Any of the following exercises are fair game for your final oral exam. I suggest that you write up your solutions neatly in your own handwriting to consult during that exam!

Additional Reminder: You have an option of doing a project instead of doing the homework... so keep that in mind (and check the syllabus) if that sounds more appealing.

Problems Related to Randomized Numerical Linear Algebra

- Do homework exercise 3.1.5 on page 84 of the notes (https://math.msu.edu/~iwenmark/Notes_ Fall2020_Iwen_Classes.pdf).
- 15. Let × denote the Cartesian product of two sets. Suppose $M \in \mathbb{C}^{m \times N/2}$ is an ϵ -JL map of $T \cup S \subset \mathbb{C}^{N/2}$ into \mathbb{C}^m . Show that $g : \mathbb{C}^N \to \mathbb{C}^{2m}$ defined by $g(\mathbf{x}) := g((\mathbf{x}_1, \mathbf{x}_2)) = (M\mathbf{x}_1, M\mathbf{x}_2)$ is an ϵ -JL map of $(S \times S) \cup (S \times T) \cup (T \times S) \cup (T \times T) \subset \mathbb{C}^N$ into \mathbb{C}^{2m} .
- 16. Let $M_1 \in \mathbb{C}^{\tilde{m} \times N}$ be an ϵ -JL map of $S \subset \mathbb{C}^N$ into $\mathbb{C}^{\tilde{m}}$, and let $M_2 \in \mathbb{C}^{m \times \tilde{m}}$ be an ϵ -JL map of $M_1S := \{M_1\mathbf{x} \mid \mathbf{x} \in S\} \subset \mathbb{C}^{\tilde{m}}$ into \mathbb{C}^m . Show that $M_2M_1 \in \mathbb{C}^{m \times N}$ is a 3ϵ -JL map of $S \subset \mathbb{C}^N$ into \mathbb{C}^m .
- 17. Let $A \in \mathbb{C}^{n \times p}$, and suppose that $M \in \mathbb{C}^{m \times n}$ is an ϵ -JL map of the *p*-columns of A into \mathbb{C}^m . Prove that $||MA||_F^2 ||A||_F^2| \le \epsilon ||A||_F^2$.
- 18. Let $A \in \mathbb{C}^{n \times p}$, and suppose that $M \in \mathbb{C}^{m \times n}$ is an ϵ -JL map of the column span of A into \mathbb{C}^m . Prove that $|||MA\mathbf{y}||_F^2 - ||A\mathbf{y}||_F^2| \le \epsilon ||A\mathbf{y}||_F^2$ holds for all $\mathbf{y} \in \mathbb{C}^p$.
- Do homework exercise 3.2.1 on page 88 of the notes (https://math.msu.edu/~iwenmark/Notes_ Fall2020_Iwen_Classes.pdf).
- Do homework exercise 3.2.2 on page 89 of the notes (https://math.msu.edu/~iwenmark/Notes_ Fall2020_Iwen_Classes.pdf).
- 21. Do homework exercise 4.4.3 on page 157 of the notes (https://math.msu.edu/~iwenmark/Notes_Fall2020_Iwen_Classes.pdf).
- 22. Let $A \in \mathbb{C}^{p \times q}$ with rank $\tilde{r} \leq \min\{p,q\}$ have the full SVD $A = U\Sigma V^*$ where $U \in \mathbb{C}^{p \times p}$ is unitary, $V \in \mathbb{C}^{q \times q}$ is unitary, and $\Sigma \in [0,\infty)^{p \times q}$ is diagonal with its diagonal entries satisfying $\Sigma_{j,j} =: \sigma_j(A) \geq \Sigma_{j+1,j+1} =: \sigma_{j+1}(A) \geq 0$ for all $j \in [\min\{p,q\} - 1]$. Choose $r \in [p]$ and let $U_r \in \mathbb{C}^{p \times r}$ be U with it's last (p-r) columns removed, $V_r \in \mathbb{C}^{q \times r}$ be V with it's last $(q-\min\{r,q\})$ columns removed (or, if $r \geq q$, we set all entries of V_r to be 0), and let $\Sigma_r \in [0,\infty)^{r \times r}$ be a diagonal matrix with

$$(\Sigma_r)_{k,j} = \begin{cases} \Sigma_{k,j} \text{ for all } k \in [r], j \in [\min\{r,q\}] \\ \Sigma_{k,j} \text{ for all } k \in [r], j \notin [\min\{r,q\}] \end{cases}$$

Set $A_r := U_r \Sigma_r V_r^*$ and $A_{\backslash r} := A - A_r$.

- (a) Show that $A_r = U_r U_r^* A = A V_r V_r^*$.
- (b) Show that $A_{\backslash r}A_r^* = A_r A_{\backslash r}^* = 0$, and that $A_{\backslash r}^* A_r = A_r^* A_{\backslash r} = 0$.
- (c) Show that $A_{\backslash r}V_{\min\{r,\tilde{r}\}} = 0.$
- 23. Let $A \in \mathbb{C}^{p \times q}$ and suppose that $M \in \mathbb{C}^{m \times p}$ is an ϵ -JL map of the column span of A into \mathbb{C}^m . Prove that

$$|\mathrm{tr}\,(B^*(A^*A - A^*M^*MA)B)| = \left| \|AB\|_{\mathrm{F}}^2 - \|MAB\|_{\mathrm{F}}^2 \right| \le \epsilon \|AB\|_{\mathrm{F}}^2 = \epsilon \|B^*A^*\|_{\mathrm{F}}^2$$

holds for all $B \in \mathbb{C}^{q \times n}$.