х	0	1	2
p(x)	2	-4	44
p'(x)	-9	4	

Table 1: The data for Problems 2 and 3.

Exercises: (Chapter 6 $\S2 - \S4$)

- 1. Use the computer language/platform of your choice to compute the degree n polynomial p_n that interpolates $f(x) = 1/(1 + x^2)$ evaluated on the interval [-5, 5] at the n + 1 equally spaced nodes $x_j = -5 + 10j/n$ for j = 0, ... n. Then, use your code to answer the following questions.
 - (a) Compute $p_5(x)$. What is its maximum error from f on 31 equally spaced grid points in [-5, 5], $\max\{|f(y_\ell) p_5(y_\ell)| \text{ s.t. } y_\ell = -5 + \ell/3, \ \ell = 0, \dots, 30\}$?
 - (b) Compute $p_{10}(x)$. What is its maximum error from f on 31 equally spaced grid points in [-5,5], $\max\{|f(y_\ell) p_{10}(y_\ell)| \text{ s.t. } y_\ell = -5 + \ell/3, \ \ell = 0, \dots, 30\}$?
 - (c) Compute $p_{15}(x)$. What is its maximum error from f on 31 equally spaced grid points in [-5, 5], $\max\{|f(y_\ell) p_{15}(y_\ell)| \text{ s.t. } y_\ell = -5 + \ell/3, \ \ell = 0, \dots, 30\}$?

Make sure to turn in your code in addition to answering the three questions above!

- 2. Use the extended Newton divided difference method to obtain a quartic (i.e., degree 4) polynomial p that matches the data in Table 1.
- 3. Find a quintic (i.e., degree 5) polynomial p that matches the data in Table 1 and, in addition, satisfies p(3) = 2. HINT: Add a suitable term to the polynomial found in Problem 2.
- 4. Obtain a formula for the polynomial p of least degree that takes on these values:

$$p(x_j) = y_j$$
 and $p'(x_j) = 0$ for $0 \le j \le n$.

5. Using the development of cubic splines as a model, derive the appropriate equations and algorithm to provide a quadratic spline interpolant to data (t_j, y_j) for $0 \le j \le n$, where $t_0 < t_1 < \cdots < t_n$. If f is the spline interpolant of the data, then the numbers $z_j = f'(t_j)$ are well defined. Find the equations governing z_0, z_1, \ldots, z_n . You should discover that one of these z_j points can be arbitrary, so that you can always let $z_0 = 0$.