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Abstract. We discuss a multilinear generalization of the singular value decomposition. There is
a strong analogy between several properties of the matrix and the higher-order tensor decomposition;
uniqueness, link with the matrix eigenvalue decomposition, first-order perturbation effects, etc., are
analyzed. We investigate how tensor symmetries affect the decomposition and propose a multilinear
generalization of the symmetric eigenvalue decomposition for pair-wise symmetric tensors.
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1. Introduction. An increasing number of signal processing problems involve
the manipulation of quantities of which the elements are addressed by more than
two indices. In the literature these higher-order equivalents of vectors (first order)
and matrices (second order) are called higher-order tensors, multidimensional matri-
ces, or multiway arrays. For a lot of applications involving higher-order tensors, the
existing framework of vector and matrix algebra appears to be insufficient and/or
inappropriate. In this paper we present a proper generalization of the singular value
decomposition (SVD).

To a large extent, higher-order tensors are currently gaining importance due to the
developments in the field of higher-order statistics (HOS): for multivariate stochastic
variables the basic HOS (higher-order moments, cumulants, spectra and cepstra) are
highly symmetric higher-order tensors, in the same way as, e.g., the covariance of a
stochastic vector is a symmetric (Hermitean) matrix. A brief enumeration of some
opportunities offered by HOS gives an idea of the promising role of higher-order
tensors on the signal processing scene. It is clear that statistical descriptions of random
processes are more accurate when, in addition to first- and second-order statistics, they
take HOS into account; from a mathematical point of view this is reflected by the fact
that moments and cumulants correspond, within multiplication with a fixed scalar,
to the subsequent coefficients of a Taylor series expansion of the first, resp., second,
characteristic function of the stochastic variable. In statistical nonlinear system theory
HOS are even unavoidable (e.g., the autocorrelation of x2 is a fourth-order moment).
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Moreover, higher-order cumulants and spectra of a random variable are insensitive
to an additive Gaussian perturbation of that variable, which is exploited in higher-
order-only techniques, conceptually blind for Gaussian noise. HOS make it possible
to solve the source separation (SS) problem by mere exploitation of the statistical
independence of the sources, without knowledge of the array manifold; they also
contain sufficient information to allow a blind identification of linear filters, without
making assumptions on the minimum/nonminimum phase character, etc. (for general
aspects of HOS, the interested reader is referred to the tutorial papers [34, 37, 38, 30]
and the bibliography [41]; for the use of tensor decompositions as a basic tool in
HOS-based signal processing, we refer to [11, 12, 9, 19]).

Higher-order tensors do not merely play an important role in HOS. As a matter
of fact they seem to be used in the most various disciplines, like chemometrics, psy-
chometrics, econometrics, image processing, biomedical signal processing, etc. Most
often they appear in factor analysis-type problems of multiway datasets [13]. Another,
more trivial, use is as a formalism to describe linear vector-matrix, matrix-vector,
matrix-matrix, . . . transformations, in the same way as matrices describe linear trans-
formations between vector spaces. Interesting also is the fact that higher-order terms
in the Taylor series expansion of a multivariate function and higher-order Volterra
filter kernels have a tensor form.

On the other hand, one of the most fruitful developments in the world of linear
algebra and linear algebra-based signal processing is the concept of the SVD of ma-
trices [21, 35, 44]. In this paper we will discuss a multilinear generalization that has
also been investigated in psychometrics as the Tucker model, originally developed to
obtain a “method for searching for relations in a body of data,” for the case “each
person in a group of individuals is measured on each trait in a group of traits by each
of a number of methods,” or “when individuals are measured by a battery of measures
on a number of occasions” [42, 43]. For three-way data, the Tucker model consists of
decomposing a real (I1 × I2 × I3)-tensor A according to

ai1i2i3 =

I1∑
j1

I2∑
j2

I3∑
j3

sj1j2j3u
(1)
i1j1
u

(2)
i2j2
u

(3)
i3j3
,(1)

in which u
(1)
i1j1
, u

(2)
i2j2
, u

(3)
i3j3

are entries of orthogonal matrices, and S is a real (I1 ×
I2 × I3)-tensor with the property of “all-orthogonality,” i.e.,

∑
i1i2

si1i2αsi1i2β =∑
i1i3

si1αi3si1βi3 =
∑

i2i3
sαi2i3sβi2i3 = 0 whenever α �= β. This decomposition is

virtually unknown in the communities of numerical algebra and signal processing; on
the other hand, the viewpoint and language in psychometrics is somewhat different
from what is common in our field. It is the aim of this paper to derive the tensor
decomposition in an SVD terminology, using a notation that is a natural extension of
the notation used for matrices. As already mentioned, we will show that the Tucker
model is actually a convincing multilinear generalization of the SVD concept itself.
From our algebraic point of view, we will ask a number of inevitable questions such as
what the geometric link is between the generalized singular vectors/values and the col-
umn, row, . . . vectors (oriented energy), how the concept of rank lies to the structure
of the decomposition, whether the best reduced-rank approximation property carries
over, and so on. Our derivations are valid for tensors of arbitrary order and hold
for the complex-valued case too. In view of the many striking analogies between the
matrix SVD and its multilinear generalization, we use the term higher-order singular
value decomposition (HOSVD) in this paper; note at this point that the existence of
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different multilinear SVD extensions may not be excluded—as a matter of fact, focus-
ing on different properties of the matrix SVD does lead to the definition of different
(formally less striking) multilinear generalizations, as we will explain later on.

In our own research the HOSVD has already proved its value. In [14] we showed
that the decomposition is fundamentally related to the problem of blind source sep-
aration, also known as independent component analysis (ICA). In [18] we used the
decomposition to compute an initial value for a tensorial equivalent of the power
method, aiming at the computation of the best rank-1 approximation of a given
tensor; a high-performant ICA-algorithm was based on this technique. In [19] the
HOSVD was used in a dimensionality reduction for higher-order factor analysis-type
problems, reducing the computational complexity. The current paper however is the
first systematic, elaborated presentation of the HOSVD concept.

The paper is organized as follows. In section 2 we introduce some preliminary
material on multilinear algebra, needed for the further developments. The HOSVD
model is presented in section 3 and compared to its matrix counterpart. In section 4
we discuss some well-known SVD properties and demonstrate that they have striking
higher-order counterparts. In section 5 we investigate how the HOSVD is influenced
by symmetry properties of the higher-order tensor; in analogy with the eigenvalue
decomposition (EVD) of symmetric (Hermitean) matrices we define a higher-order
eigenvalue decomposition (HOEVD) for “pair-wise symmetric” higher-order tensors.
Section 6 contains a first-order perturbation analysis and section 7 quotes some alter-
native ways to generalize the SVD.

Before starting with the next section, we would like to add a comment on the
notation that is used. To facilitate the distinction between scalars, vectors, matrices,
and higher-order tensors, the type of a given quantity will be reflected by its rep-
resentation: scalars are denoted by lower-case letters (a, b, . . . ; α, β, . . . ), vectors
are written as capitals (A, B, . . . ) (italic shaped), matrices correspond to bold-face
capitals (A, B, . . . ), and tensors are written as calligraphic letters (A, B, . . . ). This
notation is consistently used for lower-order parts of a given structure. For example,
the entry with row index i and column index j in a matrixA, i.e., (A)ij , is symbolized
by aij (also (A)i = ai and (A)i1i2...iN = ai1i2...iN ); furthermore, the ith column vector
of a matrix A is denoted as Ai, i.e., A = (A1A2 . . .). To enhance the overall read-
ability, we have made one exception to this rule: as we frequently use the characters
i, j, r, and n in the meaning of indices (counters), I, J , R, and N will be reserved to
denote the index upper bounds, unless stated otherwise.

2. Basic definitions.

2.1. Matrix representation of a higher-order tensor. The starting point of
our derivation of a multilinear SVD will be to consider an appropriate generalization
of the link between the column (row) vectors and the left (right) singular vectors
of a matrix. To be able to formalize this idea, we define “matrix unfoldings” of
a given tensor, i.e., matrix representations of that tensor in which all the column
(row, . . . ) vectors are stacked one after the other. To avoid confusion, we will stick
to one particular ordering of the column (row, . . . ) vectors; for order three, these
unfolding procedures are visualized in Figure 1. Notice that the definitions of the
matrix unfoldings involve the tensor dimensions I1, I2, I3 in a cyclic way and that,
when dealing with an unfolding of dimensionality Ic × IaIb, we formally assume that
the index ia varies more slowly than ib. In general, we have the following definition.

Definition 1. Assume an Nth-order tensor A ∈ C
I1×I2×...×IN . The matrix

unfolding A(n) ∈ C
In×(In+1In+2...INI1I2...In−1) contains the element ai1i2...iN at the
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Fig. 1. Unfolding of the (I1× I2× I3)-tensor A to the (I1× I2I3)-matrix A(1), the (I2× I3I1)-
matrix A(2) and the (I3 × I1I2)-matrix A(3) (I1 = I2 = I3 = 4).

position with row number in and column number equal to

(in+1 − 1)In+2In+3 . . . INI1I2 . . . In−1 + (in+2 − 1)In+3In+4 . . . INI1I2 . . . In−1 + · · ·
+ (iN − 1)I1I2 . . . In−1 + (i1 − 1)I2I3 . . . In−1 + (i2 − 1)I3I4 . . . In−1 + · · ·+ in−1.

Example 1. Define a tensor A ∈ R
3×2×3 by a111 = a112 = a211 = −a212 = 1,

a213 = a311 = a313 = a121 = a122 = a221 = −a222 = 2, a223 = a321 = a323 = 4,
a113 = a312 = a123 = a322 = 0. The matrix unfolding A(1) is given by

A(1) =


 1 1 0 2 2 0

1 −1 2 2 −2 4
2 0 2 4 0 4


 .

2.2. Rank properties of a higher-order tensor. There are major differences
between matrices and higher-order tensors when rank properties are concerned. As we
will explain in section 3, these differences directly affect the way an SVD generalization
could look. As a matter of fact, there is not a unique way to generalize the rank
concept.

First, it is easy to generalize the notion of column and row rank. If we refer
in general to the column, row, . . . vectors of an Nth-order tensor A ∈ C

I1×I2×...×IN

as its “n-mode vectors,” defined as the In-dimensional vectors obtained from A by
varying the index in and keeping the other indices fixed, then we have the following
definition.
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Definition 2. The n-rank of A, denoted by Rn = rankn(A), is the dimension of
the vector space spanned by the n-mode vectors.

The n-rank of a given tensor can be analyzed by means of matrix techniques.
Property 1. The n-mode vectors of A are the column vectors of the matrix

unfolding A(n) and

rankn(A) = rank(A(n)).

A major difference with the matrix case, however, is the fact that the different
n-ranks of a higher-order tensor are not necessarily the same, as can easily be verified
by checking some examples (see further).

The rank of a higher-order tensor is usually defined in analogy with the fact that
a rank-R matrix can be decomposed as a sum of R rank-1 terms [12, 29].

Definition 3. An Nth-order tensor A has rank 1 when it equals the outer
product of N vectors U (1), U (2), . . . , U (N), i.e.,

ai1i2...iN = u
(1)
i1
u

(2)
i2
. . . u

(N)
iN
,

for all values of the indices.
Definition 4. The rank of an arbitrary Nth-order tensor A, denoted by R =

rank(A), is the minimal number of rank-1 tensors that yield A in a linear combina-
tion.

(With respect to the definition of a rank-1 tensor, a remark on the notation has to
be made. For matrices, the vector-vector outer product of U (1) and U (2) is denoted as

U (1) ·U (2)T ; to avoid an ad hoc notation based on “generalized transposes” (in which
the fact that column vectors are transpose-free would not have an inherent meaning),
we will further denote the outer product of U (1), U (2), . . . , U (N) by U (1) ◦U (2) ◦ · · · ◦
U (N).)

A second difference between matrices and higher-order tensors is the fact that the
rank is not necessarily equal to an n-rank, even when all the n-ranks are the same.
From the definitions it is clear that always Rn � R.

Example 2. Consider the (2× 2× 2)-tensor A defined by{
a111 = a221 = a112 = 1
a211 = a121 = a212 = a122 = a222 = 0.

It follows that R1 = R2 = 2 but R3 = 1.
Example 3. Consider the (2× 2× 2)-tensor A defined by{

a211 = a121 = a112 = 1
a111 = a222 = a122 = a212 = a221 = 0.

The 1-rank, 2-rank, and 3-rank are equal to 2. The rank, however, equals 3, since

A = X2 ◦ Y1 ◦ Z1 +X1 ◦ Y2 ◦ Z1 +X1 ◦ Y1 ◦ Z2,

in which

X1 = Y1 = Z1 =

(
1
0

)
, X2 = Y2 = Z2 =

(
0
1

)

is a decomposition in a minimal linear combination of rank-1 tensors (a proof is given
in [19]).
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2.3. Scalar product, orthogonality, norm of higher-order tensors. In
the HOSVD definition of section 3, the structure constraint of diagonality of the
matrix of singular values in the second-order case will be replaced by a number of
geometrical conditions. This requires a generalization of the well-known definitions
of scalar product, orthogonality, and Frobenius-norm to tensors of arbitrary order.
These generalizations can be defined in a straightforward way as follows.

Definition 5. The scalar product 〈A,B〉 of two tensors A,B ∈ C
I1×I2×...×N is

defined as

〈A,B〉 def
=
∑
i1

∑
i2

. . .
∑
iN

b∗i1i2...iNai1i2...iN ,

in which ∗ denotes the complex conjugation.
Definition 6. Arrays of which the scalar product equals 0 are orthogonal.
Definition 7. The Frobenius-norm of a tensor A is given by

‖A‖ def
=
√
〈A,A〉.

2.4. Multiplication of a higher-order tensor by a matrix. Like for ma-
trices, the HOSVD of a higher-order tensor A ∈ R

I1×I2×...×IN will be defined by
looking for orthogonal coordinate transformations of R

I1 ,RI2 , . . . ,RIN that induce a
particular representation of the higher-order tensor. In this section we establish a
notation for the multiplication of a higher-order tensor by a matrix. This will allow
us to express the effect of basis transformations.

Let us first have a look at the matrix product G = U ·F ·VT , involving matrices
F ∈ R

I1×I2 , U ∈ R
J1×I1 , V ∈ R

J2×I2 , and G ∈ R
J1×J2 . To avoid working with “gen-

eralized transposes” in the multilinear case, we observe that the relationship between
U and F and the relationship between V (not VT ) and F are in fact completely
similar: in the same way as U makes linear combinations of the rows of F, V makes
linear combinations of the columns of F; in the same way as the columns of F are
multiplied by U, the rows of F are multiplied by V; in the same way as the columns
of U are associated with the column space of G, the columns of V are associated
with the row space of G. This typical relationship will be denoted by means of the
×n-symbol: G = F ×1 U ×2 V. (For complex matrices the product U · F · VH is
consequently denoted as F×1 U×2 V

∗.) In general, we have the following definition.
Definition 8. The n-mode product of a tensor A ∈ C

I1×I2×...×IN by a matrix
U ∈ C

Jn×In , denoted by A×nU, is an (I1×I2×· · ·×In−1×Jn×In+1 · · ·×IN )-tensor
of which the entries are given by

(A×n U)i1i2...in−1jnin+1...iN
def
=
∑
in

ai1i2...in−1inin+1...iNujnin .

The n-mode product satisfies the following properties.
Property 2. Given the tensor A ∈ C

I1×I2×...×IN and the matrices F ∈ C
Jn×In ,

G ∈ C
Jm×Im (n �= m), one has

(A×n F)×m G = (A×m G)×n F = A×n F×m G.

Property 3. Given the tensor A ∈ C
I1×I2×...×IN and the matrices F ∈ C

Jn×In ,
G ∈ C

Kn×Jn , one has

(A×n F)×n G = A×n (G · F).
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Fig. 2. Visualization of the multiplication of a third-order tensor B ∈ C
I1×I2×I3 with matrices

U(1) ∈ C
J1×I1 , U(2) ∈ C

J2×I2 , and U(3) ∈ C
J3×I3 .

Figure 2 visualizes the equation A = B ×1 U
(1) ×2 U

(2) ×3 U
(3) for third-order

tensors A ∈ C
J1×J2×J3 and B ∈ C

I1×I2×I3 . Unlike the conventional way to visualize
second-order matrix products, U(2) has not been transposed, for reasons of symmetry.
Multiplication with U(1) involves linear combinations of the “horizontal matrices”
(index i1 fixed) in B. Stated otherwise, multiplication of B with U(1) means that
every column of B (indices i2 and i3 fixed) has to be multiplied from the left with
U(1). Similarly, multiplication with U(2), resp., U(3), involves linear combinations of
matrices, obtained by fixing i2, resp., i3. This can be considered as a multiplication,
from the left, of the vectors obtained by fixing the indices i3 and i1, resp., i1 and i2.
Visualization schemes like Figure 2 have proven to be very useful to gain insight in
tensor techniques.

The n-mode product of a tensor and a matrix is a special case of the inner product
in multilinear algebra and tensor analysis [32, 26]. In the literature it often takes the
form of an Einstein summation convention. Without going into details, this means
that summations are written in full, but that the summation sign is dropped for
the index that is repeated. This is of course the most versatile way to write down
tensor equations, and in addition, a basis-independent interpretation can be given
to Einstein summations. On the other hand, the formalism is only rarely used in
signal processing and numerical linear algebra, whereas using the ×n-symbol comes
closer to the common way of dealing with matrix equations. It is our experience that
the use of the ×n-symbol demonstrates more clearly the analogy between matrix and
tensor SVD, and that, more in general, a conceptual insight in tensor decompositions
is easier induced by means of the ×n-notation and visualizations like Figure 2 than
by the use of element-wise summations.

3. A multilinear SVD. In this section an SVD model is proposed for Nth-
order tensors. To facilitate the comparison, we first repeat the matrix decomposition
in the same notation, as follows.

Theorem 1 (matrix SVD). Every complex (I1 × I2)-matrix F can be written as
the product

F = U(1) · S ·V(2)H = S×1 U
(1) ×2 V

(2)∗ = S×1 U
(1) ×2 U

(2),(2)

in which

1. U(1) =
(
U

(1)
1 U

(1)
2 . . . U

(1)
I1

)
is a unitary (I1 × I1)-matrix,
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Fig. 3. Visualization of the matrix SVD.

2. U(2) =
(
U

(2)
1 U

(2)
2 . . . U

(2)
I2

)
(= V(2)∗) is a unitary (I2 × I2)-matrix,

3. S is an (I1 × I2)-matrix with the properties of
(i) pseudodiagonality:

S = diag(σ1, σ2, . . . , σmin(I1,I2)
),(3)

(ii) ordering:

σ1 � σ2 � . . . � σmin(I1,I2)
� 0.(4)

The σi are singular values of F and the vectors U
(1)
i and U

(2)
i are, resp., an ith

left and an ith right singular vector. The decomposition is visualized in Figure 3.
Now we state the following theorem.
Theorem 2 (Nth-order SVD). Every complex (I1 × I2 × · · · × IN )-tensor A can

be written as the product

A = S ×1 U
(1) ×2 U

(2) · · · ×N U(N),(5)

in which
1. U(n) =

(
U

(n)
1 U

(n)
2 . . . U

(n)
In

)
is a unitary (In × In)-matrix,

2. S is a complex (I1 × I2 × · · · × IN )-tensor of which the subtensors Sin=α,
obtained by fixing the nth index to α, have the properties of

(i) all-orthogonality: two subtensors Sin=α and Sin=β are orthogonal for all
possible values of n, α and β subject to α �= β:

〈Sin=α,Sin=β〉 = 0 when α �= β,(6)

(ii) ordering:

‖Sin=1‖ � ‖Sin=2‖ � . . . � ‖Sin=In‖ � 0(7)

for all possible values of n.

The Frobenius-norms ‖Sin=i‖, symbolized by σ
(n)
i , are n-mode singular values

of A and the vector U
(n)
i is an ith n-mode singular vector. The decomposition is

visualized for third-order tensors in Figure 4.
Discussion. Applied to a tensor A ∈ R

I1×I2×I3 , Theorem 2 says that it is always
possible to find orthogonal transformations of the column, row, and 3-mode space such

that S = A×1 U
(1)T ×2 U

(2)T ×3 U
(3)T is all-orthogonal and ordered (the new basis

vectors are the columns of U(1), U(2), and U(3)). All-orthogonality means that the
different “horizontal matrices” of S (the first index i1 is kept fixed, while the two other
indices, i2 and i3, are free) are mutually orthogonal with respect to the scalar product
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Fig. 4. Visualization of the HOSVD for a third-order tensor.

of matrices (i.e., the sum of the products of the corresponding entries vanishes); at
the same time, the different “frontal” matrices (i2 fixed) and the different “vertical”
matrices (i3 fixed) should be mutually orthogonal as well. The ordering constraint
imposes that the Frobenius-norm of the horizontal (frontal, resp., vertical) matrices
does not increase as the index i1 (i2, resp., i3) is increased. While the orthogonality
of U(1), U(2), U(3), and the all-orthogonality of S are the basic assumptions of the
model, the ordering condition should be regarded as a convention, meant to fix a
particular ordering of the columns of U(1), U(2), and U(3) (or the horizontal, frontal,
and vertical matrices of S, stated otherwise).

Comparison of the matrix and tensor theorem shows a clear analogy between
the two cases. First, the left and right singular vectors of a matrix are generalized
as the n-mode singular vectors. Next, the role of the singular values is taken over
by the Frobenius-norms of the (N − 1)th-order subtensors of the “core tensor” S;
notice at this point that in the matrix case, the singular values also correspond to
the Frobenius-norms of the rows and the columns of the “core matrix” S. For Nth-
order tensors, N (possibly different) sets of n-mode singular values are defined; in this
respect, remember from section 2.2 that an Nth-order tensor can also have N different
n-rank values. The essential difference is that S is in general a full tensor, instead of
being pseudodiagonal (this would mean that nonzero elements could only occur when
the indices i1 = i2 = · · · = iN ). Instead, S obeys the condition of all-orthogonality;
here we notice that in the matrix case S is all-orthogonal as well: due to the diagonal
structure, the scalar product of two different rows or columns also vanishes. We also
remark that, by definition, the n-mode singular values are positive and real, like in
the matrix case. On the other hand the entries of S are not necessarily positive in
general; they can even be complex, when A is a complex-valued tensor.

One could wonder whether imposing the condition of pseudodiagonality on the
core tensor S would not be a better way to generalize the SVD of matrices. The
answer is negative: in general, it is impossible to reduce higher-order tensors to a
pseudodiagonal form by means of orthogonal transformations. This is easily shown by
counting degrees of freedom: pseudodiagonality of a core tensor containing I nonzero
elements would imply that the decomposition would exhibit not more than I (

∑
In+

1 − N(I + 1)/2) degrees of freedom, while the original tensor contains I1I2 . . . IN
independent entries. Only in the second-order case both quantities are equal for I =
min(I1, I2)—only in the second-order case, the condition of pseudodiagonality makes
sense. However, we will prove that relaxation of the pseudodiagonality condition
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to all-orthogonality yields a decomposition that always exists. As a matter of fact,
“relaxation” is a too hard term: Property 5 in section 4 will show that the matrix
SVD itself could have been defined by requiring the rows/columns of the matrix S
to be mutually orthogonal; apart from some trivial normalization conventions, the
resulting decomposition is exactly the same as the conventional one, obtained via the
pseudodiagonality condition.

Equivalent representations. A matrix representation of the HOSVD can be
obtained by unfolding A and S in model equation (5):

A(n) = U(n) ·S(n) ·
(
U(n+1) ⊗U(n+2) ⊗ · · · ⊗U(N) ⊗U(1) ⊗U(2) ⊗ · · · ⊗U(n−1)

)T
,

(8)
in which ⊗ denotes the Kronecker product [2, 40]. (The Kronecker product of two
matrices F ∈ C

I1×I2 and G ∈ C
J1×J2 is defined according to

F⊗G
def
= (fi1i2G)1�i1�I1;1�i2�I2

.)

Notice that the conditions (6) and (7) imply that S(n) has mutually orthogonal rows,

having Frobenius-norms equal to σ
(n)
1 , σ

(n)
2 , . . . , σ

(n)
In

. Let us define a diagonal matrix

Σ(n) ∈ R
In×In and a column-wise orthonormal matrixV(n) ∈ C

In+1In+2...INI1I2...In−1×In

according to

Σ(n) def
= diag(σ

(n)
1 , σ

(n)
2 , . . . , σ

(n)
In

),(9)

V(n)H def
= S̃(n) ·

(
U(n+1) ⊗U(n+2) ⊗ · · · ⊗U(N) ⊗U(1) ⊗U(2) ⊗ · · · ⊗U(n−1)

)
,

(10)
in which S̃(n) is a normalized version of S(n), with the rows scaled to unit-length

S(n) = Σ(n) · S̃(n).(11)

Expressing (8) in terms of Σ(n) and V(n) shows that, at a matrix level, the HOSVD
conditions lead to an SVD of the matrix unfoldings

A(n) = U(n) ·Σ(n) ·V(n)H(12)

(1 � n � N). Below we will show that, on the other hand, the left singular matrices
of the different matrix unfoldings of A correspond to unitary transformations that
induce the HOSVD structure. This strong link ensures that the HOSVD inherits all
the classical column/row space properties from the matrix SVD (see section 4).

The dyadic decomposition could be generalized by expressing the HOSVD model
as an expansion of mutually orthogonal rank-1 tensors,

A =
∑
i1

∑
i2

. . .
∑
iN

si1i2...iN U
(1)
i1

◦ U (2)
i2

◦ · · · ◦ U (N)
iN
,(13)

in which the coefficients si1i2...iN are the entries of an ordered all-orthogonal tensor
S. The orthogonality of the rank-1 terms follows from the orthogonality of the n-
mode singular vectors. In connection with the discussion on pseudodiagonality versus
all-orthogonality, we remark that the summation generally involves r1r2 . . . rN terms
(instead of min(I1, I2, . . . , IN )), in which rn is the highest index for which ‖Sin=rn‖ >
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Fig. 5. Visualization of a triadic decomposition.

0 in (7). In Figure 5 this decomposition is visualized for third-order tensors. Where the
dyadic decomposition expresses a matrix in an essentially unique way as a minimal
linear combination of products of column and row vectors that are each mutually

orthonormal, the meaning of (13) is less outspoken. For example, the matrix U′(n)
=

U(n) ·Q, in which Q is a unitary matrix, together with the tensor S ′ = S ×nQ
H still

leads to an expansion in r1r2 . . . rN mutually orthogonal rank-1 tensors (however, S ′

is not all-orthogonal in general). The unitary matrix Q could even be chosen in such
a way that it induces zero entries in S ′, thereby decreasing the number of terms in
the rank-1 expansion (e.g., the unitary factor of a QR-decomposition of S(n) induces
rn(rn − 1)/2 zeros).

Proof. The derivation of Theorem 2 establishes the connection between the
HOSVD of a tensor A and the matrix SVD of its matrix unfoldings. It is given
in terms of real-valued tensors; the complex case is completely analogous but more
cumbersome from a notational point of view.

Consider two (I1 × I2 × · · · × IN ) tensors A and S, related by

S = A×1 U
(1)T ×2 U

(2)T · · · ×N U(N)T ,(14)

in whichU(1),U(2), . . . ,U(N) are orthogonal matrices. Equation (14) can be expressed
in a matrix format as

A(n) = U(n) · S(n) ·
(
U(n+1) ⊗U(n+2) · · ·U(N) ⊗U(1) ⊗U(2) · · ·U(n−1)

)T
.(15)

Now consider the particular case where U(n) is obtained from the SVD of A(n) as

A(n) = U(n) ·Σ(n) ·V(n)T ,(16)

in which V(n) is orthogonal and Σ(n) = diag(σ
(n)
1 , σ

(n)
2 , . . . , σ

(n)
In

), where

σ
(n)
1 � σ(n)

2 � · · · � σ(n)
In

� 0.(17)

We call rn the highest index for which σ
(n)
rn > 0. Taking into account that the

Kronecker factor in (15) is orthogonal, comparison of (15) and (16) shows that

S(n) = Σ(n) ·V(n)T ·
(
U(n+1) ⊗U(n+2) · · ·U(N) ⊗U(1) ⊗U(2) · · ·U(n−1)

)
.(18)
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This equation implies, for arbitrary orthogonal matrices U(1), U(2),. . . , U(n−1),
U(n+1), . . . ,U(N), that

〈Sin=α,Sin=β〉 = 0 when α �= β,(19)

and

‖Sin=1‖ = σ(n)
1 � ‖Sin=2‖ = σ(n)

2 � · · · � ‖Sin=In‖ = σ(n)
In

� 0,(20)

and, if rn < In,

‖Sin=rn+1‖ = σ(n)
rn+1 = · · · = ‖Sin=In‖ = σ(n)

In
= 0.(21)

By constructing the matricesU(1),U(2), . . . ,U(n−1),U(n+1), . . . ,U(N) in a similar
way as U(n), S can be made to satisfy all the conditions of the HOSVD theorem. On
the other hand, as can be seen from (12), all the matrices U(1),U(2), . . . ,U(N) and
tensors S satisfying the HOSVD theorem can be found by means of the SVD of A(1),
A(2), . . . , A(N), where S follows from (14).

Computation. Equation (12) and the preceding proof actually indicate how
the HOSVD of a given tensor A can be computed: the n-mode singular matrix U(n)

(and the n-mode singular values) can directly be found as the left singular matrix
(and the singular values) of an n-mode matrix unfolding of A (any matrix of which
the columns are given by the n-mode vectors can be resorted to, as the column
ordering is of no importance). Hence computing the HOSVD of an Nth-order tensor
leads to the computation of N different matrix SVDs of matrices with size (In ×
I1I2 . . . In−1In+1 . . . IN )(1 � n � N).

Afterwards, the core tensor S can be computed by bringing the matrices of sin-
gular vectors to the left side of (5):

S = A×1 U
(1)H ×2 U

(2)H · · · ×N U(N)H .(22)

This can be computed in a matrix format, e.g.,

S(n) = U(1)H ·A(n) ·
(
U(n+1) ⊗U(n+2) ⊗ · · · ⊗U(N) ⊗U(1) ⊗U(2) ⊗ · · · ⊗U(n−1)

)
.

(23)
Equations (12) and (23) essentially form a square-root version of the “operational

procedures,” discussed in [43]. As such they are numerically more reliable, especially

for ill-conditioned tensors, i.e., tensors for which σ
(n)
1 � σ

(n)
Rn

, for one or more values
of n [22].

Example 4. Consider the (3×3×3) tensor A defined by a matrix unfolding A(1),
equal to(

0.9073 0.7158 −0.3698 1.7842 1.6970 0.0151 2.1236 −0.0740 1.4429
0.8924 −0.4898 2.4288 1.7753 −1.5077 4.0337 −0.6631 1.9103 −1.7495
2.1488 0.3054 2.3753 4.2495 0.3207 4.7146 1.8260 2.1335 −0.2716

)
.

The 1-mode singular vectors are the columns of the left singular matrix of A(1); in

the same way, U(2) and U(3) can be obtained:

U(1) =

(
0.1121 −0.7739 −0.6233
0.5771 0.5613 −0.5932
0.8090 −0.2932 0.5095

)
,
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U(2) =

(
0.4624 0.0102 0.8866
0.8866 −0.0135 −0.4623

−0.0072 −0.9999 0.0152

)
,

U(3) =

(
0.6208 −0.4986 0.6050

−0.0575 −0.7986 −0.5992
0.7819 0.3371 −0.5244

)
.

The core tensor of the HOSVD then follows from application of (23); its unfolding
S(1) is equal to(

8.7088 0.0489 −0.2797 0.1066 3.2737 0.3223 −0.0033 −0.1797 −0.2222
−0.0256 3.2546 −0.2853 3.1965 −0.2130 0.7829 0.2948 −0.0378 −0.3704
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

)
.

The core tensor is all-orthogonal: the rows of S(1) are mutually orthogonal, but so
also are the matrices formed by columns 1/2/3, 4/5/6, and 7/8/9, as well as the three
matrices formed by columns 1/4/7, 2/5/8, and 3/6/9. This boils down to orthogonality
of, resp., the “horizontal,” “frontal,” and “vertical” matrices of A. The core tensor
is also ordered: its matrices are put in order of decreasing Frobenius-norm. The
Frobenius-norms give the n-mode singular values of A:

mode 1 : 9.3187, 4.6664, 0,
mode 2 : 9.3058, 4.6592, 0.5543,
mode 3 : 9.2822, 4.6250, 1.0310.

4. Properties. Many properties of the matrix SVD have a very clear higher-
order counterpart, because of the strong link between the HOSVD of a higher-order
tensor and the SVDs of its matrix unfoldings. In this section, we list the multilinear
equivalents of a number of classical matrix SVD properties. The basic link itself is
repeated as Property 12. The proofs are outlined at the end of the section.

Property 4 (uniqueness).
(i) The n-mode singular values are uniquely defined.
(ii) When the n-mode singular values are different, then the n-mode singular

vectors are determined up to multiplication with a unit-modulus factor. When U
(n)
α is

multiplied by ejθ, then Sin=α has to be multiplied by the inverse factor e−jθ.
The n-mode singular vectors corresponding to the same n-mode singular value

can be replaced by any unitary linear combination. The corresponding subtensors
{Sin=α} have to be combined in the inverse way. Formally, U(n) can be replaced by
U(n) ·Q, in which Q is a block-diagonal matrix, consisting of unitary blocks, where the
block-partitioning corresponds to the partitioning of U(n) in sets of n-mode singular
vectors with identical n-mode singular value. At the same time S has to be replaced
by S ×n Q

H .
For real-valued tensors uniqueness is up to the sign, resp., multiplication with an

orthogonal matrix.
The first property implies that the HOSVD shows essentially the same uniqueness

properties as the matrix SVD. The only difference consists of the fact that Theorem 2
contains weaker normalization conventions. The equivalent situation for matrices
would be to allow that S consists of diagonal blocks, corresponding to the different
singular values, in which each block consists of a unitary matrix, multiplied with the
singular value under consideration.

Property 5 (generalization). The tensor SVD of a second-order tensor boils
down (up to the underdetermination) to its matrix SVD.
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From the discussion in section 3 it is clear that the HOSVD is a formal equivalent
of the matrix SVD. Moreover, according to Property 5, it is a true generalization in
the sense that, when Theorem 2 is applied to matrices (second-order tensors), it leads
to the classical matrix SVD. (Note however that, by convention, the 2-mode singular
vectors are defined as the complex conjugates of the right matrix singular vectors.)
As such, Theorem 2 really establishes a multilinear SVD framework, containing the
matrix decomposition in the special case of second-order tensors.

Property 6 (n-rank). Let the HOSVD of A be given as in Theorem 2, and let
rn be equal to the highest index for which ‖Sin=rn‖ > 0 in (7); then one has

Rn = rankn(A) = rn.

The fact that the number of nonvanishing singular values of a given matrix equals
its (column/row) rank carries over to the n-mode singular values and the n-rank values
of a given tensor (recall from section 2.2 that the n-rank values are not necessarily
the same). Like for matrices, this link even holds in a numerical sense, as will be
shown by the perturbation analysis in section 6: the number of significant n-mode
singular values of a given tensor equals its numerical n-rank. In a matrix context, this
property is of major concern for the estimation of “problem dimensionalities,” like the
estimation of the number of sources in the source separation problem, the estimation
of filter lengths in identification, the estimation of the number of harmonics in the
harmonic retrieval problem, etc. [45, 46]. Property 6 may play a similar role in
multilinear algebra. Let us illustrate this by means of a small example. Consider
the most elementary relationship in multivariate statistics, in which an I-dimensional
stochastic vector X consists of a linear mixture of J � I stochastic components.
Whereas the number of components is usually estimated as the number of significant
eigenvalues of the covariance matrix of X, the number of skew or kurtic components
might as well be estimated as the number of significant n-mode singular values of the
third-order, resp., fourth-order, cumulant tensor of X [17].

Finally, we remember from section 2.2 that knowledge of the n-rank values of a
given tensor does not allow us in general to make precise statements about the rank of
that tensor. With this respect, other SVD generalizations might be more interesting
(see section 7).

Property 7 (structure). Let the HOSVD of A be given as in Theorem 2; then
one has

(i) the n-mode vector space R(A(n)) = span(U
(n)
1 , . . . , U

(n)
Rn

),

(ii) the orthogonal complement of R(A(n)), the left n-mode null space N(AH
(n)) =

span(U
(n)
Rn+1, . . . , U

(n)
In

).
In the same way as the left and right singular vectors of a matrix give an or-

thonormal basis for its column and row space (and their orthogonal complements),
the n-mode singular vectors of a given tensor yield an orthonormal basis for its n-
mode vector space (and its orthogonal complement). For matrices, the property was
the starting-point for the development of subspace algorithms [45, 46, 47]; Property 7
allows for an extension of this methodology in multilinear algebra.

Property 8 (norm). Let the HOSVD of A be given as in Theorem 2; then the
following holds.

‖A‖2 =

R1∑
i=1

(
σ

(1)
i

)2

= · · · =
RN∑
i=1

(
σ

(N)
i

)2

= ‖S‖2.
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In multilinear algebra as well as in matrix algebra, the Frobenius-norm is unitarily
invariant. As a consequence, the well-known fact that the squared Frobenius-norm of
a matrix equals the sum of its squared singular values can be generalized.

Definition 9 (n-mode oriented energy). The n-mode oriented energy of an N th-
order tensor A ∈ C

I1×I2×...×IN in the direction of a unit-norm vector X, denoted by
OEn(X,A), is the oriented energy of the set of n-mode vectors, i.e.,

OEn(X,A)
def
= ‖XHA(n)‖2.

The concept of oriented energy of a given matrix and the link with the SVD of
that matrix, which form the basis of SVD-based signal separation algorithms, can
easily be generalized as well. Whereas Property 8 merely states that the squared
Frobenius-norm of a tensor (i.e., the “energy” contained in the tensor) equals the
sum of the squared n-mode singular values, the HOSVD actually gives a pretty de-
tailed geometrical picture of the energy distribution over the n-mode vector space.
Definition 9 generalizes the definition of oriented energy. We now state the following
property.

Property 9 (oriented energy). The directions of extremal n-mode oriented en-
ergy correspond to the n-mode singular vectors, with extremal energy value equal to
the corresponding squared n-mode singular value.

This means that the n-mode vectors mainly contain contributions in the direction

of U
(n)
1 ; this particular direction accounts for an amount of σ

(n)2

1 with respect to the
total amount of energy in the tensor. Next, the n-mode oriented energy reaches an

extremum in the direction of U
(n)
2 , perpendicular to U

(n)
1 , for a value of σ

(n)2

2 , and so
on. Discarding the components of the n-mode vectors in the direction of an n-mode

singular vector U
(n)
in

(e.g., the one corresponding to the smallest n-mode singular

value) to obtain a tensor Â introduces an error ‖A − Â‖2 = σ
(n)2

in
.

Property 10 (approximation). Let the HOSVD of A be given as in Theorem 2
and let the n-mode rank of A be equal to Rn (1 � n � N). Define a tensor Â
by discarding the smallest n-mode singular values σ

(n)
I′

n+1, σ
(n)
I′

n+2, . . . , σ
(n)
Rn

for given
values of I ′n (1 � n � N), i.e., set the corresponding parts of S equal to zero. Then
we have

‖A − Â‖2 �
R1∑

i1=I′
1+1

σ
(1)2

i1
+

R2∑
i2=I′

2+1

σ
(2)2

i2
+ · · ·+

RN∑
iN=I′

N+1

σ
(N)2

iN
.(24)

This property is the higher-order equivalent of the link between the SVD of a
matrix and its best approximation, in a least-squares sense, by a matrix of lower rank.
However, the situation is quite different for tensors. By discarding the smallest n-mode
singular values, one obtains a tensor Â with a column rank equal to I ′1, row rank equal
to I ′2, etc. However, this tensor is in general not the best possible approximation
under the given n-mode rank constraints (see, e.g., Example 5). Nevertheless, the
ordering assumption (7) implies that the “energy” of A is mainly concentrated in the

part corresponding to low values of i1, i2, . . . , iN . Consequently, if σ
(n)
I′

n
� σ

(n)
I′

n+1

(e.g., I ′n corresponds to the numerical n-rank of A; the smaller n-mode singular
values are not significant (see also Property 6)), Â is still to be considered as a good
approximation of A. The error is bounded as in (24). For procedures to enhance a
given approximation, we refer to [28, 17].
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Fig. 6. Construction of H(1) for (a) a matrix and (b) a third-order tensor.

Property 11 (link between HOSVD and matrix EVD). Let the HOSVD of A
be given as in Theorem 2. Define H(n) def

= A(n) ·AH
(n), i.e., H

(n) contains on position

(i, i′) the scalar product 〈Ain=i,Ain=i′〉. If the EVD of H(n) is given by

H(n) = U(n) ·D(n) ·U(n)H ,

then U(n) contains the n-mode singular vectors of A. Moreover the scalar product
〈Sin=i,Sin=i′〉 is the (i, i′)th element of D(n). Different subtensors of S are mutually
orthogonal.

In the same way as the SVD of a matrix F is related to the EVD of the Hermitean
(real symmetric) positive (semi)definite matrices FFH and FHF, the HOSVD of a
higher-order tensor A is related to the EVD of Hermitean (real symmetric) positive
(semi)definite matrices, constructed from A. The construction is clarified in Figure 6:
just like the entries of FFH consist of the mutual scalar products of the rows of F, the
matrix H(1) in Property 11 is computed from the scalar products of the “horizontal
matrices” of A, in the third-order case. This property can, e.g., be useful for inter-
pretations in a statistical context, where H(n) corresponds to the sample correlation
matrix of the n-mode vectors of A.

Property 12 (link between HOSVD and matrix SVD). Let the HOSVD of A
be given as in Theorem 2. Then

A(n) = U(n) ·Σ(n) ·V(n)H

is an SVD of A(n), where the diagonal matrix Σ(n) ∈ R
In×In and the column-wise

orthonormal matrix V(n) ∈ C
In+1In+2...INI1I2...In−1×In are defined according to

Σ(n) def
= diag(σ

(n)
1 , σ

(n)
2 , . . . , σ

(n)
In

),

V(n)H def
= S̃(n) ·

(
U(n+1) ⊗U(n+2) . . .U(N) ⊗U(1) ⊗U(2) · · · ⊗U(n−1)

)T
,

in which S̃(n) is a normalized version of S(n), with the rows scaled to unit-length

S(n) = Σ(n) · S̃(n).
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Proof. The proofs are established by a further analysis of the derivation in section
3; the key idea behind this derivation is explained in Property 12.

Property 4 is proved by investigating the uniqueness conditions.
Property 5 follows by applying the same procedure to second-order tensors.
Property 6 follows from the combination of Property 12 and Property 1. In the

same way the deduction of Property 7 and Property 9 is trivial.
Property 8: We have ‖A‖2 = ‖A(n)‖2 which, in turn, equals

∑rn
i=1 ‖Sin=i‖2

=
‖S‖2.

Property 10: We have

‖A − Â‖2 =

R1∑
i1=1

R2∑
i2=1

. . .

RN∑
iN=1

s2i1i2...iN −
I′

1∑
i1=1

I′
2∑

i2=1

. . .

I′
N∑

iN=1

s2i1i2...iN

=

R1∑
i1=I′

1+1

R2∑
i2=I′

2+1

. . .

RN∑
iN=I′

N+1

s2i1i2...iN

�
R1∑

i1=I′
1+1

R2∑
i2=1

. . .

RN∑
iN=1

s2i1i2...iN +

R1∑
i1=1

R2∑
i2=I′

2+1

. . .

RN∑
iN=1

s2i1i2...iN

+ · · ·+
R1∑
i1=1

R2∑
i2=1

. . .

RN∑
iN=I′

N+1

s2i1i2...iN

=

R1∑
i1=I′

1+1

σ
(1)2

i1
+

R2∑
i2=I′

2+1

σ
(2)2

i2
+ · · ·+

RN∑
iN=I′

N+1

σ
(N)2

iN
.

Property 11 follows from the link between matrix SVD and HOSVD, combined
with the relation between matrix SVD and EVD.

Example 5. Consider the tensor A and its HOSVD components, which are given
in Example 4.

From the n-mode singular values, we see that R2 = R3 = 3, while R1 = 2. Clearly,
the column space of A is only two-dimensional. The first two columns of U(1) form an
orthonormal basis for this vector space; the third 1-mode singular vector is orthogonal
to the column space of A.

The sum of the squared n-mode singular values is equal to 108.6136 for all three
modes; 108.6136 is the squared Frobenius-norm of A.

Discarding σ
(2)
3 and σ

(3)
3 , i.e., replacing S by a tensor Ŝ, having a matrix unfolding

Ŝ(1) equal to

(
8.7088 0.0489 0.0000 0.1066 3.2737 0.0000 0.0000 0.0000 0.0000

−0.0256 3.2546 0.0000 3.1965 −0.2130 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

)

gives an approximation Â for which ‖A−Â‖ = 1.0880. On the other hand, the tensor
A′ that best matches A while having three n-ranks equal to 2 is defined by the unfolding(

0.8188 0.8886 −0.0784 1.7051 1.7320 −0.0274 1.7849 0.2672 1.7454
1.0134 −0.8544 2.1455 1.9333 −1.5390 3.9886 −0.2877 1.5266 −2.0826
2.1815 0.0924 2.4019 4.3367 0.3272 4.6102 1.8487 2.1042 −0.2894

)
.

For this tensor, we have that ‖A −A′‖ = 1.0848.
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5. A multilinear symmetric EVD. Many applications show highly symmetric
higher-order tensors. As an example, higher-order moments and cumulants of a real
random vector are invariant under arbitrary index permutations. The same holds,
e.g., for the symmetric tensorial representation of homogeneous polynomials [12]. For
matrices, this symmetry is reflected by the fact that the left and right singular vectors
are, up to the sign, identical; this leads to a particular form of the EVD, in which the
eigenmatrix is an orthogonal (unitary) matrix. In this section, we will investigate if
similar properties hold for higher-order tensors as well.

First, we prove that, if a tensor is invariant to (or mapped onto its complex
conjugate by) a permutation of its indices, this symmetry is also reflected by the
HOSVD components.

Theorem 3. Let the HOSVD of a tensor A ∈ C
I1×I2×···×IN be denoted as in

Theorem 2. Consider a permutation P of its indices and the decomposition of this
permutation in a sequence of permutation cycles C1, C2, . . . . We assume, without
losing generality (possibly by redefining the ordering of the indices of A), that

P(i1, i2, . . . , iN ) = (C1(i1, i2, . . . , in1
), C2(in1+1, in1+2, . . . , in2

), . . .)

= (i2, i3, . . . , in1 , i1; in1+2, . . . , in2 , in1+1; . . .).

If ai1i2...iN = aP(i1i2...iN ),, then one has

U(1) = U(2) = · · · = U(n1); U(n1+1) = U(n1+2) = · · · = U(n2); . . . .
If ai1i2...iN = a∗P(i1i2...iN ), then one has

U(1) = U(2)∗ = U(3) = · · ·; U(n1+1) = U(n1+2)∗ = U(n1+3) = · · ·; . . . .
For permutation cycles with an odd number of elements, the matrix of singular vectors
is real.

The core tensor S exhibits the same permutation symmetry as A.
Proof. Construct the higher-order tensors A′, A′′, . . . by repeatedly permuting

the indices by P:

a′i1,i2,...,iN
def
= aP(i1,i2,...,iN ); a′′i1,i2,...,iN

def
= aP(P(i1,i2,...,iN )); . . . .

For real symmetry, we have that A = A′ = A′′ = . . .; for Hermitean symmetry, we
have that A = (A′)∗ = A′′ = . . . . The same equalities hold for the matrix unfoldings
A(n1), A

′
(n1)

, A′′
(n1)

, . . . , as well as for A(n2), A
′
(n2)

, A′′
(n2)

, . . . , etc. Hence the same
symmetry is shown by the left singular matrices of these matrix unfoldings, which
correspond to U(1), U(2), . . . , resp., U(n1+1), U(n1+2), . . . , etc.

If P corresponds to Hermitean symmetry, and, e.g., C1 is a cycle with an odd num-
ber of elements, then it can be shown that U(1) = U(1)∗ by repeating the construction
above n1 times.

For an analysis of the symmetry of S, we write down an element-wise form of
(22) (we take the example of Hermitean symmetry):

sj1j2...jN =
∑

i1i2...iN

ai1i2...iNu
(n1)

∗

i1j1
u

(n1)
i2j2

u
(n1)

∗

i3j3
. . . u

(n2)
∗

in1+1jn1+1
u

(n2)
in1+2jn1+2

u
(n2)

∗

in1+3jn1+3
. . . .

(25)
Permutation of the indices by P yields the following element:

sP(j1j2...jN ) =
∑

i1i2...iN

ai1i2...iNu
(n1)

∗

i1j2
u

(n1)
i2j3

u
(n1)

∗

i3j4
. . . u

(n2)
∗

in1+1jn1+2
u

(n2)
in1+2jn1+3

u
(n2)

∗

in1+3jn1+4
. . . .

(26)
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Invoking the Hermitean symmetry of A, and comparing (26) to (25), it follows that
sP(j1j2...jN ) = s

∗
j1j2...jN

.
A consequence of Theorem 3 is that the i-mode singular vectors, for different i,

are fully related under a condition that we define as pair-wise symmetry.
Definition 10. A higher-order tensor A ∈ C

I×I×...×I is called pair-wise sym-
metric when, for every pair of indices (in1

, in2
), there exists a permutation Pn1n2

such that in1
= Pn1n2(in2

) and either aPn1n2
(i1i2...iN ) = ai1i2...iN or aPn1n2 (i1i2...iN ) =

a∗i1i2...iN .
Pair-wise symmetric higher-order tensors are a tensorial equivalent of symmetric

and Hermitean matrices. Theorem 3 and Definition 10 lead in a very natural way to a
generalization of the orthogonal (unitary) EVD of symmetric (Hermitean) matrices.
An HOEVD for pair-wise symmetric higher-order tensors can be defined as follows.

Theorem 4 (Nth-order pair-wise symmetric EVD). Every pair-wise symmetric
(I × I × · · · × I)-tensor A can be written as the product

A = S ×1 U
(1) ×2 U

(2) · · · ×N U(N),(27)

in which the following hold.
1. S is an all-orthogonal (I×I×· · ·×I)-tensor with the same pair-wise symmetry

as A.
2. U(1) = U = (U1U2 . . . UI) is a unitary (I×I)-matrix, equal to U(n) or U(n)∗

(for all n, 1 � n � N), depending on the symmetry of A as stated in Theorem 3.
The Frobenius-norms of the subtensors of S, obtained by fixing one index to i, are

the Nth-order eigenvalues and are symbolized by λi. The vectors Ui are the Nth-order
eigenvectors.

Example 6. Consider a complex third-order tensor A that satisfies aP(i1i2i3) =
ai2i3i1 = a∗i1i2i3 . According to Theorem 3, and taking into account that P is a cycle
with three elements, the HOSVD of A is given by

A = S ×1 U×2 U×3 U,

where U is real and S satisfies the same symmetries as A. In fact, it is pretty obvious
in this example that U is real: ai1i2i3 = a

∗
i2i3i1

= ai3i1i2 = a
∗
i1i2i3

implies that A itself,
and hence the whole decomposition, is real.

Example 7. A common way to deal with the complex nature of a random vector
X in the definition of its fourth-order cumulant tensor C is the following element-wise
definition:

ci1i2i3i4
def
= cum(xi1 , x

∗
i2 , x

∗
i3 , xi4)(28)

def
= E{x̃i1 x̃∗i2 x̃∗i3 x̃i4} − E{x̃i1 x̃∗i2}E{x̃∗i3 x̃i4}

−E{x̃i1 x̃∗i3}E{x̃∗i2 x̃i4} − E{x̃i1 x̃i4}E{x̃∗i2 x̃∗i3},
in which E denotes the expectation operator and x̃ equals x− E{x}.

The permutation symmetries of C can be generated by the permutation pair P1
and P2, satisfying

cP1(i1i2i3i4) = ci4i2i3i1 = ci1i2i3i4 ,(29)

cP2(i1i2i3i4) = ci2i1i4i3 = c
∗
i1i2i3i4 .(30)

Equation (30) implies that U(1) = U(2)∗ and that U(3) = U(4)∗ ; on the other hand
(29) implies that U(1) = U(4). Hence the HOSVD of C reveals the structure of (28),

C = S ×1 U×2 U
∗ ×3 U

∗ ×4 U,
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with S satisfying (29) and (30) as well.

6. First-order perturbation analysis. In this section, the first-order deriva-
tives of the n-mode singular values and vectors with respect to the elements of the
original tensor are computed. The expressions can be used to analyze the numerical
sensitivity and the statistical performance of HOSVD-based signal processing algo-
rithms (e.g., [14]), especially for high signal-to-noise ratios: if the output of these
algorithms can be considered as a function of the n-mode singular values and vectors,
then the derivatives of the output could be computed via the chain rule.

An important application area is linked with the discussion on pseudodiagonality
versus all-orthogonality (see section 3). In several applications, one has the a priori
knowledge that a particular tensor can be made pseudoorthogonal by means of unitary
transformations (e.g., cumulants of a stochastic vector with statistically independent
components, after unitary transformation, like in a typical source separation context;
cumulants of a stochastic vector with statistically independent components are pseu-
dodiagonal). As pseudodiagonality is a special case of all-orthogonality, these unitary
transformations coincide with the matrices of n-mode singular vectors. However, due
to an imperfect knowledge of the tensor under consideration, caused by measurement
errors, etc., the HOSVD of the estimated tensor will generally yield a core tensor
that is all-orthogonal yet not exactly pseudodiagonal. To investigate such effects,
first-order perturbation analysis results are required.

Due to the relationship between the matrix and tensor SVD, a perturbation anal-
ysis of the HOSVD can be based on existing results that have been developed in
numerical linear algebra. Let A be a real or complex higher-order tensor, the ele-
ments of which are analytic functions of a real parameter p. Like for matrices, an
n-mode singular value and vector are analytic functions of p in the neighborhood of a
nominal parameter p0 where that singular value is isolated and nonzero. In case of a
zero n-mode singular value the n-mode singular value function need not be differen-
tiable, let alone analytic, due to the definition of an n-mode singular value as a norm
being a nonnegative number: the differentiability of a smooth function that becomes
negative in a neighborhood of p0 may be lost by flipping the negative parts around
the zero axis. A similar effect appears when several n-mode singular value functions
cross each other, due to the ordering constraint on the HOSVD: the differentiability
of the smooth functions that cross each other may be lost by combining the function
parts in order of magnitude. However, one can prove that analyticity can be guar-
anteed by dropping the sign and ordering convention. With this goal we define, in
analogy to the “unordered-unsigned singular value decomposition” (USVD) of [20] an
unordered-unsigned higher-order singular value decomposition (UHOSVD).

Theorem 5 (UHOSVD). If the elements of A ∈ C
I1×I2×...×IN are analytic func-

tions of a real parameter p, then there exist real analytic functions f
(n)
i : R → R

(1 � i � In) such that, for all p ∈ R,

{σ(n)
i (p) (1 � i � In)} = {|f (n)

i | (1 � i � In)}.
The functions f

(n)
i are called unordered, unsigned n-mode singular value functions.

The analytic continuation of a set of n-mode singular vectors at a nominal pa-
rameter value, where they correspond to a multiple n-mode singular value, will be
denoted by the term preferred n-mode singular vectors. They are given by the follow-
ing theorem.

Theorem 6 (preferred n-mode singular vectors). Let the HOSVD of A be given
as in Theorem 2, the ordering of the n-mode singular vectors being of no importance.
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Let σ(n) be an n-mode singular value of multiplicity m and let an SVD of A(n) be
given by

A(n) = U(n) ·Σ(n) ·V(n)H =
(
U

(n)
1 U

(n)
2

)
·
(
σ(n) Im 0

0 Σ2

)
·
(

V
(n)H

1

V
(n)H

2

)
,(31)

in which U(n), Σ(n), and V(n) are defined in accordance to Property 12. In the

partitioning, U
(n)
1 and V

(n)
1 correspond to the singular value σ(n).

Consider a first-order perturbation of A as A+εB, ε ∈ R, and define the matrices
Bj1j2 , j1, j2 = 1, 2, as

Bj1j2
def
= U

(n)H

j1
·B(n) ·V(n)

j2
.

There are two cases.

1. σ(n) �= 0: consider the eigenvalue problem

B11 +BH
11

2
= X ·Λ ·XH .

Then the m preferred n-mode singular vectors are given by the columns of U
(n)
1 ·X.

(The m preferred right singular vectors in (31) are given by the columns of V
(n)
1 ·X.)

2. σ(n) = 0: consider an SVD of B11:

B11 = X ·Λ ·YH .

Then the m preferred n-mode singular vectors are given by the columns of U
(n)
1 ·X.

(The m preferred right singular vectors in (31) are given by the columns of V
(n)
1 ·Y.)

In analogy with [27, 20], we state now the following perturbation theorem.

Theorem 7 (first-order perturbation of the HOSVD). Consider a higher-order
tensor A(ε), the elements of which are analytic functions of a real parameter ε. Rep-
resent the first-order approximation of the Taylor series expansion of A(ε) around
ε = 0 by A + εB. Let the HOSVD of A be given as in Theorem 2. Let an SVD of
A(n) be given by

A(n) = U(n) ·Σ(n) ·V(n)H ,

in which U(n), Σ(n), and V(n) are defined in accordance to Property 12. In case
of multiple n-mode singular values, U(n) and V(n) contain preferred basis vectors.
Define the matrix B as

B
def
= U(n)H ·B(n) ·V(n).

Then one has the following.

1. The slopes of the n-mode unordered-unsigned singular value functions are
given by the diagonal elements of B.

2. The first-order approximation of the Taylor series expansion of the n-mode
singular vector functions is given by U(n)+εU(n) ·Ω, in which Ω is a skew-Hermitean
matrix defined by
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ωij
def
= 0

if i = j,

ωij
def
= (σ

(n)
i b∗ij + σ

(n)
j bji)/(σ

(n)2

i − σ(n)2

j )

if σ
(n)
i �= σ(n)

j ,

ωij
def
= limε→0

[
(σ

(n)
i (ε)b∗ij + σ

(n)
j (ε)bji)/(σ

(n)2

i (ε)− σ(n)2

j (ε))
]

if σ
(n)
i (ε) = σ

(n)
j (ε) for the isolated value ε = 0,

ωij
def
= −ωji def

= arbitrary

if σ
(n)
i (ε) = σ

(n)
j (ε) in a neighborhood of ε = 0 (i �= j).

7. Related tensor decompositions. The SVD generalization we present in
this paper is so clearly analogous to the SVD of matrices since the i-mode vectors
play exactly the same role in the tensor decomposition as column and row vectors do
for the matrix SVD. However, it is still possible to focus on other properties of the
matrix SVD when looking for an equivalent tensor decomposition. It appears that for
higher-order tensors different properties may raise different decompositions. Here we
list three alternative approaches. The analogy with the matrix case is less striking
than for the HOSVD. Depending on the context, one can choose the appropriate
approach to address a certain problem.

7.1. Linear mapping between higher-order spaces. In the same way as
there exists an isomorphic link between matrix algebra and the algebra of linear vector
mappings, a higher-order tensor can be regarded as a formal representation of a linear
mapping between a matrix and a vector space, a matrix and a matrix space, a matrix
and a higher-order tensor space, etc. For example, assuming a basis in the space of
N1th-order and N2th-order tensors, a linear transformation of B ∈ C

J1×J2×···×JN1 to
C ∈ C

I1×I2×···×IN2 can be represented by A ∈ C
I1×···IN2

×J1×···×JN1 , according to the
element-wise equation

ci1i2...iN2
=

∑
j1j2...jN1

ai1i2...iN2
j1j2...jN1

bj1j2...jN1

for a particular choice of N1 summation indices.
Obviously, a tensorial SVD equivalent is the SVD of this linear mapping. We

notice a link with the HOSVD:U(n), Σ(n), and V(n) in (12) are the SVD components
of A, interpreted as a linear mapping from C

In+1×In+2×···×IN×I1×I2×···In−1 to C
In ,

defined by summation over the indices in+1, in+2, . . . , iN , i1, i2, . . . , in−1.

7.2. Optimal tensor diagonalization by unitary transformations. The
fact that a generic higher-order tensor cannot be diagonalized by unitary transfor-
mations could be remedied by weakening the condition of the diagonality of the core
tensor to a condition of “maximal diagonality.” Formally, given a higher-order tensor
A ∈ C

I1×I2×···×IN , this new problem consists of the determination of unitary matri-
ces U(1) ∈ C

I1×I1 , U(2) ∈ C
I2×I2 , . . . , U(N) ∈ C

IN×IN such that the least-squares
diagonality criterion

∑
i |sii...i|2 is optimized, where the core tensor S is still defined

by (5).
For problems dealing with tensors that can theoretically be diagonalized (see also

section 6), forcing the diagonal structure may be more robust (at the expense of a
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higher computational cost) than the computation of the HOSVD, in which the devi-
ation from diagonality is simply considered as a perturbation effect. For algorithms,
we refer to [11, 16], exploring Jacobi-type procedures.

7.3. Canonical decomposition. A major difference between matrices and
higher-order tensors is that the HOSVD does not provide precise information about
rank-related issues. With this respect, the “canonical decomposition” (CANDE-
COMP), or “parallel factors” model (PARAFAC) may be more informative [10, 24,
1, 31, 39].

Definition 11 (CANDECOMP). A canonical decomposition or parallel factors
decomposition of a tensor A ∈ C

I1×I2×···×IN is a decomposition of A as a linear
combination of a minimal number of rank-1 terms:

A =

R∑
r

λr U
(1)
r ◦ U (2)

r ◦ · · · ◦ U (N)
r .(32)

This decomposition is important for applications, as the different rank-1 terms can
often be related to different “mechanisms” that have contributed to the higher-order
tensor; in addition, sufficiently mild uniqueness conditions enable the actual compu-
tation of these components (without imposing orthogonality constraints, as in the
matrix case).

However, the practical determination of a tensor rank is a much harder problem
than the determination of its n-ranks, since it involves the tensor as a global quan-
tity, rather than as a collection of n-mode vectors. A fortiori, the computation of
the CANDECOMP is much harder than the computation of the HOSVD, and many
problems remain to be solved. By way of illustration, the determination of the maxi-
mal rank value over the set of (I1 × I2 × · · · × IN )-tensors is still an open problem in
the literature (it is not bounded by min(I1, I2, . . . , IN )). We refer to [4] for a tutorial
on the current state-of-the-art. In addition, [12] gives an overview of some partial
results obtained for symmetric tensors.

8. Conclusion. In this paper the problem of generalizing the SVD of matrices
to higher-order tensors is investigated. The point of departure is that the multilinear
equivalent should address the so-called n-mode vectors in a similar way as the SVD
does for column and row vectors. It is shown that this implies that the role of the
matrix of singular values has to be assumed by a tensor with the property of all-
orthogonality. The resulting decomposition, which is referred to as the HOSVD, is
always possible for real or complexNth-order tensors, and when applied to matrices, it
reduces—up to some trivial indeterminacies—to the matrix SVD. In the psychometric
literature, the decomposition is known as the Tucker model.

From the fact that n-mode vectors and column (row) vectors play the same role in
HOSVD, resp., SVD, it follows that the matrices of singular vectors can be computed
from the sets of n-mode vectors in the same way as in the second-order case. In
other words, the HOSVD of an Nth-order tensor boils down to N matrix SVDs. As
a consequence, several matrix properties have a very clear higher-order counterpart.
Uniqueness, link with EVD, directions and values of extremal oriented energy, etc.
are investigated and explicit expressions for a first-order perturbation analysis are
presented.

The link between tensor symmetry and HOSVD is also investigated: if a higher-
order tensor is transformed into itself or into its complex conjugate by a permutation
of the indices, then this symmetry is reflected by the HOSVD components. It turns
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out that the most adequate way to analyze this relation is the decomposition of
the permutation in a sequence of permutation cycles. When every pair of indices is
connected by some cycle, a property which is denoted as pair-wise symmetry, then
the different matrices of higher-order singular vectors are either equal or complex
conjugated. In analogy to the HOEVD of a real symmetric or Hermitean matrix the
HOEVD of a pair-wise symmetric higher-order tensor is defined. Its computation,
for a pair-wise symmetric Nth-order (I × I × · · · × I)-tensor, reduces to the SVD of
an (I × IN−1)-matrix unfolding. It remains an open problem if and how the high
symmetry of this matrix can be exploited to speed up the calculation of its SVD.

The link with the SVD of matrices makes the HOSVD the proper tool for the
analysis of n-mode vector space properties. However, the fact that the core tensor is in
general a full tensor, instead of being pseudodiagonal, results in two main differences
with the matrix case. First, the HOSVD of a given tensor allows us to estimate its
n-ranks, but these values give only a rough lower-bound on the rank; more in general,
the HOSVD does not allow for an interpretation in terms of minimal expansions in
rank-1 terms. This shortcoming is inherent in the structure of multilinear algebra;
with respect to rank-related issues, the CANDECOMP may be informative. Second,
discarding the smallest n-mode singular values does not necessarily lead to the best
possible approximation with reduced n-rank values (1 � n � N). However, if there
is a large gap between the n-mode singular values, then the approximation can still
be qualified as accurate; if necessary, it can be used as a good starting value for
an additional optimization algorithm. Finally, we remark that in some applications
one knows a priori that the core tensor is pseudodiagonal. As pseudodiagonality
is a special case of all-orthogonality, analysis procedures may then be based on the
HOSVD, up to perturbation effects. If a higher accuracy is mandatory, it might be
preferable to determine unitary transformations that explicitly make the higher-order
tensor as diagonal as possible, rather than all-orthogonal.
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