Approximate Nearest Neighbors: Towards Removing the Curse of Dimensionality

PioTr INDYK*

RAJEEV MoTwant!

Department of Computer Science
Stanford University
Stanford, CA 94305

{indyk,rajeev}@cs.stanford.edu

Abstract

The nearest neighbor problem is the following: Given a set
of n points P = {py,...,pn} in some metric space X, pre-
process P so as to efficiently answer queries which require
finding the point in P closest to a query point ¢ € X. We fo-
cus on the particularly interesting case of the d-dimensional
Euclidean space where X = R under some I, norm. De-
spite decades of effort, the current solutions are far from
satisfactory; in fact, for large d, in theory or in practice,
they provide little improvement over the brute-force algo-
rithm which compares the query point to each data point.
Of late, there has been some interest in the approrimate
nearest neighbors problem, which is: Find a point p € P
that is an e-approximate nearest neighbor of the query g in
that for all p’ € P, d(p,q) < (1 +€)d(p’,q)-

We present two algorithmic results for the approximate
version that significantly improve the known bounds: (a)
preprocessing cost polynomial in n and d, and a truly sub-
linear query time (for € > 1); and, (b) query time polynomial
in logn and d, and only a mildly exponential preprocessing
cost O(n) x O(1/€)®. Further, applying a classical geometric
lemma on random projections (for which we give a simpler
proof}, we obtain the first known algorithm with polynomial
preprocessing and query time polynomial in d and logn.
Unfortunately, for small ¢, the latter is a purely theoretical
result since the exponent depends on 1/e. Experimental re-
sults indicate that our first algorithm offers orders of mag-
nitude improvement on rununing times over real data sets.
Its key ingredient is the notion of locality-sensitive hashing
which may be of independent interest; here, we give applica-
tions to information retrieval, pattern recognition, dynamic
closest-pairs, and fast clustering algorithms.

*Supported by a Stanford Graduate Fellowship and NSF
Award CCR-9357849.

tSupported by a Sloan Fellowship, an IBM Faculty Fartner-
ship Award, an ARO MURI Grant DAAH04-96-1-0007, and NSF
Young Investigator Award CCR~9357849.

Peomisaon to make digital or hard copics of alt or part ol this work for
personal or chssrooni use 1~ granted without {ee provided that copies
¢ not made or distibuted lor profit or conimercial ady antage and that
vapies bear this gotice aud the tull cittion on the lind page To copy
othiery e, to republish, to post on sevnvers or 1o reditribute tolisis,
voquires prior speatlic pomisson and or a fee.

STOC 98 Dallas Texas USA

Coparipht ACA 1998 0-89791962-9 98 S NS00

604

1 Introduction

The nearest neighbor search (NNS) problem i1 Given
a set of n points P = {p1,...,pn} in a metric space .X with
distance function d, preprocess P so as to efficiently answer
queries for finding the point in P closest to a query point
g € X. We focus on the particularly interesting caze of the
d-dimensional Euclidean space where X = ¢ under some
Ip norm. The low-dimensional case is well-solved [26), so the
main issue is that of dealing with the “curse of dimensional-
ity” [16]. The problem was originally posed in the 19603 by
Minsky and Papert [53, pp. 222-225], and despite decades
of effort the current solutions are far from satisfactory. In
fact, for large d, in theory or in practice, they provide little
improvement over a brute-force algorithm which compaves
a query g to each p € P. The known algorithms are of two
types: (a) low preprocessing cost but query time linear in
n and d; and, (b) query time sublinear in n and polyno-
mial in d, but with severely exponential preprocessing cost
n¢. This unfortunate situation carries over to average-cace
analysis, and even to the e-approximate nearest neigh-
bors (e-INNS) problem: Find a point p € P that is an
e-approximate nearest neighbor of the query ¢, in that for
all p' € P, d(p,q) < (1 +¢€)d(p',q).

We present two algorithms for the approximate version
that significantly improve the known bounds: (a) prepro-
cessing cost polynomial in n and d, and a truly sublincar
query time (for ¢ > 1); and, (b) query time polynomial in
log n and d, and only a mildly exponential preprocessing cost
O(n) x O(1/€)®. Further, by applying a classical geometric
lemma on random projections (for which we give a simpler
proof), we obtain the first known algorithm with polynomial
preprocessing and query time polynomial in d and log n. Un-
fortunately, for small ¢, this is a purely theoretical result as
the exponent depends on 1/e. Experimental results [36] in-
dicate that the first algorithm offers orders of magnitude
improvement on running times over real data sets. Its key
ingredient is the notion of locality-sensitive hashing which
may be of independent interest; we give applications to infor-
mation retrieval, pattern recognition, dynamic closest-paira,
and fast clustering,.

Motivation. The nearest neighbors problem is of major
importance to a variety of applications, usually involving

Bimilarity Benrching. Some examples are: data compres-
sion [30); databases and data mining [12, 38]; information
retrieval [10, 20, 67); image and video databases [28, 30,

bh, ﬂm' machine l(zm-mnrr f1R'| nattern recognition 19, 251

................... petVhill JCLLGRWUL 149 &9

nnd, Btatmtlca and data analysns [21, 44]. Typlcally, the fea-
tures of the objects of interest (documents, images, etc) are
represented as points in R¢ and a distance metric is used
to meosure (dis)similarity of objects. The basic problem
then is to perform indexing or similarity searching for query
objects, The number of features (i.e., the dimensionality)

rangen nnvwhnrn from tens to thousands. For example, in

multimedm applications such as IBM’s QBIC (Query by Im-
age Content), the number of features could be several hun-
dreds [28, 30). In information retrieval for text documents,
vector-space representations involve several thousands of di-
mensions, and it is considered to be a dramatic improvement
that dimension-reduction techniques, such as LSI (latent se-

mantic |nrlmnnrr) [R. 10 ’)n] nrincinal comnonents analv-

Asesasdvaty a2dlIUSNal0 [T] preiilipal COINIPONICLYE allaly

nis [39] or the Karhunen-Loéve transform [43, 49], can reduce
the dimensionality to a mere few hundreds!

Of late, there has been an increasing interest in avoiding
the curse of dimensionality by resorting to approrimatenear-
est neighbor searching, Since the selection of features and
the use of a distance metric in the applications are rather
heuristic and merely an attempt to make mathematically
precise what is after all an essentially aesthetic notion of sim-
ﬂuuv.y, iv BECms }l!‘\b an uvu!\nn to insist on the absclute near-
est neighbor; in fact, determining an e-approximate nearest
neighbor for a reasonable value of ¢, say a small constant,
should suffice for most practical purposes. Unfortunately,
even this relaxation of goals has not removed the curse of
dimensionality, although the recent results of Kleinberg [45]

gives some improvements,

Previous Work, Samet [58] surveys a variety of data struc-
tures for nearest neighbors including variants of k-d trees,
R-trees, and structures based on space-filling curves; more
recent results are surveyed in [59]. While some perform well
jn 2-3 dimensions, in high-dimensional spaces they all ex-
hibit poor belmvior in the worst case and in typical cases
as well { \Gg.y BCC nlya, Pv{uuuu, and Narayau I."U‘ Dobkin
and Lipton [22) were the first to provide an algorithm for
nearest neuzhbox‘s in &9, with query time O(2%logn) and

preproceasmg cost O(n?® “). Clarkson [15] reduced the
preprocessing to O(nl4/21149)) while increasing the query
time to O(294"°29) Jog n), Later results, e.g., Agarwal and
Matouick [1], Matousek [50], and Yao and Yao [64], all suffer
H'Om a query Elme Lnab ls exponenmal ln a 1V1€lser lD.lJ OD-
tained query time O(d°® log n) but after O(n?*?) preprocess-
ing. The so-called “vantage point” technique [11, 12, 61, 62]
is a recently popular heuristic, but we are not aware of
any analysis for high-dimensional Euclidean spaces. In gen-
eral, even the average-case analysis of heuristics for points
distributed over regions in R? gives an exponential query
timo [6, 34, 58,

proximate near-

D] mrern o nloaviiloo. ofd

i1
bUl ivninn Wil

The eituation is only slightly better for ap

ank ...I.L....,.
€Y NCIgnoor

nnnnnn A MMavae

ruya alu 1VLULIIHJ L‘IJ Bave all

l’I’ln‘oughoutz. preprocessing cost refers to the space require-
ment; typically, the preprocessing time is roughly the same.

605

query time 0(1/5)dO(log n) and preprocessing O(l/c)dO(n)
The dependence on ¢ was later reduced by Clarkson [16)
and Chan [14] to e~®~1/2, Arya, Mount, Netanyahu, Sil-

verman, and Wu rA] obtained ontimal Ofn) nrevrocessine
verman, and ebtamed coptimal U(n} preprocessing

cost, but with query time growing as O(d%). Bern [7] and
Chan [14] considered error € polynomial in d and managed to
avoid exponential dependence in that case. Recently, Klein-
berg [45] gave an algorithm with O(nlog d)*? preprocessing
and query time polynomial in d, ¢, and logn, and another
algorithm with preprocessing polynomial in d, ¢, and n but
with query time n{n + f“no- n)

O(dn) time bound of the brute-force algorithm.

For the Hamming space {0,1}¢, Dolev, Harari, and Par-
nas [24] and Dolev, Harari, Linial, Nisan, and Parnas [23]
gave algorithms for retrieving all points within distance r
of the query g. Unfortunately, for arbitrary r, these algo-
rithms are exponential either in query time or preprocessing,.
Greene, Parnas, and Yao [37] present a scheme which, for
binary data chosen um'formly at random, retrieves all points

The latter improves the

220 2aSiCl NPIOVRS i

within Jabanen s in time O(dn™/?), using Ofdnitri/dy
wuu.u.u u-IDDml\-C 7 Ul " 41 viiuc U\ul. }, 5 \ l
preprocessing.

Tr IS | h 7 1N SR Y ~ . I T A 5 Y | L P |
Very recently, Kushilevitz, Osirovsky and Rabani [46]
obtained a result similar to Proposition 3 below.

Overview of Results and Techniques. Our main results
are algorithms? for e-NNS described below.?

Proposition 1 For e > 1, there is an algorithm for ¢-NNS
in R? under thel, norm forp € [1,2] wh:ch uses O(nl""/‘-i-
dn) preprocessing and requires O(dn? C) query time.

rith

ot

Pronosition 2 For 0 € € < 1, or

< a vrvw.w.v. ~

an algori
€-NNS in R¢ under any I, norm which uses O(n) x O
preprocessing and requires O(d) query time.

there is ar

Proposxtlon 3 For any € > 0, there is an algorithm for
e-NNS in R¢ under the I, norm for p € [1,2] which uses

(nd)o(‘) preprocessing and requires O(d) query time.

W abbnten thona seaceslia bher va e 3o o - NTATQ b
Y¥C OULalil WICST FoSulLd Uy ICAQULINE C=ivivo toanew pioov-

lem, viz., point location in equal balls. This is achieved by
means of a novel data structure called ring-cover trees, de-
scribed in Section 3. Our technique can be viewed as a
variant of parametric search [52], in that they allow us to
reduce an optimization problem to its decision version. The
main difference is that in our case in answering a query we
can only ask for a solution to a decision problem belong-
ing to a prespecified set, since solving the decision problem
(i.e., point location in equal balls) requires data structures
created during preprocessing. We believe this technique
will find further applications to problems where paramet-
ric search has been helpful.

In Section 4, we give two solutions to the point loca-
tion problem. One is based on a method akin to the Elias
bucketing algorithm [63] — we decompose each ball into a

20Qur algorithms are randomized and return an approximate
nearest neighbor with constant probability. To reduce the error

nrnknhv‘-fu to o, we can uge geveral data structures in narallal and
preobabll ‘e o, we can use several catasiructuresin paraliciana

return the best result, increasing complexity by a factor O(log«),
3For the sake of clarity, the O notation is used to hide terms
that are poly-logarithmicin n.

bounded number of cells and store them in a dictionary.
This allows us to achieve O(d) query time, while the pre-
processing is exponential in d, implying Proposition 2. For
the second solution, we introduce the technique of locality-
sensitive hashing. The key idea is to use hash functions such
that the probability of collision is much higher for objects
that are close to each other than for those that are far apart.
We prove that existence of such functions for any domain
(not necessarily a metric space) implies the existence of fast
¢-NNS algorithms for that domain, with preprocessing cost
only linear in d and sublinear in n (for € > 1). We then
present two families of such functions — one for a Hamming
space and the other for a family of subsets of a set under
the resemblance measure used by Broder et al [9] to cluster
web documents. The algorithm based on the first family
is used to obtain a nearest-neighbor algorithm for data sets
from R¢, by embedding the points from R¢ onto a Hamming
cube in a distance-preserving manner. The algorithm for the
resemblance measure is shown to have several applications
to information retrieval and pattern recognition. We also
give additional applications of locality-sensitive hashing to
dynamic closest-pair problem and fast clustering algorithms.
All our algorithms based on this method are easy to imple-
ment and have other advantazes — they exploit sparsity of
data and the running times are much lower in practice [36]
than predicted by theoretical analysis. We expect these re-
sults will have a significant practical impact.

An elegant technique for reducing complexity owing to
dimensionality is to project the points into a random sub-
space of lower dimension, e.g., by projecting P onto a small
collection of random lines through the origin. Specifically,
we could employ the result of Frankl and Maehara [32],
which improves upon the Johnson-Lindenstrauss Lemma [41],
showing that a projection of P onto a subspace defined by
roughly 9¢~? Inn random lines preserves all inter-point dis-
tances to within a relative error of ¢, with high probability.
Applying this result to an algorithm with query time O(1)¢,
we obtain an algorithm with query time n®". Unfortu-
nately, this would lead to a sublinear query time only for
large values of ¢, In Section A of the Appendix, we give a
version of the random projection result using a much simpler
proof than that of Frankl and Machara. We also consider the
extensions of the random projection approach to I, norms
for p # 2. Using random projections and Proposition 2, we
obtain the algorithm described in Proposition 3. Unfortu-
nately, the high preprocessing cost (its exponent grows with
1/¢) makes this algorithm impractical for small e.

2 Preliminaries

We use I3 to denote the space ¢ under the I, norm. For
any pomt v € N9, we denote by ||9]], the I, norm of the
vector ¥; we omit the subscript when p = 2. Also, H¢ =
({0,1}9,dx) will denote the Hamming metric space of di-
mension d. Let M = (X,d) be any metric space, P C
X, and p € X. We will employ the following notation:
d(p, P) = mingepd(p,q), and A(P) = maxpqepd(p,q) is
the diameter of P,

606

Definition 1 The ball of radius r centered at p is defined
as B(p,r) = {g € X | d(p,q) < r}. The ring R(p,r1,r2)
centered at p is defined as R(p, r1,12) = B(p,r2)—B(p,r1) =
{ge X |ri <d(pg) < 2}

Let V;!(r) denote the volume of a ball of radius r in IZ.
The following fact is standard [56, page 11].

Fact 1 Let T'(.) denote the gamma function. Then Vi (r) =

(2F(1+1/p))d /2
Tt 0 = g

3 Reduction to Point Location in Equal Balls

The key idea is to reduce the e-NNS to the following prob-
lems of point location in equal balls.

Definition 2 (Point Location in Equal Balls (PLEB))
Given n radius-r balls centered at C = {c1,...,cn} in M =

(X,d), devise a data structure which for any query point

g € X does the following: if there exists ¢; € C such that

q € B(ci,r) then return c;, else return NO.

Definition 3 (e-Point Location in Equal Balls (¢~-PLEB))

Given n radius-r balls centered at C = {¢1,...,cn} in M =
(X,d), devise a data structure which for any query point
g € X does the following:

o if there erists ci € C with q € B(ci,r) then return YES
and a point ¢} such that g € B(c!, (14 ¢)r),

o if g & Bci,(1+€)r) for all ¢, € C then return No,

o if for the point ¢; closest to q we have r < d(q,¢i) <
((1 + €)r) then return either YES or NO,

Observe that PLEB (¢-PLEB) can be reduced to NNS
(e-NNS), with the same preprocessing and query costs, as
follows: it suffices to find an exact (¢-approximate) nearest
neighbor and then compare its distance from q with r. The
main point of this section is to show that there is a reduction
in reverse from ¢-NNS to e-PLEB, with only a small overhead
in preprocessing and query costs. This reduction relies on
a data structure called a ring-cover tree. This structure
exploits the fact that for any point set P, we can either
find a ring-separator or a cover. Either construct allows us
to decompose P into smaller sets $1,...,S5 such that for
al i, [Si] < c|P| for some ¢ < 1, and >, [Si| < U|P] for
b<1+1/ log n. This decomposition has the property that
while searching P it is possible to quickly restrict the search
to one of the sets S;.

There is a simpler but much weaker reduction from e-
NN to e-PLEB. Let R be the ratio of the smallest and the
largest inter-point distances in P. For each] € {1 +<-.)'J (1 +
€)},..., R}, generate a sequence of balls B* = {B},..., B}
of radlus I centered at py,...,pn. Each sequence B’ forms an
instance of PLEB. Then, given query ¢, we find via binary
search the minimal ! for which there exists an ¢ such that
q € B! and return p; as an approximate nearest neighbor,
The overall reduction parameters are: query time overhead
factor O(loglog R) and space overhead factor O(log R). The
simplicity of this reduction is very useful in practice. On the

other hand, the O(log R) space overhead is unacceptable
when R is large; in general, R may be unbounded. In the
final version, we will show that by using a variation of this
method, storage can be reduced to O(n?logn), which still
doces not give the desired O(1/€)4O(n) bound.

Definition 4 A ring R(p,r1,r2) is an (a1, a2, B)-ring sep-
arator for P if [P0 B(p,r1)| 2 as|P| and |P\ B(p,r2)| 2
aa|P|, where r2[ry = B.

Definition & A set S C P is a (v,8)-cluster for P if for
every p € 8, |P N B(p,vA(S))} < 4|P|.

Deflnition 6 A sequence Ay,..., Al of sets A; C P is called
a (b,c,d)-cover for S C P, if there exists an r > dA(A) for
A=UjA; such that S C A and fori=1,...,1,

¢ |PN(Upea;B(p,r))| < blAil,
o [Ai| £¢|P|.

Theorem 1 For any P, 0 < a < 1, and B > 1, one of the
Jollowing two properties must hold:

1, P has an (a,a,B)-ring separator, or

2. P contains a (5, a)-cluster of size at least (1—2a)| P|.

Proof Sketch: First note that for o > 1/2, property (1)
must be false but then property (2) is trivially true. In
general, assume that (1) does not hold. Then, for any point
p and radius r define:

L4 f;;a(r) = IP_ B(Prﬂr)l’
e 22) = 1PN B,

Clearly, f7°(0) = n, f5°(c0) =0, fp(0) =0, and f3(0) =n.
Also, notice that f;°(r) is monotonically decreasing and
fg (r) is monotonically increasing. It follows that there must
exist a choice of r (say rp) such that f°(rp) = fo(rp)-
Since (1) does not hold, for any value of r we must have
min(f5°(r), f3(r)) £ an, which implies that f5°(rp) = fp(rp)
an,

Let g be a point such that r, is minimal, Define § =
PN R(q,rq Bry); it follows that [S| > (1 — 2a)n. Also,
notice that for any s,s' € 8, d(s, s') < 28rg, implying that
A(S) < 2Br;. Finally, for any s € S, |P N B(s,rg)| <
[P B(s,rs)] < an. |

Theorem 2 Let S be a (v,d)-cluster for P. Then for any
b, there is an algorithm which produces a sequence of sets

Atyoioy Al C P constituting a (b, 6, (ﬁ_—,’ﬁm;)-coverfor S.

Proof Sketch:

The algorithm below greedily computes a good cover for
S'

Algorithm Cover: S = Pn R(g,rq,Brq);
P 28 o
repeat
J 4 j +1; choose some p; € S; B} + {p;};
i1

while [P NUep: B(g,r)f > b|Bi| do
B_;'“ +~Pn quB;'_B(q, r);
1ei+1
endwhile;
Aj B S S—Aj; P+ P—A;
until § = ¢;
k+j.

In order to prove the correctness of the algorithm, it
suffices to make the following four claims.

¢ S C A =U;A; — Follows from the termination con-
dition of the outer loop.

o forallj € {1,...,k}andany p € S, |PNU4e4;B(p, r)| <
b|A;j] — Follows from the termination condition of the
inner loop.

o for all § € {1,...,k}, |]A;] £ §|P] — Clearly, for any
J, the inner loop is repeated at most log,n times.
Hence, maxqea; d(pj,q) < rlogyn < vA(S). As Sisa
(7, 8)-cluster, we have that | B(p,, 7A(S))n P| < §|P|.
Hence, |A;] < 6] P].

or < (ﬂ%%‘n — Since A(A) < A(S) + rlogyn =

A(S) +7A(S) = (1 +7)A(S).
n

Corollary 1 ForanyP,0<a<1,8>1,b>1, oneof
the following properties must hold:

1. P has an (a,a, 8)-ring separator R(p,r,Br), or
2. There is a (b, a,d)-cover for some S C P such that
IS] 2 (1—2a)n endd = m.

3.1 Constructing Ring-Cover Trees

The construction of a ring-cover tree is recursive. For any

S given P at the root, we use properties (1) and (2) in Corol-

lary 1 to decompose P into some smaller sets Si,...,Si;
these sets are assigned to the children of the node for P.
Note the base case case is when P is sufficiently small and
we omit that in this abstract. We also store some addi-
tional information at the node for P which enables us to
restrict the nearest neighbor search to one of the children of
P, by using distance computations or point location queries.
For simplicity, assume that we can invoke an exact PLEB
(not &-PLEB); the construction can be easily modified for
approximate point location. There are two cases depend-
ing on which of the two properties (1) and (2) holds. Let
B=2(1+1%), b=k, and o = I=tfeEn,

Case 1. In this case, we will call P a ring node. We define
its children to be S = PN B(p,Br) and S; = P —
B(p, r). Also, we store the information about the ring
separator R at the node P.

Case 2. Here, we call P a cover node. We define S; =
P NUpea;B(p,r) and So = S — A. The information
stored at P is as follows. Let ro = (1 + 1/€)A(A)

607

and let r; = ro/(1 +¢)’ for § € {1,...,k}, where k =

logy ;e wﬁ,rm-b—'l + 1. Notice that r, = ﬁ%ﬁf =
T3+ For each r,, generate an instance of PLEB with
balls B(p, ;) for p € A; all instances are stored at P.

We now describe how to efficiently search a ring-cover
tree. It suffices to show that for any node P we can restrict
the search to one of its children using a small number of
tests. Let ming(p,p’) denote the point out of p and p’ that
is closer to g. The search procedure is as follows; we omit
the obvious base case.

Procedure Search:

. if P is a ring node with an (@,a,8)-ring separator
R(p,r, Br) then:

(2) ifq € B(p,r(1+1/¢)) then return Search(q, 51);

(b) else compute p’' = Search(g, S2); return ming(p, p').

. if P is a cover node with a (b, ¢, d)-cover A;,..., 4 of
radius r for S C P then:

(a) if g ¢ B(a,ro) then for all a € A then compute
p = Search{q, P — A), choose any a € A, and
return ming(p, a);

(b) else if ¢ € B(a,ro) for some a € A but ¢ ¢
B(a',ri) for all ¢’ € A then using binary search
on rys, find an ¢-NN p of ¢ in A, compute p’ =
Search(g, P — A), and return ming(p,p');

(c) else if ¢ € B(a,rx) for some a € A; then return
Search(g, S:).

3.2 Analysis of Ring-Cover Trees

We begin the analysis of the ring-cover tree construction by
establishing the validity of the search procedure.

Lemma 1 Procedure Search(g, P) produces an e-nearest neigh-

bor for q in P.
Proof Sketch: Consider the two cases:

1. P is a ring node.

(a) Consider any s € P—S;1. Then d(s,p) < d(s,q)+
d(g,p), implying that d(s,q) > d(s,p) — d(q, p)-
Since s ¢ S1, we know that d(s,p) > fr=2(1+
1/€)r, while d(p,q) < r(1+ 1/e). Then, d(s,q) >
(1+1/e)r 2 d(q, p)-

(b) For any s € B(p,r), d(q,p) < d{(g,s)+d(s,p), im-
plying that d(g, s) > d(q,p)—d(s,p) = d(q,p) —r-
It follows that S28) < _dlap) g 4 Mg <

dlg,s) = dla.p)=r
14¢.
2. P is a cover node.
(a) Similar to Case 1(b),
(b) Obvious.
(c) For any p € P - S, d(p,a) > r. Since]q €

B(a, rx), we have d(g,a) < rx = iz < -d{i—’z-

The proofs of Lemmas 2 and 3 are omitted.

608

Lemma 2 The depth of a ring-cover tree is O(logy jo, 1) =
O(log® n).

Lemma 3 Procedure Search requires O(log?n % logk) dis-
tance computations or PLEB queries.

Lemma 4 A ring-cover tree requires space at most
O(knb'°81/2a *(14-2(1—20))*8») = O(npolylog n) not count-
ing the additional non-data storage used by algorithms im-
plementing PLEBs.

Proof Sketch: Let S(n) be an upper bound on the space
requirement for a ring-cover tree for point-set P of size n,
Then for a cover node:

S(n) £ max ... max
1 Ajz..4y, A, disjoint, 14,|<an, [4]|2(1=2a)n

l
DS AD]+ S(n — |Al) + Ak
i=1
For a ring node:

S(n) < 28 (;2’-(1 +2(1 - 2a))) +1

The bound follows by solving this recurrence.

Corollary 2 Given an algorithm for PLEB which uscs f(n)
space on an instance of size n where f(n) is conver, a ring-
cover tree for an n-point set P requires total space

O(f(npolylog n)).
Fact 2 For any PLEB instance (C,r) generated by a ring-
cover tree, A("C) =0 (1 : < log,, n) .

4 Point Location in Equal Balls

We present two techniques for solving the ¢-PLEB prob-
lem. The first is based on a method similar to the Elias
bucketing algorithm [63] and works for any I, norm, es-
tablishing Proposition 2. The second uses locality-sensitive
hashing and applies directly only to Hamming spaces (this
bears some similarity to the indexing technique introduced
by Greene, Parnas, and Yao [37] and the algorithm for all-
pairs vector intersection of Karp, Waarts, and Zweig [17],
although the technical development is very different). How-
ever, by exploiting Facts 2 and 6 (Appendix A), the in-
stances of e-PLEB generated while solving ¢-NN for I{ can be
reduced to e-PLEB in H™, where m = dlog, n»max(1/¢,¢€).
Also, by Fact 5 (Appendix A), we can reduce l;’ to l?(d) for
any p € [1,2]. Hence, locality-sensitive hashing can be used
for any I, norm where p € [1, 2], establishing Proposition 1.
It can also be used for the set resemblance measure usced
by Broder et al [9] to cluster web documents. We assume,
without loss of generality, that all balls are of radius 1.

4,1 The Bucketing Method

Assume for now that p = 2. Impose a uniform grid of spac-
ing s = ¢/v/d on R?, Clearly, the distance between any two
points belonging to one grid cuboid is at most €. By Fact 2,
each side of the smallest cuboid containing balls from C is
of length at most O(v/dlog, n max(1/e,c)) times the side-
length of a grid cell, For each ball B;, define B; to be the
pet of grid cells intersecting Bj. Store all elements from U;B;
In a hash table [33, 54], together with the information about
the corresponding ball(s). (We can use hashing since by the
preceding discussion the universe is of bounded size.) After
preprocessing, to answer a query g it suffices to compute the
cell which contains g and check if it is stored in the table.

We claim that for 0 < € < 1, |B| = O(1/e)®. To see
thio, observe that |B] is bounded by the volume of a d-
dimensional ball of radius r = 2/ev/d, which by Fact 1 is
29U pd 4412 < O(1/€)®. Hence, the total space required is
0O(n) % O(1/¢)*. The query time is the time to compute the
hash function. We use hash functions of the form:

h((zyy000y2a)) = (@121 + ... + Gaza mod P) mod M

where P is a prime, M is the hash table size, and ay,...,a4 €
Z}. This family gives a static dictionary with O(1) access
time [33]), The hash functions can be evaluated using O(d)
arithmetic operations. For general I, norms, we modify s to
¢/d*/?, The bound on |B| applies unchanged.

Theorem 3 For 0 < ¢ < 1, there is an algorithm for e-
PLEB in 12 using O(n) x O(1/€)® preprocessing and O(1)
cvaluationa of a hash function for each query.

4,2 Locality-Sensitive Hashing

We introduce the notion of locality-sensitive hashingand ap-
ply it to sublinear-time similarity searching. The definition
makes no assumptions about the object similarity measure.
In fact, it is applicable to both similarity and dissimilarity
measures; an example of the former is dot product, while
any distance metric is an instance of the latter. To unify
notation, we define a ball for a similarity measure D as
B(g,r) = {p : D(g,p) 2 r}. We also generalize the no-
tion of ¢-PLEB to (r1,r2)-PLEB where for any query point
g we require the answer to be YEs if PN B(g,r2) # 0 and
NO otherwise,

Dofinition 7 A familyH = {h : S — U} is called (r1,r2,p1,p2)-

pensitive for D if for any q,p,p' € S
¢ ifp € B(q,r) then Prulh(q) = h(p)] > p1,

o ifp ¢ B(a,r2) then Prafh(g) = h(z')] < -

In order for a locality-sensitive family to be useful, it has
to satisfy inequalities py > p2 and r1 < ro when D is a
dissimilarity measure, or p1 > p2 and ry > r2 when D is a
similarity measure,

For) specified later, define a function family ¢ = {g :
8 -+ U"} such that g(p) = (h1(p),.. ., hx(p)), where ki € H.

The algorithm is as follows. For an integer I we choose !
functions g1,...,q from G independently and uniformly at
random. During preprocessing, we store each p € P in the
bucket g;(p), for j = 1,...,l. Since the total number of
buckets may be large, we retain only the non-empty buckets
by resorting to hashing [33, 54]. If any bucket contains more
than one element, we retain an arbitrary one. To process a
query g, we search all buckets g1 (p),...,g1(p). Let p1,...,p¢
be the points encountered therein. For each pj, if p, €
B(g, r2) then we return YEs and pj, else we return No.

Let Wy(q) = P—B(q,b), and p* be the point in P closest
to g. The parameters k and ! are chosen so as to ensure
that with a constant probability there exists g, such that
the following properties hold:

L. g;(p") # 95(q), for all p’ € Wr,(g), and
2. if p* € B(g,r1) then g;(p*) = g,(q).

Lemma 5 If properties (1) and (2) hold for some g,, the
search procedure works correctly.

Proof Sketch:

Case 1 {p* € B(g,r1)}: By property (1), the bucket B =
g;(g) cannot contain any points from ;,. By prop-
erty (2), p* is contained in B. Therefore, B is nonempty
and contains only elements p such that D(g,p) < (14
€)r, and our algorithm will pick one such element and
answer YES.

Case 2 {p* ¢ B(g,r2)}: There are no points belonging to
B(g, r2), thus the algorithm answers No.
n

Theorem 4 Suppose there is a (r1,r2, p1, p2)-sensitive fam-
ily # for D. Then there ezists an algorithm for (ry,r2)-
PLEB under measure D which uses O(dn+n'*?) space and
O(n*) evaluations of the hash function for each query, where

1
P="m :1 ,7}’2 *
Proof Sketch: It suffices to ensure properties (1) and (2)
for some g; with a constant probability. Assume that p* €
B(g,r1); the proof is similar when p* ¢ B(g,r2). Consider
any point p’ € Wy, (g). Clearly

Py =Prlg(p") = 9(9)] > pi
P, = Prg(p’) = g(a)lg(p") = 9(a)]
_ Prlg(r’) =g(q) Ag(p®) = 9(q)]
Prig(p*) = 9(q)]

Prfg(p") = g(9)]
Pr([(p*) = 9(a)]

()

Setting k = loge1 2n, we can bound P; by
P2

P2 105%21: _ _l_
2! 2n’

IA

IA

609

Therefore, if g; satisfies property (1), then it also satisfies
property (2) with probability at least

A

2.

P'EWr, (g}

1— 2

ml»—a

1
2n

It is sufficient to bound P; from below. By substituting for
k we obtain that

log%L n+1 » .

3 _ -

P12P1 = nlo8r1/P3 =n=F,

Choosing l = n® functions g;, we ensure that with constant
nrahahilite at L_agu one function Satisﬁns bnf]n nranerties 1)

piliavingy

and (2).

4l Cuid piUpeiuics (&)

“V’C ﬂppl_y .I.lll'.'u).clll. ‘.! DU b\VU measures:
metric and set resemblance [9]; the latter is a similarity mea-
sure defined for any pair of sets A and B as D(A,B) =
L—ﬁ%-}. For the first measure, we apply a family of pro-

jections for fast hashing with AC® operations [5]. For the
second measure, we use sketch functions used earlier [9] for
estimation of the resemblance between given sets A and B,

il IT
ch 1ialll .uuus

Proposition 4 ([5]) Let S = H¢ and D(p,q) be the Ham-
ming metric for p,q € H. Then for any r,e > 0, the family

H ={h: : hi((br,...0a)) =b;, i=1...n}is
£ of1 0\ rot r(14¢)\ PR Y § N
\,"\L 'rbj, F Sl -d-’ F el T}'OU’I&I&'UU-

Corollary 3 For anye > 1, there exists an aIgorithmforle-
PLEB in H*® (or, I3 for any p € [1,2]) using O(dn+n'™"*)
space and O(n’/ €) hash function evaluations for each query.

JUF S S S ot

uze nasn Juncuan can UU buatuuwu using U\u} UP(‘JY“HU"S

wron Pamen 00282 ane
ust I 1upusivioll

estimate the value of p = — 2B~

Inpy /Pz
(146 WLt 1 e
d . YYiulwvw ul.' I.U;B U.l smcl auu_y b

XTI
vye

1- 3 aud P2 = 1 -
assume that r < 1 —, since we can increase dimensionality
by adding a quﬂicxently long string of Os at the end of each

point. Observe that

we

. 1 _wfd 1
}-i]:- - F S £]u i .
p2 1—r(l+¢)fd” 1—er/d
Thus,
___lp_ _In(l=r/d) _ In(l=r/d)
= hplp - kg | W(-e/d)

Multiplying both the numerator and the denominator by %
we obtain that:

_ In(l—r/d)" U

1n(1 —er/d)dlr =

In(1 - r/d)
In(1 — er/d)

p=

*la..,l

In order to upper bound p, we need to bound U from below
and £ from above; note that both U and L are negative. To
this end we use the following inequalities [54]:

(1—erfd)y¥"<e™ and (1—r/d)?" >e™}(1- 3-/—

610

Therefore,
v he-g)
L Ine-¢
3 —1+1n(1—3};)
=
€
< 1fe—~In(1—1/Inn)

where the last step uses the assumptions that ¢ > 1 and
r< f;;. We conclude that

nf < nl/en—ln(l—-llln n) _ nl/c(l - 1/lnn)—lnn = O(nl/c).

Mho Loole fiesmadldonm acenlecoddans abose L
411€ Nasii 1Uiceidil evartatioll can IJU xuuuu IMDLI unan

O(d) for sparse data, i.e., when the number of non-zero co-
ordinates of a query point is small. It suffices to sample
the bits from the non-zero entries of the vectors; a similar
method works for the functions used to build a static dic-
tionary. Moreover, our experience is that the preprocessing
space and query time are much lower than the above bound
In particular, we have implemented a variant of
the above data structure for the case when data is stored
on disk [36]. For a data set of 20,000 d-color histograms for
images (with d ranging up to 64) only 3-9 disk accesses were
required in order to achieve small average error.

tem Alantan

d1IlILQLLY,

Proposition 5 ([9]) Let S be the set of all subsets of X =
{1...z} andlet D be the set resemblance measure. Then, for
>ri>r2> 0, the following hash family is (r1,r2,ry,r2)-

-

H = {hx : hx(A) = max«(a), = is a permutation of X}.

am A
Gga

Corollary 4 For 0 < € < r < 1, there exists an algo-

e fan aa) ster Ao and s

rithm fur \IH ET)-PLEB UNnGeEr s¢v resem
using O(dn-+n'*?) space and O(n®) evaluations of the hash

function for each query, where p= -—{“‘

1 n
VIGTICE TRLuouIc L/

m-sﬁ

We now discuss further applications of the above corol-
lary. For any pair of points p, g € %, consider the similarity
measure D(p,q) defined as the dot product p-g. The dot
product is a common measure used in information retrieval
applications {31]; it is also of use in molecular clustering [13].

Ry vsine techniaues by Indvl Mgtwani and Venlkntnauihrao
oY “"“‘5 SECINIGUES oY aNGyH, vaCiwali, allG vEniauasuora

manian [40] it can also be used for solving the approximate
largest common point set problem, which has many applica-
tions in image retrieval and pattern recognition. By a sim-
ple substitution of parameters, we can prove that for a set
of binary vectors of approximately the same weight, PLEB
under dot product measure (for queries of a fixed weight)
can be reduced to PLER under set resemblance measure,

The fixed weight assumption can be easily satisfied by split-
ting the data points into O(log d) groups of approximately
the same weight, and then making the same partition for
weights of potential queries.

4,3 Further Applications of PLEB Algorithms

The PLEB procedures described above can also be used in
cases where points are being inserted and deleted over time.
In the randomized indexing method, insertion can be per-
formed by adding the point to all indices, and deletion can
be performed by deleting the point from all indices. In the
bucketing method, insertion and deletion can be performed
by odding or deleting all elements of B in the hash table.
However, in order to apply these methods, we have to as-
sume that the points have integer coordinates with absolute
value bounded by, say, M. Let n be the maximum number
of points present at any time,

Corollary & There is a data structure fore-PLEB in {1... M}¢

which performs insertions, deletions, and queries in time
0(1/c)* poly(log M, log n) using storage O(1/e)*n.

Corollary 6 There is a data structure fore-PLEB in {1... M}¢

which performa insertions, deletions, and gqueries in time
O(Mdn*/*) using storage O(dn + n't/¢),

By keeping several copies of PLEB as in the simple method
described at the beginning of Section 3, we can answer ap-
proximate closest-pair queries. It is sufficient to check for
every radius whether any cell (in the bucketing method) or
any bucket (in the randomized indexing method) contains
two different points; the smallest radius having this property
gives an approximation to the closest-pair distance. The
time bounds for all operations are as in the above corollar-
jes, but multiplicd by a factor O(loglog, .. M).

Combining both techniques, we obtain a method for dy-
namic estimation of closest pair, Eppstein [27] showed re-
cently that dynamic closest-pair problem has many applica-
tion to hierarchical agglomerative clustering, greedy match-
ing and other problems, and provided a data structure mak-
ing O(n) distance computations per update operation. Our
scheme gives an approximate answer in sublinear time.

References

(1] P.K, Agarwal and J. Matousek. Ray shooting and
parametric search, In: Proceedings of the Twenty-
Fourth Annual ACM Symposium on Theory of Com-
puting, 1992, pp. 517~-526.

[2) 8. Arya and D. Mount. Approximate nearest neigh-
bor searching. In: Proceedings of the Fourth Annual
AOM-SIAM Symposium on Discrete Algorithms, 1993,
pp. 271-280,

(3] S. Arya, D.M, Mount, and O. Narayan, Accounting for
boundary effects in nearest-neighbor searching. Dis-
crete and Computational Geometry, 16(1996):155~176.

[4] S. Arya, D,M. Mount, N.S. Netanyahu, R. Silverman,
and A, Wu. An optimal algorithm for approximate
nearest neighbor searching, In: Proceedings of the
Fifth Annual ACM-SIAM Symposium on Discrete Al-
gorithms, 1994, pp. 573-582,

[5) A. Andersson, P. B. Miltersen, S. Riis, M. Tho-
rup, Static dictionaries on AC® RAMs: Query time
O(4/logn/loglogn) is necessary and sufficient. In:
Proceedings of the 87th Annual IEEE Symposium on
Foundations of Computer Science, 1996, pp. 441-450.

611

[6] J.L.Bentley. Multidimensional binary search trees used
for associative searching. Communications of the ACM,
18(1975):509-517.

(7] M. Bern. Approximate closest-point queries in high di-
mensions, Information Processing Letters, 45(1993):95-
99.

[8] M.W. Berry, S.T. Dumais, and A.T. Shippy. A case
study of latent semantic indexing. U.T. Knoxville Tech-
nical Report CS-95-271, January 1995.

[9] A. Broder, S. Glassman, M. Manasse, and G. Zweig.
Syntactic clustering of the Web. In: Proceedings of
the Sizth International Vorld Tide 17€b Conference,
pp. 391-404, 1997,

[10] C. Buckley, A. Singhal, M. Mitra, and G. Salton. New
Retrieval Approaches Using SMART: TREC 4. In: Pro-
ceedings of the Fourth Tezt Retrieval Conference, Na-
tional Institute of Standards and Technology, 1995.

[11] W.A. Burkhard and R.M. Keller. Some approaches
to Best-Match File Searching. Communications of the
ACM, 16(1973):230-236.

{12] T. Bozkaya and M. Ozsoyoglu. Distance-Based Index-
ing for High-Dimensional Metric Spaces, In: Proceed-
ings of the ACM SIGMOD International Conference on
Management of Data (SIGMOD), 1997,

[13] F. Cazals. Effective Nearest Neighbours Searching on
the Hyper-Cube, with Applications to Molecular Clus-
tering. In Proceedings of the 14th Annual ACM Sym-
posium on Computational Geometry, 1998.

[14] T.M. Chan. Approximate Nearest Neighbor Queries
Revisited. In: Proceedings of the 13th Annual
ACM Symposium on Computational Geometry, 1997,
Pp. 352-358.

[15] K. Clarkson. A randomized algorithm for closest-point
queries. SIAM Journal on Computing, 17(1938):830-
847.

[16] K. Clarkson. An algorithm for approximate closest-
point queries. In: Proceedings of the Tenth Annual
ACM Symposium on Computational Geometry, 1994,
pp. 160-164.

[17] K. Clarkson. Nearest Neighbor Queries in Metric
Spaces. In: Proceedings of the Twenty-Ninth An-
nual ACM Symposium on Theory of Computing, 1997,
pp. 609-617.

[18] S. Cost and S. Salzberg. A weighted nearest neighbor
algorithm for learning with symbolic features. Machine
Learning, 10(1993):57-67.

{19] T.M. Cover and P.E. Hart, Nearest neighbor pattern
classification. JEEE Transactions on Information The-
ory, 13(1967):21-27.

[20] S. Deerwester, S. T. Dumais, T.K. Landauer, G.W. Fur-
nas, and R.A. Harshman. Indexing by latent semantic
analysis. Journal of the Society fo} Information Sci-
ences, 41(1990):391-407.

[21] L. Devroye and T.J. Wagner, Nearest neighbor methods
in discrimination. In: Handbook of Statistics, vol. 2,
P.R. Krishnaiah and L.N. Kanal, eds., North-Holland,
1982.

[22] D. Dobkin and R. Lipton. Multidimensional search
problems. SIAM Journal on Computing, 5(1976):181-
186.

[23] D. Dolev, Y. Harari, N. Linial, N. Nisan, and M. Par-
nas. Neighborhood preserving hashing and approx-
imate queries. In: Proceedings of the Fifth Annual
ACM-SIAM Symposium on Discrete Algorithms, 1994,
PP. 251-259.

[21] D. Dolev, Y. Harari, and M. Parnas. Finding the neigh-
borhood of a query in a dictionary. In: Proceedings of
the 2nd Israel Symposium on Theory and Computing
Systems, 1993, pp. 33-42.

[25] R.O. Duda and P.E. Hart. Pattern Classification and
Scene Analysis. John Wiley & Sons, NY, 1973.

[26] H. Edelsbrunner. Algorithms in Combinatorial Geom-
¢try. Springer-Verlag, 1937.

[27] D. Eppstein, Fast hierarchical clustering and other ap-
plications of dynamic closest pairs. In: Proceedings of
the Ninth ACM-SIAM Symposium on Discrete Algo-
rithms, 1998.

[28] C. Faloutsos, R. Barber, M. Flickner, W. Niblack,
D. Petkovic, and W. Equitz. Efficient and effective
querying by image content. Journal of Intelligent In-
formation Systems, 3(1994):231-262.

{29] W. Feller. An Introduction to Probability Theory and
its Applications. John Wiley & Sons, NY, 1991.

[30] M. Flickner, H. Sawhney, W. Niblack, J. Ashley,
Q. Huang, B. Dom, M. Gorkani, J. Hafner, D. Lee,
D. Petkovic, D. Steele, and P. Yanker. Query by image
and video content: the QBIC system. IEEE Computer,
28(1995):23~32.

{31] W. Frakes and R. Baeza-Yates, editors. Information
Retrieval: Data Structures and Algorithms. Prentice-
Hall, 1992.

{32] P. Frankl and H. Machara. The Johnson-Lindenstrauss
Lemma and the Sphericity of Some Graphs. Journal of
Combinatorial Theory B, 44(1988):355-362.

[33] M.L. Fredman, J. Komlés, and E. Szemerédi. Storing a
sparse table with O(1) worst case access time. Journal
of the ACM, 31(1984):538-544.

[34] J.K. Friedman, J.L. Bentley, and R.A. Finkel. An algo-
rithm for finding best matches in logarithmic expzcted
time. ACM Transactions on Mathematical Software,
3(1977):209-226.

[35] A. Gersho and R.M. Gray. Vector Quantization and
Data Compression. Kluwer, 1991.

[36] A. Gionis, P. Indyk, and R. Motwani. Similarity Sezarch
in High Dimensions via Hashing. Manuscript, 1997.

[37] D. Greene, M. Parnas, and F. Yao. Multi-index hashing
for information retrieval. In: Proceedings of the 35th
Annual IEEE Symposium on Foundations of Computer
Science, 1994, pp. 722-731.

[38] T. Hastie and R. Tibshirani. Discriminant adaptive
nearest neighbor classification. In: First International
Conference on Knowledge Discovery & Data Mining,
1995, pp. 142-149.

{39] H. Hotelling. Analysis of a complex of statistical vari-
ables into principal components. Journal of Educational
Psycholagy, 27(1933):417-441.

[40] P.Indyk, R. Motwani, and S. Venkatasubramanian. Ge-
ometric Matching Under Noise - Combinatorial Bounds
and Algorithms. Manuscript, 1997.

[41] W.B. Johnson and J. Lindenstrauss. Extensions of Lip-
shitz mapping into Hilbert space. Contemporary iMath-
ematics, 26(1984):189-206.

{42) W.B. Johnson and G. Schechtman. Embedding I3 into
I, Acta Mathematica, 149(1982):71-85.

{43] K. Karhunen. Uber lineare Methoden in der
Wahrscheinlichkeitsrechnung. Ann. Acad. Sci. Fenni-
cae, Ser. A137, 1947,

[44] V. Koivune and S. Kassam. Nearest neighbor filters for
multivariate data. IEEE V orkshop on Nonlinear Signal
and Image Processing, 1995.

612

{45] J. Kleinberg. Two Algorithms for Nearcst-Neighbor
Search in High Dimensions. In: Proceedinga of the
Twenty-Ninth Annual ACM Symposium on Thcory of
Computing, 1997.

[46] E. Kushilevitz, R. Ostrovsky, and Y. Rabani. Efficient
search for approximate nearest neighbor in high dimen-
sional spaces. These proceedings.

[47] R.M. Karp, O. Waarts, and G. Zweig. The bit vector
intersection problem. In: Procecdings of 36th Annual
IEEE Symposium on Foundations of Computer Science,
1995, pp. 621-630.

[48] N. Linial, E. London, and Y. Rabinovich. The geome-
try of graphs and some of its algorithmic applications,
In: Proceedings of 85th Annual IEEE Symposium on
Foundations of Computer Science, 1994, pp. 577-591.

[49] M. Loéve. Fonctions aleastoires de second ordere,
Processus Stochastiques et mouvement Brownian, Her-
mann, Paris, 1948,

[50] J. Matousek. Reporting points in halfspaccs, In:
Computational Geometry: Theory and Applicationas,
2(1992):169-186.

[51] S. Meiser. Point location in arrangements of hyper-
planes. Information and Computation, 106(1993):23G~
303.

[52) N. Megiddo. Applying parallel computation algorithms
in the design of serial algorithms. Journal of the ACM
31(1983), pp. 852-865.

[53] M. Minsky and S. Papert. Perceptrons, MIT Press,
Cambridge, MA, 1969.

[54] R. Motwani and P. Raghavan. Randomized Algorithma,
Cambridge University Press, 1995,

[55] A. Pentland, R.W. Picard, and S. Sclaroff. Photo-
book: tools for content-based manipulation of image
databases. In Proceedings of the SPIE Conference on
Storage and Retrieval of Image and Video Databases II,
1994,

[56] G. Pisier. The volume of conver bodies and Banach
space geometry. Cambridge University Press, 1989.

[57] G. Salton and M.J. McGill. Introduction to Modern
Information Retrieval. McGraw-Hill Book Company,
New York, NY, 1983,

[58] H. Samet. The Design and Analysis of Spatial Data
Structures. Addison-Wesley, Reading, MA, 1939,

[59] T. Sellis, N. Roussopoulos and C. Faloutsos. Multidi-
mensional Access Methods: Trees Have Grown Every-
where. Proceedings of the 23rd International Conference
on Very Large Data Bases (VLDB), 1997, pp. 13-15.

[60] A.W.M. Smeulders and R. Jain, eds. Image Databases
and Multi-media Search. Proceedings of the First In-
ternational Workshop, IDB-MMS 96, Amsterdum Uni-
versity Press, Amsterdam, 1996.

[61] J.K. Uhlmann. Satisfying General Proximity/Similarity
Queries with Metric Trees. Information Processing Let-
ters, 40(1991):175-179.

[62] P.N. Yiannilos. Data Structures and Algorithms for
Nearest Neighbor Search in General Metric Spaces. In:
Praceedings of the Second Annual ACM-SIAM Sympo-
sium on Discrete Algorithmas, 1993, pp. 311-321.

{63] T. Welch. Bounds on the information retrieval efficiency
of static file structures. Technical Report 83, MIT, June
1971.

[64] A.C. Yao and F.F. Yao, A general approach to d-
dimensional geometric queries. In: Proceedings of the
Seventeenth Annual ACM Symposium on Theory of
Computing, 1985, pp. 163-168.

A The Dimension Reduction Technique

We first outline our proof for the random projections tech-
nique for dimension reduction, Combining this with Propo-
sition 2, we obtain the result given in Proposition 3.

Definition 8 Let M = (X,d) and M’ = (X',d’) be two
melric spaces. The space M is said to have a c-isometric
embedding, or simply a c-embedding, in M’ if there ez-
fots a map f: M = M’ such that

(1= e)d(p,q) < d'(£(p), £(g)) < (1 +€)d(p,q)

Jorallp,g & X. V7€ call ¢ the distortion of the embedding;
if ¢ = 1, we call the embedding isometric.

Frankl and Maehara [32] gave the following improve-
ment to the Johnson-Lindenstrauss Lemma [41] on (1 + ¢€)-

embedding of any S C I in 19019,

Lemma 6 (Frankl-Machara [32]) For any 0 < € < &,
any (sufficientlylarge) set S of points in R4, andk = [9(*~
2¢3/3)" In |S|] 41, there exists a map f : S — R* such that
forallu,vé s,

(1= &)lJu~ oll* < 11 (w) = FI° < (1 +&)llu - wif*.

The proof proceeds by showing that the square of the
length of a projection of any unit vector v on a random k-
dimensional hyperplane is sharply concentrated around -;5.
Below we prove an analogous fact. However, thanks to the
wse of a different distribution, we are able to give a much
gimpler proof and also improve the constants, Note that
the constants are important as they appear in the ezponent
of the time bounds of the resulting algorithm described in
Proposition 3,

Lemma 7 Let u be a unit vector in R¢. For any even pos-
ftive integer k, let Uy, ..., Us be random vectors chosen in-
dependently from the d-dimensional Gaussian distribution®
N%0,1), For X; = u.U;, defineW = W(u) = (X1,..., X)
and L = L(u) = ||W||?. Then, for anyB>1,

1, B(L) =k,
2, Pr{L 2 BK] < O(k) x exp(—%(8 ~ (1 +1n 8))),
3. Pr[L < k/p] < O(F) x exp(~£(8™" ~ (1 —1n).

Proof Sketch: By the spherical symmetry of N¢(0,1) each
Xi is distributed as N(0,1) [29, page 77). Define ¥; =
X3ioy + X%, for i = 1,...,%/2. Then, ¥; follows the Ex-
ponential distribution with parameter A = 1 (see [29, page
A7), Thus E(L) = Y ¥2 B(Y:) = (k/2) x 2 = k; also one
con gee that L follows the Gamma distribution with param-
cters & = % and v = k/2 (sce [29, page 46]). Since this
distribution is a dual of the Poisson distribution, we obtain
that
Pr{L > gk = Pr{P}* <v-1],

4Each component is chosen independently from the standard
normal distribution N(0,1).

613

where Py is a random variable following the Poisson distri-
bution with parameter at. Bounding the latter quantity is
a matter of simple calculation.

An interesting question is if the Johnson-Lindenstrauss
Lemma holds for other I norms. A partial answer is pro-
vided by the following two results.

Theorem 5 For any p € [1,2], any n-point set S C lg, and
anye> 0, there exist amap f: S — If withk = O(logn)
such that for allu,v € S.

A ~llu~=vllo < If(w) = FOIF < (L +€)llu = vllp.

Theorem 6 The Johnson-Lindenstrauss Lemma does not
hold for loo. More specifically, there is a set S of n points
in R% for some d such that any embedding of S in R has
distortion Q(’—:;_7”-)

Proof Sketch: We give a sketch of the proof of Theorem 6
based on the following two known facts.

Fact 3 (Linial, London, and Rabinovich [48]) Everyn-
point metric M can be isometrically embedded in IZ.

Fact 4 (Linial, London, and Rabinovich [48]) There are

graphs with n vertices which for any d cannot te embedded
in I with distortion o(log n).

Assume for contradiction that the Johnson-Lindenstrauss
Lemma holds for lo, with distortion ¢ = o(logn/+/F). Then
for any graph G with n vertices: we embed G in I using
Fact 3; by the assumption, we reduce the dimension to /‘
with distortion ¢; finally, we observe that as the norms 14,
and l{ differ by at most a factor of v/f, we have an em-
bedding of G in Iz with distortion ¢/ = o(logn), which
contradicts Fact 4. |

Proof Sketch: We give a sketch of the proof of Theorem 5
based on the following two known facts.

Fact 5 (Johnson-Schechtman [42]) For any1 < p <2
and € > 0, there exists a constant B > 1 such that for all
d > 1, the space I has a (14 €)-embedding in 15,

Fact 6 (Linial, London, and Rabinovich [48)) For any
€ > 0 and every n-point metric space M = (X,d) induced
by a set of n points in 12, there exists m such that M has a
(1+€)-embedding in H™. If all points have coordinates from
the set {1... R}, then M can be embedded isometrically in
H™ form=Rd

The function f is constructed implicitly by a sequence of
reductions: Find an (1 + €1)-isometric embedding of I? into
li (using Fact 5) and let S; be the image of S under this
mapping. Find an (1 + €2)-isometric embedding of S, into
H™ (using Fact 6) and let S> be the image of S; under this
ma?ping. Notice that for any 3,8’ € Sz, du(s,s') = ||s —
§'||3, hence we may assume that S resides in I5*. Finally,
find an (1 + e3)-isometric embedding of S; into 1§ (using
Lemma 6). It is now possible to choose suitable values for
€1, €2, and €3 to obtain the desired result. |

