Any of the following exercises are fair game for your final oral exam. I suggest that you write up your solutions neatly in your own handwriting to consult during that exam!

Additional Reminder: You have an option of doing a project instead of doing the homework... so keep that in mind (and check the syllabus) if that sounds more appealing.

Coherence, Reach, and Sublinear-time Compressive Sensing

42. Let $T=\{(x, y) \mid x, y \in \mathbb{Z}\} \subset \mathbb{R}^{2}$. What is the reach of T ? Let $\alpha \in \mathbb{R}^{+}$. What is the reach of $\alpha T:=\{\alpha \mathbf{x} \mid \mathbf{x} \in T\}$?
43. Let $r, R \in \mathbb{R}^{+}$be such that $r<R$. What is the reach of the d-dimensional annulus

$$
\left\{\left(x_{1}, \ldots, x_{d}, 0, \ldots, 0\right) \mid r^{2} \leq \sum_{j=1}^{d} x_{j}^{2} \leq R^{2}\right\} \subset \mathbb{R}^{D} ?
$$

44. Prove that a set $T \subset \mathbb{R}^{N}$ has infinite reach if and only if it is closed and convex.
45. Let $A \in \mathbb{C}^{m \times N}$ have ℓ_{2}-normalized columns. What is the largest possible value of coherence $\mu(A)$ that it can have? Prove that your answer is correct.
46. Do homework exercise 6.1.1 on page 197 of the notes (https://math.msu.edu/~iwenmark/Notes_ Fall2020_Iwen_Classes.pdf). Note that it has 4 parts.
47. Suppose you know that a 2π-periodic function $f:[-\pi, \pi] \rightarrow \mathbb{C}$ you want to learn about is composed of exactly one frequency component. That is, that $f(x)=A \mathbb{e}^{\mathrm{i} \omega x}$ for unknown parameters $A \in \mathbb{C}$ and $\omega \in \mathbb{Z} \cap[-127627,127627]$. Use ALIASING THM from class (see below) together with the Chinese Remainder Theorem in order to show that you can learn both A and ω by sampling f at just 51 different points $\in[-\pi, \pi]$.
(a) ALIASING THM: Let $\tilde{c}_{n}:=\frac{(-1)^{n}}{N} \sum_{k=0}^{N-1} f\left(-\pi+k \cdot \frac{2 \pi}{N}\right) \mathbb{e}^{\frac{-2 \pi \mathrm{i} n k}{N}}$. Then,

$$
\tilde{c}_{n}=\sum_{q=-\infty}^{\infty}(-1)^{q} c_{n+N q}=\sum_{m \equiv n \bmod N}(-1)^{\frac{m-n}{N}} c_{m}
$$

where c_{n} is the $n^{\text {th }}$ Fourier series coefficient of $f:[-\pi, \pi] \rightarrow \mathbb{C}$.
HINT: You will want to use 6 sets of equally spaced samples in $[-\pi, \pi]$, each associated with a different prime number.

