
COURSE NOTES (MTH 415, FALL 2025):

APPLIED LINEAR ALGEBRA II

Mark Iwen

Chapters 1, 2, and Sections 3.1 – 3.7 are based on notes and figures initially scribed by
Eric Brodsky while he was an undergraduate student working with me at Michigan State
University in 2024.

M.A.I.

Contents

1 Why We Should Care: Artificial Intelligence, and Data, Data, DATA! 3

1.1 Data, and What You Might Do with It . 4

1.2 The Basics of Feed-forward Neural Networks (FNNs) 5

1.2.1 Affine Functions and Single Neurons 5

1.2.2 Layers of Neurons, and Some Helpful Matrix Notation 8

1.2.3 Feed-Forward Neural Networks (FNNs) in Full Generality 10

2 Linear Algebra over the Real and Complex Numbers 17

2.1 The Complex Numbers . 17

2.1.1 Euler’s Identity . 20

2.1.2 The Polar Representation of a Complex Number 21

2.1.3 Complex Conjugation . 22

2.1.4 The Roots of Unity . 23

2.1.5 The Triangle Inequality for Complex Numbers 23

2.2 Basic Linear Algebra over C and R . 24

2.2.1 Some Inner Product Geometry for Real-valued Vectors x,y ∈ Rn . . 26

2.2.2 The Cauchy–Schwarz Inequality . 27

2.2.3 General Norms on Cm×n, and the Euclidean Vector Norm 28

2.3 Subspaces, Span, and Linear Independence 30

2.3.1 Bases, Orthonormal Bases, Dimension, and Rank 31

2.4 Orthonormal Bases and the Gram–Schmidt Algorithm 36

2.4.1 The QR Decomposition of a Matrix 41

2.5 Near-Optimal Compression of Low Rank Matrices 43

2.5.1 A Very Brief Review of Gaussian Elimination, and Some Useful Notation 43

2.6 Set Addition, Orthogonal Projections, and Perpendicular Subspaces 48

2.6.1 Representing Orthogonal Projections with Matrices 54

2.6.2 Least-Squares Theory for (Approximately) Solving Systems of Linear
Equations . 57

2.7 The Four Fundamental Linear Subspaces of a Matrix 58

2.8 The Spectral Theorem for Hermitian Matrices 61

1

2.9 Positive (Semi)Definite Matrices . 65
2.9.1 The Cholesky Decomposition . 67

2.10 A Review of the Trace and Determinant Functions 68
2.10.1 The Trace of a Matrix . 68
2.10.2 The Determinant of a Matrix . 70

3 Some More Advanced Topics in Linear Algebra 73
3.1 One Factorization to Rule Them All: The Singular Value Decomposition . . 73

3.1.1 The Relationship to the Spectral Decompositions of A∗A and AA∗ . 78
3.2 The SVD and the Moore–Penrose Inverse of a Matrix 80
3.3 Some Important Properties of Singular Values 81

3.3.1 Singular Value Inequalities for Sums and Products of Matrices . . . 82
3.4 The Optimal Rank-s Approximation As of a Matrix A 85

3.4.1 Optimality of As in the Frobenius and (ℓ2, ℓ2)-Operator Norms . . . 86
3.5 Solving Ill-Conditioned and Noisy Linear Systems 87

3.5.1 Improving Conditioning by SVD Truncation 89
3.5.2 Tikhonov Regularization . 91

3.6 Linear Least-Squares Regression . 92
3.6.1 Centering, and the Optimal Shift b ∈ Cm 93
3.6.2 The Optimal Low-Rank Matrix A ∈ Cm×n 95

3.7 Discrete Convolution and Fourier Transform Matrices 97
3.7.1 Circulant and Toeplitz Matrices . 99
3.7.2 Discrete Fourier Transforms and Circular Convolutions 101
3.7.3 Big-O Notation and the Basic Art of Runtime Analysis 107

3.8 The Fast Fourier Transform (FFT) . 109
3.8.1 The FFT for Vectors of Arbitrary Size 113
3.8.2 Fast Matrix Multiplication for Toeplitz Matrices 114

3.9 ℓp-Norms and the Hölder Inequality . 117
3.9.1 Convex Functions of One Variable 118
3.9.2 The Minkowski Inequality for Vectors 120
3.9.3 Young’s Inequality for Products & the Discrete Hölder Inequality . . 121

3.10 Some Discrete Inequalities from Fourier Analysis 122
3.10.1 The Discrete Young’s Convolution Inequality 124

3.11 Embedding Metric Spaces into Normed Vector Spaces 125
3.11.1 Rapidly Approximating the Diameter of a Set of Vectors 128
3.11.2 Fréchet Embedding Methods for Finite Metric Spaces 131

2

Chapter 1

Why We Should Care: Artificial
Intelligence, and Data, Data,
DATA!

Artificial Intelligence, which began being generally useful in the 2020’s, resulted from the
combination of three crucial historical developments: (i) the exponential increase in available
computing power from the 1950’s until the 2020’s,1 (ii) the development of machine learning
techniques beginning in the second half of the 20th century (Neural Network methods in
particular), and (iii) the collection of super-massive data sets for training and learning.2

This book is meant to give the reader a solid introduction to the mathematics necessary to
begin understanding developments (ii) and (iii) above. In particular, you will learn about
the mathematics needed to understand what a neural network is and how the algorithms
work that one might use to compile, process, analyze, and store the types of extremely
super-massive datasets needed to train one well. Many of the mathematical topics needed
are covered beginning in Chapter 2.

In this chapter we simply aim to prepare you to understand why that material is so
important, as well as to state some application problems in a mathematical way that makes
them easier to begin understanding more rigorously. Our main contention is this: learning
the mathematics first makes all the application problems below much easier to learn about
and begin solving later! However, we do understand that mathematics is difficult, and that
it helps to have some solid motivation going into a long hike to help keep you trekking
uphill until you reach the beautiful views nearer to the top of the mountain. We hope the
following sections will help give you that motivation.

1Mainly due to steady innovations in integrated circuit manufacturing techniques over many decades –
read up on Moore’s law for a good time!

2Largely made possible by the development of modern communication infrastructure and the subsequent
wide-scale adaptation of the internet beginning in the early 1990s.

3

4

1.1 Data, and What You Might Do with It

Let N be a positive integer. Herein we will let [N] denote the first N non-negative integers
from 0 to N − 1, [N] := {0, . . . , N − 1} for any natural number N ∈ N = {0, 1, 2, 3, . . . }.
Our data herein will (almost always) be a vector of N numbers indexed by [N]. We will
denote vectors with boldface letters. For example, x ∈ RN is a vector. We denote the
entries of x by xj ∈ R. Pictorially, we have

x =


x0
x1
...

xN−1

 .

In most settings we consider in this book vectors will be rich enough to represent the
data we want to work with. This is primarily because, given the discrete and finite nature
of digital computers, one can always simply vectorize other data one might have even if it
isn’t a vector to begin with. A related application example follows.

Example 1.1.1 (Image Classification Described with Vectors and Functions).
Suppose we want a model to separate pictures into two classes: pictures of cats and pictures
of dogs. How can we describe this mathematically? Let’s start with a picture of a cat.
Assume this picture is 1000 pixels by 1000 pixels, and each pixel has some triple of color
values associated to it (one for red, one for green, and one for blue), each a real number
in the interval [0, 1]. Since a pixel is described by its three color values, each pixel in this
image can be described a vector of length 3:r

g
b

 ∈ R3

where r denotes the red value of the pixel, and so on. Doing this for each pixel in the image,
we attain 1000× 1000 = 106 vectors of length 3. We can re-express this data as a single
object by concatenating these vectors (in some arbitrary order, such as reading the pixel rows
of the image left-to-right and top-to-bottom) into one large vector xcat ∈ R3×106. Hence,
our cat picture is now simply a big vector.

Now, let’s focus on the question of classification. A classification model can be thought of
as a function whose input is, e.g., a 1000× 1000 picture of a cat or a dog, and whose output
is either “cat” or “dog”. If we assign the label 0 to cats, and 1 to dogs (or the other way
around, if you prefer cats!), then our classification question boils down to finding a function
f : R3×106 → {0, 1} such that, given a vectorized picture xcat of a cat or a vectorized picture
xdog of a dog, we correctly get f(xcat) = 0 and f(xdog) = 1.

5

We can use a similar framework for other sorts of problems. For example, the problem
of reducing noise in a 1000 × 1000 cat picture can be viewed as a problem of finding a
function f : R3×106 → R3×106 such that f(xcat) is “less noisy” than the original picture xcat.

There are a lot of specific image processing methods and techniques built around
processing images as two-dimensional objects. For simplicity herein, however, we will use
the flexibility of discrete representations to allow us to turn any image, etc., into a vector
as an excuse to ignore non-vector data (i.e., we will vectorize everything). Though this
can always be done, we note that it certainly shouldn’t always be done... Nonetheless,
it’s generally useful enough that we will do it here. It also will make understanding the
mathematics involved much easier, which we will take as an additional reason to assume
that our datasets are almost always collections of vectors herein.

1.2 The Basics of Feed-forward Neural Networks (FNNs)

Continuing for the moment in the spirit of our first example above, we will now briefly
take a detour to discuss what kinds of functions f one might actually build and evaluate
with a computer to, e.g., classify images as in Example 1.1.1. FNNs provide exactly one
such “computer friendly” class of functions that are also expressive enough to be able to do
many useful tasks quite well. Given their value in artificial intelligence applications we will
now take some time to explain what they are and how they depend on, and utilize, ideas
from, e.g., both linear algebra and optimization. To begin we will first discuss the atomic
building block of every neural network – the neuron.

1.2.1 Affine Functions and Single Neurons

Let x and y be vectors in RN . We define the inner product of x and y, denoted ⟨x,y⟩,
to be the sum

⟨x,y⟩ =
N−1∑
j=0

xjyj (1.1)

Definition 1.2.1 (Affine Functions). Fix w ∈ RN and a b ∈ R. Then the affine function
determined by w and b is the function aw,b : R

N → R defined by

aw,b(x) := ⟨x,w⟩+ b

Here w is called the affine function’s weight vector and b is called its bias.

Note that we can also write the above as a single inner product of two vectors in RN+1,

⟨x,w⟩+ b =

〈(
x
1

)
,

(
w
b

)〉
.

We can also represent an affine function aw,b : R
N → R graphically as in Figure 1.1.

6

x0

x1

xN−1

1

⟨x,w⟩+ b

w0

w1

wN−1

b

aw,b(x)

Figure 1.1: A graphical representation of an affine function aw,b : RN → R. The first
column of boxes represents the inputs (i.e., the entries of x). The edge weights are the
entry of the weight vector w that multiplies each corresponding input entry in the affine
function’s inner product (e.g., w0 multiplies against x0, etc.). The dotted box around the
constant input 1 used here to include the bias b as an edge weight is often omitted.

Definition 1.2.2 (Neurons). A neuron η : RN → R is a composition of an affine function
aw,b with a nonlinear function σ : R→ R given by

η(x) := σ(aw,b(x)) = σ(⟨x,w⟩+ b)).

Note that a neuron is determined by two choices: the parameters w ∈ RN and b ∈ R, and
the activation function σ.

A neuron also admits the commonly used graphical representation in Figure 1.2. In
Figure 1.2 the first column of boxes is called the input layer and the circle is called a
node or neuron. Some typical choices of activation functions σ include the

• Perceptron (or Heaviside, or step function): σ(y) =

{
0 if y ≤ 0

1, if y > 0

• Sigmoid: σ(y) = 1/(1 + e−y)

• Hyperbolic tangent: σ(y) = tanh(y)

7

x0

x1

xN−1

1

σ(⟨x,w⟩+ b)

w0

w1

wN−1

b

η(x)

Figure 1.2: A graphical representation of a neuron. The first column of boxes represents the
inputs (i.e., the entries of x). The edge weights are the entry of the weight vector w that
multiplies each corresponding input entry in the neuron’s inner product (e.g., w0 multiplies
against x0). Note in particular that a circle is used to represent a neuron here, as opposed
to a box which is used to represent an affine function as per Figure 1.1. Again, the dotted
box around the constant input 1 used here to include the bias b as an edge weight is often
omitted.

• Rectified Linear Unit (ReLU): σ(y) = max(0, y)

• Leaky ReLU: σa(y) = max(ay, y) with 0 ≤ a < 1.

• Absolute value (or modulus): σ(y) = |y|

• Smoothed versions of (leaky) ReLU to eliminate non-differentiability at y = 0.

Example 1.2.3 (A Simple Way to Smooth Non-Differentiability). Fix a ∈ [0, 1) and
α ∈ R+, and define the function g : R→ R to be

g(y) =


a, y < −α
1, y > α

a+ 1−a
2α · (y + α), −α ≤ y ≤ α

8

A smoothed leaky ReLU function, σ̃a,α(x), can be defined to be

σ̃a,α(x) =

∫ x

0
g(y) dy. (1.2)

Exercise 1.2.1. The following problems concern the smoothed (leaky) ReLU function
σ̃a,α : R→ R defined in (1.2) with a = 1/2 and α = 1/4.

(a) Compute the integral in (1.2) and write down the resulting piecewise polynomial
formula for σ̃ 1

2
, 1
4
(x). What is σ̃ 1

2
, 1
4
(1)?

(b) Plot σ̃ 1
2
, 1
4
together with the leaky ReLU function σ 1

2
.

Given an activation function σ : R→ R we will extend it to a function σ : RN → RN

for any given N ∈ N entrywise by

σ(x) :=


σ(x0)
σ(x1)

...
σ(xN−1)

 .

We will now continue to build on this notation in order to help combine multiple neurons
into more complicated (and useful!) functions.

1.2.2 Layers of Neurons, and Some Helpful Matrix Notation

A matrix W ∈ RN×d is a table of data with N rows and d columns. We denote the entry
in the jth row and kth column of W by Wj,k ∈ R for all j ∈ [N] and k ∈ [d]. We denote the
jth row of W , which is a vector in Rd, by Wj,: ∈ Rd. Similarly, we denote the jth column
of W , which is a vector in RN , by W:,j ∈ RN . We can also build a matrix out of vectors.
Given d vectors w0, . . . ,wd−1 ∈ RN , we can write the N × d matrix whose jth column is
W:,j = wj for all j ∈ [d] as  | |

w0 · · · wd−1

| |

 ∈ RN×d.

Given a matrix W ∈ RN×d and a vector y ∈ RN we will also denote by (W |y) ∈ RN×(d+1)

matrix whose first d columns are the columns of W , and whose (d+ 1)st column is y.

The transpose of a matrix W ∈ RN×d, denoted by W T ∈ Rd×N , is the d×N matrix
with entries given in terms of W by (W T)j,k = Wk,j for all j ∈ [d] and k ∈ [N]. That
is, we swap the roles of rows and columns so that, e.g., Wj,: = W T

:,j for all j ∈ [N].

9

Finally, a matrix W ∈ RN×d also always represents a linear function W : Rd → RN where
W (x) = Wx ∈ RN has entries given by

(Wx)j :=
∑
k∈[d]

Wj,kxk

for all j ∈ [N].

Exercise 1.2.2. Let x ∈ RN , y ∈ Rd, and W ∈ RN×d. Show that ⟨x,Wy⟩ = ⟨W Tx,y⟩.

We can also represent a matrix graphically as multiple affine functions. Let W ∈ RN×d

and x ∈ Rd. Then we can express the matrix-vector product Wx ∈ RN with the diagram
in Figure 1.3

x0

xd−1

(Wx)0

(Wx)N−1

W0,0

W0,d−1

WN−1,d−1

WN−1,0

Figure 1.3: A graphical representation of a matrix W ∈ RN×d as an input layer of width d
connected directly to a linear output layer of width N .

We now have enough notation to define and represent a single layer of neurons.

Definition 1.2.4 (A Layer of Neurons). A layer of neurons ℓ : RN → Rd is determined
by a collection of d weight vectors w0, . . . ,wd−1 ∈ RN , d biases b0, . . . , bd−1, and a choice
of activation function σ : R→ R. We call d the width of ℓ. The layer ℓ is defined using
these parameters by

ℓ(x) :=

 σ(⟨x,w0⟩+ b0)
...

σ(⟨x,wd−1⟩+ bd−1)

 = σ

 ⟨x,w0⟩+ b0
...

⟨x,wd−1⟩+ bd−1

 = σ(Wx+ b),

10

where W T =

 | |
w0 · · · wd−1

| |

 ∈ RN×d and b =

 b0
...

bd−1

. Note that ℓ : RN → Rd is

effectively created by stacking d different neurons η0, . . . , ηd−1 : RN → R into a vector. Here
W ∈ Rd×N is called the layer’s weight matrix and b is called the layer’s bias vector.

Above can also write ℓ(x) = σ(Wx+ b) as ℓ(x) = σ

(
Ã

(
x
1

))
, where Ã = (W |b) ∈

Rd×(N+1). Thus, if we define the affine function A : RN → Rd by A(x) := Ã

(
x
1

)
= Wx+b,

we may further write ℓ compactly as a composition of σ and A, i.e., ℓ(x) = σ(A(x)) =
(σ ◦A)(x). This compositional form will be used below. Finally, we note that one can also
represent a layer of d neurons graphically as per Figure 1.4.

x0

xN−1

1

σ(⟨x,W0,:⟩+ b0)

σ (⟨x,Wd−1,:⟩+ bd−1)

W0,0

W0,N−1

Wd−1,N−1

Wd−1,0

b0
bd−1

Figure 1.4: A graphical representation of a layer of neurons ℓ : RN → Rd defined by
ℓ(x) = σ(Wx+ b) with weight matrix W ∈ Rd×N and bias vector b ∈ Rd. Here the input
layer of width N connects to a layer of d neurons.

1.2.3 Feed-Forward Neural Networks (FNNs) in Full Generality

Informally, a FNN is a series of layers of neurons with each layer feeding its outputs “forward”
into the layer following it. From the discussion of neuron layers above, we can therefore

11

choose to describe an FNN as a concatenation of functions that alternate between affine
functions and the activation function. More formally, one can define FNNs as follows.

Definition 1.2.5 (Feed-forward Neural Network (FNN)). A Feed-forward Neural
Network (FNN) f : RN → RdL is determined by an activation function σ : R→ R, a
depth L ∈ N, and layer widths d0, . . . , dL. It contains an input layer with N inputs, L layers
of neurons (often called hidden layers), and a final linear output layer with dL outputs.
More specifically, let ℓ0 : RN → Rd0 and ℓj : Rdj−1 → Rdj ∀j ∈ {1, . . . , L− 1} be L layers
of neurons, and let AL : RdL−1 → RdL be an affine function defined by AL(y) := WLy+bL

for WL ∈ RdL×dL−1, bL ∈ RdL. The resulting FNN of depth L, f , is then given for all
x ∈ RN by

f(x) =
(
AL ◦ ℓL−1 ◦ ℓL−2 ◦ · · · ◦ ℓ1 ◦ ℓ0

)
(x)

=
(
AL ◦ σ ◦AL−1 ◦ σ ◦AL−2 ◦ · · · ◦ σ ◦A0

)
(x),

where AL−k(y) = WL−k(y) + bL−k, with WL−k ∈ RdL−k×dL−k−1 and bL−k ∈ RdL−k for all
k ∈ [L], and A0(y) = W 0y + b0, with W 0 ∈ Rd0×N and b0 ∈ Rd0.

Even after fixing the activation function σ we note that FNNs are functions that depend
on a potentially huge number of parameters. Using our notation from above, the number
of parameters in a FNN f is equal to the sum of the number of weights in the matrices
W j and the number of biases in the vectors bj for all j ∈ [L+ 1]. Recall that when j > 0,
W j ∈ Rdj×dj−1 and bj ∈ Rdj , and when j = 0, W 0 ∈ Rd0×N and b0 ∈ Rd0 . Thus, the
total number of parameters for a depth L FNN f with input layer width N and hidden
layer widths d0, d1, . . . , dL is

FNN parameters = d0(N + 1) +

L∑
j=1

dj(dj−1 + 1).

Finding a good way of choosing all of these parameters during training so that the resulting
trained FNN is capable of, e.g., correctly classifying cat versus dog pictures is usually
accomplished via optimization techniques. Techniques one can use to help reduce the
number of these parameters in order to save space when storing a previously-trained FNN is
something we will discuss more in, e.g., Sections 2.5 and 3.1. We urge you to keep reading
to learn about these useful tricks, and more!

For now though, we will simply try to mitigate the fact that the general definition of a
depth L FNN given above is rather complicated. In order to help digest it, let’s consider
some examples. Our first example will be that of a shallow FNN (that is, of an FNN of
depth L = 1).

Example 1.2.6 (A Shallow FNN f : R→ R). A shallow (i.e., L = 1) FNN f : R→ R

will have the form

f(x) = b1 +

d0−1∑
j=0

w1
jσ
(
w0
jx+ b0j

)
. (1.3)

12

where b1 ∈ R is the single output layer bias (the output width is d1 = 1), b0j for all j ∈ [d0]
are the biases of the single layer of neurons of width d0, and where the weights of the layer
of neurons and the output layer are w0

j , w
1
j ∈ R for all j ∈ [d0], respectively.

Example 1.2.7 (The Graphical Representation of a Shallow FNN f : R3 → R2). For a
graphical representation of a shallow (i.e., depth L = 1) FNN f : R3 → R2 with widths
d0 = 2 and d1 = 2 see Figure 1.5. Note that such a network will be determined by two
weight matrices W 0 ∈ R2×3, W 1 ∈ R2×2 and two bias vectors b0,b1 ∈ R2. Hence, it has a
total of 14 parameters.

x0

x1

x2

1

1

W 0
0,0

W
01,0

W
0
0,1

W 0
1,1

W
0
0,
2

W
0
1,2

b
0 0

b
0

1

W 1
0,0

W 1
1,0

W
1
0,1

W 1
1,1

b
1 0

b
1
1

output

output

Figure 1.5: An example of a shallow neural network f : R3 → R2. We call a depth 1 FNN
shallow. The leftmost layer is the input layer with N = 3 inputs. The middle layer, which
is the only nonlinear layer in this diagram, is a hidden layer of neurons with d0 = 2 neurons.
The right layer is the output layer with dL = 2 outputs.

Example 1.2.8 (The Graphical Representation of a Depth L = 2 FNN f : R2 → R2). For
a graphical representation of a depth L = 2) FNN f : R2 → R2 with widths d0 = 3, d1 = 2,
and d2 = 2 see Figure 1.6. Such a network will be determined by three weight matrices
W 0 ∈ R3×2, W 1 ∈ R2×3, W 2 ∈ R2×2 and three bias vectors b0 ∈ R3,b1,b2 ∈ R2. Hence,
it has a total of 23 parameters.

13

x0

x1

1

1

1

W
0
0,0

W 0
1,0

W
02,0

W
0
0,
1

W
0
1,1

W 0
2,1

b
0 0

b
0

1

b
0
2

W 1
0,0

W
11,0

W
1
0,1

W 1
1,1

W
1
0,
2

W
1
1,2

b
1 0

b
1

1

W 2
0,0

W 2
1,0

W
2
0,1

W 2
1,1

b
2 0

b
2
1

output

output

Figure 1.6: An example of a neural network f : R2 → R2 of depth L = 2. The leftmost
layer is the input layer with N = 2 inputs. The second layer from the left is the first hidden
layer of neurons, which has d0 = 3 neurons. The third layer from the left is the second
hidden layer of neurons, which has width d1 = 2, and the rightmost layer is the linear
output layer, which has dL = d2 = 2 outputs.

Exercise 1.2.3. Draw the graphical representation of a shallow neural network f : R→ R

of width d0 = 5. How many parameters does it have?

Exercise 1.2.4. Draw the graphical representation of a depth L = 3 neural network
f : R→ R with widths d0 = 2, d1 = 2, d2 = 2. How many parameters does it have?

We will now briefly discuss why choosing, e.g., a greater value for its depth L might
allow a FNN to “work better” at a variety of tasks. This is directly linked to the notion of
the “expressivity” of an FNN.

Some Basics Concerning the Expressivity of FNNs

In practice the activation function σ : R→ R is always chosen to be a nonlinear function.
The reason why is directly linked to the notion of the “expressivity” of an FNN. Suppose

14

for example that we choose σ : R→ R in (1.3) to be linear so that σ(y) = ay + c for some
a, c ∈ R. Substituting this activation function into (1.3) we obtain

f(x) = b1 +

d0−1∑
j=0

w1
jσ
(
w0
jx+ b0j

)
= b1 +

d0−1∑
j=0

w1
j

[
a
(
w0
jx+ b0j

)
+ c
]

=

d0−1∑
j=0

w1
jaw

0
j


︸ ︷︷ ︸

=: ã

x+

b1 +

d0−1∑
j=0

w1
j (ab

0
j + c)


︸ ︷︷ ︸

=: c̃

= ãx+ c̃,

with the two new constants ã, c̃ ∈ R defined as above. That is, if we choose σ to be linear
then the complicated shallow FNN f : R→ R in (1.3) is just another linear function itself.
All the weight and bias parameters used to define it were a total waste of time! Stated
another way, choosing σ to be linear only allows shallow FNNs such as (1.3) to express
simple linear functions.

As we shall see next, choosing σ to be something even “barely nonlinear” such as a
ReLU function σ(y) = ReLU(y) := max(0, y) already allows shallow FNNs such as (1.3)
to express/represent significantly more complicated functions than simple linear ones.3

The following Theorem is paraphrased from Foucart’s fantastic book on data science [17].
Informally, it tells us that choosing σ to be a ReLU function allows shallow FNNs such
as (1.3) to express any continuous piecewise linear function you like. Note that this is a
dramatically larger class of functions than the simple linear ones shallow FNNs such as
(1.3) can express if σ is chosen to be linear. Hence, in this case choosing σ to be nonlinear
increases expressivity.

Theorem 1.2.9 (See Theorem 24.1 in [17]). Let σ : R → R be the ReLU function
ReLU(x) = max{0, x}. Then, every continuous piecewise linear function f : R→ R as in
(1.4) can be expressed by a shallow FNN whose single hidden layer contains n+ 2 neurons.
More specifically, let

f(x) =



a0x+ b0 x ≤ τ1

a1x+ b1 τ1 ≤ x ≤ τ2
...

an−1x+ bn−1 τn−1 ≤ x ≤ τn

anx+ bn τn ≤ x

(1.4)

where τ1 < τ2 < · · · < τn are real numbers, and a0, . . . , an and b0, . . . , bn are real numbers
such that the function f above is continuous (i.e., ajτj+1 + bj = aj+1τj+1 + bj+1 for all
j ∈ [N]). In other words, f is a piecewise linear function whose slope changes finitely many
(specifically, n) times. Any such function can be obtained via a shallow FNN of width n+ 2.

3Note that the ReLU function itself is linear everywhere except at 0. Hence, I feel it is appropriate to
label it as “barely nonlinear”.

15

Proof. We begin by noting two useful properties of the ReLU function:

ReLU(γx) = γReLU(x) ∀x ∈ R, γ > 0, and

x = ReLU(x)− ReLU(−x) ∀x ∈ R.

Using these two properties, we can write f as the following linear combination of n + 2
ReLU functions as follows

f(x) = a0x+ b0 +

n∑
j=1

(aj − aj−1)ReLU(x− τj)

= ReLU(a0x+ b0)− ReLU(−a0x− b0) +

n∑
j=1

(aj − aj−1)ReLU(x− τj).

Note that the class of piecewise linear functions is actually quite powerful approximation-
theoretically since one can, e.g., approximate any continuous function R → R within a
bounded domain arbitrarily well using increasingly fine piecewise linear approximations.
Thus, the theorem above tells us that even when using the most basic tools available to us
(a straightforward nonlinear activation function within a FNN with just a single layer) we
can already approximate a very general class of functions from R→ R as well as we want.

When we consider functions of two variables, however, things become a bit more
complicated. For example, [17] also shows that the bivariate piecewise linear function
g(x0, x1) = min (0,max(x0, x1)) can not be exactly represented by a shallow ReLU FNN
of any width. That said, as the next theorem demonstrates, g can in fact be exactly
represented by a FNN of depth L = 2. This simple example is meant to demonstrate the
following more general principal: Increasing the depth of a FNN increases its expressivity.
In practice the depths (and widths) of modern neural networks are very large for this reason,
leading to the necessity of practitioners to deal with many very large matrices. This is just
one of the many many reasons it’s crucial for the modern data scientist to know the linear
algebra we will review in the next chapter. Hope to see you there!

Theorem 1.2.10 (Section 24.3 in [17]). Define the function g : R2 → R by g(x0, x1) =
min{0,max{x0, x1}}. This function g cannot be generated by a shallow ReLU FNN, but g
can be obtained as a depth L = 2 ReLU FNN.

Proof. For a proof that g cannot be generated by a shallow ReLU FNN, consult [17,
Theorem 24.1]. Below we show explicitly how g can be written as a depth 2 ReLU FNN.

g(x0, x1) = min{0,max{x0, x1}}
= −ReLU(−max{x0, x1})
= −ReLU(−(x0 +ReLU(x1 − x0)))

= −ReLU(−ReLU(x0) + ReLU(−x0)− ReLU(x1 − x0))

16

We can also draw this neural network as in Figure 1.7, omitting arrows with weight 0.

x0

x1

1

-1

-1

1

-1

1

-1

-1 g(x0, x1)

Figure 1.7: The graphical representation of the depth L = 2 ReLU FNN from the proof of
Theorem 1.2.10 that computes g(x0, x1) = min{0,max{x0, x1}}.

Chapter 2

Linear Algebra over the Real and
Complex Numbers

In this chapter we will introduce/review linear algebra over the complex numbers. We note
immediately, however, that the real numbers are also complex numbers! If the reader is
intimidated by (or temporarily disinterested in) doing linear algebra over the
complex numbers, they can simply skip down to Section 2.2 and replace the
symbol “C” everywhere it appears there with an “R”. Doing so will not affect
the correctness of anything in this chapter, or limit your understanding in an
important way until Section 3.7. We will also continue to use the matrix notation
and conventions discussed in, e.g., Section 1.2.2 going forward. All of that material (where
one restricts oneself to thinking about the reals R ⊂ C) also remains true in this chapter.
In short, if you know how linear algebra works over C, then you can reduce to linear
algebra over R by simply replacing “C” everywhere it appears with an “R”. Doing linear
algebra over the complex numbers instead of the reals in the first place does require a few
minor adaptations, though (mainly, you need to use complex conjugation in a few crucial
definitions). We will do that for you below. Before we begin, however, let’s review the
complex numbers.

2.1 The Complex Numbers

In this book the letter i will be reserved for the imaginary number
√
−1. That is, i2 := −1.

The imaginary number i satisfies all the properties you hope it would when interacting with
elements of R including: 0i = 0 and 1i = i, as well as all the usual associative, commutative,
and distributive properties (e.g., ix = xi and i+ x = x+ i ∀x ∈ R). A complex number
is an object of the form z = x+ iy for x, y ∈ R. The set of complex numbers is denoted

C := {x+ iy | x, y ∈ R} .

17

18

The number x in z = x+ iy is called the real part of z, and is denoted Re(z) ∈ R. Similarly,
the number y is called the imaginary part of z, and is denoted Im(z) ∈ R. A real number
is simply a complex number with a zero imaginary part. Hence, R ⊂ C. There is also a
common geometric interpretation of a complex number as illustrated in Figure 2.1. In fact,
the existence of this picture is why C is sometimes also referred to as “the complex plane”.

Real Axis

Imaginary Axis

z = (Re(z), Im(z)) = |z|eiθ

Re(z)

Im(z)

|z|

Re(z) = |z| cos(θ)

Im(z) = |z| sin(θ)

θ

z = (Re(z),−Im(z)) = |z|e−iθ

Figure 2.1: The geometry of a complex number z ∈ C.

Figure 2.1 represents many of most important quantities related to a complex number
z = x+ iy stemming from geometry. In particular, the modulus, magnitude, or absolute
value of z = x+ iy is denoted by |z|. It is defined to be the Euclidean distance from the
origin to (Re(z), Im(z)) = (x, y) in the complex plane. It is therefore also the length of the
hypotenuse of a right triangle whose other two sides have lengths |Re(z)| and |Im(z)|, and
so can be computed using the Pythagorean theorem to be

|z| =
√
(Re(z))2 + (Im(z))2 =

√
x2 + y2.

Note that if z ∈ R so that z = Re(z) (i.e., if y = 0) then |z| = |Re(z)| = |x|. That is, this
definition extends the usual definition of absolute value over the real numbers R to all of C.

Exercise 2.1.1. Let z ∈ C. Prove that |Re(z)| ≤ |z| and |Im(z)| ≤ |z| always hold.

Another fundamental geometric quantity illustrated in Figure 2.1 related to z = x+ iy
is its phase angle or argument, θ = arg(z) ∈ [0, 2π), defined to be the angle between the
real axis and the vector from the origin to (Re(z), Im(z)) = (x, y) in the complex plane.

19

Using the geometric definitions of sin and cos involving right triangles one can immediately
derive the formulas

x = Re(z) = |z| cos θ and y = Im(z) = |z| sin θ.

Similarly, one can appeal to trigonometry to see that, e.g, the phase angle θ of z = x+ iy is

θ = arg(z) := cos−1

(
Re(z)

|z|

)
= cos−1

(
x√

x2 + y2

)
,

where one needs to remember to correct θ based on the quadrant of the complex plane z
belongs to in the usual way. Note that positive real numbers (with sign 1 = cos(0)) always
have the phase angle θ = 0, and that negative real numbers (with sign −1 = cos(π)) always
have the phase angle θ = π. Hence, phase angles effectively extend the notion of “sign”
from the real numbers R to all of C in a consistent fashion.

Two complex numbers z1 = x1 + iy1 and z2 = x2 + iy2 can be added component-wise
(effectively as vectors) via the definition

z1+z2 = (x1+iy1)+(x2+iy2) := (x1+x2)+i(y1+y2) = Re(z1)+Re(z2)+i(Im(z1)+Im(z2)).

Note again that the usual relationship between R and C holds: if z1, z2 ∈ R so that
Im(z1) = Im(z2) = 0 then this definition of addition matches addition in R. We have once
again managed to extend the usual definition (of addition here) from R to all of C in a
totally consistent way.

Similarly, two complex numbers z1, z2 ∈ C can be multiplied using the standard
distributive law for the multiplication of two real numbers, but making sure to use the
identity i2 = −1. Indeed, if z1 = x1 + iy1 and z2 = x2 + iy2, then

z1z2 = (x1 + iy1)(x2 + iy2) := x1x2 + ix1y2 + iy1x2 + i
2y1y2

= (x1x2 − y1y2) + i(x1y2 + y1x2).

Note once again that this definition of multiplication matches multiplication over the reals
whenever z1, z2 ∈ R so that y1 = y2 = 0 = Im(z1) = Im(z2). This, of course, allows us to
compute powers of z ∈ C, zn, for any positive integer n in a way that is again a consistent
extension of how one computes powers of real numbers.

Exercise 2.1.2. Verify the following properties of complex number addition and multiplica-
tion.

1. Commutativity of addition and multiplication: z1+z2 = z2+z1 and z1z2 = z2z1
for all z1, z2 ∈ C.

2. Associativity of addition and multiplication: (z1 + z2) + z3 = z1 + (z2 + z3) and
(z1z2)z3 = z1(z2z3) for all z1, z2, z3 ∈ C.

20

3. Distributivity: z1(z2 + z3) = z1z2 + z1z3 for all z1, z2, z3 ∈ C.

Exercise 2.1.3. Let z1, z2 ∈ C. Show that |z1z2| = |z1||z2|.

Importantly, we can now see that more complicated functions that can be defined on
R in terms of series expansions (like exp, cos, sin, . . .) should also believably extend in a
consistent way to all of C since all of their basic building blocks (addition, multiplication,
and integer powers) have been consistently extended from R to all of C.1 Recall the Taylor
series for the exponential function centered at 0 is

exp(x) = e
x =

∞∑
n=0

xn

n!
.

This series converges absolutely for every x ∈ R. The exponential function of any complex
number z ∈ C can be defined analogously as

exp(z) = e
z =

∞∑
n=0

zn

n!
. (2.1)

It matches the usual definition of exp on R (i.e., whenever z ∈ R ⊂ C) for all the reasons
emphasized above. For more of this extensions interesting properties on C we recommend
taking a look at, e.g., [10].

2.1.1 Euler’s Identity

We may now derive Euler’s identity for complex exponentials. Consider the purely imaginary
number z = iθ for some θ ∈ R. In this case, we have

exp(iθ) = e
iθ =

∞∑
n=0

(iθ)n

n!
. (2.2)

Before simplifying the above expression, we observe that since i2 = −1, we have

i
2n = (−1)n and i

2n+1 = (−1)ni for all n ≥ 0.

1If you want to learn about how very nicely this idea ends up working out, I strongly recommend taking
a class on complex analysis!

21

Breaking the sum (2.2) into the parts where n is even and n is odd we get that

e
iθ =

∑
n even

(iθ)n

n!
+
∑
n odd

(iθ)n

n!

=
∞∑
n=0

(iθ)2n

(2n)!
+

∞∑
n=0

(iθ)2n+1

(2n+ 1)!

=

∞∑
n=0

i2nθ2n

(2n)!
+

∞∑
n=0

i2n+1θ2n+1

(2n+ 1)!

=
∞∑
n=0

(−1)nθ2n

(2n)!
+

∞∑
n=0

(−1)niθ2n+1

(2n+ 1)!

=

(∞∑
n=0

(−1)nθ2n

(2n)!

)
+ i

(∞∑
n=0

(−1)nθ2n+1

(2n+ 1)!

)
.

Now recall from calculus that the Taylor series for cos θ and sin θ about 0 are

cos θ =

∞∑
n=0

(−1)nθ2n

(2n)!
and sin θ =

∞∑
n=0

(−1)nθ2n+1

(2n+ 1)!
,

and that the series above converge absolutely for all θ ∈ R. Consequently, we obtain
Euler’s identity, i.e., that

e
iθ = cos θ + i sin θ. (2.3)

Exercise 2.1.4. Use Euler’s identity and trigonometric identities involving sine and cosine
to show that eiθeiω = ei(θ+ω) holds for all ω, θ ∈ R.

Exercise 2.1.5. Use induction in addition to the last exercise to prove that (eiθ)n = einθ

holds for all n ∈ N.

2.1.2 The Polar Representation of a Complex Number

As illustrated in Figure 2.1, every z = x + iy ∈ C corresponds to a point (x, y) =
(Re(z), Im(z)) in the complex plane. This suggests another way of representing a complex
number using polar coordinates as done for R2. Specifically, if x = r cos θ and y = r sin θ
for some r ≥ 0 and θ ∈ [0, 2π), then a complex number z = x+ iy can be represented in
terms of r and θ as follows:

z = x+ iy = r cos θ + ir sin θ = r (cos θ + i sin θ) . (2.4)

Note that the identity cos2(θ) + sin2(θ) = 1 shows that r = |z| in the polar representation
above.

22

Using Euler’s identity in (2.4) gives us the polar representation of a complex number in
terms of complex exponentials:

z = reiθ.

Stating the same formula another way, we have that

z = Re(z) + iIm(z) = |z|ei arg(z).

Exercise 2.1.6. Prove the following useful identities involving the polar representation of
complex numbers.

1. Show that if z = reiθ, then for any n ∈ N we have zn = rn (cos(nθ) + i sin(nθ)) .

2. Every complex number of unit modulus can be written as eiθ for some θ ∈ [0, 2π).

3. If z = reiθ and w = seiφ, then zw = rsei(θ+φ).

2.1.3 Complex Conjugation

The complex conjugate of a complex number z = x+iy is the complex number z̄ = x−iy.
Geometrically, as illustrated in Figure 2.1, z̄ is the reflection of z across the real axis. One
can verify that

Re(z) =
z + z̄

2
, Im(z) =

z − z̄

2i
.

Consequently, a complex number z is a real number if and only if z = z̄.

Exercise 2.1.7. Prove the following useful identities involving complex conjugation. Let
z1, z2 ∈ C.

1. Show that z1 + z2 = z1 + z2.

2. Show that z1z2 = z1 z2.

3. Show that |z1|2 = z1z1.

4. Show that |z1 + z2|2 = |z1|2 + |z2|2 + 2Re(z1z2).

Exercise 2.1.8. Let z ∈ C have the polar representation z = reiθ. Show that z̄ = re−iθ.

Exercise 2.1.9. Let z ∈ C be nonzero. Show that

z−1 :=
1

z
=

z̄

|z|2
.

23

2.1.4 The Roots of Unity

Fix n ∈ N and consider the equation

zn = 1, z ∈ C.

We wish to find all solutions z ∈ C of this equation. First, notice that necessarily |z| = 1.
Hence, z = eiθ for θ ∈ [0, 2π). By Euler’s formula, this means that

1 = cos(nθ) + i sin(nθ),

which implies cos(nθ) = 1 and sin(nθ) = 0. This can only happen if nθ = 2πk for some
k ∈ Z. Thus, θ = 2πk

n must hold. Note that we have n distinct values of θ ∈ [0, 2π) satisfying

this formula, one for each k ∈ [n]. The set of these solutions is therefore {e
2πki
n | k ∈ [n]}

are called the nth roots of unity. Notice that they all satisfy zn = 1 by design, and are
placed in an equidistant fashion around the unit circle |z| = 1 in the complex plane. These
values will be of special significance later in Section 3.7.

2.1.5 The Triangle Inequality for Complex Numbers

We will now prove the triangle inequality for complex numbers.

Lemma 2.1.1 (The Triangle Inequality for C).

|z1 + z2| ≤ |z1|+ |z2| for all z1, z2 ∈ C. (2.5)

Furthermore, equality holds in (2.5) if and only if z1 = cz2 for some real number c ≥ 0.

Proof. Using the results of Exercises 2.1.7, 2.1.1, and 2.1.3 we can see that

|z1 + z2|2 = |z1|2 + |z2|2 + 2Re(z1z2)

≤ |z1|2 + |z2|2 + 2|z1z2|
= |z1|2 + |z2|2 + 2|z1||z2|
= |z1|2 + |z2|2 + 2|z1||z2|
= (|z1|+ |z2|)2 .

Taking square roots now gives us the desired inequality.
Now suppose that we have equality in (2.5). If either z1 or z2 is 0 we are finished.

Thus, suppose that z1 = r1e
iθ1 and z2 = r2e

iθ2 with r1, r2 > 0. Notice that the only
place we have an inequality in the argument above is in the estimate Re(z1z2) ≤ |z1z2|. If
|z1+z2| = |z1|+ |z2|, then we must, in fact, have Re(z1z2) = |z1z2|. That means Im(z1z2) =
r1r2 sin(θ1−θ2) = 0. Given that r1, r2 > 0 we must therefore have sin(θ1−θ2) = 0, implying
that θ1 − θ2 = mπ for some integer m.

24

If m were odd it would imply that

Re(z1z2) = r1r2 cos(θ1 − θ2) = r1r2 cos(mπ) = −r1r2 < 0.

This is impossible here since we have Re(z1z2) = |z1z2| = r1r2 > 0. Therefore, m must be
even, and so θ1 − θ2 = 2πn for some integer n. This implies that arg(z1) = arg(z2), and so
z1 = cz2 for some positive real number c.

We now have all the prerequisites we need to begin discussing linear algebra over C.

2.2 Basic Linear Algebra over C and R

A complex valued matrix A ∈ Cm×n is a matrix of complex values with m rows and n
columns whose entries are denoted by Aj,k ∈ C for all j ∈ [m] and k ∈ [n]. A complex valued
vector x ∈ Cn of length n is also considered to be an n× 1 matrix (i.e, vectors are “column
vectors” by default). It’s entries are denoted by xj ∈ C for all j ∈ [n], and can themselves be
safely considered to be scalars, length 1 vectors, and 1× 1 matrices as convenient. Matrices
(and vectors) are always added entrywise, and scalar-vector/scalar-matrix multiplication is
also always performed entrywise, as in your first linear algebra course.

Given a matrix A ∈ Cm×n and a vector x ∈ Cn, their matrix-vector product,
Ax ∈ Cm, is a vector which can be defined in two equivalent ways. First, it can be defined
entrywise via

(Ax)j :=
∑
k∈[n]

Aj,kxk ∈ C ∀j ∈ [m]. (2.6)

Alternatively, it can defined as a weighted sum of the columns of A via the formula

Ax =
∑
k∈[n]

xkA:,k ∈ Cm. (2.7)

Both equations are true and will be used often below.

Exercise 2.2.1. Let j ∈ [n]. Show that the function (·)j : Cn → C that maps a vector to
it’s jth entry is a linear function (i.e., argue that (αx+ βy)j = α(x)j + β(y)j holds for all
α, β ∈ C and x,y ∈ Cn).

Exercise 2.2.2. Show that (2.6) holds if and only if (2.7) holds.

We can use the matrix-vector product notation to describe the product of two
matrices. For any natural numbers m, n, p, and two matrices A ∈ Cm×n and B ∈ Cn×p,
we can define their product columnwise by (AB):,k := A(B:,k) = Abk ∀k ∈ [p], where

25

bk = B:,k denotes the kth column of B, and Abk is a matrix-vector product as per (2.6).
Equivalently we may write

AB = A

 | |
b0 · · · bp−1

| |

 =

 | |
Ab0 · · · Abp−1

| |

 . (2.8)

Similarly, we may also define matrix-matrix multiplication entrywise by

(AB)j,k :=
n−1∑
l=0

Aj,lBl,k. (2.9)

Note further that since we always consider a vector v ∈ Cn to be an n × 1 matrix, we
should check that the resulting matrix-matrix product Av agrees with the matrix-vector
product definition of Av above. It does – check!

Exercise 2.2.3. Show that (2.8) holds if and only if (2.9) holds by first verifying that
(A (B:,k))j =

∑n−1
l=0 Aj,lBl,k.

Matrix-vector multiplication further allows us to view matrices as functions. Given
A ∈ Cm×n, A acts on Cn by vector multiplication, and can therefore be viewed as a map
A : Cn → Cm defined by A(x) = Ax for all x ∈ Cn. One can confirm that A is then a
linear function, and that the range of A (as a function) is the column space of A (as a
matrix). That is,

Range(A) := {Ax | x ∈ Cn} ⊂ Cm

=

∑
j∈[n]

αjA:,j | αj ∈ C ∀j ∈ [n]

 =: span ({A:,j | j ∈ [n]})

=: C(A) = Column Space of A.

Let A ∈ Cm×n be a matrix. The adjoint of A, denoted A∗ ∈ Cn×m, is the conjugate
transpose of A, i.e., the matrix produced by transposing A and taking the complex conjugate
of each entry. It is defined entrywise by (A∗)j,k = Ak,j . Note that if A ∈ Rm×n then
A∗ = AT . We also note that A = (A∗)∗ always holds (check this!).

Exercise 2.2.4. Let A,B ∈ Cm×n. Show that (A+B)∗ = A∗ +B∗.

Exercise 2.2.5. Let A ∈ Cm×n and B ∈ Cn×p. Show that (AB)∗ = B∗A∗.

Given two vectors of the same length, x,y ∈ Cn, we can define their Euclidean inner
product to be

⟨x,y⟩ :=
n−1∑
j=0

xjyj = x∗y ∈ C.

26

Also note that when two vectors x and y are real-valued, the complex inner product of
x and y equals the real inner product of x and y. Thus, we can view linear algebra over
the complex numbers as a natural extension of linear algebra over the reals, where any
statement about complex linear algebra still holds true when we restrict ourselves to the real
numbers. This again supports my prior claim that you can simply “replace C everywhere
in this section with R” and have a chapter on linear algebra over R as a result, should you
desire to do so.

These next four exercises are highly recommended. As always, using the result of prior
exercises to will help you complete subsequent ones more quickly is also always highly
recommended.

Exercise 2.2.6. Let x,y ∈ Cn. Show that ⟨x,y⟩ = ⟨y,x⟩.

Exercise 2.2.7. Show that the inner product is conjugate-linear in the first argument and
linear in the second argument. That is, for α, β ∈ C and x,y, z ∈ Cn show that

1. ⟨αx+ βy, z⟩ = α⟨x, z⟩+ β⟨y, z⟩, and that

2. ⟨x, αy + βz⟩ = α⟨x,y⟩+ β⟨x, z⟩.

Exercise 2.2.8. Let A ∈ Cm×n and x ∈ Cn. Show that (Ax)j = ⟨(A∗):,j ,x⟩ =
〈
Aj,:,x

〉
for all j ∈ [m].

Exercise 2.2.9. Let A ∈ Cm×n, x ∈ Cn, and y ∈ Cm. Show that both ⟨Ax,y⟩ = ⟨x, A∗y⟩
and ⟨A∗y,x⟩ = ⟨y, Ax⟩ hold.

Let’s now briefly review a geometric concept related to inner products that’s reserved
for real-valued vectors.

2.2.1 Some Inner Product Geometry for Real-valued Vectors x,y ∈ Rn

The inner product can be used to express the angle between two real vectors. Given two
non-zero vectors x,y ∈ Rn, the angle θ ∈ [0, π] between x,y ∈ Rn is

θ = cos−1

(
⟨x,y⟩√
⟨x,x⟩⟨y,y⟩

)
. (2.10)

Note that θ = π/2 (or 90 degrees) whenever ⟨x,y⟩ = 0, indicating that the two vectors are
perpendicular, or orthogonal, to one another. Further note that the angle between x and y
can always be reasoned about with regular two-dimensional plane geometry no matter how
large n is here since x and y will always belong to the (at most) two-dimensional subspace
span{x,y} ⊂ Rn. Hence, all the pictures of right triangles you are tempted to draw on a

27

piece of paper to better understand θ are 100% justified.2

Back to Cn: Using the inner product geometry for real-valued vectors as motivation, we
will also say that two complex-valued vectors x,y ∈ Cn are orthogonal if ⟨x,y⟩ = 0.
We will now recall an important inequality for inner products.

2.2.2 The Cauchy–Schwarz Inequality

Note that for any vector x ∈ Cn, ⟨x,x⟩ =
∑

j∈[n] xjxj =
∑

j∈[n] |xj |2 ≥ 0 (this fact will

become important later). Now let t ∈ R, and x,y ∈ Cn, and set α := |⟨y,x⟩|
⟨y,x⟩ . One can see

that α is a complex number with magnitude 1. Finally, define the function f : R→ R by

f(t) := ⟨tαx+ y, tαx+ y⟩

Recall that f(t) ≥ 0 for all t ∈ R by the fact above.
Continuing, the following sequence of inequalities can be seen to hold using properties

of the inner product together with the definition of α (check each step!). We have that

0 ≤ f(t) = tα⟨x, tαx+ y⟩+ ⟨y, tαx+ y⟩
= t2αα⟨x,x⟩+ tα⟨x,y⟩+ tα⟨y,x⟩+ ⟨y,y⟩
= t2⟨x,x⟩+ 2Re(tα⟨y,x⟩) + ⟨y,y⟩
= ⟨x,x⟩t2 + 2|⟨x,y⟩|t+ ⟨y,y⟩,

which is a quadratic polynomial in t with real coefficients. Since the polynomial f above is
≥ 0 for all t, it must have at most one real root.

Recalling the quadratic equation for a generic polynomial p(t) = at2 + bt+ c, we note
that its discriminant b2 − 4ac must be non-positive (i.e., ≤ 0) in order for the polynomial
to have at most one real root. Applying this to our f above we learn that

(2|⟨x,y⟩|)2 ≤ 4⟨x,x⟩⟨y,y⟩

|⟨x,y⟩| ≤
√
⟨x,x⟩⟨y,y⟩.

This inequality holds for all vectors x,y ∈ Cn since we chose them arbitrarily. It is known
as the Cauchy-Schwarz Inequality (i.e., it has a name!) due to its importance.

Lemma 2.2.1 (The Cauchy-Schwarz Inequality). For any two vectors x,y ∈ Cn,

|⟨x,y⟩| ≤
√
⟨x,x⟩

√
⟨y,y⟩.

It is expressed here slightly differently than usual in Lemma 2.2.1, however. Usually it
is stated like “|⟨x,y⟩| ≤ ∥x∥2∥y∥2” where ∥ · ∥2 denotes the ℓ2-vector norm, which we will
recall next.

2Simply rewrite x and y in terms of an orthonormal basis of the span{x,y}, and then draw your pictures
with axes in the directions of these orthonormal basis vectors. If this footnote is confusing I recommend you
continue on, review orthogonality and orthogonal projections, and then come back here again for a rematch.

28

2.2.3 General Norms on Cm×n, and the Euclidean Vector Norm

A matrix norm on Cm×n is a function f : Cm×n → R+ := [0,∞) satisfying all of the
following properties:

1. (The triangle inequality): f(A+B) ≤ f(A) + f(B) for all A,B ∈ Cm×n,

2. f(αA) = |α|f(A) for all α ∈ C and A ∈ Cm×n, and

3. f(A) = 0 ⇐⇒ A = 0m×n, where 0m×n denotes the m × n matrix of all zeros (i.e.,
the zero matrix).

Recall that we also view vectors in Cm as m× 1 matrices. Thus, a norm on m× 1 matrices
(i.e., on vectors in Cm) will also be called a vector norm for this reason.

We can now see that the Euclidean, or ℓ2-norm, of a vector x ∈ Cn defined by
∥x∥2 :=

√
⟨x,x⟩ is indeed a vector norm.

Lemma 2.2.2. Let f : Cn → R+ be the ℓ2-norm so that f(x) = ∥x∥2 :=
√
⟨x,x⟩. We

claim that f(x) = ∥x∥2 is a vector norm on Cn.

Proof. We will verify that each condition of a norm is satisfied. First, we will check that
the triangle inequality holds. Note that the last inequality just below depends on the
Cauchy-Schwarz inequality. Let x,y ∈ Cn. Then

∥x+ y∥2 =
√
⟨x+ y,x+ y, ⟩

=

√
∥x∥22 + ∥y∥

2
2 + 2Re(⟨x,y⟩)

≤
√
∥x∥22 + ∥y∥

2
2 + 2|⟨x,y⟩|

≤
√
∥x∥22 + ∥y∥

2
2 + 2∥x∥22∥y∥

2
2

= ∥x∥2 + ∥y∥2.

Next we verify that the norm scales correctly. Let α ∈ C and x ∈ Cn. We have that

∥αx∥2 =
√
⟨αx, αx⟩ =

√
αα⟨x,x⟩ =

√
|α|2⟨x,x⟩

= |α|∥x∥2.

Finally, we verify that the ℓ2-norm of a vector x ∈ Cn can only be 0 if x is the vector of
all zeros, 0. We have that

∥x∥2 = 0 ⇐⇒ ∥x∥22 = 0 ⇐⇒
∑
j∈[n]

|xj |2 = 0 ⇐⇒ |xj | = 0 ∀j ∈ [n].

Having now shown that the ℓ2-norm satisfies all the properties of a norm, we may conclude
that it indeed is one.

29

The following exercise demonstrates a useful property of the inner product which is
perhaps most easily seen by using the properties of the ℓ2-norm.

Exercise 2.2.10. Let x ∈ Cn. Show that if ⟨x,y⟩ = 0 for all y ∈ Cn, then x = 0 must
hold.

Though the ℓ2-norm is by far the most often used norm, all of the other norms in the
following exercises are also commonly used. Even if you don’t do each exercise (you should
of course!), you should look at them for the norm definitions.

Exercise 2.2.11. Show that the ℓ1-norm defined by

∥A∥1 :=
∑

j∈[m],k∈[n]

|Aj,k|

is indeed a norm on Cm×n.

Exercise 2.2.12. Show that the Frobenius matrix norm defined by

∥A∥F :=

√ ∑
j∈[m],k∈[n]

|Aj,k|2

is indeed a norm on Cm×n. HINT: Suppose you vectorize A. What does the Frobenius
norm look like then?

Exercise 2.2.13. Show that the ℓ∞-norm defined by

∥A∥∞ := max
j∈[m],k∈[n]

|Aj,k|

is indeed a norm on Cm×n.

Exercise 2.2.14. Show that the (ℓ2, ℓ2)-operator norm defined by

∥A∥2→2 := max
x∈Cn s.t. ∥x∥2=1

∥Ax∥2

is indeed a norm on Cm×n.

Exercise 2.2.15. Suppose that f : Cm×n → R+ and g : Cm×n → R+ are both norms on
Cm×n. Let α, β ∈ R+ \ {0}. Show that h = αf + βg will also be a norm on Cm×n.

With the aim in mind of recalling what the “rank” of a matrix really means, let’s now
briefly review linear independence and subspace basis properties.

30

2.3 Subspaces, Span, and Linear Independence

Let S = {v0, . . . ,vm−1} ⊂ Cn be a finite and nonempty set of vectors in Cn. The span of
S, denoted span(S), is the set

span(S) :=

∑
j∈[m]

αjvj | α0, . . . , αm−1 ∈ C

 ⊂ Cn.

If S ⊂ Cn is infinite, we instead define the span of S to be the set

span(S) :=
⋃

A⊂S,A finite

span(A) ⊂ Cn.

Note that S ⊂ span(S) always holds for any S ⊂ Cn since x ∈ S implies that 1 · x ∈
span(S). Furthermore, note that 0 is in the span of every nonempty set S since 0 = 0 · x
for any x ∈ S.

Exercise 2.3.1. Verify that if A ⊂ S, then span(A) ⊂ span(S).

Exercise 2.3.2. Let S, T ⊂ Cn. Verify that span(T ∩ S) ⊂ span(T) ∩ span(S).

A subset L ⊂ Cn is called a linear subspace of Cn if span(L) = L . That is,
subspaces are sets that are closed under taking spans. Note that the so-called trivial
subspace {0} ⊂ Cn is always a subspace since span({0}) = {0}. Similarly, Cn is a linear
subspace because both of the following hold: (i) Cn ⊂ span(Cn) (since S ⊂ span(S) for
any S ⊂ Cn), and (ii) span(Cn) ⊂ Cn (trivially by definition).

Lemma 2.3.1. The span of every nonempty subset S ⊂ Cn is a linear subspace of Cn.

Proof. We need to show that

span (span(S)) = span(S).

As usual with set equalities of this type we will proceed by showing that both (i) span(S) ⊂
span (span(S)), and (ii) span (span(S)) ⊂ span(S), hold. In fact (i) follows from the fact
above that S ⊂ span(S) holds for any S ⊂ Cn. Hence, we only really need to verify (ii).

To verify that span (span(S)) ⊂ span(S), let y ∈ span (span(S)). By the definition of
span, y must be the linear combination of a finite number p ∈ N of elements of span(S).
Hence, y will have the form

y =

p−1∑
j=0

βj

qj−1∑
k=0

αj,kxj,k

 =

p−1∑
j=0

qj−1∑
k=0

βjαj,kxj,k,

where βj ∈ C and qj ∈ N for all j ∈ [p], and where xj,k ∈ S and αj,k ∈ C for all k ∈ [qj] for
each j ∈ [p]. Thus, we can see that y ∈ span(S) too since it will be a linear combination of

a finite number, min
(∑

j∈[p] qj , |S|
)
∈ N, of elements of S.

31

Given a matrix A ∈ Cm×n, recall that the column space of A, denoted by C(A),
is defined to be C(A) := span ({A:,j | j ∈ [n]}) ⊂ Cm. One important consequence of
Lemma 2.3.1 is that the column space of every matrix A ∈ Cm×n is a linear subspace of
Cm.

Exercise 2.3.3. Let L ,K ⊂ Cn be two linear subspaces of Cn. Show that L ∩K is also
a linear subspace of Cn.

A finite set of vectors {v0, . . . ,vm−1} ⊂ Cn is called linearly independent if∑
j∈[m] αjvj = 0 if and only if αj = 0 for all j. In other words, no nontrivial (i.e.,

all zero) linear combination of the vectors can equal the zero vector. If a set of vectors is
not linearly independent, we call it linearly dependent.

Exercise 2.3.4. Show that any set of vectors in Cn containing the zero vector is linearly
dependent.

Exercise 2.3.5. Let x ∈ Cn and suppose that B ⊂ Cn is a linearly independent set. Prove
that if x /∈ span(B), then B′ = B ∪ {x} is a new linearly independent set with |B| + 1
elements.

Definition 2.3.2 (The Standard Basis Vectors of Cn). The standard basis vectors of
Cn are the n vectors {ej}j∈[n] := {e0, e1, . . . , en−1, } ⊂ Cn whose entries are given by

(ej)k =

{
1 if j = k

0 if j ̸= k

for all k ∈ [n].

Example 2.3.3 (The Standard Basis Vectors are Linearly Independent). The standard
basis vectors {ej}j∈[n] ⊂ Cn are linearly independent because for any α0, α1, . . . , αn−1 ∈ C
we can see that

0 =
∑
j∈[n]

αjej =


α0

α1
...

αn−1

 ⇐⇒ αj = 0 ∀j ∈ [n].

Having just defined a set of vectors called the “standard basis”, it behooves us to briefly
recall what a “basis” actually is. We do so next.

2.3.1 Bases, Orthonormal Bases, Dimension, and Rank

The following lemma ultimately guarantees that the notions of “dimension” and “rank” are
well defined. Since these notions are inextricably linked to the notion of a “basis”, we will
prepare the ground for them here.

32

Lemma 2.3.4 (The Exchange Lemma). Let B1, B2 ⊂ Cn be finite. Furthermore, suppose
that B2 is linearly independent, and that L := span(B2) ⊂ span(B1). Then |B2| ≤ |B1|.

Proof. Suppose, towards a contradiction, that |B1| < |B2|. Let B1 = {x0,x1, . . . ,xs−1} ⊂
Cn, and B2 = {y0,y1, . . . ,ys+m−1} ⊂ Cn, where m > 0. Recall that the yj vectors
are linearly independent by assumption. Furthermore, we have the assumed inclusion
L = span(B2) ⊂ span ({x0,x1, . . . ,xs−1}).

Because y0 ∈ span(B1), there exist α0, . . . , αs−1 ∈ C such that

y0 =
∑
j∈[s]

αjxj .

Furthermore, because the yj vectors are linearly independent, we recall that y0 can’t be
the zero vector. Hence, at least one of the αj ’s must be nonzero. Without loss of generality
(w.l.g.), we may assume that α0 ̸= 0. Thus, we can write x0 in terms of y0 and the other
xj ’s to see that

x0 =
1

α0

y0 −
s−1∑
j=1

αjxj

 .

Hence, L ⊂ span ({y0,x1,x2, . . . ,xs−1}) also holds. Note that we have effectively ex-
changed x0 for y0 in our initially assumed inclusion.

Now, we repeat this process to exchange x1 for y1 in the last inclusion just above: Since
y1 ∈ L , y1 ∈ span({y0,x1, . . . ,xs−1}). Thus, there exists β0 ∈ C and γ1, . . . , γs−1 ∈ C
such that

y1 = β0y0 +
s−1∑
j=1

γjxj .

Note that at least one γj ∈ C above must be nonzero (otherwise, we’d have y1 = β0y0,
violating the assumed linear independence of the yj ’s). Without loss of generality, we may
assume that γ1 ̸= 0. Thus, we can write

x1 =
1

γ1

y1 − β0y0 −
s−1∑
j=2

γjxj

 .

As a result we have successfully exchanged x1 for y1 in our prior inclusion to see that
L ⊂ span ({y0,y1,x2, . . . ,xs−1}) also holds.

Repeating this process s− 2 more times we find that L ⊂ span ({y0,y1,y2, . . . ,ys−1})
must hold. This generates a contradiction, however, because it implies that ys ∈ B2 can be
written as a linear combination of y0, . . . ,ys−1, contradicting the fact that yj ’s are linearly
independent. Therefore, |B1| < |B2| can’t hold.

33

The following corollary of Lemma 2.3.4 guarantees that any two linearly independent
sets that generate the same subspace have to have the same cardinality.

Corollary 2.3.5. Let B1, B2 ⊂ Cn be finite sets that are both linearly independent. Fur-
thermore, suppose that span(B1) = span(B2). Then, |B1| = |B2|.

Exercise 2.3.6. Prove Corollary 2.3.5.

We are now able to give a well defined definition of the dimension of a linear subspace.
Let L be a linear subspace of Cn. A basis of L is any linearly independent finite set
B with L = span(B).3 Note that by Corollary 2.3.5 all bases of L must have the same
cardinality. We call this cardinality the dimension of L , and denote it by dim(L) ∈ [n+1].
If L is the subspace containing only the zero vector, we say that L is the trivial subspace
and has dimension zero.

Example 2.3.6 (The Dimension of Cn). The n standard basis vectors {ej}j∈[n] ⊂ Cn are
indeed a basis of Cn because they are linearly independent and satisfy Cn = span

(
{ej}j∈[n]

)
.

As a result, we can see that the dimension of Cn is n.

Exercise 2.3.7. Let L be a linear subspace of Cn. Use Lemma 2.3.4 to show that any
linearly independent set of vectors B ⊂ L has cardinality ≤ n.

Exercise 2.3.8. Let L ⊂ Cn be a linear subspace. Prove that the dimension of L is at
most n.

Exercise 2.3.9. Let L ⊂ Cn be a linear subspace. Show that any linearly independent set
of vectors B ⊂ L has cardinality ≤ the dimension of L .

Exercise 2.3.10. Let L ,K ⊂ Cn be two linear subspaces of Cn such that L ⊂ K . Prove
that dim(L) ≤ dim(K).

The following lemma is crucial in several later arguments.

Lemma 2.3.7. Let L ,K ⊂ Cn be two linear subspaces of Cn with L ∩K = {0}. Then
L ∪K contains dim(L) + dim(K) linearly independent vectors.

Proof. Let r = dim(L) and B = {bj}j∈[r] ⊂ L be a basis of L . Similarly, let s = dim(K)
and A = {ak}k∈[s] ⊂ K be a basis of K . We can see that B ∪ A must have cardinality
dim(L) + dim(K) since L ∩ K = {0}, and neither B nor A can contain 0 (recall
Exercise 2.3.4). Hence, we will be finished if we can show that B∪A is linearly independent.

3Note that by our definition of “linear subspace” it’s not immediately clear that every linear subspace of
C

n has to have a basis. They do, and you can build a basis for any subspace of Cn in a finite number of
steps using the Gram–Schmidt algorithm (see, e.g, Section 2.4).

34

Suppose for the sake of contradiction that B ∪ A is linearly dependent. Then, there
exists a nonzero vector α ∈ Cr+s such that∑

j∈[r]

αjbj +
∑
k∈[s]

αk+rak = 0 ⇐⇒ L ∋
∑
j∈[r]

αjbj =
∑
k∈[s]

(−αk+r)ak ∈ K

⇐⇒
∑
j∈[r]

αjbj = 0 and
∑
k∈[s]

(−αk+r)ak = 0

since L ∩K = {0}. Furthermore, at least one of
∑

j∈[r] αjbj or
∑

k∈[s](−αk+r)ak is a

nonzero sum since α ∈ Cr+s is nonzero. However, we then have a contradiction since both
A and B are linearly independent.

Exercise 2.3.11. Let L ,K ⊂ Cn be two linear subspaces of Cn with dim(L)+dim(K) >
n. Prove that there exists a nonzero vector x ∈ L ∩K .

Exercise 2.3.12. Let L ,K ⊂ Cn be two linear subspaces of Cn with dim(L)+dim(K) >
n. Prove that L ∩K is a linear subspace of Cn with dim(L ∩K) ≥ 1.

Given a matrix A ∈ Cm×n, we define the rank of A to be the dimension of its column
space C(A) ⊂ Cm (which, as a reminder, is the span of the columns of A).

Exercise 2.3.13. Show that a rank r matrix A ∈ Cm×n has exactly r linearly independent
columns.

Exercise 2.3.14. Show that the rank of a matrix A ∈ Cm×n is always ≤ min{m,n}.

We define a set of nonzero vectors {vj}j∈[m] ⊂ Cn to be mutually orthogonal (or
just orthogonal) if, for all j ̸= k, ⟨vj ,vk⟩ = 0. We will also say that a set containing a
single vector {v} ⊂ Cn is trivially orthogonal since it contains nothing else for v to fail
to be orthogonal with. The next lemma shows that orthogonal vectors are always linearly
independent. Hence, they always form a basis of their span.

Lemma 2.3.8. An orthogonal set of nonzero vectors is always linearly independent.

Proof. Let {yj}j∈[m] ⊂ Cn be orthogonal nonzero vectors. Suppose that there exist some
α0, . . . , αm−1 ∈ C such that ∑

j∈[m]

αjyj = 0.

Let k ∈ [m]. Since the inner product of the zero vector with any other vector is 0, we can
see that

0 =

〈
yk,

∑
j∈[m]

αjyj

〉
=
∑
j∈[m]

αj⟨yk,yj⟩ = αk⟨yk,yk⟩ = αk∥yk∥22.

Recalling the properties of norms, we note that since yk ̸= 0, ∥yk∥22 > 0. Hence, αk = 0
must hold for all k ∈ [m].

35

A set of orthogonal vectors in Cn that all have norm 1 is called an orthonormal set.
Note that given a set of orthogonal nonzero vectors, we can normalize each of them by

replacing yj with each
yj

∥yj∥2
. This then guarantees that

∥∥∥ yj

∥yj∥2

∥∥∥
2
= 1

∥yj∥2
∥yj∥2 = 1. Thus,

any orthogonal set of nonzero vectors can be turned into an orthonormal set. If a set of
orthonormal vectors span a linear subspace L ⊂ Cn, we say that they are an orthonormal
basis for L .

Exercise 2.3.15. Show that the standard basis vectors {ej}j∈[n] ⊂ Cn form an orthonormal
basis of Cn.

Orthonormal bases have several nice properties. For example, if we know that a vector
x ∈ Cn is in the span of an orthonormal basis {vj}j∈[m] ⊂ Cn, then we can find an
expansion of x in terms of {vj}j∈[m] by noting that

x =
∑
j∈[m]

αjvj ⇐⇒ ⟨vk,x⟩ =
∑
j∈[m]

αj⟨vk,vj⟩ = αk∥vk∥22 = αk ∀k ∈ [m]. (2.11)

Thus, we can easily recover the coefficients αj ∈ C of the linear combination making up x
by taking the inner product of x with the orthonormal basis vectors. In addition, these
coefficients will also satisfy the famous Pythagorean theorem.

Theorem 2.3.9 (The Pythagorean Theorem). Suppose {vj}j∈[m] = {v0,v1, . . . ,vm−1} ⊂
Cn is an orthonormal set of vectors. Then∥∥∥∥∥∥

∑
j∈[m]

αjvj

∥∥∥∥∥∥
2

2

=
∑
j∈[m]

|αj |2

for all α0, . . . , αm−1 ∈ C. Equivalently, for any x ∈ span
(
{vj}j∈[m

)
,

∥x∥22 =
∑
j∈[m]

|⟨x,vj⟩|2

Proof. Note that the second equation follows immediately from the first since we have
x =

∑
j∈[m]⟨vj ,x⟩vj . To show the first equation let α0, . . . , αm−1 ∈ C. Then,∥∥∥∥∥∥

∑
j∈[m]

αjvj

∥∥∥∥∥∥
2

2

=

〈∑
j∈[m]

αjvj ,
∑
k∈[m]

αkvk

〉
=
∑
j∈[m]

∑
k∈[m]

⟨αjvj , αkvk⟩

=
∑
j∈[m]

∑
k∈[m]

αjαk⟨vj ,vk⟩ =
∑
j∈[m]

αjαj⟨vj ,vj⟩ =
∑
j∈[m]

|αj |2.

Having hopefully reminded you why orthonormal bases are so great, we will now discuss
how to generate one.

36

2.4 Orthonormal Bases and the Gram–Schmidt Algorithm

Algorithm 1 is an implementation of the Gram–Schmidt Algorithm which, when given a
finite set S ⊂ Cn as input, outputs an orthonormal basis of span(S). Before we analyze
this algorithm to see that it works as intended we highly recommend that the reader take a
close look at it. Here are some recommended exercises to help you pay close attention to
how it works.

Exercise 2.4.1. Run Algorithm 1 on the set

S =

{(
1
i

)
,

(
2 + i

1

)}
⊂ C2

by hand. Verify that the basis B ⊂ C2 it produces for span(S) is indeed an orthonormal
basis.

Exercise 2.4.2. Run Algorithm 1 on the set

S =


 1
−1
1

 ,

1
1
0

 ,

4
0
2

 ⊂ C3

by hand. Verify that the basis B ⊂ C3 it produces for span(S) is indeed an orthonormal
basis.

When you are finished inspecting Algorithm 1 come back here and we prove a lemma
which takes a step toward showing that the set B Algorithm 1 outputs is always an
orthonormal basis for the span of the input set S.

Lemma 2.4.1. The set B ⊂ Cn output by Algorithm 1 is always orthonormal.

Proof. First, we observe from Lines 3 and 8 of Algorithm 1 that each bj ∈ B will have
norm 1. Thus, it only remains to show that B is orthogonal. To show orthogonality it
suffices to show that the set {bℓ}jℓ=0 = {b0,b1, . . . ,bj} ⊂ B is orthogonal for all j ∈ [|B|].
We will proceed by induction on j.

To begin, we note that {bℓ}0ℓ=0 = {b0} when j = 0 is trivially orthogonal as a singleton

set. Now, as our induction hypothesis, assume that {bℓ}jℓ=0 is orthogonal. To show that

{bℓ}j+1
ℓ=0 must also then be orthogonal it suffices to show that ⟨bk,bj+1⟩ will be 0 for all

integers k ∈ [0, j]. Referring to Lines 6 and 8 of Algorithm 1, and noting that the vector

37

Algorithm 1 The Gram–Schmidt Algorithm for Finite Sets

1: Input: A finite set S ⊂ Cn with at least one nonzero element.
2: Output: An orthonormal set B ⊂ Cn with span(B) = span(S).

Initialize S and B.
3: Pick a nonzero x0 ∈ S, and set b0 := x0/∥x0∥2 and B = {b0}.
4: Set S = S \ {0,x0}, and initialize j = 1.
5: while S ̸= {} do
6: Pick xj ∈ S, and set yj = xj −

∑j−1
ℓ=0⟨bℓ,xj⟩bℓ.

If yj = 0 then xj ∈ span(B) already, so we’ll immediately remove this xj from S
in Line 11 and pick a new one. If yj ̸= 0 then xj /∈ span(B), so we will add a new
element to B so that xj will then belong to its new span.

7: if yj ̸= 0 then
8: Set bj := yj/∥yj∥2 and let B = B ∪ {bj}.
9: Set j = j+1.

10: end if
11: Set S = S \ {xj}.
12: end while
13: Return B.

permanently selected as xj in Line 6 has its yj ̸= 0 for all j ∈ [|B|], we can see that indeed

⟨bk,bj+1⟩ =

〈
bk,

1

∥yj+1∥2

(
xj+1 −

j∑
ℓ=0

⟨bℓ,xj+1⟩bℓ

)〉

=
1

∥yj+1∥2

(
⟨bk,xj+1⟩ −

j∑
ℓ=0

⟨bℓ,xj+1⟩⟨bk,bℓ⟩

)

=
1

∥yj+1∥2
(⟨bk,xj+1⟩ − ⟨bk,xj+1⟩) = 0

for all k ∈ [0, j], where we have used the inductive hypothesis that {bℓ}jℓ=0 is orthogonal in

the last line. As a result we can see that {bℓ}j+1
ℓ=0 will also be orthogonal whenever {bℓ}jℓ=0

is for all j = 0, 1, . . . , |B| − 2, finishing our induction argument.

Lemma 2.4.1 guarantees that the output, B ⊂ Cn, of Algorithm 1 is always orthonormal,
but in order for it to be a basis of span(S) we also need that span(B) = span(S). This is
established in our next lemma.

Lemma 2.4.2. The set B ⊂ Cn output by Algorithm 1 always satisfies span(B) = span(S).

Proof. It suffices to show that span
(
{xℓ}jℓ=0

)
= span

(
{bℓ}jℓ=0

)
for all j ∈ [|B|] (think

38

about why!4). We will show this by induction on j. To begin, we note that when j = 0
we have span ({x0}) = span ({b0}) since b0 is a nonzero scalar multiple of x0 (see Line 3).

Now, suppose for the sake of induction that span
(
{xℓ}jℓ=0

)
= span

(
{bℓ}jl=0

)
. We will

prove that then span
(
{xℓ}j+1

ℓ=0

)
= span

(
{bℓ}j+1

l=0

)
must also hold in the usual two steps.

span
(
{xℓ}j+1

ℓ=0

)
⊂ span

(
{bℓ}j+1

l=0

)
: Let x ∈ span

(
{xl}j+1

l=0

)
. Then, we can write

x = αj+1xj+1 + y

where αj+1 ∈ C and y ∈ span
(
{xℓ}jℓ=0

)
= span

(
{bℓ}jℓ=0

)
. By Lines 6 and 8 of Algorithm 1

we also have that

xj+1 = ∥yj+1∥2bj+1 +

j∑
ℓ=0

⟨bℓ,xj+1⟩bℓ

so xj+1 ∈ span
(
{bℓ}j+1

ℓ=0

)
. Therefore, x ∈ span

(
{bℓ}j+1

ℓ=0

)
.

span
(
{bℓ}j+1

l=0

)
⊂ span

(
{xℓ}j+1

ℓ=0

)
: Let z ∈ span

(
{bℓ}j+1

ℓ=0

)
. Then we can write

z = βj+1bj+1 + y

where βj+1 ∈ C and y ∈ span
(
{bℓ}jℓ=0

)
= span

(
{xℓ}jℓ=0

)
. Again, by Lines 6 and 8 of

Algorithm 1 we also have that

bj+1 =
1

∥yj+1∥2

(
xj+1 −

j∑
ℓ=0

⟨bℓ,xj⟩bℓ

)
,

where the sum
∑j

ℓ=0⟨bℓ,xj⟩bℓ above is in span
(
{bℓ}jℓ=0

)
= span

(
{xℓ}jℓ=0

)
. Thus,

bj+1 ∈ span
(
{xℓ}j+1

ℓ=0

)
which in turn implies that z ∈ span

(
{xℓ}j+1

ℓ=0

)
.

Having now shown that both span
(
{xℓ}j+1

ℓ=0

)
⊂ span

(
{bℓ}j+1

ℓ=0

)
and span

(
{bℓ}j+1

ℓ=0

)
⊂

span
(
{xℓ}j+1

ℓ=0

)
hold, we conclude that indeed span

(
{xℓ}j+1

ℓ=0

)
= span

(
{bℓ}j+1

l=0

)
.

Combining Lemmas 2.4.1 and 2.4.2 we obtain the following theorem guaranteeing that
Algorithm 1 always produces an orthonormal basis of the span of its input set, as intended.

4Note that multiple candidates may be selected to be xj in Line 6 before j is actually incremented in
Line 9. All such temporarily-selected xj candidates simply overwrite one another. However, only the final
vector permanently selected to be xj in Line 6 has its yj ≠ 0. All other temporarily-selected xj candidates
must have yj = 0 in Line 7 in order to be overwritten, which means that they are already in the span of
{bℓ}j−1

ℓ=0 . Thus, only the span of the final permanently selected xj ’s really matters.

39

Algorithm 2 The Gram–Schmidt Algorithm for Subspaces of Cn

1: Input: A nontrivial subspace L ⊂ Cn (i.e., an L ̸= {0}).
2: Output: An orthonormal set B ⊂ Cn with span(B) = L .
3: Pick x ∈ L \ {0} and initialize B = {x/∥x∥2}.
4: while L ̸⊂ span(B) do
5: Pick x ∈ L \ span(B).
6: Let y = x−

∑
b∈B⟨b,x⟩b.

7: Set B = B ∪ {y/∥y∥2}.
8: end while
9: Return B.

Theorem 2.4.3. Algorithm 1 always returns an orthonormal basis B of span(S) ⊂ Cn.

The Gram–Schmidt algorithm is also useful for a lot of other theoretical reasons as well,
which I would like to briefly mention here (please indulge me!). For example, based on our
definition of what a linear subspace of Cn is, it’s is not immediately clear that every such
subspace has to have a basis. This can be established by, e.g., analyzing Algorithm 2 which
is a variant of Algorithm 1 (except for subspaces). Please go and look it over.

Looking at Algorithm 2 we can see that a slightly modified version of Lemma 2.4.1 will
again guarantee that B will remain orthonormal at all times. The main open question
here is therefore whether the “while loop” in Line 4 of Algorithm 2 will ever terminate
(subspaces are, after all, infinite sets . . . there are many worst-case x values to pick from in
each iteration!). We need not fear, however. The while loop must terminate after at most n
iterations no matter what by the Exchange Lemma (Lemma 2.3.4) exactly because B will
always be linearly independent (see, e.g., Exercise 2.3.7). More precisely, it will terminate
after dim(L) ≤ n iterations (see, e.g., Exercise 2.3.9). Failing to do so would generate a
contradiction. Formalizing this argument proves the following theorem.

Theorem 2.4.4. Every nontrivial linear subspace L ⊂ Cn has an orthonormal basis.

As a final thought regarding Gram–Schmidt algorithm variants, we note that they can
also be used to expand an orthonormal basis of a low-dimensional subspace of Cn into
a larger orthonormal basis of all of Cn. This fact comes in handy on many occasions.
More precisely, suppose that we have an orthonormal basis B of a subspace L ⊂ Cn with
|B| = dim(L) < n in our possession. Then, we can use Algorithm 3 to extend it to a larger
basis B̃ of Cn with B ⊂ B̃. Please go take a look at Algorithm 3, paying special attention
to its similarities and differences with Algorithm 2.

Looking at Algorithm 3 we can see that it is effectively a continuation of Algorithm 2.
That is, Algorithm 3 effectively picks up where Algorithm 2 leaves off and then continues
in the exact same way after substituting L with Cn everywhere in its “while loop”. As
a consequence of this substitution, we can use essentially the same reasoning as above to

40

Algorithm 3 Gram–Schmidt for Extending an Orthonormal Basis

1: Input: An orthonormal basis B of a subspace L ⊂ Cn.
2: Output: An orthonormal basis B̃ of Cn with B ⊂ B̃.
3: Initialize B̃ = B.
4: while Cn ̸⊂ span

(
B̃
)

do

5: Pick x ∈ Cn \ span
(
B̃
)
.

6: Let y = x−
∑

b∈B̃⟨b,x⟩b.
7: Set B̃ = B̃ ∪ {y/∥y∥2}.
8: end while
9: Return B̃.

see that Algorithm 3 will indeed output an orthonormal basis B̃ of Cn. Furthermore, the
fact that B ⊂ B̃ is entirely a result of how B̃ is initialized. Formalizing this line of thought
proves the following theorem.

Theorem 2.4.5. Let B ⊂ Cn be an orthonormal basis of a linear subspace L ⊂ Cn. Then
there exists an orthonormal basis B̃ of Cn such that B ⊂ B̃.

Exercise 2.4.3. Implement a version of Algorithm 3 in the language of your choice5 and
use it to complete the orthonormal set

S =


1

2


1
−1
1
i

 ,
1

2


1
1
1
−i


 ⊂ C4

to an orthonormal basis of all of C4. Verify that your resulting orthonormal basis set is
indeed orthonormal.

Exercise 2.4.4. Prove that every set of n orthonormal vectors in Cn is an orthonormal
basis of Cn.

Exercise 2.4.5. Let L ⊂ Cn be a linear subspace of dimension r ≤ n. Prove that every
set of r orthonormal vectors in L is an orthonormal basis of L .

We will now explore yet another important consequence of the Gram–Schmidt algorithm
– the existence of a QR factorization for any matrix A ∈ Cm×n.

5The language of your choice can also be “by hand” (recommended). If you do decide to write computer
code, though, feel free to ask A.I. for help.

41

2.4.1 The QR Decomposition of a Matrix

Let’s consider what happens when we apply Algorithm 1 to the columns of a matrix
A ∈ Cm×n so that it’s input is S = {A:,j}j∈[n] ⊂ Cm. Even more specifically, suppose that
we run Algorithm 1 with x0 = A:,0, x1 = A:,1 (or, more generally, = the first column after
A:,0 that isn’t a multiple of A:,0), x2 = A:,2 (or, more generally, = the first column after x1

that isn’t in the span of x0 and x1), etc.. First, we know that Algorithm 1 will output an
orthonormal basis B ⊂ Cm of the column space, C(A), of A when its finishes. Second, by
the definition of rank we also know that |B| = rank(A). Denote the rank of A by r, and
the elements of B by {bj}j∈[r].

By our analysis of Algorithm 1 we can further see that A:,0 ∈ span({b0}), A:,1 ∈
span({b0,b1}), etc.. More generally, A:,j ∈ span

(
{bℓ}

min{j,r−1}
ℓ=0

)
for all j ∈ [n]. As a

consequence, there exist complex numbers Ri,j ∈ C, with i, j ∈ [n] and i ≤ j, such that

A:,0 = R0,0b0

A:,1 = R0,1b0 +R1,1b1

...

A:,j =

min{j,r−1}∑
ℓ=0

Rℓ,jbℓ for all j ∈ [n].

Now, define Q ∈ Cm×r to be the matrix with the elements of B as its columns, and
R ∈ Cr×n to be the upper triangular matrix whose nonzero entries are defined above so
that

Q =

 | |
b0 · · · br−1

| |

 and R =


R0,0 R0,1 · · · R0,r−1 · · · R0,n−1

0 R1,1 · · · R1,r−1 · · · R1,n−1

0 0
. . .

...
...

...
... 0 Rr−1,r−1 · · · Rr−1,n−1

 .

Doing so we can see that

 | | |
A0,: A1,: · · · A:,n−1

| | |

 =

 | | |
b0 b1 · · · br−1

| | |



R0,0 R0,1 · · · R0,r−1 · · ·
0 R1,1 · · · R1,r−1 · · ·

0 0
. . .

...
...

... 0 Rr−1,r−1 · · ·

 .

That is, A = QR. This is called a QR decomposition of A, and it is very useful
computationally since both Q and R have special properties. Namely, Q has orthonormal
columns, and R is upper triangular. By formalizing the discussion above one may prove
the following theorem.

42

Theorem 2.4.6 (Every Matrix Has a QR Decomposition). Let A ∈ Cm×n be rank r. Then,
there exists a matrix Q ∈ Cm×r with orthonormal columns, and an upper triangular matrix
R ∈ Cr×n, so that A = QR.

Example 2.4.7. The following is an example of a QR decomposition for a rank 2 matrix
A ∈ C4×4.

A =


1 2 3 1
1 2 3 −1
1 2 3 1
1 2 3 −1

 =


1
2

1
2

1
2 −1

2
1
2

1
2

1
2 −1

2

(2 4 6 0
0 0 0 2

)
= QR.

Note that the matrix Q guaranteed by Theorem 2.4.6 is also clearly rank r since Q has
orthonormal columns. In fact, with just a bit more work one can further see that R will
always be rank r as well. We will save this final rank analysis for Section 2.7, however. For
now, let us turn our attention to some implications of the QR decomposition with regard
to low rank matrix compression.

Exercise 2.4.6. Compute a QR decomposition of the matrix

A =

(
1 2
i 1

)
.

Verify that Q has orthonormal columns.

Exercise 2.4.7. Compute a QR decomposition of the matrix

A =

 1 5 −1
−1 1 −1
2 1 1

 .

Verify that Q has orthonormal columns.

Some Comments on Computing a QR Decomposition of a Matrix: I hope that
this section has begun to convince you that the QR decomposition might be interesting. In
fact, we will see going forward that the QR decomposition is also incredibly useful – useful
enough that I am pretty certain that anyone reading this sentence will likely compute one
at some point (probably using a preexisting software package like – these days – MATLAB,
SciPy, LAPACK, or . . . there are many!). When you do compute that QR decomposition
it’s important to point out that it won’t be by (shouldn’t be by!) running Algorithm 1
on the columns of the matrix. Theoretically Algorithm 1 is fantastic, but in practice a
digital computer will likely turn a straightforward coding of Algorithm 1 into the inaccurate
numerical equivalent of a reeking garbage scow (i.e., it’ll be numerically unstable). In
practice QR decompositions are instead computed using Householder reflections which,
if interested, you can read about in standard numerical linear algebra texts such as, e.g.,
[47, 16].

43

2.5 Near-Optimal Compression of Low Rank Matrices

In this section we briefly consider the minimum number of complex values we need to store
in order to fully represent a rank r matrix A ∈ Cm×n. Clearly, we can always do it by
storing all mn entries in A, but can we do better? The answer is definitely “yes” if the
matrix is low rank. To see why, consider a QR decomposition of A ∈ Cm×n, A = QR.
Recalling that Qm×r and R ∈ Cr×n, we immediately see that in fact we can completely
represent A by instead storing the at most mr+ nr = r(m+ n) entries of Q and R. And if,
for example, n = m and r < n/2, storing the at most mr+ nr = 2nr < n2 entries of Q and
R will require less memory than directly storing the mn = n2 entries of A.

In fact, however, we can do even better than this by taking full advantage of the structure
that a QR decomposition guarantees us. Since, e.g, R is upper triangular we know that it
will always have (r−1)r

2 zero entries below its main diagonal in predictable positions. Thus,
there is no need to actually store those 0-valued entries of R. As a result, we can see that
it really suffices to only store

mr + rn− (r − 1)r

2
= r

(
m+ n− r − 1

2

)
(2.12)

complex numbers in order to fully represent both Q and R, and therefore A. Note that
this reduction in entries can have noticeable space-saving effects, especially when we need to
store a large number of very large matrices. Further note that this is exactly the case one is
in when, e.g., one wants to store the many large weight matrices needed to fully describe a
trained deep neural network (recall Section 1.2.3)!

Exercise 2.5.1. Show that an upper triangular matrix R ∈ Cr×n with r ≤ n will always
have (r−1)r

2 zero entries below its main diagonal.

The number of complex entries (2.12) one needs to store in order to represent a QR
decomposition as described above is not quite optimal. To see why, we note that the
dimension of the manifold of rank r matrices in Cm×n is (m + n − r)r (see, e.g., [21,
Chapter 1]), so one should be able to represent any rank r matrix A ∈ Cm×n by storing
just (m + n − r)r complex values. This means that storing a QR decomposition of A

requires storing r2+r
2 additional complex values beyond the theoretical minimum. As we

will see, Gaussian elimination can help us reduce this number of additional values closer to
0. Using this as motivation we will now very briefly summarize Gaussian elimination while
simultaneously introducing and reviewing a lot of other very useful notation.

2.5.1 A Very Brief Review of Gaussian Elimination, and Some Useful
Notation

First let’s recall some notation. As mentioned above, we view vectors u,v ∈ Cn as n× 1
matrices. As a result, the inner product ⟨u,v⟩ ∈ C can be viewed as the matrix product of

44

a 1× n matrix with an n× 1 matrix,

u∗v = (u0, u1, . . . , un−1)


v0
v1
...

vn−1

 =
∑
j∈[n]

ujvj = ⟨u,v⟩,

the result of which is a 1× 1 matrix (i.e., the scalar ⟨u,v⟩). We can similarly define the
“outer product of two vectors” in Cn as the product of an n× 1 matrix with a 1× n matrix.
That is, given u,v ∈ Cn, their outer product is

vu∗ =


v0
v1
...

vn−1

 (u0, u1, . . . , un−1) =


v0u0 v0u1 . . . v0un−1

v1u0 v1u1 . . . v1un−1
...

...
. . .

...
vn−1u0 vn−1u1 . . . vn−1un−1

 ∈ Cn×n.

Note that this is an n× n matrix whose (j, k)th entry is vjuk ∈ C.
Next, the standard basis of Cm×n consists of the mn matrices in Cm×n, denoted by

E(j,k) ∈ Cm×n, whose entries are given by(
E(j,k)

)
ℓ,h

=

{
1 if ℓ = j and h = k

0 else
for all j, ℓ ∈ [m] and k, h ∈ [n].

Note that we also have E(j,k) = eje
∗
k. We call these matrices the standard basis for Cm×n

because any matrix A ∈ Cm×n can be expressed as the linear combination

A =
∑
j∈[m]

∑
k∈[n]

Aj,kE
(j,k) =

∑
j∈[m]

∑
k∈[n]

Aj,keje
∗
k.

Continuing, given a vector v ∈ Cn, we denote the diagonal matrix in Cn×n with v on
its diagonal by diag(v) ∈ Cn×n. Equivalently, diag(v) is the n × n matrix with entries
given by

(diag(v))j,k =

{
vj if j = k

0 else
.

Finally, we will denote the vector of all ones in Cn by 1 ∈ Cn. The following exercises will
help you get more familiar with all of this notation.

Exercise 2.5.2. Let v ∈ Cn. Show that diag(v) =
∑

j∈[n] vjeje
∗
j =

∑
j∈[n] vjE

(j,j).

Exercise 2.5.3. Let v,u ∈ Cn. Show that diag(v)u = diag(u)v ∈ Cn. As a consequence,
show that diag(1)v = diag(v)1 = v holds for all v ∈ Cn.

45

We can now see that the n×n identity matrix, denoted by In ∈ Cn×n, can be expressed

in several equivalent forms. First, we know that its entries are (In)j,k =

{
1 if j = k

0 else
, for

all j, k ∈ [n]. As a consequence we can see that

In =

 | | |
e0 e1 · · · en−1

| | |

 = diag(1)

=
∑
j∈[n]

E(j,j) =
∑
j∈[n]

eje
∗
j .

Additionally, we recall that the inverse of a matrix A ∈ Cn×n, if it exists, is the matrix
A−1 ∈ Cn×n satisfying AA−1 = A−1A = In.

Having equipped ourselves with this new notation, we may now more easily and quickly
review Gaussian elimination. In short, Gaussian elimination is the process of multiplying
three types of invertible elementary matrices against a given matrix A ∈ Cm×n in order to,
usually, make A sparser (i.e., contain more zero entries). These three types of invertible
elementary matrices are:

1. Rescaling Matrices: These m ×m matrices multiply a given row and/or column of
A ∈ Cm×n by a scalar α ∈ C. We will denote them by

M(j, α) := diag(1+ (α− 1)ej) = Im + (α− 1)eje
∗
j

for any given α ∈ C and j ∈ [m]. If multiplied against A ∈ Cm×n from the left,
M(j, α) ∈ Cm×m will multiply the jth row of A by α. If multiplied against A ∈ Cm×n

on the right, M(j, α) ∈ Cn×n will multiply the jth column of A by α.

Example 2.5.1. Let M(0, α) =

(
α 0
0 1

)
∈ C2×2. Then, we can see that both

M(0, α)

(
a b
c d

)
=

(
α 0
0 1

)(
a b
c d

)
=

(
αa αb
c d

)
, and(

a b
c d

)
M(0, α) =

(
a b
c d

)(
α 0
0 1

)
=

(
αa b
αc d

)
.

Exercise 2.5.4. Show that (M(j, α))−1 = Im + (1/α− 1)eje
∗
j = M

(
j, α−1

)
for all

α ̸= 0 and j ∈ [m].

2. Summing Matrices: These m × m matrices add a multiple of one row/column to
another row/column. We will denote them by

S(j, k, α) := Im + αE(j,k) = Im + αeje
∗
k

46

for any given α ∈ C and j, k ∈ [m] with j ̸= k. Given A ∈ Cm×n, the product
S(j, k, α)A effectively adds α(row k of A) to row j of A, and then stores the result
back in row j. Similarly, if S(j, k, α) ∈ Cn×n is multiplied against A from the right it
will add α(column j of A) to column k of A, and then store the result back in column
k.

Example 2.5.2. Let S(0, 1, α) =

(
1 α
0 1

)
∈ C2×2. Then, we can see that both

S(0, 1, α)

(
a b
c d

)
=

(
1 α
0 1

)(
a b
c d

)
=

(
a+ αc b+ αd

c d

)
, and(

a b
c d

)
S(0, 1, α) =

(
a b
c d

)(
1 α
0 1

)
=

(
a b+ αa
c d+ αc

)
.

Exercise 2.5.5. Show that (S(j, k, α))−1 = Im − αeje
∗
k = S(j, k,−α) for all α ∈ C

and j, k ∈ [m] with j ̸= k.

3. Atomic Permutation Matrices: These m ×m matrices swap two rows/columns of a
given matrix. We will denote them by

P (j, k) := Im − eje
∗
j − eke

∗
k + eje

∗
k + eke

∗
j

for any given j, k ∈ [m] with j ̸= k. If multiplied against A ∈ Cm×n from the left,
P (j, k) ∈ Cm×m will swap the jth and kth rows of A. If multiplied against A ∈ Cm×n

on the right, P (j, k) ∈ Cn×n will swap the jth and kth columns of A.

Example 2.5.3. Let P (0, 1) =

(
0 1
1 0

)
∈ C2×2. Then, we can see that both

P (0, 1)

(
a b
c d

)
=

(
0 1
1 0

)(
a b
c d

)
=

(
c d
a b

)
, and(

a b
c d

)
P (0, 1) =

(
a b
c d

)(
0 1
1 0

)
=

(
b a
d c

)
.

Exercise 2.5.6. Show that (P (j, k))−1 = P (j, k) ∈ Cm×m for all j, k ∈ [m] with
j ̸= k.

Exercise 2.5.7. Let P =
∏q−1

ℓ=0 P (jℓ, kℓ) ∈ Cn×n, where jℓ, kℓ ∈ [n] with jℓ ≠ kℓ for
all ℓ ∈ [q], be a product of q atomic permutation matrices. Show that P−1 = P ∗.

Having briefly reviewed Gaussian elimination, we will now return to our attempt to use
a QR decomposition of a low rank matrix to try to compress it as much as possible. We
will now show how Gaussian elimination can be used to help us improve on what we have

47

already achieved above.

Back to Near-Optimal Compression of Low Rank Matrices: Consider a QR
decomposition of A ∈ Cm×n, A = QR. Recalling that R ∈ Cr×n will be upper triangular,
we further note that there will be a permutation matrix P ∈ Cn×n so that RP will be
both upper triangular and have (RP)j,j ≠ 0 for all j ∈ [r].6 In particular, one can see
that P can always be represented by a product of at most r − 1 atomic permutation
matrices which encode the process of swapping column 1 of R with the first column, j1,
of R that has R1,j1 ̸= 0, then swapping column 2 with the first column, j2, that has
R2,j2 ̸= 0, etc.. As a result, we can see that remembering (i.e., storing) P requires us to
remember at most r − 1 values in [n] (i.e., the columns j1, j2, . . . , jr−1 ∈ [n] of R satisfying
jℓ = min{k ∈ [n] | Rℓ,k ̸= 0}).

Using that RP will be both upper triangular and have (RP)j,j ≠ 0 for all j ∈ [r], we
can now further see that there will exist an invertible matrix T ∈ Cr×r consisting of a
product of at most r2+r

2 elementary summing and rescaling matrices such that

TRP =
(
Ir|R̃

)
∈ Cr×n. (2.13)

That is, we can carry out Gaussian elimination to transform the first r columns of RP into
the r × r identity matrix. Note that R̃ ∈ Cr×(n−r) in (2.13). Recalling that our goal is to
compactly represent A ∈ Cm×n, we can now see that

A = QR = QT−1TRPP−1 = (QT−1)
(
Ir|R̃

)
P ∗,

where we have used both (2.13) and that P−1 = P ∗ in the final equality.

Letting Q̃ = QT−1 ∈ Cm×r we can finally see that A = Q̃
(
Ir|R̃

)
P ∗. Thus, to represent

A ∈ Cm×n we need to store Q̃ ∈ Cm×r, R̃ ∈ Cr×(n−r), and P ∈ Cn×n. Recalling from
above that we can store the permutation matrix P by remembering at most r − 1 values in
[n], we finally see that we can always represent any rank r matrix A ∈ Cm×n by storing
just mr + nr − r2 complex values (the optimal number!), plus at most r − 1 additional
integers in [n]. This is a clear improvement over (2.12).

To conclude, we briefly mention that there are other factors we might want to consider
when storing A in a factorized form beyond the total number of entries the factorization
requires us to store. For example, we might also want to ensure that both Q̃ ∈ Cm×r and
R̃ ∈ Cr×(n−r) are “well behaved”. We will describe in some more detail what “well behaved”
might mean in Section 3.1, as well as how one might come up with a good low rank matrix
to store in the first place. For a journal article that uses related ideas to those discussed in
this section to produce a similar compressed representation of a low rank matrix we refer
the interested reader to [12]. After finishing Chapter 2 and 3.1 the attentive reader will
know everything they need to know in order to begin digesting its contents.

6One can revisit Example 2.4.7 see that we do generally need a permutation matrix for this to be true.

48

2.6 Set Addition, Orthogonal Projections, and Perpendicular
Subspaces

We will now discuss even more of the useful properties possessed by orthonormal bases.
The first of these are related to set addition.

Definition 2.6.1 (Set Sums, Subtractions, and Rescalings). Let S and T be subsets of Cn.
We define the (Minkowski) sum of S and T , denoted by S + T , to be the set

S + T := {x+ y | x ∈ S,y ∈ T}.

Similarly, for α ∈ C, we define the set rescaling αS ⊂ Cn to be {αx | x ∈ S}. We also
define the subtraction of two sets to be

S − T := S + (−1)T = {x− y | x ∈ S,y ∈ T} ⊂ Cn.

Note that if 0 ∈ S, then T ⊂ S + T . Similarly, if 0 ∈ T , then S ⊂ S + T . As a result, if
0 ∈ S ∩ T , then S ∪ T ⊂ S + T (check this!). For similar reasons, the sum of two linear
subspaces U and V of Cn will also always be a larger linear subspace of Cn containing both
U and V (i.e., U and V will be subspaces of U + V).

Lemma 2.6.2. Let U, V ⊂ Cn both be linear subspaces of Cn. Then U + V is also a linear
subspace of Cn.

Proof. It suffices to show that span(U + V) ⊂ U + V and we’ll be finished (why?). We can
see that

x ∈ span(U + V) =⇒ ∃p ∈ N s.t. x =
∑
ℓ∈[p]

βℓxℓ with {βℓ}ℓ∈[p] ⊂ C & {xℓ}ℓ∈[p] ⊂ U + V

=⇒ x =
∑
ℓ∈[p]

βℓ(uℓ + vℓ) for {uℓ}ℓ∈[p] ⊂ U & {vℓ}ℓ∈[p] ⊂ V

=⇒ x =

∑
ℓ∈[p]

βℓuℓ


︸ ︷︷ ︸

=:u

+

∑
ℓ∈[p]

βℓvℓ


︸ ︷︷ ︸

=:v

.

We are now finished since, above, u ∈ span(U) = U and v ∈ span(V) = V . Hence,
x ∈ U + V .

Exercise 2.6.1. Let U, V ⊂ Cn both be linear subspaces of Cn. Show that

max{dim(U),dim(V)} ≤ dim(U + V) ≤ dim(U) + dim(V),

where dim(U) ∈ [n+1] denotes the dimension of U , etc.. When will max{dim(U), dim(V)} =
dim(U + V)? When will dim(U + V) = dim(U) + dim(V)?

49

Exercise 2.6.2. Let A,B ∈ Cm×n. Show that if A has rank r and B has rank s, then
A+B has rank at most r + s.

As we shall soon see, the sum of two “orthogonal” linear subspaces of Cn, U and V , will
behave much more predictably than the sum of two arbitrary linear subspaces of Cn. In
particular, orthonormal bases of each summed subspace U and V can be directly combined
to create a new orthonormal basis of U + V .

Definition 2.6.3 (Perpendicular Subspaces). Let U and V be linear subspaces of Cn. We
say that U and V are perpendicular, or orthogonal, if ⟨u,v⟩ = 0 for all u ∈ U and
v ∈ V . We will also denote this by writing U ⊥ V .

Lemma 2.6.4. Suppose that BU is an orthonormal basis of a linear subspace U ⊂ Cn, BV

is an orthonormal basis of a linear subspace V ⊂ Cn, and U ⊥ V . Then BU ∪ BV is an
orthonormal basis of U + V .

Proof. Since BU and BV are orthonormal, every element in BU ∪BV has norm 1. Thus, we
only need to show that BU ∪BV is orthogonal. Let x,y ∈ BU ∪BV . Since BU is orthogonal,
if x ∈ BU and y ∈ BU , then ⟨x,y⟩ = 0. Since BV is orthogonal, if x ∈ BV and y ∈ BV ,
then ⟨x,y⟩ = 0. Since U ⊥ V , if x ∈ BU and y ∈ BV , or x ∈ BV and y ∈ BU , then
⟨x,y⟩ = 0. Hence, BU ∪BV is orthogonal.

Now we will show that BU ∪BV is a basis of U + V . Since BU ∪BV is orthonormal, its
entries are linearly independent, so it remains to show that span(BU ∪BV) = U + V . Let
BU = {b0, . . . ,br−1} and BV = {d0, . . . ,ds−1}. Then, for any vector x ∈ Cn, it holds that

x ∈ U + V ⇐⇒ ∃u ∈ U,v ∈ V such that x = u+ v

⇐⇒ x =

∑
j∈[r]

αjbj

+

∑
j∈[s]

βjdj

 for some {αj}j∈[r] ∪ {βj}j∈[s] ⊂ C

⇐⇒ x ∈ span(BU ∪BV).

Therefore, U + V = span(BU ∪BV).

Corollary 2.6.5. If U, V ⊂ Cn are linear subspaces of Cn, and U ⊥ V , then dim(U +V) =
dim(U) + dim(V).

Given any linear subspace U ⊂ Cn, we define

U⊥ := {x ∈ Cn | ⟨x,y⟩ = 0 ∀y ∈ U} .

In other words, U⊥ is the set of all vectors orthogonal to everything in U . We will next
show that U⊥ is also a linear subspace of Cn.

Lemma 2.6.6. Let U ⊂ Cn be a linear subspace of Cn. Then, U⊥ is also a linear subspace
of Cn.

50

Proof. It suffices to show that span(U⊥) ⊂ U⊥ (why?). Let x ∈ span(U⊥). Then, x is a
linear combination of elements in U⊥ so that ∃p ∈ N, {xℓ}ℓ∈[p] ⊂ U⊥, and {αℓ}ℓ∈[p] ⊂ C
with x =

∑
ℓ∈[p] αℓ xℓ. Now we can see that for every y ∈ U we have

⟨x,y⟩ =

〈∑
ℓ∈[p]

αℓxℓ,y

〉
=
∑
ℓ∈[p]

αℓ⟨xℓ,y⟩ = 0

since {xℓ}ℓ∈[p] ⊂ U⊥. Hence, x ∈ U⊥.

We are now prepared to define orthogonal projections with respect to a given orthonormal
set. Let U = {uj}j∈[r] be an orthonormal subset of Cn. We define the orthogonal
projection of x onto span(U) in terms of U to be the function PU : Cn → span(U)
defined by

PU (x) =
∑
j∈[r]

⟨uj ,x⟩uj

for all x ∈ Cn. Note that this definition explicitly depends on the orthonormal basis U of
span(U) that we started with. The idea behind projecting onto a linear subspace span(U),
however, is that the projection should return the portion of x “living inside” the linear
subspace span(U). That is, it’s the span of U that matters to us, not the set U itself. If, e.g.,
we pick a new orthonormal set V with the same exact span as U , then it really shouldn’t
matter whether we project onto span(U) = span(V) using U or V . We should get the same
answer either way. The next result will help us show that this is indeed the case.

Lemma 2.6.7. Let U = {uℓ}ℓ∈[r] and V = {vℓ}ℓ∈[r] be two orthonormal bases of the same
linear subspace L = span(U) = span(V) ⊂ Cn. Then,

⟨uj ,x⟩ =
∑
ℓ∈[r]

⟨vℓ,x⟩⟨uj ,vℓ⟩

for all x ∈ Cn and j ∈ [r].

Proof. Let x ∈ Cn. Extend V to an orthonormal basis Ṽ of all of Cn by appealing to
Theorem 2.4.5. The orthonormal set Ṽ will take the form Ṽ = {v0, . . . ,vr−1,wr, . . . ,wn−1}
for some wr, . . . ,wn−1 ∈ Cn. Since Ṽ is an orthonormal basis of Cn we can write x as

x =
∑
ℓ∈[r]

⟨vℓ,x⟩vℓ +
n−1∑
ℓ=r

⟨wℓ,x⟩wℓ.

Additionally, since each uj ∈ U is in the span of V , we have for all r ≤ ℓ ≤ n− 1 that

⟨uj ,wℓ⟩ =

〈∑
k∈[r]

αj,kvk,wℓ

〉
=
∑
k∈[r]

αj,k⟨vk,wℓ⟩ = 0

51

since Ṽ is orthogonal. Hence,

⟨uj ,x⟩ =

〈
uj ,
∑
ℓ∈[r]

⟨vℓ,x⟩vℓ +
n−1∑
ℓ=r

⟨wℓ,x⟩wℓ

〉

=
∑
ℓ∈[r]

⟨vℓ,x⟩⟨uj ,vℓ⟩+
n−1∑
ℓ=r

⟨wℓ,x⟩⟨uj ,wℓ⟩

=
∑
ℓ∈[r]

⟨vℓ,x⟩⟨uj ,vℓ⟩.

Using this lemma allows us to show that the orthogonal projection PU : Cn → span(U)
only depends on span(U), and not on the orthonormal set U itself.

Theorem 2.6.8. Let U = {uj}j∈[m] and V = {vℓ}ℓ∈[m] be two orthonormal bases of the
same linear subspace L ⊂ Cn. Then, PU = PV .

Proof. Let x ∈ Cn. Appealing to Lemma 2.6.7, we have that

PU (x) =
∑
j∈[m]

⟨uj ,x⟩uj =
∑
j∈[m]

∑
ℓ∈[m]

⟨vℓ,x⟩⟨uj ,vℓ⟩

uj

=
∑
ℓ∈[m]

⟨vℓ,x⟩

∑
j∈[m]

⟨uj ,vℓ⟩uj

 =
∑
ℓ∈[m]

⟨vℓ,x⟩vℓ = PV (x),

where we have also used that each vℓ ∈ V is in the span of U (recall (2.11)).

We now know that an orthogonal projection only depends on the linear subspace of
Cn onto which one projects. Thus, for any linear subspace L ⊂ Cn we can define the
orthogonal projection onto L , denoted by PL : Cn → L , to be PL := PU where U is
any orthonormal basis of L you like.

Example 2.6.9. The orthogonal projection onto the x-axis of C2 is the function Px−axis

from C2 to the x-axis which sends the vector x =

(
x0
x1

)
∈ C2 to the vector

Px−axis (x) =

〈(
1
0

)
,

(
x0
x1

)〉(
1
0

)
= x0

(
1
0

)
=

(
x0
0

)
.

Exercise 2.6.3. Let L be a linear subspace of Cn. Verify that PL : Cn → L is a linear
function (i.e., that PL (αx+βy) = αPL (x)+βPL (y) holds for all x,y ∈ Cn and α, β ∈ C).

52

Exercise 2.6.4. Let B = {bj}j∈[r] ⊂ Cn be an orthonormal basis of L = span(B).

Complete B to be an orthonormal basis B̃ = {bj}j∈[r] ∪ {uℓ}n−1
ℓ=r ⊂ C

n of all of Cn using

Theorem 2.4.5. Prove that {uℓ}n−1
ℓ=r is an orthonormal basis of L ⊥.

The following theorem characterizes many of the most important properties of orthogonal
projections.

Theorem 2.6.10. Let L be a linear subspace of Cn, and let x ∈ Cn.

1. If x ∈ L then PL (x) = x. As a consequence, PL (PL (x)) = PL (x) always holds.

2. x− PL (x) ∈ L ⊥.

3. ∥x∥22 = ∥PL (x)∥22 + ∥x− PL (x)∥22.

Proof. We prove each part below.

1. See Exercise 2.6.5.

2. Let U = {uj}j∈[m] ⊂ Cn be an orthonormal basis of L , and y ∈ L . Then y =∑
j∈[m] αjuj , so that

⟨x− PL (x),y⟩ =
∑
j∈[m]

αj⟨x− PL (x),uj⟩

=
∑
j∈[m]

αj (⟨x,uj⟩ − ⟨PL (x),uj⟩)

=
∑
j∈[m]

αj

⟨x,uj⟩ −

〈∑
ℓ∈[m]

⟨uℓ,x⟩uℓ,uj

〉
=
∑
j∈[m]

αj

(
⟨x,uj⟩ − ⟨uj ,x⟩

)
= 0,

since ⟨x,uj⟩ = ⟨uj ,x⟩.

3. From (1) and (2) above we know that PL (x) and x− PL (x) are orthogonal. Hence,
normalizing them will produce an orthonormal set whose span contains x. This part
now follows from the Pythagorean theorem (see Theorem 2.3.9 and Figure 2.2).

Theorem 2.6.10 tells us that we can write Cn = L + L ⊥ for any linear subspace
L ⊂ Cn. In some sense we already know this though – recall, e.g., Exercise 2.6.4! The
main contribution of Theorem 2.6.10 is that it expresses this fact in a much simple way
using orthogonal projections. This more simply expressed property then also allows for a
simpler application of the Pythagorean theorem (see Figure 2.2).

53

Figure 2.2: A pictorial representation of the projection of x ∈ Cn onto a linear subspace
L ⊂ Cn. Note that the right triangle whose hypotenuse is of length ∥x∥2 will in fact be
entirely contained in the two-dimensional linear subspace spanned by {PL (x),x− PL (x)}.

Exercise 2.6.5. Prove part (1) of Theorem 2.6.10.

The next lemma demonstrates yet another incredibly useful way of characterizing what
the orthogonal projection onto a linear subspace actually does.

Lemma 2.6.11. Let x ∈ Cn. Then ∥x− PL (x)∥2 < ∥x− y∥2 for all y ∈ L \ {PL (x)}
(i.e, for all y ∈ L with y ̸= PL (x)).

Proof. We have from Theorem 2.6.10 that

∥x− y∥22 = ∥PL (x− y)∥22 + ∥(x− y)− PL (x− y)∥22
= ∥PL (x)− PL (y)∥22 + ∥x− PL (x)− y + PL (y)∥22
= ∥PL (x)− y∥22 + ∥x− PL (x)∥22
> ∥x− PL (x)∥22.

Here we have used that PL (y) = y for all y ∈ L and that ∥PL (x)− y∥2 > 0 must hold
since PL (x)− y ̸= 0.

Looking at Lemma 2.6.11 we can see that PL (x) ∈ L is the unique closest point to x
in L with respect to ℓ2-distances (recall Figure 2.2 as well). As a consequence, we can see
that in fact

PL (x) = arg min
y∈L
∥x− y∥2

54

also holds.7 That is, we could have defined PL (x) to be the closest point in L to x in the
first place if we had wanted. We will next discuss how to represent PL as a matrix.

2.6.1 Representing Orthogonal Projections with Matrices

The following fundamental matrices are used to represent all orthogonal projections.

Definition 2.6.12 (Orthonormal and Unitary Matrices). A matrix Q ∈ Cm×n with
orthonormal columns will be called an orthonormal matrix. If Q ∈ Cn×n is both
orthonormal and square we will call it a unitary matrix.

In fact the attentive reader will recognize that we have already been introduced to
orthonormal matrices. In particular, the “Q” in a QR decomposition of a given matrix is
always an orthonormal matrix. The next few highly recommended exercises will introduce
you to some of the very useful properties of orthonormal matrices.

Exercise 2.6.6. Let Q ∈ Cm×n be an orthonormal matrix. Prove that n ≤ m.

Exercise 2.6.7. Let Q ∈ Cm×n. Show that Q∗Q = In if and only if Q is orthonormal.

Exercise 2.6.8. Let Q ∈ Cm×n be an orthonormal matrix and x,y ∈ Cm. Show that
(Im −QQ∗)x = x−QQ∗x is orthogonal to QQ∗y.

Let B = {qℓ}ℓ∈[r] ⊂ Cn be an orthonormal basis of a linear subspace L . We can form
an orthonormal matrix Q ∈ Cn×r by letting the columns of Q be the elements of B so that
Q:,ℓ = qℓ for all ℓ ∈ [r], so that

Q =

 | | |
q0 q1 · · · qr−1

| | |

 .

We can represent the orthogonal projection onto L = C(Q) = span(B) using an orthogonal
projection matrix QQ∗ ∈ Cn×n by

PL = QQ∗ =
∑
j∈[r]

qjq
∗
j . (2.14)

To see that (2.14) holds it suffices to check that PL (x) = QQ∗x =
(∑

j∈[r] qjq
∗
j

)
x for

all x ∈ Cn (see Exercise 2.6.9). Let x ∈ Cn. We have that

7Let S ⊂ Cn and f : Cn → R
+ map Cn into the nonnegative real numbers. Here and throughout the

remainder of the book, “argminy∈S f(y)” returns an element x ∈ S satisfying f(x) = miny∈S f(y). If there
are many such minimizers it can return any of them (i.e., it might be effectively set-valued). Though it will
not be an issue in this book, it’s generally important to make sure this notation is well-defined before using
it. In particular, one needs to make sure that the minimum of f over S is actually attained by at least one
element of S.

55

QQ∗x = Q

− q0 −
...

− qr−1 −

x = Q

 ⟨q0,x⟩
...

⟨qr−1,x⟩

 =

 | | |
q0 q1 · · · qr−1

| | |


 ⟨q0,x⟩

...
⟨qr−1,x⟩


=
∑
j∈[r]

qj⟨qj ,x⟩ = PL (x)

=
∑
j∈[r]

qjq
∗
jx =

∑
j∈[r]

qjq
∗
j

x.

Using (2.14) we can also establish the equivalence of orthogonal projection matrices built
from orthonormal matrices with the same column spaces.

Lemma 2.6.13. Let Q,V ∈ Cm×n be two orthonormal matrices with the same column
span (i.e., with C(Q) = C(V)). Then QQ∗ = V V ∗.

Proof. It suffices to show that QQ∗x = V V ∗x for all x ∈ Cn (see Exercise 2.6.9). Using
Theorem 2.6.8 and (2.14) we have that

QQ∗x = PC(Q)(x) = PC(V)(x) = V V ∗x

for all x ∈ Cn. We are now finished by Exercise 2.6.9.

Exercise 2.6.9. Let A,B ∈ Cm×n. Suppose that Ax = Bx for all x ∈ Cn. Show that
A = B.

Exercise 2.6.10. Let A,B ∈ Cm×n and suppose that S ⊂ Cn is a basis of Cn. Show that
A = B if Ax = Bx holds for all x ∈ S.

Exercise 2.6.11. Show that every orthogonal projection matrix PL ∈ Cn×n satisfies
P ∗

L = PL .

The next theorem shows that orthonormal projection matrices built from unitary
matrices are always equivalent to the identity matrix.

Theorem 2.6.14. The following are equivalent:

1. U ∈ Cn×n is unitary,

2. U∗U = In,

3. U∗ is unitary, and

4. UU∗ = In.

56

Proof.

(2) ⇐⇒ (1): Let U ∈ Cn×n and set uj := U:,j ∈ Cn for all j ∈ [n]. Note that
(U∗U)ℓ,k = ⟨uℓ,uk⟩ for all ℓ, k ∈ [n]. As a result we can see that

U∗U = In ⇐⇒ (U∗U)ℓ,k = (In)ℓ,k ∀ℓ, k ∈ [n]

⇐⇒ ⟨uℓ,uk⟩ =

{
1 if ℓ = k

0 else

⇐⇒ {uℓ}ℓ∈[n] ⊂ Cn is an orthonormal set

⇐⇒ U is unitary.

Hence, U is unitary if and only if U∗U = In.

(1) =⇒ (4): Let U ∈ Cn×n be unitary. Then C(U) = Cn (see Exercise 2.4.4). Since
Cn = span{ej}j∈[n] (i.e., C(In) = Cn) Lemma 2.6.13 tells us that UU∗ = InI

∗
n = In.

(4) ⇐⇒ (3): This is the same as (1) ⇐⇒ (2) with U replaced by U∗.

(3) =⇒ (2): This is the same as (1) =⇒ (4) with U replaced by U∗.

An additional consequence of Theorem 2.6.14 is that a matrix U ∈ Cn×n is unitary
if and only if U∗ = U−1. Given this, we can see that we have already met an important
family of unitary matrices – the permutation matrices (recall Exercise 2.5.7).

Exercise 2.6.12. Let U, V ∈ Cn×n both be unitary. Show that both UV ∈ Cn×n and
V U ∈ Cn×n are then also unitary.

Exercise 2.6.13. Let U ∈ Cn×n be unitary. Prove that ∥Ux∥2 = ∥x∥2 for all x ∈ Cn.

Exercise 2.6.14. Let B = {bj}j∈[r] ⊂ Cn be an orthonormal basis of L = span(B).

Complete B to be an orthonormal basis B̃ = {bj}j∈[r] ∪ {uℓ}n−1
ℓ=r ⊂ C

n of all of Cn using
Theorem 2.4.5. Let Q ∈ Cn×r be the orthonormal matrix with Q:,j = bj for all j ∈ [r] and
U ∈ Cn×(n−r) be the orthonormal matrix with U:,k = ur+k for all k ∈ [n− r]. Prove that
the orthogonal projection onto L ⊥, PL ⊥ : Cn → L ⊥, has the following properties.

1. PL ⊥ = UU∗ (Hint: Recall Exercise 2.6.4.).

2. Show that PL (x) + PL ⊥(x) = x = Inx holds for all x ∈ Cn. Conclude that PL ⊥ =
In − PL .

3. Show that UU∗ = In −QQ∗ ∈ Cn×n.

57

Lemma 2.6.15. Let L and T be linear subspaces of Cn such that L ⊥ = T . Then,

T ⊥ = L also holds (i.e.,
(
L ⊥)⊥ = L).

Proof. We must show that both L ⊂ T ⊥ and that T ⊥ ⊂ L hold.

L ⊂ T ⊥: Let x ∈ L . Then ⟨x,y⟩ = 0 for all y ∈ L ⊥ = T by definition of L ⊥.
Hence, x ∈ T ⊥.

T ⊥ ⊂ L : Let x ∈ T ⊥. By the definition of T ⊥, ⟨x,y⟩ = 0 for all y ∈ T = L ⊥.
Hence, PL ⊥(x) = 0. Now we can see that x = PL (x) + PL ⊥(x) = PL (x) (using, e.g., part
(2) of Exercise 2.6.14). Thus, x ∈ L .

Now that we have achieved a good understanding of orthogonal projections and or-
thonormal matrices we are prepared to discuss the least-squares approach to solving systems
of linear equations.

2.6.2 Least-Squares Theory for (Approximately) Solving Systems of Lin-
ear Equations

Let A ∈ Cm×n, b ∈ Cm, and suppose that we want to solve the equation Ax = b for
x ∈ Cn. The least-squares approach aims to do this by minimizing f(x) := ∥b−Ax∥22 as a
function of x ∈ Cn. To see why this makes sense, observe that b ∈ C(A) ⇐⇒ ∃y ∈ Cn

such that b = Ay in which case f(x) = ∥b−Ax∥22 will attain its absolute minimum at
f(y) = 0. Furthermore, anytime f(x) = 0 it must in fact be the case that Ax = b. Hence,
if Ax = b has solutions we can indeed find one by minimizing f down to 0.

If, on the other hand, b ̸∈ C(A) thenAx = b won’t have any solutions and infx∈Cn f(x) =
infx∈Cn ∥b−Ax∥22 > 0. Nonetheless, there is absolutely nothing stopping us from still mini-
mizing f in hopes of getting “close” to a solution anyways. Observe that by Theorem 2.6.10

∥b−Ax∥22 =
∥∥PC(A)(b−Ax)

∥∥2
2
+
∥∥b−Ax− PC(A)(b−Ax)

∥∥2
2

=
∥∥PC(A)(b)−Ax

∥∥2
2
+
∥∥b−Ax− PC(A)(b) +Ax

∥∥2
2

=
∥∥PC(A)(b)−Ax

∥∥2
2
+
∥∥b− PC(A)(b)

∥∥2
2
.

Above we can see that the first term
∥∥PC(A)(b)−Ax

∥∥2
2
can be minimized to 0 since

PC(A)(b) ∈ C(A), and also that
∥∥b− PC(A)(b)

∥∥2
2
does not depend on x at all. Hence,

inf
x∈Cn

f(x) = inf
x∈Cn

∥b−Ax∥22 =
∥∥b− PC(A)(b)

∥∥2
2

with the minimum attained when x satisfies Ax = PC(A)(b).

The end result of this analysis is that instead of solving Ax = b we might as well,
whenever possible, instead solve Ax = PC(A)(b) which we know always has a solution.

58

Algorithm 4 Algorithm for (approximately) solving Ax = b

1: Input: A ∈ Cm×n, b ∈ Cm.
2: Output: x ∈ Cn minimizing f(x) = ∥b−Ax∥22.
3: Compute a QR decomposition of A, so that A = QR.
4: Solve Rx = Q∗b using back substitution.
5: Return x.

Furthermore, we can use a QR decomposition of A to solve Ax = PC(A)(b) efficiently. Let
A = QR be a QR decomposition of A. We have that

Ax = PC(A)(b) ⇐⇒ QRx = PC(Q)(b) ⇐⇒ QRx = QQ∗b

⇐⇒ Rx = Q∗b.

Furthermore, Rx = Q∗b can be solved efficiently by back substitution since R is upper
triangular. Algorithm 4 outlines how to find the least-squares solution of Ax = b using a
QR decomposition of A.

If A ∈ Cm×n is small enough to fit into computer memory and/or accuracy is of principal
concern, then one can safely default to directly computing a minimizer of f(x) = ∥b−Ax∥22
using Algorithm 4. If, on the other hand, an approximate least-squares solution suffices
and/or A is too large or inaccessible to allow for easy use of Algorithm 4, then one can
instead use optimization methods to minimize f(x) = 1

2∥b−Ax∥22 iteratively. In fact, this
least-squares problem is important enough that we will discuss it several more times.

Finally, we note that when the rank of A ∈ Cm×n is less than n there will be an entire
n− rank(A) dimensional affine subspace of equally good (approximate) solutions to Ax = b.
That is, A(x+ n) = Ax = b will hold for all n in the “null space” of A. We will take this
as initial motivation to review facts about the null space of a matrix next.

2.7 The Four Fundamental Linear Subspaces of a Matrix

Let A ∈ Cm×n. The four fundamental linear subspaces of A are:

1. the column space of A, C(A) = span {A:,j | j ∈ [n]} ⊂ Cm,

2. the null space of A, or kernel of A, N (A) = {x ∈ Cn | Ax = 0} ⊂ Cn,

3. the column space of A∗, or row space of A, C(A∗) = span
{
A∗

:,j | j ∈ [m]
}
⊂ Cn,

and

4. the null space of A∗, or kernel of A∗, N (A∗) = {y ∈ Cm | A∗y = 0} ⊂ Cm.

Exercise 2.7.1. Let A ∈ Cm×n. Show that the null space of A is a linear subspace of Cn.

59

Reviewing facts about each of these linear subspaces, we recall that r := rank(A) will
always equal the dimension of C(A) by definition. In fact, it also turns out that A∗ ∈ Cn×m

will also always have the same rank as A ∈ Cm×n.

Theorem 2.7.1. Let A ∈ Cm×n. It’s always the case that r = rank(A) = rank(A∗).

Proof. We will use a QR decomposition of A, A = QR, with Q ∈ Cm×r and R ∈ Cr×n.
Recall that rank(Q) = rank(A) = r. Additionally, rank(A∗) = dim(C(A∗)) = dim(C(R∗Q∗)).
Since the columns of Q are orthonormal, so we can extend them to an orthonormal basis B
of all of Cm which takes the form

B = {Q:,0, . . . , Q:,r−1,qr, . . . ,qm−1} ⊂ Cm.

Now observe that

C(A∗) = {A∗y | y ∈ Cm} = {R∗Q∗y | y ∈ Cm}

=

R∗Q∗

∑
j∈[r]

αjQ:,j +

m−1∑
ℓ=r

βℓqℓ

 ∣∣∣ {αj}j∈[r] ∪ {βℓ}m−1
ℓ=r ⊂ C


=

R∗

∑
j∈[r]

αjej

 ∣∣∣ {αj}j∈[r] ⊂ C


= C(R∗).

By the Exchange Lemma (Lemma 2.3.4) it follows that the rank of A∗, which is the
size of any basis of C(A∗), must be less than the number of columns of R∗, which is
r = rank(A). Thus, rank(A∗) ≤ rank(A). Repeating the argument above with A replaced
by A∗ similarly shows that rank(A) ≤ rank(A∗). Combining these two results we learn that
rank(A) = rank(A∗) must hold.

Note that the proof of Theorem 2.7.1 above also shows that dim(C(R∗)) = dim(C(A∗)) =
rank(A) = r. Thus, rank(R∗) equals the number of columns of R∗. Similarly, R is also rank
r which equals the number of rows of R. Generally, we will say that any m × n matrix
whose rank matches min{m,n} is full rank. Hence, we can see from the argument above
that the matrices Q and R resulting from the QR decomposition will always be full rank.

Lemma 2.7.2. Let A ∈ Cm×n. Then N (A) = C(A∗)⊥ ⊂ Cn and C(A∗) = N (A)⊥ ⊂ Cn.

Proof. By Lemma 2.6.15 it suffices to show that N (A) = C(A∗)⊥. Let x ∈ N (A) and
consider any given z ∈ C(A∗). By definition, Ax = 0 and z = A∗y for some y ∈ Cm. Hence,
we can see that

⟨z,x⟩ = ⟨A∗y,x⟩ = ⟨y, Ax⟩ = ⟨y,0⟩ = 0.

60

Algorithm 5 Algorithm for computing an orthonormal basis of N (A)

1: Input: A rank r matrix A ∈ Cm×n.
2: Output: An orthonormal basis of A’s null space N (A) ⊂ Cn.
3: Compute a QR decomposition of A∗, so that A∗ = QR. Note that C(A∗) = C(Q).
4: Complete B = {Q:,j}j∈[r] to be an orthonormal basis B̃ = B ∪ S of all of Cn. The set

S will be an orthonormal basis of C(Q)⊥ = C(A∗)⊥ = N (A).
5: Return S.

Thus, N (A) ⊂ C(A∗)⊥. To see that C(A∗)⊥ ⊂ N (A) also holds, we note that if ⟨z,x⟩ = 0
for all z ∈ C(A∗), then ⟨A∗y,x⟩ = 0 for all y ∈ Cm. This in turn implies that ⟨y, Ax⟩ = 0
for all y ∈ Cm which means that ⟨Ax, Ax⟩ = ∥Ax∥22 = 0.

Using Lemma 2.7.2 we can further see that the dimension of N (A) is n − r since
Cn = C(A∗) + C(A∗)⊥ = C(A∗) +N (A). Hence, an orthonormal basis of C(A∗), which will
consist of r vectors, can be completed into a larger orthonormal basis of all of Cn by adding
n− r new orthonormal vectors that span N (A). By encoding this argument as an algorithm
we can also create a method for computing an orthonormal basis of the null space of any
matrix A ∈ Cm×n. We can begin by computing an orthonormal basis B of C(A∗) by, e.g.,
running Algorithm 1 on the columns of A∗. We can then complete B to an orthonormal
basis B̃ = B ∪ S of all of Cn using Algorithm 3. The set S will be an orthonormal basis of
N (A) of size n− rank(A). See Algorithm 5 for pseudocode.

Exercise 2.7.2. Let A ∈ Cm×n have rank r. Show that N (A∗) = C(A)⊥ ⊂ Cm and
C(A) = N (A∗)⊥ ⊂ Cm. Then, argue that dim(N (A∗)) = m− r.

Exercise 2.7.3. Show that A ∈ Cn×n is full rank if and only if N (A) = {0}. Such square
matrices are also said to be invertible.

The next lemma will be important soon in Section 3.1. We will prove it here since it
depends crucially on our recent revelations regarding null spaces.

Lemma 2.7.3. Let A ∈ Cm×n. Then C(A∗A) = C(A∗).

Proof. First we note that

C(A∗A) = {A∗Ay | y ∈ Cn} = {A∗z | z ∈ C(A)} =
{
A∗PC(A)x | x ∈ Cm

}
.

Now we can re-express C(A∗) using that C(A)⊥ = N (A∗) ⊂ Cm to see that

C(A∗) =
{
A∗
(
PC(A)x+ PC(A)⊥x

) ∣∣ x ∈ Cm
}
=
{
A∗PC(A)x+A∗PN (A∗)x

∣∣ x ∈ Cm
}

=
{
A∗PC(A)x

∣∣ x ∈ Cm
}
= C(A∗A).

61

Exercise 2.7.4. Let A ∈ Cm×n. Prove that C(AA∗) = C(A).

As a consequence of the above, we can see that

rank(A∗A) = rank(A∗) = rank(A) = rank(AA∗).

2.8 The Spectral Theorem for Hermitian Matrices

We will now briefly concentrate on a very special type of square matrix which will serve as
our doorway to the almighty singular value decomposition in Section 3.1.

Definition 2.8.1. A matrix A ∈ Cn×n is called Hermitian if A = A∗.

Exercise 2.8.1. Let A ∈ Cm×n. Show that both AA∗ ∈ Cm×m and A∗A ∈ Cn×n are
Hermitian.

Exercise 2.8.2. Let A ∈ Cn×n be Hermitian. Show that all entries on A’s diagonal are
real numbers.

Exercise 2.8.3. Let A ∈ Cn×n be Hermitian. Show that N (A) = C(A)⊥ ⊂ Cn and
C(A) = N (A)⊥ ⊂ Cn.

The eigenvalues and eigenvectors of Hermitian matrices have a lot of special properties
that we will need later. We will discuss these properties next.

Definition 2.8.2. An eigenvalue-eigenvector pair, or eigenpair, of a matrix A ∈ Cn×n

is a pair (λ,v) ∈ C×Cn \ {0} such that v ̸= 0 satisfies Av = λv.

Lemma 2.8.3. Let A ∈ Cn×n be Hermitian. Then all eigenvalues of A are real numbers.

Proof. Let (λ,v) be an eigenpair of A. If λ = 0 ∈ R we are done. Thus, suppose that
λ ̸= 0. Then we have that

∥v∥22 = ⟨v,v⟩ =

〈
1

λ
Av,v

〉
=
(
1/λ

)
⟨v, A∗v⟩ =

(
1/λ

)
⟨v, Av⟩ =

(
1/λ

)
⟨v, λv⟩

=
(
λ/λ

)
∥v∥22.

Since v is nonzero we know ∥v∥2 ̸= 0 so that λ = λ must hold. Hence, λ ∈ R.

Note that every fixed eigenvalue λ ∈ C of A ∈ Cn×n has an infinite number of associated
eigenvectors. In fact, one can see that the set of all eigenvectors corresponding to λ (after
adding in the zero vector) is closed under both addition and scalar multiplication so that it
forms a linear subspace of Cn. And, this subspace of Cn is exactly equal to the nullspace
of A− λIn ∈ Cn×n,

N (A− λIn) =
{
v ∈ Cn

∣∣ (λ,v) is an eigenpair of A
}
∪ {0}.

62

For this reason we will refer to N (A − λIn) as the eigenspace associated with λ.
Furthermore, we will let an orthonormal basis of this linear subspace be denoted by
Bλ ⊂ Cn for each eigenvalue λ.

Example 2.8.4. Let U ∈ Cn×n be unitary. Then UU∗ = In so that UU∗ has only one
nontrivial eigenspace N (UU∗ − In) = Cn associated with its single eigenvalue λ = 1.
Furthermore, its orthonormal basis B1 will be an orthonormal basis of all of Cn.

Exercise 2.8.4. Prove that every matrix A ∈ Cn×n with rank < n has at least one nontrivial
eigenspace. What is it?

Exercise 2.8.5. Prove that A ∈ Cn×n has exactly one eigenvalue if and only if it’s a scalar
multiple of the identity matrix In.

Another important property of Hermitian matrices is that all of their distinct eigenspaces
must be orthogonal to one another. This fact is proven in the next lemma.

Lemma 2.8.5. Let (λ,v) and (µ,u) be two eigenpairs of a Hermitian matrix A ∈ Cn×n

with λ ̸= µ. Then ⟨v,u⟩ = 0. As a consequence, N (A− λIn) ⊥ N (A− µIn).

Proof. Since λ, µ ∈ R are distinct, at least one is nonzero. Without loss of generality let λ
be nonzero. Then, µ ̸= λ =⇒ µ

λ ̸= 1 =⇒ 1− µ
λ ̸= 0. Since λ ∈ R \ {0} we can also see

that

⟨v,u⟩ = 1

λ
⟨Av,u⟩ =

1

λ
⟨v, A∗u⟩ =

1

λ
⟨v, Au⟩ =

1

λ
⟨v, µu⟩ =

µ

λ
⟨v,u⟩.

Thus, (
1− µ

λ

)
⟨v,u⟩ = 0.

Hence, it must be the case that ⟨v,u⟩ = 0 since 1− µ
λ ̸= 0.

Let A ∈ Cn×n be a Hermitian matrix whose eigenvalues are λ0, . . . , λm−1 ∈ R.
Lemma 2.8.5 implies that the eigenspaces of A will all be orthogonal to one another.
As a result, if we let Bλj

be an orthonormal basis for each eigenspace N (A− λjIn) of A,
then

B :=
⋃

j∈[m]

Bλj
⊂ Cn (2.15)

will be an orthonormal set. In fact, it will also always be the case that B is an orthonormal
basis for all of Cn (we will not prove this here – see, e.g., [25, Chapter 2] or [20, Chapter
14] for corroborating evidence).

63

Fact 2.8.6. If A ∈ Cn×n is Hermitian then there exists an orthonormal basis of all of Cn

consisting of eigenvectors of A. In particular, the set B in (2.15) will be an orthonormal
basis of Cn.

Let A ∈ Cn×n be Hermitian and B = {bj}j∈[n] ⊂ Cn be an orthonormal basis of Cn

consisting of eigenvectors of A as defined in (2.15). Form a unitary matrix U ∈ Cn×n that
contains the elements of B as its columns (i.e., so that U:,j = bj for all j ∈ [n]). By the
definition of eigenpairs we can see that

AU = A

 | | |
b0 b1 · · · bn−1

| | |

 =

 | | |
Ab0 Ab1 · · · Abn−1

| | |


=

 | | |
λ0b0 λ1b1 · · · λn−1bn−1

| | |

 =

 | | |
b0 b1 · · · bn−1

| | |

diag(λ0, . . . , λn−1)

= Udiag(λ0, . . . , λn−1).

where λj ∈ R refers to the eigenvalue corresponding to bj ∈ B. Finally, recalling that U is
unitary we can see that multiplying both sides of the equation just above on the right by
U∗ yields

A = AUU∗ = Udiag(λ0, . . . , λn−1)U
∗.

This computation together with Lemma 2.8.3, Lemma 2.8.5, and Fact 2.8.6 prove the
following theorem (see also, e.g., Theorem 2.5.6 in [25]).

Theorem 2.8.7 (The Full Spectral Decomposition of a Hermitian Matrix). Let A ∈ Cn×n

be Hermitian. Then there exist λ0, . . . , λn−1 ∈ R and a unitary matrix U ∈ Cn×n such that

A = Udiag(λ0, . . . , λn−1)U
∗.

Exercise 2.8.6. Let A ∈ Cm×n. Show that all the eigenvalues of the Hermitian matrices
A∗A ∈ Cn×n and AA∗ ∈ Cm×m are nonnegative real numbers.

Theorem 2.8.7 is great, but we’d also like a version that allows us to store low-rank
matrices in a compressed form. Let’s think about how to develop such a variant – it’ll also
be good practice for Section 3.1. Recall from our definition of atomic permutation matrices
P (j, k) ∈ Cn×n (see Example 2.5.3 and the surrounding text) that P (j, k) swaps the jth

and kth rows of A ∈ Cn×n when multiplied against it on the left, and swaps the jth and kth

columns of A ∈ Cn×n when multiplied against it on the right. Furthermore, every atomic
permutation matrix P (j, k) ∈ Cn×n is unitary, as are all products of atomic permutation
matrices (see Exercise 2.5.7 and Theorem 2.6.14). Having refamiliarised ourselves with

64

atomic permutation matrices, note that if P (j, k) is applied to both sides of a diagonal
matrix simultaneously it will swap its jth and kth diagonal entries. That is,

P (j, k) diag(λ0, . . . , λj−1, λj , λj+1, . . . , λk−1, λk, λk+1, . . . , λn−1) P (j, k)

= diag(λ0, . . . , λj−1, λk, λj+1, . . . , λk−1, λj , λk+1, . . . , λn−1).

Example 2.8.8. Let P (0, 2) =

0 0 1
0 1 0
1 0 0

 ∈ C3×3. We can see that

P (0, 2) diag(a, b, c) P (0, 2) =

0 0 1
0 1 0
1 0 0

a 0 0
0 b 0
0 0 c

0 0 1
0 1 0
1 0 0


=

0 0 c
0 b 0
a 0 0

0 0 1
0 1 0
1 0 0

 =

c 0 0
0 b 0
0 0 a


= diag(c, b, a).

Using these facts about atomic permutation matrices together with Theorem 2.8.7, we
can see that there exists a permutation matrix P =

∏
ℓ∈[q] P (jℓ, kℓ) consisting of a product

of q ∈ N atomic permutation matrices such that

A = U diag(λ0, . . . , λn−1) U
∗ = U(PP ∗) diag(λ0, . . . , λn−1) (PP ∗)U∗

= (UP)(P diag(λ0, . . . , λn−1) P)(P ∗U∗)

= (UP) diag(λ̃0, . . . , λ̃n−1) (UP)∗,

where λ̃0, . . . , λ̃n−1 is a permutation of λ0, . . . , λn−1 ∈ R satisfying

|λ̃0| ≥ |λ̃1| ≥ · · · ≥ |λ̃n−1|.

Let Ũ = UP , and note that Ũ is still a unitary matrix (see, e.g., Exercise 2.6.12).
Continuing, now consider the case where A is not full rank so that |λ̃n−1| = 0. In

this case we can further compress our spectral decomposition of A using block matrix
representations. To begin, let’s re-express Ũ in block form by

Ũ =
(
V Ũ:,n−1

)
∈ Cn×n

where V ∈ Cn×(n−1) is the orthonormal matrix formed by the first n − 1 columns of Ũ .
Further, let’s represent diag(λ̃0, . . . , λ̃n−1) in block form as well by

diag(λ̃0, . . . , λ̃n−1) =

(
D 0
0∗ 0

)
∈ Rn×n

65

where D = diag(λ̃0, . . . , λ̃n−2) ∈ R(n−1)×(n−1) and 0 is a suitably tall vector of zeroes.
Then, we have that

A =
(
V Ũ:,n−1

)(D 0
0∗ 0

)(V ∗(
Ũ:,n−1

)∗) =
(
V Ũ:,n−1

)(DV ∗

0∗

)
= V DV ∗.

Note that V ∈ Cn×(n−1) above is no longer unitary since it isn’t square, but it is still an
orthonormal matrix, and D is still a diagonal matrix of real numbers. And, of course, we
can repeat this process again if λ̃n−2 = 0 too, and so on, until we run out of 0 eigenvalues.
When will that happen? Well, denote the rank of our Hermitian A ∈ Cn×n by r < n. The
eigenspace associated with the 0 eigenvalue of A is exactly the null space of A so that the
orthonormal set B0 in (2.15) will have |B0| = dim (N (A)) = n − r. Hence, we carry out
this process n − r total times for all of λ̃n−1 = λ̃n−2 = · · · = λ̃r = 0. Formalizing this
discussion gives us the following result.

Corollary 2.8.9 (The Compact Spectral Decomposition of a Hermitian Matrix). Let
A ∈ Cn×n be Hermitian with rank r < n. Then, there exists an orthonormal matrix
U ∈ Cn×r, and λ0, . . . , λr−1 ∈ R satisfying

|λ0| ≥ |λ1| ≥ · · · |λr−1| > 0,

such that

A = U diag(λ0, . . . , λr−1) U
∗.

We end our discussion of the spectral theorem here by noting that Theorem 2.8.7 and
Corollary 2.8.9 are really fantastic! They decompose every Hermitian matrix into a product
of extremely well behaved (e.g., easily invertible in the full rank case) matrices. Given
how much we have used the QR decomposition in this chapter, we hope that the reader
can now instinctively anticipate the potential utility of yet another decomposition that
in many ways is even nicer (let’s be honest – the R in the QR decomposition is just not
as nice as the diagonal/unitary combination Theorem 2.8.7 effectively replaces it with).
Theorem 2.8.7 and Corollary 2.8.9 do have one major flaw, however. They only apply to
one very special type of square matrix! In the next chapter we will remove this flaw by
developing a generalization of these Hermitian matrix decompositions that applies to all
(even rectangular) matrices.

2.9 Positive (Semi)Definite Matrices

We will now briefly discuss a special class of Hermitian (or symmetric, if real-valued) matrices
that are important in optimization, statistics, and applied mathematics more generally. All
of the definitions below depend on the following crucial fact which we encourage you to
verify.

66

Exercise 2.9.1. Let A ∈ Cn×n be a Hermitian matrix. Then, x∗Ax ∈ R ∀x ∈ Cn.

Definition 2.9.1 (Positive and Negative Definite Matrices). A Hermitian matrix A ∈ Cn×n

is positive definite if x∗Ax > 0 holds ∀x ∈ Cn\{0}. A Hermitian matrix A ∈ Cn×n is
negative definite if x∗Ax < 0 holds ∀x ∈ Cn\{0}.

Definition 2.9.2 (Positive SemiDefinite (PSD) and Negative Semidefinite Matrices). A
Hermitian matrix A ∈ Cn×n is positive semidefinite if x∗Ax ≥ 0 holds ∀x ∈ Cn. A
Hermitian matrix A ∈ Cn×n is negative semidefinite if x∗Ax ≤ 0 holds ∀x ∈ Cn.

We encourage the serious reader to do the following exercises in order to help themselves
absorb the definitions above.

Exercise 2.9.2. Let A ∈ Cn×n. Show that A is negative definite if and only if −A is
positive definite.

Exercise 2.9.3. Let A ∈ Cn×n. Prove that both AA∗ and A∗A are PSD.

Exercise 2.9.4. Let r ∈ R+ and A ∈ Cn×n be PSD. Show that rA is also PSD.

Exercise 2.9.5. Let A,B ∈ Cn×n both be PSD. Show that A+B is also PSD.

The following lemma will be useful below.

Lemma 2.9.3. Suppose that a Hermitian matrix A ∈ Cn×n only has nonzero eigenvalues.
Then, A is full rank.

Proof. We will prove the contrapositive of the desired result after recalling that A is full
rank if and only if dim (C(A)) = n, which in turn will hold if and only if all n columns of A
are linearly independent. Now suppose that A is not full rank. Then ∃α ∈ Cn \ {0} such
that Aα =

∑
j∈[n] αjA:,j = 0. Hence, 0 is an eigenvalue of A with eigvector α.

The discerning reader will see that Lemma 2.9.3 immediately implies that all positive
(and negative) definite matrices are full rank and, therefore, invertible (why?). In fact we
can say a bit more.

Theorem 2.9.4. Let A ∈ Cn×n be Hermitian. The following are equivalent:

1. A is positive definite.

2. All the eigenvalues of A are positive real numbers.

3. There exists an invertible matrix B ∈ Cn×n such that A = BB∗.

67

Proof. (1) =⇒ (2): Let λ be an eigenvalue of A with an associated eigenvector v ∈ Cn\{0}.
We know that λ is a real number by Lemma 2.8.3. Furthermore, since A is positive definite
we have that

0 < v∗Av = v∗(λv) = λ ∥v∥22︸︷︷︸
> 0

=⇒ λ > 0.

(2) =⇒ (3): By Theorem 2.8.7 A = Udiag(λ0, . . . , λn−1)U
∗ where U ∈ Cn×n is unitary

and the λj are the positive real eigenvalues (by assumption) of A. Because the λj are
nonnegative we may define B := Udiag(

√
λ0, . . . ,

√
λn−1) ∈ Cn×n. Note then that

A = Udiag(
√
λ0, . . . ,

√
λn−1)diag(

√
λ0, . . . ,

√
λn−1)U

∗ = BB∗.

The matrix B will be full rank (and therefore invertible) by Exercise 2.7.4 and Lemma 2.9.3.
(3) =⇒ (1): Let x ∈ Cn \{0}. Since B ∈ Cn×n is invertible/full rank, B∗x ̸= 0. Hence,

x∗Ax = x∗BB∗x = (B∗x)∗(B∗x) = ∥B∗x∥22 > 0.

Similar characterizations exist of PSD matrices, negative definite matrices, and negative
semidefinite matrices. We leave them as exercises.

Exercise 2.9.6. Let A ∈ Cn×n be Hermitian. Show that the following are equivalent:

1. A is PSD.

2. All the eigenvalues of A are nonnegative real numbers.

3. There exists a matrix B ∈ Cn×n with rank(B) = rank(A) such that A = BB∗.

Exercise 2.9.7. Prove a variant of Theorem 2.9.4 for negative definite matrices.

Exercise 2.9.8. Prove a variant of Theorem 2.9.4 for negative semidefinite matrices.

2.9.1 The Cholesky Decomposition

Let B∗ ∈ Cn×n be as in the third part of Theorem 2.9.4 and consider its QR decomposition
B∗ = QR, where Q ∈ Cn×n is unitary and R ∈ Cn×n is upper triangular. Note that the
entries on the diagonal of R must be nonzero since B∗ is full rank, but they can be complex.
To help make them real we can let D ∈ Cn×n be the unitary diagonal matrix

D = diag

({
e
−i arg(Rjj)

}
j∈[n]

)
and then write

B∗ = QR = (QD∗)(DR) = Q̃R̃,

68

where Q̃ := QD∗ is unitary by Exercise 2.6.12, and R̃ := DR is upper triangular with
positive real entries on its diagonal (R̃j,j = |Rj,j | > 0 for all j ∈ [n]).

Returning to the third part of Theorem 2.9.4 we can see that any positive definite
matrix A will have

A = BB∗ = (B∗)∗B∗ = (Q̃R̃)∗Q̃R̃ = R̃∗Q̃∗Q̃R̃ = R̃∗R̃,

since Q̃ is unitary. Note that since R̃ is upper triangular, R̃∗ is lower triangular. We have
just proven the following theorem.

Theorem 2.9.5 (Cholesky Decomposition). Let A ∈ Cn×n be positive definite. Then ∃ a
lower triangular matrix L ∈ Cn×n with positive real entries on its diagonal so that A = LL∗.

Exercise 2.9.9. Let A ∈ Cn×n be full rank. Prove that ∃ a lower triangular matrix
L ∈ Cn×n with positive real entries on its diagonal so that AA∗ = LL∗

2.10 A Review of the Trace and Determinant Functions

In this section we will rapidly review some important properties of both the trace and the
determinant of a matrix. Unlike more introductory texts (see, e.g., [18, 40]), we will give
both of these functions a rather cursory treatment focused primarily on their computational
aspects. As a result, we encourage any reader with more than a casual interest in either
function to consult other sources if the presentation here is found to be lacking.

2.10.1 The Trace of a Matrix

We begin with the more computationally useful of the two functions.

Definition 2.10.1 (Trace). The trace function, Trace : Cm×n → C, is defined by

Trace(A) :=
∑

j∈[min{m,n}]

Aj,j =

min{m,n}−1∑
j=0

Aj,j

for all A ∈ Cm×n.

Exercise 2.10.1. Prove that the trace function is linear. That is, for all A,B ∈ Cm×n and
λ ∈ C show that both

1. Trace(A+B) = Trace(A) + Trace(B), and

2. Trace(λA) = λTrace(A)

hold.

69

Exercise 2.10.2. Let A ∈ Cm×n. Prove that Trace(A∗) = Trace(A).

The following property of trace functions is particularly useful.

Lemma 2.10.2. Let A ∈ Cm×n and B ∈ Cn×m. Then Trace(AB) = Trace(BA).

Proof. We compute

Trace(AB) =
∑
j∈[m]

(AB)j,j =
∑
j∈[m]

∑
k∈[n]

Aj,kBk,j =
∑
k∈[n]

∑
j∈[m]

Bk,jAj,k

=
∑
k∈[n]

(BA)k,k = Trace(BA).

The trace function has an important relationship to the Frobenius norm of a given
matrix A ∈ Cm×n, allowing one to create an associated inner product. The following lemma
explicitly demonstrates the relationship between the Frobenius norm and the trace function.

Lemma 2.10.3. Let A ∈ Cm×n. Then ∥A∥2F = Trace(A∗A) = Trace(AA∗).

Proof. We have that

∥A∥2F =
∑
j∈[m]

∑
k∈[n]

|Aj,k|2 =
∑
k∈[n]

∑
j∈[m]

Aj,kAj,k =
∑
k∈[n]

∑
j∈[m]

(A∗)k,j Aj,k

=
∑
k∈[n]

(A∗A)k,k = Trace(A∗A).

The second equality now follows from Lemma 2.10.2.

We may now go ahead and define the Frobenius inner product of two matrices A,B ∈
Cm×n to be

⟨A,B⟩F := Trace(A∗B).

To see that this is indeed an inner product, recall that one can always reshape an m× n
matrix into a vector of length mn using, e.g., the vectorization operator vec : Cm×n → Cmn

defined for all ℓ ∈ [mn] by (vec(A))ℓ = Aℓ mod m, ℓ−ℓ mod m
m

, where “ℓ mod m” is defined for

all ℓ ∈ Z and m ∈ N to be the single element contained in the set {ℓ+km | k ∈ Z}∩ [m] (or,
equivalently, to be the unique value r ∈ [m] = {0, 1, . . . ,m− 1} such that ∃k ∈ Z satisfying
ℓ = r + km). We then have that

⟨A,B⟩F = Trace(A∗B) =
∑
j∈[n]

∑
k∈[m]

(A∗)j,kBk,j =
∑
j∈[n]

∑
k∈[m]

Ak,jBk,j

= ⟨vec(A), vec(B)⟩.

70

Hence, we can see that the Frobenius inner product is simply the usual Euclidean inner
product in disguise.

One benefit of realizing that the Frobenius inner product is indeed an inner product is
that we can now apply previously established facts about inner products to learn additional
facts about trace functions. For example, we can now apply the Cauchy-Schwarz inequality
to see that

|Trace(A∗B)| = |⟨vec(A), vec(B)⟩| ≤ ∥vec(A)∥2∥vec(B)∥2 = ∥A∥F∥B∥F.

Lemma 2.10.4 (Cauchy-Schwarz Example for Trace). Let A,B ∈ Cm×n. Then

|Trace(A∗B)| ≤ ∥A∥F∥B∥F.

We hope that this useful inequality spurs the reader to more deeply appreciate the
utility of both abstraction and re-expression. Old facts often return in disguise as new facts,
and abstract theory is a channel through which many such elegant re-expressions travel.

2.10.2 The Determinant of a Matrix

The determinant is a function from square matrices into C, denoted herein by det : Cn×n →
C. Determinants have many interesting properties and are fundamentally important to both
multivariable calculus and differential geometry as well as their relations and descendants.
That said, if you ever find yourself actually computing a determinant you’re likely doing
something wrong. It does, however, happen on occasion. . . .

For a review of the basic properties of determinants we refer the interested reader to,
e.g., [18, Chapter 4] and/or [40, Chapter 5]. Herein we will focus on a small subset of their
many properties which are of the most value for computing them efficiently.

Theorem 2.10.5 (See, e.g., Appendix C of [20]). Let A,B ∈ Cn×n. The determinant
function det : Cn×n → C satisfies the following properties:

1. det (A∗) = det (A),

2. det (AB) = det (A) det (B), and

3. If A is lower (or upper) triangular, then det (A) =
∏

j∈[n]Aj,j.

There are many other useful properties of determinants as well, some of which you may
now derive from Theorem 2.10.5.

Exercise 2.10.3. Use Theorem 2.10.5 to prove the following additional standard facts
about determinants.

1. det (In) = 1.

71

2. If A ∈ Cn×n is invertible, then det
(
A−1

)
= 1

det(A) .

3. If U ∈ Cn×n is unitary, then det (U) ∈ C has magnitude 1 so that |det (U) | = 1.

Exercise 2.10.4. Prove the following additional standard facts about determinants.

1. If A ∈ Cn×n is Hermitian, then det (A) is the product of A’s eigenvalues.

2. det (λA) = λndet (A) for all A ∈ Cn×n and λ ∈ C.

Exercise 2.10.5. Let A = QR be a QR-decomposition of a full rank matrix A ∈ Cn×n.
Show that |A| := |det (A) | =

∏
j∈[n] |Rj,j |.

Exercise 2.10.6. Let A ∈ Cn×n be Hermitian with eigenvalues λ0, . . . , λn−1 ∈ R. Prove
that det (A) =

∏
j∈[n] λj ∈ R.

The second last exercise just above implies a relatively efficient and stable numerical
algorithm for computing the absolute determinant of a given matrix.

72

Chapter 3

Some More Advanced Topics in
Linear Algebra

3.1 One Factorization to Rule Them All: The Singular Value
Decomposition

The Singular Value Decomposition (SVD) is arguably the most useful fact of Linear Algebra,
which is itself arguably the most useful and ubiquitous of mathematical subjects (with
respect to computation in particular). The SVD’s utility in data analysis is underscored by
the fact that it has been (re)discovered at least three times in different scientific communities
[44]. In this section we will review the SVD of a given matrix A ∈ Cm×n. Many sections
of the book hereafter will use the SVD repeatedly and often – it is well worth refreshing
yourself here, and familiarizing yourself with our notation, before moving on.

Finally, to re-emphasize our statement about linear algebra over the real versus complex
numbers from the beginning of Chapter 2, we remind the reader that replacing the
symbol “C” everywhere it appears in this section with an “R” will not affect
the correctness of the results herein in any way whatsoever. In fact, the only
cosmetic (and frankly, totally unnecessary) changes that might result by restricting ourselves
to R ⊂ C below would be on the order of, e.g., renaming real-valued Hermitian matrices
“symmetric matrices”, calling the conjugate-transpose of a real-valued matrix just its
“transpose”, etc..

We will now begin studying the SVD by proving a relatively simple lemma that establishes
some notation as well as a large number of potential matrix factorizations which include
the SVD as a special case.

Lemma 3.1.1. Let A ∈ Cm×n and {w0, · · · ,wn−1} ⊂ Cn be an orthonormal basis for Cn.

73

74

Define sj := ∥Awj∥2 (reordering the wj’s as needed so that s0 ≥ s1 ≥ · · · ≥ sn−1), and let

hj :=

{
0 if sj = 0

1
sj
Awj ∈ Cm if sj ̸= 0

. (3.1)

Finally, let W ∈ Cn×n be the unitary matrix with W:,j = wj for all j ∈ [n] and H ∈ Cm×n

be the matrix with H:,j = hj for all j ∈ [n]. Then, we have

A = H diag(s0, . . . , sn−1) W
∗

where s0 ≥ s1 ≥ · · · ≥ sn−1 ∈ [0,∞).

Proof. We have that

AW = A

 | | |
w0 w1 · · · wn−1

| | |

 =

 | | |
Aw0 Aw1 · · · Awn−1

| | |


=

 | | |
s0h0 s1h1 · · · sn−1hn−1

| | |

 =

 | | |
h0 h1 · · · hn−1

| | |


 s0 · · · 0

...
. . .

...
0 · · · sn−1


= H diag(s0, . . . , sn−1).

Thus, A = AWW ∗ = H diag(s0, . . . , sn−1) W
∗.

Lemma 3.1.1 already yields a large family of decompositions for any given A ∈ Cm×n

with several of the structural properties that will ultimately be provided by the singular
value decomposition. The next lemma tells us how to choose the orthonormal basis
{wj}j∈[n] of Cn in order to ensure that the hj vectors defined in (3.1) can be used to form
a unitary matrix. As a happy coincidence, our choice of {wj}j∈[n] ⊂ Cn will also contain
an orthonormal basis for the null space of A as subset of its columns, and guarantee the
uniqueness of the ordered sj values from Lemma 3.1.1.

As we shall see, choosing {wj}j∈[n] ⊂ Cn in Lemma 3.1.1 to be an orthonormal
basis of Cn consisting of eigenvectors of A∗A ∈ Cn×n is the “correct” choice (at least,
if our goal is to try to orthogonalize H as much as possible). And, it’s important to
note, this choice is always possible by Fact 2.8.6 since A∗A will always be Hermitian no
matter what A ∈ Cm×n itself looks like. Toward seeing how nicely this works out, let’s
quickly recall some facts about the four fundamental subspaces of both A and A∗A from
Section 2.7. First, if wj ∈ Cn is an eigenvector of A∗A then Awj = 0 can only hold if
wj ∈ N (A) = C(A∗)⊥ = C(A∗A)⊥ = N (A∗A) (see, e.g., Lemmas 2.7.2 and 2.7.3). Second,
A is rank r if and only if A∗A is rank r (see Theorem 2.7.1 and Lemma 2.7.3). Thus, if A
is rank r there will be exactly r orthonormal eigenvectors of A∗A associated with nonzero
eigenvalues, and they will span C(A∗A) = C(A∗).

75

Exercise 3.1.1. Let A ∈ Cm×n be rank r and {wj}j∈[n] ⊂ Cn be an orthonormal basis
of Cn consisting of eigenvectors of A∗A ∈ Cn×n. Suppose, w.l.g., that the r orthonormal
eigenvectors of A∗A associated with nonzero eigenvalues are {wj}j∈[r]. Show that they are
an orthonormal basis of C(A∗).

Exercise 3.1.2. Let A ∈ Cm×n be rank r and {wj}j∈[n] ⊂ Cn be an orthonormal basis of
Cn consisting of eigenvectors of A∗A ∈ Cn×n. Prove that Awj = 0 will hold if and only if
wj has eigenvalue 0 as an eigenvector of A∗A. Conclude that Awj = 0 will hold for exactly
n− r of the orthonormal eigenvectors of A∗A in {wj}j∈[n] as a result.

Next, suppose, w.l.g., that the n−r orthonormal eigenvectors of A∗A above are {wj}n−1
j=r .

Argue that they are an orthonormal basis of N (A).

Let A ∈ Cm×n be rank r. The next lemma shows that choosing {wj}j∈[n] ⊂ Cn in
Lemma 3.1.1 to be an orthonormal basis of Cn consisting of eigenvectors of A∗A ∈ Cn×n

will result in exactly r nonzero and orthonormal hj vectors in (3.1).

Lemma 3.1.2. Let A ∈ Cm×n be rank r. Choose {wj}j∈[n] ⊂ Cn in Lemma 3.1.1 to be an
orthonormal basis of Cn consisting of eigenvectors of A∗A ∈ Cn×n. Then the hj vectors
defined in (3.1) will be such that {hj}j∈[r] ⊂ Cm form an orthonormal basis of C(A), and
hj = 0 for all j = r, . . . , n− 1.

Proof. Exactly r of the hj vectors defined in (3.1) will be nonzero by Exercise 3.1.2.
Furthermore, these nonzero hj vectors will be {hj}j∈[r] due to the ordering imposed on
the sj = ∥Awj∥2 values. Finally, each hj ∈ C(A) will have ∥hj∥2 = 1 for all j ∈ [r] by the
definition of the hj vectors in (3.1). Thus, to finish the proof it suffices by Exercise 2.4.5 to
prove that {hj}j∈[r] is orthogonal.

Let λℓ be the eigenvalue of A∗A associated with an eigenvector wℓ for all 0 ≤ ℓ < r.
Considering the inner product of any two nonzero hj vectors from (3.1) we have that

⟨hj ,hℓ⟩ =
1

sjsℓ
⟨Awj , Awℓ⟩ =

1

sjsℓ
(Awj)

∗Awℓ =
1

sjsℓ
w∗

j (A
∗Awℓ) =

λℓ

sjsℓ
w∗

jwℓ = 0

whenever j ̸= ℓ due to the orthonormality of {wj}j∈[n]. Hence, {hj}j∈[r] is an orthonormal
basis of C(A).

Exercise 3.1.3. Let A ∈ Cm×n be rank r. Suppose that some choice of the orthonormal
basis {wj}j∈[n] of Cn in Lemma 3.1.1 results in exactly r nonzero hj vectors in (3.1),
{hj}j∈[r]. Furthermore, suppose that {hj}j∈[r] is orthonormal. Prove that every wj must
then be an eigenvector of A∗A ∈ Cn×n.

Lemma 3.1.2 combined with Exercise 3.1.3 imply that there is essentially only one way
to apply Lemma 3.1.1 so that its H matrix ends up having exactly r = rank(A) nonzero
and orthonormal columns {hj}j∈[r]. We simply must choose {wj}j∈[n] ⊂ Cn to be an
orthonormal basis of Cn consisting of eigenvectors of A∗A ∈ Cn×n. Making that choice, we

76

then have that {hj}j∈[r] will be an orthonormal basis of C(A) ⊂ Cm. We can, therefore,

complete {hj}j∈[r] to be larger orthonormal basis B = {hj}j∈[r] ∪ {uℓ}m−1
ℓ=r of all of Cm,

where {uℓ}m−1
ℓ=r will then be an orthonormal basis of C(A)⊥ = N (A∗) by construction.

Let U ∈ Cm×m be the unitary matrix with its columns given by

U:,j =

{
hj if j ∈ [r]
uj otherwise

.

In addition, let V ∈ Cn×n be the unitary matrix whose columns are our well-chosen
{wj}j∈[n] basis so that V:,j = wj for all j ∈ [n]. For our A ∈ Cm×n we will then have that

AV =

 | | |
Aw0 Aw1 · · · Awn−1

| | |


=

 | | | | | |
s0h0 s1h1 · · · sr−1hr−1 0 · · · 0
| | | | | |

 ∈ Cm×n (3.2)

=

 | | | | | |
h0 h1 · · · hr−1 ur · · · um−1

| | | | | |


︸ ︷︷ ︸

∈Cm×m

(
diag(s0, . . . , sr−1) 0 · · · 0
0 0 · · · 0 0 0 · · · 0

)
︸ ︷︷ ︸

∈Cm×n

= UΣ,

where Σ ∈ [0,∞)m×n is a real-valued diagonal matrix whose entries are given by

Σi,j =

{
sj if i = j < r
0 otherwise

.

Multiplying (3.2) through on the right by V ∗ we finally see that

A = AV V ∗ = UΣV ∗.

Example 3.1.3. To help the reader digest the abstract computation in (3.2) we will perform

a specific example of it here. Let A =

(
1 −1 1
0 2 2

)
so that A∗A =

 1 −1 1
−1 5 3
1 3 5

. One

can then check that 
 0

1√
2
1√
2

 ,


1√
3

−1√
3
1√
3

 ,


−2√
6

−1√
6
1√
6


 ⊂ R3

77

is an orthonormal set of eigenvectors of A∗A (do check this!). Applying A to each of these
vectors we obtain

A

 0
1√
2
1√
2

 = 2
√
2

(
0
1

)
, A


1√
3

−1√
3
1√
3

 =
√
3

(
1
0

)
, and A


−2√
6

−1√
6
1√
6

 =

(
0
0

)
.

Thus, in the terminology of Lemma 3.1.1, we have s0 = 2
√
2, s1 =

√
3, s2 = 0, and

h0 =

(
0
1

)
, h1 =

(
1
0

)
, h2 =

(
0
0

)
.

Forming the unitary matrices U ∈ R2×2 and V ∈ R3×3 used in (3.2) in this case and
carrying out the computation to its conclusion we learn that

A =

(
1 −1 1
0 2 2

)
=

(
0 1
1 0

)
︸ ︷︷ ︸

U

(
2
√
2 0 0

0
√
3 0

)
︸ ︷︷ ︸

Σ

 0 1√
2

1√
2

1√
3

−1√
3

1√
3

−2√
6

−1√
6

1√
6


︸ ︷︷ ︸

V ∗

.

Exercise 3.1.4. Repeat the calculation in Example 3.1.3 for the matrix A =

 1 1
1 1
−1 1

.

Formalizing the discussion above allows us to prove the following theorem establishing
the existence of the SVD for any matrix A ∈ Cm×n.

Theorem 3.1.4 (The Full Singular Value Decomposition). Every rank r matrix A ∈ Cm×n

can be decomposed into A = UΣV ∗ where

1. U ∈ Cm×m and V ∈ Cn×n are both unitary, and

2. Σ ∈ [0,∞)m×n is a unique diagonal matrix with entries

Σi,j =

{
σj(A) if i = j
0 otherwise

satisfying σ0(A) ≥ σ1(A) ≥ · · · ≥ σr−1(A) > 0 = σr(A) = · · · = σmin{m,n}−1(A).

Here the jth-largest diagonal entry of the diagonal matrix Σ, σj(A) ∈ [0,∞), is called the
jth singular value of A. Similarly, given a valid SVD of A, A = UΣV ∗, the vectors
uj = U:,j ∈ Cm and vj = V:,j ∈ Cn are called the jth left and right (respectively)
singular vectors of (the SVD of) A.1

1These slightly awkward names for uj = U:,j ∈ Cm and vj = V:,j ∈ Cn are due to the fact that these
vectors are not generally unique for a given matrix A. Note that there will be many unitary U and V matrix
pairs that work as part of a valid SVD of A, especially when there are repeated singular values.

78

Exercise 3.1.5. Let A ∈ Cm×n have the full SVD A = UΣV ∗. Set r = rank(A). Show
that

A =
∑
j∈[r]

σj(A)ujv
∗
j (3.3)

where σj(A) is the jth singular value of A, and uj = U:,j ∈ Cm, vj = V:,j ∈ Cn are the ,
jth left/right singular vectors of the SVD of A. (Hint: Consider using Exercise 2.6.9.)

One can now prove the following corollary from Theorem 3.1.4 via an argument analogous
to the one used to derive Corollary 2.8.9 from Theorem 2.8.7 (or, alternatively, by using
(3.3) from Exercise 3.1.5 to build the new factorization more directly).

Corollary 3.1.5 (The Compact Singular Value Decomposition). Every rank r matrix
A ∈ Cm×n can be decomposed into A = UΣV ∗ where

1. U ∈ Cm×r and V ∈ Cn×r are both orthonormal matrices, and

2. Σ = diag (σ0(A), . . . , σr−1(A)) ∈ [0,∞)r×r is a unique diagonal matrix containing the
r nonzero singular values of A ordered so that σ0(A) ≥ σ1(A) ≥ · · · ≥ σr−1(A) > 0.

Exercise 3.1.6. Prove Corollary 3.1.5.

However one proves Theorem 3.1.4 and Corollary 3.1.5, the uniqueness of the singular
values of a matrix A ∈ Cm×n ultimately follows from the fact that they must always be the
square roots of the eigenvalues of A∗A ∈ Cn×n (and AA∗ ∈ Cm×m). For this reason (in
addition to several others), we will now briefly review the properties that any valid SVD of
a matrix A must share with the spectral decompositions of both A∗A and AA∗.

3.1.1 The Relationship to the Spectral Decompositions of A∗A and AA∗

Let A = UΣV ∗ be a valid full SVD of a rank r matrix A ∈ Cm×n (i.e., so that U ∈ Cm×m

and V ∈ Cn×n are both unitary, and Σ ∈ [0,∞)m×n is a diagonal matrix satisfying
Σ0,0 ≥ · · · ≥ Σr−1,r−1 > Σr,r = · · · = Σq−1,q−1 = 0, where q = min{m,n}). Notice that
then

A∗A = (UΣV ∗)∗(UΣV ∗) = V Σ∗U∗UΣV ∗ = V (Σ∗Σ)V ∗,

where D = Σ∗Σ ∈ [0,∞)n×n is a diagonal matrix with D0,0 = Σ2
0,0 ≥ · · · ≥ Dr−1,r−1 =

Σ2
r−1,r−1 > Dr,r = · · · = Dn−1,n−1 = 0. As a consequence, we can see that every column

vj = V:,j of V will be an eigenvector of A∗A with eigenvalue Dj,j since

A∗Avj = V (Σ∗Σ)V ∗vj = V (Σ∗Σ)ej = V Dj,jej = Dj,jvj .

Thus, Dj,j must be the jth largest eigenvalue of A∗A ∈ Cn×n. Given that the eigenvalues of
A∗A are both unique (with potential repetitions since they are the zeros of the characteristic

79

polynomial of A∗A – see, e.g., [20, Chapter 10]), and always nonnegative real numbers (see
Exercise 2.8.6), this further implies that each Σj,j =

√
Dj,j is also uniquely determined

by A. Hence, we’ll call the value that Σj,j must always take in any valid full SVD of A
“σj(A)”, and will later discuss it even in the absence of a particular SVD of A.

Exercise 3.1.7. Let A = UΣV ∗ be a valid full SVD of a rank r matrix A ∈ Cm×n. Show
that Σj,j must always equal the square-root of the jth largest eigenvalue of AA∗ ∈ Cm×m.
Conclude that the nonzero eigenvalues of AA∗ ∈ Cm×m must always match the nonzero
eigenvalues of A∗A ∈ Cn×n.

The following result can be proven by carefully considering the discussion so far.

Theorem 3.1.6. Let A = UΣV ∗ be a valid full SVD of a rank r matrix A ∈ Cm×n. The
following statements must hold:

1. The r nonzero singular values of A are exactly the square roots of the positive eigen-
values of A∗A ∈ Cn×n and AA∗ ∈ Cm×m.

2. The first r columns of U ∈ Cm×m are an orthonormal basis for the column space of
A, C(A) ⊂ Cm.

3. The last m− r columns of U ∈ Cm×m form an orthonormal basis for the null space
of A∗, N (A∗) ⊂ Cm.

4. The first r columns of V ∈ Cn×n form an orthonormal basis for the column space of
A∗, C(A∗) ⊂ Cn.

5. The last n− r columns of V ∈ Cn×n form an orthonormal basis for the null space of
A, N (A) ⊂ Cn.

6. If m = n and A is Hermitian, then A will have λ as an eigenvalue if and only if there
exists a j ∈ [n] such that

• |λ| is the jth singular value of A (i.e., σj = |λ|),

• the jth column of V , vj ∈ Cn, is an eigenvector of A associated with λ, and

• the jth column of U = sign(λ)vj.

Exercise 3.1.8. Prove Theorem 3.1.6.

Exercise 3.1.9. Let U ∈ Cm×m and V ∈ Cn×n both be unitary, A ∈ Cm×n, and q :=
min{m,n}. Show that σj(UA) = σj(A) = σj(AV) holds for all j ∈ [q].

80

Exercise 3.1.10. Let α, β ∈ Z \ {0}. The α
β -power of a full rank matrix A ∈ Cn×n is

a matrix B ∈ Cn×n with the property that Bβ = Aα (e.g., when β = 2 and α = 1 then
B is called the matrix square root of A). Prove that there always exists a unitary matrix
W ∈ Cn×n such that any desired α

β -power of AW exists. When can W simply be the

identity? How can one compute such a B and W for any given A ∈ Cn×n?

As Theorem 3.1.6 hopefully makes clear, a SVD of A conveniently encodes just about
any standard information you might want to know about A. It is a commonly computed
decomposition as a result. Numerically, a SVD of a small to moderately sized matrix
A ∈ Cm×n can be efficiently computed using a variety of standard methods (depending
on how, e.g., m compares in size to n). We refer the interested reader to numerical linear
algebra texts such as [47, Lecture 31] or [16, Chapter 5] for details. For an extremely large
matrix A ∈ Cm×n that might not be (able to be) stored on a single machine, however, one
might have to utilize a distributed/incremental SVD algorithm instead (see, e.g., [8, 9, 27]).

3.2 The SVD and the Moore–Penrose Inverse of a Matrix

Note that every matrix A ∈ Cm×n is a linear bijection from C(A∗) onto C(A). Hence,
A : C(A∗) → C(A) always has a linear inverse with the same rank as A called the
Moore–Penrose (or, pseudo)inverse of A, denoted by A† : C(A)→ C(A∗). Further-
more, a compact SVD of A† ∈ Cn×m can always be obtained from a compact SVD of
A.

Let A = UΣV ∗ be a compact SVD of a rank r matrix A ∈ Cm×n so that U ∈ Cm×r

and V ∈ Cn×r are orthonormal matrices, and Σ = diag (σ0(A), . . . , σr−1(A)) ∈ [0,∞)r×r is
invertible (due to σ0(A) ≥ · · · ≥ σr−1(A) > 0). One can now see that

A† = V Σ−1U∗ (3.4)

must hold. To understand why, recall that the orthogonal projections PC(A) and PC(A∗) act
as the identities on C(A) and C(A∗), respectively (see Theorem 2.6.10). And, e.g.,

A†A = (V Σ−1U∗)(UΣV ∗) = V Σ−1IrΣV
∗ = V V ∗ = PC(A∗)

by (2.14) and part (4) of Theorem 3.1.6. Hence, A† : C(A)→ C(A∗) from (3.4) is indeed
the left inverse of A : C(A∗)→ C(A). A similar calculation shows that AA† = PC(A) also
holds.

Exercise 3.2.1. Let A = UΣV ∗ be a compact SVD of a rank r matrix A ∈ Cm×n. Show
that A† from (3.4) satisfies AA† = PC(A).

Exercise 3.2.2. Suppose that A ∈ Cn×n is full rank (so that rank(A) = n). Show that
A† = A−1 ∈ Cn×n in this case.

81

The exercise directly above demonstrates that A† is a strict generalization of the “usual”
matrix inverse A−1. As a result, in some sense we always should (and really always effectively
do) work with A−1 := A† when thinking about inverting a matrix of any size.

Exercise 3.2.3. Suppose that A ∈ Cn×n is full rank (so that rank(A) = n). Show that
σ0
(
A−1

)
= 1

σn−1(A) . More generally, show that σj
(
A−1

)
= 1

σn−1−j(A) for all j ∈ [n].

Exercise 3.2.4. Let A ∈ Cm×n with m ≥ n have rank n. Show that A† = (A∗A)−1A∗.

3.3 Some Important Properties of Singular Values

If we have not yet convinced you that the SVD is potentially interesting and useful, we
will try again here by showing that two of the most commonly used matrix norms from
Section 2.2.3 are closely related to the singular values of a given matrix.

Singular Values and the Frobenius Norm

Given A ∈ Cm×n recall that ∥A∥F =
√∑

ℓ,j |Aℓ,j |2. Let A = UΣV ∗ be a full SVD of A,

and set q := min{m,n}. Computing the squared Frobenius norm of A via its SVD we can
see that

∥A∥2F = ∥UΣV ∗∥2F =
∑
j∈[n]

∥ (UΣV ∗):,j ∥
2
2 =

∑
j∈[n]

∥U (ΣV ∗):,j ∥
2
2

=
∑
j∈[n]

∥ (ΣV ∗):,j ∥
2
2 = ∥ΣV ∗∥2F

by Exercise 2.6.13 since U is unitary. Continuing, we can further see that since ∥A∥F = ∥A∗∥F
holds for all A ∈ Cm×n we also have that

∥A∥2F = ∥V Σ∗∥2F =
∑
j∈[m]

∥V (Σ∗):,j ∥
2
2 =

∑
j∈[m]

∥Σ∗
:,j∥22 =

∑
j∈[q]

(σj(A))2. (3.5)

We will see that (3.5) has several important implications in later sections.

Exercise 3.3.1. Let U ∈ Cm×m and V ∈ Cn×n both be unitary. Show that ∥UA∥F =
∥A∥F = ∥AV ∥F holds for all A ∈ Cm×n.

Singular Values and the (ℓ2, ℓ2)-Operator Norm

Given A ∈ Cm×n recall that ∥A∥2→2 = max
x∈Cn s.t. ∥x∥2=1

∥Ax∥2. Let A = UΣV ∗ be a full

SVD of A, and set q := min{m,n}. Computing the (ℓ2, ℓ2)-operator norm of A via its SVD
we can see that

∥A∥2→2 = max
x∈Cn s.t. ∥x∥2=1

∥UΣV ∗x∥2 = max
x∈Cn s.t. ∥x∥2=1

∥ΣV ∗x∥2

82

by Exercise 2.6.13 since U is unitary. Furthermore, since V is also unitary its columns
form an orthonormal basis of Cn so that every x ∈ Cn with ∥x∥2 = 1 can be written as
x =

∑n
j=1 αjV:,j where ∥α∥2 = ∥x∥2 = 1 (see Theorem 2.3.9). Thus, continuing we can see

that

∥A∥2→2 = max
α∈Cn s.t. ∥α∥2=1

∥∥∥∥∥∥ΣV ∗

 n∑
j=1

αjV:,j

∥∥∥∥∥∥
2

= max
α∈Cn s.t. ∥α∥2=1

∥∥∥∥∥∥Σ
 n∑

j=1

αjej

∥∥∥∥∥∥
2

= max
α∈Cn s.t. ∥α∥2=1

∥Σα∥2 = max
α∈Cn s.t. ∥α∥2=1

√∑
j∈[q]

|αj |2(σj(A))2.

Recalling that σ0(A) ≥ σ1(A) ≥ · · · ≥ σq−1(A) we can now see that this last expression is
always maximized when |α0| = 1. Hence,

∥A∥2→2 = σ0(A). (3.6)

We will see that (3.6) also has several important implications in later sections.

Exercise 3.3.2. Let U ∈ Cm×m and V ∈ Cn×n both be unitary. Show that ∥UA∥2→2 =
∥A∥2→2 = ∥AV ∥2→2 holds for all A ∈ Cm×n.

Exercise 3.3.3. Let A ∈ Cm×n and set q := min{m,n}. Prove that ∥A∥2→2 ≤ ∥A∥F ≤√
q∥A∥2→2 always holds. For what type of matrices will ∥A∥2→2 = ∥A∥F hold? For what

type of matrices will ∥A∥F =
√
q∥A∥2→2 hold?

3.3.1 Singular Value Inequalities for Sums and Products of Matrices

Now that we have seen a few reasons why we might want to compute a singular value
decomposition of a matrix (e.g., to compute its Moore–Penrose inverse, or its (ℓ2, ℓ2)-
operator norm), it’s worth considering how robust a matrix SVD actually is to small errors.
Imagine, for example, that we want to compute the singular values of a matrix A ∈ Cm×n on
a digital computer. We will encounter potential problems immediately since, unfortunately,
we probably can’t even store A exactly on our computer! Instead, we will actually store
A + E, where E ∈ Cm×n contains all the round-off errors that result form representing
each entry of A with a finite number of binary digits (i.e., bits). Given that we can (at
best) then compute the singular values of A+E instead of A, it’d be good to know how
close the singular values of A+ E are to the true singular values of A we actually want.
If, e.g., E has a small Frobenius norm (and, therefore, small singular values by (3.5)) we
want to make sure that σj(A+E) ≈ σj(A) holds for all relevant j. We will now state some
very useful singular value inequalities which effectively show that singular values are indeed
robust to small perturbations in this way (both additive and multiplicative).

Theorem 3.3.1 (See Theorem 3.3.16 in [24]). Let A,B ∈ Cm×n and q = min{m,n}. Then

83

(a) σj+k (A+B) ≤ σj (A) + σk (B), and

(b) σj+k (AB
∗) ≤ σj (A)σk (B)

for all j, k ∈ [q] such that j + k ∈ [q]. In particular,

(c) |σj (A+B)− σj (A)| ≤ σ0 (B) ∀j ∈ [q], and

(d) σj(AB
∗) ≤ σj (A)σ0 (B) ∀j ∈ [q].

Exercise 3.3.4. Let B ∈ Cm×n and q = min{m,n}. Prove that σj(−B) = σj(B) = σj(B
∗)

holds for all j ∈ [q].

Exercise 3.3.5. Use parts (a) and (b) of Theorem 3.3.1 to prove parts (c) and (d).

Looking at Theorem 3.3.1 (c) one can see that if B = E has a small largest singular
value, σ0 (E), then we will indeed have σj(A+E) ≈ σj(A) for all j ∈ [q]. Furthermore, one
can also use similar ideas to see, e.g., that small perturbations to the entries of A won’t
influence how it behaves as a linear function too much either. This means that matrices
can be applied as linear functions on digital computers without distorting their outputs too
much.

Example 3.3.2. Suppose that A ∈ Cm×n is stored on a digital computer as Ã = A+ E,
where E ∈ Cm×n is, e.g., a round-off error matrix with |Ei,j | ≤ ϵ for all i, j. How much
can Ãx differ from Ax on a worst-case input vector x ∈ Cn?

To answer this question we will upper bound
∥∥∥Ax− Ãx

∥∥∥
2
. Considering this error we

can see that ∥∥∥Ax− Ãx
∥∥∥
2

= ∥x∥2

∥∥∥∥(A− Ã)
x

∥x∥2

∥∥∥∥
2

= ∥x∥2

∥∥∥∥E (x

∥x∥2

)∥∥∥∥
2

≤ ∥x∥2∥E∥2→2 = ∥x∥2σ0(E).

If we want an upper bound in terms of ϵ we can now use the fact that ∥E∥2→2 ≤ ∥E∥F
always holds (see Exercise 3.3.3) to get that∥∥∥Ax− Ãx

∥∥∥
2
≤ ∥x∥2∥E∥F ≤ ϵ∥x∥2

√
mn.

Thus, the error is will always be small in ℓ2-norm as long as ϵ is small compared to
∥x∥2

√
mn.

The following two singular value inequalities are also useful in a variety of applications.

Lemma 3.3.3 (A Slight Generalization of Theorem 3.3.1 Part (d)). Let A ∈ Cm×n and
B ∈ Cn×p. Then,

σj (AB) ≤ min {σj (A)σ0 (B) , σj (B)σ0 (A)} ∀j ∈ [min{n,m, p}].

84

Proof. Suppose, without loss of generality, that m ≤ p (else, we may instead apply the
argument below to σj ((AB)∗) = σj (B

∗A∗) using that σj (AB) = σj ((AB)∗)). Since m ≤ p

we can project all of Cm into Cp with Q =

(
Im

· · ·0 · · ·

)
∈ Cp×m. Further, we may note that

σj (QA) = σj (A) and σj (QAB) = σj (AB) ∀j ∈ [min{m,n}] = [min{n,m, p}].

Applying part (d) of Theorem 3.3.1 we can now see that both

σj (AB) = σj (QAB) ≤ σj (QA)σ0 (B
∗) = σj (A)σ0 (B)

and

σj (AB) = σj (QAB) = σj (B
∗ (QA)∗) ≤ σj (B

∗)σ0 (QA) = σj (B)σ0 (A)

hold. The result follows.

The next lemma provides lower bounds for the singular values of matrix products in
special circumstances.

Lemma 3.3.4. Let A ∈ Cm×n and B ∈ Cn×p be such that

1.) B has a full SVD B = UΣV ∗, and

2.) AU has rank r = n with a compact SVD AU = QΣ̃P ∗.

Then,

σj (AB) ≥ σr (AU)σj (B) ∀j ∈ [r].

Proof. Let j ∈ [r]. Noting that P is unitary since r = n, we can see that

σj (B) = σj (ΣV
∗) = σj

(
P Σ̃−1Σ̃P ∗ΣV ∗

)
≤ σ0

(
P Σ̃−1

)
· σj

(
Σ̃P ∗ΣV ∗

)
by Lemma 3.3.3. Furthermore, σ0

(
P Σ̃−1

)
= σ0

(
Σ̃−1

)
= 1

σr(Σ̃)
= 1

σr(AU) . Hence,

σj (B) ≤
σj

(
Σ̃P ∗ΣV ∗

)
σr (AU)

=⇒ σj

(
Σ̃P ∗ΣV ∗

)
≥ σr (AU)σj (B) . (3.7)

Finally, since m ≥ r = n we can see that Q∗Q = In so that

σj

(
Σ̃P ∗ΣV ∗

)
= σj

(
Q∗QΣ̃P ∗ΣV ∗

)
= σj (Q

∗AUΣV ∗) = σj (Q
∗AB)

≤ σj (AB)σ0 (Q
∗) = σj (AB) (3.8)

by Lemma 3.3.3. Combing (3.7) and (3.8) now finishes the proof.

Though perturbation bounds for singular values such as those in Theorem 3.3.1 are
both more commonly used and far more robust, it’s also worth knowing about the existence
of similarly useful perturbation theory for singular vectors/subspaces as well. We urge the
interested reader to peruse, e.g., [42, 43] to get a good overview of these results.

85

3.4 The Optimal Rank-s Approximation As of a Matrix A

Recalling Section 1.2.3, suppose that we have trained a deep FNN resulting in a large
number of huge weight matrices, Wj ∈ Rdj×dj−1 , where both dj and dj−1 are “big” for most
j ∈ [L]. Our goal is to compress these huge weight matrices as much as possible so that our
FNN is easier to store. Simultaneously, we want to accurately preserve each weight matrix as
a linear function so that our overall FNN still does what we need it to do after compression.
Motivated by, e.g., Section 2.5 we can aim to accomplish our goal by approximating each
huge weight matrix Wj by a new low-rank matrix W̃j that we can then store in an optimally
compressed form. At the same time, Example 3.3.2 implies that it would also be helpful

to, e.g., produce W̃j in a way that reduces the value of
∥∥∥Wj − W̃j

∥∥∥
2→2

= σ0

(
Wj − W̃j

)
as

much as possible since doing so will help to keep Wjx ≈ W̃jx for all x ∈ Rdj−1 .
These considerations collectively suggest the following two step low-rank compression

approach for our FNN weight matrices:

1. Approximate each of W0, . . . ,WL using low-rank matrices W̃0, . . . , W̃L so that, e.g.,∥∥∥Wj − W̃j

∥∥∥
2→2

is small for all j ∈ [L], and then

2. store W̃0, . . . , W̃L in a compressed format.

We have already discussed step 2 above in Section 2.5, so we will focus on step 1 here. As
we shall see, the SVD is once again extremely useful in this setting, and ultimately allows
us to accomplish step 1 in an optimal way.

Let A ∈ Cm×n be an arbitrary (e.g., full rank) matrix, and suppose that we want to
approximate A with a rank s matrix As ∈ Cm×n that, e.g., minimizes ∥A−As∥2→2 over
all possible choices of rank s matrices in Cm×n so that

∥A−As∥2→2 = inf
rank s B∈Cm×n

∥A−B∥2→2.

To find As ∈ Cm×n, let A = UΣV ∗ be a full SVD of A and recall that we can then always
write

A =
∑
j∈[q]

σj(A)ujv
∗
j ,

where q = min{m,n}, uj = U:,j , and vj = V:,j (see Exercise 3.1.5). We claim that

As :=
∑
j∈[s]

σj(A)ujv
∗
j (3.9)

is then an optimal rank s approximation to A with respect to both the Frobenius and the
(ℓ2, ℓ2)-operator norms.

Exercise 3.4.1. Let A ∈ Cm×n, q = min{m,n}, and As ∈ Cm×n be as in (3.9). Show that
σj (A−As) = σj+s (A) for all j ∈ [q − s], and that σj (A−As) = 0 for all q − s ≤ j < q.

86

3.4.1 Optimality of As in the Frobenius and (ℓ2, ℓ2)-Operator Norms

Observe that for the Frobenius norm we have

∥A−As∥2F =

∥∥∥∥∥∥
q∑

j=s

σj(A)ujv
∗
j

∥∥∥∥∥∥
2

F

=

q−1∑
j=s

σ2
j (A) (3.10)

by (3.5) and Exercise 3.4.1. The next theorem shows that this approximation error is
minimal.

Theorem 3.4.1. Let A,B ∈ Cm×n, q = min{m,n}, and As ∈ Cm×n be as in (3.9).
Furthermore, suppose that be B is rank s. Then

∥A−B∥F ≥ ∥A−As∥F.

That is, As is a best rank s approximation to A with respect to Frobenius norm error.

Proof. Note that σs(B) = 0 by Theorem 3.1.4 since B is rank s. Thus, Theorem 3.3.1
implies that

σj+s(A) = σj+s ((A−B) +B) ≤ σj(A−B) + σs(B) = σj(A−B)

for all j ∈ [q − s]. As a result, (3.5) and (3.10) now reveal that

∥A−B∥2F =
∑
j∈[q]

σ2
j (A−B) =

∑
j∈[q−s]

σ2
j (A−B) +

∑
j≥q−s

σ2
j (A−B)

≥
∑

j∈[q−s]

σ2
j+s(A) = ∥A−As∥2F.

Hence, As achieves the smallest possible Frobenius norm approximation error achievable by
any rank s matrix.

Now observe that for the (ℓ2, ℓ2)-operator norm we have

∥A−As∥2→2 =

∥∥∥∥∥∥
q∑

j=s

σj(A)ujv
∗
j

∥∥∥∥∥∥
2→2

= σs(A) (3.11)

by (3.6) and Exercise 3.4.1. The next theorem shows that this approximation error is also
minimal.

Theorem 3.4.2. Let A,B ∈ Cm×n, q = min{m,n}, and As ∈ Cm×n be as in (3.9).
Furthermore, suppose that be B is rank s. Then

∥A−B∥2→2 ≥ ∥A−As∥2→2.

That is, As is a best rank s approximation to A with respect to (ℓ2, ℓ2)-operator norm error.

87

Proof. Since B is rank s we can write it in terms of a QR decomposition B = QR, where
Q ∈ Cm×s and R ∈ Cs×n. Similarly, let A = UΣV ∗ be a full SVD of A. Since V is unitary,
L = span{V:,0, . . . , V:,s} ⊂ Cn has dimension s+ 1. Also, we know that C(R∗)⊥ = N (R)
has dimension n− s by (the discussion around) Lemma 2.7.2. Hence, it must be the case
that

span{V:,0, . . . , V:,s} ∩ N (R)

is a linear subspace of Cn of dimension at least 1 by Exercise 2.3.12. Thus, there exists
n ∈ span{V:,0, . . . , V:,s} ∩ N (R) with ∥n∥2 = 1.

Using the fact that n ∈ N (R) ⊂ N (B), and writing n as
∑

j∈[s+1] αjV:,j for some
α0, . . . , αs ∈ C with ∥α∥2 = 1 (recall Theorem 2.3.9), we can now see that

∥A−B∥2→2 ≥ ∥(A−B)n∥2 = ∥An∥2 =

∥∥∥∥∥∥UΣV ∗

 ∑
j∈[s+1]

αjV:,j

∥∥∥∥∥∥
2

=

√ ∑
j∈[s+1]

|αj |2σ2
j (A).

Recalling that ∥α∥2 = 1, we can now see that the expression above is minimized when
αj = 0 for all j < s so that αs = 1. Therefore,

∥A−B∥2→2 ≥ σs(A).

We are now finished by (3.11).

3.5 Solving Ill-Conditioned and Noisy Linear Systems

Noise, like death and taxes, is a sad and inescapable fact of life. Every single scientific,
engineering, and computational problem you ever encounter will be littered with noise. In
this section we will discuss the effect that noise has on the most fundamental linear algebra
problem there is – solving a system of linear equations. In the process, we will present two
classical strategies for mitigating the effects of noise.

To make our discussion more concrete, suppose that we are given access to a nonzero
vector b ∈ Cn and an invertible matrix A ∈ Cn×n. Our mission is to find a vector
x ∈ Cn such that Ax = b. Not wanting to complete this task by hand (suppose n > 100)
we instead opt to solve this simple linear system on a computer.2 In the process of

2In fact, digital computers were invented to solve large systems of linear equations in the first place [2].
Somewhat interestingly, the inventor was an American mathematician of Bulgarian descent working at Iowa
State University (then College), not at some ivy league university as one might mistakenly assume. Anyone
working anywhere can have a huge impact!∗

∗
To anyone with connections to Iowa State who might be reading this footnote some day: oh yes, I am very aware that

my motivational message is implicitly casting shade. Michigan State is obviously superior in every conceivable way. . . :).

88

loading/transferring/typing the matrix A and the vector b into the computer, though,
something unpleasant happens. Though we somehow miraculously get A into computer
memory with no errors, we do end up introducing small errors into b in the process, instead
ending up with b′ := b+ ϵ in its place. Note that this could happen in a thousand different
ways. One obvious source of errors in our very simple example would be due to round-off
error (i.e., due to the fact that digital computers can only represent a few of the most
significant digits of any given number). Our only consolation in that case is that we can
assume the “noise” vector ϵ ∈ Cn has a small norm compared to b (e.g., suppose we can
tell that ∥ϵ∥2 ≤ 10−8∥b∥2).

Taking solace in the fact that ϵ ∈ Cn has a small norm, we go ahead and solve the
linear system we currently have in computer memory,

Ay = b′ = b+ ϵ, (3.12)

for y ∈ Cn instead of solving the original equation Ax = b that we actually care about.
After solving for y we then ask ourselves how close it is the true solution x we want. Doing
a rough calculation of our relative error we see that

∥x− y∥2
∥x∥2

=
∥A−1b−A−1(b+ ϵ)∥2

∥x∥2
=
∥A−1ϵ∥2
∥x∥2

≤ ∥A
−1∥2→2∥ϵ∥2
∥x∥2

(3.13)

≤
∥A−1∥2→2

(
10−8∥b∥2

)
∥x∥2

=
∥A−1∥2→2

(
10−8∥Ax∥2

)
∥x∥2

≤
∥A−1∥2→2

(
10−8∥A∥2→2∥x∥2

)
∥x∥2

= 10−8
(
∥A−1∥2→2∥A∥2→2

)
= 10−8

(
σ0 (A)

σn−1 (A)

)
.

Hence, our relative error will be small if σ0(A)
σn−1(A) is not too large. If this quantity is larger

than 108, however, all bets are off – the relative error could be huge, and our approximate
solution y effectively worthless.

Exercise 3.5.1. Suppose that ∥ϵ∥2 = 10−8∥b∥2 in (3.13). Show that in fact ∥x−y∥2
∥x∥2 =

10−8
(

σ0(A)
σn−1(A)

)
is achieved for a particular worst-case x and ϵ. What are they?

Given its importance in applications, the quantity σ0(A)
σn−1(A) has a special name.

Definition 3.5.1 (Condition Number). Let A ∈ Cm×n have rank r. The condition number

of A is κ(A) :=
∥∥A†∥∥

2→2
∥A∥2→2 =

σ0(A)
σr−1(A) ≥ 1.

Exercise 3.5.2. Let U ∈ Cn×n be a unitary matrix. Show that κ(U) = 1.

Exercise 3.5.3. Let A,B ∈ Cn×n both be full rank. Show that κ(AB) ≤ κ(A)κ(B).

89

Exercise 3.5.4. Let A ∈ Cm×n and α ∈ C \ {0}. Show that κ(αA) = κ(A).

Exercise 3.5.5. Let A ∈ Cm×n. Show that κ
(
A†) = κ(A).

Exercise 3.5.6. Let As ∈ Cm×n be the best rank-s approximation to A ∈ Cm×n with
respect the Frobenius and (ℓ2, ℓ2)-operator norms as per (3.9). Prove that κ(As) ≤ κ(A).

Generally it indeed turns out to be true that the larger the condition number of A is,
the larger the relative error ∥x−y∥2

∥x∥2 in (3.13) will end up being. For this reason matrices A
with large condition numbers are said to be ill-conditioned, and specialized techniques
are often used to try to invert them more accurately. We will now briefly discuss two such
techniques.

3.5.1 Improving Conditioning by SVD Truncation

Let A ∈ Cn×n be the full rank matrix in (3.12), and let As ∈ Cn×n be its best rank-s
approximation as per (3.9). As shown in Exercise 3.5.6, the condition number of As will
always be less than or equal to the condition number of A. This suggests a relatively obvious
strategy to combat poor conditioning. Instead of solving (3.12) directly by inverting A, we
can instead solve the related least-squares problem

y = argminz∈Cn

∥∥Asz− b′∥∥2
2

(3.14)

using the better-conditioned and lower-rank As ∈ Cn×n in place of A. Recalling Sec-
tions 2.6.2 and 3.2, we can see that y = (As)

†b′ = (As)
†(b + ϵ) will solve (3.14). We

can now ask ourselves what the relative error between this new y and the true solution
x = A−1b will be in this case.

To help bound the relative error between x = A−1b and y = (As)
†(b + ϵ) it will be

useful to have a compact SVD of both As and (As)
†. Toward that end, suppose that

A = UΣV ∗ is a full SVD of the matrix A. From (3.9) we can then see that

As = Us

σ0(A)
. . .

σs−1(A)

 (Vs)
∗,

where Us, Vs ∈ Cn×s contain the first s orthonormal columns of U, V ∈ Cn×n, respectively.
The pseudoinverse of As is therefore

(As)
† = Vs

1/σ0(A)
. . .

1/σs−1(A)

 (Us)
∗. (3.15)

90

Finally, using (3.15) we can further see, e.g., that

(As)
†A = Vs

1/σ0(A)
. . .

1/σs−1(A)

 (Us)
∗U

σ0(A)
. . .

σn−1(A)

V ∗

= Vs

1/σ0(A)
. . .

1/σs−1(A)

 (Is | 0s×n−s)

σ0(A)
. . .

σn−1(A)

V ∗

= Vs

1/σ0(A)
. . .

1/σs−1(A)


σ0(A) 0 · · · 0

. . . 0 · · · 0
σs−1(A) 0 · · · 0

V ∗

= Vs (Is | 0s×n−s)V
∗ = Vs(Vs)

∗ = PC((As)∗). (3.16)

Exercise 3.5.7. Let A ∈ Cn×n be full rank. Show that A(As)
† = PC(As).

Using (3.16) to help bound the relative error between x = A−1b and y = (As)
†(b+ ϵ)

we have that

∥x− y∥2
∥x∥2

=
∥A−1b− (As)

†(b+ ϵ)∥2
∥x∥2

≤ ∥(As)
†ϵ∥2

∥x∥2
+
∥
(
(As)

† −A−1
)
b∥2

∥x∥2

≤ ∥(As)
†∥2→2∥ϵ∥2
∥x∥2

+
∥
(
(As)

†A− In
)
x∥2

∥x∥2

≤ ∥(As)
†∥2→2 · 10−8 · ∥b∥2
∥x∥2

+
∥
(
PC((As)∗) − In

)
x∥2

∥x∥2
(3.17)

≤ 10−8

(
σ0(A)

σs−1(A)

)
+

∥∥∥∥PC((As)∗)
⊥

(
x

∥x∥2

)∥∥∥∥
2

.

Suppose that σs−1(A) > σn−1(A). Comparing (3.17) with (3.13) in this case we can see
that (3.17) provides a smaller upper bound on the relative error ∥x− y∥2/∥x∥2 than (3.13)
does whenever, e.g., x ∈ C ((As)

∗). In particular, Exercise 3.5.1 gives an example where the
relative error provided by (3.17) is a strict improvement over the relative error provided by

(3.13) (check this!). More generally, since κ(As) =
(

σ0(A)
σs−1(A)

)
≤
(

σ0(A)
σn−1(A)

)
= κ(A) holds for

all s ∈ [n+ 1] \ {0}, using y = (As)
†(b+ ϵ) will often lead to a better relative error than

using y = A−1(b+ ϵ) when s is chosen so that∥∥∥∥PC((As)∗)
⊥

(
x

∥x∥2

)∥∥∥∥
2

< (κ(A)− κ(As))
∥ϵ∥2
∥b∥2

.

We will next briefly discuss a different strategy for inverting ill-conditioned systems

which doesn’t require us to entirely discard all of PC((As)∗)
⊥

(
x

∥x∥2

)
.

91

3.5.2 Tikhonov Regularization

Let A ∈ Cn×n again be the full rank matrix in (3.12). This time, though, suppose that we
pick a positive real α ∈ (0,∞) and then solve the modified least-squares problem

y = argminz∈Cn∥Az− b′∥22 + α∥z∥22 (3.18)

instead of solving (3.12). As α → 0 we can see that the solution of (3.18) will converge
to the solution of (3.12), so we expect that using a small α should still give us about the
same answer. As we shall see below, though, there are benefits to solving (3.18) with α > 0
instead of solving (3.12) when κ(A) is very large.

Solving (3.18) in order to estimate x = A−1b is known as Tikhonov regularization, and
the number α above is referred to as the regularization parameter. Note that (3.18) has less
overhead to set up and start solving than (3.14) does because (3.18) doesn’t require us to
compute As. For this reason solving (3.18) is often preferable to solving (3.14) when A is
very large and we don’t expect to reuse it many times.

With a little bit of work one can see that the unique solution to (3.18) is given by
y = (αIn +A∗A)−1A∗b′ (see, e.g., [32, Theorem 5.9]). The following exercises will help us
understand this closed-form solution in more detail.

Exercise 3.5.8. Let α ∈ (0,∞) and A ∈ Cn×n. Show that the matrix αIn+A∗A is positive
definite (and therefore invertible). Furthermore, show that σj (αIn +A∗A) = α+σ2

j (A) > 0
for all j ∈ [n].

Exercise 3.5.9. Let α ∈ (0,∞) and A ∈ Cn×n. Show that ∀ℓ ∈ [n] ∃j ∈ [n] such that

σℓ

(
(αIn +A∗A)−1A∗

)
=

σj (A)

α+ σ2
j (A)

.

Exercise 3.5.10. Let α ∈ (0,∞) and A ∈ Cn×n. Prove that

x

x2 + α
≤

{
1 if x ≤ α
1
α if x > α

.

Conclude that
∥∥∥(αIn +A∗A)−1A∗

∥∥∥
2→2
≤ max

{
1
α , 1
}
.

Exercise 3.5.11. Let α ∈ (0,∞) and A ∈ Cn×n. Show that

σj

(
In − (αIn +A∗A)−1A∗A

)
=

α

σ2
n−j−1 (A) + α

holds for all j ∈ [n].

92

We can now ask ourselves what the relative error between this new y = (αIn +A∗A)−1A∗b′

and the true solution x = A−1b will be in this case. Bounding the relative error using
Exercises 3.5.10 and 3.5.11 together with our assumption that ∥ϵ∥2 ≤ 10−8∥b∥2 we see that

∥x− y∥2
∥x∥2

=
∥A−1b− (αIn +A∗A)−1A∗(b+ ϵ)∥2

∥x∥2

≤

∥∥∥(αIn +A∗A)−1A∗ϵ
∥∥∥
2

∥x∥2
+

∥∥∥A−1b− (αIn +A∗A)−1A∗b
∥∥∥
2

∥x∥2

≤
max

{
1
α , 1
}
· ∥b∥2 · 10−8

∥x∥2
+

∥∥∥(In − (αIn +A∗A)−1A∗A
)
x
∥∥∥
2

∥x∥2

=
max

{
1
α , 1
}
· ∥b∥2 · 10−8

∥x∥2
+

∥∥∥∥∥∥∥∥
(
In − (αIn +A∗A)−1A∗A

)
︸ ︷︷ ︸

Eα:=

x

∥x∥2

∥∥∥∥∥∥∥∥
2

(3.19)

≤ max

{
1

α
, 1

}
· σ0(A) · 10−8 +

α

σ2
n−1 (A) + α

.

Suppose that α > σn−1(A). Comparing (3.19) with (3.13) in this case we can see that
(3.19) provides a better upper bound on the relative error ∥x− y∥2/∥x∥2 than (3.13) does
whenever α is chosen so that

∥Eαx∥2
σ0(A)∥x∥2

<

(
1

σn−1(A)
− 1

α

)
∥ϵ∥2
∥b∥2

.

Indeed, Tikhonov regularization generally reduces relative errors in practice as long as some
care is taken in properly selecting the regularization parameter α. And, of course, that’s the
trick: if we truly only have access to b′ and A then we really don’t have enough information
to select an optimal α (or s in Section 3.5.1). The best one can do in such cases (without

the aid of additional side information at least) is to choose α (or s) so that σ0(A)
α (or κ(As))

is not “too large”.

3.6 Linear Least-Squares Regression

Suppose that we have p ∈ N evaluations of a (potentially) unknown function f : Cn → Cm.
Here the reader should imagine that p (especially) as well as both n and m are potentially
very large. As a result, we’d like to find a low rank (and therefore compressible by Section 2.5)
matrix A ∈ Cm×n, and a shift vector b ∈ Cm, so that f(x) ≈ Ax+ b ∀x ∈ Cn. Of course,
this is generally impossible since we only have p evaluations of f in the form of a dataset

D := {(xj , f(xj))}j∈[p] = {(xj ,yj)}j∈[p] ⊂ C
n ×Cm,

93

where yj := f(xj) for all j ∈ [p]. Thus, we will settle for finding a rank at most s matrix
A ∈ Cm×n and b ∈ Cm that matches f on the available data D as well as possible. More
specifically, we seek a rank s matrix A ∈ Cm×n and b ∈ Cm satisfying

1

2

∑
j∈[p]

∥Axj + b− yj∥22 = min
B∈Cm×n, d∈Cm

rank(B) ≤ s

1

2

∑
j∈[p]

∥Bxj + d− yj∥22 . (3.20)

Our first step will be to show that centering the evaluation points, {xj}j∈[p], allows us
to decouple the choice of an optimal shift b from the choice of an optimal rank s matrix
A ∈ Cm×n. Once this decoupling is achieved we’ll see that a straightforward solution to
our problem already exists.

3.6.1 Centering, and the Optimal Shift b ∈ Cm

Let c := 1
p

∑
j∈[p] xj . Instead of directly approximating f : Cn → Cm using the available

data D, we will instead approximate the new function g : Cn → Cm defined by g(x) :=
f(x+ c) (so that f(x) = g(x− c) and g(xj − c) = f(xj) = yj ∀j ∈ [p]) using the centered
data

D′ := {(xj − c,yj)}j∈[p] =
{(

x′
j ,yj

)}
j∈[p] ,

where x′
j := xj − c ∀j ∈ [p]. Toward re-expressing (3.20) in terms of our centered data D′

let q : Cm×n ×Cm → R+ be defined by

q (B,d) :=
1

2

∑
j∈[p]

∥∥Bx′
j + d− yj

∥∥2
2
.

We can now see that solving (3.20) is equivalent to computing

(A,b) = argminB∈Cm×n, d∈Cm

rank(B) ≤ s

q(B,d) (3.21)

up to an additional shift of b by −Ac.

Exercise 3.6.1. Let {x′
j}j∈[p] be defined as above. Verify that

∑
j∈[p] x

′
j = 0.

The next lemma tells us that b = 1
p

∑
j∈[p] yj is always an optimal choice of the shift in

(3.21), completely independent of the matrix A.

Lemma 3.6.1. Let q : Cm×n ×Cm → R+ be as in (3.21). Then

q

B,
1

p

∑
j∈[p]

yj

 ≤ q (B,d)

holds for all B ∈ Cm×n and d ∈ Cm.

94

Proof. Fix B ∈ Cm×n and note that

q (B,d) =
1

2

∑
j∈[p]

∑
k∈[m]

∣∣∣(Bx′
j

)
k
+ dk − (yj)k

∣∣∣2
=

1

2

∑
j∈[p]

∑
k∈[m]

[(
Re
((

Bx′
j

)
k

)
+Re (dk)− Re ((yj)k)

)2
+
(
Im
((

Bx′
j

)
k

)
+ Im (dk)− Im ((yj)k)

)2]
.

From above we can see that the function q(B, ·) : Cm → R+ ultimately only depends on the
2m real and imaginary parts of it’s m complex input variables (i.e., the dk values above).
As a result, q(B, ·) can also be treated as a function from R2m into R+.

Let ℓ ∈ [m]. Recalling multivariable calculus (see, e.g., [33, Chapter 3]), we now know
that any critical point a ∈ Cm of q(B, ·) : Cm → R+ will satisfy

0 =
∂q

∂Re (aℓ)
=
∑
j∈[p]

Re
((

Bx′
j

)
ℓ

)
+Re (aℓ)− Re ((yj)ℓ)

= Re

B
∑
j∈[p]

x′
j


ℓ

+ pRe (aℓ)− Re

∑
j∈[p]

(yj)ℓ

 (3.22)

= pRe (aℓ)− Re

∑
j∈[p]

(yj)ℓ

 ,

where the last equality holds by Exercise 3.6.1. Rearranging (3.22) we can now see that

Re (aℓ) = Re
(
1
p

∑
j∈[p](yj)ℓ

)
must hold. A completely analogous argument similarly shows

that Im (aℓ) = Im
(
1
p

∑
j∈[p](yj)ℓ

)
. As a consequence, we have that aℓ =

1
p

∑
j∈[p](yj)ℓ =(

1
p

∑
j∈[p] yj

)
ℓ
holds for all ℓ ∈ [m].

The result now follows after observing that q(B, ·) is both always nonnegative-valued,
and quadratic in all 2m of its input variables’ real/imaginary parts. Hence, its single critical
point a = 1

p

∑
j∈[p] yj will be a global minimizer. Finally, we note that this minimizer is

completely independent of the matrix B.

Let y′
j := yj −

(
1
p

∑
k∈[p] yk

)
for all j ∈ [p], and then define X ∈ Cn×p and Y ∈ Cm×p

to be such that X:,j := x′
j and Y:,j := y′

j hold for all j ∈ [p]. We can now see that computing

95

(3.21) is equivalent to computing

A = argminB∈Cm×n s.t.
rank(B) ≤ s

1

2

∑
j∈[p]

∥∥Bx′
j − y′

j

∥∥2
2

= argminB∈Cm×n s.t.
rank(B) ≤ s

1

2
∥BX − Y ∥2F

= argminB∈Cm×n s.t.
rank(B) ≤ s

1

2
∥X∗B∗ − Y ∗∥2F

= argminB∈Cm×n s.t.
rank(B) ≤ s

1

2

∥∥X∗B∗ − PC(X∗)Y
∗∥∥2

F

= argminB∈Cm×n s.t.
rank(B) ≤ s

1

2

∥∥BX − Y PC(X∗)

∥∥2
F
. (3.23)

3.6.2 The Optimal Low-Rank Matrix A ∈ Cm×n

Assume for simplicity that p > n, and that X ∈ Cn×p is full rank so that C(X) = Cn.
Recalling Section 3.4.1 in the context of (3.23) we can now see that AX =

(
Y PC(X∗)

)
s
=(

Y PC(X∗)

)
s
PC(X∗) must hold. As a result we will have that

A = AXX† =
(
Y PC(X∗)

)
s
X†

since, by Exercise 3.2.1 together with the assumption that C(X) = Cn, XX† = PC(X) = In.

Exercise 3.6.2. Show that N (X) = C(X∗)⊥ ⊂ N
(
Y PC(X∗)

)
.

Exercise 3.6.3. Let {vj}j∈[p] ⊂ Cp be right singular vectors of Y PC(X∗) ordered corre-

sponding to their associated singular values. Prove that C(X∗)⊥ ⊂ span {vj}p−1

j=rank(Y PC(X∗))
.

Exercise 3.6.4. Prove that the first rank
(
Y PC(X∗)

)
right singular vectors of any SVD of

Y PC(X∗) belong to C(X∗).

Exercise 3.6.5. Prove that
(
Y PC(X∗)

)
s
=
(
Y PC(X∗)

)
s
PC(X∗) for all s ∈ [min{m, p}].

HINT: Let {vj}j∈[p] ⊂ Cp be right singular vectors of Y PC(X∗). Show that
(
Y PC(X∗)

)
s
vj =(

Y PC(X∗)

)
s
PC(X∗)vj for all j ∈ [p], and then appeal to Exercise 2.6.10.

The following theorem follows from the discussion above.

Theorem 3.6.2 (Linear Least-Squares Regression). Given the data D = {(xj ,yj)}j∈[p] ⊂
Cn ×Cm let cx := 1

p

∑
j∈[p] xj ∈ Cn, cy := 1

p

∑
j∈[p] yj ∈ Cm, and define X ∈ Cn×p and

Y ∈ Cm×p to be such that X:,j := xj − cx and Y:,j := yj − cy for all j ∈ [p]. Furthermore,
suppose that p > n and that X is full rank. Choose s ∈ {1, . . . ,min{m,n}} and set
A :=

(
Y PC(X∗)

)
s
X† and b := cy −Acx. Then, this A and b satisfy (3.20).

We will now consider a couple special cases of Theorem 3.6.2 which are commonly used
in applications.

96

Figure 3.1: A pictorial representation of the best 1-dimensional least-squares line for
four data points {x0,x1,x2,x3} ⊂ R2 (i.e., here s = 1). In this case the matrix X =(
x0 − cx x1 − cx x2 − cx x3 − cx

)
∈ R2×4, and C(X1) is the linear subspace spanned

by the principal left singular vector of X. The affine subspace C(X1) + b minimizes the
sum of the squared distances to the four data points.

Example 3.6.3 (Point Cloud Compression). Suppose that we want to compress a large
set of points {xj}j∈[p] ⊂ Cn with p > n. Finding a rank s ∈ {1, . . . , n} matrix A ∈ Cn×n

and shift b ∈ Cn that compresses these points optimally in the least-squares sense is
equivalent to solving (3.20) with yj = xj for all j ∈ [p]. Let cx := 1

p

∑
j∈[p] xj ∈

Cn and define X ∈ Cn×p to be such that X:,j := xj − cx for all j ∈ [p] (noting that
Y = X and cy = cx will also hold in Theorem 3.6.2 in this case). Theorem 3.6.2
together with Exercises 3.6.7 and 3.6.6 now tell us that an optimal solution is given by
A = XsX

† = PC(Xs) and b =
(
In − PC(Xs)

)
cx = PC(Xs)⊥cx provided that X is full

rank.

Simplifying even further, suppose that we want to compress p = 4 data points {xj}j∈[3] ⊂
R2 using an (s = 1)-dimensional matrix A ∈ C2×2. In this case we can see that cx =
1
4 (x0 + x1 + x2 + x3), X =

(
x0 − cx x1 − cx x2 − cx x3 − cx

)
∈ R2×4, A = PC(X1) ∈

R2×2, and b = PC(X1)⊥cx ∈ R
2. Theorem 3.6.2 guarantees that the resulting line yielded

by A and b, C(X1) + b, obtains the minimal sum of the squared ℓ2-distances to the four
data points achievable by any one-dimensional affine subspace (see Figure 3.1).

Exercise 3.6.6. Let A ∈ Cm×n and s ∈ {1, . . . ,min{m,n}}. Show that AsA
† = PC(As)

and that A†As = PC(A∗
s)
.

Exercise 3.6.7. Let X ∈ Cn×p and s ∈ {1, . . . ,min{n, p}}. Show that
(
XPC(X∗)

)
s

= Xs.

Exercise 3.6.8. Let X ∈ Cn×p and s ∈ {1, . . . ,min{n, p}}. Show that PC(Xs)X = Xs.

97

Example 3.6.4 (Least-Squares Regression in the Plane). Suppose that D = {(x′j , y′j)}j∈[p] ⊂
C ×C ≡ C2 (so that n = m = 1 in Theorem 3.6.2). In this case we want to find a best
m = A ∈ C (a “1× 1” matrix) and b ∈ C so that mx′j + b ≈ y′j for all j ∈ [p] (i.e., s = 1).

Continuing, we can further see that cx := 1
p

∑
j∈[p] x

′
j ∈ C and cy := 1

p

∑
j∈[p] y

′
j ∈ C.

Setting xj := x′j − cx and yj := y′j − cy for all j ∈ [p], we have that X ∈ C1×p from

Theorem 3.6.2 is xT (the transpose of the vector x ∈ Cp whose entries are the xj). Similarly,
Y = yT ∈ C1×p. Finally, letting x ∈ Cp have entries (x)j := xj for all j ∈ [p], we also find
that PC(X∗) = PC(x) =

x x∗

∥x∥22
∈ Cp×p and X† = x

∥x∥22
∈ Cp so that

m = A =
(
Y PC(X∗)

)
1
X† = Y PC(X∗)X

† = yT x x∗

∥x∥22
x

∥x∥22
=
⟨x,y⟩
∥x∥22

∈ C, (3.24)

and b = cy −mcx ∈ C.
For a concrete numerical example, consider the dataset D = {(x′j , y′j)}j∈[4] = {(1, 6),

(2, 5), (3, 7), (4, 10)} ⊂ R×R ≡ R2. We want to find a line ℓ(x) = mx+ b minimizing

1

2

∑
j∈[4]

(
ℓ
(
x′j
)
− y′j

)2
=

1

2

(
(ℓ(1)− 6)2 + (ℓ(2)− 5)2 + (ℓ(3)− 7)2 + (ℓ(4)− 10)2

)
.

Proceeding as above we can see that cx = 1
4 (1 + 2 + 3 + 4) = 5

2 and cy = 1
4 (6 + 5 + 7 + 10) =

7. As a consequence we have that

x =


1
2
3
4

− 5

2


1
1
1
1

 =


−3/2
−1/2
1/2
3/2

 , and y =


6
5
7
10

− 7


1
1
1
1

 =


−1
−2
0
3


in this case. Using (3.24) we can now see that

m =
⟨x,y⟩
∥x∥22

=
3/2 + 1 + 9/2

9/4 + 1/4 + 1/4 + 9/4
=

7

5
= 1.4

so that b = cy −mcx = 7− (7/5)(5/2) = 7/2. Hence, ℓ(x) = 1.4x+ 3.5 is the best-fit line
(see Figure 3.2).

3.7 Discrete Convolution and Fourier Transform Matrices

We begin this section by defining a general class of matrices which are important in many
applications including, e.g., as the weight matrices used in a special type of neural network
layer known as a “convolutional” neural network layer (recall Definition 1.2.4). As will
be clear soon, one advantage of this type of matrix is that it’s defined with many fewer
parameters than a generic matrix requires.

98

Figure 3.2: A pictorial representation of the best-fit least-squares line ℓ(x) = 1.4x+ 3.5 for
the data D = {(1, 6), (2, 5), (3, 7), (4, 10)} ⊂ R×R ≡ R2 from Example 3.6.4.

Definition 3.7.1 (Toeplitz Matrix). The Toeplitz matrix A ∈ Cm×n generated by the
vector a ∈ Cm+n−1 is the Cm×n matrix with entries given by

Aj,k := a(m−1)+k−j

for all j ∈ [m], k ∈ [n]. We will also denote this matrix by A = Toepm,n(a). More generally,
we will say that a matrix A ∈ Cm×n is Toeplitz if there exists a vector a ∈ Cm+n−1 such
that A = Toepm,n(a). We will also define Toepn(a) := Toepn,n(a) in the case of square
matrices.

Example 3.7.2. The Toeplitz matrix A ∈ C3×4 generated by a ∈ C6 is

Toep3,4(a) =

a2 a3 a4 a5
a1 a2 a3 a4
a0 a1 a2 a3

 .

The Toeplitz matrix A ∈ C4×3 generated by a ∈ C6 is

Toep4,3(a) =


a3 a4 a5
a2 a3 a4
a1 a2 a3
a0 a1 a2

 .

Note that the entries of a appear along the bottom row, and then up the rightmost row, of
the Toeplitz matrix it generates in a “backwards-L” shape (displayed in blue above). The
rest of the Toeplitz matrix is then determined by its being constant along all of its diagonals.

Exercise 3.7.1. Show that A ∈ Cm×n is Toeplitz if and only if Aj,k = Aj+1,k+1 holds for
all j ∈ [m− 1] and k ∈ [n− 1].

99

Exercise 3.7.2. Show that A is Toeplitz if and only if A∗ is Toeplitz.

Exercise 3.7.3. Given a ∈ Cn let Reverse(a) ∈ Cn be the vector with entries given by

(Reverse(a))j = an−1−j .

Show that if A ∈ Cm×n is the Toeplitz matrix generated by a ∈ Cm+n−1, then A∗ is the
Toeplitz matrix generated by Reverse(a).

Definition 3.7.3 (Convolutional Layer of Neurons). A Convolutional Layer of Neurons
ℓ : RN → Rd is a layer of neurons (recall Definition 1.2.4), σ (Wx+ b), where the weight
matrix W ∈ Rd×N is Toeplitz.

We can now see that anm×n Toeplitz matrix is entirely defined using onlym+n−1 < mn
parameters. This can have potential benefits during, e.g., NN training. Of more immediate
interest in this section, however, is that these matrices can also have runtime advantages as
linear functions when coupled with Discrete Fourier Transform techniques. This will be
discussed in Sections 3.7.2 and 3.8. Before we can understand how these computational
advantages appear, however, we first have to discuss a special type of square Toeplitz
matrices known as “circulant matrices”.

3.7.1 Circulant and Toeplitz Matrices

As we will see later in Section 3.7.2, the following special class of square Toeplitz matrices is
crucial to realizing fast matrix-vector multiplication algorithms for more arbitrary Toeplitz
matrices.

Definition 3.7.4 (Circulant Matrix). The circulant matrix generated by a vector
v ∈ Cn is the matrix circ(v) ∈ Cn×n defined by

(circ(v))j,k = v(j−k) mod n.

We will say that a matrix A ∈ Cn×n is circulant if there exists a vector v ∈ Cn such that
A = circ(v). Recall that “j mod n” is defined for all j ∈ Z and n ∈ N to be the single
element contained in the set {j + kn | k ∈ Z} ∩ [n] (or, equivalently, to be the unique value
r ∈ [n] = {0, 1, . . . , n− 1} such that ∃k ∈ Z satisfying j = r + kn).

Example 3.7.5. The circulant matrix A ∈ C4×4 generated by v ∈ C4 is

circ(v) =


v0 v3 v2 v1
v1 v0 v3 v2
v2 v1 v0 v3
v3 v2 v1 v0

 .

Note that this matrix is also Toeplitz due to the fact that it’s constant along its diagonals
(recall Exercise 3.7.1).

100

Exercise 3.7.4. Show that every circulant matrix is also Toeplitz.

Exercise 3.7.5. Let A ∈ C2n×2n be circulant. Show that Aj,k = Aj+n,k+n for all j, k ∈ [n].
More generally, show that Aj,k = A(j±n) mod 2n,(k±n) mod 2n holds for all j, k ∈ [2n].

Not only is every circulant matrix a Toeplitz matrix, but any square Toeplitz matrix
can be embedded into a larger circulant matrix. Hence, e.g., any algorithm which efficiently
multiplies circulant matrices against vectors can also be used to efficiently multiply square
Toeplitz matrices against vectors.

Let a ∈ C2n−1 and consider the square Toeplitz matrix generated by a, Toepn(a) ∈ Cn×n,
with entries given by

(Toepn(a))j,k = a(n−1)−(j−k). (3.25)

Now let c ∈ C2n be defined by cT = (an−1, an−2, . . . , a0, 0, a2n−2, . . . , an) so that

cℓ =


an−1−ℓ 0 ≤ ℓ ≤ n− 1

0 ℓ = n

a3n−1−ℓ n+ 1 ≤ ℓ ≤ 2n− 1

(3.26)

for all ℓ ∈ [2n]. Then, the circulant matrix circ(c) ∈ C2n×2n will always take the block form

circ(c) =

(
Toepn(a) A

A Toepn(a)

)
∈ C2n×2n, (3.27)

where A ∈ Cn×n.

Example 3.7.6. Let a ∈ C3. The 2× 2 Toeplitz matrix generated by a is

Toep2(a) =

(
a1 a2
a0 a1

)
.

If we form the vector c ∈ C4 defined by cT = (a1, a0, 0, a2) then

circ(c) =


a1 a2 0 a0
a0 a1 a2 0
0 a0 a1 a2
a2 0 a0 a1

 =

(
Toep2(a) A

A Toep2(a)

)
∈ C4×4.

The following lemma guarantees the upper-left n×n block of circ(c) ∈ C2n×2n is indeed
always Toepn(a) ∈ Cn×n as claimed above in (3.27).

Lemma 3.7.7. Let a ∈ C2n−1. Build c ∈ C2n from a entry-wise via (3.26). Then,
(circ(c))j,k = (Toepn(a))j,k for all j, k ∈ [n].

101

Proof. We can see that −(n− 1) ≤ j − k ≤ (n− 1) since j, k ∈ [n]. Furthermore,

(j − k) mod 2n =

{
j − k 0 ≤ j − k ≤ n− 1

2n+ (j − k) −(n− 1) ≤ j − k < 0
.

Hence, if 0 ≤ j − k ≤ n− 1 we have that

(circ(c))j,k = c(j−k) mod n = cj−k = an−1−(j−k),

and if −(n− 1) ≤ j − k < 0 we have that

(circ(c))j,k = c(j−k) mod n = c2n+(j−k) = a3n−1−(2n+(j−k)) = an−1−(j−k).

Thus, (circ(c))j,k = (ToepN (a))j,k = a(n−1)−(j−k) for all j, k ∈ [n] by (3.25).

Exercise 3.7.6. Use Lemma 3.7.7 together with Exercise 3.7.5 to show that (3.27) holds
for all n ∈ N.

Computationally, observe that via (3.27) we have for any v ∈ Cn that

circ(c)

(
v
0

)
=

(
Toepn(a) A

A Toepn(a)

)(
v
0

)
=

(
Toepn(a)v

Av

)
. (3.28)

Thus, we can always recover Toepn(a)v from circ(c)

(
v
0

)
by taking its first n entries. Hence,

as previously mentioned, any algorithm which efficiently multiplies circulant matrices against
arbitrary vectors can also be used to efficiently multiply square Toeplitz matrices against
arbitrary vectors. We will use this fact to our advantage later in Section 3.8.

3.7.2 Discrete Fourier Transforms and Circular Convolutions

In this section we will discuss a particular orthonormal basis of Cn, known as the discrete
Fourier basis, which is important for a large number of computational reasons involving
convolutions. As we shall see, its many remarkable properties are in fact due to the periodic
nature of the unit magnitude complex numbers {eiθ

∣∣ θ ∈ [0, 2π]} ⊂ C. In particular, given
n ∈ N the unit magnitude nth root of unity

fn := e
−2πi

n ∈ C

will be the atomic building block of the basis, and its properties are therefore crucial.

Exercise 3.7.7. Show that (fn)
kn = fkn

n = 1 for all k ∈ Z.

Exercise 3.7.8. Show that (fn)
k = fk

n ̸= 1 for all nonzero k ∈ [n].

102

Exercise 3.7.9. Show that (fn)
ωj = fωj

n = f
(ω mod n)(j mod n)
n = f

(ωj mod n)
n for all

j, ω ∈ Z.3

Exercise 3.7.10. Suppose that p, n ∈ N are such that n
p ∈ N (so that p divides n). Show

that (fn)
pj = fpj

n = f
(j mod n

p
)

n
p

holds for all j ∈ Z.

Let F ∈ Cn×n be the n× n matrix whose entries are given by

Fω,j :=
fω·j
n√
n

for all ω, j ∈ [n]. The matrix F is called the Discrete Fourier Transform (DFT) matrix
of size n. Importantly, the columns of F ∗ form an orthonormal basis of Cn (i.e., one can
show that F is a unitary matrix – see Exercise 3.7.11). This basis is called the discrete
Fourier basis of Cn.

Example 3.7.8. Recall that 1 ∈ Cn denotes the vector of all ones. We have that

F1 =
1√
n


∑n−1

j=0 f
0·j
n∑n−1

j=0 f
1·j
n

...∑n−1
j=0 f

(n−1)·j
n

 .

Considering the kth entry of F1 ∈ Cn for all k ̸= 0 we can see that

(F1)k =
1√
n

n−1∑
j=0

fk·j
n =

1√
n

(
1− fkn

n

1− fk
n

)
=

1√
n

(
1− 1

1− fk
n

)
= 0

by Exercises 3.7.7 and 3.7.8. On the other hand, for k = 0 we have that

(F1)0 =
1√
n

n−1∑
j=0

f0·j
n =

1√
n

n−1∑
j=0

1 =
n√
n

=
√
n.

Hence, F1 =
√
n e0.

Exercise 3.7.11. Prove that the DFT matrix, F , is unitary. (HINT: Recall Theo-
rem 2.6.14.)

Exercise 3.7.12. Prove that ∥Fv∥22 = ∥v∥22 holds for all v ∈ Cn. This equality is sometimes
referred to as “Parseval’s identity” in the context of the discrete Fourier basis.

3Let j ∈ Z. Recall that “j mod n” denotes the unique integer r ∈ [n] satisfying j = r + k · n for some
k ∈ Z.

103

The Discrete Fourier Transform (DFT) of a vector v ∈ Cn is simply

v̂ := Fv (3.29)

with entries given by v̂ω = 1√
n

∑n−1
j=0 vjf

ω·j
n for all ω ∈ [n] = {0, . . . , n− 1} ⊂ N. Similarly,

the Inverse Discrete Fourier Transform (IDFT) of a vector v ∈ Cn is

v̂-1 := F−1v = F ∗v.

As we shall see, the DFT walks hand in hand with our next definition.

Exercise 3.7.13. Suppose p, n ∈ N are such that n/p ∈ N (i.e., p divides n). Given
u ∈ Cp, let v ∈ Cn be a longer vector with entries given by

vj =

{
upj/n if j ≡ 0 mod (n/p)

0 else
,

and let w ∈ Cn be another longer vector with entries given by wj = ujmod p. Compute the
n-length DFTs v̂, ŵ ∈ Cn in terms of the p-length DFT of u.

Exercise 3.7.14. Let a, b, c ∈ [n] be such that a is invertible modulo n.4 Furthermore,
suppose that u,v ∈ Cn satisfy

vj = e
2πicj

n uaj+b mod n = f−cj
n uaj+b mod n

for all j ∈ [n]. Write v̂ω in terms of one or more entries of û for a given ω ∈ [n]. How
does a affect the entries of v̂ when c = b = 0? How does b affect the entries of v̂ when a = 1
and c = 0? How does c affect the entries of v̂ when a = 1 and b = 0?

The discrete (circular) convolution of two vectors u,v ∈ Cn, denoted by u⋆v ∈ Cn,
is defined entrywise via

(u ⋆ v)k :=

n−1∑
j=0

uj · v(k−j) mod n =

n−1∑
j=0

uj mod n · v(k−j) mod n

for all k ∈ [n]. Note that, in fact, u ⋆ v = circ(v)u for all u,v ∈ Cn.

Example 3.7.9. Let u,v ∈ C4. Then,

u ⋆ v =


∑3

j=0 uj v−j mod n∑3
j=0 uj v1−j mod n∑3
j=0 uj v2−j mod n∑3
j=0 uj v3−j mod n

 =


v0 v3 v2 v1
v1 v0 v3 v2
v2 v1 v0 v3
v3 v2 v1 v0



u0
u1
u2
u3

 = circ(v)u.

4A value a ∈ [n] is invertible modulo n if there exists an h ∈ [n] such that a h ≡ 1 mod n. Any
a ∈ [n] that is relatively prime to n will be invertible modulo n by the Fermat-Euler Theorem (see, e.g., [36,
Theorem 2.8]).

104

The discrete convolution has the following useful relationship with the discrete Fourier
transform.

Theorem 3.7.10. Let u,v ∈ Cn. Then

(û ⋆ v)ω =
√
n ûωv̂ω (3.30)

holds for all ω ∈ [n].

Proof: To obtain (3.30) we compute

(û ⋆ v)ω =
1√
n

n−1∑
k=0

(u ⋆ v)k f
ω·k
n =

1√
n

n−1∑
k=0

n−1∑
j=0

uj · v(k−j) mod n

 fω·k
n .

Exchanging the final double sum we obtain that

(û ⋆ v)ω =
1√
n

n−1∑
j=0

uj f
ω·j
n

(
n−1∑
k=0

v(k−j) mod n f
ω·(k−j)
n

)
=
√
n ûωv̂ω.

Here we have used the fact that f ℓ·n
n = 1 for all ℓ ∈ Z so that f

ω·(k−j)
n = f

ω·((k−j) mod n)
n

always holds (see, e.g, Exercise 3.7.9). □

Exercise 3.7.15. Show that circ(u)v = v⋆u = u⋆v = circ(v)u holds for all u,v ∈ Cn.

Theorem 3.7.10 tells us that the DFT of the convolution of two vectors is, up to
rescaling by

√
n, equal to the entrywise product of the DFTs of the two vectors. Using this

relationship we can compute the discrete convolution of u and v using their DFTs. Let
u ⊙ v ∈ Cn denote the entrywise (or Hadamard) product of the two vectors u,v ∈ Cn.
That is, let

(u⊙ v)j := ujvj

for all j ∈ [n]. Theorem 3.7.10 now directly implies that

u ⋆ v =
√
n ̂̂u⊙ v̂

-1

=
√
n F ∗ (Fu⊙ Fv) . (3.31)

Note that the last expression of (3.31) could be computed quickly if we could find a way to
quickly calculate both Fu and F ∗u for any given u. This is in fact possible as we shall see
in Section 3.8.

The following additional fact relating IDFT matrices to circulant matrices is closely
related to Theorem 3.7.10: Every column of the IDFT matrix F ∗ is an eigenvector of every
circulant matrix. As a result, the n× n IDFT matrix F ∗ simultaneously diagonalizes this
entire class of n× n matrices.

105

Theorem 3.7.11. Let v ∈ Cn. Every column of F ∗ ∈ Cn×n is an eigenvector of circ(v).

Proof. Let u = F ∗ej ∈ Cn be the jth column of F ∗. By (3.31),

circ(v)u = u ⋆ v =
√
n F ∗(Fu⊙ Fv) =

√
n F ∗((FF ∗ej)⊙ Fv)

=
√
n F ∗(ej ⊙ v̂) =

√
n F ∗(v̂jej) =

√
n v̂ju

Thus, the jth column of F ∗ is an eigenvector of circ(v) with eigenvalue
√
n v̂j .

Exercise 3.7.16. Let v ∈ Cn. Show that circ(v) ∈ Cn×n is invertible if and only if v̂ω ̸= 0
for all ω ∈ [n].

Exercise 3.7.17. Order the Fourier coefficients of v ∈ Cn by magnitude so that

|v̂ω0 | ≥ |v̂ω1 | ≥ · · · ≥ |v̂ωn−1 |.

Prove that the jth singular value of circ(v) ∈ Cn×n satisfies σj (circ(v)) =
√
n |v̂ωj |.

One important consequence of the proof above is that the DFT gives us an easy way to
compute the eigenvalues of all circulant matrices. Of even more consequence, though, is that
(3.31) can also be used in many other applications where convolutions naturally appear. We
have already seen, e.g., that the Toeplitz weight matrices of convolutional layers of neurons
can be embedded into circulant matrices (recall definition 3.7.3 and (3.27)). Hence, (3.31)
can potentially help evaluate convolutional layers of neurons more quickly via (3.28). In
addition, convolutions also appear in numerous other important applications, two of which
we will briefly discuss next.

Example 3.7.12 (Deblurring). Consider the following “deblurring” problem: given u ⋆ v ∈
Cn (the blurry signal) and knowledge of the blur kernel v ∈ Cn (e.g., a Gaussian blur
kernel), recover the unblurred signal u ∈ Cn. Such problems are common in imaging
applications where a blurred image can indeed be thought of as a crisp/unblurred imaged
convolved with a blur kernel. The question then becomes how one can try to “undo the blur”
in order to get u ∈ Cn back from its blurry version u ⋆ v ∈ Cn.

Somewhat amazingly, this is easy to do efficiently if we have both the blurry signal
u ⋆ v ∈ Cn and knowledge of how the original image was likely blurred (i.e., we also know
v ∈ Cn). In that case one can compute

ûω =
û ⋆ vω

v̂ω

for all ω ∈ [n], and then set u = F ∗û. This of course assumes that the Fourier coefficients
v̂ω ̸= 0 for all ω ∈ [n]. If there are zero Fourier coefficients, then one can instead note
that we are equivalently simply trying to solve the linear system circ(v)u = u ⋆ v for
u ∈ Cn. In such a case we can instead always find an approximate solution by returning,

e.g., the least-squares estimate ũ = circ(v)†(u ⋆ v) = PC(circ(v)∗)u (recall Section 3.2).

Furthermore, an SVD of circ(v), and therefore circ(v)†, can be constructed efficiently using
Theorem 3.7.11.

106

Example 3.7.13 (Polynomial Multiplication). Convolutions also appear naturally as
part of polynomial multiplication. Let q(x) =

∑n−1
j=0 qjx

j and r(x) =
∑n−1

j=0 rjx
j be two

polynomials. Then t(x) = q(x) ·r(x) is a polynomial of degree ≤ 2n−2 that can be expressed
as t(x) =

∑2n−2
j=0 tjx

j. Writing the coefficients of q and r as vectors q, r ∈ Cn, respectively,

and the coefficients of t as a vector t ∈ C2n−1, we have that

t =

(
q
0

)
⋆

(
r
0

)
.

For example, when n = 3 we have that

t(x) = (q2x
2 + q1x+ q0)(r2x

2 + r1x+ r0)

= q2r2︸︷︷︸
t4

x4 + (q2r1 + q1r2)︸ ︷︷ ︸
t3

x3 + (q2r0 + q1r1 + q0r2)︸ ︷︷ ︸
t2

x2 + (q1r0 + q0r1)︸ ︷︷ ︸
t1

x+ q0r0︸︷︷︸
t0

.

In vector form this corresponds to
t0
t1
t2
t3
t4

 =


q0 0 0 q2 q1
q1 q0 0 0 q2
q2 q1 q0 0 0
0 q2 q1 q0 0
0 0 q2 q1 q0



r0
r1
r2
0
0

 = circ

((
q
0

))
r0
r1
r2
0
0

 =


q0
q1
q2
0
0

 ⋆


r0
r1
r2
0
0

 .

Hence, if we can compute (I)DFTs quickly then we can also multiply polynomials quickly
via (3.31).

Exercise 3.7.18. Consider the “finite difference” matrix D2 ∈ Rn×n whose entries are
given by

(D2)i,j =


−2 if i = j
1 if (i− j) ≡ 1 mod n
1 if (i− j) ≡ n− 1 mod n
0 otherwise

. (3.32)

This is an example of a circulant matrix. Show that FD2 = EF , where E ∈ Rn×n is a
diagonal matrix with entries given by

(E)i,j =

{
2 cos(2πj/n)− 2 if i = j
0 if i ̸= j

. (3.33)

Exercise 3.7.19. Let D2r ∈ Rn×n be defined by D2r := Dr
2. Use the previous exercise to

show that FD2r = ErF for all r ∈ Z+.

As we will discuss in the next section, there is indeed a fast algorithm for computing
both Fu and F ∗u for all u ∈ Cn. As a result, there are fast (i.e., computationally efficient)
algorithms based on (3.31) for rapidly computing the convolutions involved in all of the
applications mentioned in this section. Before explaining how any of these fast algorithms
work, however, let’s first briefly discuss what we actually mean when we say an algorithm
is “fast”.

107

3.7.3 Big-O Notation and the Basic Art of Runtime Analysis

Throughout this text we will approach runtime discussions/analysis by counting six general
types of atomic computational operations which we will assume any reasonable computer
can do in a constant amount of time. These six types of constant-cost operations are:

1. Assigning a complex value to/reading a complex value from a variable or vector entry
(e.g., setting xj = y ∈ C).

2. Adding/subtracting two machine numbers (e.g., adding any two real or complex
numbers to a fixed precision).

3. Multiplying/dividing two machine numbers (e.g., multiplying any two real or complex
numbers to a fixed precision).

4. Comparing two machine numbers (e.g., deciding whether one real number is larger/smaller/
equal to another real number).

5. Evaluating basic logical expressions and conditional statements (e.g., deciding if
“(boolean value A) AND/OR (boolean value B)” is True or False).

6. Evaluating simple functions f : R → R to a fixed precision. Herein, this class of
“simple functions” includes (i) functions with rapidly convergent Maclaurin (i.e., 0-
centered Taylor) series expansions such as the exponential, sine, and cosine functions,
(ii) related complex-valued functions like eiθ = cos(θ)+i sin(θ), and (iii) other rapidly
approximable functions such as f(t) = tα for a given (e.g., non-integer) α ∈ R.

Looking at the “constant-cost” operations above the invested reader’s eyebrows should
be at least slightly raised. The sixth type of operation (evaluating simple functions) seems
particularly fishy, doesn’t it?5 Even the second type of operation (i.e., simple addition)
being “constant-cost” should inculcate suspicion in anyone who was expected to add 6 digit
numbers to one another by hand in elementary school. I urge anyone who is not skeptical
to grab a piece of of chalk and investigate the claim that adding two 300 digit numbers
together is the same “constant-cost” operation as adding 9 to 8.6 That said, let me urge
you to allow the escape clause “to a fixed precision”, as well as the related term “machine
numbers”, to save you from your skepticism, at least enough to believe that there is indeed
some value to such simple types of operation counts.

5We urge the interested reader to consult, e.g,. [31, Chapters 1 and 3] to learn why this sixth type of
constant-cost operation is indeed not too fishy after all. . . .

6Really even adding two numbers should not be considered “constant-time” if you are doing serious
computations involving, e.g., large number (and, therefore, extended precision) arithmetic. More precisely,
the complexity of addition should depend on the the number of digits in each sum that you want to be able
to correctly compute. Of course, this type of more complicated accounting then only gets more involved as
you consider the other types of operations above.

108

Generally speaking, a digital computer can only guarantee the calculation of a fixed
number of the leading digits of any real number one aims to compute/store. This is simply
a fact of life. All of our algorithms here (or any others you see that are analyzed in a
similar way) only guarantee you numerical answers up to some precision, or number of
digits of accuracy – if that number of digits is not enough to be meaningful, then the
algorithms are computing garbage. If, however, the answer you are after can be expressed
accurately enough to satisfy you by its most significant, e.g., ∼ 16 decimal digits, then
the type of accounting we do here will be completely adequate for you. Even if you want
many more digits of accuracy, though, a computer algorithm that needs to use only a few
higher-precision operations will still be much faster to execute that one that uses many
more higher-precision operations. As a result, even if our operation counts don’t truly
represent an algorithm’s runtime complexity with 100% accuracy in all cases (they don’t),
they do at least correlate well enough to be informative.7

Example 3.7.14 (Matrix-vector Multiplication). As an illustrative example, let’s consider
the runtime complexity of computing the matrix-vector product Ax ∈ Cm for an arbitrary
matrix A ∈ Cm×n and vector x ∈ Cn. Noting that each entry of y = Ax ∈ Cm is computed
by

yj = (Ax)j =
∑
k∈[n]

Aj,kxk,

we can can see that calculating yj ∈ C requires 4n operations (we must read the 2n Aj,k/xk
values into memory and then perform n multiplications, n− 1 additions, and finally one
assignment of the correct value to yj). Given that we must compute yj for all j ∈ [m] in
order to calculate y = Ax we can now conclude that computing y will require at most 4nm
constant-cost operations.8

In the example above the constant 4 we ended up with matters much less in general
than the parameters m and n which will be significantly larger than 4 for big matrices
A. As a result, it’s standard practice to simplify operation counts by ignoring all such
constants via big-O notation.

Definition 3.7.15 (Big-O Notation). Let f, g : (0, 1)n× (1,∞)m → [0,∞) be two functions
of n+m ≥ 1 variables for nonnegative n,m ∈ Z. We say that f is O(g) if there exists a
constant C ∈ [1,∞) and values (δ0, . . . , δn−1)× (y0, . . . , ym−1) ∈ (0, 1)n× (1,∞)m such that

f(ϵ0, . . . , ϵn−1, x0, . . . , xm−1) ≤ Cg(ϵ0, . . . , ϵn−1, x0, . . . , xm−1)

whenever ϵj < δj and xk > yk hold for all j ∈ [n] and k ∈ [m].

7We urge the interested reader to consult, e.g, [31, Chapter 2] and [15, Chapters 2 and 3] to learn more
about numerical precision, machine numbers, and algorithmic runtime analysis. To begin understanding
how one might make complexity analysis more rigorous one can also consult, e.g., [37].

8Here we say that computing y will require at most 4nm constant cost operations because we have
demonstrated a way to compute y using this number of operations. However, there might be better ways to
do it that use fewer operations by, e.g., avoiding rereading xk multiple times for every different yj calculation.

109

We can now see from Example 3.7.14 that computing Ax can always be done using
O(mn) operations (check!). The following example will also help illustrate the proper use
of big-O notation.

Example 3.7.16. Consider f, g : (0, 1)2 × (1,∞)2 → R+ given by f(ϵ, δ,m, n) = n/ϵ +

m/δ + 100n+ 200 and g(ϵ, δ,m, n) = max{m,n}
min{ϵ,δ} . We will show that f is O(g).

To start we note that 1 < 1
min{ϵ,δ} holds for all ϵ, δ ∈ (0, 1). Similarly, 1 < max{m,n}

holds for all m,n ∈ (1,∞). Hence,

f(ϵ, δ,m, n) = n/ϵ+m/δ + 100n+ 200 ≤ max{m,n}
(
1

ϵ
+

1

δ
+ 100

)
+ 200

≤ max{m,n}
(

2

min{ϵ, δ}
+ 100

)
+ 200 ≤ max{m,n}

(
102

min{ϵ, δ}

)
+ 200

≤ 302

(
max{m,n}
min{ϵ, δ}

)
= 302 · g(ϵ, δ,m, n)

holds for all (ϵ, δ)× (m,n) ∈ (0, 1)2× (1,∞)2. As a consequence, we can see that f is indeed
O(g) in accordance with Definition 3.7.15.

Exercise 3.7.20. Let g : (0, 1)× [1,∞)2 → [0,∞) be given by g(ϵ, x, y) = x log y
ϵ . Which of

these functions f : (0, 1)× [1,∞)2 → [0,∞) are O(g)? Explain your answers.

(a) f(ϵ, x, y) = 300x log y
ϵ + 50

(b) f(ϵ, x, y) = 500x0.34 + 600/ϵ+ 106 log y

(c) f(ϵ, x, y) = 0.2 x
ϵ2

+ log y

(d) f(ϵ, x, y) = 20
√
x log(100+log(y))√

ϵ

Exercise 3.7.21. Let A ∈ Cm×n and B ∈ Cn×p. Show that computing AB ∈ Cm×p can
be done using O(mnp) operations.9

3.8 The Fast Fourier Transform (FFT)

As seen above, computing the DFT of a vector v ∈ Cn requires the computation of
Fv. Computing Fv directly via a generic matrix-vector multiply as per Example 3.7.14
uses O(n2) operations. In this section we will discuss the Fast Fourier Transform (FFT)
algorithm which can compute the DFT of a vector using only O(n log n) operations. Though
this reduction in computational complexity might seem slight at first glance, this speedup

9There are in fact faster (though not terribly practical) matrix multiplication algorithms out there for
arbitrary matrices! We direct the interested reader to, e.g., [15, Chapter 28],[45, 28, 48].

110

has had such far reaching impacts that the FFT has been lauded as one of the ten most
important algorithmic developments of the twentieth century as a result [13].10

The FFT was first published and analyzed as a computer algorithm by Cooley and
Tukey in 1965 [14], despite similar techniques being utilized much earlier (e.g., by Gauss
and many others [23]). Cooley and Tukey’s algorithm is particularly efficient for vector
dimensions, n, whose prime factorizations contain only small prime factors. Later variants
of the FFT [5, 39] allowed the FFT to also be utilized effectively for vector sizes whose
prime factorizations contain larger primes. This section has primarily follows [14, 5, 39].
For more information on Fourier methods and algorithms we recommend that the interested
reader consult the relevant chapters of [38], [31], [15], or [7]. For a fast FFT implementation
we recommend FFTW [19]. In what follows we will outline the recursive construction of
the FFT algorithm via sum splitting techniques.

Let u ∈ Cn, and suppose that its dimension, n, has the prime factorization

n = p1 · p2 · · · pm, where p1 ≤ p2 ≤ · · · ≤ pm are n’s prime factors.

Choose ω ∈ [n]. Recalling the definition of the DFT we have that

ûω =
1√
n

n−1∑
j=0

uj f
ω·j
n . (3.34)

By splitting the sum (3.34) for ûω into p1 smaller subsums, one for each possible residue
modulo p1, we can see that

ûω =
1√
n

p1−1∑
k=0

fω·k
n

 n
p1

−1∑
j=0

uk+p1·j f
ω·p1·j
n

 . (3.35)

Let’s now rewrite the internal sum of (3.35) in order to realize some progress.

Given k ∈ [p1], define u(k,p1) ∈ Cn/p1 to be the vector whose entries are the entries of u
having indexes that are congruent to k modulo p1,

(
u(k,p1)

)
j
:= uk+j·p1 (3.36)

10The QR decomposition discussed in Section 2.4 also made the list of the top 10 most important
algorithmic developments by the way!

111

for all j ∈ [n/p1].
11 Our equation (3.35) for ûω now becomes

ûω =
1
√
p1

p1−1∑
k=0

fω·k
n

 1√
n/p1

n
p1

−1∑
j=0

(
u(k,p1)

)
j
fp1·ω·j
n

 (3.37)

=
1
√
p1

p1−1∑
k=0

fω·k
n

 1√
n/p1

n
p1

−1∑
j=0

(
u(k,p1)

)
j
f

(
ω mod n

p1

)
·j

n
p1


=

1
√
p1

p1−1∑
k=0

fω·k
n

(
û(k,p1)

)
ω mod n

p1

. (3.38)

For the sake of clarity we emphasize that the vector û(k,p1) ∈ Cn/p1 in (3.38) is exactly

Fu(k,p1), where F ∈ C
n
p1

× n
p1 is now the DFT matrix of size n/p1. We strongly recommend

that you verify the equality of (3.37) – (3.38) for yourself before reading further.

At this point it’s useful to ask ourselves what we’ve managed to accomplish by reformu-
lating (3.34) into (3.38). Mainly, we can now compute û ∈ Cn with fewer operations than

before by computing it in two steps. First, we compute û(k,p1) ∈ C
n
p1 for all k ∈ [p1]. Next,

we use the vectors û(0,p1), . . . , ̂u(p1−1,p1) computed in the first step in order to compute
each entry of û via (3.38). The first step can be accomplished with p1 matrix-vector
multiplications, each of which can be computed using O(n2/p21) operations (recall that

û(k,p1) = Fu(k,p1), where F is the DFT matrix of size n/p1). Hence, the first step can be
completed using O(n2/p1) total operations. Step two only requires O(p1n) total operations
in order to finish calculating û, O(p1)-operations for each entry ûω. Putting it all together,
we can see that (3.38) allows us compute û ∈ Cn using a grand total of O(p1n + n2/p1)
operations, as opposed to computing it directly via (3.29) using ∼ n2 operations.

Although the computational gain obtained from (3.38) is modest when p1 ≪ n, it is
important to note that the sum-splitting technique used to obtain it can now be employed

again in order to compute each û(k,p1), k ∈ [0, p1), more quickly. That is, we may split

up the sum for (û(k,p1))ω into p2 additional sums, etc.. Repeatedly sum-splitting in this
fashion leads to the recursive Fast Fourier Transform (FFT) shown in Algorithm 6.
Analogous sum-splitting leads to the Inverse Fast Fourier Transform (IFFT) which
can be obtained from Algorithm 6 by replacing line 10’s fkω

n by f−kω
n and replacing each û

by a û-1.

We are now ready to analyze the computational complexity of the FFT. Let Tn be the
total number of operations used by Algorithm 6 to compute û ∈ Cn. In order to determine
an equation for Tn we note that lines 6 – 8 of Algorithm 6 require p1 · T n

p1
operations while

11Note that we used an integer divisor of n, i.e. p1, exactly to ensure that n
p1

∈ N.

112

Algorithm 6 A Recursive Fast Fourier Transform (FFT) Implementation

1: Input: u ∈ Cn, Dimension n, and n’s prime factorization p1 ≤ · · · ≤ pm
2: Output: û ∈ Cn

3: if n = 1 then
4: Return u
5: end if
6: for k from 0 to p1 − 1 do

7: û(k,p1) ← FFT
(
u(k,p1), n

p1
, p2 ≤ p3 ≤ · · · ≤ pm

)
8: end for
9: for ω from 0 to n− 1 do

10: ûω ← 1√
p1

(∑p1−1
k=0 fkω

n

(
û(k,p1)

)
ω mod n

p1

)
11: end for
12: Return û

lines 9 – 11 use O(p1n) operations. Therefore we have

Tn = O(p1n) + p1 · T n
p1
.

However, Algorithm 6 is recursively invoked again to compute û(0,p1), . . . , ̂u(p1−1,p1) by
sum-splitting in line 7. Taking this into account we can see that

T n
p1

= O
(
p2

n

p1

)
+ p2 · T n

p1p2
.

We now have that

Tn = O(p1n) + p1 ·
(
O
(
p2n

p1

)
+ p2 · T n

p1p2

)
= O (n(p1 + p2)) + p1p2 · T n

p1p2
.

Repeating this recursive sum-splitting j ≤ m times shows us that

Tn = O

(
n ·

j∑
ℓ=1

pℓ

)
+

j∏
ℓ=1

pℓ · T n
p1···pj

.

Using that T1 = O(1) (see Algorithm 6’s lines 3 – 5) we have

Tn = O

(
n ·

m∑
ℓ=1

pℓ

)
+O(n) = O(m · pm · n). (3.39)

Note that m ≤ log2 n while pm is n’s largest prime factor. We have proven the following
theorem in the course of the prior discussion.

113

Theorem 3.8.1. Let u ∈ Cn and suppose that n ∈ N has the prime factorization n =
p1 · · · pm, where p1 ≤ p2 ≤ · · · ≤ pm are the prime factors of n ordered from smallest to
largest. Then, we may compute û = Fu using O (n ·

∑m
ℓ=1 pℓ) operations.

Theorem 3.8.1 tells us that the FFT can significantly speed up computation of the DFT.
For example, if n is a power of 2 we’ll have m = log2 n and pm = 2 leaving Algorithm 6
with an O(n lnn) operation count. This is a clear improvement over the ∼ n2 operations
required to in order to compute (3.29) directly. However, if n has large prime factors the
improvement is less impressive. In the worst case, when n is itself a prime number, we have
m = 1 and p1 = n. This leaves Algorithm 6 with a O(n2) runtime which, in practice, is
even slower than the direct method (3.29).

The inability of Algorithm 6 to efficiently handle vectors with sizes containing large
prime factors isn’t a setback when one may dictate, with little or no repercussions, the
dimension of the vectors they work with. A popular choice is to simply force n to be a
power of 2. However, sometimes one simply needs to compute the DFT of a vector whose
size contains (or may contain) large prime factors. In the next subsection we discuss how
to do this efficiently.

Exercise 3.8.1 (Computational Exercise). Implement both the FFT and the IFFT for
vectors of size 2n, n ∈ N. Produce a plot showing that each is indeed faster than the
corresponding naive method for directly computing the (I)DFT of an arbitrary vector.

3.8.1 The FFT for Vectors of Arbitrary Size

As discussed in the previous subsection, Algorithm 6 may not be a very efficient means of
computing û ∈ Cn when n contains large prime factors. One way of addressing this issue is
to rewrite û as a discrete convolution of two vectors of a slightly larger dimension, ñ > n,
that does contain only small prime factors. This discrete convolution can then be computed
quickly using Algorithm 6 which will be efficient for vectors of dimension ñ.

Let ω ∈ [n]. We may rewrite ûω as

ûω = f
ω2

2
n f

−ω2

2
n · ûω =

f
ω2

2
n√
n
·
n−1∑
j=0

uj f
ω·j−ω2

2
n =

f
ω2

2
n√
n
·
n−1∑
j=0

uj f
j2

2
n f

−(ω−j)2

2
n (3.40)

Note that the last sum in (3.40) resembles a convolution. In order to make the resemblance
more concrete we will define two new vectors.

Let ñ = 2⌈log2 n⌉+1 ≥ 2n and define ũ ∈ Cñ by

ũj :=

{
uj · f

j2

2
n if 0 ≤ j < n

0 if n ≤ j < ñ
,

114

and v ∈ Cñ by

vh :=


f

−h2

2
n if 0 ≤ h < n
0 if n ≤ h ≤ ñ− n

f
−(h−ñ)2

2
n if ñ− n < h < ñ

.

Computing a weighted convolution of ũ,v ∈ Cñ we can see that

f
ω2

2
n√
n
· (ũ ⋆ v)ω =

f
ω2

2
n√
n

ñ−1∑
j=0

ũj · v(ω−j) mod ñ

=
f

ω2

2
n√
n

 ω∑
j=0

ũj · vω−j +
n−1∑

j=ω+1

ũj · v(ω−j)+ñ


=

f
ω2

2
n√
n

n−1∑
j=0

uj · f
j2

2
n f

−(ω−j)2

2
n .

Comparing to (3.40) now reveals that

ûω =
f

ω2

2
n√
n
· (ũ ⋆ v)ω ∀ω ∈ [n]. (3.41)

Note that the convolution in (3.41) can be computed efficiently by the FFT and IFFT
using (3.31) since ñ is a power of two. Furthermore, ñ ≤ 4n by definition. Hence, we have
established the following theorem.

Theorem 3.8.2. Let u ∈ Cn. Then, both û, û−1 ∈ Cn can be calculated using O(n lnn)
operations.

Exercise 3.8.2. Finish the proof of Theorem 3.8.2 by arguing that û−1 ∈ Cn, like û ∈ Cn,
can also always be calculated using O(n lnn) operations. What changes need to be made to
(3.40) – (3.41)?

Theorem 3.8.2 generalizes Theorem 3.8.1 to handle all values of n efficiently. We are
now in the position to declare that the DFT of any vector in Cn can be calculated using
only O(n lnn) operations! We are now prepared to prove that any (square) Toeplitz matrix
has a fast matrix-vector multiplication algorithm.

3.8.2 Fast Matrix Multiplication for Toeplitz Matrices

Let a ∈ C2n−1 and consider the n× n Toeplitz matrix generated by a, Toepn(a) ∈ Cn×n.
Given v ∈ Cn, we want to compute Toepn(a)v ∈ Cn using as few operations as possible.

115

Algorithm 7 Fast Toeplitz Matrix Multiplication

1: Input: a ∈ C2n−1, v ∈ Cn

2: Output: Toepn(a)v ∈ Cn

3: c← (an−1, an−2, . . . , a0, 0, a2n−2, . . . , an)
T ∈ C2n

4: Compute ĉ ∈ C2n using the FFT

5: Compute

(̂
v
0

)
∈ C2n using the FFT

6: b̂←
√
2n ĉ⊙

(̂
v
0

)
∈ C2n

7: Compute b ∈ C2n using the IFFT
8: Return (b0, b1, . . . , bn−1)

T ∈ Cn

Recalling Lemma 3.7.7 we can begin by embedding Toepn(a) into a 2n×2n circulant matrix.
Specifically, we have seen that the vector c = (an−1, an−2, . . . , a0, 0, a2n−2, . . . , an)

T ∈ C2n

satisfies (circ(c))j,k = (Toepn) (a)j,k for all j, k ∈ [n]. This then further implies that

(Toepn(a)v)j =

(
circ(c)

(
v
0

))
j

for all j ∈ [n] by (3.28). Hence, we can compute Toepn(a)v

by computing the convolution c⋆

(
v
0

)
. Finally, we further seen in (3.31) that this convolution

can be computed efficiently via

c ⋆

(
v
0

)
=
√
2n F ∗

(
ĉ⊙

(̂
v
0

))
.

See Algorithm 7 for streamlined pseudocode.

Considering the runtime of Algorithm 7, we can see that forming both

(
v
0

)
, c ∈ C2n

can be accomplished in O(n) time. In addition, the (entrywise) Hadamard product of
any two vectors in C2n, as well as selecting the first n entries of any vector b ∈ C2n, can
also always be accomplished in O(n) time. Finally, each (I)FFT can be computed using
O(n log n) operations by Theorem 3.8.2. Hence, Algorithm 7 will always utilize a total
of O(n log n) operations in order to compute Toepn(a)v ∈ Cn. This is significantly faster
than direct O(n2)-time matrix-vector multiplication when n is large.

Fast Matrix Multiplication for Rectangular Toeplitz Matrices

Note that Algorithm 7 only applies to square Toeplitz matrices. A very natural next question
then becomes what we can do if we instead need to quickly multiply a large non-square
(rectangular) Toeplitz matrix, Toepm,n(a) ∈ Cm×n, against a vector v ∈ Cn? One simple
strategy for handling such problems involves re-expressing the rectangular Toeplitz matrix

116

in a block-matrix form, where each resulting block is a smaller square Toeplitz submatrix.
The large rectangular matrix Toepm,n(a) ∈ Cm×n can then be multiplied against a given
v ∈ Cn by combining the results of its smaller square Toeplitz submatrices multiplied
against (appropriate pieces of) v, each of which can now be computed efficiently using, e.g.,
Algorithm 7.12

Example 3.8.3. Let a ∈ C6 and v ∈ C2. Suppose that we want to compute Toep5,2(a)v ∈
C5. Instead of computing the result directly we can instead, e.g., decompose Toep5,2(a)
into two 2× 2 and two 1× 1 Toeplitz submatrices, and then compute Toep5,2(a)v using the
resulting block-matrix form via

Toep5,2(a)v =


a4 a5
a3 a4
a2 a3
a1 a2
a0 a1

v =



(
a4 a5
a3 a4

)
(
a2 a3
a1 a2

)
(
a0
) (

a1
)


v =



(
a4 a5
a3 a4

)
v

(
a2 a3
a1 a2

)
v

(
a0
)
v0 +

(
a1
)
v1


.

Note that the fact that Toep5,2(a) has constant diagonals ensures that all of its square
submatrices above are also Toeplitz.

Exercise 3.8.3. Suppose that we are given Toepm,n(a) ∈ Cm×n and integers 1 ≤ p ≤
min{m,n}, h ∈ [m − p + 1], and ℓ ∈ [n − p + 1]. Let A ∈ Cp×p be such that Aj,k :=(
Toepm,n(a)

)
h+j,ℓ+k

for all j, k ∈ [p]. Show that A is Toeplitz.

Exercise 3.8.4. Let p, n ∈ N, Toeppn,n(a) ∈ Cpn×n, and v ∈ Cn. Show that Toeppn,n(a)v ∈
Cpn can be computed in O(pn log n) operations.

Exercise 3.8.5. Let q(x) =
∑n−1

j=0 qjx
j and r(x) =

∑n−1
j=0 rjx

j be two polynomials of degree
at most n− 1. Let t(x) = q(x) · r(x) be their product. We know that t(x) is a polynomial of
degree at most 2n− 2 which can be written as t(x) =

∑2n−2
j=0 tjx

j. Write psuedocode for an
algorithm that will compute the coefficients tj of t(x) in O(n lnn) total operations.

Exercise 3.8.6. Let g : [0, 1] → R be a twice continuously differentiable and periodic
function. Any such g will have a Fourier series expansion of the form

g(x) =
∑
ω∈Z

cωe
2πiωx ∀x ∈ [0, 1],

where the Fourier series coefficients cω ∈ C satisfy (i) cω = c−ω for all ω ∈ Z, and (ii)∑
ω∈Z |cω| < ∞. Let u ∈ Rn be a vector whose entries are given by uj = g(j/n) for all

12Of course, the best way to decompose a given m× n Toeplitz matrix into square Toeplitz submatrices
depends on how m and n compare with one another.

117

j ∈ [n]. Show that the vector Fu ∈ Cn has entries

(Fu)j =
√
n

∑
ω≡j mod n

cω.

Rapidly Evaluating Convolutional Layers of Neurons

In addition to having fewer parameters than general layers of neurons, we can now see
that convolutional layers of neurons (recall Definition 3.7.3) also have other computational
advantages. Consider, e.g., a convolutional layer of neurons ℓ : RN → RN defined by
ℓ(x) := σ (Wx+ b) with Toeplitz weight matrix W = ToepN (w) ∈ RN×N . Evaluating
ℓ(x) as part of a neural network forward-evaluation requires us to: (i) Compute Wx, (ii)
add b to Wx to compute Wx + b, and then (iii) compute σ (Wx+ b) by applying the
activation function σ : R → R to each entry of Wx + b. Assuming that σ is a simple
function, both steps (ii) and (iii) can always be accomplished in O(N) operations. The
first step (i) therefore always dominates the layer’s evaluation cost.

Focussing on step (i) above, we can see that it can be accomplished for W = ToepN (w)
in O(N logN)-operations via Algorithm 7. Hence, evaluating ℓ(x) can also be accomplished
in O(N logN) total operations in this case. In contrast, a general layer of neurons must
generally rely on direct O(N2)-time matrix-vector multiplication to complete step (i). Thus,
convolutional layers of neurons require fewer operations to evaluate than general layers of
neurons – yet another advantage of their Toeplitz structure!

3.9 ℓp-Norms and the Hölder Inequality

So far we have made extensive use of the ℓ2-norm in nearly every previous section above.
This is largely due to its relationship with its associated inner product, which, frankly,
makes the ℓ2-norm so heavenly that its difficult to imagine ever wanting to use anything
else. However, despite its many magnificent properties, the ℓ2-norm is not always the best
choice in every situation. For this reason many other vector norms are also commonly
considered in mathematical books and papers including, perhaps most commonly, other ℓp

vector norms.

Definition 3.9.1 (The ℓp-norm on Cn). Let p ∈ [1,∞). The ℓp-norm of x ∈ Cn is

∥x∥p :=

∑
j∈[n]

|xj |p
 1

p

.

Exercise 3.9.1. Let α ∈ C and x ∈ Cn. Show that (i) ∥αx∥p = |α|∥x∥p, and that (ii)
∥x∥p = 0 if and only if x = 0.

118

Exercise 3.9.2. Let x ∈ Cn. Show that ∥x∥∞ ≤ ∥x∥p ≤ n
1
p ∥x∥∞ holds for all p ∈ [1,∞).

Conclude that limp→∞ ∥x∥p = ∥x∥∞.

Looking at Definition 3.9.1 together with the last exercise, we can see that the ℓ1, ℓ2,
and ℓ∞ norms previously introduced in Section 2.2.3 are all effectively special cases of the
ℓp vector norms considered here. Hence, it is perhaps not very surprising that, as in these
special cases, establishing the triangle inequality for general ℓp vector norms is more difficult
than establishing the other two norm properties (see Exercise 3.9.1). Much of the remainder
of this section will be spent proving the triangle inequality for general ℓp vector norms (also
known as the Minkowski inequality) as a result. Following the approach in [29], we will
now briefly discuss convex functions before proceeding with the proof.

3.9.1 Convex Functions of One Variable

The following definition is crucial below.

Definition 3.9.2 (Convex Functions from R into R). A function f : R→ R is convex
on (a, b) if and only if

f (tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) (3.42)

holds ∀t ∈ [0, 1] and x, y ∈ (a, b).

Note that (3.42) always holds when t = 0, t = 1, or x = y. Hence, it suffices to only
consider t ∈ (0, 1) and x ̸= y below.

Definition 3.9.3 (Concave Functions from R into R). A function f : R→ R is concave
on (a, b) if (−f)(x) := −f(x) is convex on (a, b).

Exercise 3.9.3. Let m, b ∈ R. Show that the linear function f(x) := mx+b is both concave
and convex on (−∞,∞).

The next lemma provides a useful alternate characterization of convexity.

Lemma 3.9.4. The function f : R→ R is convex on (a, b) if and only if ∀x1, x2, x3 ∈ (a, b)
with x1 < x2 < x3 we have

f(x2)− f(x1)

x2 − x1
≤ f(x3)− f(x2)

x3 − x2
.

Proof. Let t ∈ (0, 1) and suppose, without loss of generality, that the x, y ∈ (a, b) in (3.42)
are such that x < y. Set x1 = x, x2 = tx+ (1− t)y, and x3 = y. Note that in this case we
have that x2−x1 = (t− 1)x1+(1− t)x3 = (1− t)(x3−x1) and x3−x2 = t(x3−x1) so that

t =
x3 − x2
x3 − x1

, (1− t) =
x2 − x1
x3 − x1

, and
1− t

t
=

x2 − x1
x3 − x2

.

119

Now we can see that f is convex on (a, b) if and only if

f(x2) ≤ tf(x1) + (1− t)f(x3) ⇐⇒ t (f(x2)− f(x1)) ≤ (1− t) (f(x3)− f(x2))

⇐⇒ f(x2)− f(x1) ≤
1− t

t
(f(x3)− f(x2))

⇐⇒ f(x2)− f(x1) ≤
(
x2 − x1
x3 − x2

)
(f(x3)− f(x2)) .

Dividing both sides of the last inequality above by x2 − x1 proves the result.

Using Lemma 3.9.4 together with the Mean Value Theorem from calculus (see, e.g., [46,
Theorem 7.20]) we can now prove that functions f : R→ R with non-decreasing derivatives
on (a, b) ⊂ R are also convex on (a, b).

Theorem 3.9.5 (Mean Value Theorem). Suppose that f : R→ R is continuous on [a, b]
and differentiable on (a, b). Then ∃c ∈ (a, b) such that

f ′(c) =
f(b)− f(a)

b− a
.

Theorem 3.9.6 (Functions with Non-Decreasing Derivatives are Convex). Suppose that
f : R→ R has a non-decreasing derivative f ′ on (a, b). Then, f is convex on (a, b).

Proof. Choose any x1 < x2 < x3 you like in (a, b). By Theorem 3.9.5 ∃c1 ∈ (x1, x2) and
c2 ∈ (x2, x3) such that

f (x2)− f (x1)

x2 − x1
= f ′ (c1) ≤ f ′ (c2) =

f (x3)− f (x2)

x3 − x2
.

The result now follows from Lemma 3.9.4.

Exercise 3.9.4. Suppose that f : R → R has a non-negative second derivative f ′′ on
(a, b) so that f ′′(x) ≥ 0 for all x ∈ (a, b). Show that f is convex on (a, b). HINT: Use the
fundamental theorem of calculus.

Exercise 3.9.5. Let p ≥ 1. Show that f : R→ R given by f(x) = xp is convex on (0,∞).

Exercise 3.9.6. Show that the natural logarithm, log : (0,∞)→ R, is concave on (0,∞).

We are now equipped to prove a basic result about the convexity of an important
function of one complex variable. It will be crucial to our proof of the Minkowski inequality.

Lemma 3.9.7. Let p ≥ 1. Then

|tz + (1− t)w|p ≤ t|z|p + (1− t)|w|p

holds for all t ∈ [0, 1] and z, w ∈ C.

120

Proof. The result holds if either z or w is 0, so assume that both are nonzero. Let g : R→ R

be g(x) = xp and note that g is both non-decreasing, and convex on (0,∞) by Exercise 3.9.5.
Using the properties of the magnitude function | · | : C→ R+ (2.5) together with the fact
that g is non-decreasing we have that

|tz + (1− t)w| ≤ |tz|+ |(1− t)w| = t|z|+ (1− t)|w|

which implies that

g (|tz + (1− t)w|) = |tz + (1− t)w|p ≤ g (t|z|+ (1− t)|w|) = (t|z|+ (1− t)|w|)p .

Hence, since g is convex on (0,∞), we also have that

|tz + (1− t)w|p ≤ (t|z|+ (1− t)|w|)p ≤ t|z|p + (1− t)|w|p

as we wished to show.

We are now finally able to prove the Minkowski inequality.

3.9.2 The Minkowski Inequality for Vectors

We are now able to prove the triangle inequality for the ℓp-norm on Cn, thereby concluding
our proof that it is indeed a vector norm.

Theorem 3.9.8 (Minkowski Inequality). Let p ≥ 1. Then

∥x+ y∥p ≤ ∥x∥p + ∥y∥p
holds for all x,y ∈ Cn.

Proof. Note that the result trivially holds if either x or y is 0, so we assume both are
nonzero such that c := ∥x∥p + ∥y∥p > 0. Let x̃ := x/c and ỹ := y/c. By our choice of c we
have that ∥x̃∥p =: t and ∥ỹ∥p = 1 − t for some t ∈ (0, 1). Now letting x̃′ := x̃/∥x̃∥p and
ỹ′ := ỹ/∥ỹ∥p we can see that

∥x+ y∥p ≤ ∥x∥p + ∥y∥p ⇐⇒ ∥tx̃′ + (1− t)ỹ′∥p ≤ 1

⇐⇒ ∥tx̃′ + (1− t)ỹ′∥pp ≤ 1.

We may now use Lemma 3.9.7 to verify the last inequality above by seeing that

∥tx̃′ + (1− t)ỹ′∥pp =
∑
j∈[n]

∣∣tx̃′j + (1− t)ỹ′j
∣∣p ≤ ∑

j∈[n]

t
∣∣x̃′j∣∣p + (1− t)

∣∣ỹ′j∣∣p
= t∥x̃′∥pp + (1− t)∥ỹ′∥pp = 1.

The result follows.

It is often useful to use easily computable ℓp-norms to help control other ℓq-norms. We
will develop a crucial tool for obtaining related bounds in the next section.

Exercise 3.9.7. Let q ≥ p ≥ 1. Show that ∥x∥q ≤ ∥x∥p.
HINT: Let y := x/∥x∥q and then prove that ∥y∥q = 1 ≤ ∥y∥p.

121

3.9.3 Young’s Inequality for Products & the Discrete Hölder Inequality

We will begin with a very useful result about good-ole-fashioned real numbers.

Lemma 3.9.9 (Young’s Inequality for Products). Let p, q ∈ (1,∞) satisfy 1
p +

1
q = 1. Then,

ab ≤ ap

p
+

bq

q

holds for all a, b ∈ [0,∞).

Proof. The equality clearly holds if either a or b is 0, so we’ll assume that both are positive.
Since log : (0,∞)→ R is concave on (0,∞) by Exercise 3.9.6, we have that

− log

(
1

p
ap +

1

q
bq
)

= − log

(
1

p
ap +

(
1− 1

p

)
bq
)
≤ −1

p
log (ap)−

(
1− 1

p

)
log (bq)

= − log(a)− log(b) = − log(ab).

Hence, log(ab) ≤ log
(
1
pa

p + 1
q b

q
)
. Exponentiating both sides of this last inequality now

proves the result.

We now have all the tools we need to prove a generalized version of the Cauchy–Schwarz
inequality.

Theorem 3.9.10 (The Hölder Inequality). Let p, q ∈ (1,∞) satisfy 1
p + 1

q = 1. Then,

|⟨x,y⟩| ≤
∑
j∈[n]

|xj yj | ≤ ∥x∥p∥y∥q

holds ∀x,y ∈ Cn.

Proof. The first inequality always holds by properties of the magnitude function |·| : C→ R+

(2.5) (check!). Thus, it suffices to show that
∑

j∈[n] |xj yj | ≤ ∥x∥p∥y∥q.
Let x̃ := x

∥x∥p and ỹ := y
∥y∥q . Then by Lemma 3.9.9 we have that

∑
j∈[n]

|xj yj |
∥x∥p∥y∥q

=
∑
j∈[n]

|x̃j | |ỹj | ≤
∑
j∈[n]

|x̃j |p

p
+
|ỹj |q

q

=
∥x̃∥pp
p

+
∥ỹ∥qq
q

=
1

p
+

1

q
= 1.

Multiplying both sides of the inequality above by ∥x∥p∥y∥q now finishes the proof.

Exercise 3.9.8. Let α ∈ [0,∞) and p, q ∈ (1,∞) satisfy 1
p + 1

q = 1. Suppose that

x,y ∈ [0,∞)n have xj = α y
q/p
j /∥y∥q−1

q ∀j ∈ [n]. Prove that ⟨x,y⟩ = ∥x∥p∥y∥q holds.
HINT: Begin by showing that ∥x∥p = α.

122

Exercise 3.9.9. Prove that |⟨x,y⟩| ≤ ∥x∥∞∥y∥1 also holds ∀x,y ∈ Cn.

Given that both Exercise 3.9.9 and Theorem 3.9.10 hold, we will apply the Hölder
Inequality for all p, q ∈ [1,∞] satisfying 1

p + 1
q = 1 below (i.e., we will implicitly define

1/∞ := 0).

Exercise 3.9.10. Prove that ∥x∥2 ≤
√
∥x∥∞∥x∥1 holds ∀x ∈ Cn.

Exercise 3.9.11. Let p ≥ 1 and r, q ∈ (1,∞) satisfy 1
r + 1

q = 1. Prove that ∥x∥2p ≤√
∥x∥pq∥x∥pr holds ∀x ∈ Cn.

3.10 Some Discrete Inequalities from Fourier Analysis

In this section we will briefly discuss the Riesz–Thorin interpolation theorem in the context
of finite dimensional linear algebra along with a few of its most important implications
for DFT (3.29) and circulant matrices. This section roughly follows the same path as
the corresponding portions in [22, Chapter 8], [30, Chapter 4], and [3, Chapter 1], except
restricted to the finite dimensional setting. The interested reader is referred to these sources
for more details and discussion, as well as to [1] for a clever application of these results to a
dimensionality reduction problem in the computer science literature.

To begin our journey we will now generalize the (ℓ2, ℓ2)-operator norm introduced in
Section 2.2.3.

Definition 3.10.1. Let p, q ∈ [1,∞] and A ∈ Cm×n. The (ℓp, ℓq)-operator norm of A is

∥A∥p→q := max
x∈Cn with ∥x∥p=1

∥Ax∥q = sup
x∈Cn\{0}

∥Ax∥q
∥x∥p

.

As with the (ℓ2, ℓ2)-operator norm, one of the main uses of the (ℓp, ℓq)-operator norm
of a matrix A is to help bound the ℓq-norm of Ax when one has knowledge of about the
ℓp-norm of x. The following lemma summarizes this standard use of operator norms.

Lemma 3.10.2. Let A ∈ Cm×n and x ∈ Cn. Then ∥Ax∥q ≤ ∥A∥p→q∥x∥p holds for all
p, q ∈ [1,∞].

Proof. If x = 0 we’re done, so assume that x ̸= 0. Then,

∥Ax∥q =

(
∥Ax∥q
∥x∥p

)
∥x∥p ≤

(
sup

x∈Cn\{0}

∥Ax∥q
∥x∥p

)
∥x∥p = ∥A∥p→q∥x∥p.

Exercise 3.10.1. Let A ∈ Cm×n and B ∈ Cn×p. Prove that ∥AB∥p→p ≤ ∥A∥p→p∥B∥p→p

holds for all p ≥ 1.

123

Exercise 3.10.2. Let A ∈ Cm×n and B ∈ Cn×p. Prove that ∥AB∥p→q ≤ ∥A∥r→q∥B∥p→r

holds for all p, q, r ≥ 1.

Exercise 3.10.3. Let p ∈ [1,∞] and A ∈ Cm×n. Use Exercise 3.9.8 to help you prove that

∥A∥p→p = sup
x∈Cn\{0}, y∈Cm\{0}

⟨y, Ax⟩
∥y∥q∥x∥p

,

where q ∈ [1,∞] satisfies 1/q + 1/p = 1.

Exercise 3.10.4. Let p ∈ [1,∞] and A ∈ Cm×n. Show that ∥A∥p→p = ∥A∗∥q→q, where
q ∈ [1,∞] satisfies 1/q + 1/p = 1.

The next lemma and exercise demonstrate that some matrix operator norms are in fact
quite easy to compute.

Lemma 3.10.3. Let A ∈ Cm×n. Then ∥A∥1→1 = maxk∈[n]
∑

j∈[m] |Aj,k|.

Proof. Note that

∥A∥1→1 = max
x∈Cn with ∥x∥1=1

∥Ax∥1 = max
x∈Cn with ∥x∥1=1

∑
j∈[m]

∣∣∣∣∣∣
∑
k∈[n]

Aj,k xk

∣∣∣∣∣∣
≤ max

x∈Cn with ∥x∥1=1

∑
k∈[n]

|xk|

∑
j∈[m]

|Aj,k|

 ≤ max
k∈[n]

∑
j∈[m]

|Aj,k|.

Furthermore, this upper bound is achieved since ∥Aek∥1 = ∥A:,k∥1 holds for all k ∈ [n].

Exercise 3.10.5. Let A ∈ Cm×n. Prove that ∥A∥∞→∞ = maxj∈[m]

∑
k∈[n] |Aj,k|.

Exercise 3.10.6. Let F ∈ Cn×n be the DFT matrix of size n. Show that ∥F∥2→2 = 1 and
∥F∥1→∞ = 1/

√
n.

Theorem 3.10.4 (Discrete Riesz–Thorin (see, e.g., Theorem 1.1.1 in [3])). Let A ∈ Cm×n,
θ ∈ (0, 1), and p, q, p1, q1, p2, q2 ∈ [1,∞] be such that p1 ̸= p2, q1 ̸= q2, 1/p = θ/p1 + (1 −
θ)/p2, and 1/q = θ/q1 + (1− θ)/q2. Then,

∥A∥p→q ≤ (∥A∥p1→q1)
θ (∥A∥p2→q2)

1−θ .

Using the Riesz–Thorin Theorem we can now prove some additional useful operator
norm bounds for F . Choose θ ∈ (0, 1) and suppose that 1/p = θ/1+ (1− θ)/2 = 1+θ

2 and

1/q = θ/∞+(1− θ)/2 = 1−θ
2 . Summing these expressions we can see that 1/p+1/q = 1,

and also that θ = 1− 2
q . Applying Riesz–Thorin together with Exercise 3.10.6 we now have

∥F∥p→q ≤ (∥F∥1→∞)
1− 2

q (∥F∥2→2)
2
q = n

1
q
− 1

2 = n
1
2
− 1

p .

Finally, noting that p ∈ (1, 2) since θ ∈ (0, 1) we obtain the following generalization of
Exercise 3.10.6.

124

Theorem 3.10.5 (Discrete Hausdorff-Young). Let p ∈ [1, 2] and q = p
p−1 (with 1/0 :=∞).

Then ∥F∥p→q ≤ n
1
2
− 1

p .

Exercise 3.10.7. Let v ∈ Cn. Prove that ∥circ(v)∥2→2 =
√
n∥Fv∥∞ =

√
n·maxω∈[n] |v̂ω|

and that ∥circ(v)∥1→1 = ∥circ(v)∥∞→∞ = ∥v∥1.

Exercise 3.10.8. Let v ∈ Cn. Prove that ∥circ(v)∥1→∞ ≤ ∥v∥∞.

Exercise 3.10.9. Let v ∈ Cn. Prove that

∥circ(v)∥p→p ≤

∥v∥
2/p−1
1 (

√
n∥Fv∥∞)

2− 2
p ∀p ∈ [1, 2]

∥v∥
1− 2

p

1 (
√
n∥Fv∥∞)

2/p
p ≥ 2

.

Exercise 3.10.10. Prove that ∥Fv∥∞ ≤ ∥v∥1/
√
n holds ∀v ∈ Cn. Conclude that

∥circ(v)∥p→p ≤ ∥v∥1 holds ∀v ∈ Cn.

3.10.1 The Discrete Young’s Convolution Inequality

In this section we will provide some useful bounds on the norm of the convolutions of two
vectors. Our first result (which you will prove in the next exercise) is a simple consequence
of Exercise 3.10.10.

Exercise 3.10.11. Prove that ∥u ⋆ v∥p ≤ min {∥u∥1∥v∥p, ∥v∥1∥u∥p} holds for all p ≥ 1
and u,v ∈ Cn.

Our next result (which you will prove just below) is a consequence of Hölder’s inequality.

Exercise 3.10.12. Let p, q ∈ [1,∞] be such that 1/p + 1/q = 1. Show that ∥u ⋆ v∥∞ ≤
min {∥u∥p∥v∥q, ∥v∥p∥u∥q} holds for all u,v ∈ Cn.

Now let v ∈ Cn and p, q ∈ (1,∞) be such that 1
p +

1
q = 1. From Exercise 3.10.11 we have

that ∥circ(v)∥1→p ≤ ∥v∥p, and from Exercise 3.10.12 we also have that ∥circ(v)∥q→∞ ≤ ∥v∥p.
Choose θ ∈ (0, 1) and suppose that

1

r
=

θ

1
+

1− θ

q
, and that

1

s
=

θ

p
+

1− θ

∞
=

θ

p
.

Applying Theorem 3.10.4 tells us that

∥circ(v)∥r→s ≤ (∥circ(v)∥1→p)
θ (∥circ(v)∥q→∞)1−θ = ∥v∥p.

Note that since 1
r ∈ (1/q, 1) we can see that r ∈ (1, q), and

1

r
= θ + (1− θ)

1

q
= θ +

1

q
− θ

q
= θ +

1

q
− θ

(
1− 1

p

)
=

1

q
+

θ

p
=

1

q
+

1

s
.

The following result follows from the discussion and exercises above.

125

Theorem 3.10.6 (Discrete Young’s Convolution Inequality). Let v ∈ Cn and p, q ∈ [1,∞]
be such that 1

p + 1
q = 1. Pick r ∈ [1, q] and set 1

s = 1
r −

1
q . Then, ∥circ(v)∥r→s ≤ ∥v∥p.

Exercise 3.10.13. Let u,v ∈ Cn and p, q ∈ [1,∞] be such that 1/p+ 1/q = 1. Show that
∥u ⋆ v∥(1/r−1/q)−1 ≤ min {∥u∥p∥v∥r, ∥v∥p∥u∥r} holds for all r ∈ [1, q].

3.11 Embedding Metric Spaces into Normed Vector Spaces

In this section we will briefly discuss how linear algebra can also begin to help with very
general computational tasks that don’t even explicitly involve any vectors. This section
largely follows [35]. We refer the interested reader there, as well as to, e.g., [26]. To begin
we will need to recall the notion of a “finite metric space”.

Definition 3.11.1. A metric space is a pair (S, ρ) where S is a set, and ρ : S ×S → R+

is a function (called a metric) that satisfies the following three properties:

1. ρ(a, b) = 0 if and only if a = b,

2. ρ(a, b) = ρ(b, a) ∀a, b ∈ S, and

3. ρ(a, c) ≤ ρ(a, b) + ρ(b, c) ∀a, b, c ∈ S.

A finite metric space is a metric space where |S| is finite.

Exercise 3.11.1. Let S ⊂ Cn and ρ : S × S → R+ be ρ(x,y) = ∥x− y∥, where ∥ · ∥ is a
norm on Cn. Prove that (S, ρ) is a metric space.

Example 3.11.2 (Weighted Graph Metric Spaces). Let (V, E) be a simple and connected
weighted graph with vertex set V, edge set E ⊂ V×V, and weight function w : E → (0,∞). A
path of length d from vertex u ∈ V to v ∈ V is a subset of edges P = {e0, . . . , ed−1} ⊂ E
such that (i) ej = (p, q) ∈ P if and only if ej−1 = (·, p) ∈ P and ej+1 = (q, ·) ∈ P for all
j = 1, . . . , d− 2, (ii) e0 = (u, ·) ∈ P and, (iii) ed = (·, v) ∈ P. That is, a path P of length d
from u to v is a string of d edges that connects u and v. Note that since (V, E) is connected
we are guaranteed that there is at least one path from every vertex to every other vertex.

One can show that the shortest path distance from u ∈ V to v ∈ V defined by

ρ(u, v) :=


inf

paths P from u to v

∑
ej∈P

w(ej) if u ̸= v

0 if u = v

.

is a metric on V. See Figure 3.3 for an example.

126

MSP

ORD

LAN DTW

ATL

DCA

1

2.5

2

2

1

1

3

2

2

1

Figure 3.3: Example of a weighted graph using airport codes as the nodes.
Here V = {ATL,DCA,DTW,LAN,MSP,ORD} and the edge set E includes, e.g.,
{(DCA,DTW), (DTW,DCA), (DCA,LAN), (LAN,DCA)} as a subset of its 18 total el-
ements. The edges represent available flights over a certain period of time, and the
numerical weights, e.g., w((DTW,DCA)) = 2 = w((DCA,DTW)), represent travel time.
The path P = {(LAN,DTW), (DTW,ATL)} is a shortest path from LAN to ATL. Its
distance is 3.

Suppose that we are given an extremely large and potentially complicated finite metric
space (V, ρ) in the form of, e.g., a much larger graph along the lines of Figure 3.3. Further
imagine that we are going to need to rapidly compute many distances, ρ(u, v), between
many different and unpredictable user-generated query pairs (u, v) ∈ V × V over a long
period of time. Finally, suppose also that we are willing to sacrifice some accuracy in our
computed value for each ρ(u, v)-query in exchange for using less memory/time to compute
its value (i.e., we are OK with an answer that’s approximately correct as long as it’s also a
lot cheaper to compute).13 In such a setting the mission now becomes the following: we wish

13Indeed, why not accept an approximately correct answer? As we hope to have communicated already in,
e.g., Section 3.7.3, every answer computed on a digital computer is only approximately correct anyway. . . .
Embrace the mess, and remember with humility that our mathematics can never be more than a helpful

127

to determine the best possible tradeoff we can between the accuracy of our approximately
computed ρ(u, v)-distances and the time/memory it takes to compute them. In keeping
with the chapter so far, our strategy for exploring this tradeoff will involve using ℓp-norms
to help us approximately compute ρ-distances more cheaply via “embeddings”.

Definition 3.11.3. Let 0 < α ≤ β, and q ∈ [1,∞]. We say that a metric space (S, ρ) is
(α, β)-embeddable into ℓqn if there exists a function f : S → Rn such that

αρ(u, v) ≤ ∥f(u)− f(v)∥q ≤ βρ(u, v) ∀u, v ∈ S.

Here f : S → Rn is called an (α, β)-embedding of (S, ρ) into ℓqn. If α = β = 1 above
we say that (S, ρ) embeds isometrically into ℓqn, and call f : S → Rn an isometric
embedding of (S, ρ) into ℓqn.

Exercise 3.11.2. Let 0 < α ≤ β, and q ∈ [1,∞]. Suppose that f : S → Rn is an
(α, β)-embedding of a finite metric space (S, ρ) into ℓqn. Prove that |f(S)| = |S|.

Our next theorem is both instructive and a bit silly. It effectively tells us that storing
all possible distances between elements of a finite metric space ensures that we can then
exactly re-compute them all again later using the ℓ∞-norm. Of course, if we have already
stored all possible distances, then “re-computing them” thereafter should be trivial – we
can just read them back. Hence the silliness. . . . That said, we can’t actually just read a
given individual distance back – we have to somehow extract it using the ℓ∞-norm. Seeing
how/why this can be done is instructive.

Theorem 3.11.4. Every finite metric space (S, ρ) embeds isometrically into ℓ∞|S|.

Proof. Given S = {uj}j∈[|S|] define f : S → R|S| by

f(uj) :=
(
ρ(u0, uj), ρ(u1, uj) . . . , ρ(u|S|−1, uj)

)T ∈ [0,∞)|S|.

Considering the infinity norm of the vectors in f(S)− f(S) we can see that

∥f(uj)− f(uk)∥∞ ≥
∣∣(f(uj)− f(uk))k

∣∣ = |ρ(uk, uj)− ρ(uk, uk)| = ρ(uk, uj)

holds for all j, k ∈ [|S|]. Hence, α = 1 in Definition 3.11.3.
On the other hand,∣∣(f(uj)− f(uk))l

∣∣ = |ρ(ul, uj)− ρ(ul, uk)| ≤ ρ(uj , uk) = ρ(uk, uj)

holds for all l ∈ [|S|] by the (reverse) triangle inequality. As a result, ∥f(uj)− f(uk)∥∞ ≤
ρ(uj , uk) also holds for all j, k ∈ [|S|]. Hence, β = 1 in Definition 3.11.3 as well, proving
the desired result.

ghost pointing the general direction through a very corporeal silicon minefield.

128

Looking at the proof of Theorem 3.11.4 we can see that we are simply storing all
distances between all pairs of elements of S in a large symmetric (i.e., Hermitian) matrix
whose columns define the isometric embedding f : S → R|S|.


ρ(u0, u0) . . . ρ(u0, uj) . . . ρ(u0, u|S|−1)

ρ(u1, u0) . . . ρ(u1, uj) . . . ρ(u1, u|S|−1)
...

...
...

ρ(u|S|−1, u0) . . . ρ(u|S|−1, uj) . . . ρ(u|S|−1, u|S|−1)

 ∈ R|S|×|S|

f(uj)

Given this, the isometric embedding provided by Theorem 3.11.4 doesn’t really provide
any computational benefits on its own. If you’re already going to store all O(|S|2)-possible
pairwise distances ρ(uj , uk), then computing them later should be as easy as a O(1)-time
memory access using your favorite implementation of a hash table.

That valid point made, however, the story begins to change if the Hermitian matrix
above is (approximately) low rank. In such cases one can imagine beginning to save on the
memory needed to store the matrix above by using, e.g., ideas from Section 3.4. If this
type of approach sounds appealing, we invite the interested reader to explore the closely
related world of spectral graph theory [41]. If you’ve survived this far you certainly have
all of the linear algebraic preliminaries you need to begin. Before potentially taking this
detour, however, we encourage the reader to first look at the next section where an isometric
embedding similar to the one provided by Theorem 3.11.4 does in fact end up making an
interesting class of computations faster.

3.11.1 Rapidly Approximating the Diameter of a Set of Vectors

Consider the ℓp-diameter of a set S ⊂ Rn, defined by

diamp(S) := sup
x,y∈S

∥x− y∥p.

Computing the ℓp-diameter of a finite set S directly by simply calculating the ℓp-norm of
all
(|S|

2

)
pairs of vectors in S takes O(n|S|2)-operations. This can quickly become costly

when |S| is very large.

Now imagine that n is extremely very small compared to |S| (e.g., that n = 3 as is the
case in LiDAR point cloud data [11]). In this case it’s potentially worthwhile to effectively
increase n in exchange for reducing the |S|2-scaling of the direct diamp(S) calculation. In
this section we will present an embedding-based method for realizing exactly this type of
tradeoff between n and |S|. The following lemma will be crucial to our approach.

129

Lemma 3.11.5. Let S ⊂ Rn be finite and let ρ(x,y) := ∥x− y∥1. Then, the finite metric
space (S, ρ) embeds isometrically into ℓ∞2n via a linear isometric embedding f : S → R2n.

Proof. Let S̃ ⊂ R2n be the set {−1, 1}n of all 2n possible n-length vectors of ±1s. Recalling
that sign : R→ {1,−1} is

sign(x) =

{
1 x ≥ 0

−1 x < 0

we have that

∥x∥1 =
n∑

j=1

|xj | =
n∑

j=1

sign(xj)xj ≤ max
y∈S̃
⟨y,x⟩.

On the other hand, using Hölder’s inequality we can also see that

max
y∈S̃
⟨y,x⟩ ≤ ∥y∥∞∥x∥1 = ∥x∥1.

Hence, ∥x∥1 = maxy∈S̃⟨y,x⟩. We can now define our linear function f : Rn → R2n to be
such that

f(x) = (⟨x,y⟩)y∈S̃ .

From above we have that ∥x∥1 = ∥f(x)∥∞ so that f is indeed an isometric embedding.

The next exercise will also be useful.

Exercise 3.11.3. Let p ≥ 1. Prove that

∥x∥p ≤ ∥x∥1 ≤ ∥x∥p n1−1/p

holds ∀x ∈ Rn. HINT: Apply Exercise 3.9.7 together with Hölder’s Inequality.

The computational utility of Lemma 3.11.5 comes from the fact that the number of
operations required to compute diam∞(S) only scales linearly in |S|. We can see this by
considering the following calculation. Note that for any S ⊂ Rm we have

diam∞(S) = max
x,y∈S

∥x− y∥∞ = max
x,y∈S

max
j∈[m]

|xj − yj | = max
j∈[m]

max
x,y∈S

|xj − yj |

= max
j∈[m]

∣∣∣∣max
x∈S

xj −min
y∈S

yj

∣∣∣∣ = max
j∈[m]

(
max
x∈S

xj −min
y∈S

yj

)
. (3.43)

Above, computing maxx∈S xj and miny∈S yj both require O(|S|) comparisons for each
j ∈ [m]. Thus, computing diam∞(S) takes just O(m|S|) total operations (i.e., roughly as
many as it takes to simply read S into memory). This observation motivates Algorithm 8
for rapidly approximating the ℓp-diameter of a given set S ⊂ Rn.

Considering the computational cost of Algorithm 8, we recall that f(x) from Lemma
3.11.5 is computed by taking 2n inner products of vectors of length n. Since this is computed

130

Algorithm 8 Rapidly Approximate the ℓp-Diameter of S ⊂ Rn

1: Input: S ⊂ Rn, p ∈ [1,∞).
2: Output: Estimate of diamp(S).

Apply the isometric embedding f : Rn → R2n from Lemma 3.11.5.
3: Initialize S ′ = {}.
4: for x ∈ S do
5: Compute y = f(x) ∈ R2n where f is defined as in Lemma 3.11.5.
6: Let S ′ = S ′ ∪ {y}.
7: end for

Compute diam∞(S ′) as per (3.43).
8: for each j ∈ [2n] do
9: Let maxj = maxy∈S′ yj .

10: Let minj = miny∈S′ yj .
11: Let diffj = maxj −minj .
12: end for
13: return maxj∈[2n] diffj .

for each element of x ∈ S, the first loop of Algorithm 8 (i.e.,m lines 3 – 7) is (n2n|S|). The
second loop (lines 8 – 12) requires comparing O(|S|) values for each of the 2n coordinates
for a total of O(2n|S|)-operations. Thus, the overall runtime of Algorithm 8 is O(n2n|S|).
In contrast, recall that the directly computing diamp(S) uses O(n|S|2)-operations. Hence,
we can expect that Algorithm 8 will be faster than directly computing diamp(S) whenever
|S| is much greater than 2n.

Note, however, that approximating diamp(S) quickly is only impressive if our approxi-
mation is actually accurate. Speed without accuracy means nothing. If we only cared about
speed we could, for example, simply output a random number as our approximation to
diamp(S) every time – that would be faster than anything else we have discussed so far
(only O(1)-time!). Of course, such random guessing approach would also provide incredibly
terrible answers just about every time we ran it, making it practically worthless. . . .14

Thankfully, we can show that Algorithm 8 is always guaranteed to be pretty accurate,
especially when n is relatively small.

Theorem 3.11.6. Let p ≥ 1. Algorithm 8 always outputs an estimate e ∈ R satisfying

diamp(S) ≤ e ≤ n
1− 1

p diamp(S).

Proof. By Lemma 3.11.5 we have that the isometric embedding f : Rn → R2n satisfies

e := max
x,y∈S

∥f(x)− f(y)∥∞ = max
x,y∈S

∥x− y∥1.

14On the other hand, even a broken clock tells the correct time twice a day. . . :).

131

The result now follows from Exercise 3.11.3 since ∥x − y∥p ≤ ∥x − y∥1 ≤ n
1− 1

p ∥x − y∥p
holds for all x,y ∈ S.

Having gotten a little more experience with embedding methods in this last section, we
will now return to the question of whether Theorem 3.11.4 can be improved to use less
memory (i.e., to compute fewer ρ-distances).

3.11.2 Fréchet Embedding Methods for Finite Metric Spaces

We will begin by defining the functional structure that determines a Fréchet embedding.

Definition 3.11.7 (Fréchet Function). Let (S, ρ) be a finite metric space and Sj ⊂ S be
a non-empty subset of S for all j ∈ [n]. Choose γ0, . . . , γn−1 ∈ R+. A Fréchet function
f : S → Rn is a function whose jth component function fj : S → R+ is

(f(u))j = fj(u) := γj min
v∈Sj

ρ(u, v) ∀u ∈ S, j ∈ [n]. (3.44)

The following lemma shows that a large class of Fréchet functions will automatically
have a well-behaved β-parameter as an (α, β)-embedding of (S, ρ) into ℓqn.

Lemma 3.11.8. Let q ∈ [1,∞), (S, ρ) be a finite metric space, and f : S → Rn be a
Fréchet function as in Definition 3.11.7 with γ0 = γ1 = · · · = γn−1 =: γ. Then

∥f(u)− f(v)∥q ≤ γn1/qρ(u, v)

holds ∀u, v ∈ S.

Proof. Fix u, v ∈ S. We will show that for any nonempty subset T ⊂ S we have

|ρ(u, T)− ρ(v, T)| ≤ ρ(u, v) (3.45)

where ρ(u, T) := minw∈T ρ(u,w). If (3.45) holds then n∑
j=1

|γρ(u,Sj)− γρ(v,Sj)|q
1/q

≤ γ

 n∑
j=1

|ρ(u, v)|q
1/q

= γn1/qρ(u, v).

To see that (3.45) holds for nonempty T ⊂ S note that ρ(u, T) ≤ ρ(u,w) ∀w ∈ T by
definition. Thus, if w̃ ∈ T satisfies ρ(v, T) = ρ(v, w̃) we can see that

ρ(u, T)− ρ(v, T) ≤ ρ(u, w̃)− ρ(v, w̃) ≤ ρ(u, v).

Similarly, ρ(v, T)− ρ(u, T) ≤ ρ(u, v) holds when w̃ is chosen so that ρ(u, w̃) = ρ(u, T).

Exercise 3.11.4. Consider the setup in Lemma 3.11.8. Prove that ∥f(u) − f(v)∥∞ ≤
γρ(u, v) also holds ∀u, v ∈ S.

132

Exercise 3.11.5. Consider the setup in Lemma 3.11.8. Further suppose that the Sj
subsets in Definition 3.11.7 satisfy the following separating condition: for all (u, v) ∈
S × S \ {u} there exists j ∈ [n] such that u ∈ Sj and v /∈ Sj. Prove that ∃α > 0 such that
∥f(u)− f(v)∥q ≥ αρ(u, v) for all u, v ∈ S.

Let (S, ρ) be a finite metric space. Lemma 3.11.8 shows that injective Fréchet functions
with γj = γ ∀j ∈ [n] are always (α, β)-embeddings of (S, ρ) into ℓqn with β = γn1/q. The
main difficulty is in choosing the Sj subsets in Definition 3.11.7 so that α can also be
bounded away from zero in a nontrivial fashion. Ideally, we would like to have α = cβ for
some fixed constant c as close to 1 as possible while simultaneously reducing the number of
ρ-distances we need to store/compute. As we will describe next, it turns out that simply
choosing the Sj subsets in Definition 3.11.7 randomly can lead to computationally efficient
(α, β)-embeddings that also have near-optimal c = α/β values.

Let s = |S|, q ∈ [2,∞)∩N, p = s−1/q, and define the probabilities pj := min
{
1
2 , pj

}
for

j = 1, . . . , q. Next, let m =
⌈
24s1/q log s

⌉
, and for each j = 1, . . . , q and k = 1, . . . ,m form

a random subset Sj,k ⊂ S by independently including each u ∈ S in Sj,k with probability pj .
Finally, form a Fréchet function f : S → Rqm as per Definition 3.11.7 with γ0, . . . , γqm−1 = 1
using all n = qm of these independently random Sj,k-sets. The next theorem guarantees

that this Fréchet function will in fact be an
(

1
2q−1 , 1

)
-embedding of (S, ρ) into ℓ∞qm with

high probability. See [35, Theorem 15.7.2] and [34] for details.

Theorem 3.11.9. Let q ≥ 2 be an integer and (S, ρ) be a finite metric space. There exists
a Fréchet embedding f : S → Rn satisfying

ρ(u, v)

2q − 1
≤ ∥f(u)− f(v)∥∞ ≤ ρ(u, v) ∀u, v ∈ S, (3.46)

where n = O
(
q|S|1/q log |S|

)
.

Suppose that we use the Fréchet embedding f : S → R
O(q|S|1/q log |S|) promised by

Theorem 3.11.9 to encode every element of S so that we can then rapidly approximate

ρ(u, v) for all u, v ∈ S thereafter using only the stored vectors {f(u)}u∈S ⊂ RO(q|S|1/q log |S|).

This will require us to store O
(
q|S|1+1/q log |S|

)
total values. Comparing this to the O(|S|2)

pairwise distances Theorem 3.11.4 stores, we can see that we can now effectively decrease
the total number of values we need to store in exchange for allowing some approximation
error in (3.46). It’s also worth mentioning that general purpose data structures have been
developed that allow for more rapid computation of the type of nearest-neighbor distances,
minv∈Sj ρ(u, v), utilized by Fréchet functions (see, e.g., [4]). Such data structures can
help make the evaluation of Fréchet embeddings quite efficient, allowing for even more
computational gains. Finally, though we have focused on (α, β)-embeddings into ℓ∞n here,
it’s also interesting to note that similar randomized Fréchet embeddings into, e.g., ℓ2n also
exist [6].

133

As a very final flourish to this chapter we’d like to celebrate the appearance of a new
character just above: probability. Recall that proving Theorem 3.11.9 requires finding
“good” Sj subsets to use in Definition 3.11.7. After noting this challenging design problem
we almost immediately decided to randomly guess the Sj subsets to use (which is easy
to do!), and then saw that doing so produced very nice results. This is just one example
of a phenomena that occurs over and over and over again: probability can be used to
make near-optimal design choices that are (often) simply too hard for people to figure
out how to make any other way. We point this out mainly to motivate you to follow this
recommendation: go learn some probability!!! Once you know even a little probability we
are confident that it’ll come in so handy so often that, looking back later, you won’t know
how you ever survived without it.

134

Bibliography

[1] N. Ailon and E. Liberty. Fast dimension reduction using rademacher series on dual
bch codes. Discrete & Computational Geometry, 42(4):615–630, 2009.

[2] J. V. Atanasoff. Advent of electronic digital computing. Annals of the History of
Computing, 6(3):229–282, 2008.

[3] J. Bergh and J. Löfström. Interpolation spaces: an introduction, volume 223. Springer
Science & Business Media, 2012.

[4] A. Beygelzimer, S. Kakade, and J. Langford. Cover trees for nearest neighbor. In
Proceedings of the 23rd International Conference on Machine Learning, ICML ’06,
page 97–104, New York, NY, USA, 2006. Association for Computing Machinery.

[5] L. I. Bluestein. A Linear Filtering Approach to the Computation of Discrete Fourier
Transform. IEEE Transactions on Audio and Electroacoustics, 18:451–455, 1970.

[6] J. Bourgain. On lipschitz embedding of finite metric spaces in hilbert space. Israel
Journal of Mathematics, 52(1):46–52, 1985.

[7] J. P. Boyd. Chebyshev and Fourier Spectral Methods. Dover Publications, Inc., 2001.

[8] M. Brand. Incremental singular value decomposition of uncertain data with missing
values. In Computer Vision—ECCV 2002: 7th European Conference on Computer
Vision Copenhagen, Denmark, May 28–31, 2002 Proceedings, Part I 7, pages 707–720.
Springer, 2002.

[9] M. Brand. Fast low-rank modifications of the thin singular value decomposition. Linear
algebra and its applications, 415(1):20–30, 2006.

[10] J. W. Brown and R. V. Churchill. Complex variables and applications. McGraw-Hill,,
2009.

[11] J. Carter, K. Schmid, K. Waters, L. Betzhold, B. Hadley, R. Mataosky, and J. Halleran.
Lidar 101: An introduction to lidar technology, data, and applications. National

135

136

Oceanic and Atmospheric Administration (NOAA) Coastal Services Center, https:
// coast. noaa. gov/ data/ digitalcoast/ pdf/ lidar-101. pdf , 2012.

[12] H. Cheng, Z. Gimbutas, P.-G. Martinsson, and V. Rokhlin. On the compression of low
rank matrices. SIAM Journal on Scientific Computing, 26(4):1389–1404, 2005.

[13] B. A. Cipra. The best of the 20th century: Editors name top 10 algorithms. SIAM
news, 33(4):1–2, 2000.

[14] J. Cooley and J. Tukey. An algorithm for the machine calculation of complex Fourier
series. Math. Comput., 19:297–301, 1965.

[15] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to algorithms.
2nd Edition, 2001.

[16] J. W. Demmel. Applied numerical linear algebra. SIAM, 1997.

[17] S. Foucart. Mathematical pictures at a data science exhibition. Cambridge University
Press, 2022.

[18] S. H. Friedberg, A. J. Insel, and L. E. Spence. Linear Algebra (Fourth Edition). Pearson
Higher Ed, 2003.

[19] M. Frigo and S. Johnson. The design and implementation of fftw3. Proceedings of
IEEE 93 (2), pages 216–231, 2005.

[20] S. R. Garcia and R. A. Horn. Matrix Mathematics: A Second Course in Linear Algebra.
Cambridge University Press, 2023.

[21] V. Guillemin and A. Pollack. Differential topology, volume 370. American Mathematical
Soc., 2010.

[22] G. H. Hardy, J. E. Littlewood, and G. Pólya. Inequalities. Cambridge university press,
1952.

[23] M. Heideman, D. Johnson, and C. Burrus. Gauss and the history of the fast fourier
transform. IEEE ASSP Magazine, 1(4):14–21, 1984.

[24] R. Horn and C. Johnson. Topics in Matrix Analysis. Cambridge University Press,
1991.

[25] R. A. Horn and C. R. Johnson. Matrix analysis. Cambridge university press, 2013.

[26] P. Indyk, J. Matouvsek, and A. Sidiropoulos. Low-distortion embeddings of finite
metric spaces. In Handbook of discrete and computational geometry, pages 211–231.
Chapman and Hall/CRC, 2017.

https://coast.noaa.gov/data/digitalcoast/pdf/lidar-101.pdf
https://coast.noaa.gov/data/digitalcoast/pdf/lidar-101.pdf

137

[27] M. A. Iwen and B. Ong. A distributed and incremental svd algorithm for agglomerative
data analysis on large networks. SIAM Journal on Matrix Analysis and Applications,
37(4):1699–1718, 2016.

[28] M. A. Iwen and C. V. Spencer. A note on compressed sensing and the complexity of
matrix multiplication. Information Processing Letters, 109(10):468–471, 2009.

[29] R. Kantrowitz and M. M. Neumann. Yet another proof of minkowski’s inequality. The
American Mathematical Monthly, 115(5):445–447, 2008.

[30] Y. Katznelson. An introduction to harmonic analysis. Cambridge University Press,
2004.

[31] D. R. Kincaid and E. W. Cheney. Numerical analysis: mathematics of scientific
computing, volume 2. Brooks/Cole Pacific Grove, CA, 2002.

[32] R. Kress. Numerical Analysis, volume 181. Springer-Verlag, 1998.

[33] J. E. Marsden and A. Tromba. Vector Calculus, Sixth Edition. W.H. Freeman and
Company, 2012.

[34] J. Matouvsek. On the distortion required for embedding finite metric spaces into
normed spaces. Israel Journal of Mathematics, 93(1):333–344, 1996.

[35] J. Matouvsek. Embedding finite metric spaces into normed spaces. In Lectures on
Discrete Geometry, pages 355–400. Springer, 2002.

[36] I. Niven, H. S. Zuckerman, and H. L. Montgomery. An introduction to the theory of
numbers. John Wiley & Sons, 1991.

[37] C. H. Papadimitriou. Computational Complexity. Addiaon-Wesley Publishing Company,
Inc., 1994.

[38] G. Plonka, D. Potts, G. Steidl, and M. Tasche. Numerical Fourier Analysis. Springer,
2018.

[39] L. Rabiner, R. Schafer, and C. Rader. The Chirp z-Transform Algorithm. IEEE
Transactions on Audio and Electroacoustics, AU-17(2):86–92, June 1969.

[40] T. Shifrin and M. Adams. Linear algebra: A geometric approach (Second Edition).
Macmillan, 2011.

[41] D. A. Spielman. Spectral and algebraic graph theory. http: // cs-www. cs. yale.

edu/ homes/ spielman/ sagt/ , 2025.

[42] G. Stewart. Perturbation theory for the singular value decomposition. Digital Repository
at the University of Maryland, UMIACS-TR-90-124 CS-TR 2539, September 1990.

http://cs-www.cs.yale.edu/homes/spielman/sagt/
http://cs-www.cs.yale.edu/homes/spielman/sagt/

138

[43] G. Stewart and J.-g. Sun. Matrix Perturbation Theory. Computer Science and Scientific
Computing/Academic Press, Inc, 1990.

[44] G. W. Stewart. On the early history of the singular value decomposition. SIAM review,
35(4):551–566, 1993.

[45] V. Strassen. Gaussian elimination is not optimal. Numerische mathematik, 13(4):354–
356, 1969.

[46] B. S. Thomson, J. B. Bruckner, and A. M. Bruckner. Elementary Real Analysis.
Prentice Hall (Pearson), 2001.

[47] L. N. Trefethen and D. Bau. Numerical linear algebra. SIAM, 2022.

[48] V. V. Williams. Multiplying matrices faster than coppersmith-winograd. In Proceedings
of the forty-fourth annual ACM symposium on Theory of computing, pages 887–898,
2012.

	Why We Should Care: Artificial Intelligence, and Data, Data, DATA!
	Data, and What You Might Do with It
	The Basics of Feed-forward Neural Networks (FNNs)
	Affine Functions and Single Neurons
	Layers of Neurons, and Some Helpful Matrix Notation
	Feed-Forward Neural Networks (FNNs) in Full Generality

	Linear Algebra over the Real and Complex Numbers
	The Complex Numbers
	Euler's Identity
	The Polar Representation of a Complex Number
	Complex Conjugation
	The Roots of Unity
	The Triangle Inequality for Complex Numbers

	Basic Linear Algebra over C and R
	Some Inner Product Geometry for Real-valued Vectors x, yRn
	The Cauchy–Schwarz Inequality
	General Norms on Cm n, and the Euclidean Vector Norm

	Subspaces, Span, and Linear Independence
	Bases, Orthonormal Bases, Dimension, and Rank

	Orthonormal Bases and the Gram–Schmidt Algorithm
	The QR Decomposition of a Matrix

	Near-Optimal Compression of Low Rank Matrices
	A Very Brief Review of Gaussian Elimination, and Some Useful Notation

	Set Addition, Orthogonal Projections, and Perpendicular Subspaces
	Representing Orthogonal Projections with Matrices
	Least-Squares Theory for (Approximately) Solving Systems of Linear Equations

	The Four Fundamental Linear Subspaces of a Matrix
	The Spectral Theorem for Hermitian Matrices
	Positive (Semi)Definite Matrices
	The Cholesky Decomposition

	A Review of the Trace and Determinant Functions
	The Trace of a Matrix
	The Determinant of a Matrix

	Some More Advanced Topics in Linear Algebra
	One Factorization to Rule Them All: The Singular Value Decomposition
	The Relationship to the Spectral Decompositions of A*A and AA*

	The SVD and the Moore–Penrose Inverse of a Matrix
	Some Important Properties of Singular Values
	Singular Value Inequalities for Sums and Products of Matrices

	The Optimal Rank-s Approximation As of a Matrix A
	Optimality of As in the Frobenius and (2, 2)-Operator Norms

	Solving Ill-Conditioned and Noisy Linear Systems
	Improving Conditioning by SVD Truncation
	Tikhonov Regularization

	Linear Least-Squares Regression
	Centering, and the Optimal Shift bCm
	The Optimal Low-Rank Matrix A Cm n

	Discrete Convolution and Fourier Transform Matrices
	Circulant and Toeplitz Matrices
	Discrete Fourier Transforms and Circular Convolutions
	Big-O Notation and the Basic Art of Runtime Analysis

	The Fast Fourier Transform (FFT)
	The FFT for Vectors of Arbitrary Size
	Fast Matrix Multiplication for Toeplitz Matrices

	p-Norms and the Hölder Inequality
	Convex Functions of One Variable
	The Minkowski Inequality for Vectors
	Young's Inequality for Products & the Discrete Hölder Inequality

	Some Discrete Inequalities from Fourier Analysis
	The Discrete Young's Convolution Inequality

	Embedding Metric Spaces into Normed Vector Spaces
	Rapidly Approximating the Diameter of a Set of Vectors
	Fréchet Embedding Methods for Finite Metric Spaces

