
It ,;hould also be noted that overpacking is allowed 
in the above described optimal histogram matching prob- 
lem. If  overpacking is not allowed and the monotone 
propelty is dropped, then the problem becomes the 
classical bin-packing problem [4] which is known 'to be 
NP-complete. 

Subsequent to this paper, Chow and Kou found a 
dynamic programming algorithm for optimal histogram 
matching which also has time complexity O(kl x k2) 
[1]. 

Acknowledgments. The authors are indebted to G. 
Manacher for his many helpful suggestions and com- 
ments, and to the referee who pointed out an error in an 
earlier version of  this paper. 

Received June 1977; revised April 1978 

References 
1. Chow, W.M., and Kou, L.T. Matching two digital pictures. IBM 
Res. Rep. RC6870, IBM T.J. Watson Res. Ctr., Yorktown Heights, 
N.Y., Nov. 1977. 
2. Karp, R.M. Reducibility among combinatorial problems. In 
Complexity of Computer Computations, R.E. Miller and J.W. 
Thatcher, Eds., Plenum Press, New York, 1972, pp. 85-103. 
3. Rosenfeld, A., and Kak, A.C. Digital Picture Processing. 
Academic Press, New York, 1976, pp. 173-175. 
4. Yao, A. Concrete computational complexity. Ph.D. Diss., U. of 
Illinois at Urbana-Champaign, 1975. 

Programming 
Techniques 

S.L. Graham, R.L. Rivest 
Editors 

Counting Large 
Numbers of Events in 
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It is possible to use a small counter to keep 
approximate counts of large numbers. The resulting 
expected error can be rather precisely controlled. An 
example is given in which 8-bit counters (bytes) are 
used to keep track of as many as 130,000 events with a 
relative error which is substantially independent of the 
number n of events. This relative error can be expected 
to be 24 percent or less 95 percent of the time (i.e. o = 
n/8). The techniques could be used to advantage in 
multichannel counting hardware or software used for 
the monitoring of experiments or processes. 
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A Counting Problem 

An n-bit register can ordinarily only be used to count 
up to 2 n - I. I ran into a programming situation that 
required using a large number of  counters to keep track 
of  the number of occurrences of  many different events. 
The counters were 8-bit bytes and because of  the limited 
amount of  storage available on the machine being used, 
it was not possible to use 16-bit counters. Using an 
intermediate size counter on a byte-oriented machine 
would have considerably increased both the complexity 
and running time of  the program. 

The resulting limitation of  the maximum count to 
255 led to inaccuracies in the results, since the most 
common events were recorded as having occurred 255 
times when in fact some of  them were much more 
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frequent. I looked in many  directions for a solution to 
the problem with the following constraints in mind. 
Running time was important because the program was 
already painfully slow. There was no significant addi- 
tional space available in the machine. On the other hand, 
precise counts of  the events were not necessary since the 
processing was statistical in nature and a reasonable 
margin of  error was tolerable. 

where n is the number  of  events that have occurred. Zero 
value corresponds to zero events. 

Suppose that in the midst of  counting, we have the 
value v stored in the register. Whenever  we get another 
event, we attempt to modify the contents of  the register 
in the most appropriate way. All we have is the value v. 
As far as we know, the best estimate of  the number  of  
events so far is 

n~ = e ~ -- 1 

A Simple Solution 

The most obvious way to count more than 255 events 
in an 8-bit register is to count only every other event. 
This can be done with a modest amount  of  error by 
simply flipping a coin at every  event to decide whether 
or not to make the count. Not  only is the expected error 
small, but it can be precisely described. In particular, if  
the number  of  events that have occurred is n, then the 
expected value for the value v in the counter is n /2  and 
the standard deviation is 

so that by the time 400 events have occurred, v = 200 
and o = 10. One can expect that 95 percent of  the time, 
the number  of  events estimated from 2v is within 40 of  
the actual count, an error of  10 percent. 

This approach can be extended in the obvious way 
to count yet larger numbers of  events with correspond- 
ingly increased expectations of  error by simply using an 
appropriately weighted coin. This appealing approach 
did not solve my problem because even though the 
absolute error was relatively small, the relative error was 
intolerably high for small counts. In fact if one event had 
occurred, I was guaranteed a 100 percent error. 

A mixed approach is possible and overcomes this 
problem by keeping actual counts up to some preset 
number  and using the coin-flipping approach above that 
point. It is a generalization of  this approach that led to 
the successful solution to my problem. 

A Generalization 

Suppose that instead of  trying to keep track of  the 
number  n of  events or of  some constant multiple of  n, 
that we keep in the register the logarithm of  the number  
of  events and devise some sort of  approach as was set 
out above. Then if the value (which is a logarithm) 
suffers from a given absolute error, then the number  of  
events which this logarithm reflects is affected only by a 
relative error. This is what is generally desired. 

The simplest approach that uses this idea is to pro- 
ceed as follows: The value v stored in the register is 
imagined to represent 

v(n) = log(l + n) 

so that the number  of  events including the current one 
is d. The value that we would like to return to the 
register is 

v' = log(l + e ~) 

but this is not in general an integer and we cannot just 
truncate or round the quantity for fear of  accumulating 
serious error. Instead we let v' = k + f where k is an 
integer and 0 ~< f < l, and return either the value k or 
the value k + 1 to the register as the new value of  v with 
appropriately chosen probabilities so that the expected 
value of  v is correct. 

The correct thing to do is to compute 

I/A = n~-i -- n~. 

In every case of  interest, A will be between 0 and 1 and 
so we can ignore the possibility of  an integer part. We 
then obtain a random number  r from a random number  
generator uniformly distributed in the interval 0 ~< r < 
1 and 

i f A > r ,  s e t v = v +  1 
i fA~<r ,  s e t v = v .  

It is easy to prove that we have not by this procedure 
disturbed the expected value of  the contents of  the 
register. To prove this, observe that the random proce- 
dure substitutes for the correct value v' either 

v with probability 1 - A ,  or 
v + 1 with probability A. 

Then the expected value of n represented by the contents 
of  v is equal to 

An~-m + (l -- A)n~ = A(n~+l - n~) + n, 

e ~+1- l - e " +  1 
= + n~ 

e~ (e -  l) 
= n o +  1. 

After one event has occurred, the register contains 
the value 1 with probability .59, or 0 with probability 
.41. When we come to interpret this value we would 
conclude that the number  of  events was 

1.7 59 percent of  the time, and 
0 41 percent of  the time. 

The expected value in the register is correct, but the 
actual value is way off. 
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We can jiggle the parameters of  the method so that 
a count of  one results in a register value of one and then 
the random rounding procedure has no effect on the first 
count. The function 

v = log(n + 1)/log(2) 

has just the property we want. This formula is of  course 
independent of  the base of  the logarithms. 

A General Solution 

The class of  functions that I have used and analyzed 
are the functions 

u(n) = log O + n/a) / log(1 + l / a )  

where the parameter  a controls both the max imum count 
that can be held in the register and the expected error. 
The constant log O + 1/a) in the denominator  serves 
only to force n = l to correspond to u = 1 so that the 
random procedures have no effect on the first count and 
counts of  0 and 1 are represented exactly. It is in this 
way that good relative accuracy is preserved for small 
counts. The max imum value n that can be represented 
using the parameter  a can be calculated from the inverted 
formula 

n, = a((1 + 1 / a f  - 1). 

The expected error in the estimated value of  n after n 
counts can be calculated from the formula 

o z = n ( n  - 1)/2a. 

This formula can be proved by induction on n. 
Let us inspect the performance of  this method using 

the parameter  a = 30. The largest value that can be 
represented in an 8-bit counter is about 130,000. The 
standard deviation o is approximately equal to n/8  which 
implies that the relative error is nearly independent of  n 
and that 95 percent of  the time the relative error will be 
less than 24 percent. Larger values of  a will lead to 
smaller max imum counts and, of  course, to smaller 
relative error. 

There is no need to compute any of  the logarithms or 
powers during the counting process. A table containing 
the 255 values of  A can be precomputed by the formula 
Ay = (a / (a  + 1)) j and accessed when a new count is 
made. The random number  generator can be of  the 
simplest sort and no great demands are made on its 
properties. 

The distribution of  errors is somewhat asymmetric 
for small counts, but as n becomes larger, the distribution 
closely approximates the normal  distribution. In the 
example above where a -- 30, the normal  error curve 
gives a useful estimate of  the error distribution for counts 
greater than about 20. 
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Dutch National Flag 
Problem 
Colin L. McMaster 
University of California 

Solutions to the Dutch National Flag Problem have 
been given by Dijkstra [1] and Meyer [3]. Dijkstra 
starts with a simple program and arrives at an improved 
program by refinement. Both of the algorithms given by 
Dijkstra are shown to have an expected number of 
swaps which is 2N + 0(1) and that these values differ at 
most by 1 of a swap and asymptotically by ¼ of a swap. 
The algorithm of Meyer is shown to have expected 
swap complexity ~N. 
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Introduction 

Dijkstra [1] has defined a problem which he calls the 
Problem of  the Dutch National  Flag. It may  be stated as 
follows. There is a row of  N buckets numbered  f rom 1 
to N. The buckets are arranged in numerical order with 
bucket 1 on the left and bucket N on the right. Each 
bucket contains exactly one pebble and each pebble is 
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