frac{-2\pi i\omega_j}{n}}/\sqrt{n}$$
 for all $0 \le j, \omega \le n-1$

is unitary.

6. Find the trigonometric polynomial

$$p(x) = \widehat{p}_{-1} \mathrm{e}^{-\mathrm{i}x} + \widehat{p}_0 + \widehat{p}_1 \mathrm{e}^{\mathrm{i}x} + \widehat{p}_2 \mathrm{e}^{2\mathrm{i}x}$$

that interpolates the data in Table 2. Write p both in complex exponential form as above, and as a sum of sines and cosines.