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We introduce a randomized algorithm for overdetermined linear
least-squares regression. Given an arbitrary full-rank m × n matrix
A with m ≥ n, any m × 1 vector b, and any positive real number
ε, the procedure computes an n × 1 vector x such that x minimizes
the Euclidean norm ‖A x − b‖ to relative precision ε. The algorithm
typically requires O((log(n) + log(1/ε))mn + n3) floating-point
operations. This cost is less than the O(mn2) required by the classi-
cal schemes based on QR-decompositions or bidiagonalization. We
present several numerical examples illustrating the performance of
the algorithm.

L east-squares fitting has permeated the sciences and engineer-
ing after its introduction over two centuries ago (see, for

example, ref. 1 for a brief historical review). Linear least-squares
regression is fundamental in the analysis of data, such as that gen-
erated from biology, econometrics, engineering, physics, and many
other technical disciplines.

Perhaps the most commonly encountered formulation of lin-
ear least-squares regression involves a full-rank m × n matrix A
and an m × 1 column vector b, with m ≥ n; the task is to find
an n × 1 column vector x such that the Euclidean norm ‖Ax − b‖
is minimized. Classical algorithms using QR-decompositions or
bidiagonalization require

Cclassical = O(mn2) [1]

floating-point operations in order to compute x (see, for exam-
ple, ref. 1 or Chapter 5 in ref. 2). The present article introduces
a randomized algorithm that, given any positive real number ε,
computes a vector x minimizing ‖Ax − b‖ to relative precision ε,
that is, the algorithm produces a vector x such that

‖Ax − b‖ − min
y∈Cn

‖Ay − b‖ ≤ ε min
y∈Cn

‖Ay − b‖. [2]

This algorithm typically requires

Crand = O((log(n) + log(1/ε))mn + n3) [3]

operations. When n is sufficiently large and m is much greater than
n (that is, the regression is highly overdetermined), then the cost
in Eq. 3 is less than the cost in Eq. 1. Furthermore, in the numeri-
cal experiments of Numerical Results, the algorithm of the present
article runs substantially faster than the standard methods based
on QR-decompositions.

The method of the present article is an extension of the meth-
ods introduced in refs. 3–5. Their algorithms and ours have similar
costs; however, for the computation of x minimizing ‖Ax − b‖ to
relative precision ε, the earlier algorithms involve costs propor-
tional to 1/ε, whereas the algorithm of the present paper involves
a cost proportional to log(1/ε) (see Eq. 3 above).

The present article describes algorithms optimized for the case
when the entries of A and b are complex valued. Needless to say,
real-valued versions of our schemes are similar. This article has the
following structure: The first section sets the notation. The second
section discusses a randomized linear transformation which can
be applied rapidly to arbitrary vectors. The third section provides
the relevant mathematical apparatus. The fourth section describes

the algorithm of the present article. The fifth section illustrates the
performance of the algorithm via several numerical examples. The
sixth section draws conclusions and proposes directions for future
work.

Notation
In this section, we set notational conventions employed through-
out the present article.

We denote an identity matrix by Eq. 1. We consider the entries
of all vectors and matrices in this article to be complex valued.
For any vector x, we define ‖x‖ to be the Euclidean (l2) norm of
x. For any matrix A, we define A∗ to be the adjoint of A, and we
define the norm ‖A‖ of A to be the spectral (l2-operator) norm of
A, that is, ‖A‖ is the greatest singular value of A. We define the
condition number of A to be the l2 condition number of A, that is,
the greatest singular value of A divided by the least singular value
of A. If A has at least as many rows as columns, then the condition
number of A is given by the expression

κA =
√

‖A∗A‖‖(A∗A)−1‖. [4]

For any positive integers m and n with m ≥ n, and any m × n
matrix A, we will be using the singular value decomposition of A
in the form

Am×n = Um×n�n×nV ∗
n×n, [5]

where U is an m × n matrix whose columns are orthonormal,
V is an n × n matrix whose columns are orthonormal, and � is a
diagonal n×n matrix whose entries are all nonnegative. We abbre-
viate “singular value decomposition” to “SVD” and “independent,
identically distributed” to “i.i.d.”

For any positive integer m, we define the discrete Fourier
transform F(m) to be the complex m × m matrix with the entries

(F(m))j,k = 1√
m

e−2π i(j−1)(k−1)/m [6]

for j, k = 1, 2, . . . , m − 1, m, where i = √−1 and e = exp(1); if the
size m is clear from the context, then we omit the superscript in
F(m), denoting the discrete Fourier transform by simply F.

Preliminaries
In this section, we discuss a subsampled randomized Fourier
transform. Refs. 3–6 introduced a similar transform for similar
purposes.

For any positive integers l and m with l ≤ m, we define the l ×m
SRFT to be the l × m random matrix

Tl×m = Gl×mHm×m, [7]

where G and H are defined as follows.
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In Eq. 7, G is the l × m random matrix given by the formula

Gl×m = Sl×mFm×mDm×m, [8]

where S is the l × m matrix whose entries are all zeros, aside from
a single 1 in column sj of row j for j = 1, 2, . . . , l − 1, l, where
s1, s2, . . . , sl−1, sl are i.i.d. integer random variables, each distrib-
uted uniformly over {1, 2, . . . , m−1, m}; moreover, F is the m×m
discrete Fourier transform, and D is the diagonal m × m matrix
whose diagonal entries d1, d2, . . . , dm−1, dm are i.i.d. complex ran-
dom variables, each distributed uniformly over the unit circle. (In
our numerical implementations, we drew s1, s2, . . . , sl−1, sl from
{1, 2, . . . , m − 1, m} without replacement, instead of using i.i.d.
draws.)

In Eq. 7, H is the m × m random matrix given by the formula

Hm×m = �m×m�m×mZm×m�̃m×m�̃m×mZ̃m×m, [9]

where � and �̃ are m × m permutation matrices chosen inde-
pendently and uniformly at random, and Z and Z̃ are diagonal
m × m matrices whose diagonal entries ζ1, ζ2, . . . , ζm−1, ζm and
ζ̃1, ζ̃2, . . . , ζ̃m−1, ζ̃m are i.i.d. complex random variables, each dis-
tributed uniformly over the unit circle; furthermore, � and �̃ are
the m × m matrices defined via the formulae

�m×m =

⎛
⎜⎜⎜⎜⎝

cos(θ1) sin(θ1) 0 0 0
− sin(θ1) cos(θ1) 0 0 0

0 0 1 0 0

0 0 0
. . . 0

0 0 0 0 1

⎞
⎟⎟⎟⎟⎠ ·

·

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0
0 cos(θ2) sin(θ2) 0 0
0 − sin(θ2) cos(θ2) 0 0
0 0 0 1 0

0 0 0 0
. . .

⎞
⎟⎟⎟⎟⎠ · · ·

· · ·

⎛
⎜⎜⎜⎜⎝

. . . 0 0 0 0
0 1 0 0 0
0 0 cos(θm−2) sin(θm−2) 0
0 0 − sin(θm−2) cos(θm−2) 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎠ ·

·

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0

0
. . . 0 0 0

0 0 1 0 0
0 0 0 cos(θm−1) sin(θm−1)
0 0 0 − sin(θm−1) cos(θm−1)

⎞
⎟⎟⎟⎟⎠ [10]

and (the same as Eq. 10, but with tildes)

�̃m×m =

⎛
⎜⎜⎜⎜⎜⎝

cos(θ̃1) sin(θ̃1) 0 0 0
− sin(θ̃1) cos(θ̃1) 0 0 0

0 0 1 0 0

0 0 0
. . . 0

0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠

·

·

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0 0
0 cos(θ̃2) sin(θ̃2) 0 0
0 − sin(θ̃2) cos(θ̃2) 0 0
0 0 0 1 0

0 0 0 0
. . .

⎞
⎟⎟⎟⎟⎟⎠

· · ·

· · ·

⎛
⎜⎜⎜⎜⎜⎝

. . . 0 0 0 0
0 1 0 0 0
0 0 cos(θ̃m−2) sin(θ̃m−2) 0
0 0 − sin(θ̃m−2) cos(θ̃m−2) 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠

·

·

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0 0

0
. . . 0 0 0

0 0 1 0 0
0 0 0 cos(θ̃m−1) sin(θ̃m−1)
0 0 0 − sin(θ̃m−1) cos(θ̃m−1)

⎞
⎟⎟⎟⎟⎟⎠

, [11]

where θ1, θ2, . . . , θm−2, θm−1, θ̃1, θ̃2, . . . , θ̃m−2, θ̃m−1 are i.i.d. real ran-
dom variables drawn uniformly from [0, 2π ]. We observe that �,
�̃, �, �̃, Z, and Z̃ are all unitary, and so H is also unitary.

We call the transform T an “SRFT” for lack of a better term.

Remark 1. Our earlier articles, refs. 7 and 8, omitted the matrix H in
the definition of the SRFT (Eq. 7). Numerical experiments indicate
that including H improves the performance of the algorithm of the
present article on sparse matrices.

The following lemma is similar to the subspace Johnson–
Lindenstrauss lemma (Corollary 11) of ref. 4, and is proven (in
a slightly different form) as Lemma 4.4 of ref. 8. The lemma
provides a highly probable upper bound on the condition num-
ber of the product of the l × m matrix G defined in Eq. 8 and
an independent m × n matrix U whose columns are orthonor-
mal, assuming that l is less than m and is sufficiently greater
than n2.

Lemma 1. Suppose that α and β are real numbers >1, and l, m, and
n are positive integers, such that

m > l ≥
(

α2 + 1
α2 − 1

)2

βn2. [12]

Suppose further that G is the l × m random matrix defined in Eq. 8.
Suppose in addition that U is an m× n random matrix whose columns
are orthonormal, and that U is independent of G.

Then, the condition number of GU is at most α with probability
at least 1 − 1

β
.

The following corollary of Lemma 1 follows immediately from
the fact that the random matrix H defined in Eq. 9 is unitary
and independent of the random matrix G defined in Eq. 8. The
corollary provides a highly probable upper bound on the condition
number of the l × m SRFT (defined in Eq. 7) applied to an m × n
matrix U whose columns are orthonormal, assuming that l is less
than m and is sufficiently greater than n2.

Corollary 1. Suppose that α and β are real numbers greater than 1,
and l, m, and n are positive integers, such that Eq. 12 holds. Suppose
further that T is the l×m SRFT defined in Eq. 7. Suppose in addition
that U is an m × n matrix whose columns are orthonormal.

Then, the condition number of TU is at most α with probability at
least 1 − 1

β
.

The following lemma states that, if A is an m × n matrix, b is an
m × 1 vector, and T is the l × m SRFT defined in Eq. 7, then, with
high probability, an n × 1 vector z minimizing ‖TAz − Tb‖ also
minimizes ‖Az − b‖ to within a reasonably small factor. Whereas
solving Az ≈ b in the least-squares sense involves m simultaneous
linear equations, solving TAz ≈ Tb involves just l simultaneous
equations. This lemma is modeled after similar results in refs. 3–
5, and is proven (in a slightly different form) as Lemma 4.8 of
ref. 8.
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Lemma 2. Suppose that α and β are real numbers >1, and l, m, and
n are positive integers, such that

m > l ≥
(

α2 + 1
α2 − 1

)2

β(n + 1)2. [13]

Suppose further that T is the l×m SRFT defined in Eq. 7. Suppose in
addition that A is an m×n matrix, and b is an m×1 vector. Suppose
finally that z is an n × 1 vector minimizing the quantity

‖TAz − Tb‖. [14]

Then,

‖Az − b‖ ≤ α min
y∈Cn

‖Ay − b‖ [15]

with probability at least 1 − 1
β

.

Mathematical Apparatus
In this section, we prove a theorem that (in conjunction with
Corollary 1) guarantees that the algorithm of the present article is
fast.

In the proof of Theorem 1 below, we will need the following
technical lemma.

Lemma 3. Suppose that l, m, and n are positive integers such that
m ≥ l ≥ n. Suppose further that A is an m × n matrix, and that the
SVD of A is

Am×n = Um×n�n×nV ∗
n×n, [16]

where U is an m×n matrix whose columns are orthonormal, V is an
n × n matrix whose columns are orthonormal, and � is a diagonal
n × n matrix whose entries are all nonnegative. Suppose in addition
that T is an l × m matrix, and that the SVD of the l × n matrix TU is

Tl×mUm×n = Ũl×n�̃n×nṼ ∗
n×n. [17]

Then, there exist an n × n matrix P, and an l × n matrix Q whose
columns are orthonormal, such that

Tl×mAm×n = Ql×nPn×n. [18]

Furthermore, if P is any n × n matrix, and Q is any l × n matrix
whose columns are orthonormal, such that P and Q satisfy Eq. 18,
then

Pn×n = (Ql×n)∗Ũl×n�̃n×nṼ ∗
n×n�n×nV ∗

n×n; [19]

if, in addition, the matrices A and TU both have full rank (rank n),
then there exists a unitary n × n matrix W such that

Ũl×n = Ql×nWn×n. [20]

Proof: An example of matrices P and Q satisfying Eq. 18 such that
the columns of Q are orthonormal is P = �̃Ṽ ∗�V ∗ and Q = Ũ .

We now assume that P is any n × n matrix, and Q is any l × n
matrix whose columns are orthonormal, such that P and Q satisfy
Eq. 18. Combining Eqs. 18, 16, and 17 yields

Ql×nPn×n = Ũl×n�̃n×nṼ ∗
n×n�n×nV ∗

n×n. [21]

Combining Eq. 21 and the fact that the columns of Q are
orthonormal (so that Q∗Q = 1) yields Eq. 19.

For the remainder of the proof, we assume that the matrices A
and TU both have full rank. To establish Eq. 20, we demonstrate
that the column spans of Q and Ũ are the same. It then follows
from the fact that the columns of Q are an orthonormal basis for
this column span, as are the columns of Ũ , that there exists a uni-
tary n × n matrix W satisfying Eq. 20. We now complete the proof
by showing that

column span of Ql×n = column span of Ũl×n. [22]

Obviously, it follows from Eq. 21 that

column span of Ql×nPn×n

= column span of Ũl×n�̃n×nṼ ∗
n×n�n×nV ∗

n×n; [23]

we will simplify both sides of Eq. 23, in order to obtain Eq. 22.
It follows from the assumption that A and TU both have full

rank that the matrices � and �̃ in the SVDs in Eqs. 16 and 17
are nonsingular, and so (as the unitary matrices V and Ṽ are also
nonsingular)

column span of Ũl×n�̃n×nṼ ∗
n×n�n×nV ∗

n×n

= column span of Ũl×n. [24]

Combining Eqs. 23, 24, and the fact that the column span of Ũ
is n-dimensional (after all, the n columns of Ũ are orthonormal)
yields that the column span of QP is n-dimensional. Combining
this fact, the fact that the column span of QP is a subspace of
the column span of Q, and the fact that the column span of Q
is n-dimensional (after all, the n columns of Q are orthonormal)
yields

column span of Ql×nPn×n = column span of Ql×n. [25]

Combining Eqs. 23, 24, and 25 yields Eq. 22, completing the
proof.

The following theorem states that, given an m × n matrix A, the
condition number of a certain preconditioned version of A corre-
sponding to an l × m matrix T is equal to the condition number
of TU , where U is an m × n matrix of orthonormal left singular
vectors of A.

Theorem 1. Suppose that l, m, and n are positive integers such that
m ≥ l ≥ n. Suppose further that A is a full-rank m × n matrix, and
that the SVD of A is

Am×n = Um×n�n×nV ∗
n×n. [26]

Suppose in addition that T is an l × m matrix such that the l × n
matrix TU has full rank.

Then, there exist an n × n matrix P, and an l × n matrix Q whose
columns are orthonormal, such that

Tl×mAm×n = Ql×nPn×n. [27]

Furthermore, if P is any n × n matrix, and Q is any l × n matrix
whose columns are orthonormal, such that P and Q satisfy Eq. 27,
then the condition numbers of AP−1 and TU are equal.

Proof: Lemma 3 guarantees the existence of matrices P and Q
satisfying Eq. 27 such that the columns of Q are orthonormal.

For the remainder of the proof, we assume that P is an n × n
matrix, and Q is an l × n matrix whose columns are orthonormal,
such that P and Q satisfy Eq. 27. Combining Eq. 19, Eq. 20, and
the fact that the columns of Q are orthonormal (so that Q∗Q = 1)
yields

Pn×n = Wn×n�̃n×nṼ ∗
n×n�n×nV ∗

n×n, [28]

where W is the matrix from Eq. 20, and �̃ and Ṽ are the matrices
from the SVD in Eq. 17. Combining Eq. 26, Eq. 28, and the fact
that V , Ṽ , and W are unitary yields

Am×nP−1
n×n = Um×nṼn×n�̃

−1
n×nW ∗

n×n. [29]

Combining Eq. 29, the fact that Ṽ and W are unitary, the fact that
the columns of U are orthonormal (so that U∗U = 1), and the
fact that �̃ is diagonal yields

∥∥(
Am×nP−1

n×n

)∗(Am×nP−1
n×n

)∥∥ = ∥∥�̃−1
n×n

∥∥2 [30]
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and ∥∥((
Am×nP−1

n×n

)∗(Am×nP−1
n×n

))−1∥∥ = ‖�̃n×n‖2. [31]

Combining Eqs. 4, 30, and 31, and the SVD in Eq. 17 yields that
the condition numbers of AP−1 and TU are equal, completing the
proof.

The Algorithm
In this section, we describe the algorithm of the present article,
giving details about its implementation and computational costs.

Description of the Algorithm. Suppose that m and n are positive
integers with m ≥ n, A is a full-rank m×n matrix, and b is an m×1
column vector. In this subsection, we describe a procedure for the
computation of an n × 1 column vector x such that x minimizes
‖Ax − b‖ to arbitrarily high precision.

Rather than directly calculating the vector x minimizing ‖Ax −
b‖, we will first calculate the vector y minimizing ‖Cy − b‖, where
C = AP−1 and y = Px, with an appropriate choice of an n × n
matrix P; the matrix P is known as a preconditioning matrix. With
an appropriate choice of P, the condition number of C is reason-
ably small, and so an iterative solver such as the conjugate gradient
method will require only a few iterations in order to obtain y min-
imizing ‖Cy − b‖ to high precision. Once we have calculated y, we
obtain x via the formula x = P−1y.

To construct the preconditioning matrix P, we compute E = TA,
where T is the l × m SRFT defined in Eq. 7, with m ≥ l ≥ n. We
then form a pivoted QR-decomposition of E, computing an l × n
matrix Q whose columns are orthonormal, an upper-triangular
n × n matrix R, and an n × n permutation matrix �, such that
E = QR�. We use the product P = R� as the preconditioning
matrix. Fortuitously, because this matrix P is the product of an
upper-triangular matrix and a permutation matrix, we can apply
P−1 or (P−1)∗ to any arbitrary vector rapidly, without calculating
the entries of P−1 explicitly.

The condition number of C = AP−1 is reasonably small with
very high probability whenever l is sufficiently greater than n, due
to Theorem 1 and Corollary 1; moreover, numerical experiments
reported in Numerical Results suggest that the condition number
of C is practically always less than 3 or so when l = 4n. Therefore,
when l is sufficiently greater than n, the conjugate gradient method
requires only a few iterations in order to compute y minimizing
‖Cy − b‖ to high precision; furthermore, the conjugate gradient
method requires only applications of A, A∗, P−1, and (P−1)∗ to
vectors, and all of these matrices are readily available for applica-
tion to vectors. Once we have calculated y, we obtain x minimizing
‖Ax − b‖ via the formula x = P−1y.

There is a natural choice for the starting vector of the conjugate
gradient iterations. Combining the fact that E = TA with Eqs. 14
and 15 yields that, with high probability, the n × 1 vector z min-
imizing ‖Ez − Tb‖ also minimizes ‖Az − b‖ to within a factor of
3, provided that l is sufficiently greater than n (in practice, l = 4n
is sufficient). Thus, z is a good choice for the starting vector of
the iterations. Moreover, combining the facts that E = QP and
that the columns of Q are orthonormal yields that z = P−1Q∗Tb,
providing a convenient means of computing z.

In summary, if ε is any specified positive real number, we can
compute an n × 1 column vector x such that x minimizes ‖Ax − b‖
to relative precision ε, via the following five steps:

1. Compute E = TA, where T is the l × m SRFT defined in
Eq. 7, with m ≥ l ≥ n. (See, for example, Subsection 3.3
of ref. 8 for details on applying the SRFT rapidly.)

2. Form a pivoted QR-decomposition of E from Step 1, com-
puting an l × n matrix Q whose columns are orthonormal,
an upper-triangular n × n matrix R, and an n × n permu-
tation matrix �, such that E = QR�. (See, for example,
Chapter 5 in ref. 2 for details on computing such a pivoted
QR-decomposition.)

3. Compute the n×1 column vector z = P−1(Q∗(Tb)), where
T is the l × m SRFT defined in Eq. 7, Q is the l × n matrix
from Step 2 whose columns are orthonormal, and P = R�;
R and � are the upper-triangular and permutation matri-
ces from Step 2. (See, for example, Subsection 3.3 of ref. 8
for details on applying the SRFT rapidly.)

4. Compute an n × 1 column vector y which minimizes
‖AP−1y−b‖ to relative precision ε, via the preconditioned
conjugate gradient iterations, where P = R� is the pre-
conditioning matrix; R and � are the upper-triangular and
permutation matrices from Step 2. Use z from Step 3 as
the starting vector. (See, for example, Algorithm 7.4.3 in
ref. 1 for details on the preconditioned conjugate gradient
iterations for linear least-squares problems.)

5. Compute x = P−1y, where y is the vector from Step 4,
and again P = R�; R and � are the upper-triangular and
permutation matrices from Step 2.

Cost. In this subsection, we estimate the number of floating-point
operations required by each step of the algorithm of the preceding
subsection.

We denote by κ the condition number of the preconditioned
matrix AP−1. The five steps of the algorithm incur the following
costs:

1. Applying T to every column of A costs O(mn log(l)).
2. Computing the pivoted QR-decomposition of E costs

O(n2l).
3. Applying T to b costs O(m log(l)). Applying Q∗ to Tb costs

O(nl). Applying P−1 = �−1R−1 to Q∗Tb costs O(n2).
4. When l ≥ 4n2, Eq. 15 guarantees with high probabil-

ity that the vector z has a residual ‖Az − b‖ that is no
greater than 3 times the minimum possible. When started
with such a vector, the preconditioned conjugate gradi-
ent algorithm requires O(κ log(1/ε)) iterations in order to
improve the relative precision of the residual to ε (see, for
example, formula 7.4.7 in ref. 1). Applying A and A∗ a total
of O(κ log(1/ε)) times costs O(mnκ log(1/ε)). Apply-
ing P−1 and (P−1)∗ a total of O(κ log(1/ε)) times costs
O(n2κ log(1/ε)). These costs dominate the costs of the
remaining computations in the preconditioned conjugate
gradient iterations.

5. Applying P−1 = �−1R−1 to y costs O(n2).

Summing up the costs in the five steps above, we see that the cost
of the entire algorithm is

Ctheoretical = O((log(l) + κ log(1/ε))mn + n2l). [32]

The condition number κ of the preconditioned matrix AP−1 can be
made arbitrarily close to 1, by choosing l sufficiently large. Accord-
ing to Theorem 1 and Corollary 1, choosing l ≥ 4n2 guarantees that
κ is at most 3, with high probability.

Remark 2. Currently, our estimates require that l be at least 4n2 in
order to ensure with high probability that κ is at most 3 and that the
residual ‖Az−b‖ is no greater than three times the minimum possible.
However, our numerical experiments indicate that it is not necessary
for l to be as large as 4n2 (though it is sufficient). Indeed, in all of our
tests, choosing l = 4n produced a condition number κ less than 3
and a residual ‖Az − b‖ no greater than three times the minimum
possible residual. With l = 4n and κ ≤ 3, the cost in Eq. 32 becomes

Ctypical = O((log(n) + log(1/ε))mn + n3). [33]

Numerical Results
In this section, we describe the results of several numerical tests
of the algorithm of the present article.
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Table 1. Timings

m n l t0 t t0/t

32768 64 256 .14E1 .13E1 1.1
32768 128 512 .55E1 .27E1 2.0
32768 256 1024 .22E2 .59E1 3.7
32768 512 2048 .89E2 .15E2 5.7

We use the algorithm to compute an n × 1 vector x such that
x minimizes ‖Ax − b‖ to high precision, where b is an m × 1 unit
vector, and A is the m × n matrix defined via the formula

Am×n = Um×n�n×nV ∗
n×n; [34]

in all experiments described below, U is obtained by applying the
Gram–Schmidt process to the columns of an m × n matrix whose
entries are i.i.d. centered complex Gaussian random variables, V
is obtained by applying the Gram–Schmidt process to the columns
of an n×n matrix whose entries are i.i.d. centered complex Gauss-
ian random variables, and � is a diagonal n × n matrix, with the
diagonal entries

�k,k = 10−6(k−1)/(n−1) [35]

for k = 1, 2, . . . , n − 1, n. Clearly, the condition number κA of A is

κA = �1,1/�n,n = 106. [36]

The m × 1 unit vector b is defined via the formula

b = 10−3w + Ay, [37]

where w is a random m × 1 unit vector orthogonal to the column
span of A, and Ay is a vector from the column span of A such that
‖b‖ = 1.

We implemented the algorithm in Fortran 77 in double-
precision arithmetic, and used the Lahey/Fujitsu Express v6.2
compiler. We used one core of a 1.86 GHz Intel Centrino
Core Duo microprocessor with 1 GB of RAM. For the direct
computations, we used the classical algorithm for pivoted QR-
decompositions based on plane (Householder) reflections (see,
for example, Chapter 5 in ref. 2).

Table 1 displays timing results with m = 32768 for various values
of n; Table 2 displays the corresponding errors. Table 3 displays
timing results with n = 256 for various values of m; Table 4 displays
the corresponding errors.

The headings of the tables are as follows:

• m is the number of rows in the matrix A, as well as the length
of the vector b, in ‖Ax − b‖.

• n is the number of columns in the matrix A, as well as the length
of the vector x, in ‖Ax − b‖.

• l is the number of rows in the matrix T used in Steps 1 and 3 of
the procedure in Description of the Algorithm.

• t0 is the time in seconds required by the direct, classical
algorithm.

• t is the time in seconds required by the algorithm of the present
article.

Table 2. Condition numbers after preconditioning and accuracies

m n l κ i εrel

32768 64 256 2.7 14 .120E—15
32768 128 512 2.9 14 .132E—15
32768 256 1024 2.9 14 .429E—15
32768 512 2048 2.9 13 .115E—14

Table 3. Timings

m n l t0 t t0/t

2048 256 1024 .12E1 .71E0 1.6
4096 256 1024 .25E1 .94E0 2.6
8192 256 1024 .51E1 .14E1 3.5

16384 256 1024 .10E2 .26E1 4.1
32768 256 1024 .22E2 .50E1 4.4
65536 256 1024 .49E2 .11E2 4.4

• t0/t is the factor by which the algorithm of the present article is
faster than the classical algorithm.

• κ is the condition number of AP−1, the preconditioned version
of the matrix A.

• i is the number of iterations required by the preconditioned
conjugate gradient method to yield the requested precision εrel
of 0.5E–14 or better in Table 2, and 0.5E–10 or better in Table 4.

• εrel is defined via the formula

εrel = δ − δmin

κA · δmin
, [38]

where κA is the condition number of A given in Eq. 36, δ =
‖Ax − b‖ (x is the solution vector produced by the randomized
algorithm), and

δmin = min
y∈Cn

‖Ay − b‖ = 10−3. [39]

Remark 3. Standard perturbation theory shows that εrel is the appro-
priately normalized measure of the precision produced by the algo-
rithm; see, for example, formula 1.4.27 in ref. 1.

The values for εrel and i reported in the tables are the worst
(maximum) values encountered during 10 independent random-
ized trials of the algorithm, as applied to the same matrix A and
vector b. The values for t reported in the tables are the aver-
age values over 10 independent randomized trials. None of the
quantities reported in the tables varied significantly over repeated
randomized trials.

The following observations can be made from the examples
reported here, and from our more extensive experiments:

1. When m = 32768, n = 512, and the condition number of A
is 106, the randomized algorithm runs over five times faster
than the classical algorithm based on plane (Householder)
reflections, even at full double precision.

2. As observed in Remark 2, our choice l = 4n seems to
ensure that the condition number κ of the preconditioned
matrix is at most 3. More generally, κ seems to be smaller
than a function of the ratio l/n.

3. The algorithm of the present article produces high preci-
sion at reasonably low cost.

Table 4. Condition numbers after preconditioning and accuracies

m n l κ i εrel

2048 256 1024 2.2 4 .326E—10
4096 256 1024 2.6 5 .364E—10
8192 256 1024 2.7 6 .160E—10

16384 256 1024 2.8 7 .599E—11
32768 256 1024 2.9 8 .502E-–11
65536 256 1024 2.9 8 .177E—11
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A
PP

LI
ED

M
AT

H
EM

AT
IC

S

Conclusions and Generalizations
This article provides a fast algorithm for overdetermined linear
least-squares regression. If the matrices A and A∗ from the regres-
sion involving ‖Ax − b‖ can be applied sufficiently rapidly to arbi-
trary vectors, then the algorithm of the present article can be accel-
erated further. Moreover, the methods developed here for overde-
termined regression extend to underdetermined regression.

The theoretical bounds in Lemma 1, Corollary 1, and Lemma 2
should be considered preliminary. Our numerical experiments
indicate that the algorithm of the present article performs better

than our estimates guarantee. Furthermore, there is nothing mag-
ical about the subsampled randomized Fourier transform defined
in Eq. 7. In our experience, several other similar transforms appear
to work at least as well, and we are investigating these alternatives
(see, for example, ref. 9).
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