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Abstract 

The nearest neighbor problem is the follolving: Given a set 
of n points P = (PI, . . . ,p,} in some metric space X, pre- 
process P so as to efficiently answer queries which require 
finding bhe point in P closest to a query point q E X. We fo- 
cus on the particularly interesting case of the d-dimensional 
Euclidean space where X = Wd under some Zp norm. De- 
spite decades of effort, t,he current solutions are far from 
saabisfactory; in fact, for large d, in theory or in practice, 
they provide litt,le improvement over the brute-force algo- 
rithm which compares the query point to each data point. 
Of late, t,here has been some interest in the approximate 
newest neighbors problem, which is: Find a point p E P 
that is an c-approximate nearest neighbor of the query q in 
t,hat for all p’ E P, d(p, q) < (1 + e)d(p’, q). 

We present two algorithmic results for the approximate 
version t,hat significantly improve the known bounds: (a) 
preprocessing cost polynomial in n and d, and a truly sub- 
linear query t.ime (for 6 > 1); and, (b) query time polynomial 
in log-n and d, and only a mildly exponential preprocessing 
cost* O(n) x 0(1/~)~. Furt.her, applying a classical geometric 
lemma on random projections (for which we give a simpler 
proof), we obtain t.he first known algorithm with polynomial 
preprocessing and query t.ime polynomial in d and log n. 
Unfortunately, for small E, the latter is a purely theoretical 
result since bhe e?rponent depends on l/e. Experimental re- 
suits indicate that our tit algori&m offers orders of mag- 
nitude improvement on running times over real data sets. 
Its key ingredient is the notion of locality-sensitive hashing 
which may be of independent interest; here, we give applica- 
tions to information ret,rieval, pattern recognition, dynamic 
closest-pairs, and fast clustering algorithms. 

*Supported by a Stanford Graduate Fellowship and NSF 

1 Introduction 

The nearest neighbor search (NNS) problem ix Given 
a set of n points P = (PI, . . . ,p,) in a metric space .Y wit,h 
distance function d, preprocess P so as to efficiently auswcr 
queries for finding the point in P closest to a query point 
q E X. We focus on the particularly interesting case of the 
d-dimensional Euclidean space where X = Bd under some 
a, norm. The low-dimensional case is well-solved [26], so t,hc 
main issue is that of dealing with the ‘,curse of dimcnsional- 
ity” [16]. The problem was originally posed in t.he 1960s by 
Minsky and Papert [53, pp. 222-2251, and despite decades 
of effort the current solutions are far from satisfactory. In 
fact, for large d, in theory or in practice, they provide little 
improvement over a brute-force algorithm which composes 
a query q to each p E P. The known algorithms are of two 
types: (a) low preprocessing cost but query time linear in 
n and d; and, (b) query time sublinear in n and polyno- 
mial in d, but with severely exponential preproceeging cozt 
nd. This unfortunate situation carries over to average-tax 
analysis, and even to the c-approximate nearest neigh- 
bors (e-NNS) problem: Find a point p E P t,hnt is an 
e-approximate nearest neighbor of the query g, in t.hot for 
au P’ E P, 4h q) I (1 + +W, 9). 

We present two algorithms for the approsimoto vemion 
that significantly improve the known bounds: (a) prcpro- 
cessing cost polynomial in n and d, and a truly nublinear 
query time (for B > 1); and, (b) query time polynomial in 
log n and d, and only a mildly exponential preprocessing cozt 
O(n) x 0(1/~)~. tither, by applying a classical geomet,ric 
lemma on random projections (for which we give a eimplcr 
proof), we obtain the first known algorithm with polynomial 
preprocessing and query time polynomial in d and log n. Un- 
fortunately, for small E, this is a purely theoretical result as 
the exponent depends on l/e. Experimental results [36] in- 
dicate that the first algorithm offers orders of magnitude 
improvement on running times over real data sets. Ito key 
ingredient is the notion of locality-sensitive hashing which 
may be of independent interest; we give applications to infor- 
mation retrieval, pattern recognition, dynamic closest-pairs, 
and fast clustering. 

Motivation. The nearest neighbors problem is of major 
importance to a variety of applicat,ions, usually involving 
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similarity searching. Some examples are: data compres- 
slon [3G]; databases and data mining [12, 381; information 
retrieval [lo, 20, 571; image and video databases [28, 30, 
55, 601; machine learning [18]; pattern recognition [19, 251; 
and, statistics nnd data analysis [21,44]. Typically, the fea- 
tures of the objects of interest (documents, images, etc) are 
rcprescntcd as points in 81d and a distance metric is used 
to measure (die)oimilarity of objects, The basic problem 
then is to perform indexing or similarity searching for query 
objects, The number of features (i.e., the dimensionality) 
rangcn anywhere from tens to thousands. For example, in 
multimedia applications such as IBM’s QBIC (Query by Im- 
age Content), the number of features could be several hun- 
dreds [28, 301. In information retrieval for text documents, 
vector-space representations involve several thousands of di- 
mensions, and it is considered to be a dramatic improvement 
that dimension-reduction techniques, such as LSI (latent se- 
mantic indexing) [8, 10, 201, principal components analy- 
oio [39] or the Karhunen-Lo&e transform [43,49], can reduce 
the dimenoionality to a mere few hundreds! 

Of late, there has been an increasing interest in avoiding 
the curse of dimensionality by resorting to approsimatenear- 
cot nciglbor scorching:. Since the selection of features and 
the use of a distance metric in the applications are rather 
heuristic and merely an attempt to make mathematically 
precise what is after all an essentially aesthetic notion of sim- 
ilarity, it seems like an overkill to insist on the absolute near- 
est neighbor; in fact, determining an c-approximate nearest 
nclghbor for a reasonable value of c, say a small constant, 
should suflicc for most practical purposes. Unfortunately, 
oven this relaxation of goals has not removed the curse of 
dimcnsionality, although the recent results of Kleinberg [45] 
given some improvements. 

Prcvlouo Work. Samet [58] surveys a variety of data struc- 
turca for nearest neighbors including variants of I;-d trees, 
R-trees, nnd structures based on space-filling curves; more 
recent results are surveyed in [59]. While some perform well 
in 2-3 dimensions, in high-dimensional spaces they all ex- 
hibit poor behavior in the worst case and in typical cases 
1w1 well (c,g., ace Arya, Mount, and Narayan [3]). Dobkin 
and Lipton [22] were the first to provide an algorithm for 
nearcot neighbors in f.Rd, with query time 0(2dlogn) and 

* 1 

g~$~~~~~~~~ 
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t~~\n~‘~l(r+ 1 i), 
Clarkson [15] reduced the 
while increasing the query 

time to 0(2 o(d’og d, log n). Later results, e.g., Agarwal and 
MatouiSck [l], Matoudek [50], and Yao and Yao [64], all suffer 
from a query time that is exponential in d. Meiser [Sl] ob- 
tnincd query time O(d” log n) but after O(ndtd) preprocess- 
ing, The so-called “vantage point” technique [ll, 12,61,62] 
is n recently popular heuristic, but we are not aware of 
nny nnalyais for high-dimensional Euclidean spaces. In gen- 
cml, even the average-case analysis of heuristic5 for points 
diotributcd over regions in !Xd gives an exponential query 
time [6, 34, 581. 

The situation is only slightly better for approximate near- 
cat neighbors, Arya and Mount [2] gave an algorithm with 

lThroughout, preprocessing cost refers to the space require- 
ment; typically, the preprocessing time is roughly the same. 

query time O(l/c)dO(log n) and preprocessing O(l/e)dO(n). 
The dependence on c was later reduced by Clarkson [16] 
and Ghan [14] to c-td-r)12. Arya, Mount, Netanyahu, Sil- 
verman, and Wu [4] obtained optimal O(n) preprocessing 
cost, but with query time growing as O(dd). Bern [7] and 
Chan [14] considered error c polynomial in d and managed to 
avoid exponential dependence in that case. Recently, Klein- 
berg [45] gave an algorithm with o(n log d)2d preprocessing 
and query time polynomial in d, c, and log n, and another 
algorithm with preprocessing polynomial in d, c, and n but 
with query time O(n + dlog3 n). The latter improves the 
O(dn) time bound of the brute-force algorithm. 

For the Ramming space (0, l}d, Dolev, Harari, and Par- 
nas [24] and Dolev, Harari, Liial, Nisan, and Parnas [23] 
gave algorithm5 for retrieving all point5 within distance r 
of the query q. Unfortunately, for arbitrary P, these algo- 
rithms are exponential either in query time or preprocessing. 
Greene, Parnas, and Yao [37] present a scheme which, for 
binary data chosen uniformly at random, retrieves all points 
within distance r of q in time O(dn’ld), using O(dnltrld) 
preprocessing. 

Very recently, Kushilevitz, OstrovsLy and Rabani [46] 
obtained a result similar to Proposition 3 below. 

Overview of Results and Techniques. Our main results 
are algorithms2 for c-NNS described below.3 

Proposition 1 Fore > 1, there is an algorithm for r-NNS 
in !Rd under thel, norm forp E [l, 21 which uses d(n’+‘lc+ 
dn) preprocessing and requires b(dn’/‘) query time. 

Proposition 2 For 0 < c < 1, there is an algorithm for 
e-NNS in 8’ under any I,, “prm which uses 8(n) x 0(1/~)~ 
preprocessing and requires O(d) query time. 

Proposition 3 For any r > 0, there is an algorithm for 
e-NNS in 92’ under the Z, norm for p E [l, 21 ulhich uses 
(nd)‘(‘) preprocessing and requires 6(d) query time. 

We obtain these results by reducing c-NNS to a new prob- 
lem, viz., point location in equal balls. This is achieved by 
means of a novel data structure called ring-cover trees, de- 
scribed in Section 3. Our technique can be viewed as a 
variant of parametric search [52], in that they allow us to 
reduce an optimization problem to its decision version. The 
main difference is that in our case in answering a query we 
can only ask for a solution to a decision problem belong- 
ing to a prespecilled set, since solving the decision problem 
(i.e., point location in equal balls) requires data structures 
created during preprocessing. We believe this technique 
will find further applications to problems where paramet- 
ric search has been helpful. 

In Section 4, we give two solution5 to the point loca- 
tion problem. One is based on a method akin to the Rlias 
bucketing &or-i&m [63] - we decompose each ball into a 

20~r al&orithms are randomized and return an approsimate 
nearest neighbor wifh constant probability. To reduce the error 
probability to a, we can use several datastructuresin paralleland 
return the best result, increasing complexity by a factor O(loga), 

3For the sake of clarity, the 6 notation is used to hide terms 
that are poly-logarithmic in n. 
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bounded number of cells ed store them in a dictionary. 
This allows us to achieve O(d) query t.ime, while the pre- 
processing is e?rponentiaI in d, implying Proposition 2. For 
the second solution, we introduce the technique of locality- 
sensitive hashing. The key idea is to use hash functions such 
that. the probability of collision is much higher for objects 
that are close to each other than for those that are far apart. 
We prove that esisbence of such functions for any domain 
(not necessarily a metric space) implies the existence of fast 
C-NNS algorit,hms for t,hat domain, with preprocessing cost 
only linear in d and sublinear in n (for e > 1). We then 
present. two families of such functions - one for a Hamming 
space and the ot,her for a family of subsets of a set under 
the resemblance measure used by Broder et al [9] to cluster 
web documents. The algorithm based on the first family 
is used to obtain a nearest-neighbor algorithm for data sets 
from Xd, by embedding the points from Zd onto a Hamming 
cube in a distance-preserving manner. The algorithm for the 
resemblance measure is shown to have several applications 
to information retrieval and pat,tern recognition. We also 
give additional applications of locality-sensitive hashing to 
dynamic closest-pair problem and fast clustering algorithms. 
All our algorithms based on this method are easy to imple- 
ment and have ot,her advantages - they exploit sparsity of 
data and the running times are much lower in practice [36] 
than predicted by t,heoret,ical analysis. We esTect these re- 
sults mill have a significant practical impact. 

An elegant. technique for reducing complexity owing to 
dimensionality is to project the points into a random sub- 
space of lower dimension, e.g., by project.ing P onto a small 
collection of random lines through the origin. Specifically, 
we could employ hhe result, of Frankl and Maehara [32], 
which improves upon bhe Johnson-Lindenstrauss Lemma [41], 
showing t,hat a projection of P onto a subspace defined by 
roughly 9c m-2 In n random lines preserves all inter-point dis- 
tames to &hin a relative error of e, 1vivit.h high probability. 
Applying this result to an algorithm wit.h querytime o(l)d, 
we obtain an algorit.hm with query time nse . Unfortu- 
nately, this would lead to a sublinear query time only for 
large values of E. In Se&ion A of the Appendix, we give a 
version of the random projection result using a much simpler 
proof t,han that of l+ankl and Maehara. We also consider the 
extensions of the random projection approach to a, norms 
for p # 2. Using random projecbions and ProposiGon 2, we 
obtain the algorithm described in Proposition 3. Unfortu- 
nately, the high preprocessing cost (its exponent grows with 
l/e) makes this algorithm impractical for small e. 

2 Preliminaries 

We use 2; to denote t,he space Zd under the 1, norm. For 
at-w point u f Xd we denote by IIGIIp the a, norm of the 
vector v’; we omit’the subscript when p = 2. Also, Hd = 
((0, l}d,d~) mill denote the Hamming metric space of di- 
mension d. Let M = (S,d) be any metric space, P c 
S, and p E S. We will employ bhe following notation: 
d(p, P) = mine d(p, q), and A(P) = maxp,qEP d@,q) is 
the diameter of P, 

Definition 1 The ball of radius r centered at p is defined 
as B(P, r) = {q E X I d(p, q) 5 r}. The ring R(p, rl, rz) 
centeredatp is definedas R(p, rl, r2) = B(p, rs)-B(p, rl) = 
hEXIr1 Id(p,q)5r2}. 

Let &f(r) denote th e volume of a ball of radius r in 1;. 
The following fact is standard [56, page 111. 

Fact 1 Let I’(.) denote the gamma function. Then k$(r) = 

(2r(1 + lh)drd and Vz”(,.) - 2nd12 d 
V + n/p) 

r . 
dWl2) 

3 Reduction to Point Location in Equal Balls 

The key idea is to reduce the e-NNS to the following prob- 
lems of point location in equal balls. 

Deflnition 2 (Point Location in Equal Balls (PLEB)) 
Given n radius-r balls centered at G = (cl,, . . , c,) in M = 
(X,d), devise a data structure which for any query point 
q E X does the following: if there exists ci E G such tlrat 
q E B(ci, r) then return ci, else return NO. 

Definition 3 (e-Point Location in Equal Balls (r-PLEB)) 
Given n radius-r balls centered at C = (cl, , . . , cn} in M = 
(X,d), devise a data structure which for any query point 
q E X does the following: 

l if there exists ci E C with q E B(ci, r) then return YES 
and a point c: such that q E B(c:, (1 + c)r), 

l if q # B(ci, (l-l- r)r) for all C, E C then return NO, 

l if for the point c; closest to q we have r < d(q, ci) 2 
((1 + e)r) then return either YES or NO. 

Observe that PLEB (e-PLEB) can be reduced to NNS 
(e-NNS), with the same preprocessing and query costs, ns 
follows: it suffices to find an exact (e-approximate) nearest 
neighbor and then compare its diskwe from q with r. The 
main point of this section is to show bhat there is a rcduct,ion 
in reverse from e-NNS to e-PLEB, with only a small overhead 
in preprocessing and query costs. This reduct,ion relies on 
a dat,a structure called a ring-cover tree. This structure 
exploits the fact that for any point set P, we can eit,hcr 
find a ring-separator or a cover. Either construct allows us 
to decompose P into smaller sebs Sl, . . . , St such t,hat for 
dl i, ISil < cIPI for some c < 1, and xi ISil $ LIPI for 
b < 1 f l/log’ n. This decomposition has t,he property t,hnt 
while searching P it is possible to quickly restrict t,he search 
to one of the sets S,. 

There is a simpler but much weaker reduction from C- 
NN to GPLEB. Let R be the ratio of the smallest and t.hc 
largest inter-point distances in P. For each 1 E {l+c)‘, (l+ 
e)l,..., R}, generate a sequence of balls B’ = {Bi, . . . , Bf} 
of radius 1 centered at p1 , . . . , pn . Each sequence B’ form8 an 
in&axe of PLEB. Then, given query q, we find via binary 
search the minimal I for which there exists an i such t,hnt 
q E B,! and return pi as an approximate nearest neighbor. 
The overall reduction parameters are: query time overhead 
factor O(loglog R) and space overhead factor O(log R), The 
simplicity of this reduction is very useful in practice. On t,he 
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other hnd, the O(log R) space overhead is unacceptable 
when R is large; in general, R may be unbounded. In the 
final vcmion, WC will show that by using a variation of this 
method, storage can be reduced to O(n2 log n), which still 
does not give the desired O(l/e)d6(n) bound. 

while IP n uqEBtB(q, r)I > blB$ do 
Bt+l c knu 3 acq W7,r); 
iti+l 

endwhile; 

Doflnltion 4 A ring R(p, t-1, r2) is an (al, as,@)-ring sep- 
arator for P if IP rl B(p, rl)[ > a:[Pl and IP \ B(p, f2)I 2 
a2lPl, where r2/rl = j3. 

AjtBj;S+S-Aj;P+P-Aj 
until S = 4; 
hi-j. 

Daflnltion C A set S c P is a (r,b)-cluster for P iffor 
cuw P E S, lp n B(P, rW%l 5 WI- 

In order to prove the correctness of the algorithm, it 
suffices to make the following four claims. 

Dafinition 0 A sequenceAl,, . . , Al of sets Ai C P is called 
a (t, o,d)-cover for S c P, if there esists an r 2 dA(A) for 
A=U,Ar suchthatSCA andfori=l,...,I, 

l IP n (QA~%, r))l 2 Wilt 

.ScA = UjAj - Follows from the termination con- 
dition of the outer loop. 

0 foraUjE {I,..., h) and my P E S, IPn%EAjB(P, r)I 5 
blAj I - Follows from the termination condition of the 
inner loop. 

. IAil 5 @lo 
Thaoram 1 For any P, 0 < a < 1, and/3 > 1, one of the 
jollowing two properties must hold: 

1, P ho an (a,cr,/3)-ring separator, or 

2. P contains u ($, a)-cluster of size at feast (l-2a)lPI. 

Proof Sketch: First note that for a > l/2, property (1) 
must be false but then property (2) is trivially true. In 
general, assume that (1) does not hold. Then, for any point 
p nnd radius r d&me: 

l for all j E (1, . . . , I;}, IAjl 5 SIPI - Clearly, for any 
j, the inner loop is repeated at most 10g~n times. 
Hence, maxq&Q d(pj, q) < r log, n 5 rA(S). As S is a 
(y, @cluster, we have that IB(p,, yA(S)) n PI 2 SIPI. 
Hence, IAjl 5 alPI. 

or< rfq - 0+&b r.8 - Since A(A) 5 A(S) + rlog, n = 
A(S) f yA(S) = (l+ y)A(S). 

l f7^3(r) = Ip - BhPr)l, 
l fj(r) = IP n %, r)l. 

Clearly, f?(O) = n, f?(m) = 0, f:(O) = 0, and j:(m) = n. 
Alno, notice that f?(r) is monotonically decreasing and 
f;(r) ia monotonically increasing. It follows that there must 
cxiot a choice of r (say rp) such that fF(rp) = $!(r,). 
Since (1) does not hold, for any value of r tve must have 

Corollary 1 For any P, 0 < a < 1, j3 > 1, b > 1, one of 
the following properties must hold: 

I. P hos an (a,a,&ring separator R(p, r,Pr), or 

2. There is a (b,a,d)-cower for some S c P such that 
PI 2 (I- Wn and d = 12p+1;logb ,, . 

3.1 Constructing Ring-Cover Trees 

mW,blir), f~,“(r)) I an, which implies that f,“(rp) = fi(rp) 5 
The construction of a ring-cover tree is recursive. For any 
given P at the root, we use properties (1) and (2) in Corol- 

ffn, 

Let (I be a point such that rp is minimal. Define S = 
P II R(q, r,,fir,); it follows that ISI >, (1 - 2a)n. Also, 
noticc that for any 3,s’ E S, d(a,s’) 5 2pr,, implying that 
A(S) < 2@r,. Finally, for any s E S, IP n B(s,r,)l 5 
IP n B(8, rs)l 5 an. n 

Thaoram 2 Let S be a (r, 6)-cluster for P. Then for any 
0, tlrcre is an algorithm which produces a sequence of sets 
AI, , , , , A/, C P constituting a (b, 6, hi)-couerfor S. 

Proof Sketch: 

The algorithm below greedily computes a good cover for 
S, 

Algorithm Cover: S = P n R(q, rq,/3rq); 
r+e;jcO; 
rapollt 

j t j + 1; choose some pj E S; B: t (pj}; 
i f- 1; 

iary 1 to decompose P into some smaller set; Sl, . . . , SI; 
these sets are assigned to the children of the node for P. 
Note the base case case is when P is sticiently small and 
we omit that in this abstract. We also store some addi- 
tional information at the node for P which enables us to 
restrict the nearest neighbor search to one of the children of 
P, by using distance computations or point location queries. 
For simplicity, assume that we can invoke an exact PLEB 
(not e-PLEB); th e construction can be easily modified for 
approximate point location. There are two cases depend- 
ing on which of the two properties (1) and (2) holds. Let 
P=2(1+f),b=&,anda=w. 

Case 1. In this case, we will call P a ring node. We define 
its children to be & = P n B(p,pr) and S2 = P - 
B(p, r). Also, we store the information about the ring 
separator R at the node P. 

Case 2. Here, we call P a cover node. We define Si = 
P n Up~~;B@, r) and SO = S - A. The information 
stored at P is as follows. Let ro = (1 + l/e)A(A) 
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and let ri = r~/(l+e)~ for i E {l,...,k}, where L = 
logI+, I’+l’c”ogan + 1. Notice that rk = 
r. For ea& r,, generate an instance 
l% B(p, ri) for p E A; all instances are stored at P. 

We now describe how to efficiently search a ring-cover 
tree. It suffices to show t,hat for any node P we can restrict 
the search to one of its children using a small number of 
tests. Let min&,p’) denote t.he point out of p and p’ that 
is closer to q. The search procedure is as follows; we omit 
the obvious base case. 

Procedure Search: 

1. if P is a ring node with an (“,a,@-ring separator 
R@, r, /3r) then: 

(a) ifq E B(p, r(l+l/e)) then return Search(q, Sl); 

(b) else compute p’ = Search(q, Sz); return min,@, p’). 

2. if P is a cover node with a (b, c, &)-cover Al,. . . , Al of 
radius r for S c P then: 

(a) if q $ B(a, ro) then for all a E A then compute 

P = Search(q, P - A), choose any a E A, and 
return min,(p, a); 

(b) else if q E B(a,ro) for some a E A but q 4 
B(a’, rl;) for all a’ E A then using binary search 
on r*s, find an e-NN p of q in A, compute p’ = 
Search(g, P - A), and return min,(p,p’); 

(c) else if q E B(a, rk) for some a E Ai then return 
Search(g, Si). 

3.2 Analysis of Ring-Cover Trees 

We begin bhe analysis of the ring-cover tree construction by 
establishing the validity of t,he search procedure. 

Lemma 1 Procedure Search(q, P) produce8 an e-nearest neigh- 
bor for q in P. 

Proof Sketch: Consider t.he two cases: 

1. P is a ring node. 

(a) Consider any Y E P-So. Then d(8,p) 5 d(s, q)+ 
4w4, impl@x that. W 4 2 d(8,~) - d(q, p). 
Since Y 4 SI, we know that d(s,p) 2 pr = 2(1+ 
l/e)r, while d(p,q) 5 r(l + l/e). Then, d(s,q) 2 
Cl+ l/e)r 1 d(w). 

(b) For an3’ 8 E B(P, r), d(q,p) 5 d(q, 8) +d(s,p), im- 
pkng aat d(q, $1 2 d(q, p) - 48, p) I d(q, p) - r. 
It follows that s 5 $$& = 1 + e 5 
1+e. 

2. P is a cover node. 

(a) Similar to Case l(b), 

(b) Obvious. 

(c) For any p E P - S,, d(p,a) 2 r. Since q E 
B(a, rk), we have d(q,a) 5 rl; = & 5 $$$. 

w 

The proofs of Lemmas 2 and 3 are omitted. 

Lemma 2 The depth of a ring-cover tree is 0(10g,~~, n) = 

O(log2 n). 

Lemma 3 Procedure Search requires O(10g2 n x log/~) dis- 
tance computations or PLEB queries. 

Lemma 4 A ring-cover tree requires space at most 

O(hnb “gll~~ “(1+2(1-2~))‘“~“) = O(npolylog n) not count- 
ing the additional non-data storage used by algorithms im- 
plementing PLEBs. 

Proof Sketch: Let S(n) be an upper bound on the space 
requirement for a ring-cover t.ree for point-set P of size n. 
Then for a cover node: 

S(n) 5 mau mas 
1 A~...A,, A, disjoint, IA,I~wI, [Al>(l-2a)n 

[k S(blAiI)] + S(n - IAl) -I- IAlbl; 

i-1 

For a ring node: 

S(n) 5 25(:(1+2(1- 24)) + 1 

The bound follows by solving this recurrence. II 

Corollary 2 Given an algorithm for PLEB which uws f (n) 

space on an instance of size n where f(n) is convex, a ring- 
cover tree for an n-point set P requires total space 
O(f (npobk n)) - 

Fact 2 For any PLEB instance (C,r) generated by a ring- 

cover tree, y=O(Tlogbn). 

4 Point Location in Equal Balls 

We present two techniques for solving the e-PLEB prob- 
lem. The first is based on a method similar to the Ella3 
bucketing algorithm [63] and works for any 1, norm, es- 
tablishing Proposibion 2. The second uses localitpscnsitivc 
hashing and applies directly only to Hamming spaces (thin 
bears some similarity to the indexing technique inbroduced 
by Greene, Parnas, and Yao [37] and the algorithm for all- 
pairs vector intersection of Karp, Waarts, and Zwcig [<17], 
although the technical development is very different). How- 
ever, by exploiting Facts 2 and 6 (Appendix A), t,he in- 
stances of +PLEB generated while solving c-NN for If can bc 
reduced to e-PLEB in H”‘, where on = dlog‘n >:mnx(l/e, e). 
Also, by Fact 5 (Appendix A), we can reduce 1: to lF(d) for 
any p E [l, 23. Hence, locality-sensitive hashing can be used 
for any Z,, norm where p E [1,2], establishing ProposXon 1. 
It can also be used for the set resemblance measure wed 
by Broder et al [Q] to cluster web documents. We assume, 
without loss of generality, that all balls are of radius 1. 
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4,l The Bucketing Method 

Asnumc for now that p = 2. Impose a uniform grid of spac- 
lng n = c/d on Rd. Clearly, the distance between any two 
points belonging to one grid cuboid is at most e. By Fact 2, 
each aide of the smallest cuboid containing balls from C is 
of length at most O(fllog, n max(l/c,e)) times the side- 
length of a grid cell, For each ball Bi, define z; to be the 
act of grid cells intersecting Bi. Store all elements from Ud& 
in a hash table [33,54], together with the information about 
the corresponding ball(s). (We can use hashing since by the 
preceding discussion the universe is of bounded size.) After 
preprocessing, to answer a query q it suffices to compute the 
cell which contains q and check if it is stored in the table. 

We claim that for 0 < e < 1, IDI = O(~/C)~. To see 
this, observe that IEil is bounded by the volume of a d- 
dimcnsjonal ball of radius r = 2/c&, which by Fact 1 is 
2°(d)rd/dd/z C O(l/e)d. H ence, the total space required is 
O(n) x O(l/er;d. The query time is the time to compute the 
hnrlh function. We use hash functions of the form: 

WQ, I. e ,Sd)) = (Wl + . . . +adzd mod P) mod &f 

where P ia a prime, M is the hash table size, and al,. . . , ad E 
2), This family gives a static dictionary with O(1) access 
time [33], The hash functions can be evaluated using O(d) 
arithmetic operations. For general 1, norms, we modify s to 
4 ‘/P, The bound on JBj applies unchanged. 

Thoorom 3 For 0 < e < 1, there is an algorithm for c- 
PLEB in 1; using O(n) x O(l/c~)~ preprocessing and O(1) 
ovaluationa of a hash function for each query. 

4,2 Locality-Sensitive Hashing 

We introduce the notion of locality-sensitive hashingand ap- 
ply it to aublincar-time similarity searching. The definition 
makca no assumptions about the object similarity measure. 
In fact, it is npplicnble to both similarity and dissimilarity 
mcasuren; nn example of the former is dot product, while 
any distance metric is an instance of the latter. To unify 
notation, wc defme a ball for a similarity measure D as 
B(q,r) =: (r, : D(q,p) 2 r}. We also generalize the no- 
tion of e-PLEB to (ri , rz)-PLEB where for any query point 
(I we requiro the answer to be YES if P tl B(q, rz) # 0 and 
NO otherwise. 

Daflnitlon 7 A family31 = {h : S + (I} is called(rl,rz,pl,pz)- 
acnsitivc for D if for anyq,p,p' ES 

= Wdf-0 = g(4) &W) = 9Ml 
PrMP I= &)I 

The algorithm is as follows. For an integer I we choose I 
functions g1 , . . . ,gl from 9 independently and uniformly at 
random. During preprocessing, we store each p E P in the 
bucket gj(p), for j = l,..., 1. Since the total number of 
buckets may be large, we retain only the non-empty buckets 
by resorting to hashing [33,54]. If any bucket contains more 
than one element, we retain an arbitrary one. To process a 
queryq,wesearcbalIbucketsgl(p) ,..., 91(p). LetpI ,..., pt 
be the points encountered therein. For each pi, if p, E 
B(q, r2) then we return YES and pj, else we return NO. 

Let Wa(q) = P- B(q, a), and p* be the point in P closest 
to q. The parameters k and I are chosen so as to ensure 
that with a constant probability there exists gJ such that 
the following properties hold: 

1. gjb’) # gj(q)t for a~ P’ E wr,(q), and 

2. if p* E B(q, r1) then gj (p’) = 91 (q). 

Lemma 5 If properties (I) and (2) hold for aome g,, the 
search procedure works correctly. 

Proof Sketch: 

Case 1 w E B(q, rl)}: By property (l), the bucket B = 
gj(q) cannot contain any points from IV,,. By prop 
erty (2), p* is contained in B. Therefore, B is nonempty 
and contains only elements p such that D(q,p) 5 (19 
e)r, and our algorithm wilI pick one such element and 
answer YES. 

Case 2 (p’ 6 B(q, t-2)): There are no points belonging to 
B(q, rz), thus the algorithm answers NO. 

H 

Theorem 4 Suppose there is a (rl, rz,pl,B)-aenaitivefam- 
ily 31 for D. Then there eziats an algorithm for (rl,rz)- 
PLEB under measure D which uses O(dn+n’SP) apace and 
O(nP) evaluations of the hash function for each query, where 

p=-** 

Proof Sketch: It s&ices to ensure properties (1) and (2) 
for some gj with a constant probability. Assume that p* E 
B(q, rl); the proof is similar when p* $ B(q, ~‘2). Consider 
any point p’ E W,,(q). Clearly 

A = P&b0 = &)I 1 P? 

P2 = W3b’) = 9Ml9@*) = 9kdl 

l if p E B(q, r1) then b[h(q) = h(p)1 2 PI! 

0 if p $ B(q, rz) then h&(q) = W)] I ~2. 

In order for a locality-sensitive family to be useful, it has 
to satisfy inequalities p1 > pz and rl C r2 when D is a 
dinsimilarity measure, or PI > M and r1 > r2 when D is a 
oimilnrity measure. 

For 1~ opccified later, define a function family 9 = (g : 
S -+ U”} such that g(p) = (hi(p), . . . , hk(p)), where hi E 31. 

< WW = s(q)1 
- W[W = dq~l 

0 

k 
5 4 

PI 

Setting k = log% 2n, we can bound P2 by 

0 

logPJ 2n 
pz pa =’ 

P1 2n’ 
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Therefore, if gj satisfies property (1), then it also satisfies 
property (2) with probability at least 

It is sufficient to bound Pr from below. By substit,uting for 
k we obtain that 

Choosing 1= rap functions gj, we ensure that with constant 
probability at least one function satisfies both properties (1) 
and (2). n 

We apply Theorem 4 to two measures: the Hamming 
metric and set resemblance [9]; the latter is a similarity mea- 
suroidefined for any pair of se& A and B as D(A,B) = 

t-t AUB ’ 
For the first measure, we apply a family of pro- 

je&ons for fast hashing with AC0 operations [5]. For the 
second measure, we use &etch functions used earlier [9] for 
estimat,ion of the resemblance between given sets A and B. 

Proposition 4 ([5]) Let S = Yld and D(‘p,q) be the Ham- 
ming metric for p,q E 31. Then for any r,e > 0, the family 
31={h, :hi((bl,...bd))=bi, i=l...n} is 
(r, ~(1 + e), 1 - f, 1 - w)-sensitive. 

Corollary 3 For any r > 1, there exists an algorithm fore- 
PLEB in Hd (or, 1: for anyp E [1,2]) using O(dn+n’t’/c) 
space and O(n lie) hash function evaluations for each query. 
The hash function can be evaluated using O(d) operations. 

Proof Sketch: We use Proposition 4 and Theorem 4. Fiit, 
we need to estimate t,he value of p = - rn’~P;,, , where PI = 

1 -f andp2=1- 9. Without loss of generality, we 
assume that r < &, since we can increase dimensionahty 
by adding a sufficiently long string of OS at the end of each 
point. Observe t,hat 

Thus, 

E = 1 - r/d 1 
pz 1 - r(1 + e)/d ’ werld’ 

P 
hP1 -- < -W - 4-9 = h(* - r/d) 

= hPl/rn h& hr(1 - w/d) 

Multiplying both the numerator and the denominator by $ 
we obtain bhat: 

g hr(1 - r/d) 

’ = iln(l- w/d) = 
In(1 - r/d)d/’ U 
hr(1 - er/d)d/r = z’ 

In order to upper bound p, we need to bound U from below 
and L from above; note t.hat both U and L are negative. To 
this end we use the following inequalities [54]: 

(1 - er/d)d/’ < eDe and (1 - r/d)d/’ > e-‘(1 - 2). 
d/r 

Therefore, 

W-‘(1 - &)I 
ln e+ 

= l/e- 
w - $7) 

< I/s-ln(l-El/lnn) 

where the last step uses the assumptions that r > 1 and 
r<&. We conclude that 

np < n’/% --In(l-l/In n) = r+(l- l/Inn)-‘“” = O(n’/C). 

n 

The hash function evaluation can be made faster than 
O(d) for sparse data, i.e., when the number of non-zero co- 
ordinates of a query point is small. It suffices to somplc 
the bits from the non-zero entries of the vectors; a similar 
method works for the functions used to build a stohic dic- 
tionary. Moreover, our experience is that the preprocessing 
space and query time are much lower than the above bound 
indicates. In particular, we have implemented a variant of 
the above data structure for the case when data is stored 
on disk [36]. For a data set of 20,000 d-color histograms for 
images (with d ranging up to 64) only 3-9 disk accesses were 
required in order to achieve smah average error. 

Proposition 5 ([9]) Let S be the set of all subsets of X = 
(1.. .x} and let D be the set resemblance measure. Then, for 
1 > r1 > r2 > 0, the following hash family is (rr , ra, rt , t-2). 
sensitive: 

3t = (h, : h,(A) = rrrzr(a), x is a permutation of A’}. 

Corollary 4 For 0 < e < r < 1, there exists an a/go- 
rithm for (r,rr)-PLEB under set resemblance mcatwre D 
usingO(dn+n’tP) p a ace and O(nP) evaluations of the hash 
function for each query, where p = -2, 

We now discuss further applications of the above corol- 
lary. For any pair of points p, q E N”, consider the similarity 
measure D(p,q) defined as the dot product p * q. The dot 
product is a common measure used in information retrieval 
applications [31]; it is also of use in molecular clustering [13]. 
By using techniques by Indyk, Motwani, and Venkat,asubra- 
manian [40] it can also be used for solving the approximate 
largest common point set problem, which has many applica- 
tions in image retrieval and pattern recognition. By a sim- 
ple substitution of parameters, we can prove that for a set 
of binary vectors of approximately the same weight, PLEB 
under dot product measure (for queries of a fixed weight) 
can be reduced to PLEB under set resemblance measure. 
The fixed weight assumption can be easily satisfied by split- 
ting the data points into O(log d) groups of approsimntcly 
the same weight, and then making the same partition for 
weights of potential queries. 
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43 Further Applications of PLEB Algorithms PI 
The PLEB procedures described above can also be used in 
cMea where points are being inserted and deleted over time. M 
In the randomized indexing method, insertion can be per- 
formed by adding the point to all indices, and deletion can 
be performed by deleting the point from all indices. In the PI 
bucketing method, insertion and deletion can be performed 
by adding or deleting all elements of B in the hash table. 
However, in order to apply these methods, we have to as- 

PI 

sumc that the points have integer coordinates with absolute 
value bounded by, say, M. Let n be the maximum number 
of pointa preecnt at any time. PO1 

Corokwy 6 There is a data structure for c-PLEB in (1.. . M}d 
wlticlr performs insertions, deletions, and queries in time 
o(l/e)dpO~~lOg M, log n) using storage O(l/c)dn. WI 
Corollary 6 There is a data structurefore-PLEB in (1.. . M}d 

WI ~hiclr performs insertions, deletions, and queries in time 
O(Mdn’IL) using storage O(dn + n’+‘l’). 

By keeping several copies of PLEB as in the simple method 
described At the beginning of Section 3, we can answer ap- 
proximate closest-pair queries. It is sufficient to check for 
every radius whether any cell (in the bucketing method) or 
any bucket (in the randomized indexing method) contains 
two different points; the smallest radius having this property 
gives an approximation to the closest-pair distance. The 
time bounda for all operations are as in the above corollar- 
ien, but multiplied by a factor O(loglog,+, M). 

Combining both techniques, we obtain a method for dy- 
namic estimation of closest pair. Eppstein [27] showed re- 
cently that dynamic closest-pair problem has many applica- 
tion to hierarchical agglomerative clustering, greedy match- 
ing a,“d other problems, and provided a data structure mak- 
ing O(n) distance computations per update operation. Our 
achemc gives an approximate answer in sublinear time. 
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A The Dlmenslon Reduction Technique 

We firat outline our proof for the random projections tech- 
nique for dimension reduction. Combining this with Propo- 
&ion 2, we obtain the result given in Proposition 3. 

Daflnition 8 Let M = (X,d) and M’ = (X’,d’) be two 
metric opacee, The apace M is aaid to have a c-isometric 
ambcdding, or simply a c-embedding, in M’ if there ez- 
ioto a map j : M + M’ such that 

(1 - 4dh 4 < d’(fCp), f (4) < (1 I- 4% 4 

for all p, q E X. IY call c the distortion of the embedding; 
i/c z 1, we call the embedding isometric. 

Rank1 and Maehara [32] gave the following improve- 
ment to the Johnson-Lindenstrauss Lemma [41] on (1 + e)- 
embedding of any S c I$ in l~(‘“g Is’), 

Lamma 0 (Frankl-Maehara [32]) For any 0 < c < $, 
any (auflcientlylarge) set S of points in IRd, andk = [9(e2- 
2e3/3)“’ In ISI] -J-l, there esiata a map j : S + IR” such that 
for all u, v E S, 

(1 - 4llu - VII” < Ilf (4 - f WII’ < 0 +4kJ - 412. 

The proof proceeds by showing that the square of the 
length of a projection of any unit vector u on a random k- 
dimensional hyperplane is sharply concentrated around f. 
Below WC prove an analogous fact. However, thanks to the 
uac of a different distribution, we are able to give a much 
simpler proof and also improve the constants. Note that 
the constants are important as they appear in the ezponent 
of the time bounds of the resulting algorithm described in 
Proposition 3. 

Eomma 7 Let u be a unit uector in Rd. For any euen poa- 
itiue integer k, let Ul, . . . , Ur: be random vectors chosen in- 
dependently from the d-dimensional Gaussian distribution4 
lV’(O, l), For Xr =uqUi, defineW=W(u)=(Xl,...,Xk) 
and L = L(u) = IlWll”. Then, for any p > I, 

1, D(L) = k, 

2, Pr[L 2 /3k] < O(k) x exp(-$(P - (1 -i-h/3))), 

3. Pr[L 4 k/p] < O(k) x exp(-$(/3” - (1 -In@)). 

Proof Sketch: By the spherical symmetry of Nd(O, 1) each 
Xr io distributed as N(O,l) [29, page 771. Define k;- = 
X’,“r,, -I- Xi,, for i = 1 , . . , , k/2. Then, Y; follows the Ex- 
ponential distribution with parameter X = 4 (see [29, page 
471) Thus B(L) = c!:p/t E(K) = (k/2) x 2 = k; also one 
can aee that L follows the Gamma distribution with param- 
cters LY =: $ and v 
distribution 

= k/2 (see [29, page 461). Since this 
is a dual of the Poisson distribution, we obtain 

that 
Pr[L > pk] = Pr[P,$ 5 v - 11, 

1 Each component is chosen independently from the standard 
normal distribution N(O,l). 

where Pp is a random variable following the Poisson d&i- 
bution with parameter at. Bounding the latter quantity is 
a matter of simple calculation. n 

An interesting question is if the Johnson-Lindenstrauss 
Lemma holds for other lP norms. A partial answer is pro- 
vided by the following two results. 

Theorem 5 For anyp E [l, 21, any n-point set S c l,“, and 
any c > 0, there ezist a map j : S + 15 with k = O(log n) 
such that for all u, v E S. 

(1 - mJ - 4IP < IIf(4 - fWl12 < (1 f 4llu - VIIP 

Theorem 6 The Johnson-Lindenstrots Lemma does not 
hold for 1,. hlore specifically, there is a set S of n points 
in 33’ for some d such that any embedding of S in S?’ has 
distortion sZ( 3). 

Proof Sketch: We give a sketch of the proof of Theorem 6 
based on the following two known facts. 

Fact 3 (Linial, London, and Rabinovich [48]) EuenJn- 
point metric M can be isometrically embedded in I&. 

Fact 4 (Link& London, and Rabinovich [48]) There are 
graphs with n vertices which for any d cannot be embedded 
in 1: with distortion 0006 n). 

Assume for contradiction that the Johnson-Lindenstrauss 
Lemma holds for 1, with distortion t = o(log n/m. Then 
for any graph G with n vertices: we embed G in l& using 
Fact 3; by the assumption, we reduce the dimension to 

f with distortion t; fkmlly, we observe that as the norms 1, 
and l,f differ by at most a factor of &‘, we have an em- 
bedding of G in 12 with distortion tfl = ~(logn), which 
contradicts Fact 4. n 

Proof Sketch: We give a sketch of the proof of Theorem 5 
based on the following two known facts. 

Fact 5 (Johnson-Schechtman [42]) For any 1 < p < 2 
and c > 0, there ezista a constant p 2 1 such that for all 
d 2 1, the apace 1,” has a (1 + e)-embedding in ltd. 

Fact 6 (Linial, London, and Rabinovich [48]) For any 
c > 0 and every n-point metric space M = (X,d) induced 
by a set of n points in It, there exists m such that M has a 
(l+c)-embedding in II”‘. If 011 points have coordinates from 
the set (1 . . . R), then M con be embedded isometrically in 
H”‘form=Rd. 

The function f is constructed implicitly by a sequence of 
reductions: Find an (1 + al)-isometric embedding of lp into 
11 (using Fact 5) and let Sl be the image of S under this 
mapping. Find an (1 f ez)-isometric embedding of SI into 
H”’ (using Fact 6) and let S2 be the image of Sl under this 
mapping. Notice that for any 3,s’ E S2, d&s,s’) = 11s - 
s’l12, hence we may assume that SZ resides in lr. Finally, 
find an (1 + rs)-isometric embedding of SZ into Ii (using 
Lemma 6). It is now possible to choose suitable values for 
cl, ~2, and Q to obtain the desired result. n 
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