Mark Iwen, Spring 2023 Homework 5, CMSE 890-002, Randomized Numerical Lin. Alg.++

Any of the following exercises are fair game for your final oral exam. I suggest that you
write up your solutions neatly in your own handwriting to consult during that exam!

Additional Reminder: You have an option of doing a project instead of doing the home-
work... so keep that in mind (and check the syllabus) if that sounds more appealing.

Gaussian Widths, Covering Numbers, and Linear Systems with Solution Constraints
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Let T C RY be bounded, and denote the e-covering number of 7' by C.(T). Prove that the gaussian

width of T satisfies
w(T') > ce/log Ce(T),

where ¢ > 0 is an absolute constant. HINT: Use Theorem 5.2.4 on page 183 in the notes (https:
//math.msu.edu/~iwenmark/Notes_Fall2020_Iwen_Classes.pdf)).

Use Sudakov’s Minorization for Gaussian Widths (Theorem 5.2.6 in the notes (https://math.
msu.edu/~iwenmark/Notes_Fall2020_Iwen_Classes.pdf)) to show that the e-covering number of
BY == {x e R" | |x[]z < 1} is less than @2 for an absolute constant ¢ > 0. Is this a better
bound than the covering number bound found in Corollary 3.2.7 for any values of €?

Use Sudakov’s Minorization for Gaussian Widths (Theorem 5.2.6 in the notes (https://math.
msu.edu/~iwenmark/Notes_Fall2020_Iwen_Classes.pdf)) to upper bound the e-covering number
of BY :={xeR" | ||x[l; <1}.

Let T C RY be finite. Prove that w(7T) > %\/25 (minkzyer ||x —y|2) v/In(|T)).

Do homework exercise 5.2.3 on page 193 of the notes (https://math.msu.edu/~iwenmark/Notes_
Fall2020_Iwen_Classes.pdf)).

Let T C RY be bounded, and assume that w(7p) < C holds for all finite Ty C T. Prove that
w(T) < C then also holds.

Let f: R — R™ be a nondecreasing function such that w(7) < f;up{ﬂxlb | xeT} f(Ce(T)) de holds
for all bounded 7' C RY, where C,(T) denotes the e-covering number of 7. Prove that

sup{||x|l2 | x€T}
E[sup<g,x>] < / J(2C.(T)) de
xcT 0

then also holds for all bounded 7" c RY.

Let A € R™Y, and T C RY be finite with 10 > diam(7T) > mingzyer [|x — y[l2 > 0.1. Let
conv(T) € RY denote the convex hull of T. Suppose you want to solve Ax = b subject to the
constraint that b € A (conv(T)) C R™. Show that you must have m = N if conv(T) has interior
(which is “commonly the case” as soon as |T'| > N +1). However, prove that there exist A € R™*N
with m < C'log(|T[)/€* for some constant C" > 0 such that y := arg min, ¢ ony ()|l A% — bll2 always
satisfies ||y — x’||2 < € whenever b = Ax’ for some x’ € conv(T).

Let A € R™*Y, and T ¢ RY be the union of M d-dimensional affine subspaces. Suppose you
want to stably solve Ax = b subject to the constraint b € A(T). Show that you must have
m > C(d + log M) for some constant C' > 0. Furthermore, prove that there exist A € R™*" with
m < C'(d+log M) for some constant C’ > 0 such that Ax = b subject to the constraint b € A(T)
is always solvable.

Denote the set of all s-sparse vectors in RN by ¥, := {X € RY | x only has s nonzero entries}.
Suppose that A € R™* is an e-JL map of ¥, into R™ (recall Definition 3.1.1 from the notes https:
//math.msu.edu/~iwenmark/Notes_Fall2020_Iwen_Classes.pdf). Prove that every m x s sub-
matrix of A consisting of just s-columns of A is full rank, and that all its top s singular values
always belong to the interval [1 — ¢, 1+ €.
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