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Chapter 1

Why We Should Care: Online
Computing, Artificial Intelligence,
and Data, Data, DATA!

Artificial Intelligence, which began being generally useful in the 2020’s, resulted from the
combination of three crucial historical developments: (7) the exponential increase in available
computing power from the 1950’s until the 2020’SEI (43) the development of machine learning
techniques beginning in the second half of the 20" century (Neural Network methods in
particular), and (#i¢) the collection of super-massive data sets for training and learning.ﬂ
This book is meant to give the reader a solid introduction to the mathematics necessary to
begin understanding developments (i7) and (iii) above. In particular, you will learn about
the mathematics needed to understand what a neural network is and how the algorithms
work that one might use to compile, process, analyze, and store the types of extremely
super-massive datasets needed to train one well. Many of the mathematical topics needed
are covered beginning in Chapter

In this chapter we simply aim to prepare you to understand why that material is so
important, as well as to state some application problems in a mathematical way that makes
them easier to begin understanding more rigorously. Our main contention is this: learning
the mathematics first makes all the application problems below much easier to learn about
and begin solving later! However, we do understand that mathematics is difficult, and that
it helps to have some solid motivation going into a long hike to help keep you trekking
uphill until you reach the beautiful views nearer to the top of the mountain. We hope the
following sections will help give you that motivation.

'Mainly due to steady innovations in integrated circuit manufacturing techniques over many decades —
read up on Moore’s law for a good time!

2Largely made possible by the development of modern communication infrastructure and the subsequent
wide-scale adaptation of the internet beginning in the early 1990s.
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1.1 Data, and What You Might Do with It

Let N be a positive integer. Herein we will let [INV] denote the first N non-negative integers
from 0 to N — 1, [N] :={0,..., N — 1} for any natural number N € N = {0,1,2,3,...}.
Our data herein will (almost always) be a vector of N numbers indexed by [N]. We will
denote vectors with boldface letters. For example, x € R” is a vector. We denote the
entries of x by z; € R. Pictorially, we have

Lo
I

ITN-1

In most settings we consider in this book vectors will be rich enough to represent the
data we want to work with. This is primarily because, given the discrete and finite nature
of digital computers, one can always simply vectorize other data one might have even if it
isn’t a vector to begin with. A related application example follows.

Example 1.1.1 (Image Classification Described with Vectors and Functions).
Suppose we want a model to separate pictures into two classes: pictures of cats and pictures
of dogs. How can we describe this mathematically? Let’s start with a picture of a cat.
Assume this picture is 1000 pizels by 1000 pizels, and each pizel has some triple of color
values associated to it (one for red, one for green, and one for blue), each a real number
in the interval [0,1]. Since a pizel is described by its three color values, each pizel in this
image can be described a vector of length 3:

r
g| eR3
b

where r denotes the red value of the pixel, and so on. Doing this for each pizel in the image,
we attain 1000 x 1000 = 10° wvectors of length 3. We can re-express this data as a single
object by concatenating these vectors (in some arbitrary order, such as reading the pizel rows
of the image left-to-right and top-to-bottom) into one large vector X q € R3x10° Hence,
our cat picture is now simply a big vector.

Now, let’s focus on the question of classification. A classification model can be thought of
as a function whose input is, e.g., a 1000 x 1000 picture of a cat or a dog, and whose output
is either “cat” or “dog”. If we assign the label O to cats, and 1 to dogs (or the other way
around, if you prefer cats!), then our classification question boils down to finding a function
f: R3*10° {0,1} such that, given a vectorized picture X q; of a cat or a vectorized picture
Xdog Of a dog, we correctly get f(Xcar) =0 and f(X4o9) = 1.



We can use a similar framework for other sorts of problems. For example, the problem
of reducing noise in a 1000 x 1000 cat picture can be viewed as a problem of finding a
function f : R3*10° 5 R3*10° qyich that f(Xcat) is “less noisy” than the original picture Xcas.

There are a lot of specific image processing methods and techniques built around
processing images as two-dimensional objects. For simplicity herein, however, we will use
the flexibility of discrete representations to allow us to turn any image, etc., into a vector
as an excuse to ignore non-vector data (i.e., we will vectorize everything). Though this
can always be done, we note that it certainly shouldn’t always be done... Nonetheless,
it’s generally useful enough that we will do it here. It also will make understanding the
mathematics involved much easier, which we will take as an additional reason to assume
that our datasets are almost always collections of vectors herein.

1.2 The Basics of Feed-forward Neural Networks (FNNs)

Continuing for the moment in the spirit of our first example above, we will now briefly
take a detour to discuss what kinds of functions f one might actually build and evaluate
with a computer to, e.g., classify images as in Example FNNs provide exactly one
such “computer friendly” class of functions that are also expressive enough to be able to do
many useful tasks quite well. Given their value in artificial intelligence applications we will
now take some time to explain what they are and how they depend on, and utilize, ideas
from, e.g., both linear algebra and optimization. To begin we will first discuss the atomic
building block of every neural network — the neuron.

1.2.1 Affine Functions and Single Neurons

Let x and y be vectors in RY. We define the inner product of x and y, denoted (x,y),
to be the sum

N-1
(x,y) =z (1.1)
j=0
Definition 1.2.1 (Affine Functions). Fizw € RY and a b € R. Then the affine function
determined by w and b is the function awp : RN — R defined by
aw,b(x) = <X7 W> +b
Here w is called the affine function’s weight vector and b is called its bias.

Note that we can also write the above as a single inner product of two vectors in RV*+1,

wmos=(()- ()

We can also represent an affine function a j : RY — R graphically as in Figure



o
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Figure 1.1: A graphical representation of an affine function awp : RM — R. The first
column of boxes represents the inputs (i.e., the entries of x). The edge weights are the
entry of the weight vector w that multiplies each corresponding input entry in the affine
function’s inner product (e.g., wog multiplies against xg, etc.). The dotted box around the
constant input 1 used here to include the bias b as an edge weight is often omitted.

Definition 1.2.2 (Neurons). A neuron n:RY — R is a composition of an affine function
Aw p with a nonlinear function o : R — R given by

n(x) = o(awp(x)) = o((x,w) + b)).

Note that a neuron is determined by two choices: the parameters w € RY and b € R, and
the activation function o.

A neuron also admits the commonly used graphical representation in Figure In
Figure the first column of boxes is called the input layer and the circle is called a
node or neuron. Some typical choices of activation functions ¢ include the

0 if y<0
1, ify>0

e Perceptron (or Heaviside, or step function): o(y) = {

e Sigmoid: o(y) =1/(1+e7Y)

e Hyperbolic tangent: o(y) = tanh(y)




o

Figure 1.2: A graphical representation of a neuron. The first column of boxes represents the
inputs (i.e., the entries of x). The edge weights are the entry of the weight vector w that
multiplies each corresponding input entry in the neuron’s inner product (e.g., wy multiplies
against xg). Note in particular that a circle is used to represent a neuron here, as opposed
to a box which is used to represent an affine function as per Figure Again, the dotted
box around the constant input 1 used here to include the bias b as an edge weight is often
omitted.

e Rectified Linear Unit (ReLU): o(y) = max(0,y)

e Leaky ReLU: 0,(y) = max(ay,y) with 0 < a < 1.

e Absolute value (or modulus): o(y) = |y|

e Smoothed versions of (leaky) ReLU to eliminate non-differentiability at y = 0.

Example 1.2.3 (A Simple Way to Smooth Non-Differentiability). Fiz a € [0,1) and
a € R, and define the function g : R — R to be



A smoothed leaky ReLU function, 64 (x), can be defined to be

Ga,0l(T) = /j 9(y) dy. (1.2)

Exercise 1.2.1. The following problems concern the smoothed (leaky) ReLU function
Ga0: R — R defined in (L.2]) witha=1/2 and oo = 1/4.

(a) Compute the integral in (1.2) and write down the resulting piecewise polynomial
formula for 61 1(x). What is 61 1(1)?

11 1
274 27
together with the leaky ReLU function o1 .
2

N

(b) Plot & 11
Given an activation function ¢ : R — R we will extend it to a function o : RN — RY
for any given N € N entrywise by

O'(H?Nfl)

We will now continue to build on this notation in order to help combine multiple neurons
into more complicated (and useful!) functions.

1.2.2 Layers of Neurons, and Some Helpful Matrix Notation

A matrix W € RY*? is a table of data with N rows and d columns. We denote the entry
in the 7' row and k"™ column of W by W, € R for all j € [N] and k € [d]. We denote the
§ row of W, which is a vector in RY, by W;. € R%. Similarly, we denote the j*® column
of W, which is a vector in R, by W.; € RY. We can also build a matrix out of vectors.
Given d vectors wo, ..., wg_1 € RY, we can write the N x d matrix whose j* column is
W.; =w; for all j € [d] as

Wo ot Wg—q E]RNXd.

Given a matrix W € RV*? and a vector y € RY we will also denote by (Wly) € RNV*(@+1)
matrix whose first d columns are the columns of W, and whose (d + 1) column is y.
The transpose of a matrix W € RV*? denoted by W1 € R¥¥ | is the d x N matrix
with entries given in terms of W by (W7T);, = Wy ; for all j € [d] and k € [N]. That
is, we swap the roles of rows and columns so that, e.g., W;. = W:'; for all j € [N].



Finally, a matrix W € RV*? also always represents a linear function W : R* — RY where
W(x) = Wx € R" has entries given by

(Wx)j = Z ijkmk
ke[d]

for all j € [V].
Exercise 1.2.2. Let x € RN, y € R, and W € RV*4. Show that (x, Wy) = (WTx,y).
We can also represent a matrix graphically as multiple affine functions. Let W e RV*d

and x € R?. Then we can express the matrix-vector product Wx € RN with the diagram
in Figure [1.3

(WX)O

(WX)N,1

Figure 1.3: A graphical representation of a matrix W € RV*? as an input layer of width d
connected directly to a linear output layer of width N.

We now have enough notation to define and represent a single layer of neurons.

Definition 1.2.4 (A Layer of Neurons). A layer of neurons {: RN — R is determined
by a collection of d weight vectors wy, ..., wq_1 € RY, d biases b, ...,bg_1, and a choice
of activation function o : R — R. We call d the width of {. The layer ¢ is defined using
these parameters by

o({x,wq) + bo) (x,wq) + by
U(x) = : =0 : =o(Wx+b),
o((x,W4-1) + ba-1) (x,Wg_1) + ba—1
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| | bo

where WT = | wg -+ wg_q1 | € RV and b = : . Note that ¢ : RN — R? is
| | ba_1

effectively created by stacking d different neurons 1, . .. ,ng—1 : RV — R into a vector. Here

W € R™N is called the layer’s weight matrix and b is called the layer’s bias vector.

Above can also write {(x) = o(Wx + b) as {(x) = o </~l <)1<)>, where A = (W|b) €

X J—
)=
we may further write ¢ compactly as a composition of ¢ and A, i.e., {(x) = 0(A(x)) =
(00 A)(x). This compositional form will be used below. Finally, we note that one can also
represent a layer of d neurons graphically as per Figure [1.4]

RA*N+1) | Thus, if we define the affine function A : RV — R% by A(x) == A Wx+b,

Figure 1.4: A graphical representation of a layer of neurons ¢ : RN — R? defined by
((x) = o(Wx + b) with weight matrix W € R4 and bias vector b € R?. Here the input
layer of width N connects to a layer of d neurons.

1.2.3 Feed-Forward Neural Networks (FNNs) in Full Generality

Informally, a FNN is a series of layers of neurons with each layer feeding its outputs “forward”
into the layer following it. From the discussion of neuron layers above, we can therefore
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choose to describe an FNN as a concatenation of functions that alternate between affine
functions and the activation function. More formally, one can define FNNs as follows.

Definition 1.2.5 (Feed-forward Neural Network (FNN)). A Feed-forward Neural
Network (FNN) f: RN — R is determined by an activation function o : R — R, a
depth L € N, and layer widths dy, . .. ,dr. It contains an input layer with N inputs, L layers
of neurons (often called hidden layers), and a final linear output layer with dy, outputs.
More specifically, let £0: RN — R% and ¢/ : R%-1* — R% Vj € {1,...,L —1} be L layers
of neurons, and let AV : R%-1 — R be an affine function defined by AL (y) := Wry + bl
for Wk € Réexdi—1 bl e R, The resulting FNN of depth L, f, is then given for all
x € RN by

fx)= (Al ottt ot 20 0t 0 ) (x)
= (ALoaoAL_loaoAL_Qo---oaoAO) (x),

where AL7F(y) = WE=F(y) + bE=F with WL=F € Rér-k*di—k-1 gnd bl=F € R+ for all
k€ [L], and A°(y) = WY + b°, with W° € R*N gnd b% € R%.

Even after fixing the activation function o we note that FNNs are functions that depend
on a potentially huge number of parameters. Using our notation from above, the number
of parameters in a FNN f is equal to the sum of the number of weights in the matrices
W7 and the number of biases in the vectors b/ for all j € [L + 1]. Recall that when j > 0,
Wi e R¥*%-1 and b/ € R%, and when j = 0, W% € R%*N and b® € R%. Thus, the
total number of parameters for a depth L FNN f with input layer width N and hidden
layer widths dg, d1,...,dr, is

L
# FNN parameters = do(N + 1) + Z dij(dj—1+1).
j=1
Finding a good way of choosing all of these parameters during training so that the resulting
trained FNN is capable of, e.g., correctly classifying cat versus dog pictures is usually
accomplished via optimization techniques. Techniques one can use to help reduce the
number of these parameters in order to save space when storing a previously-trained FNN is
something we will discuss more in, e.g., Sections and We urge you to keep reading
to learn about these useful tricks, and more!

For now though, we will simply try to mitigate the fact that the general definition of a
depth L FNN given above is rather complicated. In order to help digest it, let’s consider
some examples. Our first example will be that of a shallow FNN (that is, of an FNN of
depth L =1).

Example 1.2.6 (A Shallow FNN f: R — R). A shallow (i.e., L=1) FNN f: R —- R

will have the form
do—1

f(x) =0b' + Z wjl-a (w;-)x + b?) . (1.3)
=0
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where b € R is the single output layer bias (the output width is di = 1), b? for all j € [do]
are the biases of the single layer of neurons of width do, and where the weights of the layer
of neurons and the output layer are w?,w]l € R for all j € [do], respectively.

Example 1.2.7 (The Graphical Representation of a Shallow FNN f : R3 — R?). For a
graphical representation of a shallow (i.e., depth L = 1) FNN f : R?® — R? with widths
do = 2 and dy = 2 see Figure[1.5. Note that such a network will be determined by two
weight matrices W9 € R?*3, Wl € R?>*? and two bias vectors b% b! € R?. Hence, it has a
total of 14 parameters.

output

output

Figure 1.5: An example of a shallow neural network f : R® — R2. We call a depth 1 FNN
shallow. The leftmost layer is the input layer with N = 3 inputs. The middle layer, which
is the only nonlinear layer in this diagram, is a hidden layer of neurons with dy = 2 neurons.
The right layer is the output layer with d; = 2 outputs.

Example 1.2.8 (The Graphical Representation of a Depth L = 2 FNN f : R? — R?). For
a graphical representation of a depth L =2) FNN f: R? — R? with widths dg = 3, dy = 2,
and dy = 2 see Figure[1.6 Such a network will be determined by three weight matrices
WO e R3>*2, Wl e R?%3, W2 € R**2 and three bias vectors b? € R3, bl b% € R?. Hence,
it has a total of 23 parameters.
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Figure 1.6: An example of a neural network f : R? — R? of depth L = 2. The leftmost
layer is the input layer with N = 2 inputs. The second layer from the left is the first hidden
layer of neurons, which has dy = 3 neurons. The third layer from the left is the second
hidden layer of neurons, which has width d; = 2, and the rightmost layer is the linear
output layer, which has dy = do = 2 outputs.

Exercise 1.2.3. Draw the graphical representation of a shallow neural network f: R — R
of width dg = 5. How many parameters does it have?

Exercise 1.2.4. Draw the graphical representation of a depth L = 3 meural network
f: R —= R with widths dg = 2,dy = 2,ds = 2. How many parameters does it have?

We will now briefly discuss why choosing, e.g., a greater value for its depth L might
allow a FNN to “work better” at a variety of tasks. This is directly linked to the notion of
the “expressivity” of an FNN.

Some Basics Concerning the Expressivity of FNNs

In practice the activation function ¢ : R — R is always chosen to be a nonlinear function.
The reason why is directly linked to the notion of the “expressivity” of an FNN. Suppose
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for example that we choose o : R — R in (1.3]) to be linear so that o(y) = ay + ¢ for some
a,c € R. Substituting this activation function into (|1.3) we obtain

do—1 do—1
fl@)=b"+ > wio (wlz+b)) =b"+ > wj [a(wiz+b)) + ]
=0 =0

do—1 do—1
— 1.0 1 1 0 o~ ~
= E wijaw; | x4+ | b + 5 wj(ab; +c¢) | = azx + ¢,
J=0 J=0

= a

with the two new constants a, ¢ € R defined as above. That is, if we choose o to be linear
then the complicated shallow FNN f: R — R in is just another linear function itself.
All the weight and bias parameters used to define it were a total waste of time! Stated
another way, choosing o to be linear only allows shallow FNNs such as to express
simple linear functions.

As we shall see next, choosing o to be something even “barely nonlinear” such as a
ReLU function o(y) = ReLU(y) := max(0,y) already allows shallow FNNs such as (|1.3))
to express/represent significantly more complicated functions than simple linear o
The following Theorem is paraphrased from Foucart’s fantastic book on data science [11].
Informally, it tells us that choosing o to be a ReLLU function allows shallow FNNs such
as to express any continuous piecewise linear function you like. Note that this is a
dramatically larger class of functions than the simple linear ones shallow FNNs such as
can express if o is chosen to be linear. Hence, in this case choosing o to be nonlinear
mcreases exrpressivity.

Theorem 1.2.9 (See Theorem 24.1 in [I1]). Let 0 : R — R be the ReLU function
ReLU(z) = max{0,x}. Then, every continuous piecewise linear function f : R — R as in
(1.4) can be expressed by a shallow FNN whose single hidden layer contains n + 2 neurons.
More specifically, let

(a0x+b0 <7
a1x + by 1 <x<T
fla) = s (1.4)
1T +bp-1 o1 ST STy
[ anT + b, ™ <
where 11 < 19 < --+ < T, are real numbers, and ag, . ..,a, and by, ..., b, are real numbers

such that the function f above is continuous (i.e., a;jTj41 + bj = aj417j41 + bjy1 for all
Jj € [N]). In other words, f is a piecewise linear function whose slope changes finitely many
(specifically, n) times. Any such function can be obtained via a shallow FNN of width n + 2.

3Note that the ReLU function itself is linear everywhere except at 0. Hence, I feel it is appropriate to
label it as “barely nonlinear”.
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Proof. We begin by noting two useful properties of the ReLLU function:

ReLU(vx) = yReLU(z) Vx € R,y > 0, and
x = ReLU(x) — ReLU(—z) Vz € R.

Using these two properties, we can write f as the following linear combination of n 4 2
ReLU functions as follows

f(x) = apz + by + Z(aj —aj—1)ReLU(z — 75)
=1
= ReLU(apx + bp) — ReLU(—apz — bo) + Z(aj —aj—1)ReLU(z — 75).
j=1
O

Note that the class of piecewise linear functions is actually quite powerful approximation-
theoretically since one can, e.g., approximate any continuous function R — R within a
bounded domain arbitrarily well using increasingly fine piecewise linear approximations.
Thus, the theorem above tells us that even when using the most basic tools available to us
(a straightforward nonlinear activation function within a FNN with just a single layer) we
can already approximate a very general class of functions from R — R as well as we want.

When we consider functions of two variables, however, things become a bit more
complicated. For example, [I1] also shows that the bivariate piecewise linear function
9(zo, 1) = min (0, max(xg, 1)) can not be exactly represented by a shallow ReLU FNN
of any width. That said, as the next theorem demonstrates, g can in fact be exactly
represented by a FNN of depth L = 2. This simple example is meant to demonstrate the
following more general principal: Increasing the depth of a FNN increases its expressivity.
In practice the depths (and widths) of modern neural networks are very large for this reason,
leading to the necessity of practitioners to deal with many very large matrices. This is just
one of the many many reasons it’s crucial for the modern data scientist to know the linear
algebra we will review in the next chapter. Hope to see you there!

Theorem 1.2.10 (Section 24.3 in [I1]). Define the function g : R? — R by g(zo,71) =
min{0, max{xg, x1}}. This function g cannot be generated by a shallow ReLU FNN, but g
can be obtained as a depth L =2 ReLU FNN.

Proof. For a proof that g cannot be generated by a shallow ReLU FNN, consult [11],
Theorem 24.1]. Below we show explicitly how g can be written as a depth 2 ReLU FNN.

g(xo, 1) = min{0, max{xzg, z1}}
= —ReLU(— max{zg, x1})
= —ReLU(—(zo + ReLU(z1 — 0)))
= —ReLU(—ReLU(zg) + ReLU(—xzg) — ReLU(z1 — x0))
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We can also draw this neural network as in Figure [I.7, omitting arrows with weight 0. [

-1 9(960,%1)

Figure 1.7: The graphical representation of the depth L = 2 ReLLU FNN from the proof of
Theorem [1.2.10| that computes g(zg, z1) = min{0, max{xg, z1}}.



Chapter 2

Linear Algebra over the Real and
Complex Numbers

In this chapter we will introduce/review linear algebra over the complex numbers. We note
immediately, however, that the real numbers are also complex numbers! If the reader is
intimidated by (or temporarily disinterested in) doing linear algebra over the
complex numbers, they can simply skip down to Section and replace the
symbol “C” everywhere it appears there with an “R”. Doing so will not affect
the correctness of anything in this chapter, or limit your understanding in an
important way until Section We will also continue to use the matrix notation
and conventions discussed in, e.g., Section going forward. All of that material (where
one restricts oneself to thinking about the reals R C C) also remains true in this chapter.
In short, if you know how linear algebra works over C, then you can reduce to linear
algebra over R by simply replacing “C” everywhere it appears with an “R”. Doing linear
algebra over the complex numbers instead of the reals in the first place does require a few
minor adaptations, though (mainly, you need to use complex conjugation in a few crucial
definitions). We will do that for you below. Before we begin, however, let’s review the
complex numbers.

2.1 The Complex Numbers

In this book the letter i will be reserved for the imaginary number /—1. That is, i% := —1.
The imaginary number 1 satisfies all the properties you hope it would when interacting with
elements of R including: 0i = 0 and 11 = i, as well as all the usual associative, commutative,
and distributive properties (e.g., iz =zt and 1+ 2 = x + 1 Yz € R). A complex number
is an object of the form z = z + 1y for z,y € R. The set of complex numbers is denoted

C:={r+1y|z,yecR}.

17
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The number z in z = x + 1y is called the real part of z, and is denoted Re(z) € R. Similarly,
the number y is called the imaginary part of z, and is denoted Im(z) € R. A real number
is simply a complex number with a zero imaginary part. Hence, R C C. There is also a
common geometric interpretation of a complex number as illustrated in Figure In fact,
the existence of this picture is why C is sometimes also referred to as “the complex plane”.

A
Re(z) = |2| cos(8 z = (Re(z),Im(2)) = |z|et?
() ewee R T o0 0) 2= (Re(e), () =

Im(z) = |z| sin(0)

Real Axis

Imaginary|Axis z = (Re(2), ~Im(2)) = |z|e~10

\{

Figure 2.1: The geometry of a complex number z € C.

Figure represents many of most important quantities related to a complex number
z = x +1y stemming from geometry. In particular, the modulus, magnitude, or absolute
value of z = x + 1y is denoted by |z|. It is defined to be the Euclidean distance from the
origin to (Re(z),Im(2)) = (z,y) in the complex plane. It is therefore also the length of the
hypotenuse of a right triangle whose other two sides have lengths |Re(z)| and |Im(z)|, and
so can be computed using the Pythagorean theorem to be

2l = V(Re(2))? + (Im(2))2 = v/a? + 32,

Note that if z € R so that z = Re(z) (i.e., if y = 0) then |z| = |Re(z)| = |z|. That is, this
definition extends the usual definition of absolute value over the real numbers IR to all of C.

Exercise 2.1.1. Let z € C. Prove that |Re(2)| < |z| and [Im(z)| < |z| always hold.

Another fundamental geometric quantity illustrated in Figure related to z = x + 1y
is its phase angle or argument, 6 = arg(z) € [0, 27), defined to be the angle between the
real axis and the vector from the origin to (Re(z),Im(z)) = (z,y) in the complex plane.
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Using the geometric definitions of sin and cos involving right triangles one can immediately
derive the formulas

z = Re(z) = |z|cosf and y =Im(z) = |z|sinb.

Similarly, one can appeal to trigonometry to see that, e.g, the phase angle 6 of z = z + 1y is

0 = arg(z) := cos™ ' <Re§f)> = cos ! <\/x2xTy2) 5

where one needs to remember to correct # based on the quadrant of the complex plane z
belongs to in the usual way. Note that positive real numbers (with sign 1 = cos(0)) always
have the phase angle # = 0, and that negative real numbers (with sign —1 = cos()) always
have the phase angle 8 = 7. Hence, phase angles effectively extend the notion of “sign”
from the real numbers R to all of € in a consistent fashion.

Two complex numbers z; = x1 + 1y; and zo = x2 + 1yo can be added component-wise
(effectively as vectors) via the definition

z1+2z9 = (x14+1y1)+(x2+1y2) = (x14+22)+1(y1+y2) = Re(z1)+Re(z2)+i(Im(z1)+Im(22)).

Note again that the usual relationship between R and C holds: if z1,2z0 € R so that
Im(z1) = Im(z2) = 0 then this definition of addition matches addition in R. We have once
again managed to extend the usual definition (of addition here) from R to all of C in a
totally consistent way:.

Similarly, two complex numbers 21,29 € C can be multiplied using the standard
distributive law for the multiplication of two real numbers, but making sure to use the
identity 12 = —1. Indeed, if z; = 21 + 1y and 2o = 9 + 1ys, then

2120 = (w1 + Y1) (22 + iy2) = 2102 + 1210 + Wy172 + Y190
= (2172 — y1y2) + i(T1Y2 + Y172).

Note once again that this definition of multiplication matches multiplication over the reals
whenever z1, 29 € R so that y; = yo = 0 = Im(z1) = Im(22). This, of course, allows us to
compute powers of z € C, 2™, for any positive integer n in a way that is again a consistent
extension of how one computes powers of real numbers.

Exercise 2.1.2. Verify the following properties of complex number addition and multiplica-
tion.

1. Commutativity of addition and multiplication: z; 429 = 20421 and z120 = 2221
for all z1, 20 € C.

2. Associativity of addition and multiplication: (z; + 22) + 23 = 21 + (22 + 23) and
(z122)23 = 2z1(2223) for all z1, 29,23 € C.
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3. Distributivity: z1(z2 + 23) = 2122 + 2123 for all z1, 29,23 € C.
Exercise 2.1.3. Let z1, 29 € C. Show that |z122| = |z1]|22].

Importantly, we can now see that more complicated functions that can be defined on
R in terms of series expansions (like exp, cos, sin, ...) should also believably extend in a
consistent way to all of C since all of their basic building blocks (addition, multiplication,
and integer powers) have been consistently extended from R to all of (DE| Recall the Taylor
series for the exponential function centered at 0 is

This series converges absolutely for every x € R. The exponential function of any complex
number z € € can be defined analogously as

exp(z) = =y - (2.1)

It matches the usual definition of exp on R (i.e., whenever z € R C C) for all the reasons
emphasized above. For more of this extensions interesting properties on € we recommend
taking a look at, e.g., [5].

2.1.1 Euler’s Identity

We may now derive Euler’s identity for complex exponentials. Consider the purely imaginary
number z = 16 for some 6 € R. In this case, we have

exp(i0) = e'? = Z (ﬁz?n' (2.2)
n=0 ’

2

Before simplifying the above expression, we observe that since 1 = —1, we have

i*" = (=1)" and i*"*' = (=1)"i for all n > 0.

If you want to learn about how very nicely this idea ends up working out, I strongly recommend taking
a class on complex analysis!
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Breaking the sum (2.2)) into the parts where n is even and n is odd we get that

; 10)" 10)"
T L L

n even ' n odd
B i (1-19)271 N o0 (]-19)2n+1
N — () = (2n+1)!

oo ]'12n92n o I'l2n+1 02n+1

@n)l "2 20+ 1)

n=0
> (_1)71]'192714-1

B > (_1)719271,

"Xl T D
(e (R e
(&%) (5 %)

n=0

Now recall from calculus that the Taylor series for cosf and sin 6 about 0 are

o0 [e.@]
(_1)n92n ) (_1)n62n+1
cosf = 27 and sinf = 27

| |’
o (2n)! o (2n+1)!
and that the series above converge absolutely for all § € R. Consequently, we obtain
Euler’s identity, i.e., that .

e = cosf + isin 6. (2.3)

Exercise 2.1.4. Use Euler’s identity and trigonometric identities involving sine and cosine
to show that ¢?e™ = &!(%%) holds for all w,0 € R.

n infd

Exercise 2.1.5. Use induction in addition to the last exercise to prove that (e)" = e

holds for all n € N.

2.1.2 The Polar Representation of a Complex Number

As illustrated in Figure every z = x + i1y € C corresponds to a point (z,y) =
(Re(z),Im(z)) in the complex plane. This suggests another way of representing a complex
number using polar coordinates as done for R?. Specifically, if z = rcos@ and y = rsin 6
for some r > 0 and 6 € [0,27), then a complex number z = z + iy can be represented in
terms of r and 0 as follows:

z=x+1y =rcosf +irsinf = r (cosf + isinf). (2.4)

Note that the identity cos?(#) + sin?(§) = 1 shows that r = |z| in the polar representation
above.
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Using Euler’s identity in (2.4]) gives us the polar representation of a complex number in
terms of complex exponentials:

zZ=Te

Stating the same formula another way, we have that
z = Re(z) + ilm(z) = |z|e!®8(),

Exercise 2.1.6. Prove the following useful identities involving the polar representation of
complex numbers.

1. Show that if z = re'? | then for any n € N we have 2™ = " (cos(nf) + isin(nf)).
2. Every complex number of unit modulus can be written as ' for some 6 € [0, 27).

3. If z = rel? and w = sel?, then zw = rse!@+¥),

2.1.3 Complex Conjugation

The complex conjugate of a complex number z = x4+ 1y is the complex number z = = — 1y.
Geometrically, as illustrated in Figure [2.1] Z is the reflection of z across the real axis. One

can verify that
z+z zZ—Z
Re(z) = 5 Im(z) = 51

Consequently, a complex number z is a real number if and only if z = Z.

Exercise 2.1.7. Prove the following useful identities involving complex conjugation. Let
21,29 € C.

1. Show that z1 + 29 = Z1 + Z3.
2. Show that Z1z3 = z1 %3.
3. Show that |z1|? = 2177.
4. Show that |21 + 22|? = |21]? + |22)® + 2Re(21%2).
Exercise 2.1.8. Let z € C have the polar representation z = re'?. Show that z = re~.

Exercise 2.1.9. Let z € C be nonzero. Show that

1 z
_1 = - = —,
z : o |Z’2
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2.1.4 The Roots of Unity
Fix n € N and consider the equation
=1, zeC.

We wish to find all solutions z € C of this equation. First, notice that necessarily |z| = 1.
Hence, z = i for 6 € [0,27). By Euler’s formula, this means that

1 = cos(nf) + i1sin(nh),

which implies cos(nf) = 1 and sin(nf) = 0. This can only happen if nf = 27k for some
k € Z. Thus, 0 = % must hold. Note that we have n distinct values of 6 € [0, 27) satisfying

2w
n

this formula, one for each k € [n]. The set of these solutions is therefore {qa*ki1 | k € [n]}
are called the n'® roots of unity. Notice that they all satisfy 2" = 1 by design, and are
placed in an equidistant fashion around the unit circle |z| = 1 in the complex plane. These
values will be of special significance later in Section

2.1.5 The Triangle Inequality for Complex Numbers

We will now prove the triangle inequality for complex numbers.
Lemma 2.1.1 (The Triangle Inequality for C).
|21 + 22| < |z1] + |22] for all z1, 2o € C. (2.5)

Furthermore, equality holds in (2.5) if and only if z1 = czy for some real number ¢ > 0.

Proof. Using the results of Exercises [2.1.7], [2.1.1], and [2.1.3] we can see that

|21 + 20|% = 2112 + |22)* + 2Re(172)
<|z1f? + |22]* + 2|21 %)
= |21 + |22|* + 2|21 |72
= |21]* + |z2|* + 2|z |22

= (Jz1] + |22])*.

Taking square roots now gives us the desired inequality.

Now suppose that we have equality in . If either z; or z3 is 0 we are finished.
Thus, suppose that z; = rel? and zy = ryel?? with r1,r2 > 0. Notice that the only
place we have an inequality in the argument above is in the estimate Re(z1%2) < |z122]. If
|21+ 22| = |21| + |22/, then we must, in fact, have Re(z1%3) = |21Z2]. That means Im(z1%3) =
rirgsin(fy —62) = 0. Given that 1,79 > 0 we must therefore have sin(6; —63) = 0, implying
that 61 — 82 = mz for some integer m.
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If m were odd it would imply that
Re(z173) = riracos(0; — 02) = rirgcos(mm) = —rire < 0.

This is impossible here since we have Re(z1z3) = |z122| = 172 > 0. Therefore, m must be
even, and so 01 — 02 = 2mn for some integer n. This implies that arg(z;) = arg(z2), and so
z1 = czy for some positive real number c. ]

We now have all the prerequisites we need to begin discussing linear algebra over C.

2.2 Basic Linear Algebra over C and R

A complex valued matrix A € C™*" is a matrix of complex values with m rows and n
columns whose entries are denoted by A; € C for all j € [m] and k € [n]. A complex valued
vector x € C™ of length n is also considered to be an n x 1 matrix (i.e, vectors are “column
vectors” by default). It’s entries are denoted by x; € C for all j € [n], and can themselves be
safely considered to be scalars, length 1 vectors, and 1 x 1 matrices as convenient. Matrices
(and vectors) are always added entrywise, and scalar-vector/scalar-matrix multiplication is
also always performed entrywise, as in your first linear algebra course.

Given a matrix A € C™*™ and a vector x € C", their matrix-vector product,
Ax € C™, is a vector which can be defined in two equivalent ways. First, it can be defined
entrywise via

(Ax); = Y Ajpzp € C V) € [m]. (2.6)
ke[n]

Alternatively, it can defined as a weighted sum of the columns of A via the formula

Ax = Z xkA:,k e Cc™. (27)
ke[n]

Both equations are true and will be used often below.

Exercise 2.2.1. Show that (2.6) holds if and only if (2.7) holds.

We can use the matrix-vector product notation to describe the product of two
matrices. For any natural numbers m, n, p, and two matrices A € C™*™ and B € C"*P,
we can define their product columnwise by (AB).j := A(B.;) = Aby Vk € [p], where
bj, = B. ) denotes the k™ column of B, and Aby, is a matrix-vector product as per .
Equivalently we may write

| | | |
AB=A[by -+ b,y | =[Aby -+ Ab,|. (2.8)
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Similarly, we may also define matrix-matrix multiplication entrywise by

n—1

(AB)jk =Y AjiBuik. (2.9)
1=0

Note further that since we always consider a vector v € C™ to be an n x 1 matrix, we
should check that the resulting matrix-matrix product Av agrees with the matrix-vector
product definition of Av above. It does — check!

Exercise 2.2.2. Show that (2.8) holds if and only if (2.9)) holds.

Matrix-vector multiplication further allows us to view matrices as functions. Given
A e C™ ", A acts on C" by vector multiplication, and can therefore be viewed as a map
A C" — C™ defined by A(x) = Ax for all x € C". One can confirm that A is then a
linear function (i.e., that A(ax + fy) = adx + SAy for all a, f € C and x,y € C"), and
that the range of A (as a function) is the column space of A (as a matrix). That is,

Range(A) = Column Space of A
= C(A) =span {A.; | j € [n]}

= > A | eCVje[N]
j€(n]
= {Ax |xeC"} Cc C™.

Let A € C™*™ be a matrix. The adjoint of A, denoted A* € C"*™, is the conjugate
transpose of A, i.e., the matrix produced by transposing A and taking the complex conjugate
of each entry. It is defined entrywise by (A*);, = Aj;. Note that if A € R™*™ then
A* = AT. We also note that A = (A*)* always holds (check this!).

Exercise 2.2.3. Let A, B € C™*". Show that (A + B)* = A* + B*.
Exercise 2.2.4. Let A € C"™*" and B € C"*P. Show that (AB)* = B*A*.

Given two vectors of the same length, x,y € C", we can define their Euclidean inner
product to be

n—1
(x,y) = ijyj =x"y e C.
§=0

Also note that when two vectors x and y are real-valued, the complex inner product of
x and y equals the real inner product of x and y. Thus, we can view linear algebra over
the complex numbers as a natural extension of linear algebra over the reals, where any
statement about complex linear algebra still holds true when we restrict ourselves to the real
numbers. This again supports my prior claim that you can simply “replace C everywhere
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in this section with R” and have a chapter on linear algebra over R as a result, should you
desire to do so.

These next four exercises are highly recommended. As always, using the result of prior
exercises to will help you complete subsequent ones more quickly is also always highly
recommended.

Exercise 2.2.5. Let x,y € C". Show that (x,y) = (y,x).

Exercise 2.2.6. Show that the inner product is conjugate-linear in the first argument and
linear in the second argument. That is, for o, € C and x,y,z € C" show that

1. {ax + By,z) = a(x,z) + Bly,z), and that

2. (x,ay + fz) = a(x,y) + 5(x,z).

Exercise 2.2.7. Let A € C™*" and x € C". Show that (Ax); = ((A*).;,x) = (4;.,%x)
for all j € [m].

Exercise 2.2.8. Let A€ C"™*", x € C", andy € C™. Show that both (Ax,y) = (x, A*y)
and (A*y,x) = (y, Ax) hold.

Let’s now briefly review a geometric concept related to inner products that’s reserved
for real-valued vectors.

2.2.1 Some Inner Product Geometry for Real-valued Vectors x,y € R"

The inner product can be used to express the angle between two real vectors. Given two
non-zero vectors x,y € R", the angle 6 € [0, 7] between x,y € R" is

_COS71 <X7Y>
"= ( <x,x><y,y>>' (210)

Note that 8 = w/2 (or 90 degrees) whenever (x,y) = 0, indicating that the two vectors are
perpendicular, or orthogonal, to one another. Further note that the angle between x and y
can always be reasoned about with regular two-dimensional plane geometry no matter how
large n is here since x and y will always belong to the (at most) two-dimensional subspace
span{x,y} C R™. Hence, all the pictures of right triangles you are tempted to draw on a
piece of paper to better understand 6 are 100% justiﬁedﬂ

Back to C™: Using the inner product geometry for real-valued vectors as motivation, we
will also say that two complex-valued vectors x,y € C" are orthogonal if (x,y) = 0.
We will now recall an important inequality for inner products.

2Simply rewrite x and y in terms of an orthonormal basis of the span{x,y}, and then draw your pictures
with axes in the directions of these orthonormal basis vectors. If this footnote is confusing I recommend you
continue on, review orthogonality and orthogonal projections, and then come back here again for a rematch.
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2.2.2 The Cauchy—Schwarz Inequality

Note that for any vector x € C", (X,X) = > ic(,) 5T = X jen] |z;|* > 0 (this fact will

become important later). Now let ¢t € R, and x,y € C", and set a := |<y’§>‘. One can see

that « is a complex number with magnitude 1. Finally, define the function f:R— R by

f(t) = (tax+y, tax+y)

Recall that f(¢) > 0 for all ¢ € R by the fact above.
Continuing, the following sequence of inequalities can be seen to hold using properties
of the inner product together with the definition of « (check each step!). We have that

0 < f(t) = ta(x, tax +y) + (y, tax +y)
= t*aa(x,x) + ta(x,y) + taly,x) + (y,y)
= t*(x,x) + 2Re(ta(y,x)) + (y,y)
= (%, )t + 2|(x, ¥) [t + (v, ),
which is a quadratic polynomial in ¢ with real coefficients. Since the polynomial f above is
> 0 for all ¢, it must have at most one real root.
Recalling the quadratic equation for a generic polynomial p(t) = at? + bt + ¢, we note

that its discriminant b?> — 4ac must be non-positive (i.e., < 0) in order for the polynomial
to have at most one real root. Applying this to our f above we learn that

(2/(x, ¥))? < 4(x, x)(y, ¥)

(%, 7)] < V(xx)(y,y)-

This inequality holds for all vectors x,y € C™ since we chose them arbitrarily. It is known
as the Cauchy-Schwarz Inequality (i.e., it has a name!) due to its importance.

Lemma 2.2.1 (The Cauchy-Schwarz Inequality). For any two vectors x,y € C",

[(x, 7)) < VX)WV, y)

It is expressed here slightly differently than usual in Lemma however. Usually it
is stated like “|(x,y)| < ||x||2||y|l2” where || - ||2 denotes the ¢£2-vector norm, which we will
recall next.

2.2.3 General Norms on C"*", and the Euclidean Vector Norm

A matrix norm on C"*" is a function f : C"™*" — R™ := [0, 00) satisfying all of the
following properties:

1. (The triangle inequality): f(A+ B) < f(A) + f(B) for all A, B € C™*",
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2. f(aA) =|a|f(A) for all @« € C and A € C"™*", and

3. f(A) =0 < A = Oyyxn, where 0, denotes the m x n matrix of all zeros (i.e.,
the zero matrix).

Recall that we also view vectors in C™ as m x 1 matrices. Thus, a norm on m x 1 matrices
(i.e., on vectors in C™) will also be called a vector norm for this reason.

We can now see that the Euclidean, or f>-norm, of a vector x € C" defined by
Ix|l2 := /(x, x) is indeed a vector norm.

Lemma 2.2.2. Let f : C" — R* be the (?>-norm so that f(x) = ||x[|2 = /(x,x). We
claim that f(x) = ||x||2 is a vector norm on C™.

Proof. We will verify that each condition of a norm is satisfied. First, we will check that
the triangle inequality holds. Note that the last inequality just below depends on the
Cauchy-Schwarz inequality. Let x,y € C™. Then

Ix+yll,=V{x+y.x+y,)
— IIxI2 + ]2 + 2Re((x, )
< I3 + [y 13 + 21(x, )]

2 2 2 2
< \/HXHQ +lyllz + 202yl
= [Ix[ly + llylla-

Next we verify that the norm scales correctly. Let o € C and x € €C". We have that

lax]ly = v/{ax, ax) = v/aa(x,x) = /a2 x,x)

= |elIx[l,-

Finally, we verify that the £2-norm of a vector x € C" can only be 0 if x is the vector of
all zeros, 0. We have that

X2 =0 < [x[l5 =0 <= > |a;* =0 <= |z;| =0Vj € [n].
j€li

Having now shown that the /2-norm satisfies all the properties of a norm, we may conclude
that it indeed is one. O

The following exercise demonstrates a useful property of the inner product which is
perhaps most easily seen by using the properties of the £2-norm.

Exercise 2.2.9. Let x € C". Show that if (x,y) =0 for ally € C", then x = 0 must hold.
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Though the #?-norm is by far the most often used norm, all of the other norms in the
following exercises are also commonly used. Even if you don’t do each exercise (you should
of course!), you should look at them for the norm definitions.

Exercise 2.2.10. Show that the {*-norm defined by

1Al = Y Al

j€lm],k€[n]
is indeed a norm on C™*™,
Exercise 2.2.11. Show that the Frobenius matrix norm defined by

[A[lp = > A

j€[m],ke(n]

is indeed a norm on C™*". HINT: Suppose you vectorize A. What does the Frobenius
norm look like then?

Exercise 2.2.12. Show that the {*°-norm defined by

Alleo ;= max |A;
A= _max 14,

18 indeed a norm on CM*"™.

Exercise 2.2.13. Show that the (¢, (%)-operator norm defined by

[A]l2—2 := max || Ax|}2
xeC™ s.t. |x||2=1

15 indeed a norm on CM*™.

Exercise 2.2.14. Suppose that f : C™*" — R and g : C™*" — R™ are both norms on
C™* ", Let o, f € RY \ {0}. Show that h = af 4+ Bg will also be a norm on C™*™.

With the aim in mind of recalling what the “rank” of a matrix really means, let’s now
briefly review linear independence and subspace basis properties.

2.3 Subspaces, Span, and Linear Independence
Let S ={vog,...,Vip—1} C €™ be a finite and nonempty set of vectors in C". The span of

S, denoted span(5), is the set

span(S) = Z a;vi | ag,...,am—1 € Cp C C".
j€lm]
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If S C C" is infinite, we instead define the span of S to be the set

span(S) = U span(A4) C C".
ACS,A finite

Note that S C span(S) always holds for any S C C" since x € S implies that 1-x €
span(.S). Furthermore, note that 0 is in the span of every nonempty set S since 0 =0 - x
for any x € S.

Exercise 2.3.1. Verify that if A C S, then span(A) C span(S).
Exercise 2.3.2. Let S,T C C". Verify that span(T' N .S) C span(T’) N span(S).

A subset £ C C" is called a linear subspace of C" if span(.Z) = .£. That is,
subspaces are sets that are closed under taking spans. Note that the so-called trivial
subspace {0} C C" is always a subspace since span({0}) = {0}. Similarly, C" is a linear
subspace because both of the following hold: (i) C™ C span(C") (since S C span(S) for
any S C C"), and (it) span(C") C C" (trivially by definition).

Example 2.3.1 (The Span of S is a Linear Subspace for Every Nonempty S C C"). We
need to show that
span (span(S)) = span(S).

As usual with set equalities of this type we will proceed by showing that both (i) span(S) C
span (span(S)), and (i) span (span(S)) C span(S), hold. In fact (i) follows from the fact
above that S C span(S) holds for any S C C™. Hence, we only really need to verify (ii).

To verify that span (span(S)) C span(S), let y € span (span(S)). By the definition of
span, y must be the linear combination of a finite number p € N of elements of span(S).
Hence, y will have the form

p—1 q;—1 p—1g;—1
Y= Bi| D iaxin | =D BioyrXjk,
7=0 k=0 7=0 k=0

where B € C and ¢; € N for all j € [p], and where x;jj, € S and o, € C for all k € [g;]
for each j € [p]. Thus, we can see that'y € span(S) too since it will be a linear combination

of a finite number, min (Z]E[p] 4, |S|) € N, of elements of S.

Exercise 2.3.3. Let £, % C C" be two linear subspaces of C™. Show that £ N is also
a linear subspace of C™.

A set of vectors {vo,...,Vm-1} C C" is called linearly independent if 3, o;v; =
0 if and only if a; = 0 for all j. In other words, no nontrivial (i.e., all zero) linear
combination of the vectors can equal the zero vector. If a set of vectors is not linearly
independent, we call it linearly dependent.
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Exercise 2.3.4. Show that any set of vectors in C™ containing the zero vector is linearly
dependent.

Definition 2.3.2 (The Standard Basis Vectors of C"). The standard basis vectors of

C™ are the n vectors {ej}je[n] :={eg,€1,...,e,-1,} C C" whose entries are given by
1 if j=k
(&) = o
0 ifj#k
for all k € [n].

Example 2.3.3 (The Standard Basis Vectors are Linearly Independent). The standard
basis vectors {e;}jc(n) C C™ are linearly independent because for any ap, a1, ..., an—1 € C
we can see that

Qg
aq
O:Zajej: ) < a; =0Vj € [n].
j€ln] ’
Qn—1

Having just defined a set of vectors called the “standard basis”, it behooves us to briefly
recall what a “basis” actually is. We do so next.

2.3.1 Bases, Orthonormal Bases, Dimension, and Rank

The following lemma ultimately guarantees that the notions of “dimension” and “rank” are
well defined. Since these notions are inextricably linked to the notion of a “basis”, we will
prepare the ground for them here.

Lemma 2.3.4 (The Exchange Lemma). Let By, By C C" be finite. Furthermore, suppose
that By is linearly independent, and that £ := span(Bsz) C span(Bi). Then |Ba| < |Bi].

Proof. Suppose, towards a contradiction, that |B;| < |Ba|. Let By = {x¢,X1,...,Xs—1} C
C", and B = {y0,¥1,---,¥s+tm—-1} C C", where m > 0. Recall that the y; vectors
are linearly independent by assumption. Furthermore, we have the assumed inclusion
£ = span(Bs) C span ({xg,X1,...,Xs—1}).

Because y( € span(B), there exist ag,...,as—1 € C such that

Yo = Z O[ij‘
J€ls]

Furthermore, because the y; vectors are linearly independent, we recall that yo can’t be
the zero vector. Hence, at least one of the «;’s must be nonzero. Without loss of generality
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(w.l.g.), we may assume that oy # 0. Thus, we can write x¢ in terms of yo and the other
x;’s to see that

s—1
1
Xo=— | Yo — E X
&7y] Y — I

7=1

Hence, £ C span ({yo, X1,X2,...,Xs—1}) also holds. Note that we have effectively ex-
changed xq for yg in our initially assumed inclusion.

Now, we repeat this process to exchange x; for y; in the last inclusion just above: Since
y1 € %, y1 € span({yo,X1,...,Xs—1}). Thus, there exists fy € C and ~1,...,7s-1 € C
such that

s—1
Y1 =Boyo+ Y ViXj
j=1
Note that at least one v; € C above must be nonzero (otherwise, we’d have y1 = foyo,
violating the assumed linear independence of the y;’s). Without loss of generality, we may
assume that v; # 0. Thus, we can write

s—1

1
x1=— | y1—Boyo— > _ VX,
" s

As a result we have successfully exchanged x; for y; in our prior inclusion to see that
< Cspan ({yo,y1,X2,...,Xs—1}) also holds.

Repeating this process s — 2 more times we find that £ C span ({yo,¥1,¥2,---,¥s—1})
must hold. This generates a contradiction, however, because it implies that y, € By can be
written as a linear combination of yq,...,ys_1, contradicting the fact that y;’s are linearly
independent. Therefore, |B;| < |Bz| can’t hold. O

The following corollary of Lemma guarantees that any two linearly independent
sets that generate the same subspace have to have the same cardinality.

Corollary 2.3.5. Let By, Bo C C" be finite sets that are both linearly independent. Fur-
thermore, suppose that span(By) = span(Bg). Then, |Bi| = |Ba|.

Exercise 2.3.5. Prove Corollary|[2.5.5.

We are now able to give a well defined definition of the dimension of a linear subspace.
Let £ be a linear subspace of C". A basis of .Z is any linearly independent finite set
B with .Z = Span(B)H Note that by Corollary all bases of .Z must have the same
cardinality. We call this cardinality the dimension of ., and denote it by dim(.¥) € [n+1].

3Note that by our definition of “linear subspace” it’s not immediately clear that every linear subspace of
C™ has to have a basis. They do, and you can build a basis for any subspace of C" in a finite number of
steps using the Gram-Schmidt algorithm (see, e.g, Section [2.4).
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If .Z is the subspace containing only the zero vector, we say that .Z is the trivial subspace
and has dimension zero.

Example 2.3.6 (The Dimension of C"). The n standard basis vectors {e;};cpn) C C" are
indeed a basis of C™ because they are linearly independent and satisfy C" = span ({ej}je[n})-
As a result, we can see that the dimension of C" is n.

Exercise 2.3.6. Let £ be a linear subspace of C". Use Lemma[2.5.7) to show that any
linearly independent set of vectors B C £ has cardinality < n.

Exercise 2.3.7. Let & C C" be a linear subspace. Prove that the dimension of £ is at
most n.

Exercise 2.3.8. Let .Z C C" be a linear subspace. Show that any linearly independent set
of vectors B C £ has cardinality < the dimension of L.

The following lemma is crucial in several later arguments.

Lemma 2.3.7. Let £, 2 C C" be two linear subspaces of C" with £ N & = {0}. Then
LU A contains dim(L) + dim (%) linearly independent vectors.

Proof. Let r = dim(£) and B = {b;}c[;) C &£ be a basis of £. Similarly, let s = dim(.%")
and A = {ay}ye) C A be a basis of #. We can see that B U A must have cardinality
dim(.%Z) + dim(#") since .Z N % = {0}, and neither B nor A can contain 0 (recall
Exercise[2.3.4]). Hence, we will be finished if we can show that BU A is linearly independent.

Suppose for the sake of contradiction that B U A is linearly dependent. Then, there
exists a nonzero vector e € C" ¥ such that

Z Oéjbj + Z Qpyrap =0 < Z > Z Oéjbj = Z (—ak+r)ak e X

J€lr] kels] Jj€lr] ke(s]

= Z a;b; =0 and Z (—agsr)ay =0
S kels]

since £ N ¢ = {0}. Furthermore, at least one of 3. a;b; or 32 cig(—kyr)ay is a
nonzero sum since o« € C"% is nonzero. However, we then have a contradiction since both
A and B are linearly independent. ]

Exercise 2.3.9. Let £, % C C" be two linear subspaces of C™ with dim(.£)+dim(#") > n.
Prove that there exists a nonzero vector x € XL N K .

Exercise 2.3.10. Let £, % C C" be two linear subspaces of C" with dim(.£)+dim(#") >
n. Prove that £ N is a linear subspace of C™ with dim(£ N %) > 1.

Given a matrix A € C™*", we define the rank of A to be the dimension of its column
space C(A) C R™ (which, as a reminder, is the span of the columns of A).
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Exercise 2.3.11. Show that a rank r matrix A € C™*™ has exactly r linearly independent
columns.

Exercise 2.3.12. Show that the rank of a matriz A € C™*™ is always < min{m,n}.

We define a set of nonzero vectors {v;} cim C C" to be mutually orthogonal (or
just orthogonal) if, for all j # k, (v;,vi) = 0. We will also say that a set containing a
single vector {v} C C" is trivially orthogonal since it contains nothing else for v to fail
to be orthogonal with. The next lemma shows that orthogonal vectors are always linearly
independent. Hence, they always form a basis of their span.

Lemma 2.3.8. An orthogonal set of nonzero vectors is always linearly independent.

Proof. Let {y; }je[m} C C" be orthogonal nonzero vectors. Suppose that there exist some

Qag, - - ., m—1 € € such that
Z Oéjyj =0.

j€lm]
Let k € [m]. Since the inner product of the zero vector with any other vector is 0, we can
see that

0= <Yk, > anj> = Y (e yi) = arlyr yir) = axllyel.
Jj€lm]

JEm|

Recalling the properties of norms, we note that since yi # 0, Hka% > 0. Hence, ap =0
must hold for all k € [m]. O

A set of orthogonal vectors in C™ that all have norm 1 is called an orthonormal set.

Note that given a set of orthogonal nonzero vectors, we can normalize each of them by
replacing y; with each H;—’” This then guarantees that Hﬁ
12 a2

any orthogonal set of nonzero vectors can be turned into an orthonormal set. If a set of
orthonormal vectors span a linear subspace . C C", we say that they are an orthonormal
basis for .Z.

2 - m‘b’j“z = 1. Thus,

Exercise 2.3.13. Show that the standard basis vectors {€;}jc(n) C C" form an orthonormal
basis of C™.

Orthonormal bases have several nice properties. For example, if we know that a vector
x € C" is in the span of an orthonormal basis {v;};c, C C", then we can find an
expansion of x in terms of {Vv;};c[m by noting that

X = Z a;vj = (Vp,X) = Z ;i (Vi, vj) = ap||vi|3 = ax Yk € [m]. (2.11)
j€lm] j€lm]

Thus, we can easily recover the coefficients a; € C of the linear combination making up x
by taking the inner product of x with the orthonormal basis vectors. In addition, these
coefficients will also satisfy the famous Pythagorean theorem.
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Theorem 2.3.9 (The Pythagorean Theorem). Suppose {V;}jcim] = {Vo,V1,--+,Vim—1} C
C™ is an orthonormal set of vectors. Then

2
> avill =) oyl

JE[m] 5  JE[m]

for all avg, ..., am—1 € C. Equivalently, for any x € span ({Vj}je[m),
Ixll3 =D (xv)f?
j€[m]

Proof. Note that the second equation follows immediately from the first since we have
X = Zje[m} (vj,x)v;. To show the first equation let ayp,...,am—1 € C. Then,

2

Z a5V = < Z a5V, Z akvk> Z Z a]VJ,Oéka
j€[m]

9 JE[m] j€[m] ke[m
= Z Z CTjOék Vj,Vk = Z OTjCVj Vj,Vj = Z ’aj’2'
JEIm] ke[m] JE[mM] JE€[m]

O

Having hopefully reminded you why orthonormal bases are so great, we will now discuss
how to generate one.

2.4 Orthonormal Bases and the Gram—Schmidt Algorithm

Algorithm [1]is an implementation of the Gram—Schmidt Algorithm which, when given a
finite set S C C™ as input, outputs an orthonormal basis of span(.S). Before we analyze
this algorithm to see that it works as intended we highly recommend that the reader take a
close look at it. Here are some recommended exercises to help you pay close attention to
how it works.

Exercise 2.4.1. Run Algorithm[1] on the set

()1}

by hand. Verify that the basis B C C? it produces for span(S) is indeed an orthonormal
basis.
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Algorithm 1 THE GRAM—SCHMIDT ALGORITHM FOR FINITE SETS
1: Input: A finite set S C C" with at least one nonzero element.
2: Output: An orthonormal set B C C" with span(B) = span(S).
# Initialize S and B.

3: Pick a nonzero x¢ € S, and set by := x0/||x¢||2 and B = {bg}.

4: Set S = 5\ {0,x0}, and initialize j = 1.

5. while S # {} do A

6:  Pick x; € S, and set y; = xj — >__o (b, x;)by.
# If y; = 0 then x; € span(B) already, so we’ll immediately remove this x; from S
#in Lz’ne and pick a new one. If y; # 0 then x; ¢ span(B), so we will add a new
# element to B so that x; will then belong to its new span.

7. if y; #0 then

8: Set b; := yj/HyjHQ and let B = BU {b]}

9: Set j = j+1.

10:  end if

11: Set S:S\{Xj}.
12: end while
13: Return B.

Exercise 2.4.2. Run Algorithm[1] on the set

1 1 4
S=<(=1],11].[0]}cc?
1 0 2

by hand. Verify that the basis B C €2 it produces for span(S) is indeed an orthonormal
basis.

When you are finished inspecting Algorithm [I] come back here and we prove a lemma
which takes a step toward showing that the set B Algorithm [I| outputs is always an
orthonormal basis for the span of the input set S.

Lemma 2.4.1. The set B C C" output by Algorithm[1] is always orthonormal.

Proof. First, we observe from Lines [3] and [§] of Algorithm [I| that each b; € B will have
norm 1. Thus, it only remains to show that B is orthogonal. To show orthogonality it
suffices to show that the set {bg}ZZO = {bg,b1,...,b;} C B is orthogonal for all j € [|B|].
We will proceed by induction on j.

To begin, we note that {bg}gzo = {bg} when j = 0 is trivially orthogonal as a singleton
set. Now, as our induction hypothesis, assume that {bg}%zo is orthogonal. To show that
{bg}z:(l) must also then be orthogonal it suffices to show that (b, b;i1) will be 0 for all
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integers k € [0, j]. Referring to Lines |§| and [8| of Algorithm (1} and noting that the vector
permanently selected as x; in Line [f] has its y; # 0 for all j € [|B|], we can see that indeed

(bk, bjt1) = <bk7 ; (Xj+1 - Z(bfaxj+1>b£>>

||YJ+1H2 /=0
1 J
= bk,X +1 bE,X +1 bkab€>
ety (D) = 2 e
1

= ((br, Xj41) — (br, Xj41)) =
1yl

for all k € [0, j], where we have used the inductive hypothesis that {bg}zzo is orthogonal in
the last line. As a result we can see that {bg}%:é will also be orthogonal whenever {by}7_,
is for all j =0,1,...,|B| — 2, finishing our induction argument. O

Lemma guarantees that the output, B C C", of Algorithm [I]is always orthonormal,
but in order for it to be a basis of span(S) we also need that span(B) = span(S). This is
established in our next lemma.

Lemma 2.4.2. The set B C C" output by Algorithm always satisfies span(B) = span(S).

Proof. Tt suffices to show that Span{Xg}e 0= Span{bg} o for all j € [|B]] (think about
Why!EI) We will show this by induction on j. To begm we note that when 7 = 0 we
have span{x} = span{bg} since by is a nonzero scalar multiple of xq (see Line [3). Now,
suppose for the sake of mductlon that span{x,};_, = span{b,}]_,. We will prove that then

span{Xg}] 0= span{bg} 0 must also hold in the usual two steps.

span{Xg} 0 C span{bg} : Let x € span{xl} . Then, we can write

X = 0j1Xj41 Ty

where aj11 € Cand y € Span{Xg}%ZO = span{bg}zzo. By Lines |§| and |8 of Algorithm |1| we
also have that

J
X1 = [[¥s41llabjrn + > (be,xj41)by
/=0

50 Xj41 € span{b,}/"}. Therefore, x € span{b,}, ;.

4Recall that only the final vector permanently selected to be x; in Line |§| has its y; # 0. All other
initially-selected /temporary x; candidates have y; = 0, indicating that they are already in the span of

{be}1 2,
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Algorithm 2 THE GRAM—SCHMIDT ALGORITHM FOR SUBSPACES OF C"
: Input: A nontrivial subspace . C C" (i.e., an .Z # {0}).
: Output: An orthonormal set B C C" with span(B) = .Z.
: Pick x € £\ {0} and initialize B = {x/||x]|2}.
while .Z ¢ span(B) do
Pick x € £\ span(B).
Lety =x— > pcp(b,x)b.
Set B =B U{y/[lyl2}-
: end while
: Return B.

R R N

span{bg} lc span{Xg} : Let z € span{bg}zié. Then we can write

z=fj1bj1+y

where fj11 € C and y € span{bg}gzo = span{Xg}%zo. Again, by Lines @ and (8| of
Algorithm [I] we also have that

1 J
bji1 = (Xj+1 > (be,x;)b )
=0

1+l

where the sum Ze o{bg,x;j)b, above is in span{bg}e 0 = span{xe}e o- Thus, b1 €
span{xz}j +0 which in turn implies that z € span{xé}

Having now shown that both span{Xg} 1 0 C span{bg}Hé and span{bg}zié C span{Xg}iié
hold, we conclude that indeed span{xe}] o = span{b,}/1, 1 O

Combining Lemmas and we obtain the following theorem guaranteeing that
Algorithm [I] always produces an orthonormal basis of the span of its input set, as intended.

Theorem 2.4.3. Algorithm always returns an orthonormal basis B of span(S) C C".

The Gram—Schmidt algorithm is also useful for a lot of other theoretical reasons as well,
which I would like to briefly mention here (please indulge me!). For example, based on
our definition of what a subspace of C" is, it’s is not immediately clear that every such
subspace has to have a basis. This can be established by, e.g., analyzing Algorithm [2] which
is a variant of Algorithm [I] (except for subspaces). Please go and look it over.

Looking at Algorithm [2] we can see that a slightly modified version of Lemma [2.4.1] will
again guarantee that B will remain orthonormal at all times. The main open quest1on
here is therefore whether the “while loop” in Line {4 of Algorithm [2| will ever terminate
(subspaces are, after all, infinite sets ... there are many worst-case x values to pick from in
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Algorithm 3 GRAM—SCHMIDT FOR EXTENDING AN ORTHONORMAL BASIS
Input: An orthonormal basis B of a subspace .¥ C C".

Output: An orthonormal basis B of C" with B C B.

Initialize B = B.

while C" ¢ span (B) do

Pick x € C™ \ span (B)
Let y =x—>, c5(b,x)b.

Set B =B U{y/|yl2}-
end while

Return B.

each iteration!). We need not fear, however. The while loop must terminate after at most n
iterations no matter what by the Exchange Lemma (Lemma [2.3.4) exactly because B will
always be linearly independent (see, e.g., Exercise [2.3.6)). More pre(:lsely, it will terminate
after dim(.Z) < n iterations (see, e.g., Exercise [2.3.8)). Failing to do so would generate a
contradiction. Formalizing this argument proves the following theorem.

Theorem 2.4.4. Every nontrivial subspace £ C C™ has an orthonormal basis.

As a final thought regarding Gram—Schmidt algorithm variants, we note that they can
also be used to expand an orthonormal basis of a low-dimensional subspace of C" into
a larger orthonormal basis of all of €C". This fact comes in handy on many occasions.
More precisely, suppose that we have an orthonormal basis B of a subspace .Z C C™ with
|B| = dlm(.Z ) < n in our possession. Then, we can use Algorithm I 3| to extend it to a larger
basis B of ©" with B C B. Please go take a look at Algorithm |3 l paying special attention
to its similarities and differences with Algorithm [2]

Looking at Algorithm |3| we can see that it is effectively a continuation of Algorithm
That is, Algorithm [3] effectively picks up where Algorithm 2] leaves off and then continues
in the exact same way after substituting .Z with C" everywhere in its “while loop”. As
a consequence of this substitution, we can use essentially the same reasoning as above to
see that Algorithm |3 I will indeed output an orthonormal basis B of C™. Furthermore, the
fact that B C B is entirely a result of how B is initialized. Formalizing this line of thought
proves the following theorem.

Theorem 2.4.5. Let B C C" be an orthonormal basis of a subspace % c C". Then there
exists an orthonormal basis B of C" such that B C B.

Exercise 2.4.3. Implement a version of Algom'thm@ in the language of your choiceﬂ and

5The language of your choice can also be “by hand”.
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use it to complete the orthonormal set

to an orthonormal basis of all of C*. Verify that your resulting orthonormal basis set is
indeed orthonormal.

Exercise 2.4.4. Prove that every set of n orthonormal vectors in C" is an orthonormal
basis of C™.

Exercise 2.4.5. Let £ C C" be a linear subspace of dimension r < n. Prove that every
set of r orthonormal vectors in £ is an orthonormal basis of £ .

We will now explore yet another important consequence of the Gram—Schmidt algorithm
— the existence of a QR factorization for any matrix A € C"*".

2.4.1 The QR Decomposition of a Matrix

Let’s consider what happens when we apply Algorithm [l to the columns of a matrix
A € C™ ™ so that it’s input is S = {A. j };cn) C C™. Even more specifically, suppose that
we run Algorithm [I{ with xg = A. o, x; = A.; (or, more generally, = the first column after
A. that isn’t a multiple of A. ), xo = A. o (or, more generally, = the first column after x;
that isn’t in the span of x¢ and x7), etc.. First, we know that Algorithm [1| will output an
orthonormal basis B C C™ of the column space, C(A), of A when its finishes. Second, by
the definition of rank we also know that |B| = rank(A). Denote the rank of A by r, and
the elements of B by {bj};c-

By our analysis of Algorithm [I] we can further see that A.o € span({bg}), 4.1 €

span({bg, b1}), etc.. More generally, A.; € span ({bg zn:ig{j’r_l}> for all j € [n]. As a

consequence, there exist complex numbers R; ; € C, with ¢, j € [n] and ¢ < j, such that

A.o = Roobo
A.1= Ro1bo + Ry by

min{j,r—1}

A= Z Ry by for all j € [n].
/=0

Now, define Q € C™*" to be the matrix with the elements of B as its columns, and
R € C"™*"™ to be the upper triangular matrix whose nonzero entries are defined above so
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that
Roo Rox -+ Ror—1 -+ Ron—
‘ | 0 Ryg -+ Ry -+ Ripa
Q= b‘o br|_1 and R = 0 0 . .
0 Re—ip—1 -+ Re—1p-1
Doing so we can see that
Roo Ro1 -+ Ror—1
| | | | | 0 Rix -+ Rira
A’o,; A’L: A:’Tl - b’0 b|1 br’1 0 0 ,
0 Rr—1,-1

That is, A = QR. This is called a QR decomposition of A, and it is very useful
computationally since both @) and R have special properties. Namely, () has orthonormal
columns, and R is upper triangular. By formalizing the discussion above one may prove
the following theorem.

Theorem 2.4.6 (Every Matrix Has a QR Decomposition). Let A € C™*™ be rank r. Then,
there exists a matriz Q@ € C™*" with orthonormal columns, and an upper triangular matrix
R e C™", so that A = QR.

Example 2.4.7. The following is an example of a QR decomposition for a rank 2 matriz

A e 4,
123 1 5 5
1 2 3 -1 L1179 46 0
A 1 )-on
1 2 3 1 ?510002
1 2 3 -1 5 —3

Note that the matrix () guaranteed by Theorem is also clearly rank r since @) has
orthonormal columns. In fact, with just a bit more work one can further see that R will
always be rank r as well. We will save this final rank analysis for Section however. For
now, let us turn our attention to some implications of the QR decomposition with regard
to low rank matrix compression.

Exercise 2.4.6. Compute a QR decomposition of the matrix

()

Verify that Q has orthonormal columns.
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Exercise 2.4.7. Compute a QR decomposition of the matrix

1 5 -1
A=|-1 1 -1
2 1 1

Verify that Q has orthonormal columns.

Some Comments on Computing a QR Decomposition of a Matrix: I hope that
this section has begun to convince you that the QR decomposition might be interesting. In
fact, we will see going forward that the Q)R decomposition is also incredibly useful — useful
enough that I am pretty certain that anyone reading this sentence will likely compute one
at some point (probably using a preexisting software package like — these days — MATLAB,
SciPy, LAPACK, or ...there are many!). When you do compute that QR decomposition
it’s important to point out that it won’t be by (shouldn’t be by!) running Algorithm
on the columns of the matrix. Theoretically Algorithm [I]is fantastic, but in practice a
digital computer will likely turn a straightforward coding of Algorithm [I]into the inaccurate
numerical equivalent of a reeking garbage scow (i.e., it’ll be numerically unstable). In
practice QR decompositions are instead computed using Householder reflections which,
if interested, you can read about in standard numerical linear algebra texts such as, e.g.,
[32, [10].

2.5 Near-Optimal Compression of Low Rank Matrices

In this section we briefly consider the minimum number of complex values we need to store
in order to fully represent a rank r matrix A € C™*". Clearly, we can always do it by
storing all mn entries in A, but can we do better? The answer is definitely “yes” if the
matrix is low rank. To see why, consider a QR decomposition of A € C™*" A = QR.
Recalling that Q™*" and R € C"™*", we immediately see that in fact we can completely
represent A by instead storing the at most mr 4+ nr = r(m + n) entries of @ and R. And if,
for example, n = m and r < n/2, storing the at most mr + nr = 2nr < n? entries of Q and
R will require less memory than directly storing the mn = n? entries of A.

In fact, however, we can do even better than this by taking full advantage of the structure
that a QR decom(position guarantees us. Since, e.g, R is upper triangular we know that it
will always have %1)7" zero entries below its main diagonal in predictable positions. Thus,
there is no need to actually store those 0-valued entries of R. As a result, we can see that
it really suffices to only store

(r—1r

-1
mr—l—rn—2:r<m+n—r2 > (2.12)

complex numbers in order to fully represent both @ and R, and therefore A. Note that
this reduction in entries can have noticeable space-saving effects, especially when we need to
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store a large number of very large matrices. Further note that this is exactly the case one is
in when, e.g., one wants to store the many large weight matrices needed to fully describe a
trained deep neural network (recall Section !

Exercise 2.5.1. Show that an upper triangular matriz R € C™"™ with r < n will always

have at least @ zero entries below its main diagonal.

The number of complex entries one needs to store in order to represent a QR
decomposition as described above is not quite optimal. To see why, we note that the
dimension of the manifold of rank r matrices in C™*" is (m + n — r)r (see, e.g., [19,
Chapter 1]), so one should be able to represent any rank r matrix A € C™*™ by storing
just (m + n — r)r complex values. This means that storing a QR decomposition of A
requires storing TQ;‘ T additional complex values beyond the theoretical minimum. As we
will see, Gaussian elimination can help us reduce this number of additional values closer to
0. Using this as motivation we will now very briefly summarize Gaussian elimination while

simultaneously introducing and reviewing a lot of other very useful notation.

2.5.1 A Very Brief Review of Gaussian Elimination, and Some Useful
Notation

First let’s recall some notation. As mentioned above, we view vectors u,v € C" as n x 1
matrices. As a result, the inner product (u,v) € C can be viewed as the matrix product of
a 1 X n matrix with an n x 1 matrix,

vo
* RN — R v1 —
u*v = (ug,ut, ..., Up_1) : = Zujvj:<u,v>,
Jj€ln]
Un—1

the result of which is a 1 x 1 matrix (i.e., the scalar (u,v)). We can similarly define the
“outer product of two vectors” in C™ as the product of an n x 1 matrix with a 1 x n matrix.
That is, given u,v € C", their outer product is

Vo VoUQ VoUL e VoUp—1
U1 V1UQ V1U V1Up—1
« — _ nxn
vu = . (UO,U]_,...,Un_]_): . . . . G(D .
Un—1 Up—1U0 Up—1U1l ... Up—1Up—1

Note that this is an n x n matrix whose (4, k)" entry is viuy € C.
Next, the standard basis of C™*" consists of the mn matrices in C™*", denoted by
EUkX) e ©m*" whose entries are given by

A 1 ifld=jand h=k
(E(Jv’ﬂ) = ' Jat for all 4,4 € [m] and k, h € [n].
¢h 0 else
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Note that we also have EU-F) = e;je;. We call these matrices the standard basis for C"*"
because any matrix A € C™*™ can be expressed as the linear combination

A= 3" AEUR = 3" 3" A reje;.

j€lm] ke[n] J€lm] ke(n]

Continuing, given a vector v € C"™, we denote the diagonal matrix in C"*"™ with v on
its diagonal by diag(v) € C"*". Equivalently, diag(v) is the n x n matrix with entries
given by

T)j lszk

0 else

(diag(v));, = {

Finally, we will denote the vector of all ones in C™ by 1 € C". The following exercises will
help you get more familiar with all of this notation.

Exercise 2.5.2. Let v e C". Show that diag(v) = Vj€;€] =3 icy] v; B9,

JEMN] J

Exercise 2.5.3. Let v,u € C". Show that diag(v)u = diag(u)v € C". As a consequence,
show that diag(1)v = diag(v)1 = v holds for all v € C".

We can now see that the nxn identity matrix, denoted by I,, € C™*"™, can be expressed

1 ifj=k
in several equivalent forms. First, we know that its entries are (I,,); 1 = {0 1‘7 , for
else

all 4,k € [n]. As a consequence we can see that

I,=1e e - e,_1| =diag(l)
. |
= Z EU) = Z eje;.
J€ln] J€(n]

Additionally, we recall that the inverse of a matrix A € C™*", if it exists, is the matrix
A~ € €™ satisfying AA™' = A"1A=1,.

Having equipped ourselves with this new notation, we may now more easily and quickly
review Gaussian elimination. In short, Gaussian elimination is the process of multiplying
three types of invertible elementary matrices against a given matrix A € C™*™ in order to,
usually, make A sparser (i.e., contain more zero entries). These three types of invertible
elementary matrices are:

1. Rescaling Matrices: These m x m matrices multiply a given row and/or column of
A € C™*" by a scalar o € C. We will denote them by

M(j, ) := diag(1 + (a — 1)ej) = In + (a — 1)e;ej
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for any given a € C and j € [m]. If multiplied against A € C™*" from the left,
M(j, «) € C™*™ will multiply the j** row of A by . If multiplied against A € C™*"
on the right, M(j,a) € C™*™ will multiply the j*" column of A by a.

a 0
0 1

oo e )= (5 a) (o) = () o
¢ oa=(: )6 -G 2)

Exercise 2.5.4. Show that (M (j,a))™" = I, + (1/a — leje; = M (j,a™t) for all
a#0 and j € [m].

Example 2.5.1. Let M(0,a) = ( ) € C?*2. Then, we can see that both

. Summing Matrices: These m x m matrices add a multiple of one row/column to
another row/column. We will denote them by

SG,k, ) = I, + aEUR =1, + aejer,

for any given a € C and j,k € [m] with j # k. Given A € C™*", the product
S(j, k,a) A effectively adds a(row k of A) to row j of A, and then stores the result
back in row j. Similarly, if S(j, k, o) € C™*™ is multiplied against A from the right it
will add a(column j of A) to column k of A, and then store the result back in column
k.

1 «
0 1

a by (1 a\fa b\ (a+ac b+ad
soe (¢ g)= (0 ) (¢ 2) = (75 ) e
a b _ b\ (1 o\ (a b+oaa
(c d> 5(0,1,0) = < d> (O 1> N (c d+0zc>'
Exercise 2.5.5. Show that (8(j,k,a)) ™" = I, — aejel = S(j, k, —a) for all a € C
and j,k € [m] with j # k.

Example 2.5.2. Let S(0,1,a) = ( > € ©?*2. Then, we can see that both

o

. Atomic Permutation Matrices: These m x m matrices swap two rows/columns of a
given matrix. We will denote them by

P(j,k) := Ly, — eje; — exej, + eje}, + exe;

for any given j,k € [m]| with j # k. If multiplied against A € C™*" from the left,
P(j, k) € C™™ will swap the j** and k' rows of A. If multiplied against A € C™*"
on the right, P(j, k) € C™*" will swap the j™ and k™ columns of A.
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Example 2.5.3. Let P(0,1) =

Y
—= O
O =

> € ©?*2. Then, we can see that both

a b 01 a b c d
ron (g )= (o) (¢ a)= (0 5) o
a b a b 0 1 b «a
(a)ren=(22)( o)=(2 %)
Exercise 2.5.6. Show that (P(j,k))™" = P(j,k) € C™™ for all j, k € [m] with
j#k.

Exercise 2.5.7. Let P = HZ;& P(je, ko) € C™ ", where jo, ke € [n] with jg # ke for
all £ € [q], be a product of q atomic permutation matrices. Show that P~1 = P*.

Having briefly reviewed Gaussian elimination, we will now return to our attempt to use
a QR decomposition of a low rank matrix to try to compress it as much as possible. We
will now show how Gaussian elimination can be used to help us improve on what we have
already achieved above.

Back to Near-Optimal Compression of Low Rank Matrices: Consider a QR
decomposition of A € C™*", A = QR. Recalling that R € C™*" will be upper triangular,
we further note that there will be a permutation matrix P € C"*" so that RP will be
both upper triangular and have (RP);; # 0 for all j € [r]ﬁ In particular, one can see
that P can always be represented by a product of at most r — 1 atomic permutation
matrices which encode the process of swapping column 1 of R with the first column, ji,
of R that has Ry # 0, then swapping column 2 with the first column, jo, that has
Ry j, # 0, etc.. As a result, we can see that remembering (i.e., storing) P requires us to
remember at most r — 1 values in [n] (i.e., the columns j1, jo, ..., jr—1 € [n] of R satisfying
Je = min{k S [n] | Rg,k 75 0})

Using that RP will be both upper triangular and have (RP);; # 0 for all j € [r], we
can now further see that there will exist an invertible matrix 7" € C"*" consisting of a
product of at most 7"2% elementary summing and rescaling matrices such that

TRP = (mR) e grem, (2.13)

That is, we can carry out Gaussian elimination to transform the first r columns of RP into
the r x r identity matrix. Note that R € ©"*("=") in ([2.13)). Recalling that our goal is to
compactly represent A € C™*™, we can now see that

A=QR=QT'TRPP! = (QTY) (mR) P*,

50ne can revisit Example see that we do generally need a permutation matrix for this to be true.
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where we have used both (2.13)) and that P~! = P* in the final equality.
Letting Q = QT € €™ we can finally see that A = Q (IAR) P*. Thus, to represent

A € O™ we need to store Q € C™*", R € €™ and P € C"*". Recalling from
above that we can store the permutation matrix P by remembering at most r — 1 values in
[n], we finally see that we can always represent any rank r matrix A € C™*" by storing
just mr + nr — r? complex values (the optimal number!), plus at most r» — 1 additional
integers in [n]. This is a clear improvement over (2.12)).

To conclude, we briefly mention that there are other factors we might want to consider
when storing A in a factorized form beyond the total number of entries the factorization
requires us to store. For example, we might also want to ensure that both Q € C™*" and
R e €= are “well behaved”. We will describe in some more detail what “well behaved”
might mean in Section as well as how one might come up with a good low rank matrix
to store in the first place. For a journal article that uses related ideas to those discussed in
this section to produce a similar compressed representation of a low rank matrix we refer
the interested reader to [6]. After finishing Chapter 2| and [3.1] the attentive reader will know
everything they need to know in order to begin digesting its contents.

2.6 Set Addition, Orthogonal Projections, and Perpendicular
Subspaces

We will now discuss even more of the useful properties possessed by orthonormal bases.
The first of these are related to set addition.

Definition 2.6.1 (Set Sums, Subtractions, and Rescalings). Let S and T be subsets of C".
We define the (Minkowski) sum of S and T, denoted by S + T, to be the set

S+T ={x+y|xeSyeT}

Similarly, for a € C, we define the set rescaling oS C C" to be {ax | x € S}. We also
define the subtraction of two sets to be

S—-T=S+(-1)T'={x—-y|xeSyeT}cC".

Note that if 0 € S, then T' C S+ T'. Similarly, if 0 € T, then S C S+ T. As a result, if
0 SNT, then SUT C S+ T (check this!). For similar reasons, the sum of two linear

subspaces U and V' of C" will also always be a larger linear subspace of C" containing both
U and V (i.e., U and V will be subspaces of U + V).

Lemma 2.6.2. Let U,V C C™ both be linear subspaces of C™. Then U +V is also a linear
subspace of C".
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Proof. 1t suffices to show that span(U + V) C U +V and we’ll be finished (why?). We can
see that

x € span(U +V) = IJpe Nst. x= Z Bexy with {5@}@6[1,] cC& {XZ}EE[p} cU+V

L€[p]
— X = Z B@(U@ —}—V@) for {Ug}ge[p] cU& {Vg}ge[p] cV
te[p]
= X = Boug | + | D Beve
Le[p] Le(p]

We are now finished since, above, u € span(U) = U and v € span(V) = V. Hence,
xceU+V. O]

Exercise 2.6.1. Let U,V C C" both be linear subspaces of C™. Show that
max{dim(U), dim(V)} < dim(U + V) < dim(U) + dim(V),

where dim(U) € [n+1] denotes the dimension of U, etc.. When will max{dim(U),dim(V)} =
dim(U 4+ V) ? When will dim(U + V) = dim(U) + dim(V) 2

Exercise 2.6.2. Let A,B € C™*". Show that if A has rank r and B has rank s, then
A+ B has rank at most r + s.

As we shall soon see, the sum of two “orthogonal” linear subspaces of C", U and V', will
behave much more predictably than the sum of two arbitrary linear subspaces of C™. In
particular, orthonormal bases of each summed subspace U and V can be directly combined
to create a new orthonormal basis of U + V.

Definition 2.6.3 (Perpendicular Subspaces). Let U and V' be linear subspaces of C™. We
say that U and V are perpendicular, or orthogonal, if (u,v) =0 for allu € U and
v € V. We will also denote this by writing U 1L V.

Lemma 2.6.4. Suppose that By s an orthonormal basis of a linear subspace U C C", By
s an orthonormal basis of a linear subspace V.C C™, and U 1L V. Then By U By is an
orthonormal basis of U + V.

Proof. Since By and By are orthonormal, every element in By U By has norm 1. Thus, we
only need to show that By U By is orthogonal. Let x,y € By U By . Since By is orthogonal,
if x € By and y € By, then (x,y) = 0. Since By is orthogonal, if x € By and y € By,
then (x,y) = 0. Since U L V,if x € By andy € By, or x € By and y € By, then
(x,y) = 0. Hence, By U By is orthogonal.
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Now we will show that By U By is a basis of U + V. Since By U By is orthonormal, its
entries are linearly independent, so it remains to show that span(By U By) =U + V. Let
By ={byg,...,b,—1} and By ={do,...,ds—1}. Then, for any vector x € C", it holds that

XxXeEU+V < JuelU,veVssuchthat x=u+v
— X= Z ajb; | + Z B;jd; | for some {aj}je[r] U {Bj}je[s} cC

Jelr] jels]
<= x € span(By U By).

Therefore, U + V = span(By U By). O

Corollary 2.6.5. If U,V C C" are linear subspaces of C", and U L V', then dim(U +V) =
dim(U) + dim(V).

Given any linear subspace U C C™, we define
Ut ={xeC"|(x,y)=0Vy e U}.
In other words, U~ is the set of all vectors orthogonal to everything in U. We will next
show that U~ is also a linear subspace of C™.

Lemma 2.6.6. Let U C C" be a linear subspace of C*. Then, UL is also a linear subspace

of C™.

Proof. Tt suffices to show that span(U+) C UL (why?). Let x € span(U~). Then, x is a
linear combination of elements in U+ so that 3p € N, {x¢}se € UT, and {ay}ep C C
with x = Zée[p} ay x¢. Now we can see that for every y € U we have

(x,y) = <Z OéeXe,Y> = ZoTe(xe,y) =0

telp] t€[p)
since {x¢}gep) C UL, Hence, x € U+ O

We are now prepared to define orthogonal projections with respect to a given orthonormal
set. Let U = {u;};e[;) be an orthonormal subset of C". We define the orthogonal
projection of x onto span(U) in terms of U to be the function Py : C" — span(U)
defined by

Py(x) =Y (uj,x)u,
JElr]

for all x € C™. Note that this definition explicitly depends on the orthonormal basis U of
span(U) that we started with. The idea behind projecting onto a linear subspace span(U),
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however, is that the projection should return the portion of x “living inside” the linear
subspace span(U). That is, it’s the span of U that matters to us, not the set U itself. If, e.g.,
we pick a new orthonormal set V' with the same exact span as U, then it really shouldn’t
matter whether we project onto span(U) = span(V') using U or V. We should get the same
answer either way. The next result will help us show that this is indeed the case.

Lemma 2.6.7. Let U = {u}ep) and V = {ve}ie be two orthonormal bases of the same
linear subspace £ = span(U) = span(V') C C". Then,

(uj,x) = Y (ve, x)(uy, ve)
Le]r]
for allx € C" and j € [r].

Proof. Let x € ©". Extend V to an orthonormal basis V of all of C" by appealing to
Theorem The orthonormal set V will take the form V = {vo, e oy Vi1, Wiy oo, W1 }
for some w,,...,w,_1 € C". Since V is an orthonormal basis of C" we can write x as

n—1

X = Z (ve, X)vp + Z<Wg,X>Wg.

Lelr] {=r

Additionally, since each u; € U is in the span of V, we have for all r </ <n — 1 that

(u;, we) <Zagkvk,we> Zagkvkawé 0

kelr] kelr]

since V' is orthogonal. Hence,

n—1
(uj,x) = <11j, > (vex)ve+ Z<W£,X>We>
l=r

Le(r]

n—1
= (Ve x)(uy,ve) + Y (W, x)(uy, W)
l=r

Le(r]

= § VE7 ujavé

Le(r]

O

Using this lemma allows us to show that the orthogonal projection Py : €™ — span(U)
only depends on span(U), and not on the orthonormal set U itself.

Theorem 2.6.8. Let U = {u;}jem and V = {Vi}oepm be two orthonormal bases of the
same linear subspace £ C C". Then, Py = Py.
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Proof. Let x € C". Appealing to Lemma [2.6.7], we have that

Py(x) =Y (wxyui= > | > (ve,x)(w;,ve) | u

jeim] jeim) \eeim)
=Y vex) | D (wvauy | = Y (ve,x)ve = Py(x),
Le[m] JjEm] Le[m]

where we have also used that each v, € V is in the span of U (recall (2.11))). O

We now know that an orthogonal projection only depends on the linear subspace of
C"™ onto which one projects. Thus, for any linear subspace . C C" we can define the
orthogonal projection onto .Z, denoted by Py : C" — £, to be Py := Py where U is
any orthonormal basis of .Z you like.

Example 2.6.9. The orthogonal projection onto the x-azis of C? is the function Px_axis

1

e~ () 6) ()~ ()

Exercise 2.6.3. Let £ be a linear subspace of C". Verify that Py : C" — £ is a linear
function (i.e., that Py (ax+py) = aPy(x)+ Py (y) holds for allx,y € C" and o, € C).

from ©? to the x-axis which sends the vector x = <i0> € ©? to the vector

Exercise 2.6.4. Let B = {b;};c;y C C" be an orthonormal basis of £ = span(B).
Complete B to be an orthonormal basis B = {bj}iem U {u}y=! € €™ of all of C" using
Theorem M Prove that {Ug}gz_l is an orthonormal basis of £+ .

r

The following theorem characterizes many of the most important properties of orthogonal
projections.

Theorem 2.6.10. Let £ be a linear subspace of C", and let x € C™.
1. If x € £ then Py(x) =x. As a consequence, Py (Py(x)) = Py(x) always holds.
2. x — Pg(X) c 7+
2 2 2
3. xlly = [Pz (@)]3 + [x = Pz(x)l3-
Proof. We prove each part below.

1. See Exercise 2.6.5]
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2. Let U = {u;}jepm C C" be an orthonormal basis of ., and y € . Then y =
> jem] Qju;, so that

(x = Py(x),y) = > aj(x— Py(x),u;)

Jjelm]
= Z aj ((x,u;) — (Pg(x),u;))
J€[m]
= Z Q; <X, uj> - < Z <uf7x>uZ’uj>
je[m] £€[m]
= 3 o (o) ~ Ty 9) =0,
JE[m]

since (x,u;) = (uj, x).

3. From (1) and (2) above we know that Py (x) and x — Py(x) are orthogonal. Hence,
normalizing them will produce an orthonormal set whose span contains x. This part

now follows from the Pythagorean theorem (see Theorem and Figure [2.2).
O

Theorem tells us that we can write C* = .Z 4+ £~ for any linear subspace
£ C C". In some sense we already know this though — recall, e.g., Exercise The
main contribution of Theorem is that it expresses this fact in a much simple way
using orthogonal projections. This more simply expressed property then also allows for a
simpler application of the Pythagorean theorem (see Figure .

Exercise 2.6.5. Prove part (1) of Theorem [2.6.10.

The next lemma demonstrates yet another incredibly useful way of characterizing what
the orthogonal projection onto a linear subspace actually does.

Lemma 2.6.11. Let x € C". Then ||[x — Pz(x)|ly < ||x —ylly for ally € L\ {Pg(x)}
(i.e, for ally € £ with'y # Py(x)).

Proof. We have from Theorem [2.6.10] that

Ix =yl = [Pzx-y)3+ |(x—y) = Pz(x-y)l3
= ||[P¢(x) — Pz(y)]3 + |x — Pz(x) —y + Pz(y)ll3
= |Pz(x) = yl3 + |x — Pe(x)[l3
> |Jx — Py (x)]5.

Here we have used that Py(y) =y for all y € .Z and that ||P¢(x) — y||, > 0 must hold
since Py (x) —y # 0. O
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s

Figure 2.2: A pictorial representation of the projection of x € C™ onto a linear subspace
£ C C™. Note that the right triangle whose hypotenuse is of length ||x||2 will in fact be
entirely contained in the two-dimensional linear subspace spanned by { P¢(x),x — Py (x)}.

Looking at Lemma [2.6.11| we can see that Py (x) € .Z is the unique closest point to x
in % with respect to ¢2-distances (recall Figure as well). As a consequence, we can see
that in fact

Py(x) = arg min x — v
yeL

also holds. That is, we could have defined Py (x) to be the closest point in .Z to x in the
first place if we had wanted. We will next discuss how to represent Py as a matrix.

2.6.1 Representing Orthogonal Projections with Matrices

The following fundamental matrices are used to represent all orthogonal projections.

Definition 2.6.12 (Orthonormal and Unitary Matrices). A matriz Q@ € C™*™ with
orthonormal columns will be called an orthonormal matriz. If Q € C"*™ is both
orthonormal and square we will call it a unitary matriz.

In fact the attentive reader will recognize that we have already been introduced to
orthonormal matrices. In particular, the “Q” in a QR decomposition of a given matrix is
always an orthonormal matrix. The next few highly recommended exercises will introduce
you to some of the very useful properties of orthonormal matrices.

Exercise 2.6.6. Let Q € C™*"™ be an orthonormal matriz. Prove that n < m.
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Exercise 2.6.7. Let Q € C™*"™. Show that Q*Q = I, if and only if Q is orthonormal.

Exercise 2.6.8. Let Q € C™*™ be an orthonormal matriz and x,y € C™. Show that
(I, — QQ*)x = x — QQ*x is orthogonal to QQ*y.

Let B = {q¢}se) € C" be an orthonormal basis of a linear subspace .£. We can form
an orthonormal matrix @ € C™*" by letting the columns of @) be the elements of B so that
Q.0 = qq for all £ € [r], so that

I |
Q=|a a1 - a1

We can represent the orthogonal projection onto . = C(Q)) = span(B) using an orthogonal
projection matrix QQ* € C"*™ by

Py =QQ" =) qqj. (2.14)

JEr]

To see that (2.14) holds it suffices to check that Py (x) = QQ*x = (Eje[r] q]'q;f) x for
all x € C" (see Exercise [2.6.9)). Let x € C™. We have that

- Q - {q0,%) | | (90,%)
QR'x = Q : x =@ : = |2 a1 - a1 :
— Qr-1 — <q7“—17X> | ’ | <Qr—1,X>
= ) qj{q;,x) = Py(x)
Jj€lr]
= ) qaix = | D> aqq; | x
Jelr] JElr]

Using ([2.14]) we can also establish the equivalence of orthogonal projection matrices built
from orthonormal matrices with the same column spaces.

Lemma 2.6.13. Let Q,V € C™*™ be two orthonormal matrices with the same column
span (i.e., with C(Q) = C(V)). Then QQ* =VV™*.

Proof. Tt suffices to show that QQ*x = VV*x for all x € C" (see Exercise 2.6.9)). Using
Theorem [2.6.8[ and (2.14)) we have that

QA™x = FPeg)(x) = Fey(x) = VVix

for all x € C™. O




55
Exercise 2.6.9. Let A, B € C™*". Suppose that Ax = Bx for all x € C". Show that
A=B.

The next theorem shows that orthonormal projection matrices built from unitary
matrices are always equivalent to the identity matrix.

Theorem 2.6.14. The following are equivalent:
1. U € C™*" s unitary,
2. U*U = I,
3. U* is unitary, and
4. UU* = 1,,.
Proof.

(2) <= (1): Let U € C™" and set u; := U.; € C" for all j € [n]. Note that
(U*U)r = (ug,u) for all £,k € [n]. As a result we can see that

UU = I, — (U*U)&k = (In)l,k Ve k e [n]
1 ifl=k

0 else

< <uz,uk> = {

<= {w}ep C C" is an orthonormal set

<= U is unitary.

Hence, U is unitary if and only if U*U = I,,.

(1) = (4): Let U € C™" be unitary. Then C(U) = C™ (see Exercise [2.4.4). Since
C" = span{e;}jcpn (i-e., C(I,) = C") Lemma [2.6.13| tells us that UU* = I,1; = I,,.

(4) <= (3): This is the same as (1) <= (2) with U replaced by U*.

(3) = (2): This is the same as (1) = (4) with U replaced by U*. O

An additional consequence of Theorem [2.6.14] is that a matrix U € C"*™ is unitary
if and only if U* = U~!. Given this, we can see that we have already met an important
family of unitary matrices — the permutation matrices (recall Exercise [2.5.7)).

Exercise 2.6.10. Let U,V € C™*™ both be unitary. Show that both UV € C™*" and
VU € C™™ are then also unitary.

Exercise 2.6.11. Let U € C™*"™ be unitary. Prove that |Ux||2 = ||x]||2 for all x € C™.
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Exercise 2.6.12. Let B = {b;};c;) C C" be an orthonormal basis of £ = span(B).
Complete B to be an orthonormal basis B = {bj}jem U {u}y=! € ©" of all of C" using
Theorem . Let @ € C™*" be the orthonormal matriz with Q. ; = b; for all j € [r] and
U e C™"77) be the orthonormal matriz with U. j, = W,y for all k € [n —r]. Prove that
the orthogonal projection onto £+, Py :C" — L1 has the following properties.

1. Py = UU* (Hint: Recall Exercise [2.6.4]).

2. Show that Py(x) + Py (x) = x = Iyx holds for all x € C". Conclude that Py =
I, — Py.

3. Show that UU* = I, — QQ* € C™*",

Lemma 2.6.15. Let .Z and 7 be linear subspaces of C* such that L+ = 7. Then,
T+ =% also holds (i.e., (.,fj-)L =Z).

Proof. We must show that both . ¢ .7+ and that .7+ C .Z hold.

L C T Let x € £. Then (x,y) = 0 for all y € £+ = .7 by definition of Z*.
Hence, x € 7+.

T+t C % Let x € I+, By the definition of 7+, (x,y) =0 forally € .7 = £+
Hence, Py1(x) = 0. Now we can see that x = Py (x) + Py.1(x) = Py(x) (using, e.g., part

(2) of Exercise [2.6.12). Thus, x € .Z. O

Now that we have achieved a good understanding of orthogonal projections and or-
thonormal matrices we are prepared to discuss the least-squares approach to solving systems
of linear equations.

2.6.2 Least-Squares Theory for (Approximately) Solving Systems of Lin-
ear Equations

Let A € C™*"™, b € C™, and suppose that we want to solve the equation Ax = b for
x € ©". The least-squares approach aims to do this by minimizing f(x) := ||b — Ax||; as a
function of x € C™. To see why this makes sense, observe that b € C(A) «<— Jy € C"
such that b = Ay in which case f(x) = ||b — Ax||5 will attain its absolute minimum at
f(y) = 0. Furthermore, anytime f(x) = 0 it must in fact be the case that Ax = b. Hence,
if Ax = b has solutions we can indeed find one by minimizing f down to 0.

If, on the other hand, b € C(A) then Ax = b won’t have any solutions and infxecn f(x) =
infyeqn ||b — Ax||3 > 0. Nonetheless, there is absolutely nothing stopping us from still mini-
mizing f in hopes of getting “close” to a solution anyways. Observe that by Theorem

Ib — Ax||3 = || Pecay(b — Ax)||2 + ||[b — Ax — Pegay(b — Ax)|:
= || Pe(ay (b) — Ax|[; + ||b — Ax — Pe(ay(b) + Ax||;
= || Pecay (b) — Ax|[; + [|b = Pe(ay(b)|;-
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Algorithm 4 ALGORITHM FOR (APPROXIMATELY) SOLVING Ax = b
: Input: A e C™", be C™.

: Output: x € C" minimizing f(x) = ||b — Ang.

: Compute a QR decomposition of A, so that A = QR.

Solve Rx = @Q*b using back substitution.

: Return x.

TUs W N e

Above we can see that the first term HPC(A) (b) — Ang can be minimized to O since
Fecay(b) € C(A), and also that b — Fe(a (b)Hz does not depend on x at all. Hence,

inf — inf |b— Ax|2 = |[b— Poay(®)|
xlen(l]"f(X) xlenan | x||3 H C(A)( )HQ
with the minimum attained when x satisfies Ax = Fg(4)(b).
The end result of this analysis is that instead of solving Ax = b we might as well,
whenever possible, instead solve Ax = Pp4)(b) which we know always has a solution.

Furthermore, we can use a QR decomposition of A to solve Ax = Pp(4(b) efficiently. Let
A = QR be a QR decomposition of A. We have that

Ax = PC(A) (b) <— QRx= PC(Q) (b) <— QRx = QQ*b
< Rx = QDb.

Furthermore, Rx = QQ*b can be solved efficiently by back substitution since R is upper
triangular. Algorithm [4] outlines how to find the least-squares solution of Ax = b using a
QR decomposition of A.

If A € C™*™ is small enough to fit into computer memory and/or accuracy is of principal
concern, then one can safely default to directly computing a minimizer of f(x) = ||b — Ax||3
using Algorithm [4]. If, on the other hand, an approximate least-squares solution suffices
and/or A is too large or inaccessible to allow for easy use of Algorithm |4 then one can
instead use optimization methods to minimize f(x) = %Hb - Ax||§ iteratively. In fact, this
least-squares problem is important enough that we will discuss it several more times.

Finally, we note that when the rank of A € C™*" is less than n there will be an entire
n —rank(A) dimensional affine subspace of equally good (approximate) solutions to Ax = b.
That is, A(x + n) = Ax = b will hold for all n in the “null space” of A. We will take this
as initial motivation to review facts about the null space of a matrix next.

2.7 The Four Fundamental Linear Subspaces of a Matrix,
and The Spectral Theorem for Hermitian Matrices

Let A € C™*™, The four fundamental linear subspaces of A are:
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1. the column space of A, C(A) =span{A.; | j € [n]} C C™,
2. the null space of A, or kernel of A, N(A) ={xe C" | Ax =0} C C",
3. the column space of A*, or row space of A, C(A*) = span {A:*J |j € [m]} cCn,
and
4. the null space of A*, or kernel of A*, N(A*) ={y e C"™ | A*y =0} C C™.
Exercise 2.7.1. Let A € C™*"™. Show that the null space of A is a linear subspace of C".

Reviewing facts about each of these linear subspaces, we recall that r := rank(A) will
always equal the dimension of C(A) by definition. In fact, it also turns out that A* € C™*™
will also always have the same rank as A € C™*".

Theorem 2.7.1. Let A € C™*". It’s always the case that r = rank(A) = rank(A*).

Proof. We will use a QR decomposition of A, A = QR, with Q € C™*" and R € C"™*".
Recall that rank(Q)) = rank(A) = r. Additionally, rank(A*) = dim(C(A4*)) = dim(C(R*Q¥)).
Since the columns of ) are orthonormal, so we can extend them to an orthonormal basis B
of all of C™ which takes the form

B = {Q:,Oy .. '7Q2,T—17q7'7 cee 7qm—1} cQCm.

Now observe that

CA) ={Ay |lyeC"} ={R'Qy |y C"}

m—1
RQ | Y Qi+ Y Brae ‘ {aj}jem U{BYS c©
l=r

JE[r]

=<{ R* Z oje; ‘ {O‘j}je[r} cC
Jelr]

=C(R").

By the Exchange Lemma (Lemma it follows that the rank of A*, which is the size
of any basis of C(A*), must be less than the number of columns of R*, which is r = rank(A).
Thus, rank(A*) < rank(A). Repeating the argument above with A and A* interchanged
similarly shows that rank(A) < rank(A*). Combining these two results we learn that
rank(A) = rank(A*) must hold. O

Note that the proof of Theorem above also shows that dim(C(R*)) = dim(C(A*)) =
rank(A) = r. Thus, rank(R*) equals the number of columns of R*. Similarly, R is also rank
r which equals the number of rows of R. Generally, we will say that any m x n matrix
whose rank matches min{m, n} is full rank. Hence, we can see from the argument above
that the matrices () and R resulting from the QR decomposition will always be full rank.
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Algorithm 5 ALGORITHM FOR COMPUTING AN ORTHONORMAL BASIS OF N (A)

Input: A rank r matrix A € C"™*",

Output: An orthonormal basis of A’s null space N (A4) C C".

Compute a QR decomposition of A*, so that A* = QR. Note that C(A*) = C(Q).
Complete B = {Q. j}je|; to be an orthonormal basis B = BUS of all of C". The set
S will be an orthonormal basis of C(Q)* = C(A*)+ = N(A).

5: Return S.

Lemma 2.7.2. Let A € C™*". Then N'(A) = C(A*)+ C C" and C(A*) = N(A)+ c C".

Proof. By Lemma [2.6.15| it suffices to show that N(A) = C(A*)t. Let x € N(A) and
consider any given z € C(A*). By definition, Ax = 0 and z = A*y for some y € C™. Hence,
we can see that

(z,x) = (A"y,x) = (y, Ax) = (y,0) = 0.

Thus, NV(A) C C(A*). To see that C(A*)T C N(A) also holds, we note that if (z,x) = 0
for all z € C(A*), then (A*y,x) = 0 for all y € C™. This in turn implies that (y, Ax) =0
for all y € €™ which means that (Ax, Ax) = ||Ax||% = 0. O

Using Lemma we can further see that the dimension of NV(A) is n — r since
C" = C(A*) + C(A*)* = C(A*) + N(A). Hence, an orthonormal basis of C(A*), which will
consist of r vectors, can be completed into a larger orthonormal basis of all of C” by adding
n —r new orthonormal vectors that span N (A). By encoding this argument as an algorithm
we can also create a method for computing an orthonormal basis of the null space of any
matrix A € C™*". We can begin by computing an orthonormal basis B of C(A*) by, e.g.,
running Algorithm [I] on the columns of A*. We can then complete B to an orthonormal
basis B = BU S of all of C" using Algorithm 3 l The set S will be an orthonormal basis of
N (A) of size n — rank(A). See Algorithm [5 for pseudocode.

Exercise 2.7.2. Let A € C™" have rank r. Show that N(A*) = C(A)t ¢ €™ and
C(A) = N(A*)* c ©™. Then, argue that dim(N'(A*)) =m —r.

Exercise 2.7.3. Show that A € C"*™ is full rank if and only if N(A) = {0}. Such square
matrices are also said to be invertible.

The next lemma will be important soon in Section We will prove it here since it
depends crucially on our recent revelations regarding null spaces.

Lemma 2.7.3. Let A€ C™*". Then C(A*A) = C(A¥).

Proof. First we note that

C(A*A) = {A*Ay |y € C"} = {A"z | z € C(A)} = {A"Ppayx | x € C™} .
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Now we can re-express C(A*) using that C(A)* = N (A*) C C™ to see that

C(A*) = {A* <PC(A)X + Pc(A)LX> } X € (Dm} = {A*PC(A)X—i- A*PN(A*)X ‘ X € (Dm}
= {A*PC(A)X ‘ X € (Dm} = C(A*A)

Exercise 2.7.4. Let A € C"™*". Prove that C(AA*) = C(A).
As a consequence of the above, we can see that
rank(A*A) = rank(A*) = rank(A) = rank(AA").

We will now briefly concentrate on a very special type of square matrix which will serve
as our doorway to the almighty singular value decomposition in Section [3.1

Definition 2.7.4. A matriz A € C™*" is called Hermitian if A = A*.

Exercise 2.7.5. Let A € C™*"™. Show that both AA* € C™*™ and A*A € C™*"™ qre
Hermaitian.

Exercise 2.7.6. Let A € C"*™ be Hermitian. Show that all entries on A’s diagonal are
real numbers.

Exercise 2.7.7. Let A € C™" be Hermitian. Show that N'(A) = C(A)* c C" and
C(A) =N(A)* cC.

The eigenvalues and eigenvectors of Hermitian matrices have a lot of special properties
that we will need later. We will discuss these properties next.

Definition 2.7.5. An eigenvalue-eigenvector pair, or eigenpair, of a matrix A € C™**"
is a pair (A\,v) € C x C"\ {0} such that v # 0 satisfies Av = Av.

Lemma 2.7.6. Let A € C"*"™ be Hermitian. Then all eigenvalues of A are real numbers.

Proof. Let (A, v) be an eigenpair of A. If A = 0 € R we are done. Thus, suppose that
A # 0. Then we have that

||v||§ = (v,v) = <iAv,v> = (1/X) (v,A*v) = (1/X) (v,Av) = (1/X) (v, Av)

= (/A VI3

Since v is nonzero we know ||v|2 # 0 so that A = A must hold. Hence, A € R. O
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Note that every fixed eigenvalue A € C of A € C™*" has an infinite number of associated
eigenvectors. In fact, one can see that the set of all eigenvectors corresponding to A (after
adding in the zero vector) is closed under both addition and scalar multiplication so that it
forms a linear subspace of C™. And, this subspace of C" is exactly equal to the nullspace

of A—\I,, € C™",
N(A=AIL,) = {veC"| (AvV)is an eigenpair of A} U{0}.

For this reason we will refer to N (A — AI,,) as the eigenspace associated with .
Furthermore, we will let an orthonormal basis of this linear subspace be denoted by
By C C" for each eigenvalue A.

Example 2.7.7. Let U € C"*" be unitary. Then UU* = I, so that UU* has only one
nontrivial eigenspace N (UU* — I,) = C™ associated with its single eigenvalue X = 1.
Furthermore, its orthonormal basis By will be an orthonormal basis of all of C™.

Exercise 2.7.8. Prove that every matriz A € C"*™ with rank < n has at least one nontrivial
eigenspace. What is it?

Exercise 2.7.9. Prove that A € C™*" has exactly one eigenvalue if and only if it’s a scalar
multiple of the identity matriz I,,.

Another important property of Hermitian matrices is that all of their distinct eigenspaces
must be orthogonal to one another. This fact is proven in the next lemma.

Lemma 2.7.8. Let (\,v) and (u,u) be two eigenpairs of a Hermitian matriz A € C"*"
with X # . Then (v,u) = 0. As a consequence, N(A — \I,) L N (A — ul,).

Proof. Since A\, u € R are distinct, at least one is nonzero. Without loss of generality let A
be nonzero. Then, p # X = §#1 = 1 - 4§ #0. Since A € R\ {0} we can also see
that

1 1 1 1
(v,u) = X(Av,u} = X(v,A*u> = X(V,AU) = X(v,pu) = %(v, u).
Thus,
(1 - g) (v,u) =0.
Hence, it must be the case that (v,u) = 0 since 1 — & # 0. O
Let A € C™"™ be a Hermitian matrix whose eigenvalues are MAg,...,Am_1 € R.

Lemma [2.7.8] implies that the eigenspaces of A will all be orthogonal to one another.
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As a result, if we let B); be an orthonormal basis for each eigenspace N (A — \;I,,) of A,
then

B:=|J By cC" (2.15)
Jjeim]

will be an orthonormal set. In fact, it will also always be the case that B is an orthonormal
basis for all of C" (we will not prove this here — see, e.g., [I8, Chapter 2] or [14, Chapter
14] for corroborating evidence).

Fact 2.7.9. If A € C™*" is Hermitian then there exists an orthonormal basis of all of C"
consisting of eigenvectors of A. In particular, the set B in ([2.15)) will be an orthonormal
basis of C™.

Let A € C™" be Hermitian and B = {b,};c,) C C" be an orthonormal basis of C"
consisting of eigenvectors of A as defined in . Form a unitary matrix U € C"*" that
contains the elements of B as its columns (i.e., so that U. ; = b; for all j € [n]). By the
definition of eigenpairs we can see that

| | \ | |
AU = Alby by -+~ byy| = [Aby Ab; --- Ab,

| \ | . |
= | Abo Aiby -+ Ayibp_1 | = [bo by - b,y |diag(Xo,..., A1)

| | | . |
= Udiag()\o, ceey )\n—l)-

where A\; € R refers to the eigenvalue corresponding to b; € B. Finally, recalling that U is
unitary we can see that multiplying both sides of the equation just above on the right by
U* yields

A = AUU* = Udiag()\o,...,)\n,l)U*.

This computation together with Lemma Lemma [2.7.8 and Fact prove the
following theorem (see also, e.g., Theorem 2.5.6 in [1§]).

Theorem 2.7.10 (The Full Spectral Decomposition of a Hermitian Matrix). Let A € C™*"™
be Hermitian. Then there exist A, ..., A\n—1 € R and a unitary matriz U € C™*™ such that

A= Udiag()\o, ceey )\nfl)U*.

Exercise 2.7.10. Let A € C™*"™. Show that all the eigenvalues of the Hermitian matrices
A*A € C™™ and AA* € C™*™ are nonnegative real numbers.
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Theorem [2.7.10] is great, but we’d also like a version that allows us to store low-rank
matrices in a compressed form. Let’s think about how to develop such a variant — it’ll also
be good practice for Section [3.1

Recall from our definition of atomic permutation matrices P(j, k) € C"*" (see Example
and the surrounding text) that P(j, k) swaps the j' and k" rows of A € C™*" when
multiplied against it on the left, and swaps the j® and k" columns of A € C™*" when
multiplied against it on the right. Furthermore, every atomic permutation matrix P(j, k) €
C™*™ is unitary, as are all products of atomic permutation matrices (see Exercise and
Theorem . Having refamiliarised ourselves with atomic permutation matrices, note
that if P(j, k) is applied to both sides of a diagonal matrix simultaneously it will swap its
4 and k" diagonal entries. That is,

P(], k:) diag()\o, .. ‘7)‘]'—17)‘]'7)‘]'4-17 .. '7)\k—17)\k7)\k+17 .. .,)\n_l) P(], k)
= diag()\o, ceey )\j—h )\k, )\j+1, ceey )\k—17 )\j, )\k+17 cvey )\n—l)-

0 01
Example 2.7.11. Let P(0,2) = |0 1 0| € C3*3. We can see that
1 00
0 01 a 0 0 0 01
P(0,2) diag(a,b,c) P(0,2)=(0 1 0| {0 b o) {0 1 0
1 00 0 0 ¢ 1 00
0 0 ¢ 0 01 c 0 0
=10 b O 01 0]=10 b 0
a 0 0 100 0 0 a
= diag(c, b, a).

Using these facts about atomic permutation matrices together with Theorem [2.7.10] we
can see that there exists a permutation matrix P = Hée[q] P(j¢, ke) consisting of a product
of ¢ € N atomic permutation matrices such that

A= U diag(Xo,..., \e1) U* = U(PP*) diag(Ao, ..., A1) (PP*)U*
= (UP)(P diag(o, ..., A—1) P)(P*U¥)

= (UP) diag(Xo, ..., 1) (UP)*,
where 5\0, .. ,S\n_l is a permutation of Ag,..., A,—1 € R satisfying

\5\0| > \X1| > > |5\n71|-

Let U = UP, and note that U is still a unitary matrix (see, e.g., Exercise [2.6.10)).
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Continuing, now consider the case where A is not full rank so that [A,_;| = 0. In
this case we can further compress our spectral decomposition of A using block matrix
representations. To begin, let’s re-express U in block form by

U = (V U:,n—l) e

where V e ©"*("1) is the orthonormal matrix formed by the first n — 1 columns of U.

Further, let’s represent diag(:\o, .-y An—1) in block form as well by

diag(j\o, ceey S\n—l) = <(l)z g) € R™"

where D = diag(j\o, .. .,5\n_2) e R(=Dx(=1) and 0 is a suitably tall vector of zeroes.
Then, we have that

o 0 () < e () o

Note that V' e ©**("=1) above is no longer unitary since it isn’t square, but it is still an
orthonormal matrix, and D is still a diagonal matrix of real numbers. And, of course, we
can repeat this process again if A2 =0 too, and so on, until we run out of 0 eigenvalues.
When will that happen? Well, denote the rank of our Hermitian A € C™*™ by r < n. The
eigenspace associated with the 0 eigenvalue of A is exactly the null space of A so that the
orthonormal set By in will have |By| = dim (NM(A)) = n — r. Hence, we carry out
this process n — r total times for all of M1 = Ay = -+ = A\, = 0. Formalizing this
discussion gives us the following result.

Corollary 2.7.12 (The Compact Spectral Decomposition of a Hermitian Matrix). Let
A € C"" be Hermitian with rank r < n. Then, there exists an orthonormal matriz
UeC™™", and Ng, ..., \r—1 € R satisfying

Dol = (Ml > - | > 0,
such that
A=U diag()\o,...,)\r_l) U*.

We end our discussion of the spectral theorem here by noting that Theorem [2.7.10]
and Corollary are really fantastic! They decompose every Hermitian matrix into a
product of extremely well behaved (e.g., easily invertible in the full rank case) matrices.
Given how much we have used the QR decomposition in this chapter, we hope that the
reader can now instinctively anticipate the potential utility of yet another decomposition
that in many ways is even nicer (let’s be honest — the R in the QR decomposition is just
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not as nice as the diagonal/unitary combination Theorem effectively replaces it with).
Theorem and Corollary do have one major flaw, however. They only apply to
one very special type of square matrix! In the next chapter we will remove this flaw by
developing a generalization of these Hermitian matrix decompositions that applies to all
(even rectangular) matrices.

2.7.1 Positive-(Semi)Definite Matrices, and the Cholesky Decomposition

2.8 A Quick Review of the Trace and Determinant Functions

Determinants [12, Chapter 4] and [27, Chapter 5]
TO DO:

INSERT DISCUSSION OF positive (semi) def matrices and equivalent defs, (1) adding
in a subsection about symmetric positive definite/semi-definite matrices. . . .

~» We will now discuss a speail class of Lpase 43.1 Hermitian (symmedic) matrices that
are importanit in optimization, statistics, and applied mith more generally.
Ofs A Hermition matrix A € C"*" is possixive-definite if *A¥ > 0 V& € C"\{0},
Qef: A Hermisition madrix A € C™"*" is Possitive-Semi Definite (PSD) if A% > 0 V& €
Ccn.
~> Nes. (semi) definite matrices the detined similiarly.
HW: Let A € C™*". Prove that both AA* and A*A are PSD.

e Include twis!
— The following lemma will be useful
Lemma 43.1: Suppose that a Hermition matrix A € C™ has nazes eigenvables. Then
A is full promh.
pf Recell that A is full rank < dim(C(A)) = n < all n columns of A are line
indepenturt. Now supse that A is not fall vank. Then Ja € C" | (0)st. Az, Az =
a;A;; = 0. However, Then O is an eigervalue of A w/ eigenvector & (a convadiction).

Thm. let A € C"*" be Hermitian.
The following are equivalent:
(1) A is possitive definite.
(2) All the eigenvelues of A are possitive.
(3) 3 an invutible matrix B € C"*" s. t. A=
BB*

off 1=2:
Let X be an eigenvilue of Awith associate

cigen V € C"\{0}. Then sime A is poss def.
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0 < VZAV = V2(AV) = A|[V|2 = X > 0.

\\/{
o

2 = 3: By the Spectral Thm (Thm 2, ine) A = U diag (Ao, ... Ap—1) where U is unity
and the \; are the positive eigenvilles of A.
Hence, A = U diag <\/>\0, e ,\/)\,1> diag (\/)\0,
s.t. we can the B = dig (\/)\0, o (Apr)
B will be full rank (invertible) by
2.7 .4 \and Lemma 43.1.

3= 1: Let Z € C"\{0}, Since B is invertible (full rank), BT # 0. Hence

PAP? = i’BB*i = (B*Z)" (B*%) = || B*&

HW: Let A € ™" be Hermitian. Pre tht page 43.17
E the following are eguivilent (1.) A is PSD
(2.) All the eigenvines of A are nannegative
(3.) 3 a full ranh madrix B € C"* Wirwith gt A — pp*.

The Cholesky Decomps

Let B* € C"™™ be as in the last then ¢ consider it’s QR-decampsition B* = QR
~» The entries on the diagonil of R canby complet #’S - to madu them red we can let
D € R™™ be a diagonil midrix

D = diag ({e—iarg(Rjj)}jG[n]>

and set
B* = QD D*PR = QR
~—

unitary by 5 upertrimusuls Exercise 2,660 since D is unitay with possitive
real envies on itsdaysual
(1) R = |Rii|Vi S [n]
— Now from the last thm part 3 we
cansee that any pos. tefinite A will have

A= BB* = (B")"B* = (QR)*QR
_ ROOR
= R*R since Q is unitay
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~~ Note that since R is upper triangalon, Rtis lowe triangular...

Thm (Cholesly): Let A be possitive definite. Then 3 a lown viangular matrix L € C"*"
with possitive real entries on it’s diagonal s.t. A = LL*.

HW: - If » > 0, and A is PSD, so that rA is also PSD
4

e If A, B we both PSD, show that A+ B is PSD.

Re Trace & Determinant Functions

Qefi Let A € C™". Then Trace: C™*" — C is defined by Tace(A) = > jefmin(n,m)] Aij
Let A, B € C™xn 2
HW: Prove that (i) Trace (A + B) = Trace(A) + Trace(B)

(i) Trace(AA) = ATrac(A)
(iii) Trace (A*) = Trar_CFi(A)

Lem 43.2
Let A € C™*" and B € C"™™. Then, Trace (AB) = Trac
pf: We compute

Trace(AB) = Z (AB);; = Z Z Aj kB

J€[m] je[m] keln]
- Z Z BijAjr = Z (BA)x, = Trach(B)
ke[n] j€[m] kE(n]

2. The trace has an important relatiouship to the

Frobenias not M of a given A € C"™*", surf to treate associsted product.
43,3 4 _
Lems a1 A = Tac(A)
pf. Recall thit

A% = Z 1A= >0 Ajnd

m| k€[n] ke[m] j€[m]
- Z Z A%y, Ajr = Z (A*A)k,k
k€G] je[m] ke[m]
= Trace (A*A)

The second eguling follow from Lemm 43.2
— We will nar go alead and define the imer product (A, B)p for A, B € R™*™ to be
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(A, B)p := Trau (B*A)

To see that this is indeed an inver product, ncaell that one can of cruse alwing reshype
an man maticar endies into a vector usiy vec: C™*" — C™" defined by, egn, (Vec(A)), =
Ammadm , Thmadn ] € [my
~> In this case we have that

(A, B)p : 2 Trace (B*A) :&E[u] Zke[m] (B*)j,k A j
=D jcin] 2okelm] BrjAk,; = (vec(B), vec(A)

We can now apply, e.g., the Cauch Schnut irejurlity to su that
| Trace (BAA)| = |£vec(B),vec(A)| < || vec(B)||2]| vec(A)
= |Bllr | Allp-
Thm! Let A, B € C™*". Then, |Tiace (BPA)| < ||B|p|lAlr

Determinants

square

The determinant is a function fromluatials to C into C

det: C™*"™ = C

With a lot of interesting piqueties... usefal in miltivariste
There’s a lot one can saw ibout Determinans, 43.5 we will only use them tansentially
(and infrequently).
Butin it good to know how to compute them efficiente
Thm Let A, B € C™™,
The determinant function det: C*™" — C" satisties the the following properties:
(1.) det (A*) = det(A)
(2) det(AB) = det(A) det(B)
(3.) If A islower (or upen) triangular, then

det(4) = ] 4y
J€ln]
(4) If A is unitary, then det(A) € C has magritud |A| := |det(A4)| = 1.
HW:- Show that det (I,,) = 1, where I, is the nan idents madrix. Hermetion

e If A is then det(A) € Ris the product of A’ g gigenvalues,
— det(AA) = A" det(A)VA € C.
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o Let A= QR be a QR-decompsidon of A. Then, |[A| ==...|R-| This Ist | the | (n) |
—A detour through suvekib

INSERT DISCUSSION OF Trace and Determinants, some properties of trace, Frob.
norm innner product

Definition 2.8.1 (Frobenius Norm). The Froebenius norm of A € C™*N s

|AllF = Z |Az,j\2 =/ Trace(A*A)

4

A||p = v/ Trace(A*A)
= /Trace(VE*U*UXV*)
= /Trace(VE*XV*)
= /Trace(V*VE*x)

= /Trace(X*X)

where we have used the cyclic property of the trace. Thus the ||A| r is equivalent to the
¢?-norm of a vector formed by the singular values of A
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Chapter 3

Some More Advanced Topics in
Linear Algebra

3.1 One Factorization to Rule Them All: The Singular Value
Decomposition

The Singular Value Decomposition (SVD) is arguably the most useful fact of Linear Algebra,
which is itself arguably the most useful and ubiquitous of mathematical subjects (with
respect to computation in particular). The SVD’s utility in data analysis is underscored by
the fact that it has been (re)discovered at least three times in different scientific communities
[30]. In this section we will review the SVD of a given matrix A € C™*". Many sections
of the book hereafter will use the SVD repeatedly and often — it is well worth refreshing
yourself here, and familiarizing yourself with our notation, before moving on.

Finally, to re-emphasize our statement about linear algebra over the real versus complex
numbers from the beginning of Chapter 2] we remind the reader that replacing the
symbol “C” everywhere it appears in this section with an “R” will not affect
the correctness of the results herein in any way whatsoever. In fact, the only
cosmetic (and frankly, totally unnecessary) changes that might result by restricting ourselves
to R C € below would be on the order of, e.g., renaming real-valued Hermitian matrices
“symmetric matrices”, calling the conjugate-transpose of a real-valued matrix just its
“transpose”, etc..

We will now begin studying the SVD by proving a relatively simple lemma that establishes
some notation as well as a large number of potential matrix factorizations which include
the SVD as a special case.

Lemma 3.1.1. Let A € C™*" and {wq, -+ ,Wn_1} C C" be an orthonormal basis for C".
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Define sj := ||[Aw;j||2 (reordering the w;’s as needed so that so > s1 > -+ > sp—1), and let
0 ifs; =0

h; := o : 3.1

J {Slewje(Dm ifs; #0 (3.1)

Finally, let W € C™*" be the unitary matriz with W. ; = w; for all j € [n] and H € C™*"
be the matriz with H. ; = h; for all j € [n]. Then, we have

A = H diag(sg,...,8p—1) W*
where sg > 81 > -+ > sp_1 € [0,00).

Proof. We have that
. | | | |

AW = A wWo W1 - Wp_1 = AWO AWl s Awn_l
| | | | |
| | | | | S0 0
= | sohp sithy -+ spihp 1| = [ho hy -+ h, S :
| | | | | 0 - Sn
= H diag(so,...,Sn—1)-
Thus, A = AWW™* = H diag(sg,...,Sn—1) W*. O

Lemma already yields a large family of decompositions for any given A € C™*"™
with several of the structural properties that will ultimately be provided by the singular
value decomposition. The next lemma tells us how to choose the orthonormal basis
{w;}jem) of C" in order to ensure that the h; vectors defined in can be used to form
a unitary matrix. As a happy coincidence, our choice of {w; }je[n} C C™ will also contain
an orthonormal basis for the null space of A as subset of its columns, and guarantee the
uniqueness of the ordered s; values from Lemma

As we shall see, choosing {w;};c;,; € C" in Lemma to be an orthonormal
basis of C" consisting of eigenvectors of A*A € C™*™ is the “correct” choice (at least,
if our goal is to try to orthogonalize H as much as possible). And, it’s important to
note, this choice is always possible by Fact since A*A will always be Hermitian no
matter what A € C™*" itself looks like. Toward seeing how nicely this works out, let’s
quickly recall some facts about the four fundamental subspaces of both A and A*A from
Section First, if w; € €™ is an eigenvector of A*A then Aw; = 0 can only hold if
w; € N(A) = C(A*)+ = C(A*A)L = N(A*A) (see, e.g., Lemmas [2.7.2/and [2.7.3). Second,
A is rank r if and only if A*A is rank r (see Theorem and Lemma [2.7.3). Thus, if A
is rank r there will be exactly r orthonormal eigenvectors of A*A associated with nonzero
eigenvalues, and they will span C(A*A) = C(A*).
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Exercise 3.1.1. Let A € C™*" be rank r and {w;}cp) C C" be an orthonormal basis
of C™ consisting of eigenvectors of A*A € C"*™. Prove that exactly v of the orthonormal
eigenvectors of A*A in {w;}jcp will be associated with nonzero eigenvalues. Suppose,
w.l.g., that these r orthonormal eigenvectors of A*A are {Wj}je[r]. Show that they are an
orthonormal basis of C(A*).

Exercise 3.1.2. Let A € C™*" be rank r and {w;};cn) C C" be an orthonormal basis of
C" consisting of eigenvectors of A*A € C™*". Prove that Aw; = 0 will hold if and only if
w; has eigenvalue 0 as an eigenvector of A*A. Conclude that Aw; = 0 will hold for exactly
n —r of the orthonormal eigenvectors of A*A in {w;}jcin)- Suppose, w.l.g., that these n —r
orthonormal eigenvectors of A*A are {w; ;L:_Tl Argue that they are an orthonormal basis

of N(A).

Let A € €™ be rank r. The next lemma shows that choosing {w;};c,) C C" in
Lemma to be an orthonormal basis of C" consisting of eigenvectors of A*A € C"*"
will result in exactly r nonzero and orthonormal h; vectors in (3.1)).

Lemma 3.1.2. Let A € C™*" be rank r. Choose {w;};c,) C C" in Lemma to be an
orthonormal basis of C" consisting of eigenvectors of A*A € C"*™. Then the h; vectors
defined in will be such that {h;};c;,) € C™ form an orthonormal basis of C(A), and
h; =0 forallj=mr,...,n—1.

Proof. Exactly r of the h; vectors defined in will be nonzero by Exercise
Furthermore, these nonzero h; vectors will be {h;};c|;) due to the ordering imposed on
the s; = |Aw||2 values. Finally, each h; € C(A) will have ||h;||2 = 1 for all j € [r] by the
definition of the h; vectors in . Thus, to finish the proof it suffices by Exercise to
prove that {h;};c(, is orthogonal.

Let Ay be the eigenvalue of A*A associated with an eigenvector wy for all 0 < £ < r.
Considering the inner product of any two nonzero h; vectors from we have that

1 1 Lo g A
(hj, hy) = —(Aw;, Awy) = —(Aw;)" Awy = —w; (A" Awy) = —ijWg =0

5;8¢ 5;8¢ 558¢ 555¢

whenever j # ¢ due to the orthonormality of {w;};cpn. Hence, {h;} ¢, is an orthonormal
basis of C(A). ]

Exercise 3.1.3. Let A € C™*™ be rank r. Suppose that some choice of the orthonormal
basis {w;}jcn) of C" in Lemma results in exactly r orthonormal h; vectors in (3.1).
Prove that every w; must then be an eigenvector of A*A € C™*".

Lemma [3.1.2] combined with Exercise [3.1.3|imply that there is essentially only one way
to apply Lemma so that its H matrix ends up having exactly r = rank(A) nonzero
and orthonormal columns {h;};cj. We simply must choose {w;};ci,) € C" to be an
orthonormal basis of C™ consisting of eigenvectors of A*A € C™*". Making that choice, we
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then have that {h;};cq will be an orthonormal basis of C(A) C C™. We can, therefore,
complete {h;};c(, to be larger orthonormal basis B = {h;} e, U {u} ! of all of C™,
where {u,}}"! will then be an orthonormal basis of C(4)* = N(A*) by construction.

Let U € C™*™ be the unitary matrix with its columns given by

TR
7| u; otherwise

In addition, let V' € C™*™ be the unitary matrix whose columns are our well-chosen
{w,}jem basis so that V. ; = w; for all j € [n]. For our A € C™*" we will then have that

AV = AWO AWl AWn_l

| | |
| | | o

= sohg sthy -+ s._ih,_;y 0 --- 0] € cmxn (3.2)
| \ | o
| | | | | | diag(sg,...,8—-1) O 0

- h’o h|1 h"‘l “"“ | “"I‘l (0 0 --- 000 0)

eCme e(]jm)(’n
—US,

where ¥ € [0,00)"™*"™ is a real-valued diagonal matrix whose entries are given by

w1 iti=j5<r
Y771 0 otherwise

Multiplying (3.2]) through on the right by V* we finally see that
A = AVV* = UXV*™.

Example 3.1.3. To help the reader digest the abstract computation in (3.2)) we will perform

1 -1 1
a specific example of it here. Let A = L -1 so that AAA=|—-1 5 3]. One
02 2 1 3 5

can then check that

c R?

Shsho
Shslsh
Shalsil
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is an orthonormal set of eigenvectors of A*A (do check this!). Applying A to each of these
vectors we obtain

0
U 0
A | = 2V/2 (1> A
V2
Thus, in the terminology of Lemma we have sy = 2v/2, s1 =3, s9 =0, and

() m=(0) ()

Forming the unitary matrices U € R**% and V € R3*3 used in (3.2) in this case and
carrying out the computation to its conclusion we learn that

7Y B 4

U b

=\/§<(1)>,andA

SSILS-
SIFSILSI
|
=
~—

SIS =

T SIS
SIS

1 1
Exercise 3.1.4. Repeat the calculation in Example|3.1.8 for the matriz A = 1 1
-1 1

Formalizing the discussion above allows us to prove the following theorem establishing
the existence of the SVD for any matrix A € C™*".

Theorem 3.1.4 (The Full Singular Value Decomposition). Every rank r matriz A € C™*"
can be decomposed into A = UX V™ where

1. U eC™™ and V € C""™ are both unitary, and

2. ¥ €[0,00)™*"™ is a unique diagonal matriz with entries

Eij:{ oj(A) ifi=j

0 otherwise
satisfying oo(A) > 01(A) > --- >0, 1(A) >0=0,(A) =--- = Jmin{m,n}—l(A)'

Here the j*'-largest diagonal entry of the diagonal matriz 3, o;(A) € [0,00), is called the
7' singular value of A. Similarly, given a valid SVD of A, A = USV*, the vectors
uj = U, € C" and v; = V.; € C" are called the j*" left and right (respectively)
singular vectors of (the SVD of) AH

'These slightly awkward names for u; = U.; € C™ and v; = V. ; € C™ are due to the fact that these

vectors are not generally unique for a given matrix A. Note that there will be many unitary U and V matrix
pairs that work as part of a valid SVD of A, especially when there are repeated singular values.
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Exercise 3.1.5. Let A € C™*" have the full SVD A = UXV*. Set r = rank(A). Show
that

A= 0i(Auv; (3.3)
J€lr]
where o;(A) is the ™ singular value of A, and u;, =U,;cC™ v; =V, ecC" are the ,
™ left /right singular vectors of the SVD of A. (Hint: Consider using Exercise )

One can now prove the following corollary from Theorem [3.1.4]via an argument analogous
to the one used to derive Corollary [2.7.12| from Theorem [2.7.10| (or, alternatively, by using
(3.3) from Exercise to build the new factorization more directly).

Corollary 3.1.5 (The Compact Singular Value Decomposition). Every rank r matriz
A € C™ ™ can be decomposed into A = UXV™* where

1. UeC™" and V € C™" are both orthonormal matrices, and

2. 3 =diag (00(A),...,00—1(A)) € [0,00)"*" is a unique diagonal matriz containing the
r nonzero singular values of A ordered so that oo(A) > 01(A) > -+ > o,_1(A) > 0.

Exercise 3.1.6. Prove Corollary[3.1.5.

However one proves Theorem and Corollary the uniqueness of the singular
values of a matrix A € C™*"™ ultimately follows from the fact that they must always be the
square roots of the eigenvalues of A*A € C™*" (and AA* € C™*™). For this reason (in
addition to several others), we will now briefly review the properties that any valid SVD of
a matrix A must share with the spectral decompositions of both A*A and AA*.

3.1.1 The Relationship Between any Valid SVD of A and the Spectral
Decompositions of A*A and AA*

Let A =UXV™* be a valid full SVD of a rank r matrix A € C™*™ (i.e., so that U € C™*™
and V € C™*" are both unitary, and ¥ € [0,00)™*" is a diagonal matrix satisfying
00> > 81,01 > Ny =0 = Yg_14-1 = 0, where ¢ = min{m,n}). Notice that
then

A*A = (USV)*(USV*) = VS'U*USV* = V(S*S)V,

where D = ¥*¥ € [0,00)"*" is a diagonal matrix with Dy = 2(2)70 > > Dpg,g =
23_17,,_1 > Dy == Dp_1,-1 =0. As a consequence, we can see that every column
v; = V.; of V will be an eigenvector of A*A with eigenvalue Dj ; since

A*AVj = V(E*E)V*Vj = V(E*E)e] = VDj’jej = Dj,jvj-
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Thus, D; ; must be the j*® largest eigenvalue of A*A € C™ ™. Given that the eigenvalues of
A* A are both unique (with potential repetitions since they are the zeros of the characteristic
polynomial of A*A — see, e.g., [14, Chapter 10]), and always nonnegative real numbers (see
Exercise , this further implies that each X;; = {/Dj ; is also uniquely determined
by A. Hence, we'll call the value that ¥, ; must always take in any valid full SVD of A
“o;(A)”, and will later discuss it even in the absence of a particular SVD of A.

Exercise 3.1.7. Let A= UXV™ be a valid full SVD of a rank r matriz A € C™*". Show
that X ; must always equal the square-root of the 3™ largest eigenvalue of AA* € Cm*™,
Conclude that the nonzero eigenvalues of AA* € C™*™ must always match the nonzero
eigenvalues of A*A € C"*™,

The following result can be proven by carefully considering the discussion so far.

Theorem 3.1.6. Let A = UXV™ be a valid full SVD of a rank r matriz A € C™*™. The
following statements must hold:

1. The r nonzero singular values of A are exactly the square roots of the positive eigen-
values of A*A € C™™ and AA* € C™*™,

2. The first r columns of U € C™ ™ are an orthonormal basis for the column space of

A, C(A) c C™.

3. The last m — r columns of U € C™*™ form an orthonormal basis for the null space

of A*, N'(A*) € ©™.

4. The first r columns of V€ C™*"™ form an orthonormal basis for the column space of
A*, C(A*) Cc C™.

5. The last n — r columns of V€ C™*™ form an orthonormal basis for the null space of

A, N(A) c C".

6. If m =n and A is Hermitian, then A will have \ as an eigenvalue if and only if there
exists a j € [n] such that

o |\| is the it singular value of A (i.e., oj = |A|),
o the j'" column of V, v; € €", is an eigenvector of A associated with A\, and

o the j' column of U = sign(A\)v;.

Exercise 3.1.8. Prove Theorem[3.1.8.

Exercise 3.1.9. Let U € C™*™ and V € C™™ both be unitary, A € C™*", and q :=
min{m,n}. Show that o;(UA) = 0;(A) = 0;(AV) holds for all j € [q].
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Exercise 3.1.10. Let o, 3 € Z\ {0}. The G-power of a full rank matriz A € C™*" is

a matriz B € C™ " with the property that B = A“ (e.g., when f = 2 and a = 1 then
B is called the matriz square root of A). Prove that there always exists a unitary matrix
W e C™" such that any desired %—power of AW exists. When can W simply be the
identity? How can one compute such a B and W for any given A € C™"*"?

As Theorem [3.1.6] hopefully makes clear, a SVD of A conveniently encodes just about
any standard information you might want to know about A. It is a commonly computed
decomposition as a result. Numerically, a SVD of a small to moderately sized matrix
A € C™ ™ can be efficiently computed using a variety of standard methods (depending
on how, e.g., m compares in size to n). We refer the interested reader to numerical linear
algebra texts such as [32] Lecture 31] or [10, Chapter 5] for details. For an extremely large
matrix A € C™*" that might not be (able to be) stored on a single machine, however, one
might have to utilize a distributed/incremental SVD algorithm instead (see, e.g., [3, 4, [19]).

3.1.2 The SVD and the Moore—Penrose Inverse of a Matrix

Note that every matrix A € C™*" is a linear bijection from C(A*) onto C(A). Hence,
A:C(A*) — C(A) always has an inverse, denoted by AT : C(A) — C(A*), that’s called the
Moore—Penrose (or, pseudo)inverse of A. Furthermore, a factorization of AT € C™*™

can be computed easily using a compact SVD of A.
Let A = UXV™* be a compact SVD of a rank » matrix A € C"™*" so that U € C™*"

and V € C™*" are orthonormal matrices, and ¥ = diag (o¢(A),...,0,-1(4)) € [0,00)"" is
invertible (due to og(A) > -+ > 0,_1(A) > 0). One can now see that
AT =ve~ly~ (3.4)

must hold. To understand why, recall that the orthogonal projections Fg(4) and Pp(ax) act
as the identities on C(A) and C(A*), respectively (see Theorem [2.6.10)). And, e.g.,

ATA = (VvET'UHUSV*) = VETILEVY = VV* = Peay

by (2.14) and part (4) of Theorem Hence, AT : C(A) — C(A*) from (3.4)) is indeed
the left inverse of A : C(A*) — C(A). A similar calculation shows that AAT = Fe(a) also

holds.

Exercise 3.1.11. Let A =UXV™ be a compact SVD of a rank r matrix A € C™*"™. Show
that AT from (3.4) satisfies AAT = Feeay-

Exercise 3.1.12. Suppose that A € C" " is full rank (so that rank(A) = n). Show that
At = A=1 € C™*" in this case.

The exercise directly above demonstrates that A is a strict generalization of the “usual”
matrix inverse A~!. As a result, in some sense we always should (and really always effectively
do) work with A~ := A" when thinking about inverting a matrix of any size.
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Exercise 3.1.13. Suppose that A € C"*" is full rank (so that rank(A) = n). Show that
o (A_l) = —L1 . More generally, show that o (A_l) = ﬁ for all j € [n].

O'nfl(A) On—1

3.1.3 Singular Values, Matrix Norms, and Some Singular Value Inequali-
ties

If we have not yet convinced you that the SVD is potentially interesting and useful, we
will try again here by showing that two of the most commonly used matrix norms from
Section [2.2.3] are closely related to the singular values of a given matrix.

The Frobenius Norm
Given A € ©™*" recall that [|Allr = /32, |Ag7j|2. Let A =UXV* be a full SVD of A,

and set ¢ := min{m,n}. Computing the squared Frobenius norm of A via its SVD we can
see that

1AIE = IUSVE = Y ISV 1B = Y IIUEV,; 13
j€n] j€n]
= D IEV), 13 = ISV*IIR

JEN]

by Exercise[2.6.11]since U is unitary. Continuing, we can further see that since | A||p = ||A*||r
holds for all A € C™*™ we also have that

AR = IVES R = Y IVED I3 = D ISHIB=) (0;(4)* (3.5
J€[m] j€lm] Jj€ld]
We will see that (3.5 has several important implications in later sections.

Exercise 3.1.14. Let U € C™*™ and V. € C™*" both be unitary. Show that |UA|r =
|Allr = ||AV||r holds for all A € C™*™.

The (¢2,/?)-Operator Norm

Given A € C"™*" recall that ||Alj2—2 = max |Ax||2. Let A = UXV™* be a full
x€C™ s.t. ||x|l2=1

SVD of A, and set g := min{m, n}. Computing the (¢£2, ¢?)-operator norm of A via its SVD

we can see that

HA”Q_,Q = max HUZV*XHQ =

max
x€C” s.t. [|x|2=1 x€C” s.t. ||x|l2=1

[ S

by Exercise [2.6.11] since U is unitary. Furthermore, since V is also unitary its columns
form an orthonormal basis of C™ so that every x € C" with ||x||2 = 1 can be written as
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x =3, a;V.; where [la|l2 = [|x|[2 = 1 (see Theorem [2.3.9). Thus, continuing we can see
that

n n
||A”2—)2 == max EV* ZO[]VJ = max » Za]e]
acC” s.t. ||alj2=1 5 acCm st. |laf2=1 ¢
i=1 2 j=1 )
= max Sall, = max Z a:l2(o:(AN2.
acCn st. [la2=1 [Zedl, aeln st. |lalla=1 = ]| il*(o;(4))
J€la

Recalling that o¢(A4) > 01(A) > --- > 04-1(A) we can now see that this last expression is
always maximized when |ag| = 1. Hence,

[All22 = g0(A). (3.6)
We will see that (3.6]) also has several important implications in later sections.

Exercise 3.1.15. Let U € C"™*™ and V € C™*" both be unitary. Show that |[UA|2—2 =
|All2—2 = ||AV ||2—2 holds for all A € C™*™.

Exercise 3.1.16. Let A € C"™*™ and set q :== min{m,n}. Prove that ||Alj2—2 < [[A|lr <
VllAll22 always holds. For what type of matrices will ||Alla—2 = ||Allr hold? For what
type of matrices will ||Allp = \/q||All2—2 hold?

Some Singular Value Inequalities

Now that we have seen a few reasons why we might want to compute a singular value
decomposition of a matrix (e.g., to compute its Moore—Penrose inverse, or its (62,62)—
operator norm), it’s worth considering how robust a matrix SVD actually is to small errors.
Imagine, for example, that we want to compute the singular values of a matrix A € C™*" on
a digital computer. We will encounter potential problems immediately since, unfortunately,
we probably can’t even store A exactly on our computer! Instead, we will actually store
A+ E, where E € C™*"™ contains all the round-off errors that result form representing
each entry of A with a finite number of binary digits (i.e., bits). Given that we can (at
best) then compute the singular values of A + E instead of A, it’d be good to know how
close the singular values of A + E are to the true singular values of A we actually want.
If, e.g., E has a small Frobenius norm (and, therefore, small singular values by (3.5])) we
want to make sure that 0;(A + E) =~ 0;(A) holds for all relevant j. We will now state some
very useful singular value inequalities which effectively show that singular values are indeed
robust to small perturbations in this way (both additive and multiplicative).

Theorem 3.1.7 (See Theorem 3.3.16 in [I7]). Let A, B € C™*" and ¢ = min{m,n}. Then

(a) oj4k (A+ B) < 0 (4) + 03 (B), and
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(b) oj1k (AB*) < 05 (A) o) (B)

for all j,k € [q] such that j+ k € [q]. In particular,
(c) loj(A+B) —0j(A)| <oo(B) VjeElq], and
(d) 0;(AB*) < 0j(A) oo (B) Vi € [q].

Exercise 3.1.17. Let B € C™*" and q = min{m,n}. Prove that 0;(—B) = 0;(B) =
0;(B*) holds for all j € [q].

Exercise 3.1.18. Use parts (a) and (b) of Theorem[3.1.7 to prove parts (c) and (d).

Looking at Theorem (c) one can see that if B = F has a small largest singular
value, og (E), then we will indeed have 0j(A + E) ~ 0j(A) for all j € [¢]. Furthermore,
one can also use these inequalities to see, e.g., that small perturbations to the entries of
A won’t influence how it behaves as a linear function too much either. This means that
matrices can be applied as linear functions on digital computers without distorting their
outputs too extremely.

Example 3.1.8. Suppose that A € C™ " is stored on a digital computer as A = A+ E,
where & € C™*" is, e.g., a round-off error matriz with |E; j| <€ for alli,j. How much
can Ax differ from Ax on a worst-case input vector x € C"?

To answer this question we will upper bound

Ax — flx”2. Considering this error we

()

If we want an upper bound in terms of € we can now use the fact that |E|,_, < ||E|g

always holds (see Ezxercise to get that

can see that

~ X
(A=A = [l
1%z 11 ?

< %ol Ellane = [Ixll200(E)-

| Ax—Ax||| =l

2

A

|Ax = Ax| | < IxlaIEllp < ellxlovmm.

Thus, the error is will always be small in (2-norm as long as € is small compared to

1%l ov/mn.

The following two singular value inequalities will be useful in later chapters.

Lemma 3.1.9 (A Slight Generalization of Theorem Part (d)). Let A € C™ " and
B e C"*P. Then,

0 (AB) < min {0} (4) o0 (B) .0} (B) o0 (4)} Vj € [min{n, m. p}].
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Proof. Suppose, without loss of generality, that m < p (else, we may instead apply the
argument below to o ((AB)*) = o; (B*A*) using that 0; (AB) = 0 ((AB)*)). Since m < p
I,

0 € CP*™_ Further, we may note that

we can project all of C™ into CP with Q = (

0j (QA) =0, (A) and 0; (QAB) =0 (AB) Vj € [min{m,n}] = [min{n,m,p}].
Applying part (d) of Theorem we can now see that both
0;(AB) = 0;(QAB) < 0;(QA)o0(B") = o;(A)oy (B)
and
0;(AB) = 0;(QAB) = o3 (B (QA)") < 0;(B")o0(QA) = o5 (B) oy (A)

hold. The result follows. O
Lemma 3.1.10. Let A € C™*" and B € C™*? be such that

1.) B has a full SVD B =UXV*, and

2.) AU has rank r = n with a compact SVD AU = QL.P*.
Then,

0j (AB) > 0, (AU) 0; (B) Vi e r].

Proof. Let j € [r]. Noting that P is unitary since r = n, we can see that

o (B) = 0; (V) = o (Pfflf)P*EV*) < o9 (Pffl) s (iP*EV*)

by Lemma (3.1.9] Furthermore, og (Pi]’1> = 09 (i’1> = ﬁ = m Hence,

o; (SP=v)

0j(B) < o (AT

— o, (EP*EV*) > 0, (AU) 0, (B). (3.7)
Finally, since m > r = n we can see that Q*Q = I,, so that

o; (EP*EV*) s (Q*Qip*zv*) = 0; (Q"AUSV*) = 0, (Q*AB)

<0j(AB)oo (Q") = 0j(AB) (3.8)
by Lemma [3.1.9) Combing (3.7) and (3.8) now finishes the proof. O

Though perturbation bounds for singular values such as those in Theorem [3.1.7] are
both more commonly used and far more robust, it’s also worth knowing about the existence
of similarly useful perturbation theory for singular vectors/subspaces as well. We urge the
interested reader to peruse, e.g., [28 29] to get a good overview of these results.
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3.1.4 Optimal Low-Rank Approximation

Recalling Section suppose that we have trained a deep FNN resulting in a large
number of huge weight matrices, W; € R%*9%-1 where both d; and d;_1 are “big” for most
j € [L]. Our goal is to compress these huge weight matrices as much as possible so that our
FNN is easier to store. Simultaneously, we want to accurately preserve each weight matrix as
a linear function so that our overall FNN still does what we need it to do after compression.
Motivated by, e.g., Section we can aim to accomplish our goal by approximating each
huge weight matrix W} by a new low-rank matrix Wj that we can then store in an optimally

compressed form. At the same time, Example [3.1.§ implies that it would also be helpful

to, e.g., produce Wj in a way that reduces the value of HW] — Wj”z , = 0o (Wj — VTG) as
. —

much as possible since doing so will help to keep W;x ~ W;x for all x € R%-1,

These considerations collectively suggest the following two step low-rank compression

approach for our FNN weight matrices:

1. Approximate each of Wy,..., Wy, using low-rank matrices Wo, ..., Wy, so that, e.g.,
HVV] - WjH2 , is small for all j € [L], and then
*)

2. store W, ... , Wy in a compressed format.

We have already discussed step 2 above in Section [2.5] so we will focus on step 1 here. As
we shall see, the SVD is once again extremely useful in this setting, and ultimately allows
us to accomplish step 1 in an optimal way.

Let A € C™*™ be an arbitrary (e.g., full rank) matrix, and suppose that we want to
approximate A with a rank s matrix Ay € C"™*" that, e.g., minimizes ||A — A4l|,_,, over
all possible choices of rank s matrices in C™*" so that

A—-A = inf A-B .
| g =~ inf [P
To find Ag € C"™*™ let A =UXV™ be a full SVD of A and recall that we can then always

write

A= Z aj(A)uyvy,

Jj€ld]
where ¢ = min{m,n}, u; = U.;, and v; = V. ; (see Exercise [3.1.5). We claim that
A= Z oj(A)u;v; (3.9)
J€ls]

is then an optimal rank s approximation to A with respect to both the Frobenius and the
(¢2, £?)-operator norms.

Exercise 3.1.19. Let A € C"™*", ¢ = min{m,n}, and A; € C™*" be as in (3.9). Show
that o (A — As) = 0j45 (A) for all j € [q—s|, and that 0 (A — Ag) =0 forallqg—s < j < q.
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Optimality of A; in the Frobenius Norm

Observe that for the Frobenius norm we have

2

q q—1
IA- AR = Do Auv;| = > o3(4) (3.10)
Jj=s F Jj=s

by (3.5) and Exercise |3.1.19, The next theorem shows that this approximation error is

minimal.

Theorem 3.1.11. Let A,B € C™*", ¢ = min{m,n}, and A; € C™*" be as in (3.9).
Furthermore, suppose that be B is rank s. Then

|A—=Bllr > [|A - Asllp-
That is, As is a best rank s approximation to A with respect to Frobenius norm error.

Proof. Note that os(B) = 0 by Theorem since B is rank s. Thus, Theorem
implies that

0315(A) = Gi4s (A= B)+ B) < oj(A—B)+0,(B) = o;(A—B)
for all j € [¢ — s]. As a result, (3.5) and (3.10) now reveal that

JA-B|lz = Y 0?(A-B) = > ol(A-B)+ > oi(A-B)

j€ld] j€lg—s] j>q—s
> > o3 (A) = ||A- AR
j€lg—s]

Hence, A, achieves the smallest possible Frobenius norm approximation error achievable by
any rank s matrix. O

Optimality of A, in the (/2 (?)-Operator Norm

Observe that for the (¢2, ¢?)-operator norm we have

q
1A= Adllyyy = Do Dwvi|| = o(4) (3.11)

J=s 252
by (3.6) and Exercise [3.1.19} The next theorem shows that this approximation error is also

minimal.
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Theorem 3.1.12. Let A,B € C™*", ¢ = min{m,n}, and Ag € C™*" be as in (3.9).
Furthermore, suppose that be B is rank s. Then

[A— Bllas2 > [|[A — Aslla—2-
That is, As is a best rank s approzimation to A with respect to (¢2,¢%)-operator norm error.

Proof. Since B is rank s we can write it in terms of a QR decomposition B = QR, where
Q € C™*% and R € C**". Similarly, let A = UXV™* be a full SVD of A. Since V is unitary,
& =span{V.g,...,V.s} C C" has dimension s + 1. Also, we know that C(R*)* = N(R)
has dimension n — s by (the discussion around) Lemma Hence, it must be the case
that

span{V.g,..., V.. } NN(R)
is a linear subspace of C" of dimension at least 1 by Exercise [2.3.10l Thus, there exists
n € span{V.g,..., V. .} N N(R) with ||nl, = 1.

Using the fact that n € N(R) C N(B), and writing n as } ;... ;V;; for some
ap,...,as € C with ||all2 = 1 (recall Theorem [2.3.9), we can now see that

1A= Bllys

Y

I(A=B)n|, = [|An|, = [USV*| Y oV,
JE[s+1] 2

= | D layPa3(A).

JE[s+1]

Recalling that ||| = 1, we can now see that the expression above is minimized when
a; = 0 for all j < s so that oy = 1. Therefore,

|4 = Bllyyp = 05(A).

We are now finished by (3.11]). O

3.2 Discrete Convolution and Fourier Transform Matrices

We begin this section by defining a general class of matrices which are important in many
applications including, e.g., as the weight matrices used in a special type of neural network
layer known as a “convolutional” neural network layer (recall Definition [1.2.4). As will
be clear soon, one advantage of this type of matrix is that it’s defined with many fewer
parameters than a generic matrix requires.
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Definition 3.2.1 (Toeplitz Matrix). The Toeplitz matriz A € C™*" generated by the
vector a € C™"~ 1 is the C™ ™ matriz with entries given by

Ajk = Qm—1)+h—j

for all j € [m], k € [n]. We will also denote this matriz by A = Toep,, ,(a). More generally,
we will say that a matriz A € C™*™ is Toeplitz if there exists a vector a € C™"~ 1 such
that A = Toep,, ,(a). We will also define Toep,(a) := Toep,, ,,(a) in the case of square
matrices.

Example 3.2.2. The Toeplitz matriz A € C3** generated by a € CO is

a2 asz a4 as
Toeps 4(a) = | a1 az a3z a4
ap aip az as

The Toeplitz matriz A € C**3 generated by a € C° is

a3 a4 as
az a3 a4
Toep, 3(a) = a
1 a2 as
ap a1 a2

Note that the entries of a appear along the bottom row, and then up the rightmost row, of
the Toeplitz matrix it generates in a “backwards-L” shape (displayed in blue above). The
rest of the Toeplitz matrix is then determined by its being constant along all of its diagonals.

Exercise 3.2.1. Show that A € C™*" is Toeplitz if and only if A = Ajq1,k41 holds for
all j€m—1] and k € [n — 1].

Exercise 3.2.2. Show that A is Toeplitz if and only if A* is Toeplitz.
Exercise 3.2.3. Given a € C" let Reverse(a) € C" be the vector with entries given by

(Reverse(a)); = @n—1—;.

Show that if A € C™ " is the Toeplitz matriz generated by a € C™t"~1 then A* is the
Toeplitz matriz generated by Reverse(a).

Definition 3.2.3 (Convolutional Layer of Neurons). A Convolutional Layer of Neurons
0: RN = R? is a layer of neurons (recall Definition , 0 (Wx+b), where the weight
matriz W € RN s Toeplitz.

We can now see that an m xn Toeplitz matrix is entirely defined using only m+n—1 < mn
parameters. This can have potential benefits during, e.g., NN training. Of more immediate
interest in this section, however, is that these matrices can also have runtime advantages as
linear functions when coupled with Discrete Fourier Transform techniques. This will be
discussed in Sections |3.2.2] and Before we can understand how these computational
advantages appear, however, we first have to discuss a special type of square Toeplitz
matrices known as “circulant matrices”.
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3.2.1 Circulant and Toeplitz Matrices

As we will see later in Section the following special class of square Toeplitz matrices is
crucial to realizing fast matrix-vector multiplication algorithms for more arbitrary Toeplitz
matrices.

Definition 3.2.4 (Circulant Matrix). The circulant matrixz generated by a vector
v € C" is the matriz circ(v) € C™*™ defined by

(CiI‘C(V))jJC = V(j—k) mod n-

We will say that a matrizc A € C™*" is circulant if there exists a vector v € C" such
that A = circ(v). Herein “j mod n” is defined for all j € Z and n € N to be the single
element contained in the set {j + kn | k € Z} N [n] (or, equivalently, it is the unique value
r€[n] ={0,1,...,n— 1} such that 3k € Z satisfying j = r + kn).

Example 3.2.5. The circulant matriz A € C*** generated by v € C* is

Vo V3 V2 V1
U1 Vo U3 U2
Vg V1 Vg V3
v3 V2 U1 Vg

circ(v) =

Note that this matriz is also Toeplitz due to the fact that it’s constant along its diagonals

(recall Ezercise .

Exercise 3.2.4. Show that every circulant matrix is also Toeplitz.

Exercise 3.2.5. Let A € C?"*?" be circulant. Show that Aj = Ajintn for all j,k € [n)].
More generally, show that Ajk = A(j1n) mod 2n,(k+n) mod 2n holds for all j,k € [2n].

Not only is every circulant matrix a Toeplitz matrix, but any square Toeplitz matrix
can be embedded into a larger circulant matrix. Hence, e.g., any algorithm which efficiently
multiplies circulant matrices against vectors can also be used to efficiently multiply square
Toeplitz matrices against vectors.

Let a € C?"~! and consider the square Toeplitz matrix generated by a, Toep,,(a) € C™*",
with entries given by

(Toep,, (), = an—1)—(j—k)- (3.12)
Now let ¢ € C?" be defined by ! = (n—1,0p—-2,...,a0,0,a2,—2,...,a,) so that
Ap—1—p 0<f€<n-1

cg=10 l=n (3.13)
asn—1—¢ n+1 §€§2n—1
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for all £ € [2n]. Then, the circulant matrix circ(c) € C?"*?" will always take the block form

: — Toepn(a) A 2nx2n
circ(c) = ( A Toep, (a) eC , (3.14)

where A € C™*"™,

Example 3.2.6. Let a € C3. The 2 x 2 Toeplitz matriz generated by a is

Toep,(a) = (“1 “2> .

ap ai
If we form the vector c € C* defined by ¢’ = (a1, ao,0,a2) then

ar az 0 ag

. _la a1 az O _ (Toepy(a) A Axd
cire(e) = 0 ap a1 ag| < A Toep,(a) S

as 0 ap aig

The following lemma guarantees the upper-left n x n block of circ(c) € C?"*2" is indeed
always Toep,,(a) € C™*™ as claimed above in (3.14]).

Lemma 3.2.7. Let a € C* !, Build ¢ € C?" from a entry-wise via (3.13)). Then,
(cire(c));x = (Toep,,(a)),x for all j,k € [n].

Proof. We can see that —(n — 1) < j —k < (n — 1) since j, k € [n]. Furthermore,

 — k 0<j—-k<n-1
(j — k) mod 2n = J , =J _?1 :
n+(j—k) —-(n—-1)<j—k<O0
Hence, if 0 < j — kK < n — 1 we have that

(CiI‘C(C))j,k = C(—k) modn — Cji—k = OQp_1—(j—k)>

and if —(n —1) < j — k < 0 we have that

(circ(€))jk = C(j—k) modn = Cont(j—k) = @3n—1—@nt(j—k) = An-1—(j—k)-
Thus, (circ(c))jx = (Toepy(a))jr = @m—1)—(j—k) for all j,k € [n] by (3.12)). O

Exercise 3.2.6. Use Lemmal3.2.7 together with Ezercise to show that (3.14) holds
for all n € N.
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Computationally, observe that via (3.14) we have for any v € C™ that

) - (5 ) () - (75 s

v
0
as previously mentioned, any algorithm which efficiently multiplies circulant matrices against
arbitrary vectors can also be used to efficiently multiply square Toeplitz matrices against
arbitrary vectors. We will use this fact to our advantage later in Section

Thus, we can always recover Toep,,(a)v from circ(c) by taking its first n entries. Hence,

3.2.2 Discrete Fourier Transforms and Circular Convolutions

In this section we will discuss a particular orthonormal basis of €C", known as the discrete
Fourier basis, which is important for a large number of computational reasons involving
convolutions. As we shall see, its many remarkable properties are in fact due to the periodic
nature of the unit magnitude complex numbers {e? ‘ 0 € [0,27|} C C. In particular, given
n € N the unit magnitude n*® root of unity

—27i

fni=e ™ €C

will be the atomic building block of the basis, and its properties are therefore crucial.

Exercise 3.2.7. Show that (f,)*" = fk = 1 for all k € Z.

Exercise 3.2.8. Show that (f,)* = fK # 1 for all nonzero k € [n).

Exercise 3.2.9. Show that (f,)*7 = f& = (w modn)(j med ) _ f,(LWj mod n) for all
J,w € ZE|

Exercise 3.2.10. Suppose that p,n € N are such that % € N (so that p divides n). Show
that (fo) = fF = f(%j mod ) holds for all j € 7.

Let F' € C™*™ be the n x n matrix whose entries are given by

w-J
n
Fw,j = %
for all w, j € [n]. The matrix F is called the Discrete Fourier Transform (DFT) matrix
of size n. Importantly, the columns of F* form an orthonormal basis of C" (i.e., one can
show that F' is a unitary matrix — see Exercise [3.2.11]). This basis is called the discrete
Fourier basis of C".

*Let j € Z. Recall that “j mod n” denotes the unique integer r € [n] satisfying j = r + k - n for some
ke Z.
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Example 3.2.8. Recall that 1 € C™ denotes the vector of all ones. We have that

Z?:() 71LJ
1 19
1 Z?:() n”
F1 = — .
Vn

n— . n—1)-g
Zj:(]l é )3

Considering the k™ entry of F1 € C™ for all k # 0 we can see that

- 5 < () - k() <o

by Fxercises[3.2.7 and|[3.2.8 On the other hand, for k = 0 we have that

1 n—1 ‘ n—1 n
Fl)g = — 07 — = — = /n.
Hence, F1 = /n ey.

Exercise 3.2.11. Prove that the DFT matriz, F, is unitary. (HINT: Recall Theo-

rem |2.6.14.)

Exercise 3.2.12. Prove that |F'v||3 = ||v||3 holds for allv € C™. This equality is sometimes
referred to as “Parseval’s identity” in the context of the discrete Fourier basis.

The Discrete Fourier Transform (DFT) of a vector v € C" is simply
v:=TFv (3.16)
with entries given by v, = ﬁ Z?:_ol vjf,‘f'j for all w € [n] = {0,...,n — 1} C N. Similarly,
the Inverse Discrete Fourier Transform (IDFT) of a vector v € C" is
vii=F"lv=F*v.
As we shall see, the DFT walks hand in hand with our next definition.

Exercise 3.2.13. Suppose p,n € N are such that n/p € N (i.e., p divides n). Given
u e CP, let v e C" be a longer vector with entries given by
_ J upjm if 7 =0mod (n/p)
Uj = )
0 else

and let w € C™ be another longer vector with entries given by w; = Ujmod p- Compute the
n-length DFTs v,w € C" in terms of the p-length DFT of u.
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Exercise 3.2.14. Let a,b,c € [n] be such that a is invertible modulo nE| Furthermore,
suppose that u,v € C™ satisfy

27icy

’UjZCB n uaj+bmodn = fn Juaj+b mod n

for all j € [n]. Write v, in terms of one or more entries of U for a given w € [n]. How
does a affect the entries of Vv when ¢ = b = 0% How does b affect the entries of V. when a = 1
and ¢ = 0% How does c affect the entries of v whena=1 and b=07?

The discrete (circular) convolution of two vectors u,v € C", denoted by uxv € C",
is defined entrywise via

n—1 n—1
(u*v)k = E Uj " V(k—j) mod n — E Uj mod n * V(k—j) mod n
j=0 Jj=0

for all k € [n]. Note that, in fact, u* v = circ(v)u for all u,v € C".
Example 3.2.9. Let u,v € C*. Then,

3
Z =0 u] U—j mod n 'UO ’1)3 'U2 Ul uo
o Uj V1—j d V1 v v (%) U1 .
uxv = Z?S 0 R o = circ(v)u.
Z =0 'U,] UQ*j mod n Vg V1 Vg V3 u9
ZjZO Uj V3—5 mod n v3 V2 U1 Vg us

The discrete convolution has the following useful relationship with the discrete Fourier
transform.

Theorem 3.2.10. Let u,v € C™. Then

(U* 0) = VN Uy (3.17)
holds for all w € [n].
Proof: To obtain we compute

n—1 —

(u* Zu*kaWk = 1TLZ ZUJ U(k—j) mod n fWk
k:

k:O =

Exchanging the final double sum we obtain that

(u* Zuj (ka ])modnf ) = \/ﬁaw{)\w-

3A value a € [n] is invertible modulo n if there exists an h € [n] such that a h = 1 mod n. Any
a € [n] that is relatively prime to n will be invertible modulo n by the Fermat-Euler Theorem (see, e.g., [23]
Theorem 2.8]).
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Here we have used the fact that f£™ = 1 for all £ € Z so that fﬁf'(kfj) = fﬁ)'((kfj) mod n)
always holds (see, e.g, Exercise [3.2.9). O

Exercise 3.2.15. Show that circ(u)v = vu = uxv = circ(v)u holds for all u,v € C".

Theorem tells us that the DFT of the convolution of two vectors is, up to
rescaling by /n, equal to the entrywise product of the DFTs of the two vectors. Using this
relationship we can compute the discrete convolution of u and v using their DFTs. Let
u®v € C" denote the entrywise (or Hadamard) product of the two vectors u,v € C".
That is, let

(WO v); = u;v;
for all j € [n]. Theorem [3.2.10| now directly implies that
uxv = \/ﬁﬁ/(_D\VI = Vn F*(Fu® Fv). (3.18)

Note that the last expression of could be computed quickly if we could find a way to
quickly calculate both F'u and F*u for any given u. This is in fact possible as we shall see
in Section

The following additional fact relating IDFT matrices to circulant matrices is closely
related to Theorem Every column of the IDFT matrix F™* is an eigenvector of every
circulant matrix. As a result, the n x n IDFT matrix F* simultaneously diagonalizes this
entire class of n X n matrices.

Theorem 3.2.11. Let v € C". Every column of F* € C"*™ is an eigenvector of circ(v).
Proof. Let u = F*e; € C" be the j*® column of F*. By (3.15),

circ(viu = uxv = n F*(Fu® Fv) = /n F*((FF*e;) ® F'v)
= \/ﬁF*(ej(DV) = \/ﬁF*(@\je]‘) = \/ﬁi}\ju

Thus, the j™ column of F* is an eigenvector of circ(v) with eigenvalue /n vj. O

Exercise 3.2.16. Let v € C". Show that circ(v) € C™"*" is invertible if and only if v, # 0
for all w € [n].

Exercise 3.2.17. Order the Fourier coefficients of v € C™ by magnitude so that
Vo | 2 [V 2 -+ 2 [V, s |-

Prove that the j' singular value of circ(v) € C"™ ™ satisfies o; (circ(v)) = \/n |u |-
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One important consequence of the proof above is that the DFT gives us an easy way to
compute the eigenvalues of all circulant matrices. Of even more consequence, though, is that
can also be used in many other applications where convolutions naturally appear. We
have already seen, e.g., that the Toeplitz weight matrices of convolutional layers of neurons
can be embedded into circulant matrices (recall definition [3.2.3|and (3.14))). Hence,
can potentially help evaluate convolutional layers of neurons more quickly via . In
addition, convolutions also appear in numerous other important applications, two of which
we will briefly discuss next.

Example 3.2.12 (Deblurring). Consider the following “deblurring” problem: given uxv €
C™ (the blurry signal) and knowledge of the blur kernel v.e C" (e.g., a Gaussian blur
kernel), recover the unblurred signal u € C™. Such problems are common in imaging
applications where a blurred image can indeed be thought of as a crisp/unblurred imaged
convolved with a blur kernel. The question then becomes how one can try to “undo the blur”
in order to get u € C" back from its blurry version uxv € C™.

Somewhat amazingly, this is easy to do efficiently if we have both the blurry signal
uxv e C" and knowledge of how the original image was likely blurred (i.e., we also know
v € C"). In that case one can compute

—
. TER
Uy = =

v,

for all w € [n], and then set u = F*u. This of course assumes that the Fourier coefficients
Uy # 0 for all w € [n]. If there are zero Fourier coefficients, then one can instead note
that we are equivalently simply trying to solve the linear system circ(v)u = u v for
u € C". In such a case we can instead always find an approximate solution by returning,
e.g., the least-squares estimate 1 = circ(v)(uxv) = Pe(cire(vy+yu (recall Section .
Furthermore, an SVD of circ(v), and therefore circ(v)t, can be constructed efficiently using

Theorem [3.2.11]

Example 3.2.13 (Polynomial Multiplication). Convolutions also appear naturally as
part of polynomial multiplication. Let q(x) = Z;L:_(} ¢;x) and r(x) = Z?:_& rjz? be two
polynomials. Then t(z) = q(x)-r(x) is a polynomial of degree < 2n—2 that can be expressed
as t(z) = 23262 tjxj. Writing the coefficients of ¢ and r as vectors q,r € C™, respectively,
and the coefficients of t as a vector t € C?"~, we have that

_ (4 r
= (0)+()
For example, when n = 3 we have that

t(r) = (g2’ + qx + qo)(r22® + mix + 70)
= qroxt + (gr1 + qir2) 2 + (garo + @11 + qor2) ¥ + (quro + qor1) T + qoro -
~~ ~—~

~~ ~~

ta t3 to t1 to
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In vector form this corresponds to

to @0 0 0 ¢ ¢ 70 o qo0 o
i1 @1 g 0 0 ¢ 1 1 q1 r1
tol = 12 @1 @ 0 O ro | = dm((g)) re | = [q@|*x|r
t3 0 ¢ @1 q O 0 0 0 0
t4 0 0 ¢ @ q 0 0 0 0

Hence, if we can compute (I)DFTs quickly then we can also multiply polynomials quickly
via (3.18).

Exercise 3.2.18. Consider the “finite difference” matriz Dy € R™™™ whose entries are
given by

9 ifi=j
)1 if(i—j)=1modn
(D2); = 1 if(i—j)=n—1modn (3.19)
0  otherwise

This is an example of a circulant matriz. Show that FDs = EF, where E € R™" is a
diagonal matriz with entries given by

[ 2cos(2mj/n) —2 ifi=j
(E)” —{ 0 fiti (3.20)
Exercise 3.2.19. Let Dy, € R™™" be defined by Do, := D5. Use the previous ezercise to
show that F Do, = E"F for all v € 7.

As we will discuss in the next section, there is indeed a fast algorithm for computing
both Fu and F*u for all u € C". As a result, there are fast (i.e., computationally efficient)
algorithms based on for rapidly computing the convolutions involved in all of the
applications mentioned in this section. Before explaining how any of these fast algorithms
work, however, let’s first briefly discuss what we actually mean when we say an algorithm
is “fast”.

Big-O Notation and the Basic Art of Runtime Analysis

Throughout this text we will approach runtime discussions/analysis by counting six general
types of atomic computational operations which we will assume any reasonable computer
can do in a constant amount of time. These six types of constant-cost operations are:

1. Assigning a complex value to/reading a complex value from a variable or vector entry
(e.g., setting z; =y € C).

2. Adding/subtracting two machine numbers (e.g., adding any two real or complex
numbers to a fixed precision).
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3. Multiplying/dividing two machine numbers (e.g., multiplying any two real or complex
numbers to a fixed precision).

4. Comparing two machine numbers (e.g., deciding whether one real number is larger /smaller/
equal to another real number).

5. Evaluating basic logical expressions and conditional statements (e.g., deciding if
“(boolean value A) AND/OR (boolean value B)” is True or False).

6. Evaluating simple functions f : R — R to a fixed precision. Herein, this class of
“simple functions” includes (7) functions with rapidly convergent Maclaurin (i.e., 0-
centered Taylor) series expansions such as the exponential, sine, and cosine functions,
(41) related complex-valued functions like ¢! = cos(6) +1isin(6), and (iii) other rapidly
approximable functions such as f(t) = t* for a given (e.g., non-integer) o € R.

Looking at the “constant-cost” operations above the invested reader’s eyebrows should
be at least slightly raised. The sixth type of operation (evaluating simple functions) seems
particularly fishy, doesn’t it?E| Even the second type of operation (i.e., simple addition)
being “constant-cost” should inculcate suspicion in anyone who was expected to add 6 digit
numbers to one another by hand in elementary school. I urge anyone who is not skeptical
to grab a piece of of chalk and investigate the claim that adding two 300 digit numbers
together is the same “constant-cost” operation as adding 9 to 8E| That said, let me urge
you to allow the escape clause “to a fixed precision”, as well as the related term “machine
numbers”, to save you from your skepticism, at least enough to believe that there is indeed
some value to such simple types of operation counts.

Generally speaking, a digital computer can only guarantee the calculation of a fixed
number of the leading digits of any real number one aims to compute/store. This is simply
a fact of life. All of our algorithms here (or any others you see that are analyzed in a
similar way) only guarantee you numerical answers up to some precision, or number of
digits of accuracy — if that number of digits is not enough to be meaningful, then the
algorithms are computing garbage. If, however, the answer you are after can be expressed
accurately enough to satisfy you by its most significant, e.g., ~ 16 decimal digits, then
the type of accounting we do here will be completely adequate for you. Even if you want
many more digits of accuracy, though, a computer algorithm that needs to use only a few
higher-precision operations will still be much faster to execute that one that uses many
more higher-precision operations. As a result, even if our operation counts don’t truly

“We urge the interested reader to consult, e.g,. [22] Chapters 1 and 3] to learn why this sixth type of
constant-cost operation is indeed not too fishy after all....

SReally even adding two numbers should not be considered “constant-time” if you are doing serious
computations involving, e.g., large number (and, therefore, extended precision) arithmetic. More precisely,
the complexity of addition should depend on the the number of digits in each sum that you want to be able
to correctly compute. Of course, this type of more complicated accounting then only gets more involved as
you consider the other types of operations above.
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represent an algorithm’s runtime complexity with 100% accuracy in all cases (they don’t),
they do at least correlate well enough to be informativeﬁ

Example 3.2.14 (Matrix-vector Multiplication). As an illustrative example, let’s consider
the runtime complexity of computing the matriz-vector product Ax € C™ for an arbitrary
matrix A € C™*™ and vector x € C™. Noting that each entry of y = Ax € C™ is computed
by
yj = (Ax); = ) Ajkar,
ken)

we can can see that calculating y; € C requires 4n operations (we must read the 2n Aj 1 /xy,
values into memory and then perform n multiplications, n — 1 additions, and finally one
assignment of the correct value to y;). Given that we must compute y; for all j € [m] in
order to calculate y = AX we can now conclude that computing y will require at most 4nm
constant-cost opemtionsm

In the example above the constant 4 we ended up with matters much less in general
than the parameters m and n which will be significantly larger than 4 for big matrices
A. As a result, it’s standard practice to simplify operation counts by ignoring all such
constants via big-O notation.

Definition 3.2.15 (Big-O Notation). Let f,g: (0,1)" x (1,00)™ — [0,00) be two functions
of n+m > 1 variables for nonnegative n,m € Z. We say that f is O(g) if there exists a
constant C' € [1,00) and values (8o, - .., 0n—1) X (Y0, ---,Ym—1) € (0,1)" x (1,00)™ such that

f(ﬁo, ey €n—1,T0y - -y [L’m_l) S Cg(E(), ey €En—1,20y- - - ,J}m_l)
whenever €; < §; and x > yx hold for all j € [n] and k € [m)].
We can now see that computing Ax can always be done using O(mn) operations.

Exercise 3.2.20. Let g : (0,1) x [1,00)% — [0,00) be given by g(e,z,y) = @. Which of
these functions f: (0,1) x [1,00)? = [0,00) are O(g)?
(a) flew,y) = HFEL + 50

€

(b) f(e,x,y) = 500234 + 600/¢ + 10° log y

(c) fle,z,y) = 2%~ + logy

5We urge the interested reader to consult, e.g, [22, Chapter 2] and [9, Chapters 2 and 3] to learn more
about numerical precision, machine numbers, and algorithmic runtime analysis. To begin understanding
how one might make complexity analysis more rigorous one can also consult, e.g., [24].

"Here we say that computing y will require at most 4nm constant cost operations because we have
demonstrated a way to compute y using this number of operations. However, there might be better ways to
do it that use fewer operations by, e.g., avoiding rereading x; multiple times for every different y; calculation.
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1 1
(d) fle,,y) = HreECRml
Exercise 3.2.21. Let A € C™*™ and B € C"*P. Show that computing AB € C™*P can
be done using O(mnp) opemtionsﬂ

3.2.3 The Fast Fourier Transform (FFT)

As seen above, computing the DFT of a vector v € C™ requires the computation of
Fv. Computing F'v directly via a generic matrix-vector multiply as per Example
uses O(n?) operations. In this section we will discuss the Fast Fourier Transform (FFT)
algorithm which can compute the DFT of a vector using only O(nlogn) operations. Though
this reduction in computational complexity might seem slight at first glance, this speedup
has had such far reaching impacts that the FFT has been lauded as one of the ten most
important algorithmic developments of the twentieth century as a result [7]E|

The FFT was first published and analyzed as a computer algorithm by Cooley and
Tukey in 1965 [§], despite similar techniques being utilized much earlier (e.g., by Gauss
and many others [16]). Cooley and Tukey’s algorithm is particularly efficient for vector
dimensions, n, whose prime factorizations contain only small prime factors. Later variants
of the FFT [I], 26] allowed the FFT to also be utilized effectively for vector sizes whose
prime factorizations contain larger primes. This section has primarily followed [8, [, 26].
For more information on Fourier methods and algorithms we recommend that the interested
reader consult the relevant chapters of [25], [22], [9], or [2]. For a fast FFT implementation
we recommend FFTW [13]. In what follows we will outline the recursive construction of
the FFT algorithm via sum splitting techniques.

Let u € C™, and suppose that its dimension, n, has the prime factorization

n=1p1-pP---Pm, where p; < pg < --- < p,, are n’s prime factors.

Choose w € [n]. Recalling the definition of the DFT we have that

n—1
1 .
U= > uj [, (3.21)

By splitting the sum (3.21)) for u, into p; smaller subsums, one for each possible residue
modulo p;, we can see that

no_q

p1—1

-1 xS 1
Uy = NG kz—() £ Z Uktprj fr 77 ] (3.22)

J=0

8There are in fact faster (though not terribly practical) matrix multiplication algorithms out there for
arbitrary matrices! We direct the interested reader to, e.g., [0, Chapter 28],[31, 20} [33].

9The QR decomposition discussed in Section also made the list of the top 10 most important algorithm
developments by the way!
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Let’s now rewrite the internal sum of (3.22)) in order to realize some progress.
Given k € [p1], define u¥?1) € C™/P1 to be the vector whose entries are the entries of u
having indexes that are congruent to k£ modulo p,

(u(k’p1)> = Ukt (3.23)
j

for all j € [n/ pl]E Our equation (3.22)) for u, now becomes

1 p1—1 1 ﬁ_l i
g = fork (u(k,pl)) frred (3.24)
¢ ="\ Vn/py JZ% it
pi—1 Tl n
_ 1 122 fw i 1 P1 (u(k,m)) f(w mod H) J
D1 i n \/% = Jj P
1 p1—1 P
_ wk (u(k,pl)) ' 3.25
\/171 Pt fn w mod% ( )

For the sake of clarity we emphasize that the vector u®r1) ¢ C*/P1 in (3.25) is exactly

Fu?) | where F € Cr 71 s now the DFT matrix of size n/p1. We strongly recommend
that you verify the equality of — for yourself before reading further.

At this point it’s useful to ask ourselves what we’ve managed to accomplish by reformu-
lating into (3.25)). Mainly, we can now compute u € C"™ with fewer operations than

—

before by computing it in two steps. First, we compute uk:r1) ¢ (Dﬁ for all k € [p1]. Next,

C—

we use the vectors u(0r1) .. uP1-1r1) computed in the first step in order to compute
each entry of u via (3.25). The first step can be accomplished with p; matrix-vector
multiplications, each of which can be computed using O(n?/p?) operations (recall that

utkr1) = Fukr) | where F is the DFT matrix of size n/p1). Hence, the first step can be
completed using O(n?/p;) total operations. Step two only requires O(p1n) total operations
in order to finish calculating u, O(p;)-operations for each entry u,. Putting it all together,
we can see that allows us compute 4 € C" using a grand total of O(pin + n?/p;)
operations, as opposed to computing it directly via using ~ n? operations.
Although the computational gain obtained from is modest when p; < n, it is
important to note that the sum—spljglg technique used to obtain it can now be employed

again in order to compute each uk?1), k € [0, p1), more quickly. That is, we may split

o —

up the sum for (ulk»1)), into ps additional sums, etc.. Repeatedly sum-splitting in this
fashion leads to the recursive Fast Fourier Transform (FFT) shown in Algorithm [6]
Analogous sum-splitting leads to the Inverse Fast Fourier Transform (IFFT) which

ONote that we used an integer divisor of n, i.e. p1, exactly to ensure that ﬁ € NN.
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Algorithm 6 FAST FOURIER TRANSFORM (FFT)
Input: u € C", Dimension n, and n’s prime factorization p; <--- <pp,
Output: u € C»
if n =1 then
Return u
end if
for/k:iom 0top;s —1do
ulkp1) < FFT (u(k’p1)7 5 P2<p3 <. < Pm)
end for
for w from 0 ton — 1 do

1 P11 rhw (+(kpr)

m 1= w k:pl

teo = VP k=0 fn (ll )w mod -
P1

11: end for

12: Return u

—
e

can be obtained from Algorithm @ by replacing line 10’s f* by % and replacing each U
by a u.

We are now ready to analyze the computational complexity of the FFT. Let T,, be the
total number of operations used by Algorithm [6] to compute u € C™. In order to determine
an equation for 7}, we note that lines 6 — 8 of Algorithm ﬁ require p; - Tﬁ operations while

lines 9 — 11 use O(p1n) operations. Therefore we have
T, = O(pin) +p1 - Tﬁ‘

—_—

However, Algorithm @ is recursively invoked again to compute u@r1) ..  uPi—1p1) by
sum-splitting in line 7. Taking this into account we can see that

n
Tn 2(9(202) +p2- T n_.
P1 pl

pP1P2

We now have that
n
T, = O(pin) +p1 - <O <ZZ’1> + p2 - Tn> = O (n(pr+p2)) +pip2- T n_.

Repeating this recursive sum-splitting j < m times shows us that

J 7
=1 =1 J

Using that Ty = O(1) (see Algorithm [f[s lines 3 — 5) we have

T, =0 (n : Zpg) +0(n) = O(m - pp - n). (3.26)
/=1
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Note that m < logyn while py, is n’s largest prime factor. We have proven the following
theorem in the course of the prior discussion.

Theorem 3.2.16. Let u € C" and suppose that n € N has the prime factorization
n=mp1-Pm, where p1 < ps < --- < p,y are the prime factors of n ordered from smallest
to largest. Then, we may compute U = Fu using O (n -y, pe) operations.

Theorem [3.2.16] tells us that the FFT can significantly speed up computation of the DFT.
For example, if n is a power of 2 we’ll have m = log, n and p,, = 2 leaving Algorithm [6]
with an O(nInn) operation count. This is a clear improvement over the ~ n? operations
required to in order to compute directly. However, if n has large prime factors the
improvement is less impressive. In the worst case, when n is itself a prime number, we have
m =1 and p; = n. This leaves Algorithm |§| with a O(n?) runtime which, in practice, is
even slower than the direct method .

The inability of Algorithm [6] to efficiently handle vectors with sizes containing large
prime factors isn’t a setback when one may dictate, with little or no repercussions, the
dimension of the vectors they work with. A popular choice is to simply force n to be a
power of 2. However, sometimes one simply needs to compute the DFT of a vector whose
size contains (or may contain) large prime factors. In the next subsection we discuss how
to do this efficiently.

Exercise 3.2.22 (Computational Exercise). Implement both the FFT and the IFFT for
vectors of size 2", n € IN. Produce a plot showing that each is indeed faster than the
corresponding naive method for directly computing the (I)DFT of an arbitrary vector.

3.2.4 The FFT for Vectors of Arbitrary Size

As discussed in the previous subsection, Algorithm [6] may not be a very efficient means of
computing u € C™ when n contains large prime factors. One way of addressing this issue is
to rewrite U as a discrete convolution of two vectors of a slightly larger dimension, 1 > n,
that does contain only small prime factors. This discrete convolution can then be computed
quickly using Algorithm [6] which will be efficient for vectors of dimension 7.

Let w € [n]. We may rewrite u,, as

w2

2
2 2 2 n—1 2 =5 n—1 2 2
N wl et fn? wej— Jn? 2 w5
G = ful fu 2 Ty = \/E.Zujfn T = \/E-Zujf,ff 2 (3.27)
=0 J=0
Note that the last sum in (3.27)) resembles a convolution. In order to make the resemblance

more concrete we will define two new vectors.
Let 7 = 22271+ > 9y and define @ € C™ by

32
i = uj- fn if0<ji<n
0 ifn<j<n
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and v € C" by
—h?
fn? if0<h<n
vp =4 0 ifn<h<n-—n
—(h—n)2
fn ? ifn—n<h<n

Computing a weighted convolution of @1, v € C" we can see that

»
[

w w 7—1

fo® -

n

B
=
>
2
€
Il
K&
L9
I~
<
P
€
<
g
9]
a
3

[l
kﬁ
3
R RN
[]e
S
&
€
4
+
=g
<
=
€
<
+
3

7=0 Jj=w+1
=5 —1 2 2
f2 n i° —(w=j)
DN
=0

Comparing to (3.27)) now reveals that

w?
2

G = I eVl Vw e o). (3.28)

Vn
Note that the convolution in (3.28) can be computed efficiently by the FFT and IFFT
using (3.18)) since 7 is a power of two. Furthermore, < 4n by definition. Hence, we have
established the following theorem.

Theorem 3.2.17. Let u € C". Then, both u,u * € C" can be calculated using O(nlnn)
operations.

Exercise 3.2.23. Finish the proof of Theorem by arguing that u e, like

ue C", can also always be calculated using O(nlnn) operations. What changes need to be

made to 7?

Theorem generalizes Theorem to handle all values of n efficiently. We are
now in the position to declare that the DFT of any vector in C” can be calculated using
only O(nlnn) operations! We are now prepared to prove that any (square) Toeplitz matrix
has a fast matrix-vector multiplication algorithm.

3.2.5 Fast Matrix Multiplication for Toeplitz Matrices

Let a € C?"~! and consider the n x n Toeplitz matrix generated by a, Toep,,(a) € C™*".
Given v € C", we want to compute Toep,,(a)v € C" using as few operations as possible.
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Algorithm 7 FAST TOEPLITZ MATRIX MULTIPLICATION
Input: a € 2!, v c C"

Output: Toep,(a)v € C"

c (an_1,an_2,...,a0,0,a2,_2,...,a,)" € C?"
Compute 6/6\@2” using the FFT

v

5: Compute <0

> € C?" using the FFT

6: b V2nco (g) cqQn

7: Compute b € C?” using the IFFT
8: Return (bg, by,...,by_1)" € C"

Recalling Lemma we can begin by embedding Toep,,(a) into a 2n x 2n circulant matrix.
Specifically, we have seen that the vector ¢ = (an_1,an_2,...,a0,0,a2,_2,...,a,)" € C?"
satisfies (circ(c));r = (Toep,)(a);x for all j,k € [n]. This then further implies that

(Toep,(a)v); = (circ(c) (;)) for all j € [n] by (3.15). Hence, we can compute Toep,, (a)v
J

by computing the convolution cx <:;> . Finally, we further seen in ({3.18)) that this convolution

can be computed efficiently via

c*<g> — Vo F° (m@).

See Algorithm [7] for streamlined pseudocode.

0
can be accomplished in O(n) time. In addition, the (entrywise) Hadamard product of
any two vectors in C?", as well as selecting the first n entries of any vector b € €?”, can
also always be accomplished in O(n) time. Finally, each (I)FFT can be computed using
O(nlogn) operations by Theorem Hence, Algorithm E] will always utilize a total
of O(nlogn) operations in order to compute Toep,,(a)v € C". This is significantly faster
than direct O(n?)-time matrix-vector multiplication when n is large.

Considering the runtime of Algorithm |7} we can see that forming both <V> ,ce ™

Fast Matrix Multiplication for Rectangular Toeplitz Matrices

Note that Algorithm [7]only applies to square Toeplitz matrices. A very natural next question
then becomes what we can do if we instead need to quickly multiply a large non-square
(rectangular) Toeplitz matrix, Toep,, ,(a) € C™*", against a vector v € C"? One simple
strategy for handling such problems involves re-expressing the rectangular Toeplitz matrix
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in a block-matrix form, where each resulting block is a smaller square Toeplitz submatrix.
The large rectangular matrix Toep,, ,,(a) € C™*" can then be multiplied against a given
v € C™ by combining the results of its smaller square Toeplitz submatrices multiplied
against (appropriate pieces of) v, each of which can now be computed efficiently using, e.g.,

Algorithm

Example 3.2.18. Leta € C% and v € C?. Suppose that we want to compute Toep; 5(a)v €
C®. Instead of computing the result directly we can instead, e.g., decompose Toep572(a)
into two 2 x 2 and two 1 x 1 Toeplitz submatrices, and then compute Toeps 5(a)v using the

7'esultz'ng block-matrix 107'm V14
<a4 a5>
az a4

as as
as as <a3 a4)
as aq
Toepss(a)v = [az a3z |v = <a2 ag) v = <a2 a3>v
ap a2 ap a2 ap a2
ap ai

(a0) (a1) (a0) vo + (a1) 1

Note that the fact that Toeps,(a) has constant diagonals ensures that all of its square
submatrices above are also Toeplitz.

Exercise 3.2.24. Suppose that we are given Toepmm(a) € C™ "™ and integers 1 < p <
min{m,n}, h € [m —p+1], and { € [n —p+1]. Let A € CP*P be such that A;} =
(Toepm,n(a))hﬂ. otk for all 3,k € [p]. Show that A is Toeplitz.

Exercise 3.2.25. Letp,n € N, Toep,,, ,(a) € CP"*", and v € C". Show that Toep,,, ,(a)v €
CP"™ can be computed in O(pnlogn) operations.

Exercise 3.2.26. Let q(z) = E;L:_& gjz’ and r(z) = Z?:_& iz’ be two polynomials of degree
at most n — 1. Let t(x) = q(x) - r(x) be their product. We know that t(x) is a polynomial of
degree at most 2n — 2 which can be written as t(x) = 23262 tjxj. Write psuedocode for an

algorithm that will compute the coefficients t; of t(x) in O(nlnn) total operations.

Exercise 3.2.27. Let g : [0,1] — R be a twice continuously differentiable and periodic
function. Any such g will have a Fourier series expansion of the form

g(x) = Z co®?™T g e [0, 1],
wWEZ

where the Fourier series coefficients ¢, € C satisfy (i) ¢, = ¢ for all w € Z, and (ii)
Y wez lcw| < 00 Let w € R™ be a vector whose entries are given by u; = g(j/n) for all

1 Of course, the best way to decompose a given m x n Toeplitz matrix into square Toeplitz submatrices
depends on how m and n compare with one another.
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j € [n]. Show that the vector Fu € C" has entries

(Fu); =vn Z Coo-

w=j mod n

Rapidly Evaluating Convolutional Layers of Neurons

In addition to having fewer parameters than general layers of neurons, we can now see
that convolutional layers of neurons (recall Definition also have other computational
advantages. Consider, e.g., a convolutional layer of neurons ¢ : RV — RY defined by
{(x) := o (Wx + b) with Toeplitz weight matrix W = Toepy(w) € RV*N. Evaluating
¢(x) as part of a neural network forward-evaluation requires us to: (i) Compute Wx, (i)
add b to Wx to compute Wx + b, and then (ii7) compute o (Wx + b) by applying the
activation function o : R — R to each entry of Wx + b. Assuming that o is a simple
function, both steps (i¢) and (7i¢) can always be accomplished in O(N) operations. The
first step (¢) therefore always dominates the layer’s evaluation cost.

Focussing on step (i) above, we can see that it can be accomplished for W = Toep (W)
in O(N log N)-operations via Algorithm [7] Hence, evaluating ¢(x) can also be accomplished
in O(N log N) total operations in this case. In contrast, a general layer of neurons must
generally rely on direct O(N?)-time matrix-vector multiplication to complete step (i). Thus,
convolutional layers of neurons require fewer operations to evaluate than general layers of
neurons — yet another advantage of their Toeplitz structure!

3.3 (P-norms and Associated Inequalities

Proof of Minkowski Inequality follows [21]
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IGNORE - STUFF FOR POSSIBLE(?) FUTURE INCLUSION:

— Example in complexity section showing that n/e +m/d + 100n + 2 is O (%)

— (P-norms and Holder inequality

e If A is then det(A) € Ris the product of A’ g gigenvalues,
Of: A function f: R — R is convex on (asb) if f(tx + (1 —t)y) < tf(x)+ (1 —1)f(y)
holds Vt € [0,1] and x,y € (a,b).
~» Note that the inequiling automatically holds for ¢ = 0 and so we can always fo(u)
ont € (0,1) instead.
Sef: A function f : R — R is concave on (a,b) if
(—f)(z) := —f(x) is convex on (a,b)
Lemma 1: f is convex on (a,b) iff Va1, 29, x3 € (a, with 21 C 29 C 23 we have

f(x2) = f(21) - [ (x3) — f (22)

~
T2 — I T3 — T2

pf: Suppose welge that = < y. Set 1 = z,29 = tx + (1 — t)y and z3 = y. in this case
are have

1‘2—561:(t—1)$1+(1—t)l‘3:(1—t)($3—$1)

so that ¢ = 322 (1 — ¢) = L2221 'page 2

r3—T1’ r3—x1"’
and 17t = L2221
T3—T2
~+ Now we can see that f is convex on (a,b) iff

f@e) < tfz (1) + (1= t)f (3)
H ) = f (@) < (L= (F () = f (22)
Floa) = F @) < L (F () —  (22)

T2 — I

F o) — f(a1) < ( ) (f (e3) — f (22))

r3 — T2
") Dividing both sides of the last inequality on z9 — x, proves the serult.
— Using this last lerman we can now prove that functions

We will need the Mean Value Theorem from calcular page 3 (see, eg.) Thun 7,20 in
”Elementang Beel Analys is” by Thomson, Bruchuer, Brace Mean value Then: Suppose
f : R € R is continous on [a, b] and differentiable on (a,b). Then Jc € (a,b) s.t.
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= b*ia
Thm: Suppose that f : R — R is contimas on [a,b] and diff. on (a,b) with a un-

decreasing derivative. Then, f is convex on (a,b).

pt: Choose any z1 < x9 < x3 you like in (a,b). By the MVT Je¢; € (21, 22) and ¢ € (22, x3)

sit.

F@) =T ) < ey = 89 =S ()

T2 — T T3 — X2
The cesult now follows Via lemma I.
HWS Supose the f+1% has 2 derivatives an (a, b), sis sonton [a,b] a f”(z) >0 Vz € [a,b].
Show that f is convex an (a.i L). (Hint: recell the FTC)
HW: Let p > 1. Show that given by f(z) = X* is convex on (0, c0).
Hw: Show that the nituil logarithm, log: R — R is concave.

Bach to C :

ay incitant resit for the functiont
Will nown show f(z) =
Lenma(t): Let p > 1. Then

(1= Nz 4+ M| < (1 =Nz + Mw|F

hilds VA € [0,1] and z,w € R.
The remalt clealy holds if either z, » W is 0 , so we some brik 170 or 2 e pf: Let g : R — R
be g(x) = X' and n te that g is both non-decreasing and conver on (0, 00) [see Hal
Using the properties of the magnitute function |z| = \/(Re(t)2 + (LaA)?)? together with
the fact thit ¢ is mardecreasing we have that

(1= Nz + | < (1= Nz| + | = (1= N)]2] + Aw| =
g1 =Nz + AMw ) = (| =2z + Awl* < g((1 = N[2] + Ajw|) = (1 = A)]z] + A

Since is conver en (0, c0) we was have that
(1= Nz + dwlP < (1= N)|z] + Aw))? < (1= N)|2|F + A|w|? as we wished to shar.
Def: Let p > 1. The Ip-Horm of a vector z € C" is

1/p

125 = | D Izl

JEN]
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2. Note that we have seen lj,ls, and b norms alreety. Theideall (after a little thruht in
the case of hove it this ) special case of this wore general difinition. give it this

HW: Let p > 1. Begin shawing that ||- ||, : C* — R¥is inds a vector norm by establishing
that
. ) L =
i) 12, =0&2=0 VzeC"
(ii) [[gzllp = la||Zllp Vo € C and z € C".

As usual, estallishing the triangle ineguclity (ilso bnown as the Minkowshi Ineguality) is
the hardest Dont.

Thus: Let p > 1. Then ||+ g, < [[#]p + |71, [

pf: This trivially holds if either & or 7 is U, so we assum bothere unzers s.t. ¢ = |||, +7ll, >
0. Let £ = Z/c and § = #/c. Nete that by our chice of C' we have

|Z|l, = iX and [|g]|, =1 — X for some X € (0,1)

Lett

that

12+ llp < [1Z]lp + [19]lp < [AZ + (1 = Ngllp <1
& [AZ+ (1= Mgl <1

We may row use Lemma (T) to verify this finel ineguliz by seein that

IAZ + (L= Ngllh = > A& + (1= N)gl”

Jj€ln]
p
<D AMEP+ - 0|7
Jj€ln]
= Azllp + @ = Ngly = 1.

Hew: Show that ||7]|« < ||Z], Vpe€[l,00)

Hw: Let ¢ > p > 1. Show that ||Z||, < [|Z||o,

(Hint: Let § = Z/||Z||. and prove that ||7]|q < [|¥]lp )

Young’s Inegulity for products & the Holder Ineperlis

Lemma (Yonng’s Faop.): Let p,q € (1, 00) satisfy % + % =1.
Then, ab < %2 + % Va,b € [0, 00).

The equalis is Wivinly drue if aor b = 0, 50 assame bothare
pf: Sine In : (0,00) — R is cancave on (0,00) we havitive. that

—in (L + %) =~ (7 + (1= 1) )
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<—;mwn—@—;>mw%

= —In(a) — In(b) = In(ab).

Hence, In(ab) < In (%ap + %). Expocientiation
both sides of this list inepr. proves the result.
~» We can row prove probalh the inst usefil incrur
related to general Ip-norms. It, ergo gearelies
the Carchy-Selwarz inepulity.

Theorem 3.3.1. Thm (Hélder’s Inegraliz)
s.t. %—{— % = 1. Then, (Z,7)| < Xjepn 17, y5] <

1Z]lpl|7llq holds VZ, 5 € C,
pf: The first inequality alwings bolds by properties of the magnitude function |- |: R —
R*(Chech this!). Thus, it suffices to check that

> Lty 10 E Ipll g
jeln]
Let & = ﬁ and § = ¢/ Hy. Then, by Yamis’ In
|2ly51¢ 15 117 21" | 19,1
2 jein] wylwyter 1Zil 101 < 2 jepm) =5 + g
z||b g||? 1 1
g gl 1,1
p q p q
Multiolysio both sides les [|Z||0||g||. Suichor the broot.
Hw: Prove that [(Z,7)| < ||Z|le]|7]l2 also page 9 bold, Vz,z € C™.
HW: Frove that ||Z], < ||7]|eon/? for all # € C",p >
Hw! Plan that ||Z||2 < /||Z||s]|Z]1 VZ € C"
HW: Prove that |Z]|2p < \/[|Z||pgll¥llpr Vo = 1,2Z € C™, and r, g € (0,1) satisfing %—l—% =1
Maxix Opersor Norms
We can now semulite the || A|[2—2-norm from Chp.2 ?

=1

FeC', AeCmt,

Lemma: Let A € C™
If 7= 0 we're done, so assure T # g, Then

[AZ]lq - [AZ]lg Y | -
||[L‘||pq ||‘T”p < SCPz¢ s ||a—j»Hpq ”pr = HAHPAHT

HV: Prove that |AB||p—p < ||Allp=pllBllp —=p Vp > L,

1AZq =
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AeCmt BeCmP

Hw: Prove that [|AB|[p—q < [[Allr—ql| Bllp—rVr > 1. Lif A € C™M[All111 = maxgen) D jepm [Ajl-
Lemma

K € [n],j € [m]

HW: Prove that [|Afsc—co = maxjeinr X pen [Ajkl
Note that 5
pE: Al = maxsn |5 oo Apasl@li =1 |7l =1 Felm] Lot(n]

||AZ||; =max

Furthumale, this upen bound is ackeved since HA;S’H]. = ||A,DM\K

e (Cite Bergh, Lotstron, ”Interpolation Spaces”, Springer 1976

e Application in ”Fart Dimension Reduction Using Retemacher Series on Duel BCH

Codes ”by Ailar & Libuty
,q2 € (1,0 best =20 09 544
Thm (Discrete Riesz-Thorin) Let A € C"™*™ 0 € [0,1], a §]1p1q;)p2(lq_20) [1,6] pon P2
ot e Then, [|Allpq < ([[Allpi+q.)” (Al
HW: Let FF € C™" be the DFT madix of size n, shor that [[F|la22 = 1 and

1
1Fll1moe =
~+ Using Riesz-Thorin we can prove some addition. useful borm bounds for F'

~+ Chorse 6 € [0,1] and Sappose that

1 0 1—-6 146
L0 (-0 1+
p 1 2 2
l_i (1-0) 1-0
g oo 2 2

Summing these expression, we can see that ]% + % =1
and 0 =1— g
Applying Riesz-Thorin we have that

1-2 2 11
[Fllp—y < (1Alli-c0) 7 ([|All2—2)7 = na~2
— Noting that since 6 € [0, 1] we have p € [1, 2] we obtain the following resalt
Thun (Discrete Hawsdoff Y Yang) Let p € [1,2] and ¢ = ;25 (3 :==00). Then ||F|p_sq <

nz";
HW: Let V € C", Prove that and || circ(V)||141 = || circ(V)||co+oo = ||V |1
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HW: Let V € CU. P.ove that

AR 2-3
15l (! 2IF —tlle)™ 7 VpE[1,2]

Gt @lpe < s 2
VI (0 21F =711 o p>>

Hw: Prove the ||[FV||s < ﬁHVHNV’UC”
Conclude that || Circ(¥)||p—p < [|U]1V0 € C™* and

Huw: (H) Prove that |7+ g, < min {7, |71 ]12ll,} = 1, ¥p > 1
Discrete Konny’s Couvolution

H. Let p,q € (¢,0) he s.t. % + % = 1. Show that ||Z X §||lec < ||Z]|pl|¥]lq = Z, ¥ € C™.

120 q 1711}

Let V € C" and
Let p,s,r,s > 1 be sit, % + % =1. Then | Circ(V)|[1-p < ||Vl by Hw(t), and
|| circ(¥)||g—oo < [|[V||p by Hw(x). towingt
= Aplying Riesz — That is we have V0 € [a, 1] that if % % + (=9 % =

Riesz-Tharin tells us that

i—0 _
T =

SIS

| cire(0)[lpr—s < (|| cire(v)]l1-q) (Il cine(w)]|g2

q=—c¢
= [[Vlp-

— Considering the relation ships between Pg, r, s above we have that % € [1, %] =re
1, 4], and

1 1 1 0
S =04+ (1-0)-=04+-—"-
/ ( )q q q
:e+1_e<1_1>
q P
1,0 1
qg p q s

— Putting This ull tgetten we obtain the following Yorrerete Incepa.): Let V € C" and
p,q > 1 be s.t. %—k é = 1. Pick r € [1,¢] and se +2 = 1— Then | circ(7)||,—s < ||7]|p. HW:
Let 4,7 € C" and p,q = 1 be s.t %—i— fll =1, Then Vr € [1,q.

ADD BELOW INTO SVD SECION ?

DATA FITTING:
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Given P = {&1,--- ,Zn} C RP.

e Our fitness measure for an affine subspace H is R, (H, P) = (ijEP d(z;, H)")/7 for
some 7 € R™T. Here d(-,-) is Hausdorff distance.

e Assume that P has mean + Z;Vﬂ i =0

For 7 = 2 we get a least squares approximation to P.

e Review 7 = 2 : This can be solved exactly in O(ND min{N, D})-time

Goal : Minimize (Ry(H, P))? = Zéve pd(Zj, H)? over all n < D dimensional subspace

o Let Xp = (&1, ,@yn) € RPN

e Represent an n-dimensional H (subspace) by a projection matrix Iy € RP*P (rank
n) that projects onto H.

(Ro(H,P))* = Y d(&;, H)?
z;eP

= > % - Tud3
ijP

= | Xp — IuXpll3 (Recall |Al7 =) |ayl?)
= (I - p)XplF

e We want to minimize this || - || over all H. Recall that
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|Allp = 1\/trace(AT A)

= \/tTace(VEQVT))
= \/trace(X?) (when A =UXVT the SVD of A)

N
> oi(A)?
j=1

min(N,D)

=1 o;j((I —1lg)Xp)? over all H.

So we want to minimize
e If H is n-dimensional, (I — IIy) is (D — n)-dimensional projection.

e Let Xp =UXVT (SVD of Xp).

e We should let I — Il project onto the subspace spanned by D — n columns of U
associated with op, -+, 0n41.

To minimize Ro(P, H) over H, we want to
1. calculate SVD of Xp, Xp =UXVT.

2. set Iy = UpUL where Up = (@y -+ i, 0 ---0);U= (@ -+ ip).
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