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Abstract

This survey highlights the recent advances in algorithms for nu-
merical linear algebra that have come from the technique of linear
sketching, whereby given a matrix, one first compresses it to a much
smaller matrix by multiplying it by a (usually) random matrix with
certain properties. Much of the expensive computation can then be
performed on the smaller matrix, thereby accelerating the solution for
the original problem. In this survey we consider least squares as well as
robust regression problems, low rank approximation, and graph spar-
sification. We also discuss a number of variants of these problems.
Finally, we discuss the limitations of sketching methods.
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1 Introduction

To give the reader a flavor of results in this survey, let us first consider the
classical linear regression problem. In a special case of this problem one
attempts to “fit” a line through a set of given points as best as possible.

For example, the familiar Ohm’s law states that the voltage V is equal to
the resistance R times the electrical current I, or V = R · I. Suppose one is
given a set of n example volate-current pairs (vj , ij) but does not know the
underlying resistance. In this case one is attempting to find the unknown
slope of a line through the origin which best fits these examples, where best
fits can take on a variety of different meanings.

More formally, in the standard setting there is one measured variable b,
in the above example this would be the voltage, and a set of d predictor
variables a1, . . . , ad. In the above example d = 1 and the single predictor
variable is the electrical current. Further, it is assumed that the variables are
linearly related up to a noise variable, that is b = x0 +a1x1 + · · ·+adxd + γ,
where x0, x1, . . . , xd are the coefficients of a hyperplane we are trying to
learn (which does not go through the origin if x0 6= 0), and γ is a random
variable which may be adversarially chosen, or may come from a distribution
which we may have limited or no information about. The xi are also known
as the model parameters. By introducing an additional predictor variable
a0 which is fixed to 1, we can in fact assume that the unknown hyperplane
goes through the origin, that is, it is an unknown subspace of codimension
1. We will thus assume that b = a1x1 + · · ·+ adxd + γ and ignore the affine
component throughout.

In an experiment one is often given n observations, or n (d + 1)-tuples
(ai,1, . . . , ai,d, bi), for i = 1, 2, . . . , n. It is more convenient now to think of
the problem in matrix form, where one is given an n×d matrix A whose rows
are the values of the predictor variables in the d examples, together with an
n×1 column vector b whose entries are the corresponding observations, and
the goal is to output the coefficient vector x so that Ax and b are close in
whatever the desired sense of closeness may mean. Notice that as one ranges
over all x ∈ R

d, Ax ranges over all linear combinations of the d columns of
A, and therefore defines a d-dimensional subspace of Rn, which we refer to
as the column space of A. Therefore the regression problem is equivalent to
finding the vector x for which Ax is the closest point in the column space
of A to the observation vector b.

Much of the focus of this survey will be on the over-constrained case,
in which the number n of examples is much larger than the number d of
predictor variables. Note that in this case there are more constraints than
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unknowns, and there need not exist a solution x to the equation Ax = b.
Regarding the measure of fit, or closeness of Ax to b, one of the most

common is the least squares method, which seeks to find the closest point
in Euclidean distance, i.e.,

argminx‖Ax− b‖2 =
n∑

i=1

(bi − 〈Ai,∗,x〉)2,

where Ai,∗ denotes the i-th row of A, and bi the i-th entry of the vector b.
This error measure has a clear geometric interpretation, as the optimal x
satisfies that Ax is the standard Euclidean projection of b onto the column
space of A. Because of this, it is possible to write the solution for this
problem in a closed form. That is, necessarily one has ATAx∗ = ATb
for the optimal solution x∗ by considering the gradient at a point x, and
observing that in order for it to be 0, that is for x to be a minimum, the
above equation has to hold. The equation ATAx∗ = ATb is known as the
normal equation, which captures that the line connecting Ax∗ to b should be
perpendicular to the columns spanned by A. If the columns of A are linearly
independent, ATA is a full rank d× d matrix and the solution is therefore
given by x∗ = (ATA)−1ATb. Otherwise, there are multiple solutions and
a solution x∗ of minimum Euclidean norm is given by x∗ = A†b, where
A† is the Moore-Penrose pseudoinverse of A. Recall that if A = UΣVT

is the singular value decomposition (SVD) of A, where U is n × d with
orthonormal columns, Σ is a diagonal d× d matrix with non-negative non-
increasing diagonal entries, and VT is a d×d matrix with orthonormal rows,
then the Moore-Penrose pseudoinverse of A is the d × n matrix VΣ†UT ,
where Σ† is a d× d diagonal matrix with Σ†

i,i = 1/Σi,i if Σi,i > 0, and is 0
otherwise.

The least squares measure of closeness, although popular, is somewhat
arbitrary and there may be better choices depending on the application at
hand. Another popular choice is the method of least absolute deviation, or
ℓ1-regression. Here the goal is to instead find x∗ so as to minimize

‖Ax− b‖1 =

n∑

i=1

|bi − 〈Ai,∗,x〉|.

This measure is known to be less sensitive to outliers than the least squares
measure. The reason for this is that one squares the value bi − 〈Ai,∗,x〉
in the least squares cost function, while one only takes its absolute value
in the least absolute deviation cost function. Thus, if bi is significantly
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larger (or smaller) than 〈Ai,∗,x〉 for the i-th observation, due, e.g., to large
measurement noise on that observation, this requires the sought hyperplane
x to be closer to the i-th observation when using the least squares cost
function than when using the least absolute deviation cost function. While
there is no closed-form solution for least absolute deviation regression, one
can solve the problem up to machine precision in polynomial time by casting
it as a linear programming problem and using a generic linear programming
algorithm.

The problem with the above solutions is that on massive data sets, they
are often too slow to be of practical value. Using näive matrix multiplication,
solving the normal equations for least squares would take at least n ·d2 time.
For least absolute deviation regression, when casting the problem as a linear
program one needs to introduce O(n) variables (these are needed to enforce
the absolute value constraints) and O(n) constraints, and generic solvers
would take poly(n) time for an polynomial in n which is at least cubic.
While these solutions are polynomial time, they are prohibitive for large
values of n.

The starting point of this survey is a beautiful work by Tamás Sarlós
[105] which observed that one could use sketching techniques to improve
upon the above time complexities, if one is willing to settle for a random-
ized approximation algorithm. Here, one relaxes the problem to finding a
vector x so that ‖Ax− b‖p ≤ (1 + ε)‖Ax∗ − b‖p, where x∗ is the optimal
hyperplane, with respect to the p-norm, for p either 1 or 2 as in the dis-
cussion above. Moreover, one allows the algorithm to fail with some small
probability δ, which can be amplified by independent repetition and taking
the best hyperplane found.

While sketching techniques will be described in great detail in the fol-
lowing sections, we give a glimpse of what is to come below. Let r≪ n, and
suppose one chooses a r×n random matrix S from a certain distribution on
matrices to be specified. Consider the following algorithm for least squares
regression:

1. Sample a random matrix S.

2. Compute S ·A and S · b.

3. Output the exact solution x to the regression problem minx ‖(SA)x−
(Sb)‖2.

Let us highlight some key features of this algorithm. First, notice that
it is a black box reduction, in the sense that after computing S · A and
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S · b, we then solve a smaller instance of least squares regression, replacing
the original number n of observations with the smaller value of r. For r
sufficiently small, we can then afford to carry out step 3, e.g., by computing
and solving the normal equations as described above.

The most glaring omission from the above algorithm is which random
familes of matrices S will make this procedure work, and for what values
of r. Perhaps one of the simplest arguments is the following. Suppose
r = Θ(d/ε2) and S is a r × n matrix of i.i.d. normal random variables with
mean zero and variance 1/r, denoted N(0, 1/r). Let U be an n × (d + 1)
matrix with orthonormal columns for which the column space of U is equal
to the column space of [A,b], that is, the space spanned by the columns of
A together with the vector b.

Consider the product S · U. By 2-stability of the normal distribu-
tion, i.e., if A ∼ N(0, σ2

1) and B ∼ N(0, σ2
2), then A + B ∼ N(0, σ2

1 +
σ2
2), each of the entries of S · U is distributed as N(0, 1/r) (recall that

the column norms of U are equal to 1). The entries in different rows
of S · U are also independent since the rows of S are independent. The
entries in a row are also independent by rotational invarance of the nor-
mal distribution, that is, if g ∼ N(0, In/r) is an n-dimensional vector of
normal random variables and U∗,1, . . . ,U∗,d are orthogonal vectors, then
〈g,U∗,1〉, 〈g,U∗,2〉, . . . , 〈g,U∗,d+1〉 are independent. Here In is the n × n
identity matrix (to see this, by rotational invariance, these d + 1 random
variables are equal in distribution to 〈g, e1〉, 〈g, e2〉, . . . , 〈g, ed+1〉, where
e1, . . . , ed+1 are the standard unit vectors, from which independence follows
since the coordinates of g are independent).

It follows that S ·U is an r × (d + 1) matrix of i.i.d. N(0, 1/r) random
variables. For r = Θ(d/ε2), it is well-known that with probability 1 −
exp(−d), all the singular values of S ·U lie in the interval [1− ε, 1 + ε]. This
can be shown by arguing that for any fixed vector x, ‖S ·Ux‖22 = (1±ε)‖x‖22
with probability 1 − exp(−d), since, by rotational invariance of the normal
distribution, S ·Ux is a vector of r i.i.d. N(0, ‖x‖22) random variables, and
so one can apply a tail bound for ‖S · Ux‖22, which itself is a χ2-random
variable with r degrees of freedom. The fact that all singular values of S ·U
lie in [1− ε, 1 + ε] then follows by placing a sufficiently fine net on the unit
sphere and applying a union bound to all net points; see, e.g., Theorem 2.1
of [104] for further details.

Hence, for all vectors y, ‖SUy‖2 = (1± ε)‖Uy‖2. But now consider the
regression problem minx ‖(SA)x− (Sb)‖2 = minx ‖S(Ax− b)‖2. For each
vector x, Ax−b is in the column space of U, and therefore by the previous
paragraph, ‖S(Ax−b)‖2 = (1±ε)‖Ax−b‖2. It follows that by solving the
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regression problem minx ‖(SA)x−(Sb)‖2, we obtain a (1+ε)-approximation
to the original regression problem with probability 1− exp(−d).

The above technique of replacing A by S · A is known as a sketching
technique and S ·A is referred to as a (linear) sketch of A. While the above
is perhaps the simplest instantiation of sketching, notice that it does not in
fact give us a faster solution to the least squares regression problem. This
is because, while solving the regression problem minx ‖(SA)x− (Sb)‖2 can
now be done näively in only O(rd2) time, which no longer depends on the
large dimension n, the problem is that S is a dense matrix and computing
S ·A may now be too slow, taking Θ(nrd) time.

Thus, the bottleneck in the above algorithm is the time for matrix-
matrix multiplication. Tamás Sarlós observed [105] that one can in fact
choose S to come from a much more structured random family of matri-
ces, called fast Johnson-Lindenstrauss transforms [2]. These led to roughly
O(nd log d)+poly(d/ε) time algorithms for the least squares regression prob-
lem. Recently, Clarkson and Woodruff [27] improved upon the time com-
plexity of this algorithm to obtain optimal algorithms for approximate least
squares regression, obtaining O(nnz(A)) + poly(d/ε) time, where nnz(A)
denotes the number of non-zero entries of the matrix A. We call such al-
gorithms input-sparsity algorithms, as they exploit the number of non-zero
entries of A. The poly(d/ε) factors were subsequently optimized in a num-
ber of papers [92, 97, 18], leading to optimal algorithms even when nnz(A)
is not too much larger than d.

In parallel, work was done on reducing the dependence on ε in these
algorithms from polynomial to polylogarithmic. This started with work
of Rokhlin and Tygert [103] (see also the Blendenpik algorithm [8]), and
combined with the recent input sparsity algorithms give a running time
of O(nnz(A) log(1/ε)) + poly(d) for least squares regression [27]. This is
significant for high precision applications of least squares regression, for
example, for solving an equation of the form ATAx = ATb. Such equations
frequently arise in interior point methods for linear programming, as well
as iteratively reweighted least squares regression, which is a subroutine for
many important problems, such as logistic regression; see [94] for a survey of
such techniques for logistic regression. In these examples A is often formed
from the Hessian of a Newton step in an iteration. It is clear that such an
equation is just a regression problem in disguise (in the form of the normal
equations), and the (exact) solution of argminx‖Ax − b‖2 provides such a
solution. By using high precision approximate regression one can speed up
the iterations in such algorithms.

Besides least squares regression, related sketching techniques have also
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been instrumental in providing better robust ℓ1-regression, low rank ap-
proximation, and graph sparsifiers, as well as a number of variants of these
problems. We will cover these applications each in more detail.

Roadmap: In the next section we will discuss least squares regression in
full detail, which includes applications to constrained and structured regres-
sion. In Section 3, we will then discuss ℓp-regression, including least absolute
deviation regression. In Section 4 we will dicuss low rank approximation,
while in Section 5, we will discuss graph sparsification. In Section 6, we
will discuss the limitations of sketching techniques. In Section 7, we will
conclude and briefly discuss a number of other directions in this area.

2 Subspace Embeddings and Least Squares Re-

gression

We start with the classical least squares regression problem, which is the fol-
lowing. We are given an n× d matrix A, which is typically overconstrained,
that is, n≫ d, together with an n×1 vector b, and we would like to find an
x ∈ R

d which minimizes ‖Ax− b‖2. Since the problem is overconstrained,
there need not exist a vector x for which Ax = b. We relax the problem
and instead allow for outputting a vector x′ for which with probability .99,

‖Ax′ − b‖2 ≤ (1 + ε)‖Ax− b‖2.

We are interested in fast solutions to this problem, which we present in §2.5.
Section Overview: In §2.1 we introduce the notion of an ℓ2-subspace

embedding, which is crucial to many of the applications in this book. In this
section we will focus on its application to least squares regression. We show
several different randomized constructions which vary in the time it takes to
construct and apply them, as well as the dimension which they embed into.
These constructions turn out to be oblivious to the data set. In §2.2 we intro-
duce a primitive called matrix product, which is a primitive for performing
approximate matrix multiplication. Using this primitive we will show how
to construct an ℓ2-subspace embedding. The primitive will also play a role
in §2.5 in solving regression with a linear in 1/ε dependence on the accuracy
parameter ε, as well as in §4.1 on low rank matrix approximation. In §2.3
we present a trick which takes any constant probability of success subspace
embedding and shows how to obtain a high probability success subspace em-
bedding. Thus, to some extent our earlier treatment of constant subspace
embeddings is justified. In §2.4 we present a completely different way of
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achieving a subspace embedding, which is non-oblivious and is obtained by
sampling rows of a matrix proportional to their so-called leverage scores.
In §2.5 we present a black box application of subspace embeddings to the
least squares regression problem. In §2.6 we show how to use subspace em-
beddings in a different way to solve least squares regression, leading to an
algorithm with only a logarithmic dependence on the error parameter 1/ε.
This method, while it has a much better dependence on 1/ε, does require
multiple passes over the data unlike the method of §2.5. Finally, in §2.7 we
show that for regression instances which possess additional structure, such
as those that arise in polynomial fitting problems, one can apply subspace
embeddings even faster than via generic ways presented before.

2.1 Subspace embeddings

We start with the basic notion of an ℓ2-subspace embedding for the column
space of an n×d matrix A. As we will see, this will be a powerful hammer for
solving least squares regression. Throughout, for non-negative real numbers
a and b, we use the notation a = (1± ε)b if a ∈ [(1− ε)b, (1 + ε)b].

Definition 1 A (1 ± ε) ℓ2-subspace embedding for the column space of an
n× d matrix A is a matrix S for which for all x ∈ R

d

‖SAx‖22 = (1± ε)‖Ax‖22.

We will often abuse notation and say that S is an ℓ2-subspace embedding
for A itself, even though it should be understood from the definition that
this property does not depend on a particular basis for the representation
of the column space of A.

Notice that if S is a (1 ± ε) ℓ2-subspace embedding for A, then it is
also a (1 ± ε) ℓ2-subspace embedding for U, where U is an orthonormal
basis for the column space of A. This is because the sets {Ax | x ∈ R

d}
and {Uy | y ∈ R

t} are equal, where t is the rank of A. Hence, we could
without loss of generality assume that A has orthonormal columns. With
this interpretation, the requirement of Definition 1 becomes

‖SUy‖22 = (1± ε)‖Uy‖22 = (1± ε)‖y‖22,

where the final equality holds since U has orthonormal columns. If this
requirement is satisfied for unit vectors y, then it is satisfied for all vectors
y by scaling (since S is a linear map), so the requirement of Definition 1 can
be further simplified to

‖Id −UTSTSU‖2 ≤ ε, (1)
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that is, the operator norm supy such that ‖y‖2=1 ‖Id −UTSTSU‖2, should be
at most ε. Here, Id is the d× d identity matrix.

There are various goals of subspace embeddings. Two of the main goals
are finding a matrix S with a small number of rows. Another goal is to be
able to compute S ·A quickly, as this is often a bottleneck in applications.

There are a number of ways of constructing ℓ2-subspace embeddings
which achieve various tradeoffs. One particularly useful form of an ℓ2-
subspace embedding is an oblivious ℓ2-subspace embedding.

Definition 2 Suppose Π is a distribution on r × n matrices S, where r is
a function of n, d, ε, and δ. Suppose that with probability at least 1− δ, for
any fixed n × d matrix A, a matrix S drawn from distribution Π has the
property that S is a (1 ± ε) ℓ2-subspace embedding for A. Then we call Π
an (ε, δ) oblivious ℓ2-subspace embedding.

Definition 2 will be used in applications throughout this book, and some-
times for convenience we will drop the word oblivious.

We do want to note that there are other ways of constructing subspace
embeddings though, such as through sampling the rows of A via a certain
distribution and reweighting them. This is called Leverage Score Sampling
[42, 46, 45, 43], which will be discussed later in the section. This also turns
out to have a number of applications, for example to CUR decompositions
of a matrix discussed in §4.2. Note that this way of constructing subspace
embeddings is desirable in that it gives an actual “representative” subset of
rows of A which form a subspace embedding - this is often called a coreset.
Such representations can sometimes lead to better data interpretability, as
well as preserving sparsity. While we do discuss this kind of sampling to some
extent, our main focus will be on sketching. The reader is encouraged to look
at the survey by Mahoney for more details on sampling-based approaches
[85]. See also [78] and [31] for state of the art subspace embeddings based
on this approach.

Returning to Definition 2, the first usage of this in the numerical linear
algebra community, to the best of our knowledge, was done by Sárlos, who
proposed using Fast Johnson Lindenstrauss transforms to provide subspace
embeddings. We follow the exposition in Sarlós for this [105].

Definition 3 A random matrix S ∈ R
k×n forms a Johnson-Lindenstrauss

transform with parameters ε, δ, f , or JLT(ε, δ, f) for short, if with probability
at least 1 − δ, for any f -element subset V ⊂ R

n, for all v,v′ ∈ V it holds
that |〈Sv,Sv′〉 − 〈v,v′〉| ≤ ε‖v‖2‖v′‖2.
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Note when v = v′ we obtain the usual statement that ‖Sv‖22 = (1 ±
ε)‖v‖22. It turns out that if we scale all v,v′ ∈ V so that they are unit
vectors, we could alternatively require ‖Sv‖22 = (1 ± ε)‖v‖22 and ‖S(v +
v′)‖22 = (1 ± ε)‖v + v′‖22 for all v,v′ ∈ V . That is, the requirement of the
definition could be based on norms rather than inner products. To see that
this impies the statement above, we have

〈Sv,Sv′〉 = (‖S(v + v′)‖22 − ‖Sv‖22 − ‖Sv′‖22)/2

= ((1 ± ε)‖v + v′‖22 − (1± ε)‖v‖22 − (1± ε)‖v′‖22)

= 〈v,v′〉 ±O(ε),

which implies all inner products are preserved up to ε by rescaling ε by a
constant.

There are many constructions of Johnson-Lindenstrauss transforms, pos-
sibly the simplest is given by the following theorem.

Theorem 4 (see e.g., [62]) Let 0 < ε, δ < 1 and S = 1√
k
R ∈ R

k×n where

the entries Ri,j of R are independent standard normal random variables.
Then if k = Ω(ε−2 log(f/δ)), then S is a JLT(ε, δ, f).

We will see a proof of Theorem 4 in Lemma 18.
We show how Theorem 4 can be used to provide an ℓ2-subspace embed-

ding. To do so, we need the concept of an ε-net. Let S = {y ∈ R
n | y =

Ax for some x ∈ R
d and ‖y‖2 = 1}. We seek a finite subset of S, denoted

N so that if

〈Sw,Sw′〉 = 〈w,w′〉 ± ε for all w,w′ ∈ N , (2)

then ‖Sy‖2 = (1± ε)‖y‖2 for all y ∈ S.
By an argument of [6, 47, 84], it suffices to choose N so that for all

y ∈ S, there exists a vector w ∈ N for which ‖y−w‖2 ≤ 1/2. We will refer
to N as a (1/2)-net for S.

To see that N suffices, if y is a unit vector, then we can write

y = y0 + y1 + y2 + · · · , (3)

where ‖yi‖ ≤ 1
2i

and yi is a scalar multiple of a vector in N . This is because
we can write y = y0 + (y − y0) where y0 ∈ N and ‖y − y0‖ ≤ 1/2 by the
definition of N . Then, y − y0 = y1 + ((y − y0)− y1) where y1 ∈ N and

‖y − y0 − y1‖2 ≤
‖y − y0‖2

2
≤ 1

4
.
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The expansion in (3) then follows by induction. But then,

‖Sy‖22 = ‖S(y0 + y1 + y2 + · · · )‖22
=

∑

0≤i<j<∞
‖Syi‖22 + 2〈Syi,Syj〉

=




∑

0≤i<j<∞
‖yi‖22 + 2〈yi,yj〉


± 2ε




∑

0≤i≤j<∞
‖yi‖2‖yj‖2




= 1±O(ε),

where the first equality follows by (3), the second equality follows by expand-
ing the square, the third equality follows from (2), and the fourth equality
is what we want (after rescaling ε by a constant factor).

We show the existence of a small (1/2)-net N via a standard argument.

Lemma 5 For any 0 < γ < 1, there exists a γ-net N of S for which
|N | ≤ (1 + 4/γ)d.

Proof: For t = rank(A) ≤ d, we can equivalently express S as

S = {y ∈ R
n | y = Ux for some x ∈ R

t and ‖y‖2 = 1},

where U has orthonormal columns and the same column space as A.
We choose a γ/2-net N ′ of the unit sphere St−1, where the γ/2 net has

size (1 + 4/γ)t. The intuition for this choice is that U provides an isometry
when operating on St−1, and so a net for St−1 will give us a net for the
image of St−1 under U.

This can be done by choosing a maximal set N ′ of points on St−1 so
that no two points are within distance γ/2 from each other. It follows that
the balls of radius γ/4 centered at these points are disjoint, but on the other
hand they are all contained in the ball of radius 1 + γ/4 centered at the
origin. The volume of the latter ball is a factor (1+γ/4)t/(γ/4)t larger than
the smaller balls, which implies |N ′| ≤ (1 + 4/γ)t. See, e.g., [89] for more
details.

Define N = {y ∈ R
n | y = Ux for some x ∈ N ′}. Since the columns

of U are orthonormal, if there were a point Ux ∈ S for which there were
no point y ∈ N with ‖y −Ux‖2 ≤ γ, then x would be a point in Sk−1 for
which there is no point z ∈ N ′ with ‖x− z‖2 ≤ γ, a contradiction.
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It follows by setting V = N and f = 9d in Theorem 4, we can then apply
Lemma 5 and (2) to obtain the following theorem. Note that the net size
does not depend on ε, since we just need a 1/2-net for the argument, even
though the theorem holds for general ε.

Theorem 6 Let 0 < ε, δ < 1 and S = 1√
k
R ∈ R

k×n where the entries

Ri,j of R are independent standard normal random variables. Then if k =
Θ((d + log(1/δ))ε−2), then for any fixed n × d matrix A, with probability
1− δ, S is a (1± ε) ℓ2-subspace embedding for A, that is, simultaneously for
all x ∈ R

d, ‖SAx‖2 = (1± ε)‖Ax‖2. Here C > 0 is an absolute constant.

It turns out, as we will see in Section 6, that Theorem 6 provides the optimal
number of rows of S up to a constant factor, namely Θ(kε−2). This is true
of any oblivious (1 ± ε) ℓ2-subspace embedding, even those achieving only
a constant probability of providing an ℓ2-subspace embedding of A with
constant probability.

After Theorem 4 was discovered, there were a number of followups. For
instance, it was shown by Achlioptas that one can replace R in Theorem 4
with a matrix of i.i.d. sign random variables [1], that is, each entry is inde-
pendently set to 1 or −1 with probability 1/2. Further, Achlioptas showed
that one can change the distribution so that for the same value of k, one
can set each entry in R independently to be 1 with probability 1/6, −1 with
probability 1/6, and 0 with probability 2/3. The latter is important since
it results in a sparse matrix S, for which one can then compute S · x for
a vector x ∈ R

n more quickly. A breakthrough was made by Dasgupta,
Kumar, and Sárlos [33] who showed that it suffices for each column of S
to have only ε−1poly(log(f/δ)) non-zero entries per column. Note that if
the poly(log f/δ) term is much smaller than ε−1, this is a significant im-
provement over the Ω(ε−2 log(f/δ)) number of non-zero entries per column
achieved by previous schemes. The ε−1poly(log(f/δ)) sparsity was later op-
timized by Kane and Nelson [67], who got O(ε−1 log(f/δ)) non-zero entries
per column. The latter was shown to be almost tight by Nelson and Nguy˜̂en
[99], who showed that Ω(ε−1 log(f/δ)/ log(1/ε)) column sparsity is required.

In short, the above line of work shows that it is possible to apply a
JLT(ε, δ, f) matrix S to a vector x in O(nnz(x) · ε−1 log(f/δ)) time, where
nnz(x) denotes the number of non-zero entries of the vector x. This results
in a significant speedup over Theorem 4 when ε is small. It also leads to
improvements in Theorem 6, though regarding ℓ2-subspace embeddings, one
can do better as discussed below.

A somewhat different line of work also came about in trying to speed up
the basic construction in Theorem 4, and this is due to Ailon and Chazelle
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[2]. Instead of trying to achieve a sparse matrix S, they tried to achieve an S
which could be quickly applied to a vector x. The underlying intuition here
is that for a vector x ∈ R

n whose ℓ2 mass is spread roughly uniformly across
its n coordinates, sampling a small number of its coordinates uniformly
at random and rescaling results in a good estimate of the ℓ2-norm of x.
However, if x does not have this property, e.g., it is sparse, then sampling
is a very poor way to estimate the ℓ2-norm of x, as typically most samples
will be 0. By the uncertainty principle, though, if x is sparse, then Fx
cannot be too sparse, where F is the Fourier transform. This is also true
for the Hadamard transform Hx, and for any bounded orthonormal system
(i.e., an orthonormal matrix whose entry of maximum magnitude is bounded
by O(1/

√
n)). Indeed, from results in signal processing due to Donoho and

Stark [36], if A = [InB]T is a 2n×n matrix such that B has orthonormal rows
and columns, and for any distinct rows Bi∗,Bj∗ we have |Bi∗,Bj∗| ≤ M ,
then for any x ∈ R

n, it holds that ‖x‖0 + ‖Bx‖0 ≥ 1/M . See, e.g., [64], for
algorithmic applications of this uncertainty principle.

Unfortunately Hx can still be sparse enough that a small number of
samples will not work, so the intuition is to re-randomize Hx by applying
a cheap rotation - namely, computing HDx for a diagonal matrix D with
i.i.d. entries Di,i in which Di,i = 1 with probability 1/2, and Di,i = −1
with probability 1/2. If P is an k × n matrix which implements coordinate
sampling, then P ·H ·Dx now provides the desired Johnson-Lindenstrauss
transform. Since D is a diagonal matrix, Dx can be computed in O(n)
time. The Hadamard matrix H can be applied to an n-dimensional vector
in O(n log n) time. Finally, P can be applied to an n-dimensional vector
in O(k) time. Hence, P · H · D can be applied to a vector in O(n log n)
time and to an n × d matrix in O(nd log n) time. We call this the Fast
Johnson Lindenstrauss Transform. We note that this is not quite the same
as the construction given by Ailon and Chazelle in [2], who form P slightly
differently to obtain a better dependence on 1/ε in the final dimension.

The Fast Johnson Lindenstrauss Transform is significantly faster than
the above O(nnz(x) · ε−1 log(f/δ)) time for many reasonable settings of
the parameters, e.g., in a number of numerical linear algebra applications
in which 1/δ can be exponentially large in d. Indeed, the Fast Johnson
Lindenstrauss Transform was first used by Sárlos to obtain the first speedups
for regression and low rank matrix approximation with relative error. Sárlos
used a version of the Fast Johnson Lindenstrauss Transform due to [2].
We will use a slightly different version called the Subsampled Randomized
Hadamard Transform, or SRHT for short. Later we will see a significantly
faster transform for sparse matrices.
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Theorem 7 (Subsampled Randomized Hadamard Transform [2, 105, 42,
43, 116, 44, 125]) Let S = 1√

kn
PHnD, where D is an n×n diagonal matrix

with i.i.d. diagonal entries Di,i in which Di,i = 1 with probability 1/2, and
Di,i = −1 with probability 1/2. Hn refers to the Hadamard matrix of size
n, which we assume is a power of 2. Here, the (i, j)-th entry of Hn is given

by (−1)〈i,j〉/
√
n, where 〈i, j〉 =

∑logn
z=1 iz · jz, and where (ilogn, . . . , i1) and

(jlog n, . . . , j1) are the binary representations of i and j respectively. The
r× n matrix P samples r coordinates of an n-dimensional vector uniformly
at random, where

r = Ω(ε−2(log d)(
√
d +

√
log n)2).

Then with probability at least .99, for any fixed n × d matrix U with or-
thonormal columns,

‖Id −UTΠTΠU‖2 ≤ ε.

Further, for any vector x ∈ R
n, Sx can be computed in O(n log r) time.

We will not present the proof of Theorem 7, instead relying upon the above
intuition. The proof of Theorem 7 can be found in the references listed
above.

Using Theorem 7, it is possible to compute an oblivious ℓ2-subspace em-
bedding of a matrix A in O(nd log(d(log n)/ε)) time (see Definition 2.2 and
Theorem 2.1 of [3] for details on obtaining this time complexity, which is a
slight improvement to the O(nd log n) time mentioned above), which up to
the logarithmic factor, is optimal in the matrix dimensions of A ∈ R

n×d.
One could therefore ask if this is the end of the road for subspace embed-
dings. Note that applying Theorem 6 to create an oblivious ℓ2-subspace
embedding S, or also using its optimizations discussed in the paragraphs
following Theorem 6 due to Kane and Nelson [67], would require time at
least O(nnz(A)dε−1), since the number of non-zero entries per column of S
would be Θ(ε−1 log(f)) = Θ(ε−1d), since the f of Theorem 4 would need to
be set to equal exp(d) to apply a net argument.

It turns out that many matrices A ∈ R
n×d are sparse, that is, the number

of non-zero entries, nnz(A), may be much smaller than n · d. One could
therefore hope to obtain an oblivious ℓ2-subspace embedding S in which
S ·A can be computed in O(nnz(A)) time and which the number of rows of
S is small.

At first glance this may seem unlikely, since as mentioned above, it is

known that any Johnson Lindenstrauss Transform requires Ω(ε
−1 log(f/δ)
log(1/ε) )

non-zero entries per column. Moreover, the size of any C-net for constant C
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is at least 2Ω(d), and therefore applying the arguments above we see that the
“f” in the lower bound needs to be Ω(d). Alternatively, we could try to use
an SRHT-based approach, but it is unknown how to adapt such approaches
to exploit the sparsity of the matrix A.

Nevertheless, in work with Clarkson [27] we show that it is indeed pos-
sible to achieve O(nnz(A)) time to compute S ·A for an oblivious (1± ε) ℓ2
subspace embedding S with only an r = poly(d/ε) number of rows. The key
to bypassing the lower bound mentioned above is that S will not be a John-
son Lindenstrauss Transform; instead it will only work for a set of f = 2Ω(d)

specially chosen points rather than an arbitrary set of f points. It turns
out if we choose 2Ω(d) points from a d-dimensional subspace, then the above
lower bound of Ω(ε−1 log(f/δ)/ log(1/ε)) non-zero entries per column does
not apply; that is, this set of f points is far from realizing the worst-case for
the lower bound.

In fact S is nothing other than the CountSkech matrix from the data
stream literature [24, 115]. Namely, S is constructed via the following pro-
cedure: for each of the n columns S∗i, we first independently choose a uni-
formly random row h(i) ∈ {1, 2, . . . , r}. Then, we choose a uniformly ran-
dom element of {−1, 1}, denoted σ(i). We set Sh(i),i = σ(i) and set Sj,i = 0
for all j 6= i. Thus, S has only a single non-zero entry per column. For
example, suppose S ∈ R

4×5. Then an instance of S could be:




0 0 −1 1 0
1 0 0 0 0
0 0 0 0 1
0 −1 0 0 0




We refer to such an S as a sparse embedding matrix. Note that since S has
only a single non-zero entry per column, one can compute S ·A for a matrix
A in O(nnz(A)) time.

Theorem 8 ([27]) For S a sparse embedding matrix with a total of r =
O(d2/ε2poly(log(d/ε))) rows, for any fixed n× d matrix A, with probability
.99, S is a (1 ± ε) ℓ2-subspace embedding for A. Further, S · A can be
computed in O(nnz(A)) time.

Although the number of rows of S is larger than the d/ε2 using Theorem
6, typically n≫ d, e.g., in overconstrained regression problems, and so one
can reduce S ·A to a matrix containing O(d/ε2) rows by composing it with
a matrix S′ sampled using Theorem 4 or Theorem 7, computing S′SA in
time O(nnz(A))+poly(d/ε), and so provided poly(d/ε) < nnz(A), this gives
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an overall O(nnz(A)) time algorithm for obtaining an oblivious (1 ± ε) ℓ2-
subspace embedding with the optimal O(d/ε2) number of rows. Note here
we can assume that nnz(A) ≥ n, as otherwise we can delete the rows of all
zeros in A.

The key intuition behind Theorem 8, given in [27] why a sparse embed-
ding matrix provides a subspace embedding, is that S need not preserve the
norms of an arbitrary subset of 2O(d) vectors in R

n, but rather it need only
preserve those norms of a subset of 2O(d) vectors in R

n which all sit in a
d-dimensional subspace of Rn. Such a subset of 2O(d) vectors is significantly
different from an arbitrary such set; indeed, the property used in [27] which
invented this was the following. If U ∈ R

n×d is a matrix with orthonormal
columns with the same column space as A, then as one ranges over all unit
x ∈ R

d, Ux ranges over all unit vectors in the column space of A. Note
though that for any coordinate i, by the Cauchy-Schwarz inequality,

(Ux)2i ≤ ‖Ui∗‖22. (4)

As
∑n

i=1 ‖Ui∗‖22 = d, since U has orthonormal columns, there is a subset
T of [n] of size at most d2 for which if (Ux)2i ≥ 1/d, then i ∈ T . Notice
that T does not depend on x, but rather is just equal to those rows Ui∗
for which ‖Ui∗‖22 ≥ 1/d. Hence, (4) implies that as one ranges over all
unit vectors Ux, the coordinates of Ux that are larger than 1/d, if any,
must lie in this relatively small set T . This is in sharp contrast to an
arbitrary set of 2O(d) unit vectors, for which every coordinate could be larger
than 1/d for at least one vector in the collection. It turns out that if Ux
has no heavy coordinates, then a sparse subspace embedding does have the
Johnson-Lindenstrauss property, as shown by Dasgupta, Kumar, and Sárlos
[33]. Hence, provided the set of coordinates of T is perfectly hashed by S,
one can handle the remaining coordinates by the analysis of [33].

While the above proof technique has proven useful in generating ℓp sub-
space embeddings for other ℓp-norms (as we will see in Section 3 for the
ℓ1-norm), and also applies more generally to sets of 2O(d) vectors with a
fixed small number of heavy coordinates, it turns out for ℓ2 one can simplify
and sharpen the argument by using more direct linear-algebraic methods.
In particular, via a simpler second moment calculation, Theorem 8 was im-
proved in [92, 97] to the following.

Theorem 9 [92, 97] For any 0 < δ < 1, and for S a sparse embedding
matrix with r = O(d2/(δε2)) rows, then with probability 1− δ, for any fixed
n × d matrix A, S is a (1 ± ε) ℓ2-subspace embedding for A. The matrix
product S ·A can be computed in O(nnz(A)) time. Further, all of this holds
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if the hash function h defining S is only pairwise independent, and the sign
function σ defining S is only 4-wise independent.

The proofs of Theorem 9 given in [92, 97] work by bounding, for even integers
ℓ ≥ 2,

Pr[‖Id −UTSTSU‖2 ≥ ε] = Pr[‖Id −UTSTSU‖ℓ2 ≥ εℓ]

≤ ε−ℓE[‖Id −UTSTSU‖ℓ2]

≤ ε−ℓE[tr((Id −UTSTSU)ℓ)],

which is a standard way of bounding operator norms of random matrices,
see, e.g., [12]. In the bound above, Markov’s inequality is used in the first
inequality, while the second inequality uses that the eigenvalues of (Id −
UTSTSU)ℓ are non-negative for even integers ℓ, one of those eigenvalues is
‖Id −UTSTSU‖ℓ2, and the trace is the sum of the eigenvalues. This is also
the technique used in the proof of Theorem 10 below (we do not present the
proof of this), though there a larger value of ℓ is used while for Theorem 9
we will see that it suffices to consider ℓ = 2.

Rather than proving Theorem 9 directly, we will give a alternative proof
of it observed by Nguy˜̂en [100] in the next section, showing how it is a conse-
quence of a primitive called approximate matrix multiplication that had been
previously studied, and for which is useful for other applications we consider.
Before doing so, though, we mention that it is possible to achieve fewer than
O(d2/ε2) rows for constant probability subspace embeddings if one is will-
ing to increase the running time of applying the subspace embedding from
O(nnz(A)) to O(nnz(A)/ε). This was shown by Nelson and Nguy˜̂en [97].
They show that for any γ > 0, one can achieve d1+γ/ε2poly(1/γ) dimensions
by increasing the number of non-zero entries in S to poly(1/γ)/ε. They also
show that by increasing the number of non-zero entries in S to polylog(d)/ε,
one can achieve d/ε2polylog(d) dimensions. These results also generalize to
failure probability δ, and are summarized by the following theorem.

Theorem 10 [97] There are distributions on matrices S with the following
properties:

(1) For any fixed γ > 0 and any fixed n × d matrix A, S is a (1 ± ε)
oblivious ℓ2-subspace embedding for A with r = d1+γ/ε2 rows and error prob-
ability 1/poly(d). Further, S ·A can be computed in O(nnz(A)poly(1/γ)/ε)
time.

(2) There is a (1 ± ε) oblivious ℓ2-subspace embedding for A with r =
d · polylog(d/(εδ))/ε2 rows and error probability δ. Further, S · A can be
computed in O(nnz(A)polylog(d/(εδ)))/ε) time.
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We note that for certain applications, such as least squares regression, one
can still achieve a (1 + ε)-approximation in O(nnz(A)) time by applying
Theorem 10 with the value of ε in Theorem 10 set to a fixed constant since
the application only requires a (1 ± O(1))-subspace embedding in order to
achieve a (1 + ε)-approximation; see Theorem 23 for further details on this.
It is also conjectured in [97] that r can be as small as O((d + log(1/δ))/ε2)
with a time for computing S ·A of O(nnz(A) log(d/δ)/ε), though at the time
of this writing the polylogarithmic factors in Theorem 10 are somewhat far
from achieving this conjecture.

There has been further work on this by Bourgain and Nelson [18], who
showed among other things that if the columns of U form an orthonormal
basis for the column space of A, and if the coherence maxi∈[n] ‖Ui∗‖22 ≤
1/polylog(d), then a sparse embedding matrix provides a (1±ε) ℓ2-subspace
embedding for A. Here the column sparsity remains 1 given the incoherence
assumption, just as in Theorem 9. The authors also provide results for
unions of subspaces.

We note that one can also achieve 1 − δ success probability bounds in
which the sparsity and dimension depend on O(log 1/δ) using these construc-
tions [27, 92, 97]. For our applications it will usually not be necessary, as one
can often instead repeat the entire procedure O(log 1/δ) times and take the
best solution found, such as in regression or low rank matrix approximation.
We also state a different way of finding an ℓ2-subspace embedding with high
success probability in §2.3.

2.2 Matrix multiplication

In this section we study the approximate matrix product problem.

Definition 11 Let 0 < ε < 1 be a given approximation parameter. In the
Matrix Product Problem matrices A and B are given, where A and B each
have n rows and a total of c columns. The goal is to output a matrix C so
that

‖ATB−C‖F ≤ ε‖A‖F ‖B‖F .

There are other versions of approximate matrix product, such as those that
replace the Frobenius norms above with operator norms [83, 82, 29, 30].
Some of these works look at bounds in terms of the so-called stable rank
of A and B, which provides a continuous relaxation of the rank. For our
application we will focus on the version of the problem given in Definition
11.
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The idea for solving this problem is to compute ATST and SB for a
sketching matrix S. We will choose S so that

E[ATSTSB] = ATB,

and we could hope that the variance of this estimator is small, namely, we
could hope that the standard deviation of the estimator is O(ε‖A‖F ‖B‖F ).
To figure out which matrices S are appropriate for this, we use the following
theorem of Kane and Nelson [67]. This is a more general result of the
analogous result for sign matrices of Clarkson and the author [28], and a
slight strengthening of a result of Sarlós [105].

Before giving the theorem, we need a definition.

Definition 12 [67] A distribution D on matrices S ∈ R
k×d has the (ε, δ, ℓ)-

JL moment property if for all x ∈ R
d with ‖x‖2 = 1,

ES∼D|‖Sx‖22 − 1|ℓ ≤ εℓ · δ.

We prove the following theorem for a general value of ℓ, since as men-
tioned it is used in some subspace embedding proofs including the ones of
Theorem 10. However, in this section we will only need the case in which
ℓ = 2.

Theorem 13 [67] For ε, δ ∈ (0, 1/2), let D be a distribution over matrices
with d columns that satisfies the (ε, δ, ℓ)-JL moment property for some ℓ ≥ 2.
Then for A,B matrices each with d rows,

Pr
S∼D

[
‖ATSTSB−ATB‖F > 3ε‖A‖F‖B‖F

]
≤ δ.

Proof: We proceed as in the proof of [67]. For x,y ∈ R
d, we have

〈Sx,Sy〉
‖x‖2‖y‖2

=
‖Sx‖22 + ‖Sy‖22 − ‖S(x− y)‖22

2
.

For a random scalar X, let ‖X‖p = (E|X|p)1/p. We will sometimes consider
X = ‖T‖F for a random matrix T, in which case X is a random scalar and
the somewhat cumbersome notation ‖‖T‖F ‖p indicates (E[‖T‖pF ])1/p.

Minkowski’s inequality asserts that the triangle inequality holds for this
definition, namely, that ‖X + Y‖p ≤ ‖X‖p + ‖Y‖p, and as the other prop-
erties of a norm are easy to verify, it follows that ‖.‖p is a norm. Using that
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it is a norm, we have for unit vectors x, y, that ‖〈Sx,Sy〉− 〈x,y〉‖ℓ is equal
to

=
1

2
· ‖(‖Sx‖22 − 1) + (‖Sy‖22 − 1)− (‖S(x− y)‖22 − ‖x− y‖22)‖ℓ

≤ 1

2
·
(
‖‖Sx‖22 − 1‖ℓ + ‖‖Sy‖22 − 1‖ℓ + ‖‖S(x− y)‖22 − ‖x− y‖22‖ℓ

)

≤ 1

2
·
(
ε · δ1/ℓ + ε · δ1/ℓ + ‖x− y‖22 · ε · δ1/ℓ

)

≤ 3ε · δ1/ℓ.
By linearity, this implies for arbitrary vectors x and y that ‖〈Sx,Sy〉−〈x,y〉‖ℓ

‖x|2‖y‖2 ≤
3ε · δ1/ℓ.

Suppose A has n columns and B has m columns. Let the columns of
A be A1, . . . ,An and the columns of B be B1, . . . ,Bn. Define the random
variable

Xi,j =
1

‖Ai‖2‖Bj‖2
· (〈SAi,SBj〉 − 〈Ai,Bj〉) .

Then, ‖ATSTSB−ATB‖2F =
∑n

i=1

∑m
j=1 ‖Ai‖22 · ‖Bj‖22 ·X2

i,j. Again using
Minkowski’s inequality and that ℓ/2 ≥ 1,

‖‖ATSTSB−ATB‖2F‖ℓ/2 = ‖
n∑

i=1

m∑

j=1

‖Ai‖22 · ‖Bj‖22 ·X2
i,j‖ℓ/2

≤
n∑

i=1

m∑

j=1

‖Ai‖22 · ‖Bj‖22 · ‖X2
i,j‖ℓ/2

=

n∑

i=1

m∑

j=1

‖Ai‖22 · ‖Bj‖22 · ‖Xi,j‖2ℓ

≤ (3εδ1/ℓ)2 ·




n∑

i=1

m∑

j=1

‖Ai‖22 · ‖Bj‖22




= (3εδ1/ℓ)2 · ‖A‖2F‖B‖2F.

Using that E‖ATSTSB −ATB‖ℓF = ‖‖ATSTSB −ATB‖‖2F‖
ℓ/2
ℓ/2, together

with Markov’s inequality, we have

Pr
[
‖ATSTSB−ATB‖F > 3ε‖A‖F‖B‖F

]
≤

(
1

3ε‖A‖F‖B‖F

)ℓ

· E‖ATSTSB−ATB‖ℓF
≤ δ.
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We now show that sparse embeddings matrices satisfy the (ε, δ, 2)-JL-moment
property. This was originally shown by Thorup and Zhang [115].

Theorem 14 Let S be a sparse embedding matrix, as defined in §2.1, with
at least 2/(ε2δ) rows. Then S satisfies the (ε, δ, 2)-JL moment property. Fur-
ther, this holds if the hash function h defining the sparse embedding matrix
is only 2-wise independent and the sign function σ is 4-wise independent.

Proof: As per Definition 12, we need to show for any unit vector x ∈ R
d,

ES[(‖Sx‖22 − 1)2] = ES[‖Sx‖42]− 2ES[‖Sx‖22] + 1 ≤ ε2δ. (5)

For a sparse embedding matrix S, we let h : [d] → [r] be a random 2-wise
independent hash function indicating for each column j ∈ [d], which row in
S contains the non-zero entry. Further, we let σ : [d]→ {−1, 1} be a 4-wise
independent function, independent of h, indicating whether the non-zero
entry in the j-th column is 1 or −1. For an event E , let δ(E) be an indicator
variable which is 1 if E occurs, and is 0 otherwise. Then,

E[‖Sx‖22] =
∑

i∈[r]
E





∑

j∈[d]
δ(h(j) = i)xjσ(j)




2


=
∑

i∈[r]

∑

j,j′∈[d]
xjxj′E

[
δ(h(j) = i)δ(h(j′) = i)

]
E
[
σ(j)σ(j′)

]

=
∑

i∈[r]

∑

j∈[d]

x2
j

r

= ‖x‖22
= 1,

where the second equality uses that h and σ are independent, while the third
equality uses that E[σ(j)σ(j′)] = 1 if j = j′, and otherwise is equal to 0.
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We also have,

E[‖Sx‖42] = E






∑

i∈[r]



∑

j∈[d]
δ(h(j) = i)xjσ(j)




2


2


=
∑

i,i′∈[r]

∑

j1,j2,j′1,j
′
2
∈[d]

xj1xj2xj′
1
xj′

2

· E
[
δ(h(j1) = i)δ(h(j2) = i)δ(h(j′1) = i′)δ(h(j′2) = i′)

]

· E
[
σ(j1)σ(j2)σ(j′1)σ(j′2)

]

=
∑

i∈[r]

∑

j∈[d]

x4
j

r
+
∑

i,i′∈[r]

∑

j1 6=j′
1
∈[d]

x2
j1
x2
j′
1

r2

+2
∑

i∈[r]

∑

j1 6=j2∈[d]

x2
j1
x2
j′
1

r2

=
∑

j,j′∈[d]
x2
jx

2
j′ +

2

r

∑

j1 6=j2∈[d]
x2
j1x

2
j′
1

≤ ‖x‖42 +
2

r
‖x‖42

≤ 1 +
2

r
,

where the second equality uses the independence of h and σ, and the third
equality uses that since σ is 4-wise independent, in order for E [σ(j1)σ(j2)σ(j′1)σ(j′2)]
not to vanish, it must be that either

1. j1 = j2 = j′1 = j′2 or

2. j1 = j2 and j′1 = j′2 but j1 6= j′1 or

3. j1 = j′1 and j2 = j′2 but j1 6= j2 or

4. j1 = j′2 and j′1 = j2 but j1 6= j2.

Note that in the last two cases, for E [δ(h(j1) = i)δ(h(j2) = i)δ(h(j′1) = i′)δ(h(j′2) = i′)]
not to vanish, we must have i = i′. The fourth equality and first inequality
are based on regrouping the summations, and the sixth inequality uses that
‖x‖2 = 1.

Plugging our bounds on ‖Sx‖42 and ‖Sx‖22 into (5), the theorem follows.
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We now present a proof that sparse embedding matrices provide subspace
embeddings, as mentioned in §2.1, as given by Nguy˜̂en [100].

Proof of Theorem 9: By Theorem 14, we have that S satisfies the
(ε, δ, 2)-JL moment property. We can thus apply Theorem 13.

To prove Theorem 9, recall that if U is an orthonormal basis for the
column space of A and ‖Sy‖2 = (1 ± ε)‖y‖2 for all y in the column space
of U, then ‖Sy‖2 = (1 ± ε)‖y‖2 for all y in the column space of A, since
the column spaces of A and U are the same.

We apply Theorem 13 to S with the A and B of that theorem equal to
U, and the ε of that theorem equal to ε/d. Since UTU = Id and ‖U‖2F = d,
we have,

Pr
S∼D

[
‖UTSTSU− Id‖F > 3ε

]
≤ δ,

which implies that

Pr
S∼D

[
‖UTSTSU− Id‖2 > 3ε

]
≤ Pr

S∼D

[
‖UTSTSU− Id‖F > 3ε

]
≤ δ.

Recall that the statement that xT (UTSTSU− Id)x ≤ 3ε for all unit x ∈ R
d

is equivalent to the statement that ‖SUx‖22 = 1±3ε for all unit x ∈ R
d, that

is, S is a (1 ± 3ε) ℓ2-subspace embedding. The proof follows by rescaling ε
by 3.

2.3 High probability

The dependence of Theorem 9 on the error probability δ is linear, which is
not completely desirable. One can use Theorem 10 to achieve a logarithmic
dependence, but then the running time would be at least nnz(A)polylog(d/(εδ))/ε
and the number of non-zeros per column of S would be at least polylog(d/(εδ))/ε.
Here we describe an alternative way based on [13] which takes O(nnz(A) log(1/δ))
time, and preserves the number of non-zero entries per column of S to be 1.
It is, however, a non-oblivious embedding.

In [13], an approach (Algorithm 1 below) to boost the success proba-
bility by computing t = O(log(1/δ)) independent sparse oblivious subspace
embeddings SjA is proposed, j = 1, 2, . . . , t, each with only constant success
probability, and then running a cross validation procedure to find one which
succeeds with probability 1 − 1/δ. More precisely, we compute the SVD of
all embedded matrices SjA = UjDjV

⊤
j , and find a j ∈ [t] such that for at

least half of the indices j′ 6= j, all singular values of DjV
⊤
j Vj′D

⊤
j′ are in

[1±O(ε)].
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Algorithm 1 Boosting success probability of embedding

Input: A ∈ R
n×d, parameters ε, δ

1. Construct t = O(log 1
δ ) independent constant success probability

sparse subspace embeddings SjA with accuracy ε/6.

2. Compute SVD SjA = UjDjV
⊤
j for j ∈ [t].

3. For j ∈ [t]

(a) Check if for at least half j′ 6= j,

σi(DjV
⊤
j Vj′D

⊤
j′) ∈ [1± ε/2],∀i.

(b) If so, output SjA.

The reason why such an embedding SjA succeeds with high probability
is as follows. Any two successful embeddings SjA and Sj′A, by definition,
satisfy that ‖SjAx‖22 = (1 ± O(ε))‖Sj′Ax‖22 for all x, which we show is
equivalent to passing the test on the singular values. Since with probability
at least 1 − δ, a 9/10 fraction of the embeddings are successful, it follows
that the one we choose is successful with probability 1 − δ. One can thus
show the following theorem.

Theorem 15 ([13]) Algorithm 1 outputs a subspace embedding with proba-
bility at least 1 − δ. In expectation step 3 is only run a constant number of
times.

2.4 Leverage scores

We now introduce the concept of leverage scores, which provide alternative
subspace embeddings based on sampling a small number of rows of A. We
will see that they play a crucial role in various applications in this book,
e.g., CUR matrix decompositions and spectral sparsification. Here we use
the parameter k instead of d for the dimension of the subspace, as this will
match our use in applications. For an excellent survey on leverage scores,
we refer the reader to [85].

Definition 16 (Leverage Score Sampling) Let Z ∈ R
n×k have orthonormal

columns, and let pi = ℓ2i /k, where ℓ2i = ‖eTi Z‖22 is the i-th leverage score of
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Z. Note that (p1, . . . , pn) is a distribution. Let β > 0 be a parameter, and
suppose we have any distribution q = (q1, . . . , qn) for which for all i ∈ [n],
qi ≥ βpi.

Let s be a parameter. Construct an n×s sampling matrix Ω and an s×s
rescaling matrix D as follows. Initially, Ω = 0n×s and D = 0s×s. For each
column j of Ω,D, independently, and with replacement, pick a row index
i ∈ [n] with probability qi, and set Ωi,j = 1 and Djj = 1/

√
qis. We denote

this procedure RandSampling(Z, s, q).

Note that the matrices Ω and D in the RandSampling(Z, s, q) procedure
can be computed in O(nk + n + s log s) time.

Definition 16 introduces the concept of the leverage scores ℓ2i = ‖eTi Z‖22
of a matrix Z with orthonormal columns. For an n × k matrix A whose
columns need not be orthonormal, we can still define its leverage scores ℓ2i
as ‖eTi Z‖22, where Z is an n × r matrix with orthonormal columns having
the same column space of A, where r is the rank of A. Although there are
many choices Z of orthonormal bases for the column space of A, it turns
out that they all give rise to the same values ℓ2i . Indeed, if Z′ were another
n× r matrix with orthonormal colums having the same column space of A,
then Z′ = ZR for an r × r invertible matrix R. But since Z′ and Z have
orthonormal columns, R must be orthonormal. Indeed, for every vector x
we have

‖x‖2 = ‖Z′x‖2 = ‖ZRx‖2 = ‖Rx‖2.
Hence

‖eTi Z′‖22 = ‖eTi ZR‖22 = ‖etiZ‖22,
so the definition of the leverage scores does not depend on a particular choice
of orthonormal basis for the column space of A.

Another useful property, though we shall not need it, is that the leverage
scores ℓ2i are at most 1. This follows from the fact that any row v of Z must
have squared norm at most 1, as otherwise

‖Z · v

‖v‖2
‖22 =

1

‖v‖22
· ‖Zv‖22 > 1,

contradicting that ‖Zx‖2 = ‖x‖2 for all x since Z has orthonormal columns.
The following shows that DTΩTZ is a subspace embedding of the column

space of Z, for s large enough. To the best of our knowledge, theorems of
this form first appeared in [40, 39]. Here we give a simple proof along the
lines in [81].
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Theorem 17 (see, e.g., similar proofs in [81]) Suppose Z ∈ R
n×k has or-

thonormal columns. Suppose s > 144k ln(2k/δ)/(βε2) and Ω and D are
constructed from the RandSampling(Z, s, q) procedure. Then with probabil-
ity at least 1− δ, simultaneously for all i,

1− ε ≤ σ2
i (DTΩTZ) ≤ 1 + ε,

or equivalently,
1− ε ≤ σ2

i (ZTΩD) ≤ 1 + ε.

Proof: We will use the following matrix Chernoff bound for a sum of
random matrices, which is a non-commutative Bernstein bound.

Fact 1 (Matrix Chernoff) Let X1, . . . ,Xs be independent copies of a sym-
metric random matrix X ∈ R

k×k with E[X] = 0, ‖X‖2 ≤ γ, and ‖EXTX‖2 ≤
s2. Let W = 1

s

∑s
i=1 Xi. Then for any ε > 0,

Pr[‖W‖2 > ε] ≤ 2k exp(−sε2/(2s2 + 2γε/3)).

Let Ui ∈ R
1×k be the i-th sampled row of Z by the RandSampling(Z, s)

procedure. Let zj denote the j-th row of Z. Let Xi = Ik −UT
i Ui/qi. Then

the Xi are independent copies of a matrix random variable, and

E[Xi] = Ik −
n∑

j=1

qjz
T
j zj/qj = Ik − ZTZ = 0k×k.

For any j, zTj zj/qj is a rank-1 matrix with operator norm bounded by

‖zj‖22/qj ≤ k/β. Hence,

‖Xi‖2 ≤ ‖Ik‖2 + ‖UT
i Ui/qi‖2 ≤ 1 +

k

β
. (6)

We also have

E[XTX] = Ik − 2E[UT
i Ui/qi] + E[UT

i UiU
T
i Ui/q

2
i ]

=
n∑

j=1

zTj zjz
T
j zj/qi − Ik (7)

≤ (k/β)

n∑

j=1

zTj zj − Ik (8)

= (k/β − 1)Ik. (9)
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It follows that ‖EXTX‖2 ≤ (k/β − 1). Note that W = 1
k

∑s
i=1Xi =

Ik − ZTΩDDTΩTZ. Applying Fact 1,

Pr[‖Ik − ZTΩDDTΩTZ‖2 > ε] ≤ 2k exp(−sε2/(2k/β + 2kε/(3β))),

and setting s = Θ(k log(k/δ)/(βε2)) implies that with all but δ probability,
‖Ik−ZTΩDDTΩTZ‖2 ≤ ε, that is, all of the singular values of DTΩTZ are
within 1± ε, as desired.

To apply Theorem 17 for computing subspace embeddings of an n×k matrix
A, one writes A = ZΣVT in its SVD. Then, Theorem 17 guarantees that
for all x ∈ R

k,

‖DTΩTAx‖2 = (1± ε)‖ΣVT ‖x‖2 = (1± ε)‖Ax‖2,
where the first equality uses the definition of A and the fact that all singular
values of DTΩTZ are 1±ε. The second equality uses that Z has orthonormal
columns, so ‖Zy‖2 = ‖y‖2 for all vectors y.

One drawback of RandSampling(Z, s, q) is it requires as input a dis-
tribution q which well-approximates the leverage score distribution p of Z.
While one could obtain p exactly by computing the SVD of A, this would
näıvely take O(nk2) time (assuming k < n). It turns out, as shown in
[44], one can compute a distribution q with the approximation parameter
β = 1/2 in time O(nk log n+ k3) time. This was further improved in [27] to
O(nnz(A) log n + k3) time.

We need a version of the Johnson-Lindenstrauss lemma, as follows. We
give a simple proof for completeness.

Lemma 18 (Johnson-Lindenstrauss) Given n points q1, . . . , qn ∈ R
d, if G

is a t×d matrix of i.i.d. N(0, 1/t) random variables, then for t = O(log n/ε2)
simultaneously for all i ∈ [n],

Pr[∀i, ‖Gqi‖2 ∈ (1± ε)‖qi‖2] ≥ 1− 1

n
.

Proof: For a fixed i ∈ [n], Gqi is a t-tuple of i.i.d. N(0, ‖qi‖22/t) random
variables. Here we use the fact that for independent standard normal ran-
dom variables g and h and scalars a and b, the random variable a · g + b · h
has the same distribution as that of the random variable

√
a2 + b2z, where

z ∼ N(0, 1).
It follows that ‖Gqi‖22 is equal, in distribution, to (‖qi‖22/t) ·

∑t
i=1 g

2
i ,

where g1, . . . , gt are independent N(0, 1) random variables.
The random variable

∑t
i=1 g

2
i is χ2 with t degree of freedom. The fol-

lowing tail bounds are known.
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Fact 2 (Lemma 1 of [74]) Let g1, . . . , gt be i.i.d. N(0, 1) random variables.
Then for any x ≥ 0,

Pr[

t∑

i=1

g2i ≥ t + 2
√
tx + 2x] ≤ exp(−x),

and

Pr[
t∑

i=1

g2i ≤ t− 2
√
tx] ≤ exp(−x).

Setting x = ε2t/16, we have that

Pr[|
t∑

i=1

g2i − t| ≤ εt] ≤ 2 exp(−ε2t/16).

For t = O(log n/ε2), the lemma follows by a union bound over i ∈ [n].

Theorem 19 ([27]) Fix any constant β ∈ (0, 1). If p is the leverage score
distribution of an n × k matrix Z with orthonormal columns, it is possi-
ble to compute a distribution q on the n rows for which with probability
9/10, simultaneously for all i ∈ [n], qi ≥ βpi. The time complexity is
O(nnz(A) log n) + poly(k).

Proof: Let S be a sparse embedding matrix with r = O(k2/γ2) rows for
a constant γ ∈ (0, 1) to be specified. We can compute S ·A in O(nnz(A))
time. We then compute a QR-factorization of SA = Q · R, where Q has
orthonormal columns. This takes O(rk2) = poly(k/γ) time. Note that R−1

is k × k, and can be computed from R in O(k3) time (or faster using fast
matrix multiplication).

For t = O(log n/γ2), let G by a k × t matrix of i.i.d. N(0, 1/t) random
variables. Set qi = ‖eTi AR−1G‖22 for all i ∈ [n]. While we cannot compute
A · R−1 very efficiently, we can first compute R−1G in O(k2 log n/γ2) by
standard matrix multiplication, and then compute A·(R−1G) in O(nnz(A) log n/γ2)
time since (R−1G) has a small number of columns. Since we will set γ to
be a constant, the overall time complexity of the theorem follows.

For correctness, by Lemma 18, with probability 1− 1/n, simultaneously
for all i ∈ [n], qi ≥ (1−γ)‖eTi AR−1‖22, which we condition on. We now show
that ‖eTi AR−1‖22 is approximately pi. To do so, first consider AR−1. The
claim is that all of the singular values of AR−1 are in the range [1−γ, 1+γ].
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To see this, note that for any x ∈ R
k,

‖AR−1x‖22 = (1± γ)‖SAR−1x‖22
= (1± γ)‖Qx‖22
= (1± γ)‖x‖22,

where the first equality follows since with probability 99/100, S is a (1± γ)
ℓ2-subspace embedding for A, while the second equality uses the definition
of R, and the third equality uses that Q has orthonormal columns.

Next, if U is an orthonormal basis for the column space of A, since
AR−1 and U have the same column space, U = AR−1T for a k× k change
of basis matrix T. The claim is that the minimum singular value of T is at
least 1−2γ. Indeed, since all of the singular values of AR−1 are in the range
[1 − γ, 1 + γ], if there were a singular value of T smaller than 1 − 2γ with
corresponding right singular vector v, then ‖AR−1Tv‖22 ≤ (1−2γ)(1+γ) <
1, but ‖AR−1Tv‖22 = ‖Uv‖22 = 1, a contradiction.

Finally, it follows that for all i ∈ [n],

‖eTi AR−1‖22 = ‖eTi UT−1‖22 ≥ (1− 2γ)‖eTi U‖22 = (1− 2γ)pi.

Hence, qi ≥ (1 − γ)(1 − 2γ)pi, which for an appropriate choice of constant
γ ∈ (0, 1), achieves qi ≥ βpi, as desired.

2.5 Regression

We formally define the regression problem as follows.

Definition 20 In the ℓ2-Regression Problem, an n × d matrix A and an
n× 1 column vector b are given, together with an approximation parameter
ε ∈ [0, 1). The goal is to output a vector x so that

‖Ax− b‖ ≤ (1 + ε) min
x′∈Rd

∥∥Ax′ − b
∥∥.

The following theorem is an immediate application of ℓ2-subspace embed-
dings. The proof actually shows that there is a direct relationship between
the time complexity of computing an ℓ2-subspace embedding and the time
complexity of approximately solving ℓ2-regression. We give one instantiation
of this relationship in the following theorem statement.

Theorem 21 The ℓ2-Regression Problem can be solved with probability .99
in O(nnz(A)) + poly(d/ε) time.
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Proof: Consider the at most (d+1)-dimensional subspace L of Rn spanned
by the columns of A together with the vector b. Suppose we choose S to be
a sparse embedding matrix with r = d2/ε2poly(log(d/ε)) rows. By Theorem
8, we have that with probability .99,

∀y ∈ L, ‖Sy‖22 = (1± ε)‖y‖22. (10)

It follows that we can compute S ·A followed by S · b, and then let

x = argmin
x′∈Rd

‖SAx′ − Sb‖2.

By (10), it follows that x solves the ℓ2-Regression Problem. The number of
rows of S can be improved to r = O(d/ε2) by applying Theorem 9.

We note that Theorem 21 can immediately be generalized to other ver-
sions of regression, such as constrained regression. In this problem there is
a constraint subset C ⊆ R

d and the goal is, given an n× d matrix A and an
n× 1 column vector b, to output a vector x for which

‖Ax− b‖ ≤ (1 + ε) min
x′∈C

∥∥Ax′ − b
∥∥.

Inspecting the simple proof of Theorem 21 we see that (10) in particular
implies

∀x ∈ C, ‖S(Ax− b)‖2 = (1± ε)‖Ax− b‖2, (11)

from which we have the following corollary. This corollary follows by replac-
ing A and b with SA and Sb, where S has O(d2/ε2) rows using Theorem
9.

Corollary 22 The constrained ℓ2 Regression Problem with constraint set C
can be solved with probability .99 in O(nnz(A)) +T (d, ε) time, where T (d, ε)
is the time to solve constrained ℓ2 regression with constraint set C when A
has O(d2/ε2) rows and d columns.

It is also possible to obtain a better dependence on ε than given by
Theorem 21 and Corollary 22 in both the time and space, due to the fact
that it is possible to choose the sparse subspace embedding S to have only
O(d2/ε) rows. We present this as its own separate theorem. We only state
the time bound for unconstrained regression.

The proof is due to Sarlós [105]. The key concept in the proof is that of
the normal equations, which state for the optimal solution x, ATAx = ATb,
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or equivalently, AT (Ax−b) = 0, that is, Ax−b is orthogonal to the column
space of A. This is easy to see from the fact that the optimal solution x is
such that Ax is the projection of b onto the column space of A, which is
the closest point of b in the column space of A in Euclidean distance.

Theorem 23 If S is a sparse subspace embedding with O(d2/ε) rows, then
with probability .99, the solution minx′∈Rd ‖SAx′−Sb‖2 = (1±ε) minx∈Rd ‖Ax−
b‖2.

Proof: Let x′ be argminx′∈Rd‖S(Ax′−b)‖2, and let x be argminx∈Rd‖Ax−
b‖2. It will be useful to reparameterize the problem in terms of an orthonor-
mal basis U for the column space of A. Let Uy′ = Ax′ and Uy = Ax.

Because of the normal equations, we may apply the Pythagorean theo-
rem,

‖Ax′ − b‖22 = ‖Ax− b‖22 + ‖Ax′ −Ax‖22,
which in our new parameterization is,

‖Uy′ − b‖22 = ‖Uy − b‖22 + ‖U(y′ − y)‖22.

It suffices to show ‖U(y′ − y)‖22 = O(ε)‖Uy − b‖22, as then the theorem
will follow by rescaling ε by a constant factor. Since U has orthonormal
columns, it suffices to show ‖y′ − y‖22 = O(ε)‖Uy − b‖22.

Conditioned on S being a (1 ± 1/2) ℓ2-subspace embedding, which by
Theorem 9 occurs with probability .999 for an S with an appropriate O(d2/ε)
number of rows, we have

‖UTSTSU− Id‖2 ≤
1

2
. (12)

Hence,

‖y′ − y‖2 ≤ ‖UTSTSU(y′ − y)‖2 + ‖UTSTSU(y′ − y)− y′ − y‖2
≤ ‖UTSTSU(y′ − y)‖2 + ‖UTSTSU− Id‖2 · ‖(y′ − y)‖2
≤ ‖UTSTSU(y′ − y)‖2 +

1

2
· ‖y′ − y‖2,

where the first inequality is the triangle inequality, the second inequality
uses the sub-multiplicativity of the spectral norm, and the third inequality
uses (12). Rearranging, we have

‖y′ − y‖2 ≤ 2‖UTSTSU(y′ − y)‖2. (13)
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By the normal equations in the sketch space,

UTSTSUy′ = UTSTSb,

and so plugging into (13),

‖y′ − y‖2 ≤ 2‖UTSTS(Uy − b)‖2. (14)

By the normal equations in the original space, UT (Uy − b) = 0rank(A)×1.
By Theorem 14, S has the (ε, δ, 2)-JL moment property, and so by Theorem
13,

Pr
S

[
‖UTSTS(Uy− b)‖F > 3

√
ε

d
‖U‖F‖Uy− b‖F

]
≤ 1

1000
.

Since ‖U‖F ≤
√
d, it follows that with probability .999, ‖UTSTS(Uy −

b)‖F ≤ 3
√
ε‖Uy−b‖2, and plugging into (14), together with a union bound

over the two probability .999 events, completes the proof.

2.6 Machine precision regression

Here we show how to reduce the dependence on ε to logarithmic in the
regression application, following the approaches in [103, 8, 27].

A classical approach to finding minx ‖Ax− b‖ is to solve the normal
equations A⊤Ax = A⊤b via Gaussian elimination; for A ∈ R

n×r and
b ∈ R

n×1, this requires O(nnz(A)) time to form A⊤b, O(rnnz(A)) time to
form A⊤A, and O(r3) time to solve the resulting linear systems. (Another
method is to factor A = QW, where Q has orthonormal columns and W
is upper triangular; this typically trades a slowdown for a higher-quality
solution.)

Another approach to regression is to apply an iterative method from
the general class of Krylov or conjugate-gradient type algorithms to a pre-
conditioned version of the problem. In such methods, an estimate x(m) of
a solution is maintained, for iterations m = 0, 1 . . ., using data obtained
from previous iterations. The convergence of these methods depends on

the condition number κ(A⊤A) =
sup

x,‖x‖=1 ‖Ax‖2

inf
x,‖x‖=1 ‖Ax‖2 from the input matrix. A

classical result ([80] via [91] or Theorem 10.2.6,[53]), is that

∥∥A(x(m) − x∗)
∥∥2

∥∥A(x(0) − x∗)
∥∥2 ≤ 2




√
κ(A⊤A)− 1

√
κ(A⊤A) + 1




m

. (15)
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Thus the running time of CG-like methods, such as CGNR [53], depends on
the (unknown) condition number. The running time per iteration is the time
needed to compute matrix vector products v = Ax and ATv, plus O(n+d)
for vector arithmetic, or O(nnz(A)).

Pre-conditioning reduces the number of iterations needed for a given ac-
curacy: suppose for a non-singular matrix R, the condition number κ(R⊤A⊤AR)
is small. Then a conjugate gradient method applied to AR would converge
quickly, and moreover for iterate y(m) that has error α(m) ≡

∥∥ARy(m) − b
∥∥

small, the corresponding x ← Ry(m) would have ‖Ax− b‖ = α(m). The
running time per iteration would have an additional O(d2) for computing
products involving R.

Suppose we apply a sparse subspace embedding matrix S to A, and
R is computed so that SAR has orthonormal columns, e.g., via a QR-
decomposition of SA. If S is an ℓ2-subspace embedding matrix to constant
accuracy ε0, for all unit x ∈ R

d, ‖ARx‖2 = (1± ε0)‖SARx‖2 = (1 ± ε0)2.
It follows that the condition number

κ(R⊤A⊤AR) ≤ (1 + ε0)2

(1− ε0)2
.

That is, AR is well-conditioned. Plugging this bound into (15), after m

iterations
∥∥AR(x(m) − x∗)

∥∥2 is at most 2εm0 times its starting value.

Thus starting with a solution x(0) with relative error at most 1, and
applying 1 + log(1/ε) iterations of a CG-like method with ε0 = 1/e, the
relative error is reduced to ε and the work is O((nnz(A) + d2) log(1/ε)),
plus the work to find R. We have

Theorem 24 The ℓ2-regression problem can be solved up to a (1+ε)-factor
with probability at least 99/100 in

O(nnz(A) log(n/ε) + d3 log2 d + d2 log(1/ε))

time.

The matrix AR is so well-conditioned that a simple iterative improve-
ment scheme has the same running time up to a constant factor. Again
start with a solution x(0) with relative error at most 1, and for m ≥ 0, let
x(m+1) ← x(m) + R⊤A⊤(b−ARx(m)). Then using the normal equations,

AR(x(m+1) − x∗) = AR(x(m) + R⊤A⊤(b−ARx(m))− x∗)

= (AR−ARR⊤A⊤AR)(x(m) − x∗)

= U(Σ−Σ3)V⊤(x(m) − x∗),
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where AR = UΣV⊤ is the SVD of AR.
For all unit x ∈ R

d, ‖ARx‖2 = (1±ε0)2, and so we have that all singular
values σi of AR are 1 ± ε0, and the diagonal entries of Σ − Σ3 are all at
most σi(1− (1− ε0)2) ≤ σi3ε0 for ε0 ≤ 1. Hence

∥∥∥AR(x(m+1) − x∗)
∥∥∥ ≤ 3ε0

∥∥∥AR(x(m) − x∗)
∥∥∥,

and by choosing ε0 = 1/2, say, O(log(1/ε)) iterations suffice for this scheme
also to attain ε relative error.

2.7 Polynomial fitting

A natural question is if additional structure in A can be non-trivially ex-
ploited to further accelerate the running time of ℓ2-regression. Given that
A is structured, perhaps we can run in time even faster than O(nnz(A)).
This was studied in [10, 9], and we shall present the result in [10].

Perhaps one of the oldest regression problems is polynomial fitting. In
this case, given a set of samples (zi, bi) ∈ R×R, for i = 1, 2, . . . , n, we would
like to choose coefficients β0, β1, . . . , βq of a degree-q univariate polynomial
b =

∑q
i=1 βiz

i which best fits our samples. Setting this up as a regression
problem, the corresponding matrix A is n× (q + 1) and is a Vandermonde
matrix. Despite the fact that A may be dense, we could hope to solve
regression in time faster than O(nnz(A)) = O(nq) using its Vandermonde
structure.

We now describe the problem more precisely, starting with a definition.

Definition 25 (Vandermonde Matrix) Let x0, x1, . . . , xn−1 be real numbers.
The Vandermonde matrix, denoted Vn,q(x0, x1, . . . , xn−1), has the form:

Vn,q(x1, x1, . . . , xn−1) =




1 x0 . . . xq−1
0

1 x1 . . . xq−1
1

. . . . . . . . . . . .

1 xn−1 . . . xq−1
n−1




Vandermonde matrices of dimension n × q require only O(n) implicit
storage and admit O(n log2 q) matrix-vector multiplication time (see, e.g.,
Theorem 2.11 of [114]). It is also possible to consider block-Vandermonde
matrices as in [10]; for simplicity we will only focus on the simplest poly-
nomial fitting problem here, in which Vandermonde matrices suffice for the
discussion.
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We consider regression problems of the form minx∈Rq ‖Vn,qx − b‖2, or
the approximate version, where we would like to output an x′ ∈ R

q for which

‖Vn,qx
′ − b‖2 ≤ (1 + ε) min

x∈Rd
‖Vn,qx− b‖2.

We call this the ℓ2-Polynomial Fitting Problem.

Theorem 26 (ℓ2-Polynomial Fitting)[10] There is an algorithm that solves
the ℓ2-Polynomial Fitting Problem in time O(n log2 q) + poly(qε−1). By
combining sketching methods with preconditioned iterative solvers, we can
also obtain logarithmic dependence on ε.

Note that since nnz(Vn,q) = nq and the running time of Theorem 26 is
O(n log2 q), this provides a sketching approach that operates faster than
“input-sparsity” time. It is also possible to extend Theorem 26 to ℓ1-
regression, see [10] for details.

The basic intuition behind Theorem 26 is to try to compute S ·Vn,q for a
sparse embedding matrix S. Naively, this would take O(nq) time. However,
since S contains a single non-zero entry per column, we can actually think
of the product S ·Vn,q as r vector-matrix products x1 ·V1

n,q, . . . , x
r ·Vr

n,q,
where xi is the vector with coordinates j ∈ [n] for which h(j) = i, and
Vi

n,q is the row-submatrix of Vn,q consisting only of those rows j ∈ [n]
for which h(j) = i. To compute each of these vector-matrix products, we
can now appeal to the fast matrix-vector multiplication algorithm associated
with Vandermonde matrices, which is similar to the Fast Fourier Transform.
Thus, we can compute each xi ·Vi

n,q in time proportional to the number of

rows of Vi
n,q, times a factor of log2 q. In total we can compute all matrix-

vector products in O(n log2 q) time, thereby computing SVn,q, which we
know is an ℓ2-subspace embedding. We can also compute Sb in O(n) time,
and now can solve the sketched problem minx ‖SVn,qx− Sb‖2 in poly(q/ε)
time.

3 Least Absolute Deviation Regression

While least squares regression is arguably the most used form of regression in
practice, it has certain non-robustness properties that make it unsuitable for
some applications. For example, oftentimes the noise in a regression problem
is drawn from a normal distribution, in which case least squares regression
would work quite well, but if there is noise due to measurement error or a
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different underlying noise distribution, the least squares regression solution
may overfit this noise since the cost function squares each of its summands.

A more robust alternative is least absolute deviation regression, or ℓ1-
regression, minx ‖Ax − b‖1 =

∑n
i=1 |bi − 〈Ai,∗,x〉|. The ℓ1-norm is much

less well-behaved than the ℓ2-norm, e.g., it is not invariant under rotation,
not everywhere differentiable, etc. There is also no closed-form solution for
an ℓ1-regression problem in general, as a special case of it is the geometric
median or Fermat-Weber problem, for which there is no closed form solution.

Nevertheless, ℓ1-regression is much less sensitive to outliers. It is also
the maximum likelihood estimator (MLE) when the noise in the regression
problem is i.i.d. Laplacian of zero median. In this section we will focus on
recent advances in solving ℓ1-regression using sketching. To do so, we first
describe a sampling-based solution. We note that many of the results in this
section generalize to ℓp-regression for p > 1. See [27, 92, 124] for works on
this. This general line of work was introduced by Clarkson [25], though our
exposition will mostly follow that of [32] and the sketching speedups built
on top of it [108, 26, 92, 124].

Section Overview: In §3.1 we show how one can adapt the idea of
leverage score sampling in §2.4 for ℓ2 to provide an initial sampling-based
algorithm for ℓ1-regression. In §3.2 we introduce the notion of a subspace em-
bedding for the ℓ1-norm and show how if we had such an object, it could be
used in the context of ℓ1-regression. We postpone one technical detail in this
application to §3.3, which shows how to combine ℓ1-subspace embeddings to-
gether with Gaussian sketching to make the technique of using ℓ1-subspace
embeddings in §3.2 efficient. In §3.4 we turn to the task of constructing
ℓ1-subspace embeddings. We do this using Cauchy random variables. This
leads to an ℓ1-regression algorithm running in O(nd2 log d) + poly(d/ε). In
§3.5 we then speed this up even further by replacing the dense matrix of
Cauchy random variables in the previous section with a product of a sparse
ℓ2-subspace embedding and a diagonal matrix of exponential random vari-
ables. This leads to an overall time of O(nnz(A) log) + poly(d/ε). Finally,
in §3.6 we discuss one application of ℓ1-regression to ℓ1-Hyperplane Approx-
imation.

3.1 Sampling-Based solution

One of the most natural ways of solving a regression problem is by sampling.
Let us augment the n× d design matrix A in the regression problem to an
n× (d + 1) matrix by including the b vector as the (d + 1)-st column.

Let p ∈ [0, 1]n. Suppose we form a submatrix of A by including each
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row of A in the submatrix independently with probability pi. Let us write
this as S ·A, where S is a diagonal n × n matrix with Si,i = 1/pi if row i
was included in the sample, and Si,i = 0 otherwise. Then E[S ·A] = A, and
so for any fixed x, E[S ·Ax] = Ax.

What we would like is that for all

∀x ∈ R
d+1, ‖S ·Ax‖1 = (1± ε)‖Ax‖1, (16)

that is, S is an oblivious subspace embedding for A. Note that although
S · A is an n × d matrix, in expectation it has only r =

∑n
i=1 pi non-zero

rows, and so we can throw away all of the zero rows. It follows that if r
is small, one could then afford to directly solve the constrained regression
problem:

min
x∈Rd+1,xd+1=−1

‖SAx‖1,

using linear programming. This would now take time poly(r, d), which is
a significant savings over solving the problem directly, e.g., if r is much
smaller or independent of n. Note that the constraint xd+1 = −1 can be
directly incorporated into a linear program for solving this problem, and
only slightly increases its complexity.

We are left with the task of showing (16). To do so, fix a particular
vector x ∈ R

d. Define the random variable Zi = |Ai,∗x|/pi, so that for
Z =

∑n
i=1 Zi, we have E[Z] = ‖Ax‖1. We would like to understand how

large each Zi can be, and what the variance of Z is. We would like these
quantities to be small, which at first glance seems hard since p cannot depend
on x.

One way of bounding Zi is to write A = U ·τ for an n×d matrix U and
a d×d change of basis matrix τ . Since U does not depend on any particular
vector x, one could hope to define p in terms of U for a particularly good
choice of basis U for the column space of A. Note that one has

|Ai,∗,x|/pi = |Ui,∗τx|/pi ≤ ‖Ui,∗‖1 · ‖τx‖∞/pi, (17)

where the inequality follows by Hölder’s inequality.
A natural choice at this point to bound the RHS of (17) is to define

pi = min(1, r · ‖Ui,∗‖∑n
j=1 ‖Uj,∗‖1 ), where recall r is about the expected number of

rows we wish to sample (the expected number of rows sampled may be less
than r since pi is a probability and so is upper-bounded by 1). For later
purposes, it will be helpful to instead allow

pi ≥ min(1, ζ · r · ‖Ui,∗‖∑n
j=1 ‖Uj,∗‖1

),
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where ζ ∈ (0, 1] can be thought of as a relaxation parameter which will allow
for more efficient algorithms.

Note that for those i for which ζ ·r· ‖Ui,∗‖∑n
j=1

‖Uj,∗‖1 ≥ 1, the i-th row Ai,∗ will

always be included in the sample, and therefore will not affect the variance
of the sampling process.

Let us now consider those i for which ζ · r · ‖Ui,∗‖∑n
j=1

‖Uj,∗‖1 < 1. For such i

one has

Zi = |Ai,∗,x|/pi ≤ (

n∑

j=1

‖Uj,∗‖1) · ‖τx‖∞/(rζ) = α · β‖Ax‖1/(rζ), (18)

where α =
∑n

j=1 ‖Uj,∗‖1 and β = supx
‖τx‖∞
‖Ax‖1 .

In order for Zi to never be too large, we would like to choose a U
so that α and β are as small as possible. This motivates the following
definition of a well-conditioned basis for the 1-norm. For ease of notation,
let ‖U‖1 =

∑n
j=1 ‖Uj,∗‖1.

Definition 27 (Well-conditioned basis for the 1-norm)(see [32]) Let A be
an n × d matrix. An n × d matrix U is an (α, β, 1)-well conditioned basis
for the column space of A if (1) ‖U‖1 ≤ α, and (2) for all x ∈ R

d, ‖x‖∞ ≤
β‖Ux‖1.

Note that our definition of α and β above coincide with that in Definition
27, in particular the definition of β, since ‖U(τx)‖1 = ‖Ax‖1 by definition
of U and τ .

Fortunately, well-conditioned bases with α, β ≤ poly(d) exist and can
be efficiently computed. We will sometimes simply refer to U as a well-
conditioned basis if α and β are both bounded by poly(d). That such bases
exist is due to a theorem of Auerbach [7, 11], which shows that α = d
and β = 1 suffice. However, we are not aware of an efficient algorithm
which achieves these values. The first efficient algorithm for finding a well-
conditioned basis is due to Clarkson [25], who achieved a running time of
O(nd5 log n)+poly(d). The same running time was achieved by Dasgupta et
al. [32], who improved the concrete values of α and β. We will see that one
can in fact compute such bases much faster using sketching techniques below,
but let us first see how these results already suffice to solve ℓ1-regression in
O(nd5 log n) + poly(d/ε) time.

Returning to (18), we have the bound

Zi = |Ai,∗,x|/pi ≤ poly(d)‖Ax‖1/(rζ).
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Using this bound together with independence of the sampled rows,

Var[Z] =

n∑

i=1

Var[Zi] =
∑

i|pi<1

Var[Zi] ≤
∑

i|pi<1

E[Z2
i ] =

∑

i|pi<1

|Ai,∗,x|2
pi

≤ max
i|pi<1

|Ai,∗,x|
pi

∑

i|pi<1

|Ai,∗,x|

≤ poly(d)‖Ax‖21
rζ

.

We have computed E[Z] and bounded Var[Z] as well as maxi|pi<1 Zi, and
can now use strong tail bounds to bound the deviation of Z from its expec-
tation. We use the following tail inequalities.

Theorem 28 (Bernstein inequality [90]) Let Zi ≥ 0 be independent ran-
dom variables with

∑
i E[Z2

i ] < ∞, and define Z =
∑

i Zi. Then, for any
t > 0,

Pr[Z ≤ E[Z]− t] ≤ exp

( −t2
2
∑

i E[Z2
i ]

)
.

Moreover, if Zi −E[Zi] ≤ ∆ for all i, we have

Pr[Z ≥ E[Z] + γ] ≤ exp

( −γ2
2Var[Z] + 2γ∆/3

)
.

Plugging our bounds into 28, we have

Pr[Z ≤ ‖Ax‖1 − ε‖Ax‖1] ≤ exp

( −ε2‖Ax‖21rζ
2poly(d)‖Ax‖21

)

≤ exp

( −ε2rζ
2poly(d)

)
,

and also

Pr[Z ≥ ‖Ax‖1 + ε‖Ax‖1] ≤ exp


 −ε2‖Ax‖21

2
poly(d)‖Ax‖2

1

rζ + 2ε
‖Ax‖2

1
poly(d)

3rζ




≤ exp

( −ε2rζ
2poly(d) + 2εpoly(d)/3

)
.

Setting r = ε−2poly(d)/ζ for a large enough polynomial in d allows us to
conclude that for any fixed x ∈ Rd,

Pr[Z ∈ (1± ε)‖Ax‖1] ≥ 1− (ε/4)d. (19)
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While this implies that Z is a (1 + ε)-approximation with high probability
for a fixed x, we now need an argument for all x ∈ R

d. To prove that
‖SAx‖1 = (1 ± ε)‖Ax‖1 for all x, it suffices to prove the statement for all
y ∈ R

n for which y = Ax for some x ∈ R
d and ‖y‖1 = 1. Indeed, since

SA is a linear map, it will follow that ‖SAx‖1 = (1± ε)‖Ax‖1 for all x by
linearity.

Let B = {y ∈ R
n | y = Ax for some x ∈ R

d and ‖y‖1 = 1}. We seek
a finite subset of B, denoted N , which is an ε-net, so that if ‖Sw‖1 =
(1± ε)‖w‖1 for all w ∈ N , then it implies that ‖Sy‖1 = (1± ε)‖y‖1 for all
y ∈ B. The argument will be similar to that in §2.1 for the ℓ2 norm, though
the details are different.

It suffices to choose N so that for all y ∈ B, there exists a vector w ∈ N
for which ‖y −w‖1 ≤ ε. Indeed, in this case note that

‖Sy‖1 = ‖Sw+S(y−w)‖1 ≤ ‖Sw‖1 + ‖S(y−w)‖1 ≤ 1 + ε+ ‖S(y−w)‖1.

If y−w = 0, we are done. Otherwise, suppose α is such that α‖y−w‖1 = 1.
Observe that α ≥ 1/ε, since, ‖y −w‖1 ≤ ε yet α‖y −w‖1 = 1.

Then α(y − w) ∈ B, and we can choose a vector w2 ∈ N for which
‖α(y − w) − w2‖1 ≤ ε, or equivalently, ‖y − w − w2/α‖1 ≤ ε/α ≤ ε2.
Hence,

‖S(y −w)‖1 = ‖Sw2/α + S(y −w −w2/α)‖1
≤ (1 + ε)/α + ‖S(y −w −w2/α)‖1.

Repeating this argument, we inductively have that

‖Sy‖1 ≤
∑

i≥0

(1 + ε)εi ≤ (1 + ε)/(1 − ε) ≤ 1 + O(ε).

By a similar argument, we also have that

‖Sy‖1 ≥ 1−O(ε).

Thus, by rescaling ε by a constant factor, we have that ‖Sy‖1 = 1 ± ε for
all vectors y ∈ B.

Lemma 29 There exists an ε-net N for which |N | ≤ (2/ε)d.

Proof: For a parameter γ and point p ∈ R
n, define

B(p, γ,A) = {q = Ax for some x and ‖p− q‖1 ≤ γ}.
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Then B(ε, 0) is a d-dimensional polytope with a (d-dimensional) volume
denoted |B(ε, 0)|. Moreover, B(1, 0) and B(ε/2, 0) are similar polytopes,
namely, B(1, 0) = (2/ε)B(ε/2, 0). As such, |B(1, 0)| = (2/ε)d|B(ε/2, 0)|.

Let N be a maximal subset of y ∈ R
n in the column space of A for which

‖y‖1 = 1 and for all y 6= y′ ∈ N , ‖y − y′‖1 > ε. Since N is maximal, it
follows that for all y ∈ B, there exists a vector w ∈ N for which ‖y−w‖1 ≤
ε. Moreover, for all y 6= y′ ∈ N , B(y, ε/2,A) and B(y′, ε/2,A) are disjoint,
as otherwise by the triangle inequality, ‖y − y′‖1 ≤ ε, a contradicition. It
follows by the previous paragraph that N can contain at most (2/ε)d points.

By applying (19) and a union bound over the points in N , and rescaling
ε by a constant factor, we have thus shown the following theorem.

Theorem 30 The above sampling algorithm is such that with probability
at least 1 − 2−d, simultaneously for all x ∈ R

d, ‖SAx‖1 = (1 ± ε)‖Ax‖1.
The expected number of non-zero rows of SA is at most r = ε−2poly(d)/ζ.
The overall time complexity is Twcb + poly(d/ε), where Twcb is the time to
compute a well-conditioned basis. Setting Twcb = O(nd5 log n) suffices.

3.2 The Role of subspace embeddings for L1-Regression

The time complexity of the sampling-based algorithm for ℓ1-Regression in
the previous section is dominated by the computation of a well-conditioned
basis. In this section we will design subspace embeddings with respect to
the ℓ1-norm and show how they can be used to speed up this computation.
Unlike for ℓ2, the distortion of our vectors in our subspace will not be 1 + ε,
but rather a larger factor that depends on d. Still, the distortion does not
depend on n, and this will be sufficient for our applications. This will be
because, with this weaker distortion, we will still be able to form a well-
conditioned basis, and then we can apply Theorem 30 to obtain a (1 + ε)-
approximation to ℓ1-regression.

Definition 31 (Subspace Embedding for the ℓ1-Norm) We will say a matrix
S is an ℓ1-subspace embedding for an n× d matrix A if there are constants
c1, c2 > 0 so that for all x ∈ R

d,

‖Ax‖1 ≤ ‖SAx‖1 ≤ dc1‖Ax‖1,

and S has at most dc2 rows.
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Before discussing the existence of such embeddings, let us see how they can
be used to speed up the computation of a well-conditioned basis.

Lemma 32 ([108]) Suppose S is an ℓ1-subspace embedding for an n × d
matrix A. Let Q ·R be a QR-decomposition of SA, i.e., Q has orthonormal
columns (in the standard ℓ2 sense) and Q · R = SA. Then AR−1 is a
(dc1+c2/2+1, 1, 1)-well-conditioned basis.

Proof: We have

α = ‖AR−1‖1 =

d∑

i=1

‖AR−1ei‖1 ≤ dc1
d∑

i=1

‖SAR−1ei‖1

≤ dc1+c2/2
d∑

i=1

‖SAR−1ei‖2

≤ dc1+c2/2
d∑

i=1

‖Qei‖2

= dc1+c2/2+1.

Recall we must bound β, where β is minimal for which for all x ∈ Rd,
‖x‖∞ ≤ β‖AR−1x‖1. We have

‖AR−1x‖1 ≥ ‖SAR−1x‖1
≥ ‖SAR−1x‖2
= ‖Qx‖2
= ‖x‖2
≥ ‖x‖∞,

and so β = 1.

Note that SA is a dc2 × d matrix, and therefore its QR decomposition can
be computed in O(dc2+2) time. One can also compute A ·R−1 in O(nd2)
time, which could be sped up with fast matrix multiplication, though we
will see a better way of speeding this up below. By Lemma 32, provided
S is a subspace embedding for A with constants c1, c2 > 0, AR−1 is a
(dc1+c2/2+1, 1, 1)-well-conditioned basis, and so we can improve the time
complexity of Theorem 30 to Tmm + O(nd2) + poly(d/ε), where Tmm is
the time to compute the matrix-matrix product S ·A.
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We are thus left with the task of producing an ℓ1-subspace embedding
for A. There are many ways to do this non-obliviously [77, 106, 17, 113, 66],
but they are slower than the time bounds we can achieve using sketching.

We show in §3.4 that by using sketching we can achieve Tmm = O(nd2 log d),
which illustrates several main ideas and improves upon Theorem 30. We will
then show how to improve this to Tmm = O(nnz(A)) in §3.5. Before doing
so, let us first see how, given R for which AR−1 is well-conditioned, we can
improve the O(nd2) time for computing a representation of AR−1 which is
sufficient to perform the sampling in Theorem 30.

3.3 Gaussian sketching to speed up sampling

Lemma 32 shows that if S is an ℓ1-subspace embedding for an n× d matrix
A, and Q·R is a QR-decomposition of SA, then AR−1 is a well-conditioned
basis.

Computing AR−1, on the other hand, naively takes O(nnz(A)d) time.
However, observe that to do the sampling in Theorem 30, we just need to
be able to compute the probabilities pi, for i ∈ [n], where recall

pi ≥ min(1, ζ · r · ‖Ui,∗‖1∑n
j=1 ‖Uj,∗‖1

), (20)

where ζ ∈ (0, 1], and U = AR−1 is the well-conditioned basis. This is where
ζ comes in to the picture.

Instead of computing the matrix product A·R−1 directly, one can choose
a d × t matrix G of i.i.d. N(0, 1/t) random variables, for t = O(log n)
and first compute R−1 ·G. This matrix can be computed in O(td2) time
and only has t columns, and so now computing AR−1G = A · (R−1 · G)
can be computed in O(nnz(A)t) = O(nnz(A) log n) time. By choosing the
parameter ε = 1/2 of Lemma 18 we have for all i ∈ [n], that 1

2‖(AR−1)i‖2 ≤
‖(AR−1G)i‖2 ≤ 2‖(AR−1)i‖2. Therefore,

n∑

j=1

‖(AR−1G)j‖1 ≤
√
d

n∑

j=1

‖(AR−1G)j‖2 ≤ 2
√
d

n∑

j=1

‖(AR−1)j‖1,

and also

‖(AR−1G)j‖1 ≥ ‖(AR−1G)j‖2 ≥
1

2
‖(AR−1)j‖2 ≥

1

2
√
d
‖(AR−1)j‖1.

It follows that for

pi = min(1, r · ‖(AR−1G)i‖1∑n
j=1 ‖(AR−1G)j‖1

),
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we have that (20) holds with ζ = 1/(4d).
We note that a tighter anaylsis is possible, in which G need only have

O(log(dε−1 log n)) columns, as shown in [26].

3.4 Subspace embeddings using cauchy random variables

The Cauchy distribution, having density function p(x) = 1
π · 1

1+x2 , is the
unique 1-stable distribution. That is to say, if C1, . . . , CM are indepen-
dent Cauchys, then

∑
i∈[M ] γiCi is distributed as a Cauchy scaled by γ =∑

i∈[M ] |γi|.
The absolute value of a Cauchy distribution has density function f(x) =

2p(x) = 2
π

1
1+x2 . The cumulative distribution function F (z) of it is

F (z) =

∫ z

0
f(z)dz =

2

π
arctan(z).

Note also that since tan(π/4) = 1, we have F (1) = 1/2, so that 1 is the
median of this distribution.

Although Cauchy random variables do not have an expectation, and have
infinite variance, some control over them can be obtained by clipping them.
The first use of such a truncation technique in algorithmic applications that
we are aware of is due to Indyk [63].

Lemma 33 Consider the event E that a Cauchy random variable X satisfies
|X| ≤ M , for some parameter M ≥ 2. Then there is a constant c > 0 for
which Pr[E ] ≥ 1− 2

πM and E[|X| | E ] ≤ c logM, where c > 0 is an absolute
constant.

Proof:

Pr[E ] = F (M) =
2

π
tan−1(M) = 1− 2

π
tan−1

(
1

M

)
≥ 1− 2

πM
. (21)

Hence, for M ≥ 2,

E[|X| | E ] =
1

Pr[E ]

∫ M

0

2

π

x

1 + x2
=

1

Pr[E ]

1

π
log(1 + M2) ≤ C logM,

where the final bound uses (21).

We will show in Theorem 36 below that a matrix of i.i.d. Cauchy random
variables is an ℓ1-subspace embedding. Interestingly, we will use the exis-
tence of a well-conditioned basis in the proof, though we will not need an
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algorithm for constructing it. This lets us use well-conditioned bases with
slightly better parameters. In particular, we will use the following Auerbach
basis.

Definition 34 (see “Connection to Auerbach bases” in Section 3.1 of [32])
There exists a (d, 1, 1)-well-conditioned basis.

For readability, it is useful to separate out the following key lemma that
is used in Theorem 36 below. This analysis largely follows that in [108].

Lemma 35 (Fixed Sum of Dilations) Let S be an r × n matrix of i.i.d.
Cauchy random variables, and let y1, . . . ,yd be d arbitrary vectors in R

n.
Then

Pr[
d∑

i=1

‖Syi‖1 ≥ Cr log(rd)
d∑

i=1

‖yi‖1] ≤ 1

100
,

where C > 0 is an absolute constant.

Proof: Let the rows of S be denoted S1∗, . . . ,Sr∗. For i = 1, . . . , r, let Fi

be the event that

∀j ∈ [d], |〈Si∗,yj〉| ≤ C ′rd‖yj‖1,

where C ′ is a sufficiently large positive constant. Note that by the 1-stability
of the Cauchy distribution, 〈Si∗,yj〉 is distributed as ‖yj‖1 times a Cauchy
random variable. By Lemma 33 applied to M = C ′rd, together with a union
bound, we have

Pr[Fi] ≥ 1− d · 2

πC ′rd
≥ 1− 2

πC ′r
.

Letting F = ∧ri=1Fi, we have by another union bound that

Pr[F ] ≥ 1− 2r

πC ′r
= 1− 2

πC ′ .

Given F , we would then like to appeal to Lemma 33 to bound the ex-
pectations E[|〈Si∗,yj〉| | F ]. The issue is that the expectation bound in
Lemma 33 cannot be applied, since the condition F additionally conditions
Si∗ through the remaining columns A∗j′ for j′ 6= j. A first observation is
that by independence, we have

E[|〈Si∗,yj〉| | F ] = E[|〈Si∗,yj〉| | Fi].

47



We also know from Lemma 33 that if Fi,j is the event that |〈Si∗yj〉| ≤
C ′rd‖yj‖1, then E[|〈Si∗,yj〉| | Fi,j] ≤ C log(C ′rd)‖yj‖1, where C is the
constant of that lemma.

We can perform the following manipulation (for an event A, we use the
notation ¬A to denote the occurrence of the complement of A):

C log(C ′rd)‖yj‖1 = E[|〈Si∗,yj〉| | Fi,j]

= E[|〈Si∗,yj〉| | Fi] · Pr[Fi | Fi,j ]

+ E[〈Si∗,yj〉| | Fi,j ∧ ¬Fi] · Pr[¬Fi | Fi,j]

≥ E[|〈Si∗,yj〉| | Fi] · Pr[Fi | Fi,j ].

We also have

Pr[Fi | Fi,j] · Pr[Fi,j] = Pr[Fi] ≥ 1−O(1/(C ′r)),

and Pr[Fi,j] ≥ 1−O(1/(C ′rd)). Combining these two, we have

Pr[Fi | Fi,j] ≥
1

2
, (22)

for C ′ > 0 a sufficiently large constant. Plugging (22) into the above,

C log(C ′rd)‖yj‖1 ≥ E[|〈Si∗,yj〉| | Fi] · Pr[Fi | Fj ] ·
1

2
,

or equivalently,

E[|〈Si∗,yj〉| | F ] = E[|〈Si∗,yj〉| | Fi] ≤ C log(C ′rd)‖yj‖1, (23)

as desired.
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We thus have, combining (23) with Markov’s inequality,

Pr[

d∑

j=1

‖Syj‖1 ≥ rC ′ log(C ′rd)

d∑

ji=1

‖yj‖1]

≤ Pr[¬F ] + Pr[
d∑

j=1

‖Syj‖1 ≥ rC ′ log(C ′rd)
d∑

j=1

‖yj‖1 | F ]

≤ 2

πC ′ +
E[
∑d

j=1 ‖Syj‖1 | F ]

rC ′ log(C ′rd)
∑d

j=1 ‖yj‖1

=
2

πC ′ +

∑r
i=1

∑d
j=1E[|〈Si∗yj〉| | F ]

rC ′ log(C ′rd)
∑d

j=1 ‖yj‖1

≤ 2

πC ′ +
rC log(C ′rd)

rC ′ log(C ′rd)

≤ 2

πC ′ +
C

C ′ .

As C ′ can be chosen sufficiently large, while C is the fixed constant of Lemma
33, we have that

Pr[
d∑

j=1

‖Syj‖1 ≥ rC ′ log(C ′rd)
d∑

ji=1

‖yj‖1] ≤ 1

100
.

The lemma now follows by appropriately setting the constant C in the lemma
statement.

Theorem 36 A matrix S of i.i.d. Cauchy random variables with r =
O(d log d) rows is an ℓ1-subspace embedding with constant probability, that
is, with probability at least 9/10 simultaneously for all x,

‖Ax‖1 ≤ 4‖SAx‖1/r = O(d log d)‖Ax‖1.

Proof: Since we will show that with probability 9/10, for all x we have
‖Ax‖1 ≤ 3‖SAx‖1/r ≤ Cd log d‖Ax‖1, we are free to choose whichever ba-
sis of the column space of A that we like. In particular, we can assume the
d columns A∗1, . . . ,A∗d of A form an Auerbach basis. We will first bound
the dilation, and then bound the contraction.
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Dilation: We apply Lemma 35 with yi = A∗i for i = 1, 2, . . . , d. We
have with probability at least 99/100,

d∑

j=1

‖Syj‖1 ≤ rC log(rd)

d∑

j=1

‖yj‖1 = rCd log(rd), (24)

where the last equality used that y1, . . . ,yd is an Auerbach basis.
Now let y = Ax be an arbitrary vector in the column space of A. Then,

‖Sy‖1 =

d∑

j=1

‖SA∗j · xj‖1

≤
d∑

j=1

‖SA∗j‖1 · |xj |

≤ ‖x‖∞
d∑

j=1

‖SA∗j‖1

≤ ‖x‖∞rCd log(rd)

≤ ‖Ax‖1rCd log(rd),

where the third inequality uses (24) and the fourth inequality uses a property
of A being a (d, 1, 1)-well-conditioned basis. It follows that 4‖SAx‖1/r ≤
4Cd log(rd)‖Ax‖1, as needed in the statement of the theorem.

Contraction: We now argue that no vector’s norm shrinks by more than
a constant factor. Let y = Ax be an arbitrary vector in the column space
of A. By the 1-stability of the Cauchy distribution, each entry of Sy is
distributed as a Cauchy scaled by ‖y‖1.

Since the median of the distribution of the absolute value of a Cauchy
random variable is 1, we have that with probability at least 1/2, |〈Siy〉| ≥
‖y‖1. Since the entries of Sy are independent, it follows by a Chernoff
bound that the probability that fewer than a 1/3 fraction of the entries are
smaller than ‖y‖1 is at most exp(−r). Hence, with probability 1− exp(−r),
‖Sy‖1 is at least r‖y‖1/3, or equivalently, 4‖SAx‖1/r ≥ (4/3)‖Ax‖1.

We now use a net argument as in [108]. By Lemma 29, there exists an
ε-net N ⊂ {Ax | ‖Ax‖1 = 1} for which |N | ≤ (24Cd log(rd))d and for any
y = Ax with ‖y‖1 = 1, there exists a w ∈ N with ‖y −w‖1 ≤ 1

12Cd log(rd) .

Observe that for a sufficiently large r = O(d log d) number of rows of S, we
have by a union bound, that with probability 1 − exp(−r)|N | ≥ 99/100,
simultaneously for all z ∈ N , 4‖Sw‖1/r ≥ (4/3)‖w‖1.
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For an arbitrary y = Ax with ‖y‖1 = 1, we can write y = w + (y −w)
for a w ∈ N and ‖y −w‖1 ≤ 1

12Cd log(rd) . By the triangle inequality,

4‖Sy‖1
r

≥ 4‖Sw‖1
r

− 4‖S(y −w)‖1
r

≥ 4

3
‖w‖1 −

4‖S(y −w)‖1
r

=
4

3
− 4‖S(y −w)‖1

r
.

Since we have already shown that 4‖SAx‖1/r ≤ 4Cd log(rd)‖Ax‖1 for all
x, it follows that

4‖S(y −w)‖1
r

≤ 4Cd log(rd)‖y −w‖1 ≤
4Cd log(rd)

12Cd log(rd)
≤ 1

3
.

It follows now that 4‖Sy‖1/r ≥ 1 = ‖y‖1 for all vectors y = Ax with
‖y‖1 = 1.

Hence, the statement of the theorem holds with probability at least 9/10,
by a union bound over the events in the dilation and contraction arguments.
This concludes the proof.

Corollary 37 There is an O(nd2 +nd log(dε−1 log n)) + poly(d/ε) time al-
gorithm for solving the ℓ1-regression problem up to a factor of (1 + ε) and
with error probability 1/10.

Proof: The corollary follows by combining Theorem 30, Lemma 32 and
its optimization in §3.3, and Theorem 36. Indeed, we can compute S ·A in
O(nd2) time, then a QR-factorization as well as R−1 in poly(d) time. Then
we can compute AR−1G as well as perform the sampling in Theorem 30 in
nd log(dε−1 log n) time. Finally, we can solve the ℓ1-regression problem on
the samples in poly(d/ε) time.

While the time complexity of Corollary 37 can be improved to roughly
O(nd1.376)+poly(d/ε) using algorithms for fast matrix multiplication, there
are better ways of speeding this up, as we shall see in the next section.

3.5 Subspace embeddings using exponential random vari-

ables

We now describe a speedup over the previous section using exponential ran-
dom variables, as in [124]. Other speedups are possible, using [26, 27, 92],
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though the results in [124] additionally also slightly improve the sampling
complexity. The use of exponential random variables in [124] is inspired by
an elegant work of Andoni, Onak, and Krauthgamer on frequency moments
[5, 4].

An exponential distribution has support x ∈ [0,∞), probability density
function f(x) = e−x and cumulative distribution function F (x) = 1 − e−x.
We say a random variable X is exponential if X is chosen from the expo-
nential distribution. The exponential distribution has the following max-
stability property.

Property 1 If U1, . . . , Un are exponentially distributed, and αi > 0 (i =

1, . . . , n) are real numbers, then max{α1/U1, . . . , αn/Un} ≃
(∑

i∈[n] αi

)
/U ,

where U is exponential.

The following lemma shows a relationship between the Cauchy distribution
and the exponential distribution.

Lemma 38 Let y1, . . . , yd ≥ 0 be scalars. Let U1, . . . , Ud be d indepen-
dendent exponential random variables, and let X = (

∑
i∈[d] y

2
i /U

2
i )1/2. Let

C1, . . . , Cd be d independent Cauchy random variables, and let Y = (
∑

i∈[d] y
2
iC

2
i )1/2.

There is a constant γ > 0 for which for any t > 0.

Pr[X ≥ t] ≤ Pr[Y ≥ γt].

Proof: We would like the density function h of y2iC
2
i . Letting t = y2iC

2
i ,

the inverse function is Ci = t1/2/yi. Taking the derivative, we have dCi
dt =

1
2yi

t−1/2. Letting f(t) = 2
π

1
1+t2

be the density function of the absolute value
of a Cauchy random variable, we have by the change of variable technique,

h(t) =
2

π

1

1 + t/y2i
· 1

2yi
t−1/2 =

1

π

1

yit1/2 + t3/2/yi
.

We would also like the density function k of y2iE
2
i , where Ei ∼ 1/Ui. Letting

t = y2iE
2
i , the inverse function is Ei = t1/2/yi. Taking the derivative, dEi

dt =
1
2yi

t−1/2. Letting g(t) = t−2e−1/t be the density function of the reciprocal of
an exponential random variable, we have by the change of variable technique,

k(t) =
y2i
t
e−yi/t

1/2 · 1

2yi
t−1/2 =

yi

2t3/2
e−yi/t

1/2
.

We claim that k(t) ≤ h(γt)/γ for a sufficiently small constant γ > 0. This
is equivalent to showing that

π

2

yi
t3/2

e−yi/t
1/2

γ ≤ 1

γ1/2yit1/2 + γ3/2t3/2/yi
,
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which for γ < 1, is implied by showing that

π

2

yi

t3/2
e−yi/t

1/2
γ ≤ 1

γ1/2yit1/2 + γ1/2t3/2/yi
.

We distinguish two cases: first suppose t ≥ y2i . In this case, e−yi/t
1/2 ≤ 1.

Note also that yit
1/2 ≤ t3/2/yi in this case. Hence, γ1/2yit

1/2 ≤ γ1/2t3/2/yi.
Therefore, the above is implied by showing

π

2

yi

t3/2
γ ≤ yi

2γ1/2t3/2
,

or

γ3/2 ≤ 1

π
,

which holds for a sufficiently small constant γ ∈ (0, 1).
Next suppose t < y2i . In this case yit

1/2 > t3/2/yi, and it suffices to show

π

2

yi

t3/2
e−yi/t1/2γ ≤ 1

2γ1/2yit1/2
,

or equivalently,

πy2i γ
3/2 ≤ teyi/t

1/2
.

Using that ex ≥ x2/2 for x ≥ 0, it suffices to show

πy2i γ
3/2 ≤ y2i /2,

which holds for a small enough γ ∈ (0, 1).
We thus have,

Pr[X ≥ t] = Pr[X2 ≥ t2]

= Pr[
d∑

i=1

y2i /U
2
i ≥ t2]

=

∫
∑d

i=1 ti≥t2
k(t1) · · · k(td)dt1 · · · dtd

≤
∫
∑d

i=1
ti≥t2

κ−dh(κt1) · · · h(κtd)dt1 · · · dtd

≤
∫
∑d

i=1
si≥κt2

f(s1) · · · f(sd)ds1 · · · dsd

= Pr[Y 2 ≥ κt2]

= Pr[Y ≥ κ1/2t],

where we made the change of variables si = κti. Setting γ = κ1/2 completes
the proof.
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We need a bound on Pr[Y ≥ t], where Y = (
∑

i∈[d] y
2
iC

2
i )1/2 is as in Lemma

38.

Lemma 39 There is a constant c > 0 so that for any r > 0,

Pr[Y ≥ r‖y‖1] ≤
c

r
.

Proof: For i ∈ [d], let σi ∈ {−1,+1} be i.i.d. random variables with
Pr[σi = −1] = Pr[σi = 1] = 1/2. Let Z =

∑
i∈[d] σiyiCi. We will obtain tail

bounds for Z in two different ways, and use this to establish the lemma.
On the one hand, by the 1-stability of the Cauchy distribution, we have

that Z ∼ ‖y‖1C, where C is a standard Cauchy random variable. Note that
this holds for any fixing of the σi. The cumulative distribution function of
the Cauchy random variable is F (z) = 2

π arctan(z). Hence for any r > 0,

Pr[Z ≥ r‖y‖1] = Pr[C ≥ r] = 1− 2

π
arctan(r).

We can use the identity

arctan(r) + arctan

(
1

r

)
=

π

2
,

and therefore using the Taylor series for arctan for r > 1,

arctan(r) ≥ π

2
− 1

r
.

Hence,

Pr[Z ≥ r‖y‖1] ≤
2

πr
. (25)

On the other hand, for any fixing of C1, . . . , Cd, we have

E[Z2] =
∑

i∈[d]
y2iC

2
i ,

and also
E[Z4] = 3

∑

i 6=j∈[d]
y2i y

2
jC

2
i C

2
j +

∑

i∈[d]
y4iC

4
i .

We recall the Paley-Zygmund inequality.
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Fact 3 If R ≥ 0 is a random variable with finite variance, and 0 < θ < 1,
then

Pr[R ≥ θE[R]] ≥ (1− θ)2 · E[R]2

E[R2]
.

Applying this inequality with R = Z2 and θ = 1/2, we have

Pr[Z2 ≥ 1

2
·
∑

i∈[d]
y2iC

2
i ] ≥ 1

4
·

(∑
i∈[d] y

2
iC

2
i

)2

3
∑

i 6=j∈[d] y
2
i y

2
jC

2
i C

2
j +

∑
i∈[d] y

4
iC

4
i

≥ 1

12
,

or equivalently

Pr[Z ≥ 1√
2

(
∑

i∈[d]
y2iC

2
i )1/2] ≥ 1

12
. (26)

Suppose, towards a contradiction, that Pr[Y ≥ r‖y‖1] ≥ c/r for a sufficiently
large constant c > 0. By independence of the σi and the Ci, by (26) this
implies

Pr[Z ≥ r‖y‖1√
2

] ≥ c

12r
.

By (25), this is a contradiction for c > 24
π . It follows that Pr[Y ≥ r‖y‖1] <

c/r, as desired.

Corollary 40 Let y1, . . . , yd ≥ 0 be scalars. Let U1, . . . , Ud be d independen-
dent exponential random variables, and let X = (

∑
i∈[d] y

2
i /U

2
i )1/2. There is

a constant c > 0 for which for any r > 0,

Pr[X > r‖y‖1] ≤ c/r.

Proof: The corollary follows by combining Lemma 38 with Lemma 39,
and rescaling the constant c from Lemma 39 by 1/γ, where γ is the constant
of Lemma 38.

Theorem 41 ([124]) Let S be an r × n CountSketch matrix with r =
d · poly log d, and D an n × n diagonal matrix with i.i.d. entries Di,i dis-
tributed as a reciprocal of a standard exponential random variable. Then,
with probability at least 9/10 simultaneously for all x,

Ω

(
1

d log3/2 d

)
‖Ax‖1 ≤ ‖SDAx‖1 ≤ O(d log d)‖Ax‖1.
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Proof: By Theorem 10, with probability at least 99/100 over the choice of
S, S is an ℓ2-subspace embedding for the matrix D·A, that is, simultaneously
for all x ∈ R

d, ‖SDAx‖2 = (1±1/2)‖DAx‖2. We condition S on this event.
For the dilation, we need Khintchine’s inequality.

Fact 4 ([58]). Let Z =
∑r

i=1 σizi for i.i.d. random variables σi uniform in
{−1,+1}, and z1, . . . , zr be scalars. There exists a constant c > 0 for which
for all t > 0

Pr[|Z| > t‖y‖2] ≤ exp(−ct2).

Let y1, . . . ,yd be d vectors in an Auerbach basis for the column space of
A. Applying Fact 4 to a fixed entry j of SDyi for a fixed i, and letting
zi,j denote the vector whose k-th coordinate is yi

k if Sj,k 6= 0, and otherwise

zi,jk = 0, we have for a constant c′ > 0,

Pr[|(SDyi)j | > c′
√

log d‖Dzi,j‖2] ≤ 1

d3
.

By a union bound, with probability

1− rd

d3
= 1− d2poly log d

d3
= 1− poly log d

d
,

for all i and j,
|(SDyi)j | ≤ c′

√
log d‖Dzi,j‖2,

which we denote by event E and condition on. Notice that the probability
is taken only over the choice of the σi, and therefore conditions only the σi
random variables.

In the following, i ∈ [d] and j ∈ [r]. Let Fi,j be the event that

‖Dzi,j‖2 ≤ 100dr‖zi,j‖1,

We also define
Fj = ∧iFi,j, F = ∧jFj = ∧i,jFi,j.

By Corollary 40 and union bounds,

Pr[Fj ] ≥ 1− 1

100r
,

and union-bounding over j ∈ [r],

Pr[F ] ≥ 99

100
.
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We now bound E[‖Dzi,j‖2 | E ,F ]. By independence,

E[‖Dzi,j‖2 | E ,F ] = E[‖Dzi,j‖2 | E ,Fj ].

Letting p = Pr[E ∧ Fi,j] ≥ 99/100, we have by Corollary 40,

E[‖Dzi,j‖2 | E ,Fi,j ] =

∫ 100dr

u=0
Pr[‖Dzi,j‖2 ≥ u‖zi,j‖1 | E ,Fi,j ] · du

≤ 1

p
(1 +

∫ 100dr

u=1

c

u
) · du

≤ c

p
(1 + ln(100dr)).

We can perform the following manipulation:

c

p
(1 + ln(100dr)) ≥ E[‖Dzi,j‖2 | E ,Fi,j ]

≥ E[‖Dzi,j‖2 | E ,Fj ] · Pr[Fj | Fi,j]

= E[‖Dzi,j‖2 | E ,Fj ] · Pr[Fj ]/Pr[Fi,j ]

≥ 1

2
E[‖Dzi,j‖2 | E ,Fj ] · Pr[Fj ]

=
1

2
E[‖Dzi,j‖2 | E ,Fj ] · Pr[F ].

It follows by linearity of expectation that,

E[
∑

i∈[d],j∈[dpoly log d]
‖Dzi,j‖2 | E ,F ] ≤ c

p
(1 + ln(100dr))

d∑

i=1

‖yi‖1.

Consequently, by a Markov bound, and using that p ≥ 1/2, conditioned on
E ∧ F , with probability at least 9/10, we have the occurrence of the event
G that

d∑

i=1

‖Dyi‖2 ≤ 10
c

p
(1 + ln(100dr))

d∑

i=1

‖yi‖1. ≤ 40cd ln(100dr) (27)

To bound the dilation, consider a fixed vector x ∈ R
d. Then conditioned

on E ∧ F ∧ G, and for A = [y1, . . . ,yd] an Auerbach basis (without loss of
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generality),

‖SDAx‖1 ≤ ‖x‖∞
d∑

i=1

‖SDyi‖1

≤ ‖Ax‖1
d∑

i=1

‖SDyi‖1

≤ ‖Ax‖1c′
√

log d40cd ln(100dr)

≤ c′′d(log3/2 d)‖Ax‖1,

where the first inequality follows from the triangle inequality, the second
inequality uses that ‖x‖∞ ≤ ‖Ax‖1 for a well-conditioned basis A, the third
inequality uses (27), and in the fourth inequality c′′ > 0 is a sufficiently large
constant. Thus for all x ∈ R

d,

‖SDAx‖1 ≤ c′′d(log3/2 d)‖Ax‖1. (28)

For the contraction, we have

‖SDAx‖1 ≥ ‖SDAx‖2
≥ 1

2
‖DAx‖2

≥ 1

2
‖DAx‖∞

=
1

2

‖Ax‖1
U

,

where U is a standard exponential random variables, and where the first
inequality uses our conditioning on S, the second inequality uses a stan-
dard norm inequality, and the third inequality uses the max-stability of
the exponential distribution. Thus, since the cumulative distribution of an
exponential random variable F (x) = 1− e−x, we have that for any fixed x,

Pr

[
‖SDAx‖1 ≥

1

4

‖Ax‖1
d log(2d3)

]
≥ 1− (2d2)2d. (29)

By Lemma 29, there exists a 1
d3 -net N for which |N | ≤ (2d3)d, where N is

a subset of {y ∈ R
n | y = Ax for some x ∈ R

d and ‖y‖1 = 1}. Combining
this with (29), by a union bound we have the event E that simultaneously
for all w ∈ N ,

‖SDw‖1 ≥
1

4

‖w‖1
d log(2d3)

.
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Now consider an arbitrary vector y of the form SDAx with ‖y‖1 = 1.
By definition of N , one can write y = w + (y − w), where w ∈ N and
‖y −w‖1 ≤ 1

d3 . We have,

‖SDy‖1 ≥ ‖SDw‖1 − ‖SD(y −w)‖1
≥ 1

4d log(2d3)
− ‖SD(y −w)‖1

≥ 1

4d log(2d3)
− O(d log3/2 d)

d3

≥ 1

8d log(2d3)
,

where the first inequality uses the triangle inequality, the second the occur-
rence of E , and the third (28). This completes the proof.

Corollary 42 There is an O(nnz(A) log n) + poly(d/ε) time algorithm for
computing ΠA, where Π is a poly(d/ε) by n matrix satisfying, with probabil-
ity at least 9/10, ‖ΠAx‖1 = (1±ε)‖Ax‖1 for all x. Therefore, there is also
an O(nnz(A) log n) + poly(d/ε) time algorithm for solving the ℓ1-regression
problem up to a factor of (1 + ε) with error probability 1/10.

Proof: The corollary follows by combining Theorem 30, Lemma 32 and
its optimization in §3.3, and Theorem 41.

3.6 Application to hyperplane fitting

One application of ℓ1-regression is to finding the best hyperplane to find a
set of n points in R

d, presented as an n×d matrix A [22, 23, 70, 71, 108, 26].
One seeks to find a hyperplane H so that the sum of ℓ1-distances of the rows
Ai∗ to H is as small as possible.

While in general, the points on H are those x ∈ R
d for which 〈x,w〉 = γ,

where w is the normal vector of H and γ ∈ R, we can in fact assume that
γ = 0. Indeed, this follows by increasing the dimension d by one, placing
the value 1 on all input points in the new coordinate, and placing the value
γ on the new coordinate in w. As this will negligibly affect our overall
time complexity, we can therefore assume γ = 0 in what follows, that is, H
contains the origin.

A nice feature of the ℓ1-norm is that if one grows an ℓ1-ball around a
point x ∈ R

d, it first touches a hyperplane H at a vertex of the ℓ1-ball.
Hence, there is a coordinate direction i ∈ [d] for which the point of closest
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ℓ1-distance to x on H is obtained by replacing the i-th coordinate of x by
the unique real number v so that (x1, . . . , xi−1, v, xi+1, . . . , xd) is on H.

An interesting observation is that this coordinate direction i only de-
pends on H, that is, it is independent of x, as shown in Corollary 2.3 of
[88]. Let A−j denote the matrix A with its j-th column removed. Consider
a hyperplane H with normal vector w. Let w−j denote the vector obtained
by removing its j-th coordinate. Then the sum of ℓ1-distances of the rows
Ai∗ of A to H is given by

min
j
‖ −A−jw−j −A∗j‖1,

since A−jw−j is the negation of the vector of j-th coordinates of the points
projected (in the ℓ1 sense) onto H, using that 〈w,x〉 = 0 for x on the
hyperplane. It follows that an optimal hyperplane H can be obtained by
solving

min
j

min
w
‖ −A−jw−j −A∗j‖1,

which characterizes the normal vector w of H. Hence, by solving d ℓ1-
regression problems, each up to a (1 + ε)-approximation factor and each on
an n×(d−1) matrix, one can find a hyperplane whose cost is at most (1+ε)
times the cost of the optimal hyperplane.

One could solve each of the d ℓ1-regression problems independently up to
(1+ε)-approximation with error probability 1/d, each taking O(nnz(A) log n)+
poly(d/ε) time. This would lead to an overall time of O(nnz(A)d log n) +
poly(d/ε), but we can do better by reusing computation.

That is, it suffices to compute a subspace embedding ΠA once, using
Corollary 42, which takes only O(nnz(A) log n) + poly(δ/ε) time.

For the subspace approximation problem, we can write

min
j

min
w
‖ −A−jw−j −A∗j‖1 = min

j
min

w|wj=0
‖ −Aw −A∗j‖1

= (1± ε) min
j

min
w|wj=0

‖ −ΠAw −ΠA∗j‖1.

Thus, having computed ΠA once, one can solve the subspace approximation
problem with an additional poly(d/ε) amount of time. We summarize our
findings in the following theorem.

Theorem 43 (ℓ1-Hyperplane Approximation) There is an O(nnz(A) log n)+
poly(d/ε) time algorithm for solving the ℓ1-Hyperplane approximation prob-
lem with constant probability.
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4 Low Rank Approximation

In this section we study the low rank approximation problem. We are given
an n× d matrix A, and would like to find a matrix Ãk for which

‖A− Ãk‖ ≤ (1 + ε)‖A−Ak‖,

where Ak is the best rank-k approximation to A with respect to some matrix
norm, and Ãk has rank k.

Low rank approximation can be used for a variety of problems, such as
Non-Negative Matrix Factorization (NNMF) [75], Latent Dirichlet Alloca-
tion (LDA) [16], and face recognition. It has also recently been used for
ℓ2-error shape-fitting problems [50], such as k-means and projective cluster-
ing.

Here we demonstrate an application to latent semantic analysis (LSA).
We define a term-document matrix A in which the rows correpond to terms
(e.g., words) and columns correspond to documents. The entry Ai,j equals
the number of occurrences of term i in document j. Two terms i and
j can be regarded as correlated if the inner product 〈Ai,∗,Aj,∗〉 of their
corresponding rows of A is large. The matrix AAT contains all such inner
products. Similarly, one can look at document correlation by looking at
ATA. By writing A = UΣVT in its SVD, we have AAT = UΣ2UT .

By taking the SVD of low rank approximation Ãk to a matrix A, one
obtains Ãk = LURT , where L and R have orthonormal columns, and U is
a rank-k matrix. One can view the columns of L and R as approximations
to the top k left and right singular vectors of A. Note that, as we will see
below, the algorithm for generating Ãk usually generates its factorization
into the product of L, U, and RT so one does not need to perform an SVD
on Ãk (to achieve O(nnz(A)) + (n + d)poly(k/ε) time algorithms for low
rank approximation, one cannot actually afford to write down Ãk other than
in factored form, since Ãk may be dense).

There are two well-studied norms in this context, the Frobenius and the
spectral (operator) norm, both of which have the same minimizer Ak given
by the singular value decomposition of A. That is, if one writes A = UΣVT

in its SVD, where U and V are orthonormal and Σ is a non-negative diagonal
matrix with Σ1,1 ≥ Σ2,2 ≥ · · ·Σn,n ≥ 0, then Ak = UΣkV

T , where Σk

agrees with Σ on its top k diagonal entries, but is 0 otherwise. Clearly this
is a rank-k matrix, and the Eckart-Young Theorem guarantees that it is the
minimizer for any rotationally-invariant norm, which includes the Frobenius
and spectral norms. The top k rows of VT are known as the top k principal
components of A.
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We will show how to use sketching to speed up algorithms for both
problems, and further variants. Our exposition is based on combinations of
several works in this area by Sárlos, Clarkson, and the author [105, 28, 27].

Section Overview: In §4.1 we give an algorithm for computing a low
rank approximation achieving error proportional to the Frobenius norm.
In §4.2 we give a different kind of low rank approximation, called a CUR
decomposition, which computes a low rank approximation also achieving
Frobenius norm error but in which the column space equals the span of a
small subset of columns of the input matrix, while the row space equals
the span of a small subset of rows of the input matrix. A priori, it is not
even clear why such a low rank approximation should exist, but we show
that it not only exists, but can be computed in nearly input sparsity time.
We also show that it can be computed deterministically in polynomial time.
This algorithm requires several detours into a particular kind of spectral
sparsification given in §4.2.1, as well as an adaptive sampling technique
given in §4.2.2. Finally in §4.2.3 we show how to put the pieces together
to obtain the overall algorithm for CUR factorization. One tool we need
is a way to compute the best rank-k approximation of the column space of
a matrix when it is restricted to lie within a prescribed subspace; we defer
the details of this to §4.4, where the tool is developed in the context of an
application called Distributed Low Rank Approximation. In §4.3 we show
how to perform low rank approximation with a stronger guarantee, namely,
an error with respect to the spectral norm. While the solution quality is
much better than in the case of the Frobenius norm, it is unknown how to
compute this as quickly, though one can still compute it much more quickly
than the SVD. In §4.4 we present the details of the Distributed Low Rank
Approximation algorithm.

4.1 Frobenius norm error

We will say a k-dimensional subspace of Rd spans a (1 + ε) rank-k approxi-
mation to A if

‖A−ALLT ‖F ≤ (1 + ε)‖A−Ak‖F,
where LLT is the projection operator onto that subspace. We will some-
times abuse notation and refer to L as the subspace as well, meaning the
k-dimensional subspace of Rd spanned by the rows of LT .

One way of interpreting the Frobenius low rank problem is to treat each
of the n rows of A as a point in R

d. A particularly nice property about the
Frobenius norm is that if one is given a subspace L of Rd which is guaranteed
to contain a rank-k subspace L′ ⊆ L spanning a (1+ε) rank-k approximation
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to A, then it can be found by projecting each of the rows of A onto V, and
then finding the best rank-k approximation to the projected points inside of
V. This is a simple, but very useful corollary of the Pythagorean theorem.

Lemma 44 The best rank-k approximation to A in Frobenius norm in the
row space of a matrix UT with orthonormal rows is given by [AU]kU

T ,
where [AU]k denotes the best rank-k approximation to AU.

Proof: Let Z be an arbitrary matrix of rank k of the same dimensions as
AU. Then,

‖AUUT − [AU]kU
T ‖2F = ‖AU− [AU]k‖2F

≤ ‖AU− Z‖2F
= ‖AUUT − ZUT ‖2F,

where the equalities use that the rows of UT are orthonormal, while the
inequality uses that [AU]k is the best rank-k approximation to AU.

Hence,

‖A− [AU]kU
T ‖2F = ‖A−AUUT ‖2F + ‖AUUT − [AU]kU

T ‖2F
≤ ‖A−AUUT ‖2F + ‖AUUT − ZUT ‖2F
= ‖A− ZUT ‖2F,

where the equalities use the Pythagorean theorem and the inequality uses
the bound above. It follows that the best rank-k approximation to A in the
rowspace of UT is [AU]kU

T .

The following lemma shows how to use sketching to find a good space L.
For a matrix A, if its SVD is UΣVT , then the Moore-Penrose pseudoinverse
A† of A is equal to VΣ†UT , where Σ† for a diagonal matrix Σ satisfies
Σ†

i,i = 1/Σi,i if Σi,i > 0, and is 0 otherwise.

Lemma 45 Let S be an ℓ2-subspace embedding for any fixed k-dimensional
subspace M with probability at least 9/10, so that ‖Sy‖2 = (1 ± 1/3)‖y‖2
for all y ∈ M . Further, suppose S satisfies the (

√
ε/k, 9/10, ℓ)-JL moment

property for some ℓ ≥ 2 of Definition 12, so that the conclusion of Theorem
13 holds, namely, that for any fixed matrices A and B each with k rows,

Pr
S

[‖ATSTSB−ATB‖F > 3
√

ε/k‖A‖F‖B‖F] ≤ 1

10
.

Then the rowspace of SA contains a (1 + ε) rank-k approximation to A.
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Remark 46 An example of a matrix S having both properties as required
by the lemma is a sparse embedding matrix with O(k2 + k/ε) rows, as fol-
lows by Theorem 9 and Theorem 14. One can also use a matrix S of i.i.d.
normal random variables with O(k/ε) rows, which follows by Theorem 6 and
Theorem 13; for the latter one needs to show that Definition 12 is satisfied.
Also, the product of subspace embeddings is a a subspace embedding, and one
can show the product of a sparse embedding matrix with a matrix of i.i.d.
normal random variables satisfies Theorem 13. One advantage of using the
product is that one obtains fast time complexity as well as O(k/ε) overall
rows. See, e.g., [27], where the product of a sparse embedding matrix with
the Subsampled Randomized Hadamard Transform was used.

Proof: Let Uk denote the n × k matrix of top k left singular vectors of
A. Consider the quantity

‖Uk(SUk)†SA−A‖2F. (30)

The goal is to show (30) is at most (1+ε)‖A−Ak‖2F. Note that this implies
the lemma, since Uk(SUk)†SA is a rank-k matrix inside of the rowspace of
SA.

Since the columns of A −Ak are orthogonal to the columns of Uk, by
the matrix Pythagorean theorem (applied to columns),

‖Uk(SUk)†SA−A‖2F
= ‖Uk(SUk)†SA−Ak‖2F + ‖A−Ak‖2F
= ‖(SUk)†SA−ΣkV

T
k ‖2F + ‖A−Ak‖2F,

where the second equality uses that the columns of Uk are orthonormal, and
that Ak = UkΣkV

T
k .

It suffices to show ‖(SUk)†SA − ΣkV
T
k ‖2F = O(ε)‖A −Ak‖2F. We use

that A = UΣVT = UkΣkV
T
k + Un−kΣr−kV

T
d−k, where r is the rank of A,

the columns of Un−k correspond to the bottom n − k left singular vectors,
while the rows of VT

d−k correspond to the bottom d−k right singular vectors.

Hence, it suffices to show ‖(SUk)†SUkΣkV
T
k + (SUk)†SUn−kΣr−kV

T
d−k −

ΣkV
T
k ‖2F = O(ε)‖A −Ak‖2F. Now, (SUk)†SUk = Ik, and so it suffices to

show ‖(SUk)†SUn−kΣr−kV
T
d−k‖2F = O(ε)‖A −Ak‖2F.

Note that (SUk)† and (SUk)T have the same row space, namely UT
k S

T ,
and so we can write (SUk)T = B(SUk)† where B is a k× k change of basis
matrix (of full rank). Hence, it is equivalent to show

‖B−1(SUk)TSUn−kΣr−kV
T
d−k‖2F = O(ε)‖A −Ak‖2F. (31)
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We seek an upper bound on ‖B−1‖2, or equivalently a lower bound
on σr(B). Since (SUk)† has full row rank, we can find an x for which
(SUk)†x = v, where v is the right singular vector of B of minimum singular
value.

With probability at least 9/10, S is an ℓ2-subspace embedding for the
column space of Uk, that is ‖SUkz‖2 = (1 ± 1/3)‖Ukz‖2 for all z. Since
Uk has orthonormal columns, this implies that all of the singular values
of SUk are in the range [2/3, 4/3]. Hence, the singular values of (SUk)†

are in [4/3, 3/2], so we can choose the x above so that ‖x‖2 ∈ [2/3, 3/4].
It follows that ‖B(SUk)†x‖2 = σr(B). But B(SUk)† = (SUk)T , and so
σr(B) ≥ σr((SUk)T )2/3. The minimum singular value of (SUk)T is at least
2/3, and so σr(B) ≥ 4

9 , or equivalently ‖B−1‖2 ≤ 9
4 . Returning to (31), it

suffices to show ‖(SUk)TSUn−kΣr−kV
T
d−k‖2F = O(ε)‖A −Ak‖2F.

Since S satisfies the conclusion of Theorem 13, with probability at least
9/10,

‖UT
k S

TSUn−kΣr−kV
T
d−k‖2F ≤ 9 · ε

k
‖Uk‖2F‖A−Ak‖2F ≤ 9ε‖A −Ak‖2F.

Rescaling ε by a constant factor completes the proof.

Lemma 44 and Lemma 45 give a natural way of using sketching to speed
up low rank approximation. Namely, given A, first compute S · A, which
is a small number of random linear combinations of the rows of A. Using
efficient ℓ2-subspace embeddings, this can be done in O(nnz(A)) time, and
S need only have Õ(k/ε) rows. Next, compute an orthogonal basis UT for
the rowspace of S ·A, which can be done in Õ((k/ε)2d) time.

Next, compute AU in Õ(nnz(A)k/ε) time. By invoking Lemma 44, we
can now compute [AU]k, and our overall low rank approximation will be
[AU]kU

T , which is a (1 + ε)-approximation. Note that we can compute the
SVD of AU in Õ((k/ε)2n) time, thereby giving us [AU]k. This allows us

to obtain the SVD ŨΣ̃Ṽ
T

of [AU]k in this amount of time as well. We
don’t require explicitly outputting the product of [AU]k and UT , since this
may be a dense matrix and so would require at least nd time to write down.
In applications, it is usually better to have a factored form. Notice that

Ṽ
T
UT has orthonormal rows, since Ṽ

T
UTUṼ is the identity. Therefore,

we can output Ũ, Σ̃, Ṽ
T
UT , which is the SVD of a rank-k matrix providing

a (1 + ε)-approximation.
The overall time of the above algorithm is Õ(nnz(A))k/ε+(n+d)(k/ε)2).

While this is a significant improvement over computing the SVD of A, which
would take min(nd2, n2d) time, we could still hope to achieve a leading order
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running time of O(nnz(A)) as opposed to Õ(nnz(A)k/ε). The dominant cost
is actually in computing AU, the coordinate representation of the rows of
A in the rowspace of UT . That is, it is inefficient to directly project the
rows of A onto U.

Fortunately, we can cast this projection problem as a regression problem,
and solve it approximately.

Theorem 47 Now let R be a (1+O(ε))-approximate ℓ2-subspace embedding
for the row space of SA, where S is as in Lemma 45. Then

‖AR(SAR)†SA−A‖2F ≤ (1 + ε)‖A −Ak‖2F.

Furthermore,

‖[ARU]kU
T (SAR)†SA−A‖2F ≤ (1 + ε)‖A−Ak‖2F,

where UUT = (SAR)†SAR is the projection matrix onto the rowspace of
SAR.

The time to compute the factorizations (AR), (SAR)†, (SA) or [ARU]k,
UT , (SAR)†, (SA), is O(nnz(A)) + (n+ d)poly(k/ε). Note that in general
one can only hope to output the factorizations in this amount of time, as
performing the actual multiplications of the factors of the low rank approxi-
mation may result in a dense n× d matrix.

Proof: Lemma 45 implies that

min
Y
‖YSA−A‖F ≤ (1 + ε)‖A−Ak‖F,

The minimizer of the regression problem minY ‖YSAR−AR‖F is equal to
Y = AR(SAR)†, and since R is a subspace embedding we have

‖AR(SAR)†SA−A‖F ≤ (1 + ε) min
Y
‖YSA−A‖F ≤ (1 + ε)2‖A−Ak‖F,

implying the first part of the theorem after rescaling ε by a constant factor.
For the second part of the theorem, note that Lemma 45 gives the

stronger guarantee that

min
rank kY

‖YSA−A‖F ≤ (1 + ε)‖A −Ak‖F.

By the properties of an ℓ2-subspace embedding, we thus have if Z is the
solution to the regression problem

min
rank kZ

‖ZSAR−AR‖F,
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then

‖ZSA−A‖F ≤ (1 + ε) min
rank kY

‖YSA−A‖F ≤ (1 + ε)2‖A−Ak‖F.

Therefore, it suffices to find Z. Note that ZSAR is the best rank-k ap-
proximation to AR in the rowspace of SAR. Therefore, by Lemma 44,
ZSAR = [(AR)U]kU

T , where UUT = (SAR)†SAR is the projector onto
the row space of SAR. Note that SAR(SAR)† = I since S has fewer rows
than columns, and therefore

ZSA = [(AR)U]kU
T (SAR)†SA.

For the time complexity, the dominant cost is in computing AR and SA,
both of which can be done in O(nnz(A)) time. The remaining operations
are on matrices for which at least one dimension is poly(k/ε), and therefore
can be computed in (n + d)poly(k/ε) time.

While the representation AR(SAR)†SA in Theorem 47 might be useful in
its own right as a low rank approximation to A, given it is technically a
bicriteria solution since its rank may be O(k/ε + kpoly log k), whereas the
original problem formulation wants our representation to have rank at most
k. The second part of Theorem 47 gives a rank-k approximation.

4.2 CUR decomposition

We now give an alternative to low rank approximation which involves finding
a decomposition of an n × n matrix A into C ·U ·R, where C is a subset
of columns of A, R is a subset of rows of A, and U is a low rank matrix.
Ideally, we would like the following properties:

1. ‖CUR−A‖F ≤ (1 + ε)‖A −Ak‖F.

2. C is n× c for a small value of c. Similarly, R is r×n for a small value
of r.

3. U has rank k.

4. The matrices C, U, and R can be found quickly, ideally in nnz(A) +
poly(k/ε)n time.

A CUR decomposition of a matrix is thus a rank-k approximation whose
column space and row space are spanned by a small subset of actual rows
and columns of A. This often makes it more interpretable than a generic
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low rank approximation, or even the SVD, whose column and row spaces
are spanned by arbitrary linear combinations of all of the columns and rows
of A, respectively, see, e.g., [86] for a discussion of this.

Before discussing the details of some of the available CUR algorithms
in [37, 38, 41, 87, 52, 122, 21], we briefly mention a similar problem which
constructs factorizations of the form A = CX+E, where C contains columns
of A and X has rank at most k. There are also optimal algorithms for this
problem [19, 57], in both the spectral and the Frobenius norm. Indeed, to
obtain a relative-error optimal CUR, one uses a sampling method from [19],
which allows to select O(k) columns and rows. For a more detailed discussion
of this CX problem, which is also known as CSSP (Column Subset Selection
Problem) see [20, 19, 57].

Drineas and Kannan brought CUR factorizations to the theoretical com-
puter science community in [37]; we refer the reader to the jounral version of
their work together with Mahoney [38]. Their main algorithm (see Theorem
5 in [38]) is randomized and samples columns and rows from A with prob-
abilities proportional to their Euclidean length. The running time of this
algorithm is linear in m and n and proportional to a small-degree polyno-
mial in k and 1/ε, for some ε > 0, but the approximation bound is additive
rather than relative (see Theorem 3.1 in [37]): with c = O(k/ε4) columns
and r = O(k/ε2) rows the bound is ‖A−CUR‖2F ≤ ‖A−Ak‖2F + ε‖A‖2F.

The first relative-error CUR algorithm appeared in [41] (see Theorem 2
of [41]). The algorithm of [41] is based on subspace sampling and requires
c = O(k log(k/ε2) log δ−1) columns and r = O(c log(c/ε2) log δ−1) rows to
construct a relative-error CUR with failure probability δ. The running time
of the method in [41] is O(mnmin{m,n}), since subspace sampling is based
on sampling with probabilities proportional to the so-called leverage scores,
i.e., the row norms of the matrix Vk from the SVD of A.

Mahoney and Drineas [87], using again subspace sampling, improved
slightly upon the number of columns and rows, compared to [41], but achieved
only a constant factor error (see Eqn.(5) in [87]). Gittens and Mahoney [52]
discuss CUR decompositions on symmetric positive semidefinite (SPSD) ma-
trices and present approximation bounds for Frobenius, trace, and spectral
norms (see Lemma 2 in [52]). Using the near-optimal column subset selec-
tion methods in [19] along with a novel adaptive sampling technique, Wang
and Zhang [122] present a CUR algorithm selecting c = (2k/ε)(1 + o(1))
columns and r = (2k/ε2)(1 + ε)(1 + o(1)) rows from A (see Theorem 8
in [122]). The running time of this algorithm is

O(mnkε−1 + mk3ε−
2

3 + nk3ε−
2

3 + mk2ε−2 + nk2ε−4).
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Boutsidis and the author [21] improve this to achieve a simlutaneously opti-
mal c = r = O(k/ε), and rank(U) = k. This in fact is optimal up to constant
factors, as shown by [21] by presenting a matching lower bound. Boutsidis
and the author also show how to do this in O(nnz(A) log n) + n · poly(k/ε)
time. There is also some desire to make the CUR decomposition determin-
istic. We will see that this is possible as well, as shown in [21].

Finally, there are several interesting results on CUR developed within
the numerical linear algebra community [118, 119, 55, 54, 61, 101, 95, 56, 15,
112]. For example, [118, 119, 55, 54] discuss the so-called skeleton approx-
imation, which focuses on the spectral norm version of the CUR problem
via selecting exactly k columns and k rows. The algorithms there are deter-
ministic, run in time proportional to the time to compute the rank k SVD
of A, and achieve bounds of the order,

‖A−CUR‖2 ≤ O(
√

k(n− k) +
√

k(m− k))‖A−Ak‖2.

We now outline the approach of Boutsidis and the author [21]. A key
lemma we need is the following, which is due to Boutsidis, Drineas, and
Magdon-Ismail [19].

Lemma 48 Let A = AZZT +E ∈ R
m×n be a low-rank matrix factorization

of A, with Z ∈ R
n×k, and ZTZ = Ik. Let S ∈ R

n×c (c ≥ k) be any matrix
such that rank(ZTS) = rank(Z) = k. Let C = AS ∈ R

m×c. Then,

‖A−CC†A‖2F ≤ ‖A−ΠC,k(A)‖2F ≤ ‖E‖2F + ‖ES(ZTS)†‖2F.

Here, ΠC,k(A) = CXopt ∈ R
m×n, where Xopt ∈ R

c×n has rank at most k,
CXopt is the best rank k approximation to A in the column space of C, and
(ZTS)† denotes the Moore-Penrose pseudoinverse of ZTS.

Proof: First note that ‖A − CC†A‖2F ≤ ‖A − ΠC,k(A)‖2F since CC†A
is the projection of the columns of A onto the column space of C, whereas
ΠC,k(A) is the best rank-k approximation to A in the column space of C.

For the second inequality in the lemma statement, the main idea in the
proof is to consider the matrix X = C(ZTS)†ZT . Since this matrix is in the
column space of C, we have

‖A−ΠC,k(A)‖2F ≤ ‖A−X‖2F,

since ΠC,k(A) is the best rank-k approximation to A inside the column space
of C.

69



Manipulating A−X, we have that ‖A−C(ZTS)†ZT ‖2F is equal to

= ‖AZZT + E− (AZZT + E)S(ZTS)†ZT ‖2F
= ‖AZZT −AZZTS(ZTS)†ZT + E−ES(ZTS)†ZT ‖2F
= ‖E−ES(ZTS)†ZT ‖2F
= ‖E‖2F + ‖ES(ZTS)†ZT ‖2F,

where the first equality uses that A = AZZT + E and that C = AS, the
second equality is a rearrangement of terms, the third equality uses that
rank(ZTS) = k and so (ZTS)(ZTS)† = Ik, and the last equality follows
from the Pythagorean theorem since E = A(Ik−ZZT ) has rows orthogonal
to the row space of ZT , while ES(ZTS)†ZT has rows in the row space of ZT .
Finally, noting that

‖ES(ZTS)†ZT ‖2F ≤ ‖ES(ZTS)†‖2F‖ZT ‖2F,

by submultiplicativity, and that ‖ZT ‖2 = 1, completes the proof.

We will apply Lemma 48 twice, and adaptively. First, we compute an n ×
k matrix Z with orthonormal columns for which ‖A − AZZT ‖2F ≤ (1 +
1
9 )‖A−Ak‖2F. This can be done in O(nnz(A)) + n · poly(k) time as shown
in the second part of Theorem 47 of the previous section. Specifically, from
the statement of that theorem, for an n × d matrix A, the column space
of [ARU]k spans a (1 + ε) rank-k approximation to A, where U satisfies
UUT = (SAR)†SAR. We can apply that theorem to AT to obtain a k× d
matrix ZT which spans a (1 + ε) rank-k approximation to A.

Given Z, we will sample O(k log k) columns of Z proportional to the
squared row norms, or leverage scores of Z. Let ℓ2i = ‖eTi Z‖22 be the i-th
leverage score. Since

∑n
i=1 ℓ

2
i = k, the pi = ℓ2i /k values define a probability

distribution.
We now invoke the RandSampling(Z, s, p) algorithm of Definition 16

with s = Θ(k(log k)). By the guarantee of Theorem 17, we obtain matrices
Ω and D for which with probability 1− 1/poly(k), for all i ∈ [k],

1

2
≤ σ2

i (ZTΩD) ≤ 3

2
. (32)

Here ΩD implements sampling s columns of ZT and re-scaling them by the
coefficients in the diagonal matrix D. We also record the following simple
fact about the RandSampling algorithm.
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Lemma 49 With probability at least .9 over the randomness in the algo-
rithm RandSampling(Z, s, p),

‖ZTΩD‖2F ≤ 10‖ZT ‖2F.

Proof: We show E[‖ZTΩD‖2F] = ‖ZT ‖2F. By linearity of expectation, it
suffices to show for a fixed column j ∈ [s], E[‖(ZTΩD)∗j‖2F] = ‖ZT ‖2F/s. We
have,

E[‖(ZTΩD)∗j‖2F] =
n∑

i=1

pi ·
1

pis
‖ZT

∗i‖22 =
1

s
‖ZT ‖2F,

as needed. The lemma now follows by Markov’s bound.

Our algorithm thus far, is given A, to compute Z, and then to compute
Ω and D via RandSampling(Z, s, p), where s = O(k log k). At this point,
we could look at AΩD, which samples s columns of A. While this set of
columns can be shown to have good properties, namely, its column space con-
tains a k-dimensional subspace spanning an O(1) rank-k approximation to
A, which can then be used as a means for obtaining a (1+ ε)-approximation
by adaptive sampling, as will be seen in §4.2.2. However, the number of
columns is O(k log k), which would result in an overall CUR decomposition
with at least O(k log k/ε) columns and rows using the techniques below,
which is larger by a log k factor than what we would like (namely, O(k/ε)
columns and rows).

We therefore wish to first downsample the s columns of A we have now
to O(k) columns by right-multiplying by a matrix S ∈ R

s×k, so that ZTΩDS
has rank k and has a reasonably large k-th singular value.

To proceed, we need an algorithm in the next subsection, which uses a
method of Batson, Spielman, and Srivastava [14] refined for this application
by Boutsidis, Drineas, and Magdon-Ismail [19].

4.2.1 Batson-Spielman-Srivastava sparsification

Define the parameters

δLOW = 1, δUP =
‖A‖2F

1−
√

k
r

.

Define the function

φ(L,M) = Tr
(
(M− LI)−1

)
=

k∑

i=1

1

λi(M)− L
.
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Note that φ(L,M) measures how far the eigenvalues of M are from L, since
the closer they are to L, the more φ “blows up”.

Also, define the functions

UP (a, δUP ) = δ−1
UPa

Ta,

and

LOW (vj, δLOW ,M, L) =
vT (M− (L + δLOW )Ik)−2v

φ(L + δLOW ,M)− φ(L,M)

−vT (M− (L + δLOW )Ik)−1v.

These two functions will be used in each iteration of Algorithm 2 below
to make progress in each iteration. What we will be able to show is that in
each iteration of the algorithm, the current value of our potential function
UP will be less than the current value of our potential function LOW ,
and this will enable us to choose a new vector vi and add viv

T
i in our

decomposition of the identity. This corresponds to a rank-one update of
our current decomposition M, and we use the Sherman-Morrison-Woodbury
formula to analyze how the eigenvalues of M change, as well as how the
values of UP and LOW change, given this rank-one update.

The following theorem shows correctness of the Deterministic Dual Set
Spectral Sparsification algorithm described in Algorithm 2.

Theorem 50 (Dual Set Spectral-Frobenius Sparsification) Let vi ∈ R
k for

i = 1, . . . , n with k < n, and
∑n

i=1 viv
T
i = Ik. Let A = {a1, . . . ,an} be an

arbitrary set of vectors, where ai ∈ R
ℓ for all i. Then, given an integer r

such that k < r ≤ n, there exists a set of weights si ≥ 0 (i = 1, . . . , n), at
most r of which are non-zero, such that

λk

(
n∑

i=1

siviv
T
i

)
≥

(
1−

√
k

r

)2

,

Tr

(
n∑

i=1

siaia
T
i

)
≤ Tr

(
n∑

i=1

aia
T
i

)
=

n∑

i=1

‖ai‖22.

Equivalently, if V ∈ R
n×k is a matrix whose rows are the vectors vT

i ,
A ∈ R

n×ℓ is a matrix whose rows are the vectors aTi , and S ∈ R
n×r is

the sampling matrix containing the weights si > 0, then:

σk
(
VTS

)
≥ (1−

√
k/r)2, ‖ATS‖2F ≤ ‖AT ‖2F.
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Algorithm 2 Deterministic Dual Set Spectral Sparsification

Input:

• V = {v1, . . . ,vn} with
∑n

i=1 viv
T
i = Ik

• A = {a1, . . . ,an}.

Output: A set of n non-negative weights si, at most r of which are non-zero.

1. Initialize s0 = 0n×1, M0 = 0k×k

2. For τ = 0, . . . , r − 1

• Set Lτ = τ −
√
rk and Uτ = τδUP .

• Find an index j ∈ {1, 2, . . . , n} such that UP (aj, δUP ) ≤
LOW (vj, δLOW ,Mτ , Lτ ).

• Let t−1 = 1
2 (UP (aj, δUP ) + LOW (vj, δLOW ,Mτ , Lτ )).

• Update the j-th component of s and Mτ :

sτ+1[j] = sτ [j] + t, Mτ+1 = Mτ + tvjv
T
j .

3. Return s = r−1(1−
√

k/r) · sr.

The weights si can be computed in O
(
rnk2 + nℓ

)
time. We denote this

procedure as
S = BssSampling(V,A, r).

Proof: First, regarding the time complexity, in each of r iterations we
need to compute L on each of the n vectors vj . The costly matrix inversion
in the definition of L can be performed once in O(k3) time, which also
upper bounds the time to compute φ(L + δLOW ,M) and φ(L,M). Given
these quantities, computing L for a single vector vj takes O(k2) time and so
for all n vectors vj O(nk2) time, and across all r iterations, O(rnk2) time.
Computing UP (aj, δUP ) just corresponds to computing the Euclidean norm
of aj, and these can be computed once at the beginning of the algorithm in
O(nℓ) time. This implies the overall time complexity of the lemma.

We now turn to correctness. The crux of the analysis turns out to be to
show there always exists an index j in each iteration for which

UP (aj , δUP ) ≤ LOW (vj, δLOW ,Mτ , Lτ ).
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For a real symmetric matrix M we let λi(M) denote its i-th largest
eigenvalue of matrix M. It will be useful to observe that for Lτ and Uτ as
defined by the algorithm, we have chosen the definitions so that Lτ +δLOW =
Lτ+1 and Uτ + δUP = Uτ+1.

We start with a lemma which uses the Sherman-Morrison-Woodbury
identity to analyze a rank-1 perturbation.

Lemma 51 Fix δLOW > 0, M ∈ R
k×k, v ∈ R

k, and L < λk(M). If t > 0
satisfies

t−1 ≤ LOW (v, δLOW ,M, L),

then

1. λk(M + tvvT ) ≥ L + δLOW , and

2. φ(L + δLOW ,M + tvvT ) ≤ φ(L,M).

Proof: Note that by definition of φ(L,M), given that λk(M) > L, and
φ(L,M) ≤ 1

δLOW
, this implies that λk(M) > L+δLOW , and so for any t > 0,

λk(M + tvvT ) > L + δLOW . This proves the first part of the lemma.
For the second part, we use the following well-known formula.

Fact 5 (Sherman-Morrison-Woodbury Formula) If M is an invertible n×n
matrix and v is an n-dimensional vector, then

(M + vvT )−1 = M−1 − M−1vvTM−1

1 + vTM−1v
.

Letting L′ = L + δLOW , we have

φ(L + δLOW ,M + tvvT ) = Tr
(
(M + tvvT − L′I)−1

)

= Tr
(
(M− L′I)−1

)

−Tr

(
t(M− L′I)−1vvT (M− L′I)−1

1 + tvT (M− L′I)−1v

)

= Tr
(
(M− L′I)−1

)

− tTr
(
vT (M− L′I)−1(M− L′I)−1v

)

1 + tvT (M− L′I)−1v

= φ(L′,M)− tvT (M− L′I)−2v

1 + tvT (M− L′I)−1v

= φ(L,M) + (φ(L′,M)− φ(L,M))

− vT (M− L′I)−2v

1/t + vT (M− L′I)−1v

≤ φ(L,M),
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where the first equality uses the definition of φ, the second equality uses
the Sherman-Morrison Formula, the third equality uses that the trace is a
linear operator and satisfies Tr (XY) = Tr (YX), the fourth equality uses
the definition of φ and that the trace of a number is the number itself, the
fifth equality follows by rearranging terms, and the final inequality follows
by assumption that t−1 ≤ LOW (v, δLOW ,M, L).

We also need the following lemma concerning properties of the UP function.

Lemma 52 Let W ∈ R
ℓ×ℓ be a symmetric positive semi-definite matrix, let

a ∈ R
ℓ be a vector, and let U ∈ R satisfy U > Tr(W). If t > 0 satisfies

UP (a, δUP ) ≤ t−1,

then
Tr(W + tvvT ) ≤ U + δUP .

Proof: By the assumption of the lemma,

UP (a, δUP ) = δ−1
UPa

Ta ≤ t−1,

or equivalently, taTa ≤ δUP . Hence,

Tr
(
W + taaT

)
− U − δUP = Tr (W)− U + (taTa− δUP )

≤ Tr (W)− U < 0.

Equipped with Lemma 51 and Lemma 52, we now prove the main lemma
we need.

Lemma 53 At every iteration τ = 0, . . . , r − 1, there exists an index j ∈
{1, 2, . . . , n} for which

UP (aj, δUP ) ≤ t−1 ≤ LOW (vj, δLOW ,Mτ , Lτ ).

Proof: It suffices to show that

n∑

i=1

UP (aj , δUP ) = 1−
√

k

r
≤

n∑

i=1

LOW (vi, δLOW ,Mτ , Lτ ). (33)

75



Indeed, if we show (33), then by averaging there must exist an index j for
which

UP (aj, δUP ) ≤ t−1 ≤ LOW (vj, δLOW ,Mτ , Lτ ).

We first prove the equality in (33) using the definition of δUP . Observe that
it holds that

n∑

i=1

UP (ai, δUP ) = δ−1
UP

n∑

i=1

aTi ai

= δ−1
UP

n∑

i=1

‖ai‖22

= 1−
√

k

r
.

We now prove the inequality in (33). Let λi denote the i-th largest eigenvalue
of Mτ . Using that Tr

(
vTYv

)
= Tr

(
YvvT

)
and

∑
i viv

T
i = Ik, we have

n∑

i=1

LOW (vi, δLOW ,Mτ , Lτ ) =
Tr
(
(Mτ − Lτ+1Ik)−2

)

φ(Lτ+1,Mτ )− φ(Lτ ,Mτ )

−φ(Lτ+1,Mτ )

=

∑k
i=1

1
(λi−Lτ+1)2

δLOW
∑k

i=1
1

(λi−Lτ+1)(λi−Lτ )

−
k∑

i=1

1

(λi − Lτ+1)

=
1

δLOW
− φ(Lτ ,Mτ ) + E ,

where

E =
1

δLOW

( ∑k
i=1

1
(λi−Lτ+1)2∑k

i=1
1

(λi−Lτ+1)(λi−Lτ )

− 1

)

−δLOW

k∑

i=1

1

(λi − Lτ )(λi − Lτ+1)
.

We will show E ≥ 0 below. Given this, we have

φ(Lτ ,Mτ ) ≤ φ(L0,M0) = φ(−
√
rk,0k×k) =

−k
−
√
rk

=

√
k

r
,
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where the inequality uses Lemma 51. Since δLOW = 1, we have

n∑

i=1

LOW (vi, δLOW ,Mτ , Lτ ) ≥ 1−
√

k

r
,

which will complete the proof.
We now turn to the task of showing E ≥ 0. The Cauchy-Schwarz in-

equality implies that for ai, bi ≥ 0, one has (
∑

i aibi)
2 ≤ (

∑
i a

2
i bi)(

∑
i bi),

and therefore

E
k∑

i=1

1

(λi − Lτ+1)(λi − Lτ )
=

1

δLOW

k∑

i=1

1

(λi − Lτ+1)2(λi − Lτ )

−δLOW

(
k∑

i=1

1

(λi − Lτ )(λi − Lτ+1)

)2

≥ 1

δLOW

k∑

i=1

1

(λi − Lτ+1)2(λi − Lτ )

−
k∑

i=1

δLOW

(λi − Lτ+1)2(λi − Lτ )

k∑

i=1

1

λi − Lτ

=

k∑

i=1

(
1

δLOW
− δLOW · φ(Lτ ,Mτ )

)

(λi − Lτ+1)2(λi − Lτ )
. (34)

Since δLOW = 1 and we have computed above that φ(L,M) ≤
√

k/r, we
have 1

δLOW
− δLOW · φ(Lτ ,Mτ ) ≥ 1−

√
k/r > 0 since r > k.

Also,

λi ≥ λk(Mτ )

≥ Lτ +
1

φ(Lτ ,Mτ )

≥ Lτ +
1

φ(L0,M0)

≥ Lτ +

√
r

k

> Lτ + 1

= Lτ+1.

Plugging into (34), we conclude that E ≥ 0, as desired.
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By Lemma 53, the algorithm is well-defined, finding a t ≥ 0 at each
iteration (note that t ≥ 0 since t−1 ≥ UP (aj , δUP ) ≥ 0).

It follows by Lemma 51 and induction that for every τ , we have λk(Mτ ) ≥
Lτ . Similarly, by Lemma 52 and induction, for every τ it holds that Tr (Wτ ) ≤
Uτ .

In particular, for τ = r we have

λk(Mr) ≥ Lr = r(1−
√

k/r), (35)

and

Tr (Wr) ≤ Ur = r(1−
√
k/r)−1‖A‖2F. (36)

Rescaling by r−1(1 −
√

k/r) in Step 3 of the algorithm therefore results in
the guarantees on λk(Mr) and Tr (Wr) claimed in the theorem statement.

Finally, note that Algorithm 2 runs in r steps. The vector s of weights
is initialized to the all-zero vector, and one of its entries is updated in each
iteration. Thus, s will contain at most r non-zero weights upon termination.
As shown above, the value t chosen in each iteration is non-negative, so the
weights in s are non-negative.

This completes the proof.

We will also need the following corollary, which shows how to perform the
dual set sparsification much more efficiently if we allow it to be randomized.

Corollary 54 Let V = {v1, . . . ,vn} be a decomposition of the identity,
where vi ∈ R

k (k < n) and
∑n

i=1 viv
T
i = Ik; let A = {a1, . . . ,an} be an

arbitrary set of vectors, where ai ∈ R
ℓ. Let W ∈ R

ξ×ℓ be a randomly chosen
sparse subspace embedding with ξ = O(n2/ε2) < ℓ, for some 0 < ε < 1.
Consider a new set of vectors B = {Wa1, . . . ,Wan}, with Wai ∈ R

ξ. Run
Algorithm 2 with V = {v1, . . . ,vn}, B = {Wa1, . . . ,Wan}, and some inte-
ger r such that k < r ≤ n. Let the output of this be a set of weights si ≥ 0
(i = 1 . . . n), at most r of which are non-zero. Then, with probability at least
0.99,

λk

(
n∑

i=1

siviv
T
i

)
≥

(
1−

√
k

r

)2

,

Tr

(
n∑

i=1

siaia
T
i

)
≤ 1 + ε

1− ε
· Tr

(
n∑

i=1

aia
T
i

)

=
1 + ε

1− ε
·

n∑

i=1

‖ai‖22.

78



Equivalently, if V ∈ R
n×k is a matrix whose rows are the vectors vT

i , A ∈
R
n×ℓ is a matrix whose rows are the vectors aTi , B = AWT ∈ R

n×ξ is a
matrix whose rows are the vectors aTi W

T , and S ∈ R
n×r is the sampling

matrix containing the weights si > 0, then with probability at least 0.99,

σk
(
VTS

)
≥ 1−

√
k/r, ‖ATS‖2F ≤

1 + ε

1− ε
· ‖A‖2F.

The weights si can be computed in O
(
nnz(A) + rnk2 + nξ

)
time. We denote

this procedure as

S = BssSamplingSparse(V,A, r, ε).

Proof: The algorithm constructs S as follows,

S = BssSampling(V,B, r).

The lower bound for the smallest singular value of V is immediate from
Theorem 50. That theorem also ensures,

‖BTS‖2F ≤ ‖BT ‖2F,

i.e.,
‖WATS‖2F ≤ ‖WAT ‖2F.

Since W is an ℓ2-subspace embedding, we have that with probability at least
0.99 and for all vectors y ∈ R

n simultaneously,

(1− ε) ‖ATy‖22 ≤ ‖WATy‖22.

Apply this r times for y ∈ R
n being columns from S ∈ R

n×r and take a sum
on the resulting inequalities,

(1− ε) ‖ATS‖2F ≤ ‖WATS‖2F.

Now, since W is an ℓ2-subspace embedding,

‖WAT ‖2F ≤ (1 + ε) ‖AT ‖2F,

which can be seen by applying W to each of the vectors WATei. Combining
all these inequalities together, we conclude that with probability at least
0.99,

‖ATS‖2F ≤
1 + ε

1− ε
· ‖AT ‖2F.
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Implications for CUR. Returning to our CUR decomposition algorithm,
letting M = ZT

1 Ω1D1 where Ω1 and D1 are found using RandSampling(Z, s, p),
we apply Corollary 54 to compute S1 =BssSamplingSparse(VM, (A−AZ1Z

T
1 )TΩ1D1, 4k, .5),

where VM is determined by writing M in its SVD as M = UΣVT
M.

At this point we set C1 = AΩ1D1S1 ∈ Rm×4k which contains c1 = 4k
rescaled columns of A.

Lemma 55 With probability at least .8,

‖A−C1C1
†A‖2F ≤ 90 · ‖A−Ak‖2F.

Proof: We apply Lemma 48 with Z = Z1 ∈ R
n×k and S = Ω1D1S1 ∈

R
n×c1 . First, we show that with probability .9, the rank assumption of

Lemma 48 is satisfied for our choice of S, namely, that rank(ZTS) = k. We
have

rank(ZTS) = rank(ZT
1 Ω1D1S1) = rank(MS1) = rank(VT

MS1) = k,

where the first two equalities follow from the definitions, the third equality
follows assuming the 1 − 1

poly(k) event of (32) that rank(M) = k, and the
last equality follows from the fact that Corollary 54 guarantees that with
probability at least .98, σk

(
VT

MS
)
≥ 1

2 .
Now applying Lemma 48 with the C there equal to C1 and the E there

equal to E1 = A−AZ1Z
T
1 , we have

‖A−C1C1
†A‖2F ≤ ‖A−ΠC1,k(A)‖2F

≤ ‖A−C1(Z1Ω1D1S1)
†ZT

1 ‖2F
≤ ‖E1‖2F + ‖E1Ω1D1S1(Z1Ω1D1S1)

†‖2F.
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We have that ‖E1Ω1D1S1(Z1Ω1D1S1)†‖2F is at most

(a)

≤ ‖E1Ω1D1S1‖2F · ‖(Z1Ω1D1S1)†‖22
(b)
= ‖E1Ω1D1S1‖2F · ‖(UMΣMVT

MS1)†‖22
(c)
= ‖E1Ω1D1S1‖2F · ‖

(
VT

MS1

)†
(UMΣM)† ‖22

(d)

≤ ‖E1Ω1D1S1‖2F · ‖
(
VT

MS1

)† ‖22 · ‖ (UMΣM)† ‖22
(e)
= ‖E1Ω1D1S1‖2F ·

1

σ2
k

(
VT

MS1

) · 1

σ2
k (UMΣM)

(f)

≤ ‖E1Ω1D1S1‖2F · 8
(g)

≤ ‖E1Ω1D1‖2F · 8
(h)

≤ 80‖E1‖2F
where (a) follows by the sub-multiplicativity property of matrix norms, (b)
follows by replacing Z1Ω1D1 = M = UMΣMVT

M, (c) follows by the fact
that UMΣM is a full rank k × k matrix assuming the 1 − 1

poly(k) prob-

ability event of (32) (d) follows by the sub-multiplicativity property of
matrix norms, (e) follows by the connection of the spectral norm of the
pseudo-inverse with the singular values of the matrix to be pseudo-inverted,
(f) follows if the 1 − 1

poly(k) event of (32) occurs and the probability .98

event of Corollary 54 occurs, (g) follows by Corollary 54, and (h) follows by
Lemma 49 and by adding a 0.1 to the overall failure probability. So, overall
with probability at least 0.8,

‖E1ΩDS1(Z1ΩDS1)
†‖2F ≤ 80‖E1‖2F,

Hence, with the same probability,

‖A−C1C
†
1A‖2F ≤ ‖E1‖2F + 80‖E1‖2F.

By our choice of Z, ‖E1‖2F ≤ 10
9 ‖A−Ak‖2F. Hence, with probability at least

0.8,
‖A−C1C

†
1A‖2F ≤ 90‖A−Ak‖2F.

Lemma 55 gives us a way to find 4k columns providing an O(1)-approximation.
We would like to refine this approximation to a (1 + ε)-approximation using
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only an additional O(k/ε) number of columns. To do so, we perform a type
of residual sampling from this O(1)-approximation, as described in the next
section.

4.2.2 Adaptive sampling

Given O(k) columns providing a constant factor approximation, we can
sample O(k/ε) additional columns from their “residual” to obtain a (1 +
ε)-approximation. This was shown in the following lemma of Deshpande,
Rademacher, Vempala, and Wang. It is actually more general in the sense
that the matrix V in the statement of the theorem need not be a subset of
columns of A.

Theorem 56 (Theorem 2.1 of [35]) Given A ∈ R
m×n and V ∈ R

m×c1

(with c1 ≤ n,m), define the residual

B = A−VV†A ∈ R
m×n.

For i = 1, . . . , n, and some fixed constant α > 0, let pi be a probability
distribution such that for each i :

pi ≥ α‖bi‖22/‖B‖2F,
where bi is the i-th column of the matrix B. Sample c2 columns from A in
c2 i.i.d. trials, where in each trial the i-th column is chosen with probability
pi. Let C2 ∈ R

m×c2 contain the c2 sampled columns and let C = [V C2] ∈
R
m×(c1+c2) contain the columns of V and C2. Then, for any integer k > 0,

E
[
‖A−ΠF

C,k(A)‖2F
]
≤ ‖A−Ak‖2F +

k

α · c2
‖A−VV†A‖2F.

We denote this procedure as

C2 = AdaptiveCols(A,V, α, c2).

Given A and V, the above algorithm requires O(c1mn+ c2 log c2) arithmetic
operations to find C2.

Rather than prove Theorem 56 directly, we will prove the following theorem
of Wang and Zhang which generalizes the above theorem. One can think
of the following theorem as analyzing the deviations of A from an arbitrary
space - the row space of R, that occur via sampling additional columns ac-
cording to the residual from a given set of columns. These columns may have
nothing to do with R. This therefore generalizes the result of Deshpande
and Vempala which considered R to be the top k right singular vectors of
A (we will make this generalization precise below).
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Theorem 57 (Theorem 4 in [122]) Given A ∈ R
m×n and a matrix R ∈

R
r×n such that

rank(R) = rank(AR†R) = ρ,

with ρ ≤ r ≤ n, we let C1 ∈ R
m×c1 consist of c1 columns of A and define

the residual
B = A−C1C1

†A ∈ R
m×n.

For i = 1, . . . , n let pi be a probability distribution such that for each i :

pi ≥ α‖bi‖22/‖B‖2F,

where bi is the i-th column of B. Sample c2 columns from A in c2 i.i.d.
trials, where in each trial the i-th column is chosen with probability pi. Let
C2 ∈ R

m×c2 contain the c2 sampled columns and let C = [C1,C2] ∈ R
m×c2.

Then,

E

[
‖A−CC†AR†R‖2F

]
≤ ‖A−AR†R‖2F +

ρ

αc2
‖A−C1C1

†A‖2F.

We denote this procedure as

C2 = AdaptiveCols(A,R,C1, α, c2).

Given A, R, C1, the above algorithm requires O(c1mn+c2 log c2) arithmetic
operations to find C2.

Proof: Write AR†R in its SVD as UΣVT . The key to the proof is to
define the following matrix

F =




ρ∑

q=1

σ−1
q wqu

T
q


AR†R,

where σq is the q-th singular value of AR†R with corresponding left singular
vector uq. The wq ∈ R

m are random column vectors which will depend on
the sampling and have certain desirable properties described below.

To analyze the expected error of the algorithm with respect to the choices
made in the sampling procedure, we have

E‖A−CC†AR†R‖2F = E‖A−AR†R + AR†R−CC†AR†R‖2F
= E‖A−AR†R‖2F

+E‖AR†R−CC†AR†R‖2F. (37)
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where the second equality uses the Pythagorean theorem.
One property of the wq we will ensure below is that the wq each lie in

the span of the columns of C. Given this, we have

‖AR†R−CC†AR†R‖2F ≤ ‖AR†R−WW†AR†R‖2F
≤ ‖AR†R− F‖2F. (38)

Plugging (38) into (37), we have

E[‖A−CC†AR†R‖2F] ≤ ‖A−AR†R‖2F + E
[
‖AR†R− F‖2F

]
, (39)

where note that R is deterministic so we can remove the expectation.
Let v1, . . . ,vρ be the right singular vectors of AR†R. As both the rows

of AR†R and of F lie in the span of v1, . . . ,vρ, we can decompose (39) as
follows:

E[‖A−CC†AR†R‖2F] ≤ ‖A−AR†R‖2F
+ E

[
‖AR†R− F‖2F

]

≤ ‖A−AR†R‖2F

+

ρ∑

j=1

E‖(AR†R− F)vj‖22

= ‖A−AR†R‖2F

+

ρ∑

j=1

E‖AR†Rvj −
ρ∑

q=1

σ−1
q wqu

T
q σjuj‖22

= ‖A−AR†R‖2F

+

ρ∑

j=1

E‖AR†Rvj −wj‖22

= ‖A−AR†R‖2F

+

ρ∑

j=1

E‖Avj −wj‖22, (40)

where the final equality follows from the fact that vj is, by definition, in the
row space of R, and so

Avj −AR†Rvj = A(I−R†R)vj = 0.
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Looking at (40), it becomes clear what the properties of the wj are that we
want. Namely, we want them to be in the column space of C and to have
the property that E‖Avj −wj‖22 is as small as possible.

To define the wj vectors, we begin by defining auxiliary random variables
xj,(ℓ) ∈ Rm, for j = 1, . . . , ρ and ℓ = 1, . . . , c2:

xj,(ℓ) =
vi,j

pi
bi =

vi,j

pi

(
ai −C1C

†
1ai

)
,

with probability pi, for i = 1, . . . , n. We have that xj,(ℓ) is a determinis-
tic linear combination of a random column sampled from the distribution
defined in the theorem statement. Moreover,

E[xj,(ℓ)] =

n∑

i=1

pi
vi,j

pi
bi = Bvj ,

and

E‖xj,(ℓ)‖22 =

n∑

i=1

pi
v2
i,j

p2i
‖bi‖22 ≤

n∑

i=1

v2
i,j

α‖bi‖22/‖B‖2F
‖bi‖22 =

‖B‖2F
α

.

We now define the average vector

xj =
1

c2

c2∑

ℓ=1

xj,(ℓ),

and we have

E[xj ] = E[xj,(ℓ)] = Bvj ,

and

E‖xj −Bvj‖22 = E‖xj −E[xj ]‖22
=

1

c2
E‖xj,(ℓ) −E[xj,(ℓ)]‖22 (41)

=
1

c2
E‖xj,(ℓ) −Bvj‖22,

where (41) follows from the fact that the samples are independent. In fact,
pairwise independence suffices for this statement, which we shall use in our
later derandomization of this theorem (note that while for fixed j, the xj,(ℓ)

are pairwise independent, for two different j, j′ we have that xj and xj′ are
dependent).
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Notice that xj is in the span of the columns of C, for every j = 1, . . . , n.
This follows since xj,(ℓ) is a multiple of a column in C2.

For j = 1, . . . , ρ, we now define

wj = C1C
†
1Avj + xj, (42)

and we also have that w1, . . . ,wρ are in the column space of C, as required
above. It remains to bound E‖wj −Avj‖22 as needed for (40).

We have

E[wj] = C1C
†
1Avj + E[xj ]

= C1C
†
1Avj + Bvj

= Avj , (43)

where (43) together with (42) imply that

wj −Avj = xj −Bvj .

At long last we have

E‖wj −Avj‖22 = E‖xj −Bvj‖22
=

1

c2
E‖xj,(ℓ) −Bvj‖22

=
1

c2
E‖xj,(ℓ)‖22 −

2

c2
(Bvj)

TE[xj,(ℓ)] +
1

c2
‖Bvj‖22

=
1

c2
E‖xj,(ℓ)‖22 −

1

c2
‖Bvj‖22

≤ 1

αc2
‖B‖2F −

1

c2
‖Bvj‖22

≤ 1

αc2
‖B‖2F. (44)

Plugging (44) into (40), we obtain

E[‖A−CC†AR†R‖2F] ≤ ‖A−AR†R‖2F +
ρ

αc2
‖A−C1C

†
1A‖2F,

which completes the proof.

4.2.3 CUR wrapup

Obtaining a Good Set of Columns. We will apply Theorem 56 with
the V of that theorem set to C1. For the distribution p, we need to quickly
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approximate the column norms of B = A−C1C1
†A. To do so, by Lemma

18 it suffices to compute G ·B, where G is an t×m matrix of i.i.d. N(0, 1/t)
random variables, for t = O(log n). By Lemma 18, with probability at least
1− 1/n, simultaneously for all i ∈ [n],

‖bi‖22
2
≤ ‖(GB)∗i‖22 ≤

3

2
‖bi‖22,

where bi = B∗i is the i-th column of B. It follows that we can set α = 1
3 in

Theorem 56 using the distribution p on [n] given by

∀i ∈ [n], pi =
‖(GB)∗i‖22
‖GB‖2F

.

Hence, for a parameter c2 > 0, if we set

C2 = AdaptiveCols(A,C1,
1

3
, c2),

if C = [C1,C2], where C2 are the columns sampled by AdaptiveCols(A,C1,
1
3 , c2),

then by the conclusion of Theorem 56,

E
[
‖A−ΠF

C,k(A)‖2F
]
≤ ‖A−Ak‖2F +

3k

c2
‖A−C1C

†
1A‖2F.

By Lemma 55, with probability at least .8, ‖A−C1C
†
1A‖2F ≤ 90‖A−Ak‖2F,

which we condition on. It follows by setting c2 = 270k/ε, then taking
expectations with respect to the randomness in AdaptiveCols(A,C1,

1
3 , c2),

we have
E
[
‖A−ΠF

C,k(A)‖2F
]
≤ (1 + ε)‖A −Ak‖2F.

Running Time. A few comments on the running time are in order. We
can compute Z in O(nnz(A)) + (m + n) · poly(k) time via Theorem 47.
Given Z, we can run RandSampling(Z, s, p), where s = O(k log k) and p is
the leverage score distribution defined by Z. This can be done in n·poly(k/ε)
time.

We then run BssSamplingSparse(VM, (A −AZ1Z
T
1 )TΩ1D1, 4k, .5). To

do this efficiently, we can’t afford to explicitly compute the matrix (A −
AZ1Z

T
1 )TΩ1D1. We only form AΩD and ZT

1 ΩD in O(nnz(A))+n ·poly(k)
time. Then, BssSamplingSparse multiplies

(
A−AZ1Z

T
1

)
ΩD from the left

with a sparse subspace embedding matrix W ∈ R
ξ×m with ξ = O(k2 log2 k).

Computing WA takes O (nnz(A)) time. Then, computing (WA)Z1 and
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(WAZ1)ZT
1 takes another O(ξmk) + O(ξnk) time, respectively. Finally,

the sampling algorithm on W(A − AZ1Z
T
1 )ΩD is O(k4 log k + mk log k)

time.
Given A,Z1,Ω,D and S1 we then know the matrix C1 needed to run

AdaptiveCols(A,C1,
1
3 , c2). The latter algorithm samples columns of A,

which can be done in O(nnz(A))+nk/ε time given the distribution p to sam-
ple from. Here to find p we need to compute G ·B, where B = A−C1C1

†A
and G is an O(log n)×m matrix. We can compute this matrix product in
time O(nnz(A) log n) + (m + n)poly(k/ε).

It follows that the entire procedure to find C is O(nnz(A) log n) + (m +
n)poly(k/ε) time.

Simultaneously Obtaining a Good Set of Rows. At this point we
have a set C of O(k/ε) columns of A for which

E
[
‖A−ΠF

C,k(A)‖2F
]
≤ (1 + ε)‖A −Ak‖2F.

If we did not care about running time, we could now find the best k-
dimensional subspace of the columns of C for approximating the column
space of A, that is, if U has orthonormal columns with the same column
space as C, then by Lemma 44,

E
[
‖A−U[UTA]k‖2F

]
≤ (1 + ε)‖A−Ak‖2F,

where [UTA]k denotes the best rank-k approximation to UTA in Frobenius
norm. So if L is an m× k matrix with orthonormal columns with the same
column space as U[UTA]k, we could then attempt to execute the analogous
algorithm to the one that we just ran. That algorithm was for finding a good
set of columns C starting with Z, and now we would like to find a good set
R of rows starting with L. This is the proof strategy used by Boutsidis and
the author in [21].

Indeed, the algorithm of [21] works by first sampling O(k log k) rows of A
according to the leverage scores of L. It then downsamples this to O(k) rows
using BssSamplingSparse. Now, instead of using Theorem 56, the algorithm
invokes Theorem 57, applied to AT , to find O(k/ε) rows.

Applying Theorem 57 to AT , the error has the form:

E‖A−VV†AR†R‖2F ≤ ‖A−VV†A‖2F +
ρ

r2
‖A−AR†

1R1‖2F (45)

where ρ is the rank of V. Note that had we used U here in place of L, ρ
could be Θ(k/ε), and then the number r2 of samples we would need in (45)
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would be Θ(k/ε2), which is more than the O(k/ε) columns and O(k/ε) rows
we could simultaneously hope for. It turns out that these procedures can
also be implemented in O(nnz(A)) log n + (m + n)poly(k/ε) time.

We glossed over the issue of how to find the best k-dimensional subspace
L of the columns of C for approximating the column space of A, as described
above. Näıvely doing this would involve projecting the columns of A onto
the column space of C, which is too costly. Fortunately, by Theorem 61 in
§4.4, in O(nnz(A)) + (m + n)poly(k/ε) time it is possible to find an m× k
matrix L′ with orthonormal columns so that

‖A− L′(L′)TA‖F ≤ (1 + ε)‖A − LLTA‖F.

Indeed, Theorem 61 implies that if W is an ℓ2-subspace embedding, then we
can take L′ to be the top k left singular vectors of UUTAW, and since UUT

has rank O(k/ε), this matrix product can be computed in O(nnz(A))+(m+
n) · poly(k/ε) time using sparse subspace embeddings. We can thus use L′

in place of L in the algorithm for selecting a subset of O(k/ε) rows of A.

Finding a U With Rank k. The above outline shows how to simulta-
neously obtain a matrix C and a matrix R with O(k/ε) columns and rows,
respectively. Given such a C and a R, we need to find a rank-k matrix U
which is the minimizer to the problem

min
rank−kU

‖A−CUR‖F.

We are guaranteed that there is such a rank-k matrix U since crucially,
when we apply Theorem 57, we apply it with V = L, which has rank k.
Therefore, the resulting approximation VV†AR†R is a rank-k matrix, and
since L is in the span of C, can be expressed as CUR. It turns out one can
quickly find U, as shown in [21]. We omit the details.

Deterministic CUR Decomposition. The main idea in [21] to achieve
a CUR Decomposition with the same O(k/ε) columns and rows and a rank-
k matrix U deterministically is to derandomize Theorem 56 and Theorem
57. The point is that the proofs involve the second moment method, and
therefore by a certain discretization of the sampling probabilities, one can
derandomize the algorithm using pairwise-independent samples (of either
columns or rows, depending on whether one is derandomizing Theorem 56
or Theorem 57). This increases the running time when applied to an n× n
matrix A to n4 · poly(k/ε), versus, say, n3 using other deterministic algo-
rithms such as the SVD, but gives an actual subset of rows and columns.
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4.3 Spectral norm error

Here we show how to quickly obtain a (1 + ε) rank-k approximation with

respect to the spectral norm ‖A‖2 = supx
‖Ax‖2
‖x‖2 . That is, given an m × n

matrix A, compute a rank-k matrix Ãk, where ‖A − Ãk‖2 ≤ (1 + ε)‖A −
Ak‖2.

It is well-known that ‖A−Ak‖2 = σk+1(A), where σk+1(A) is the (k+1)-
st singular value of A, and that Ak is the matrix UΣkV

T , where UΣVT

is the SVD of A and Σk is a diagonal matrix with first k diagonal entries
equal to those of Σ, and 0 otherwise.

Below we present an algorithm, proposed by Halko, Martinsson and
Tropp [59], that was shown by the authors to be a bicriteria rank-k approx-
imation. That is, they efficiently find an n× 2k matrix Z with orthonormal
columns for which ‖A−ZZTA‖2 ≤ (1+ε)‖A−Ak‖2. By slightly modifying
their analysis, this matrix Z can be shown to have dimensions n × (k + 4)
with the same error guarantee. The analysis of this algorithm was somewhat
simplified by Boutsidis, Drineas, and Magdon-Ismail [19], and by slightly
modifying their analysis, this results in an n × (k + 2) matrix Z with or-
thonormal columns for which ‖A−ZZTA‖2 ≤ (1+ε)‖A−Ak‖2. We follow
the analysis of [19], but simplify and improve it slightly in order to output
a true rank-k approximation, that is, an n × k matrix Z with orthonormal
columns for which ‖A−ZZTA‖2 ≤ (1 + ε)‖A−Ak‖2. This gives us a new
result which has not appeared in the literature to the best of our knowledge.

Before presenting the algorithm, we need the following lemma. Suppose
we have an n× k matriz Z with orthonormal columns for which there exists
an X for which ‖A − ZX‖2 ≤ (1 + ε)‖A −Ak‖2. How do we find such an
X? It turns out the optimal such X is equal to ZTA.

Lemma 58 If we let X∗ = argminX‖A − ZX‖2, then X∗ satisfies ZX∗ =
ZZTA.

Proof: On the one hand, ‖A − ZX∗‖2 ≤ ‖A − ZZTA‖2, since X∗ is
the minimizer. On the other hand, for any vector v, by the Pythagorean
theorem,

‖(A− ZX∗)v‖22 = ‖(A− ZZTA)v‖22 + ‖(ZZTA− ZX∗)v‖22
≥ ‖(A− ZZTA)v‖22,

and so ‖A− ZX∗‖2 ≥ ‖A− ZZTA‖2.

We also collect a few facts about the singular values of a Gaussian matrix.
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Fact 6 (see, e.g., [104]) Let G be an r × s matrix of i.i.d. normal random
variables with mean 0 and variance 1. There exist constants C,C ′ > 0 for
which

(1) The maximum singular value σ1(G) satisfies σ1(G) ≤ C
√

max(r, s)
with probability at least 9/10.

(2) If r = s, then the minimum singular value σr(G) satisfies σr(G) ≥
C ′/
√
r with probability at least 9/10.

The algorithm, which we call SubspacePowerMethod is as follows. The
intuition is, like the standard power method, if we compute (AAT )qAg for
a random vector g, then for large enough q this very quickly converges to
the top left singular vector of A. If we instead compute (AAT )qAG for a
random n× k matrix G, for large enough q this also very quickly converges
to an n×k matrix which is close, in a certain sense, to the top k left singular
vectors of A.

1. Compute B = (AAT )qA and Y = BG, where G is an n × k matrix
of i.i.d. N(0, 1) random variables.

2. Let Z be an n × k matrix with orthonormal columns whose column
space is equal to that of Y.

3. Output ZZTA.

In order to analyze SubspacePowerMethod, we need a key lemma shown
in [59] concerning powering of a matrix.

Lemma 59 Let P be a projection matrix, i.e., P = ZZT for a matrix Z
with orthonormal columns. For any matrix X of the appropriate dimensions
and integer q ≥ 0,

‖PX‖2 ≤ (‖P(XXT )qX‖2)1/(2q+1).

Proof: Following [59], we first show that if R is a projection matrix and
D a non-negative diagonal matrix, then ‖RDR‖t2 ≤ ‖RDtR‖2. To see this,
suppose x is a unit vector for which xTRDRx = ‖RDR‖2. We can assume
that ‖Rx‖2 = 1, as otherwise since R is a projection matrix, ‖Rx‖2 < 1,
and taking the unit vector z = Rx/‖Rx‖2, we have

zTRDRz =
xR2DR2x

‖Rx‖22
=

xTRDRx

‖Rx‖22
> xTRDRx,

91



contradicting that xtRDRx = ‖RDR‖2. We thus have,

‖RDR‖t = (xTRDRx)t = (xTDx)t = (
∑

j

Dj,jx
2
j)

t

≤
∑

j

Dt
j,jx

2
j = xTDtx = (Rx)TDtRx

≤ ‖RDtR‖2,

where we have used Jensen’s inequality to show that (
∑

j Dj,jx
2
j)

t ≤∑j D
t
j,jx

2
j ,

noting that
∑

j x
2
j = 1 and the function z → |z|t is convex.

Given this claim, let X = UΣVT be a decomposition of X in which U
and VT are square matrices with orthonormal columns and rows, and Σ has
non-negative entries on the diagonal (such a decomposition can be obtained
from the SVD). Then,

‖PX‖2(2q+1)
2 = ‖PXXTP‖2q+1

2

= ‖(UTPU)Σ2(UTPU)‖2q+1
2

≤ ‖(UTPU)Σ2(2q+1)(UTPU)‖2
= ‖P(XXT )(2q+1)P‖2
= ‖P(XXT )qXXT (XXT )qP‖2
= ‖P(XXT )qX‖22,

where the first equality follows since ‖PX‖22 = ‖PXXTP‖2, the second
equality uses that XXT = UΣ2UT and rotational invariance given that U
has orthonormal rows and columns, the first inequality uses the claim above
with R = UTPU, the next equality uses that XXT = UΣ2UT , the next
equality regroups terms, and the final equality writes the operator norm as
the equivalent squared operator norm.

If we raise both sides to the 1/(2(2q + 1))-th power, then this completes
the proof.

We can now prove the main theorem about SubspacePowerMethod

Theorem 60 For appropriate q = O(log(mn)/ε), with probability at least
4/5, SubspacePowerMethod outputs a rank-k matrix ZZTA for which ‖A−
ZZTA‖2 ≤ (1 + ε)‖A − Ak‖2. Note that SubspacePowerMethod can be
implemented in O(nnz(A)k log(mn)/ε) time.
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Proof: By Lemma 58, ZZTA is the best rank-k approximation of A in
the column space of Z with respect to the spectral norm. Hence,

‖A− ZZTA‖2 ≤ ‖A− (ZZTB)(ZZTB)†A‖2
= ‖(I− (ZZTB)(ZZTB)†)A‖2,

where the inequality follows since ZZTB is of rank k and in the column
space of Z. Since I − (ZZTB)(ZZTB)† is a projection matrix, we can ap-
ply Lemma 59 to infer that ‖(I − (ZZTB)(ZZTB)†)A‖2 is at most ‖(I −
(ZZTB)(ZZTB)†)(AAT )qA‖1/(2q+1)

2 , which is equal to

= ‖B− (ZZTB)(ZZTB)†B‖1/(2q+1)
2

= ‖B− ZZTB‖1/(2q+1)
2 ,

where we use that (ZZTB)† = (ZTB)†ZT since Z has orthonormal columns,
and thus

(ZZTB)(ZZTB)†B = (ZZTB)(ZTB)†(ZTB) = ZZTB.

Hence,

‖A− ZZTA‖2 ≤ ‖B− ZZTB‖1/(2q+1)
2 . (46)

Let UΣVT be the SVD of B. Let ΩU = VT
kG and ΩL = VT

n−kG, where

VT
k denotes the top k rows of VT , and VT

n−k the remaining n−k rows. Since

the rows of VT are orthonormal, by rotational invariance of the Gaussian
distribution, ΩU and ΩL are independent matrices of i.i.d. N(0, 1) entries.

We now apply Lemma 48 with the C of that lemma equal to Z above, the
Z of that lemma equal to Vk, and the A of that lemma equal to B above.
This implies the E of that lemma is equal to B − Bk. Note that to apply
the lemma we need VT

kG to have full rank, which holds with probability 1
since it is a k × k matrix of i.i.d. N(0, 1) random variables. We thus have,

‖B− ZZTB‖22 ≤ ‖B−Bk‖22 + ‖(B−Bk)G(VT
kG)†‖22

= ‖B−Bk‖22 + ‖Un−kΣn−kV
T
n−kG(VT

kG)†‖22
= ‖B−Bk‖22 + ‖Σn−kV

T
n−kG(VT

kG)†‖22
≤ ‖B−Bk‖22

(
1 + ‖ΩL‖22‖Ω†

U‖22
)
,

where Σn−k denotes the (n− k)× (n− k) diagonal matrix whose entries are
the bottom n−k diagonal entries of Σ, and Un−k denotes the rightmost n−k
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columns of U. Here in the second equality we use unitary invariance of Un−k,
while in the inequality we use sub-multiplicativity of the spectral norm. By
Fact 6 and independence of ΩL and ΩU , we have that ‖ΩL‖22 ≤ C(n − k)

and ‖Ω†
1‖22 ≤ k

(C′)2 with probability at least (9/10)2 > 4/5. Consequently

for a constant c > 0,

‖B− ZZTB‖22 ≤ ‖B−Bk‖22 · c(n − k)k. (47)

Combining (47) with (46), we have

‖A− ZZTA‖2 ≤ ‖B−Bk‖1/(2q+1)
2 · (c(n− k)k)1/(4q+2) .

Noting that ‖B − Bk‖2 = ‖A −Ak‖2q+1
2 , and setting q = O((log n)/ε) so

that
(c(n− k)k)1/(4q+2) = (1 + ε)log1+ε c(n−k)k/((4q+2)) ≤ 1 + ε,

completes the proof

4.4 Distributed low rank approximation

In this section we study an algorithm for distributed low rank approximation.
The model is called the arbitrary partition model. In this model there are s
players (also called servers), each locally holding an n × d matrix At, and
we let A =

∑
t∈[s]A

t. We would like for each player to obtain a rank-k

projection matrix WWT ∈ R
d×d, for which

‖A−AWWT ‖2F ≤ (1 + ε)‖A −Ak‖2F.

The motivation is that each player can then locally project his/her matrix
At by computing AtWWT . It is often useful to have such a partition of the
original input matrix A. For instance, consider the case when a customer
coresponds to a row of A, and a column to his/her purchase of a specific
item. These purchases could be distributed across servers corresponding to
different vendors. The communication is point-to-point, that is, all pairs of
players can talk to each other through a private channel for which the other
s− 2 players do not have access to. The assumption is that n≫ d, though
d is still large, so having communication independent of n and as small in d
as possible is ideal. In [68] an Ω(sdk) bit communication lower bound was
shown. Below we show an algorithm of Kannan, Vempala, and the author
[68] using O(sdk/ε) words of communication, assuming a word is O(log n)
bits and the entries of each At are O(log n)-bit integers.
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We first show the following property about the top k right singular vec-
tors of SA for a subspace embedding S, as shown in [68]. The property
shows that the top k right singular vectors v1, . . . ,vk of SA provide a
(1 + ε)-approximation to the best rank-k approximation to A. This fact
quickly follows from the fact that ‖SAvi‖2 = (1± ε)‖Avi‖2 for the bottom
d − k right singular vectors vk+1, . . . ,vd of SA. It is crucial that S is an
ℓ2-subspace embedding for A, as otherwise there is a dependency issue since
the vectors Avk+1, . . . ,Avd depend on S.

Theorem 61 Suppose A is an n × d matrix. Let S be an m × d matrix
for which (1 − ε)‖Ax‖2 ≤ ‖SAx‖2 ≤ (1 + ε)‖Ax‖2 for all x ∈ R

d, that is,
S is a subspace embedding for the column space of A. Suppose VVT is a
d×d matrix which projects vectors in R

d onto the space of the top k singular
vectors of SA. Then ‖A−AVVT ‖F ≤ (1 + O(ε)) · ‖A−Ak‖F.

Proof: Form an orthonormal basis of Rd using the right singular vectors
of SA. Let v1,v2, . . . ,vd be the basis.

‖A−A

k∑

i=1

viv
T
i ‖2F =

d∑

i=k+1

‖Avi‖22 ≤ (1 + ε)2
d∑

i=k+1

‖SAvi‖22

= (1 + ε)2‖SA− [SA]k‖2F,
where the first equality follows since v1, . . . ,vd is an orthonormal basis of
R
d, the inequality follows using the fact that (1 − ε)‖Ax‖2 ≤ ‖SAx‖2 for

all x ∈ R
d, and the final equality follows using that the v1, . . . ,vd are the

right singular vectors of SA.
Suppose now u1,u2, . . . ,ud is an orthonormal basis consisting of the

singular vectors of A. Then, we have

‖SA− [SA]k‖2F ≤ ‖SA− SA
k∑

i=1

uiu
T
i ‖2F

=

d∑

i=k+1

‖SAui‖22

≤ (1 + ε)2
d∑

i=k+1

‖Aui‖22

= (1 + ε)2‖A−Ak‖2F,
where the first inequality uses that the rank-k matrix

∑
i uiu

T
i is no better

at approximating SA than [SA]k, the first equality uses that u1, . . . ,ud
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is an orthonormal basis of R
d, the second inequality uses that ‖SAx‖2 ≤

(1 + ε)‖Ax‖2 for all x ∈ R
d, and the final equality uses that u1, . . . ,ud are

the right singular vectors of A.
Thus,

‖A−A
k∑

i=1

viv
T
i ‖2F ≤ (1 + ε)4‖A−Ak‖2F,

and the theorem follows.

We will also need a variant of Lemma 45 from Section 4 which intuitively
states that for a class of random matrices S, if we project the rows of A
onto the row space of SA, we obtain a good low rank approximation. Here
we use an m×n matrix S in which each of the entries is +1/

√
m or −1/

√
m

with probability 1/2, and the entries of S are O(k)-wise independent. We
cite a theorem of Clarkson and Woodruff [28] which shows what we need.
It can be shown by showing the following properties:

1. S is an ℓ2-subspace embedding for any fixed k-dimensional subspace
with probability at least 9/10, and

2. S has the (ε, δ, ℓ)-JL moment property for some ℓ ≥ 2 (see Definition
12).

Theorem 62 (combining Theorem 4.2 and the second part of Lemma 4.3
of [28]) Let S ∈ R

m×n be a random sign matrix with m = O(k log(1/δ)/ε)
in which the entries are O(k + log(1/δ))-wise independent. Then with prob-
ability at least 1 − δ, if UUT is the d × d projection matrix onto the row
space of SA, then if [AU]k is the best rank-k approximation to matrix AU,
we have

‖[AU]kU
T −A‖F ≤ (1 + O(ε))‖A −Ak‖F.

The main algorithm AdaptiveCompress of [68] is given in Algorithm
AdaptiveCompress below.

Here we state the key idea behind Theorem 63 below. The idea is that
if each of the servers projects their matrix At to PAt using an ℓ2 subspace
embedding P, then PA =

∑
tPAt and by Theorem 61, if we compute the

top k right singular vectors of PA, we can send these to each server to locally
project their data on. Since PAt is more efficient to communicate than At,
this provides a considerable improvement in communication. However, the
communication is proportional to d2 and we can make it proportional to only
d by additionally using Theorem 62 to first “replace” the At matrices with
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Algorithm 3 The AdaptiveCompress(k,ε,δ) protocol

1. Server 1 chooses a random seed for an m×n sketching matrix S as in
Theorem 62, given parameters k, ε, and δ, where δ is a small positive
constant. It communicates the seed to the other servers.

2. Server t uses the random seed to compute S, and then SAt, and sends
it to Server 1.

3. Server 1 computes
∑s

t=1 SA
t = SA. It computes an m×d orthonormal

basis UT for the row space of SA, and sends U to all the servers.

4. Each server t computes AtU.

5. Server 1 chooses another random seed for a O(k/ε3) × n matrix P
which is to be O(k)-wise independent and communicates this seed to
all servers.

6. The servers then agree on a subspace embedding matrix P of Theorem
61 for AU, where P is an O(k/ε3)×n matrix which can be described
with O(k log n) bits.

7. Server t computes PAtU and send it to Server 1.

8. Server 1 computes
∑s

t=1 PAtU = PAU. It computes VVT , which is
an O(k/ε)×O(k/ε) projection matrix onto the top k singular vectors
of PAU, and sends V to all the servers.

9. Server t outputs Ct = AtUVVTUT . Let C =
∑s

t=1 C
t. C is not

computed explicitly.
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AtU matrices, where the columns of U are an orthonormal basis containing
a (1 + ε) rank-k approximation.

Theorem 63 Consider the arbitrary partition model where an n×d matrix
At resides in server t and the data matrix A = A1 +A2 + · · ·+As. For any
1 ≥ ε > 0, there is a protocol AdaptiveCompress that, on termination,
leaves an n× d matrix Ct in server t such that the matrix C = C1 + C2 +
· · · + Cs with arbitrarily large constant probability achieves ‖A − C‖F ≤
(1+ε) minX:rank(X)≤k ‖A−X‖F, using linear space, polynomial time and with
total communication complexity O(sdk/ε+sk2/ε4) real numbers. Moreover,
if the entries of each At are b bits each, then the total communication is
O(sdk/ε + sk2/ε4) words each consisting of O(b + log(nd)) bits.

Proof: By definition of the AdaptiveCompress protocol, we have ‖A−
C‖F = ‖A−AUVVTUT ‖F.

Notice that UUT and Id −UUT are projections onto orthogonal sub-
spaces. It follows by the Pythagorean theorem applied to each row that

‖AUVVTUT −A‖2F
= ‖(AUVVTUT −A)(UUT )‖2F (48)

+ ‖(AUVVTUT −A)(Id −UUT )‖2F
= ‖AUVVTUT −AUUT ‖2 + ‖A−AUUT ‖2F, (49)

where the second equality uses that UTU = Ic, where c is the number of
columns of U.

Observe that the row spaces of AUVVTUT and AUUT are both in the
row space of UT , and therefore in the column space of U. It follows that since
U has orthonormal columns, ‖AUVVTUT −AUUT ‖F = ‖(AUVVTUT −
AUUT )U‖F, and therefore

‖AUVVTUT −AUUT ‖2F + ‖A−AUUT ‖2F
= ‖(AUVVTUT −AUUT )U‖2F + ‖A−AUUT ‖2F
= ‖AUVVT −AU‖2F + ‖A−AUUT ‖2F, (50)

where the second equality uses that UTU = Ic. Let (AU)k be the best
rank-k approximation to the matrix AU. By Theorem 61, with probability
1− o(1), ‖AUVVT −AU‖2F ≤ (1 + O(ε))‖(AU)k −AU‖2F, and so

‖AUVVT −AU‖2F + ‖A−AUUT ‖2F
≤ (1 + O(ε))‖(AU)k −AU‖2F + ‖A−AUUT ‖2F
≤ (1 + O(ε))(‖(AU)k −AU‖2F + ‖A−AUUT ‖2F). (51)
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Notice that the row space of (AU)k is spanned by the top k right singular
vectors of AU, which are in the row space of U. Let us write (AU)k = B·U,
where B is a rank-k matrix.

For any vector v ∈ R
d, vUUT is in the row space of UT , and since the

columns of U are orthonormal, ‖vUUT ‖2F = ‖vUUTU‖2F = ‖vU‖2F, and so

‖(AU)k −AU‖2F + ‖A−AUUT ‖2F
= ‖(B −A)U‖2F + ‖A(I−UUT )‖2F
= ‖BUUT −AUUT ‖2F + ‖AUUT −A‖2F). (52)

We apply the Pythagorean theorem to each row in the expression in (52),
noting that the vectors (Bi −Ai)UUT and AiUUT − Ai are orthogonal,
where Bi and Ai are the i-th rows of B and A, respectively. Hence,

‖BUUT −AUUT ‖2F + ‖AUUT −A‖2F (53)

= ‖BUUT −A‖2F (54)

= ‖(AU)kU
T −A‖2F, (55)

where the first equality uses that

‖BUUT −A‖2F
= ‖(BUUT −A)UUT ‖2F + ‖(BUUT −A)(I −UUT )‖2F
= ‖BUUT −AUUT ‖2F + ‖AUUT −A‖2F,

and the last equality uses the definition of B. By Theorem 62, with constant
probability arbitrarily close to 1, we have

‖[AU]kU
T −A‖2F ≤ (1 + O(ε))‖Ak −A‖2F. (56)

It follows by combining (48), (50), (51), (52), (53), (56), that ‖AUVVTUT−
A‖2F ≤ (1 + O(ε))‖Ak − A‖2F, which shows the correctness property of
AdaptiveCompress.

We now bound the communication. In the first step, by Theorem 62,
m can be set to O(k/ε) and the matrix S can be described using a random
seed that is O(k)-wise independent. The communication of steps 1-3 is thus
O(sdk/ε) words. By Theorem 61, the remaining steps take O(s(k/ε)2/ε2) =
O(sk2/ε4) words of communication.

To obtain communication with O(b+ log(nd))-bit words if the entries of
the matrices At are specified by b bits, Server 1 can instead send SA to each
of the servers. The t-th server then computes PAt(SA)T and sends this to
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Server 1. Let SA = RUT , where UT is an orthonormal basis for the row
space of SA, and R is an O(k/ε)×O(k/ε) change of basis matrix. Server 1
computes

∑
tPAt(SA)T = PA(SA)T and sends this to each of the servers.

Then, since each of the servers knows R, it can compute PA(SA)T (RT )−1 =
PAU. It can then compute the SVD of this matrix, from which it obtains
VVT , the projection onto its top k right singular vectors. Then, since Server
t knows At and U, it can compute AtU(VVT )UT , as desired. Notice that
in this variant of the algorithm what is sent is SAt and PAt(SA)T , which
each can be specified with O(b + log(nd))-bit words if the entries of the At

are specified by b bits.

5 Graph Sparsification

Section Overview: This section is devoted to showing how sketching can
be used to perform spectral sparsification of graphs. While ℓ2-subspace em-
beddings compress tall and skinny matrices to small matrices, they are not
particularly useful at compressing roughly square matrices, as in the case of
a graph Laplacian. This section shows how related sketching techniques can
still be used to sparsify such square matrices, resulting in a useful compres-
sion.

While ℓ2-subspace embeddings are a powerful tool, such embeddings
compress an n×d matrix to a poly(d/ε)×d matrix. This is not particularly
useful if n is not too much larger than d. For instance, one natural problem
is to compress a graph G = (V,E) on n vertices using linear sketches so as to
preserve all spectral information. In this case one is interested in a subspace
embedding of the Laplacian of G, which is an n × n matrix, for which an
ℓ2-subspace embedding does not provide compression. In this section we
explore how to use linear sketches for graphs.

We formally define the problem as follows, following the notation and
outlines of [69]. Consider an ordering on the n vertices, denoted 1, . . . , n.
We will only consider undirected graphs, though we will often talk about
edges e = {u, v} as e = (u, v), where here u is less than v in the ordering we
have placed on the edges. This will be for notational convenience only; the
underlying graphs are undirected.

Let Bn ∈ R(n2)×n be the vertex edge incidence of the undirected, un-
weighted complete graph on n vertices, where the e-th row be for edge
e = (u, v) has a 1 in column u, a (−1) in column v, and zeroes elsewhere.

One can then write the vertex edge incidence matrix of an arbitrary

undirected graph G as B = T ·Bn, where T ∈ R
(n2)×(n2) is a diagonal matrix
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with a
√
we in the e-th diagonal entry if and only if e is an edge of G and

its weight is we. The remaining diagonal entries of T are equal to 0. The
Laplacian is K = BTB.

The spectral sparsification problem can then be defined as follows: find
a weighted subgraph H of G so that if K̃ is the Laplacian of H, then

∀x ∈ R
n, (1− ε)xTKx ≤ xT K̃x ≤ (1 + ε)xTKx. (57)

We call H a spectral sparsifier of G The usual notation for (57) is

(1− ε)K � K̃ � (1 + ε)K,

where C � D means that D−C is positive semidefinite. We also sometimes
use the notation

(1− ε)K �R K̃ �R (1 + ε)K,

to mean that (1− ε)xTKx ≤ xT K̃x ≤ (1 + ε)xTKx for all vectors x in the
row space of K, which is a weaker notion since there is no guarantee for
vectors x outside of the row space of K.

One way to solve the spectral sparsification problem is via leverage score
sampling. Suppose we write the above matrix B in its SVD as UΣVT .
Let us look at the leverage scores of U, where recall the i-th leverage score
ℓi = ‖Ui∗‖22. Recall the definition of Leverage Score Sampling given in
Definition 16. By Theorem 17, if we take O(nε−2 log n) samples of rows of
U, constructing the sampling and rescaling matrices of Definition 16, then
with probability 1− 1/n, simultaneously for all i ∈ [n],

(1− ε/3) ≤ σ2
i (DTΩTU) ≤ (1 + ε/3). (58)

Suppose we set

K̃ = (DTΩTB)T (DTΩTB). (59)

Theorem 64 For K̃ defined as in (59), with probability 1− 1/n,

(1− ε)K � K̃ � (1 + ε)K.

Proof: Using that K = BTB and the definition of K̃, it suffices to show
for all x,

‖Bx‖22 = (1± ε/3)‖DTΩTBx‖22.
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By (58), and using that B = UΣVT ,

‖DTΩTBx‖22 = (1± ε/3)‖ΣVTx‖22,

and since U has orthonormal columns,

‖ΣVTx‖22 = ‖UΣVTx‖22 = ‖Bx‖22,

which completes the proof.

Notice that Theorem 64 shows that if one knows the leverage scores, then
by sampling O(nε−2 log n) edges of G and reweighting them, one obtains
a spectral sparsifier of G. One can use algorithms for approximating the
leverage scores of general matrices [44], though more efficient algorithms,
whose overall running time is near-linear in the number of edges of G, are
known [111, 110].

A beautiful theorem of Kapralov, Lee, Musco, Musco, and Sidford is the
following [69].

Theorem 65 There exists a distribution Π on ε−2polylog(n)×
(n
2

)
matrices

S for which with probability 1 − 1/n, from S · B, it is possible to recover
a weighted subgraph H with O(ε−2n log n) edges such that H is a spectral
sparsifier of G. The algorithm runs in O(ε−2n2polylog(n)) time.

We note that Theorem 65 is not optimal in its time complexity or the
number of edges in H. Indeed, Spielman and Srivastava [111] show that
in Õ(m(log n)ε−2) time it is possible to find an H with the same number
O(ε−2n log n) of edges as in Theorem 65, where m is the number of edges
of H. For sparse graphs, this results in significantly less time for finding
H. Also, Batson, Spielman, and Srivastava [14] show that it is possible to
deterministically find an H with O(ε−2n) edges, improving the O(ε−2n log n)
number of edges in Theorem 65. This latter algorithm is a bit slow, requiring
O(n3mε−2) time, with some improvements for dense graphs given by Zouzias
[126], though these are much slower than Theorem 65.

Despite these other works, the key feature of Theorem 65 is that it is
a linear sketch, namely, it is formed by choosing a random oblivious (i.e.,
independent of B) linear map S and storing S ·B. Then, the sparsifier H
can be found using only S · B, i.e., without requiring access to B. This
gives it a number of advantages, such that it implies the first algorithm
for maintaining a spectral sparsifier in a data stream in the presence of
insertions and deletions to the graph’s edges. That is, for the other works,
it was unknown how to rebuild the sparsifier if an edge is deleted; in the
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case when linear sketches are used to summarize the graph, it is trivial to
update the sketch in the presence of an edge deletion.

In the remainder of the section, we give an outline of the proof of The-
orem 65, following the exposition given in [69]. We restrict to unweighted
graphs for the sake of presentation; the arguments generalize in a natural
way to weighted graphs.

The main idea, in the author’s opinion, is the use of an elegant technique
due to Li, Miller and Peng [78] called “Introduction and Removal of Artificial
Bases”. We suspect this technique should have a number of other applica-
tions; Li, Miller and Peng use it for obtaining approximation algorithms for
ℓ2 and ℓ1 regression. Intuitively, the theorem states that if you take any
PSD matrix K, you can form a sequence of matrices K(0),K(1), . . . ,K(d),
where K(0) has a spectrum which is within a factor of 2 of the identity,
K(d) has a spectrum within a factor of 2 of K, and for each ℓ, K(ℓ− 1) has
a spectrum within a factor of 2 of K(ℓ). Furthermore if K is the Laplacian
of an unweighted graph, d = O(log n).

The proof of the following theorem is elementary. We believe the power
in the theorem is its novel use in algorithm design.

Theorem 66 (Recursive Sparsification of [78], as stated in [69]) Let K be
a PSD matrix with maximum eigenvalue bounded above by λu and minimum
eigenvalue bounded from below by λℓ. Let d = ⌈log2(λu/λℓ)⌉. For ℓ ∈
{0, 1, 2, . . . , d}, set

γ(ℓ) =
λu

2ℓ
.

Note that γ(d) ≤ λℓ and γ(0) = λu. Consider the sequence of PSD matrices
K(0),K(1), . . . ,K(d), where

K(ℓ) = K + γ(ℓ)In.

Then the following conditions hold.

1. K �R K(d) �R 2K.

2. K(ℓ) � K(ℓ− 1) � 2K(ℓ) for ℓ = 1, 2, . . . , d.

3. K(0) � 2γ(0)I � 2K(0).

If K is the Laplacian of an unweighted graph, then its maximum eigenvalue
is at most 2n and its minimum eigenvalue is at least 8/n2. We can thus set
d = ⌈log2 λu/λℓ⌉ = O(log n) in the above.
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Proof: For the first condition, for all x in the row space of K,

xTKx ≤ xTKx + xT (γ(d)I)x ≤ xTKx + xTλℓx ≤ 2xTKx.

For the second condition, for all x,

xTK(ℓ)x = xTKx + xTγ(ℓ)Ix ≤ xTKx + xT γ(ℓ− 1)x = xTK(ℓ− 1)x,

and

xTK(ℓ− 1)x = xTKx + xT γ(ℓ− 1)Ix = xTKx + 2xT γ(ℓ)Ix ≤ 2xTK(ℓ)x.

Finally, for the third condition, for all x,

xTK(0)x = xTKx + xTλuIx

≤ xT (2λuI)x

≤ 2xTKx + 2xTλuIx

≤ 2xTK(0)x.

The bounds on the eigenvalues of a Laplacian are given in [109] (the bound
on the maximum eigenvalue follows from the fact that n is the maximum
eigenvalue of the Laplacian of the complete graph on n vertices. The bound
on the minimum eigenvalue follows from Lemma 6.1 of [109]).

The main idea of the algorithm is as follows. We say a PSD matrix K̃ is a
C-approximate row space sparsifier of a PSD matrix K if K �R K̃ �R C ·K.
If we also have the stronger condition that K � K̃ � C ·K we say that K̃
is a C-approximate sparsifier of K.

By the first condition of Theorem 66, if we had a matrix K̃ which is a C-
approximate row space sparsifier of K(d), then K̃ is also a 2C-approximate
row space sparsifier to K.

If we were not concerned with compressing the input graph G with a
linear sketch, at this point we could perform Leverage Score Sampling to
obtain a (1 + ε)-approximate sparsifier to K(d). Indeed, by Theorem 17, it
is enough to construct a distribution q for which qi ≥ pi/β for all i, where
β > 0 is a constant.

To do this, first observe that the leverage score for a potential edge
i = (u, v) is given by

‖Ui∗‖22 = Ui∗ΣVT (VΣ−2VT )VΣUT
i∗ (60)

= bT
i K

†bi. (61)
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As bi is in the row space of B, it is also in the row space of K = BTB,
since B and K have the same row space (to see this, write B = UΣVT in
its SVD and then K = VΣ2VT ). Since K̃ is a 2C-approximate row space
sparsifier of K, for all u in the row space of K,

uTKu ≤ uT K̃u ≤ 2CuTKu,

which implies since K+ has the same row space as K (to see this, again look
at the SVD),

1

2C
uTK+u ≤ uT K̃+u ≤ uTK+u.

Since this holds for u = bi for all i, it follows that bT
i K̃

+
bi is within a factor

of 2C of bT
i K

+bi for all i. It follows by setting qi = bT
i K̃

†
bi/n, we have

that qi ≥ pi/2C, where pi are the leverage scores of B. Hence, by Theorem
17, it suffices to take O(nε−2 log n) samples of the edges of G according to
qi, reweight them, and one obtains a spectral sparsifier to the graph G.

Hence, if we were not concerned with compressing G with a linear sketch,
i.e., of computing the sparsifier H from SB for a random oblivious mapping
S, one approach using Theorem 66 would be the following. By the third
condition of Theorem 66, we can start with a sparsifier K̃ = 2γ(0)I which
provides a 2-approximation to K(0), in the sense that K(0) � K̃ � 2K(0).
Then, we can apply Leverage Score Sampling and by Theorem 17, obtain a
sparsifier K̃ for which

K(0) � K̃ � (1 + ε)K(0).

Then, by the second property of Theorem 66,

K(1) � K(0) � K̃ � 2(1 + ε)K(1).

Hence, K̃ is a 2(1 + ε)-approximation to K(1). We can now apply Lever-
age Score Sampling again, and in this way obtain K̃ which is a 2(1 + ε)-
approximation to K(2), etc. Note that the errors do not compound, and
the number of samples in K̃ is always O(nε−2 log n). By the argument
above, when K̃ becomes a 2(1 + ε)-approximation to K(d), it is a 4(1 + ε)
approximation to K, and we obtain a spectral sparsifier of G by sampling
O(nε−2 log n) edges according to the leverage scores of K̃.

Thus, the only task left is to implement this hierarchy of leverage score
sampling using linear sketches.

For this, we need the following standard theorem from the sparse recov-
ery literature.
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Theorem 67 (see, e.g., [24, 51]) For any η > 0, there is an algorithm D
and a distribution on matrices Φ in R

O(η−2polylog(n))×n such that for any
x ∈ R

n, with probability 1− n−100 over the choice of Φ, the output of D on
input Φx is a vector w with η−2polylog(n) non-zero entries which satisfies
the guarantee that

‖x−w‖∞ ≤ η‖x‖2.

Several standard consequences of this theorem, as observed in [69], can be
derived by setting η = ε

C logn for a constant C > 0, which is the setting of
η we use throughout. Of particular interest is that for 0 < ε < 1/2, from
wi one can determine if xi ≥ 1

C logn‖x‖2 or xi <
1

2C logn‖x‖2 given that it
satisfies one of these two conditions. We omit the proof of this fact which
can be readily verified from the statement of Theorem 67, as shown in [69].

The basic idea behind the sketching algorithm is the following intuition.
Let xe = TBnK

†be for an edge e which may or may not occur in G, which
as we will see below is a vector with the important property that its e-th
coordinate is either ℓe or 0. Then,

ℓe = ‖Ue‖22 = bT
e K

†KK†be = ‖BK†be‖22 = ‖TBnK
†be‖22 = ‖xe‖22,

where the first equality follows by definition of the leverage scores, the second
equality follows by (60) and using that K+ = K+KK+, the third equality
follows by definition of K = BTB, the fourth equality follows from TBn =
B, and the final equality follows by definition of xe.

Moreover, by definition of T, the e-th coordinate of xe is 0 if e does not
occur in G. Otherwise, it is beK

†be = ℓe. We in general could have that
ℓe ≪ ‖xe‖2, that is, there can be many other non-zero entries among the
coordinates of xe other than the e-th entry.

This is where sub-sampling and Theorem 67 come to the rescue. At a
given level in the Leverage Score Sampling hierarchy, that is, when trying
to construct K(ℓ + 1) from K(ℓ), we have a C-approximation K̃ to K(ℓ)
for a given ℓ, and would like a (1 + ε)-approximation to K(ℓ). Here C > 0
is a fixed constant. To do this, suppose we sub-sample the edges of G at
rates 1, 1/2, 1/4, 1/8, . . . , 1/n2, where sub-sampling at rate 1/2i means we
randomly decide to keep each edge independently with probability 1/2i.
Given K̃, if ℓ̂e is our C-approximation to ℓe, if we sub-sample at rate 1/2i

where 2i is within a factor of 2 of ℓ̂e, then we would expect ‖xe‖22 to drop by a
factor of Θ(ℓe) to Θ(ℓ2e). Moreover, if edge e is included in the sub-sampling
at rate 1/2i, then we will still have xe = ℓe. Now we can apply Theorem
67 on the sub-sampled vector xe and we have that xe = Ω(‖xe‖2), which
implies that in the discussion after Theorem 67, we will be able to find edge
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e. What’s more is that the process of dropping each edge with probability
1/2i = 1/Θ(ℓe) can serve as the leverage score sampling step itself. Indeed,
this process sets the e-th coordinate of xe to 0 with probability 1 − Θ(ℓe),
that is, it finds edge e with probability Θ(ℓe), which is exactly the probability
that we wanted to sample edge e with in the first place.

Thus, the algorithm is to sub-sample the edges of G at rates 1, 1/2, . . . , 1/n2,
and for each rate of sub-sampling, maintain the linear sketch given by The-
orem 67. This involves computing ΦiTBn where Φi is a linear sketch of
the form Φ · Di, where Φ is as in Theorem 67, and Di is a diagonal ma-
trix with each diagonal entry set to 1 with probability 1/2i and set to 0
otherwise. We do this entire process independently O(log n) times, as each
independent repetition will allow us to build a K(ℓ+ 1) from a K(ℓ) for one
value of ℓ. Then, for each level of the Leverage Score Sampling hierarchy of

Theorem 66, we have a K̃. For each possible edge e, we compute ℓ̂e using K̃
†

which determines a sub-sampling rate 1/2i. By linearity, we can compute

(ΦiTBn)K̃
†
be, which is the sub-sampled version of xe. We sample edge e

if it is found by the algorithm D in the discussion surrounding Theorem
67, for that sub-sampling level. We can thus use these sketches to walk up
the Leverage Score Sampling hierarchy of Theorem 66 and obtain a (1 + ε)-
approximate spectral sparsifier to G. Our discussion has omitted a number
of details, but hopefully gives a flavor of the result. We refer the reader to
[69] for futher details on the algorithm.

6 Sketching Lower Bounds for Linear Algebra

While sketching, and in particular subspace embeddings, have been used for
a wide variety of applications, there are certain limitations. In this section
we explain some of them.

Section Overview: In §6.1 we introduce the Schatten norms as a natu-
ral family of matrix norms including the Frobenius and operator norms, and
show that they can be approximated pretty efficiently given non-oblivious
methods and multiple passes over the data. In §6.2 we ask what we can
do with just a single oblivious sketch of the data matrix, and show that
unlike the Frobenius norm, where it can be compressed to a vector of a
constant number of dimensions, for approximating the operator norm of an
n × n matrix from the sketch one cannot compress to fewer than Ω(n2) di-
mensions. In §6.3 we discuss streaming lower bounds for numerical linear
algebra problems, such as approximate matrix product, ℓ2-regression, and
low rank approximation. In §6.5 we mention lower bounds on the dimen-
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sion of ℓ2-subspace embeddings themselves. Finally, in §6.6 we show how
algorithms which sketch input data, then use the same sketch to adaptively
query properties about the input, typically cannot satisfy correctness. That
is, we show broad impossibility results for sketching basic properties such as
the Euclidean norm of an input vector when faced with adaptively chosen
queries. Thus, when using sketches inside of complex algorithms, one should
make sure they are not queried adaptively, or if they are, that the algorithm
will still succeed.

6.1 Schatten norms

A basic primitive is to be able to use a sketch to estimate a norm. This is a
very well-studied problem with inspirations from the data stream literature,
where sketching ℓp-norms has been extensively studied.

For problems on matrices one is often interested in error measures that
depend on a matrix norm. An appealing class of such norms is the Schatten
p-norms of a matrix A, which we shall denote ‖A‖p.

Definition 68 For p ≥ 1, the p-th Schatten norm ‖A‖p of a rank-ρ matrix
A is defined to be

‖A‖p =

(
ρ∑

i=1

σp
i

)1/p

,

where σ1 ≥ σ2 ≥ · · · ≥ σρ > 0 are the singular values of A. For p = ∞,
‖A‖∞ is defined to be σ1.

Two familiar norms immediately stand out: the Schatten 2-norm is just the
Frobenius norm of A, while the Schatten ∞-norm is the operator norm of
A. Note that typical convention is to let ‖A‖2 denote the operator norm of
A, but in this section we shall use ‖A‖∞ to denote the operator norm to
distinguish it from the Schatten 2-norm, which is the Frobenius norm.

The Schatten norms are particularly useful in that they are rotationally
invariant. That is, if A is an m×n matrix, and if J is an m×m orthonormal
matrix while K is an n× n orthonormal matrix, then ‖JAK‖p = ‖A‖p for
any p ≥ 1. To see this, we may write A = UΣVT in its SVD. Then JU has
orthonormal columns, while VTK has orthonormal rows. It follows that the
SVD of the matrix JAK is given in factored form as (JU)Σ(VTK), and
so it has the same singular values as A, and therefore the same Schatten
p-norm for any p ≥ 1.

One reason one is interested in estimating a matrix norm is to evaluate
the quality of an approximation. For instance, suppose one finds a matrix Ã
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which is supposed to approximate A in a certain norm, e.g., one would like
‖A−Ã‖p to be small. To evaluate the quality of the approximation directly
one would need to compute ‖A− Ã‖p. This may be difficult to do if one is
interested in a very fast running time or using a small amount of space and
a small number of passes over the data. For instance, for p /∈ {2,∞} it isn’t
immediately clear there is an algorithm other than computing the SVD of
A− Ã.

While our focus in this section is on lower bounds, we mention that
for integers p ≥ 1, there is the following simple algorithm for estimating
Schatten norms which has a good running time but requires multiple passes
over the data. This is given in [79].

Theorem 69 For any integer p ≥ 1, given an n × d matrix A, there is
an O(p · nnz(A)/ε−2) time algorithm for obtaining a (1 + ε)-approximation
to ‖A‖pp with probability at least 9/10. Further, the algorithm makes ⌈p/2⌉
passes over the data.

Proof: Let r = C/ε2 for a positive constant C > 0. Suppose g1, . . . ,gr

are independent N(0, 1)d vectors, that is, they are independent vectors of
i.i.d. normal random variables with mean 0 and variance 1.

We can assume A is symmetric by replacing A with the matrix

B =

(
0 AT

A 0.

)

A straightforward calculation shows ‖B‖p = 21/p‖A‖p for all Schatten p-
norms, and that the rank of B is 2ρ, where ρ is the rank of A.

In the first pass we compute Bg1, . . . ,Bgr. In the second pass we
compute B(Bg1), . . . ,B(Bgr), and in general in the i-th pass we compute
Big1, . . . ,Bigr.

If B = UΣUT is the SVD of the symmetric matrix B, then after
s = ⌈p/2⌉ passes we will have computed UΣsUTgi for each i, as well as
UΣtUTgi for each i where t = ⌊p/2⌋. Using that UTU = I, we can com-
pute (gi)TUΣpUTgi for each i. By rotational invariance, these r values are
equal (h1)TΣph1, . . . , (hr)TΣphr, where h1, . . . ,hr are independent vectors
of independent N(0, 1) random variables.

For every i, we have

E[(hi)TΣphi] =

2ρ∑

j=1

E[(hi)2jσ
p
j ] = ‖B‖pp,
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where we use that E[(hi)2i ] = 1 for all i. We also have that

E[((hi)TΣphi)2] =
∑

j,j′

Σp
j,jΣ

p
j′,j′E[(hi

j)
2(hi

j′)
2]

= 3
∑

j

Σ2p
j,j +

∑

j 6=j′

Σp
j,jΣ

p
j′,j′E[(hi

j)
2]E[(hi

j′)
2]

= 3
∑

j

Σ2p
j,j +

∑

j 6=j′

Σp
j,jΣ

p
j′,j′

≤ 4‖B‖2pp ,

where the second equality uses independence of the coordinates of hi and
that the 4-th moment of an N(0, 1) random variable is 3, while the third
equality uses that the variance of an N(0, 1) random variable is 1. It follows
by Chebyshev’s inequality that if r ≥ 40/ε2 and let Z = 1

r

∑
i∈[r]((h

i)TΣphi)2,
then

Pr[|Z − ‖B‖pp| > ε‖B‖pp] ≤ 4‖B‖2pp
ε2‖B‖2pp

· ε
2

40
≤ 1

10
.

This shows correctness. The running time follows from our bound on r and
the number s of passes.

6.2 Sketching the operator norm

The algorithm in the previous section has the drawback that it is not a
linear sketch, and therefore requires multiple passes over the data. This is
prohibitive in certain applications. We now turn our focus to linear sketches.
A first question is what it means to have a linear sketch of a matrix A.
While some applications could require a sketch of the form S · A · T for
random matrices S and T, we will not restrict ourselves to such sketches and
instead consider treating an n × d matrix A as an nd-dimensional vector,
and computing L(A), where L : R

nd → R
k is a random linear operator,

i.e., a k × nd matrix which multiplies A on the left, where A is treated
as an nd-dimensional vector. Since we will be proving lower bounds, this
generalization is appropriate.

While the Frobenius norm is easy to approximate up to a (1+ε)-factor via
a sketch, e.g., by taking L to be a random Gaussian matrix with k = O(1/ε2)
rows, another natural, very important Schatten norm is the Schatten-∞, or
operator norm of A. Can the operator norm of A be sketched efficiently?

Here we will prove a lower bound of k = Ω(min(n, d)2) for obtaining a
fixed constant factor approximation. Note that this is tight, up to a constant
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factor, since if S is an ℓ2-subspace embedding with O(d) rows, then SA
preserves all the singular values of A up to a (1±1/3) factor. We prove this
formally with the following lemma.

The idea is to use the min-max principle for singular values.

Lemma 70 Suppose S is a (1 ± ε) ℓ2-subspace embedding for A. Then, it
holds that (1 − ε)σi(SA) ≤ σi(A) ≤ (1 + ε)σi(SA) for all 1 ≤ i ≤ d.

Proof: The min-max principle for singular values says that

σi(A) = max
Qi

min
x∈Qi
‖x‖2=1

‖Ax‖,

where Qi runs through all i-dimensional subspaces. Observe that the range
of A is a subspace of dimension at most d. It follows from the definition of
a subspace embedding that

(1− ε)‖Ax‖ ≤ ‖SAx‖ ≤ (1 + ε)‖Ax‖, ∀x ∈ R
d.

The lemma now follows from the min-max principle for singular values, since
every vector in the range has its norm preserved up to a factor of 1 + ε, and
so this also holds for any i-dimensional subspace of the range, for any i.

Similarly, if T is an ℓ2 susbpace embedding with O(d) columns, then AT
preserves all the singular values of A up to a (1±1/3) factor, so O(min(n, d)2)
is achievable.

Hence, we shall, for simplicity focus on the case when A is a square n×n
matrix. The following Ω(n2) lower bound on the sketching dimension t was
shown by Oded Regev [102], improving an earlier Ω(n3/2) lower bound of Li,
Nguy˜̂en, and the author [79]. We will need to describe several tools before
giving its proof.

Define two distributions:

• µ is the distribution on n× n matrices with i.i.d. N(0, 1) entries.

• ν is the distribution on n × n matrices obtained by (1) sampling G
from µ, (2) sampling u,v ∼ N(0, In) to be independent n-dimensional
vectors with i.i.d. N(0, 1) entries, and (3) outputting G + 5

n1/2uv
T .

We will show that any linear sketch L for distinguishing a matrix drawn
from µ from a matrix drawn from ν requires Ω(n2) rows. For this to imply a
lower bound for approximating the operator norm of a matrix, we first need
to show that with good probability, a matrix drawn from µ has an operator
norm which differs by a constant factor from a matrix drawn from ν.
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Lemma 71 Let X be a random matrix drawn from distribution µ, while Y
is a random matrix drawn from distribution ν. With probability 1 − o(1),
‖Y‖∞ ≥ 4

3‖X‖∞.

Proof: It suffices to show that for G drawn from µ and u,v ∼ N(0, In),
that ‖G‖∞ and ‖G+ 5

n1/2uv
T ‖∞ differ by a constant factor with probability

1− o(1). We use the following tail bound.

Fact 7 (Operator norm of Gaussian Random Matrix [121]) Suppose
that G ∼ µ. Then with probability at least 1− e−t2/2, it holds that ‖X‖∞ ≤
2n1/2 + t.

By Fact 7, with probability 1− e−Θ(n), ‖G‖∞ ≤ 2.1n1/2.
Let X = 5

n1/2uv
T . Since X is of rank one, the only non-zero singular

value of X is equal to ‖X‖F. We also have ‖X‖F ≥ 4.9·n1/2 with probability
1 − 1/n, since ‖uvT ‖2F ∼ (χ2(n))2, where χ2(n) is the χ2-distribution with
n degrees of freedom, which is tightly concentrated around n.

It follows with probability 1−O(1/n), by the triangle inequality

‖G +
5

n1/2
uvT ‖∞ ≥ 4.9n1/2 − 2.1n1/2 ≥ 2.8n1/2 ≥ 4

3
‖G‖∞.

In our proof we need the following tail bound due to Lata la Suppose that
gi1 , . . . , gid are i.i.d. N(0, 1) random variables. The following result, due to
Lata la [73], bounds the tails of Gaussian chaoses

∑
ai1 · · · aidgi1 · · · gid . The

proof of Lata la’s tail bound was later simplified by Lehec [76].
Suppose that A = (ai)1≤i1,...,id≤n is a finite multi-indexed matrix of

order d. For i ∈ [n]d and I ⊆ [d], define iI = (ij)j∈I . For disjoint nonempty
subsets I1, . . . , Ik ⊆ [d] define ‖A‖I1,...,Ik to be:

sup




∑

i

aix
(1)
iI1
· · ·x(k)

iIk
:
∑

iI1

(
x
(1)
iI1

)2
≤ 1, . . . ,

∑

iIk

(
x
(1)
iIk

)2
≤ 1



 .

Also denote by S(k, d) the set of all partitions of {1, . . . , d} into k nonempty
disjoint sets I1, . . . , Ik. It is not hard to show that if a partition {I1, . . . , Ik}
is finer than another partition {J1, . . . , Jℓ}, then ‖A‖I1,...,Ik ≤ ‖A‖J1,...,Jℓ .
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Theorem 72 For any t > 0 and d ≥ 2,

Pr




∣∣∣∣∣∣

∑

i

ai

d∏

j=1

g
(j)
ij

∣∣∣∣∣∣
≥ t


 ≤ Cd

· exp

{
−cd min

1≤k≤d
min

(I1,...,Ik)∈S(k,d)

(
t

‖A‖I1,...,Ik

) 2

k

}
,

where Cd, cd > 0 are constants depending only on d.

To prove the main theorem of this section, we need a few facts about
distances between distributions.

Suppose µ and ν are two probability measures on R
n. For a convex

function φ : R→ R such that φ(1) = 0, we define the φ-divergence

Dφ(µ||ν) =

∫
φ

(
dµ

dν

)
dν.

In general Dφ(µ||ν) is not a distance because it is not symmetric.
The total variation distance between µ and ν, denoted by dTV (µ, ν), is

defined as Dφ(µ||ν) for φ(x) = |x−1|. It can be verified that this is indeed a
distance. It is well known that if dTV (µ, ν) ≤ c < 1, then the probability that
any, possibly randomized algorithm, can distinguish the two distributions is
at most (1 + c)/2.

The χ2-divergence between µ and ν, denoted by χ2(µ||ν), is defined as
Dφ(µ||ν) for φ(x) = (x− 1)2 or φ(x) = x2 − 1. It can be verified that these
two choices of φ give exactly the same value of Dφ(µ||ν).

We can upper bound total variation distance in terms of the χ2-divergence
using the next proposition.

Fact 8 ([117, p90]) dTV (µ, ν) ≤
√

χ2(µ||ν).

The next proposition gives a convenient upper bound on the χ2-divergence
between a Gaussian distribution and a mixture of Gaussian distributions.

Fact 9 ([65, p97]) χ2(N(0, In)∗µ||N(0, In)) ≤ E[e〈x,x
′〉−1], where x,x′ ∼

µ are independent.

We can now prove the main impossibility theorem about sketching the
operator norm up to a constant factor.
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Theorem 73 [102] Let L ∈ R
k×n2

be drawn from a distribution on matrices
for which for any fixed n×n matrix A, with probability at least 9/10 there is
an algorithm which given L(A), can estimate ‖A‖∞ up to a constant factor
C, with 1 ≤ C < 2√

3
. Recall here that L(A) is the image (in R

k) of the

linear map L which takes as input A represented as a vector in R
n2

. Under
these conditions, it holds that k = Ω(n2).

Proof: We can assume the rows of L are orthonormal vectors in R
n2

.
Indeed, this just corresponds to a change of basis of the row space of L,
which can be performed in post-processing. That is, given L(A) one can
compute R · L(A) where R is a k × k change of basis matrix.

Let the orthonormal rows of L be denoted L1, . . . ,Lk. Although these
are vectors in R

n2

, we will sometimes think of these as n× n matrices with
the orthonormal property expressed by tr(LT

i Lj) = δij .
Suppose A ∼ µ. Then, since the rows of L are orthonormal, it follows by

rotational invariance that L(A) is distributed as a k-dimensional Gaussian
vector N(0, Ik). On the other hand, if A ∼ ν, then L(A) is distributed as a
k-dimensional Gaussian vector with a random mean, that is, as N(Xu,v, Ik)
where

Xu,v =:
5

n1/2

(
uTL1v, uTL2v, · · · ,uTLkv

)
=:

5

n1/2
Yu,v.

We denote the distribution of N(Xu,v, Ik) by Dn,k. By Lemma 71 and the
definition of total variation distance, to prove the theorem it suffices to
upper bound dTV (N(0, In),Dn,k) by a constant C ≤ 4/5. We shall do so for
C = 1/4.

Without loss of generality we may assume that k ≥ 16. Consider the
event Eu,v = {‖Yu,v‖2 ≤ 4

√
k}. Since E‖Yu,v‖22 = k, it follows by Markov’s

inequality that Pru,v{Eu,v} ≥ 15/16. Let D̃n,k be the marginal distribution
of Dn,k conditioned on Eu,v. Then

dTV (D̃n,k,Dn,k) ≤ 1

8
,

and it suffices to bound dTV (N(0, In), D̃n,k). Resorting to χ2-divergence by
invoking Proposition 8 and Proposition 9, we have that

dTV (N(0, In), D̃n,k) ≤
√

Ee〈Xu,v,Xu
′,v′ 〉 − 1,
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where u,v,u′,v′ ∼ N(0, In) conditioned on Eu,v and Eu′,v′ . We first see
that

〈Xu,v,Xu′,v′〉 =
25

n

n∑

a,b,c,d=1

∑

i

(Li)ab(L
i)cduau

′
bvcv

′
d

=: D
∑

a,b,c,d

Aa,b,c,duau
′
bvcv

′
d,

where D = 25
n and Aa,b,c,d is an array of order 4 such that

Aa,b,c,d =
k∑

i=1

Li
abL

i
cd.

We shall compute the partition norms of Aa,b,c,d as needed in Lata la’s tail
bound Theorem 72.
Partition of size 1. The only possible partition is {1, 2, 3, 4}. We have

‖A‖{1,2,3,4} =



∑

a,b,c,d

(
k∑

i=1

Li
a,bL

i
c,d

)2



1/2

=



∑

a,b,c,d

k∑

i,j=1

Li
a,bL

i
c,dL

j
a,bL

j
c,d




1/2

=



∑

a,b,c,d

k∑

i=1

(Li
a,b)

2(Li
c,d)2




1/2

=
√
k

Partitions of size 2. The norms are automatically upper-bounded by
‖A‖{1,2,3,4} =

√
k.

Partitions of size 3. Up to symmetry, there are only two partitions to
consider: {1, 2}, {3}, {4}, and {1, 3}, {2}, {4}. We first consider the partition
{1, 2}, {3}, {4}. We have

‖A‖{1,2},{3},{4} = sup
W∈Sn2−1,uT ,v∈Sn−1

k∑

i=1

〈LiW 〉 · uTLiv

≤
(

k∑

i=1

(〈Li,W〉
)1/2

·
(

k∑

i=1

(uTLiv)2

)1/2

≤ 1,
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where the first inequality follows from Cauchy-Schwarz. We now consider
the partition {1, 3}, {2}, {4}. We have

‖A‖{1,3},{2},{4} = sup
W∈Sn2−1,uT ,v∈Sn−1

∑k
i=1〈W, ((Liu)⊗ (Liv))〉

= ‖∑k
i=1((L

iu)⊗ (Liv))‖F , (62)

where the second equality follows by Cauchy-Schwarz.
Let T be the n2 × k matrix whose columns are the Li, interpreted as

column vectors in Rn2

. Let T′ be the n× k matrix whose columns are Liu.
Similarly, T′′ is the n× k matrix whose columns are Liv. Then

‖
k∑

i=1

((Liu)⊗ (Liv))‖∞ = ‖T′(T′′)T ‖∞.

Since T′ and T′′ are obtained from T by applying a contraction, we have that
‖T′‖∞ ≤ ‖T‖∞ ≤ 1, and ‖T′′‖∞ ≤ ‖T‖∞ ≤ 1. Therefore, ‖T′(T′′)T ‖∞ ≤
1. Consequently, since T′(T′′)T is an n× n matrix, ‖T′(T′′)T ‖F ≤

√
n.

Partition of size 4. The only partition is {1}, {2}, {3}, {4}. Using that
for integers a, b, a · b ≤ (a2 + b2)/2, we have

‖A‖{1},{2},{3},{4} = sup
u,v,u′,v′∈Sn−1

k∑

i=1

uTLivu′TLiv′

≤ sup
u,v,u′,v′

1

2

(
k∑

i=1

〈uvT ,Li〉2 + 〈u′v′T ,Li〉2
)

≤ 1

The last inequality follows the fact that uvT is a unit vector in R
n2

and Li’s
are orthonormal vectors in R

n2

.
Lata la’s inequality (Theorem 72) states that for t > 0,

Pr




∣∣∣∣∣∣

∑

a,b,c,d

Aa,b,c,duau
′
bvcv

′
d

∣∣∣∣∣∣
> t


 ≤ C1

· exp

(
−cmin

{
t√
k
,
t2

k
,
t
2

3

n
1

3

,
√
t

})

The above holds with no conditions imposed on u,v,u′,v′. For convenience,
we let

f(t) = min

{
t√
k
,
t2

k
,
t
2

3

n
1

3

,
√
t

}
.
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It follows that

Pr
[
|〈Yu,v,Yu′,v′〉| > t

∣∣Eu,vEu′,v′

]
≤ Pr

[
|〈Yu,v,Yu′,v′〉| > t

]

Pr[Eu′,v′}Pr{Eu,v]

≤ C2 exp (−c · f(t)) .

Note that conditioned on Eu,v and Eu′,v′ ,

|〈Yu,v, Yu′,v′〉| ≤ ‖Yu,v‖2‖Yu′,v′‖2 ≤ 16k.

We now claim that tD = 25t
n ≤ cf(t)/2 for all

√
k < t < 16k, provided

k = o(n2). First, note that since t < 16k, t√
k

= O(
√
t). Also, since t >

√
k,

t√
k
≤ t2

k . Hence, f(t) = Θ(min(t/
√
k, t2/3/n1/3)). Since k = o(n2), if t/

√
k

achieves the minimum, then it is larger than 25t
n . On the other hand, if

t2/3/n1/3 achieves the minimum, then cf(t)/2 ≥ 25t
n whenever t = o(n2),

which since t < 16k = o(n2), always holds.
Integrating the tail bound gives that

E[eXu,v,Xu
′,v′ ] = 1 + D

∫ 16k

0
etD Pr[|〈Yu,v,Yu′,v′〉| > t]dt

≤ 1 + D

∫ √
k

0
etDdt + D

∫ 16k

√
k

etD−cf(t)dt

≤ 1 + D
√
ke

√
kD + D

∫ 16k

√
k

e−cf(t)/2dt

≤ 1 + o(1),

where the first inequality uses that Pr[|〈Yu,v,Yu′,v′〉| > t] ≤ 1, the second
inequality uses the above bound that tD ≤ cf(t)/2, and the first part of the
third inequality uses that k = o(n2). For the second part of the third in-
equality, since

√
k < t < 16k, we have that f(t) = Θ(min(t/

√
k, t2/3/n1/3)).

Also, f(t) ≥ 1 (assuming k ≥ n, which we can assume, since if there
is a linear sketch with k < n there is also one with k > n), and so

D
∫ 16k√

k e−cf(t)/2dt ≤ D
√
k since the integral is dominated by a geometric

series. Also, since k = o(n2), D
√
k = o(1).

It follows that dTV (N(0, In), D̃n,k) ≤ 1/10 and thus

dTV (N(0, In),Dn,k) ≤ 1/10 + 1/8 < 1/4.
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6.3 Streaming lower bounds

In this section, we explain some basic communication complexity, and how
it can be used to prove bit lower bounds for the space complexity of linear
algebra problems in the popular streaming model of computation. We refer
the reader to Muthukrishnan’s survey [96] for a comprehensive overview on
the streaming model. We state the definition of the model that we need as
follows. These results are by Clarkson and the author [28], and we follow
the exposition in that paper.

In the turnstile model of computation for linear algebra problems, there
is an input matrix A ∈ R

n×d which is initialized to all zeros. We then
see a finite sequence of additive updates to the coordinates of A, where
each update has the form (i, j, δ) for i ∈ [n], j ∈ [d], and δ ∈ R, with the
meaning that Ai,j ← Ai,j + δ. We will restrict ourselves to the case when
at all times, all entries of A are integers bounded by M ≤ poly(nd), for
some fixed polynomial in n and d. We note that the sequence of updates is
adversarially chosen, and multiple updates to each entry Ai,j may occur and
in an arbitrary order (interleaved with other updates to entries Ai′,j′). One
of the main goals in this computational model is to compute or approximate
a function of A using as little space in bits as possible.

6.4 Communication complexity

For lower bounds in the turnstile model, we use a few definitions and basic
results from two-party communication complexity, described below. We
refer the reader to the book by Kushilevitz and Nisasn for more information
[72]. We will call the two parties Alice and Bob.

For a function f : X × Y → {0, 1}, we use R1−way
δ (f) to denote the

randomized communication complexity with two-sided error at most δ in
which only a single message is sent from Alice to Bob. Here, only a sin-
gle message M(X) is sent from Alice to Bob, where M is Alice’s message
function of her input X and her random coins. Bob computes f(M(X), Y ),
where f is a possibly randomized function of M(X) and Bob’s input Y . For
every input pair (X,Y ), Bob should output a correct answer with proba-
bility at least 1 − δ, where the probability is taken over the joint space of
Alice and Bob’s random coin tosses. If this holds, we say the protocol is
correct. The communication complexity R1−way

δ (f) is then the minimum
over correct protocols, of the maximum length of Alice’s message M(X),
over all inputs and all settings to the random coins.

We also use R1−way
µ,δ (f) to denote the minimum communication of a pro-
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tocol, in which a single message from Alice to Bob is sent, for solving f with
probability at least 1− δ, where the probability now is taken over both the
coin tosses of the protocol and an input distribution µ.

In the augmented indexing problem, which we call AIND, Alice is given
x ∈ {0, 1}n, while Bob is given both an i ∈ [n] together with xi+1,xi+2, . . . ,xn.
Bob should output xi.

Theorem 74 ([93]) R1−way
1/3 (AIND) = Ω(n) and also R1−way

µ,1/3 (AIND) =

Ω(n), where µ is uniform on {0, 1}n × [n].

6.4.1 Matrix product

We start with an example showing how to use Theorem 74 for proving space
lower bounds for the Matrix Product problem, which is the same as given in
Definition 11. Here we also include in the definition the notions relevant for
the streaming model.

Definition 75 In the Matrix Product Problem matrices A and B are pre-
sented as an arbitrary stream of additive updates to their entries, where A
and B each have n rows and a total of c columns. At all times in the stream
we assume the entries of A and B are specified by O(log nc)-bit numbers.
The goal is to output a matrix C so that

‖ATB−C‖F ≤ ε‖A‖F ‖B‖F .

Theorem 76 Suppose n ≥ β(log10 cn)/ε2 for an absolute constant β > 0,
and that the entries of A and B are represented by O(log(nc))-bit numbers.
Then any randomized 1-pass algorithm which solves Matrix Product with
probability at least 4/5 uses Ω(cε−2 log(nc)) bits of space.

Proof: Throughout we shall assume that 1/ε is an integer, and that c is
an even integer. These conditions can be removed with minor modifications.
Let Alg be a 1-pass algorithm which solves Matrix Product with probability
at least 4/5. Let r = log10(cn)/(8ε2). We use Alg to solve instances of
AIND on strings of size cr/2. It will follow by Theorem 74 that the space
complexity of Alg must be Ω(cr) = Ω(c log(cn))/ε2.

Suppose Alice has x ∈ {0, 1}cr/2. She creates a c/2 × n matrix U as
follows. We will have that U = (U0,U1, . . . ,Ulog10(cn)−1,0c/2×(n−r)), where

for each k ∈ {0, 1, . . . , log10(cn) − 1}, Uk is a c/2 × r/(log10(cn)) matrix
with entries in the set {−10k, 10k}. Also, 0c/2×(n−r) is a c/2 × (n − r)
matrix consisting of all zeros.
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Each entry of x is associated with a unique entry in a unique Uk. If
the entry in x is 1, the associated entry in Uk is 10k, otherwise it is −10k.
Recall that n ≥ β(log10(cn))/ε2, so we can assume that n ≥ r provided that
β > 0 is a sufficiently large constant.

Bob is given an index in [cr/2], and suppose this index of x is associated
with the (i∗, j∗)-th entry of Uk∗ . By the definition of the AIND problem,
we can assume that Bob is given all entries of Uk for all k > k∗. Bob creates
a c/2 × n matrix V as follows. In V, all entries in the first k∗r/(log10(cn))
columns are set to 0. The entries in the remaining columns are set to the
negation of their corresponding entry in U. This is possible because Bob
has Uk for all k > k∗. The remaining n− r columns of V are set to 0. We
define AT = U + V. Bob also creates the n × c/2 matrix B which is 0 in
all but the ((k∗ − 1)r/(log10(cn)) + j∗, 1)-st entry, which is 1. Then,

‖A‖2F = ‖AT ‖2F =
( c

2

)( r

log10(cn)

) k∗∑

k=1

100k ≤
( c

16ε2

) 100k
∗+1

99
.

Using that ‖B‖2F = 1,

ε2‖A‖2F ‖B‖2F ≤ ε2
( c

16ε2

) 100k
∗+1

99
=

c

2
· 100k

∗ · 25

198
.

ATB has first column equal to the j∗-th column of Uk∗ , and remaining
columns equal to zero. Let C be the c/2× c/2 approximation to the matrix
ATB. We say an entry Cℓ,1 is bad if its sign disagrees with the sign of
(ATB)ℓ,1. If an entry Cℓ,1 is bad, then ((ATB)ℓ,1 −Cℓ,1)

2 ≥ 100k
∗
. Thus,

the fraction of bad entries is at most 25
198 . Since we may assume that i∗, j∗,

and k∗ are chosen independently of x, with probability at least 173/198,
sign(Ci∗,1) = sign(Uk∗

i∗,j∗).
Alice runs Alg on U in an arbitrary order, transmitting the state to

Bob, who continues the computation on V and then on B, again feed-
ing the entries into Alg in an arbitrary order. Then with probability at
least 4/5, over Alg’s internal coin tosses, Alg outputs a matrix C for which

‖ATB−C‖2F ≤ ε2‖A‖2F ‖B‖2F .
It follows that the parties can solve the AIND problem with probability

at least 4/5 − 25/198 > 2/3. The theorem now follows by Theorem 74.

6.4.2 Regression and low rank approximation

One can similarly use communication complexity to obtain lower bounds
in the streaming model for Regression and Low Rank Approximation. The
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results are again obtained by reduction from Theorem 74. They are a bit
more involved than those for matrix product, and so we only state several
of the known theorems regarding these lower bounds. We begin with the
formal statement of the problems, which are the same as defined earlier,
specialized here to the streaming setting.

Definition 77 In the ℓ2-Regression Problem, an n × d matrix A and an
n × 1 column vector b are presented as a sequence of additive updates to
their coordinates. We assume that at all points in the stream, the entries
of A and b are specified by O(log nd)-bit numbers. The goal is to output a
vector x so that

‖Ax− b‖ ≤ (1 + ε) min
x′∈Rd

∥∥Ax′ − b
∥∥.

Theorem 78 ([28]) Suppose n ≥ d(log10(nd))/(36ε) and d is sufficiently
large. Then any randomized 1-pass algorithm which solves the ℓ2-Regression
Problem with probability at least 7/9 needs Ω(d2ε−1 log(nd)) bits of space.

Definition 79 In the Rank-k Approximation Problem, we are given an in-
teger k, value ε > 0, and n×d matrix A which is presented as a sequence of
additive updates to its coordinates. The goal is to find a matrix Ãk of rank
at most k so that

‖A− Ãk‖F ≤ (1 + ε)‖A−Ak‖F ,

where Ak is the best rank-k approximation to A.

Theorem 80 ([28]) Let ε > 0 and k ≥ 1 be arbitrary. Then,
(1) Suppose d > βk/ε for an absolute constant β > 0. Then any random-

ized 1-pass algorithm which solves the Rank-k Approximation Problem with
probability at least 5/6, and which receives the entries of A in row-order,
must use Ω(nk/ε) bits of space.

(2) Suppose n > βk/ε for an absolute constant β > 0. Then any random-
ized 1-pass algorithm which solves the Rank-k Approximation Problem with
probability at least 5/6, and which receives the entries of A in column-order
must use Ω(dk/ε) bits of space.

6.5 Subspace embeddings

We have seen that ℓ2-subspace embeddings have a number of important
applications, especially ones that are oblivious to the matrix A they are

121



being applied to. A natural question is what the minimum dimension of such
subspace embeddings needs to be. That is, we seek to design a distribution
Π over r × n matrices S, with r as small as possible, so that for any fixed
n× d matrix A, we have with constant probability over S drawn from Π,

∀x ∈ R
d, (1− ε)‖Ax‖2 ≤ ‖SAx‖2 ≤ (1 + ε)‖Ax‖2. (63)

We have seen that by choosing S to be a matrix of i.i.d. Gaussians, it suffices
to set r = O(d/ε2), which also achieves (63) with probability 1− exp(−d).

A theorem of Nelson and Nguy˜̂en [98] shows that the above setting of
r is best possible for achieving (63), even if one desires only constant error
probability.

Theorem 81 For n ≥ Cd/ε2 for a sufficiently large constant C > 0, any
distribution Π satisfying (63) with constant probability over S drawn from
Π, satisfies r = Ω(d/ε2).

While Theorem 81 gives a nice dimension lower bound for subspace em-
beddings, it turns out that often one can do better than it in specific appli-
cations, such as the ℓ2 Regression Problem, where it is possible to achieve
a dependence on 1/ε that is linear. This is because in the analysis, only a
subspace embedding with constant ε is needed, while additional other prop-
erties of the sketching matrix S are used that only incur a 1/ε factor in the
dimension.

6.6 Adaptive algorithms

In this section we would like to point out a word of caution of using a sketch
for multiple, adaptively chosen tasks.

Suppose, for example, that we have a k × n sketching matrix S, with
k ≪ n, drawn from some distribution with the property that there is a,
possibly randomized reconstruction function f such that for any fixed vector
x ∈ R

n,

(1− ε)‖x‖22 ≤ ‖f(Sx)‖22 ≤ (1 + ε)‖x‖22, (64)

with probability at least 1− δ for some parameter δ > 0. In this section we
will focus on the case in which δ < n−c for every constant c > 0, that is, δ
shrinks faster than any inverse polynomial in n

The property in (64) is a basic property that one could ask for a sketching
matrix S to satisfy, and we will refer to an (S, f) pair satisfying this property
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as an ℓ2-sketch. It is clear, for example, that an ℓ2-subspace embedding has
this property for certain ε and δ, where the function f(Sx) = ‖Sx‖22. As we
have seen, such embeddings have a number of applications in linear algebra.

A natural question is if an ℓ2-sketch can be reused, in the following sense.
Suppose we compute

S · x1,S · x2,S · x3, . . . ,S · xr,

where x1, . . . ,xr is an adaptively chosen sequence of vectors in R
n. We will

also assume r ≤ nc for some fixed constant c > 0. For each S ·xi, we obtain
f(S · xi). Note that if the xi were fixed before the choice of S, by a union
bound over the r vectors x1, . . . ,xr, we should have that with probability
at least 1− δnc, simultaneously for all i,

(1− ε)‖xi‖22 ≤ ‖f(Sxi)‖22 ≤ (1 + ε)‖xi‖22.

A natural question though, is what happens in the adaptive case, where the
xi can depend on f(Sx1), f(Sx2), . . . , f(Sxi−1). As an illustrative exam-
ple that this is a nontrivial issue, we first consider the standard estimator
f(Sx) = ‖Sx‖22. An ℓ2 sketch with this choice of estimator is often called a
Johnson-Lindenstrauss transform.

Theorem 82 For any ε > 0, and any Johnson-Lindenstrauss transform
S with k rows and n columns, k < n, there is an algorithm which makes
r =

(k+1
2

)
+ (k + 1) + 1 query vectors x1, . . . ,xr, for which with probability

1,
f(Sxr) /∈

[
(1− ε)‖xr‖22, (1 + ε)‖xr‖22

]
.

Further, the algorithm runs in O(k3) time and the first r − 1 queries can
be chosen non-adaptively (so the algorithm makes a single adaptive query,
namely, xr).

Proof: The algorithm first queries the sketch on the vectors

ei, ei + ej for all i, j ∈ [k + 1],

where the ei are the standard unit vectors in R
n. Since S is a Johnson-

Lindenstrauss transform, it learns ‖Si‖22 and ‖Si +Sj‖22 for all i, j ∈ [k + 1],
where Si denotes the i-th column of S. Since ‖Si + Sj‖22 = ‖Si‖22 + ‖Sj‖22 +
2〈Si,Sj〉, the algorithm learns 〈Si,Sj〉 for all i, j.

Now consider the n×n matrix A = STS. This matrix has rank at most
k, since S has rank at most k. By definition, Ai,j = 〈Si,Sj〉. It follows that
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the algorithm has learned the upper (k + 1) × (k + 1) submatrix of A, let
us call this submatrix B. As B has rank at most k, it follows there is a
non-zero vector u ∈ R

k+1 in the kernel of the span of the rows of B.
Consider the non-zero vector v ∈ R

n obtained by padding u with n −
(k + 1) zero coordinates. We claim that Sv = 0, which would imply that
‖Sv‖22 cannot provide a relative error approximation to ‖v‖22 for any ε > 0.

To prove the claim, write S = [C,D] as a block matrix, where C consists
of the first k + 1 columns of S, and D consists of the remaining n− (k + 1)
columns of S. Then

STS =

(
CTC CTD

DTC DTD

)
,

where B = CTC. Writing C = UΣVT in its SVD, we see that u is orthog-
onal to the row space of VT , which implues Sv = 0, as desired.

To conclude, note that the query algorithm makes r queries, the only
adaptive one being v, and runs in O(k3) time to compute the SVD of B.

While Theorem 82 rules out using a Johnson-Lindenstrauss transform as
an ℓ2 sketch which supports adaptively chosen query vectors, one could ask
if a different, more carefully designed ℓ2 sketch, could support adaptively
chosen query vectors. Unfortunately, the answer is no, in a very strong
sense, as shown by Hardt and the author [60]. Namely, the authors show
that for any ℓ2 sketch, there is an efficient query algorithm which can find
a distribution on queries xi for which with constant probability, f(Sxi) /∈
[(1 − ε)‖xi‖22, (1 + ε)‖xi‖22. To avoid introducing additional notation, we
state the theorem of [60] informally, and refer the reader to the paper for
more details.

Theorem 83 [Informal version] There is a randomized algorithm which,
given a parameter B ≥ 2 and oracle access to an ℓ2 sketch that uses at
most r = n − O(log(nB)) rows, with high probability finds a distribution
over queries on which the linear sketch fails to satisfy (64) with constant
probability.

The algorithm makes at most poly(rB) adaptively chosen queries to the
oracle and runs in time poly(rB). Moreover, the algorithm uses only r
“rounds of adaptivity” in that the query sequence can be partitioned into
at most r sequences of non-adaptive queries.

We state some of the intuition behind the proof of Theorem 83 below.
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The problem of approximating the Euclidean norm of x is captured by
the following game between two players, Alice and Bob. Alice chooses an
r × n sketching matrix S from distribution π. Bob makes a sequence of
queries x1, . . . ,xr ∈ R

n to Alice, who only sees Sxi on query i. This captures
the fact that a sketching algorithm only has access to Sxi, rather than to
xi itself. The multiple queries xi of Bob are the vectors whose Euclidean
norm one would like to approximate using the sketching matrix S. Alice
responds by telling Bob the value f(Sxi), which is supposed to be a (1 + ε)-
approximation to the Euclidean norm of xi.

Here f is an arbitrary function that need not be efficiently computable.
For simplicity of presentation, we’ll just focus on the case in which f uses
no randomness, though Theorem 83 holds also for randomized functions f .
Bob will try to learn the row space R(A) of Alice, namely the at most r-
dimensional subspace of Rn spanned by the rows of A. If Bob knew R(A),
he could, with probability 1/2 query 0n and with probability 1/2 query a
vector in the kernel of A. Since Alice cannot distinguish the two cases, and
since the norm in one case is 0 and in the other case non-zero, she cannot
provide a relative error approximation.

Theorem 83 provides an algorithm (which can be executed efficiently by
Bob) that learns r−O(1) orthonormal vectors that are almost contained in
R(A). While this does not give Bob a vector in the kernel of A, it effectively
reduces Alice’s row space to be constant dimensional thus forcing her to
make a mistake on sufficiently many queries (since the variance is large).

The conditional expectation lemma. In order to learn R(A), Bob’s
initial query is drawn from the multivariate normal distribution N(0, τIn),
where τIn is the covariance matrix, which is just a scalar τ times the iden-
tity matrix In. This ensures that Alice’s view of Bob’s query x, namely,
the projection PAx of x onto R(A), is spherically symmetric, and so only
depends on ‖PAx‖2. Given ‖PAx‖2, Alice needs to output 0 or 1 depending
on what she thinks the norm of x is. Since Alice has a proper subspace of
R
n, she will be confused into thinking x has larger norm than it does when
‖PAx‖2 is slightly larger than its expectation (for a given τ), that is, when
x has a non-trivial correlation with R(A).

Formally, Theorem 83 makes use of a conditional expectation lemma
showing that there exists a choice of τ for which

Ex∼N(0,τIr)

[
‖PAx‖22 | f(Ax) = 1

]
−Ex∼N(0,τIr)

[
‖PAx‖22

]

is non-trivially large. This is done by showing that the sum of this difference
over all possible τ in a range [1, B] is noticeably positive. Here B is the
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approximation factor. In particular, there exists a τ for which this difference
is large. To show the sum is large, for each possible condition v = ‖PAx‖22,
there is a probability q(v) that the algorithm outputs 1, and as we range
over all τ , q(v) contributes both positively and negatively to the above
difference based on v’s weight in the χ2-distribution with mean r · τ . The
overall contribution of v can be shown to be zero. Moreover, by correctness
of the sketch, q(v) must typically be close to 0 for small values of v, and
typically close to 1 for large values of v. Therefore q(v) zeros out some of
the negative contributions that v would otherwise make and ensures some
positive contributions in total.

Boosting a small correlation. Given the conditional expectation lemma,
one then finds many independently chosen xi for which each xi has a slightly
increased expected projection onto Alice’s space R(A). At this point, how-
ever, it is not clear how to proceed unless one can aggregate these slight
correlations into a single vector which has very high correlation with R(A).
This is accomplished by arranging all m = poly(n) positively labeled vec-
tors xi into an m × n matrix G and computing the top right singular vec-
tor v∗ of G. Note that this can be done efficiently. One can then show
that ‖PAv∗‖ ≥ 1 − 1/poly(n). In other words v∗ is almost entirely con-
tained in R(A). This step is crucial as it gives a way to effectively reduce
the dimension of Alice’s space by 1.

Iterating the attack. After finding one vector inside Alice’s space, one
must iterate the argument. In fact Alice might initially use only a small
fraction of her rows and switch to a new set of rows after Bob learned her
initial rows. An iteration of the previously described attack is performed as
follows. Bob makes queries from a multivariate normal distribution inside
of the subspace orthogonal to the the previously found vector. In this way
one effectively reduces the dimension of Alice’s space by 1, and repeats the
attack until her space is of constant dimension, at which point a standard
non-adaptive attack is enough to break the sketch. Several complications
arise at this point. For example, each vector that we find is only approxi-
mately contained in R(A). One needs to rule out that this approximation
error could help Alice. This is done by adding a sufficient amount of global
Gaussian noise to the query distribution. This has the effect of making
the distribution statistically indistinguishable from a query distribution de-
fined by vectors that are exactly contained in Alice’s space. A generalized
conditional expectation lemma is then shown for such distributions.
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7 Open Problems

We have attempted to cover a number of examples where sketching tech-
niques can be used to speed up numerical linear algebra applications. We
could not cover everything and have of course missed out on some great
material. We encourage the reader to look at other surveys in this area,
such as the one by Mahoney [85], for a treatment of some of the topics that
we missed.

Here we conclude with some open problems.

Open Question 1 (Spectral Low Rank Approximation) We have seen
in Theorem 47 that it is possible to achieve a running time of O(nnz(A)) +
n ·poly(k/ε) for solving the low rank approximation problem with Frobenius
norm error, namely, given an n× n matrix A, finding a (factorization of a)
rank-k matrix Ãk = LUR, where U is a k × k matrix, for which

‖A− Ãk‖F ≤ (1 + ε)‖A−Ak‖F.

On the other hand, in Theorem 60 we see that it is possible to find a pro-
jection matrix ZZT for which

‖A− ZZTA‖2 ≤ (1 + ε)‖A−Ak‖2, (65)

that is the error is with respect to the spectral rather than the Frobenius
norm. The latter error measure can be much stronger than Frobenius norm
error. Is it possible to achieve O(nnz(A)) + n · poly(k/ε) time and obtain
the guarantee in (65)?

Open Question 2. (Robust Low Rank Approximation) We have
seen very efficient, O(nnz(A)) + n · poly(k/ε) time algorithms for low rank
approximation with Frobenius norm error, that is, for finding a factorization
of a rank-k matrix Ãk = LUR, where U is a k × k matrix, for which

‖A− Ãk‖F ≤ (1 + ε)‖A−Ak‖F.

As we have seen for regression, often the ℓ1-norm is a more robust error
measure than the ℓ2-norm, and so here one could ask instead for finding a
factorization of a rank-k matrix Ãk for which

‖A− Ãk‖1 ≤ (1 + ε)‖A−Ak‖1, (66)

where here for an n × n matrix B, ‖B‖1 =
∑

i,j∈[n] |Bi,j| is the entry-wise
1-norm of B. We are not aware of any polynomial time algorithm for this
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problem, nor are we aware of an NP-hardness result. Some work in this
direction is achieved by Shyamalkumar and Varadarajan [107] (see also the
followup papers [34, 49, 48, 120]) who give an algorithm which are poly-
nomial for fixed k, ε, for the weaker error measure ‖B‖V =

∑n
i=1 ‖Bi∗‖2,

that is, the V -norm denotes the sum of Euclidean norms of rows of B, and
so is more robust than the Frobenius norm, though not as robust as the
entry-wise 1-norm.

Open Question 3. (Distributed Low Rank Approximation) In §4.4
we looked at the arbitrary partition model. Here there are s players, each
locally holding an n×d matrix At. Letting A =

∑
t∈[s]A

t, we would like for

each player to compute the same rank-k projection matrix WWT ∈ R
d×d,

for which
‖A−AWWT ‖2F ≤ (1 + ε)‖A −Ak‖2F.

We presented a protocol due to Kannan, Vempala, and the author [68] which
obtained O(sdk/ε) + poly(sk/ε) words of communication for solving this
problem. In [68] a lower bound of Ω(sdk) bits of communication is also
presented. Is it possible to prove an Ω(sdk/ε) communication lower bound,
which would match the leading term of the upper bound? Some possibly
related work is an Ω(dk/ε) space lower bound for outputting such a W given
one pass over the rows of A presented one at a time in an arbitrary order
[123], i.e., in the streaming model of computation. In that model, this bound
is tight up to the distinction between words and bits.

Open Question 4. (Sketching the Schatten-1 Norm) In Section §6.1
we looked at the Schatten norms of an n × n matrix A. Recall that for
p ≥ 1, the p-th Schatten norm ‖A‖p of a rank-ρ matrix A is defined to be

‖A‖p =

(
ρ∑

i=1

σp
i

)1/p

,

where σ1 ≥ σ2 ≥ · · · ≥ σρ > 0 are the singular values of A. For p = ∞,
‖A‖∞ is defined to be σ1. Some of the most important cases of a Schatten
norm is when p ∈ {1, 2,∞}, in which case it corresponds to the nuclear,
Frobenius, and spectral norm, respectively. For constant factor approxima-
tion, for p = 2 one can sketch A using a constant number of dimensions,
while for p =∞, we saw that Ω(n2) dimensions are needed. For p = 1, there
is a lower bound of Ω(n1/2) for constant factor approximation, which can be
improved to Ω(n1−γ), for an arbitrarily small constant γ > 0, if the sketch
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is of a particular form called a “matrix sketch” [79]. There is no non-trivial
(better than O(n2)) upper bound known. What is the optimal sketching
dimension for approximating ‖A‖1 up to a constant factor?
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