Algorithmic applications of low-distortion geometric embeddings

Piotr Indyk*

August

1 Introduction

In this paper we survey algorithmic results obtained
using low-distortion embeddings of metric spaces
into (mostly) normed spaces. Specifically, we will
(mostly) consider mappings f : P4 — Pg, such that

e P4 is a set of points in the (original) metric
space, with distance function D(:, ")

e Pp is a set of points in the (host) normed space
g

e for any p,q € P4 we have

1/e-D(p,q) < ||f(p) — f(@)lls < D(p,q)

for a certain parameter ¢ called distortion. We
will allow more general definitions of distortion
later.

During the last decade or so, low-distortion embed-
dings became recognized as a very powerful toolkit
for designing efficient algorithms. Their usefulness
comes from the fact that they enable us to reduce
problems defined over “difficult” metrics to problems
over “much simpler” metrics. Since many problems
are defined purely in terms of metric properties of
their input, embeddings form a natural and versatile
paradigm for solving problems over metric spaces.

To illustrate this concept, consider the following
diameter problem: given a set P of n points in (¢,
find a pair of points p,q € P such that ||p — ¢||1 =
maxy g ep || — ¢'|l1. The problem can be obviously
solved in O(dn?) time, but this running time is not
very exciting when, say, n is large but d is small.
In the following we show that the input point set P
(and in fact the whole space [{) can be embedded
into I% such that d’ = 2%, The embedding (say f)
has no distortion (i.e., ¢ = 1) and can be computed in
O(ndd') time'. After applying f, it remains to solve
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n fact, the running time can be reduced to O(nd') by

employing a more careful algorithm.
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the diameter problem in lg;. This is an easy task,

since
Jnax, 1f(p) = f(Dlls = Inax max, |f(p)i — fa)i

—  max (max f(p)i —min f(q);

i=1...d' \ peP q€P
and therefore the diameter in [% can be found in
O(nd') time, which implies a O(ndd')-time algorithm
for computing the diameter in [¢.

It remains to construct the embedding f : I — lgl;.
We define f(p) by specifying all of its d’ coordinates.
Specifically, for each vector s € {—1,1}¢, we define
fs(p) = s -p. The value of f(p) is a vector ob-
tained by concatenating the values of fs(p) for all
s€{-1,+1}d

Why is f a no-distortion embedding ? Consider
any pair of points p,q € I{. We need to show ||p —
qll1 = |f (p) — f(@)]|co- Since f is linear, it is sufficient
to show ||p — ¢lli = [|f(p — @)||oc- This, however, is
easy to verify, since ||z||; = sgn(zx) - z, where sgn(z);
contains the sign of z; (i.e., sgn; is equal to —1 if z;
is negative and equal to 1 otherwise).

Thus, we obtain a linear time algorithm for the
diameter in ¢ for the case when d = O(1), by em-
bedding the set P into [, and solving the problem in
the latter space.

Before we proceed further, we note that the embed-
ding just constructed satisfies several very interesting
properties:

e fis an isometry, i.e., c = 1.
e f is linear.

e fis oblivious, i.e., for any p € P the value of f(p)
does not depend on other points in P. This is a
consequence of the fact that the domain of f is in
fact the whole space [{. Although this property
is not important for the diameter application, it
will be of large importance later when we con-
sider data structure problems where some points
are given on-line by the user and thus not all
points are known in advance.

)



o fis deterministic - we will define randomized em-
beddings later.

e f is explicit, i.e., can be defined by a closed-form
expression.

As we show later, all of the above properties be-
come useful for some applications. Regrettably, the
above embedding f : I¢ — lgl; is the only embedding
in this paper satisfying all of the above conditions.

1.1

Any embedding f : A — B can be classified based
on the types of spaces A and B. As mention be-
fore, in this paper we deal almost exclusively with
the case B = lg,’. We will survey the known results,
techniques and applications according to the follow-
ing taxonomy:

Overview

1. A is a finite metric M = (X, D) defined as a
shortest path metric over a graph: these types
of embeddings are considered in section 2. The
main applications of such embeddings are ap-
proximation algorithms for optimization prob-
lems on graphs. Other applications include
proximity-preserving labeling and proving hard-
ness of approximation.

2. Ais a subset of lg: here we consider the following
two scenarios:

(a) d' << d (and most often p = p'): we say
that such an embedding results in dimen-
sionality reduction. Such embeddings are
described in section 3.1. They allow us to
speed up algorithms whose running time de-
pends on the dimension (section 3.2).

(b) p # p'(and most often d' >> d): we de-
scribe them in section 3.3. They allow us
to switch from “difficult” norms (e.g., l2)
to “easier” norms (e.g., l,). An example of
such “internorm” embedding was presented
in the Introduction.

3. A is a special metric, usually more general than
a norm. In this survey we consider edit met-
ric (defining similarity between strings of char-
acters) and Hausdorff metric (defining similarity
between sets of points). Such embeddings allow
us to use algorithms designed for normed spaces
to solve problems over the more difficult metrics.
We describe the embeddings and their applica-
tions in section 4.

1.2 Disclaimer

The study of geometric representations of combina-
torial structures (notably graphs) is a very wide area
encompassing many disciplines. In this survey, how-
ever, we focus exclusively on geometric representa-
tions of metrics which achieve low distortion, as de-
fined in the introduction. For a survey of many other
ways of embedding combinatorial structures into ge-
ometric spaces, see [LV99].

1.3 Preliminaries

A metric space M (also called a metric) is a pair
(X, D), where X is a set of pointsand D : X x X —
[0, 00) is a distance function satisfying the following
properties for p,q,r € X:

e D(p,q)=0iff p=g¢q
* D(p,q) = D(q,p)
e D(p,r) + D(r,q) > D(p,q)

A ball B(p,r) of radius r > 0 around a point p € X
is a set of all points ¢ such that D(q,p) < r. Observe
that a ball in a finite metric is just a finite set of
points and therefore its cardinality is well defined.

We use I¢ to denote ®¢ under I, norm. For any
= (21,...,24) € R, we use ||z|, = (3, |=:|P)"/?
to denote the I, norm of z.

In this paper we use d exclusively to denote the
dimension of a normed space, and n to denote the
size |X| of the metric space X. Whenever n or d
appear without prior warning, their meaning should
be interpreted according to the above rule.

2 Embeddings of finite metrics

In this section we focus on embedding finite metrics
induced by graphs, e.g., obtained by computing all
pairs shortest paths. We will focus mostly on embed-
ding such metrics into norms; however, we will also
address (probabilistic) embeddings into probabilistic
trees.

2.1 Embeddings into norms

In this section we discuss known results on embed-
ding finite metrics into normed spaces. We start from
results on embedding general metric, after which we
switch to results for more specific classes of metrics,
e.g. metrics induced by planar graphs. For more
detailed treatment of the topics considered here (in-
cluding proofs) see Chapter 15 in [Mat].



The mother of all embeddings presented in this sec-
tion, from both historical and “technological” point
of view, is the following lemma by Bourgain [Bou85].

Lemma 1 Any finite metric (X, D) can be embedded
into 19 with d < oo with distortion O(log|X]).

The original bound on d proved by Bourgain was
exponential in n. However, it can be easily reduced
to O(log®n), as shown by [LLR94] 2. Since the lat-
ter proof uses probabilistic method, it immediately
yields a polynomial time randomized algorithm which
computes the desired embedding. The running time
of the algorithm is O(n?logn), assuming that find-
ing the value of D(p,q) for any p,q € X takes unit
time. The algorithm can be derandomized (preserv-
ing the polynomial time and the dimension) using
the method of conditional probabilities (this result
seems to be folklore). Alternatively, it can be de-
randomized using small sample spaces [LLR94]; that
method however results in d = ©(n?). Yet another
possibility is to observe [LLR94] that for any metric
M = (X, D) one can find, in deterministic polyno-
mial time, an embedding f : X — [ with distortion
at most 1+ € times the smallest distortion achievable
by any embedding of M into [2; the algorithm uses
Semidefinite Programming. The latter result implies
that if a low-distortion embedding ewists (i.e., via the
original Bourgain’s result), then it also can be com-
puted in polynomial time.

The proof of Bourgain’s lemma is not difficult, but
somewhat technical. Therefore, we give a proof of a
“sister” version of that lemma for the case of [, norm.
This lemma has been shown by Matousek in [Mat96].
Its proof contains all the ideas needed for the proof
of Bourgain’s lemma, and is considerably shorter.

Lemma 2 For any integer b > 0 let ¢ = 2b — 1
and M = (X,D) be any finite metric. Then M
can be embedded into 1%, with distortion c, where
d = O0(bn'/*logn).

Before we proceed with the proof for the general ¢,
consider first the case of ¢ = 1. This case (considered
by Frechet) has the following easy proof. Consider
the mapping f : X — [ defined as

flq) =< D(p1,q), ..., D(pn,q) >

where X = {p1...p,}. Then we can write

I1f(p) = f(@)lloo = max |D(p, pi) — D(q,pi)l

20ne can further reduce d to O(logn) using the results of
section 3.1.

By using triangle inequality, |D(p,p;) — D(q,pi)| <
D(p, q) for each p;, and therefore the mapping f is
a contraction. On the other hand, for p; = p, we
have [D(p, pi) — D(q,p:)] = D(g,p). Thus [|f(p) —
f(@llso = D(p,q) and therefore f is an isometry.
Proof (sketch): The idea of the proof for the gen-
eral case is similar. The main difference is that the
individual points p; are replaced by sets of points
A; C X, and the distance D(q,p;) is replaced by
D(q,A;) = mingea, D(g,a). The rest of the proof
remains almost the same. We construct a mapping
which is always a contraction (this part is again
proved using the triangle inequality). At the same
time, for any pair p,q, there is a “witness set” A;
which guarantees that f does not decrease the dis-
tance between p and ¢ by too much.
Formally, the embedding f is defined as

f(q) =< D(qul)a"'aD((bAd) >

for sets A; to be determined later. One can eas-
ily verify that the mapping is a contraction, for any
choice of the sets A;. It remains to show that for
each p,q € X we have ||f(¢q) — f(P)[lx > 1/c-D(p,q).
To this end, consider a specific pair p,q € X. It is
sufficient to make sure that at least one of sets (say,
A;) has the following two properties, for some r > 0:

1. A; intersects the ball of radius r around ¢ (or p,
resp.)

2. A; does not intersect the ball of radius r +
D(p, q)/c around p (or g, resp.)

Indeed, if such a set A; exists, then ||f(p) —
find such A;’s (working for all pairs p,q), observe
that if it happens that the cardinality of the ball
B, = B(g,r + D(p,q)/c) is not much larger that the
cardinality of the ball B, = B(p,r), and the two balls
are disjoint, then A; can be “constructed” using ran-
dom sampling. Specifically, assume that each point
in X is included in A; with probability ~ 1/|B,]|.
Then it is not difficult to show that the aforemen-
tioned two properties are satisfied (for A;,p and q)
B
Ak
cess about 1/p-logn times succeeds in constructing
a desired set A; with high probability. Of course, to
define p we need to know the value of |B,|. How-
ever, it is sufficient to know it only approximately,
and therefore we can construct A;’s for all possible
approximate values of |By|.

To complete the argument, we need to show that
for any (unordered) pair p,q € X there exists > 0

such that W is small (at most n'/’, to

with probability p ~ Thus repeating the pro-



be specific). This is shown using the following “ball
growing” argument. To start, take r = 0 so that

— |B(9,D(p,a)/c)|
B(p,0) = {p}. If [B(p,0)]

Otherwise, we know that |B(q, D(p,q)/c)| > n'/?.
In this case p,q switch the roles and we consider
W etc. If any of the ratios encountered
during this process is small, we are done. Otherwise,
after b steps, we have |B(q,bD(p,q)/c)| > n (or a
symmetric statement for p), which yields a contra-

diction.

< nl/? we are done.

O

Since for any vector z € R? we have ||z <

l|lzl|2 < Vd||z||so, by setting ¢ = logn in the above
lemma we obtain that any finite metric (X, D) can be
embedded into ¢ with distortion O(log?|X|). This
gives a weaker (but somewhat easier to prove) version
of the Bourgain’s lemma.
Lower bounds. The O(logn) distortion for embed-
ding general metric into Iy norm is tight [LLR94]. In
fact, we know specific metrics which cannot be em-
bedded with distortion o(logn), namely the shortest
path metrics over expander graphs. For the case of [,
the situation is a bit more complex. Let m(l,n) be
the maximum number of simple edges in an n-vertex
graph with girth (i.e., minimum cycle length) greater
than [. Matousek [Mat96] showed that for every fixed
¢ > 1 and an integer [ > ¢ there exist a metric which
cannot be embedded with distortion ¢ into [ for any
d = o(m(l,n)/n). The key points in his proof are: (a)
there are “many” graphs with cycles length > I (e.g.,
consider all edge subsets of a graph with high girth),
(b) each embedding of a metric induced by any of the
large-girth graphs has to be “different” if the distor-
tion of the embedding is small and (c) there is only
a “limited” number of “different” embeddings into a
normed space with given dimension. Since it is known
that for even [ we have m(l,n) = Q(n'+/0=1)  we
obtain a lower bound for the embedding dimension.
The bound can be improved for certain values of [; in
particular, for [ =4...7,10,11 it matches the upper
bound. It is conjectured [Erd64] that for ¢ = 2b we
have m(l,n) = ©(n'*t'/?) (the O(:) part of the conjec-
ture is known and easy to prove). If the conjecture is
true, then the upper bound of the Matousek’s lemma,
is essentially tight. We also note that (unlike for I2)
the above proof does not provide an explicit metric
that is hard to embed, even though constructions of
dense graphs with high girth are known.

Other embeddings of graph-induced finite
metrics. Bourgain’s lemma was the starting point
for the investigation of embeddings of graph-induced
metrics into normed spaces. By now, many variants
of that lemma have been discovered. A major re-

search direction in this area have been specialization,
i.e., constructing embeddings of restricted families of
metric spaces with distortion better than O(logn).
An important motivation here has been the following
conjecture concerning embeddings of planar graph
metrics. As we will see later in this section, a positive
resolution of this conjecture implies efficient approx-
imation algorithms for multicommodity flow prob-
lems.

Conjecture 1 Let G = (X, E) be a planar graph,
and let M = (X, D) be the shortest-path metric for
the graph G. Then there is an embedding of M into
Iy with O(1) distortion.

The conjecture has been first stated in a published
form in [GNRS99], but it has been known in the the-
ory community for some time before that. There has
been several results related to this conjecture. In
particular, Rao [Ra099] gave an embedding of such
metrics (into l»)? with distortion O(y/logn), which
improves the bound provided by Bourgain’s lemma.
His result in fact holds for any family of graphs
which do not contain K, , as a minor, for r = O(1).
Another result in that direction has been obtained
in [GNRS99], who showed that any family of graphs
excluding K> 3 (or K4) as a minor can be embedded
into [; with constant distortion.

One could ask if the Conjecture 1 holds also for
the lo norm. Surprisingly, Bourgain [Bou86] showed
that a complete binary tree (clearly a planar graph)
cannot be embedded into l» with distortion better
than O(y/loglogn). This bound was shown to be
tight for all trees by Matousek [Mat99], in fact he
showed that any tree metric can be embedded into I,
(p € (1,00)) with distortion O((loglogn)™in(1/2.1/p))
as well as a matching lower bound.

Several other results on embedding trees into
normed spaces are known. In particular, it is
known [LLR94] that any tree can be embedded into
[ with no distortion. It can be also isometrically

embedded into IS5 ™) [LLR94).

Finally, we mention some results on embedding
metrics with distances 1 and 2 into low-dimensional
I, norms. A (1,2) — B metric is a metric M = (X, D)
such that for any p € X the number of ¢’s such that
D(p,q) = 1is at most B, and all other distances are
equal to 2. It has been shown by Trevisan [Tre(1]
that any (1,2) — B metric can be embedded into lg,
1 < p < oo with d = O(Blogn). His definition of
embeddings is somewhat complex and akin to the
threshold embeddings discussed at the end of sec-
tion 3.1. For the case of p = oo one can in fact

3This also implies an embedding into 1, see section 3.3



prove that any (1,2) — B metric can be isometrically
embedded into lQ}Bbg n) (this was shown by the au-
thor).

Volume respecting embeddings. In a recent
paper, Feige [Fei00] introduced the notion of wol-
ume respecting embeddings (into l3). Such embed-
dings are significantly stronger than the embeddings
we discussed so far and are defined as follows. For
any k-point set P € l» define Evol(P) to be the vol-
ume of the k£ — 1-dimensional simplex spanned by the
points in P. For any metric M = (X, D), we define
Vol(X) = supy, x_;, Evol(f(X)), where f is required
to be a contraction (otherwise the volume X is in-
finite). Now, given an embedding f : X — [», we
define the k-distortion of f to be

. ( Vol(P) >1/(’“)
pex.pi—r \Evol(f(P))

If the distortion of f is D, we call f (k,D)-volume
respecting.

Since for X = {p,q} we have Vol(X) = D(p,q)
and Evol(f(X)) = ||f(p) — f(¢)|], 2-distortion of an
embedding is exactly the same as its distortion. For
k > 2, Feige showed an embedding (similar to the
one used in the proof of Bourgain’s lemma) which is

(k,O(logn + v/klognlog k)-volume respecting.

2.2 Applications of embeddings into
norms

Approximation algorithms. The application that
introduced finite metric embedding tools to theoret-
ical computer science was the approximation algo-
rithm for the sparsest cut problem [LLR94]. In this
problem we are given an undirected graph G = (V, E)
with cost function ¢ : E — RT; moreover, we are
given a sequence of k “terminal” pairs {s;,t;}, to-
gether with demands d(i), i = 1...k. The goal is to
find S C V which minimizes

ZuES,vers c({u, ’U})
Ei:si €S, t;,evV—-S d(l)

In other words, we want to minimize the cost of
the cut while maximizing the (weighted) number of
separated pairs. The problem is NP-hard. The
first algorithms for this problem were given by Rao
and Leighton [Rao87, LR99] who showed a O(logn)-
approximation algorithm for the case when d(i) = 1
and all pairs of vertices are terminal pairs. After a
long sequence of improvements, Linial et al [LLR94]
gave a O(log k)-approximation algorithm for the gen-
eral case, which is the best bound to date.

p(S) =

The algorithm of [LLR94] is based on Bourgain’s
lemma, and inherits its approximation ratio directly
from the distortion guaranteed by that lemma. Since
the definition of the sparsest cut involves a graph, not
a metric, the use of the lemma, is somewhat indirect.
In a nutshell, [LLR94] observed that a (fractional) so-
lution to a linear relaxation of a natural integer pro-
gram for the sparsest cut can be viewed as a metric
over V. Moreover, they observed that if that met-
ric can be isometrically embedded into [;, then one
can compute (in polynomial time) an integral solu-
tion to the program with the cost equal to the cost
of the fractional solution. Finally, they show that if
the metric can be only approximately embedded into
I (say, with distortion ¢), then the cost of the inte-
gral solution is at most ¢ times larger than the cost of
the fractional solution. Thus Bourgain’s lemma im-
plies O(logn) factor approximation for the sparsest
cut; small modification of this argument improves the
bound to O(log k).

An interesting and useful feature of the afore-
mentioned algorithm is that it specializes to specific
classes of graphs. This means that, if for some class
of (weighted) graphs it is known that the metrics
induced by graphs from that class can be embed-
ded with distortion ¢, then the approximation ra-
tio of the algorithm is O(c). Therefore, better ap-
proximation factors can be obtained e.g., for planar
graphs. In fact, if (the algorithmic version of) Con-
jecture 1 holds, then there is a O(1)-approximation
algorithm for sparsest cut for planar graphs, which
gives a strong motivation to prove (or disprove) the
conjecture.

To the knowledge of the author, the approximation
algorithm for the sparsest cut problem constitutes
the only application of Bourgain’s lemma to opti-
mization problems. However, additional approxima-
tion algorithms have been designed by using volume-
respecting embeddings. The first problem success-
fully attacked using this tool was the bandwidth prob-
lem. The problem is again NP-hard. However, an ap-
proximation algorithm with o(n) ratio turned out to
be unusually difficult to discover, until Feige [Fei00]
gave an algorithm with logo(l) n approximation ra-
tio (a O(y/n)-approximation algorithm was indepen-
dently discovered in [BKRV9S]). The description of
the algorithm and its correctness proof is long and out
of the scope of this paper. We only mention that, as
before, the definition of the problem involves a graph
(not a metric) and therefore the embedding theorem
is again used as a building block of the algorithm,
not as a reduction to a (simpler) version of the origi-
nal problem. Other applications of volume respecting



embeddings have been given in [Vem98].
Proximity-preserving labeling. Proximity-
preserving labeling (introduced in [Pel99]) constitutes
another application of embeddings (this time, into
l»). The idea is to provide an algorithm which
for any metric M = (X, D) constructs a label func-
tion f : X — {0,1}¢, such that given f(p) and
f(q@), for any p,q € X, one can reconstruct the dis-
tance D(p,q), possibly with some multiplicative er-
ror. To avoid discretization problems, we assume all
distances are polynomially bounded integers. Since
in such a case a label function always exists (e.g., one
can take f(p) equal to the binary representation of
D), the goal is to minimize d, possibly as a function
of the multiplicative error.

It is quite immediate that (approximate) embed-
dings discussed in earlier sections provide (approx-
imate) solution to the labeling problem: one just
needs to verify that the points-images of the em-
beddings have small integer coordinates and there-
fore can be represented using O(logn) bits. Inter-
estingly enough, the labeling scheme obtained from
Matousek’s lemma gives the best known bounds for
general metrics !

The usefulness of embeddings is not restricted to
the case of general metrics. In particular, the isomet-
ric embedding of trees into I5°¢™ provides the best
possible labeling scheme for trees. However, the more
general result of [GPPRO1] stating that any family of
graphs with vertex separator of size ¢(n) has a label-
ing scheme with d = O(c(n) logn + log® n), does not
have (yet) a counterpart in the embedding world.

The connection between the embeddings and label-
ing schemes goes also in the other direction: the lower
bounds for labeling schemes provide lower bounds for
embeddings. In general this connection holds only for
embeddings with integer coordinates. However, for
the case of l,, Mihai Badoiu (personal communica-
tion) observed that if f is an isometry from a metric
M with distances in the set {0,..., M} into %, then
there exists another isometry f': M — [% with co-
ordinates in {0...M}. The isometry f’ is obtained
by rounding each coordinate of f to the nearest in-
teger. Thus the lower bounds for labeling schemes
for unweighted graphs provide lower bounds for em-
beddings into l.. In particular, it has been proved
in [GPPRO1] that any labeling scheme for trees must
use Q(log® n) bits, which matches the aforementioned
upper bound. Several other non-trivial lower bounds
can be obtained in this way, including Q(n'/?) bound
for bounded degree graphs and Q(n'/3) for bounded
degree planar graphs.

Finally, we mention that for many applications one

does not need the full power of proximity-preserving
labeling schemes. Instead, one might just need a low-
storage data structure which supports approximate
distance queries. In this case, more efficient solu-
tion has been given by Thorup and Zwick [TZ01].
In particular, their data structure allows one to find
an approximate distance between any two points in
constant time, as opposed to n*(!)-time when the em-
beddings are used.

Hardness results. The embeddings of metric
spaces with distances 1 and 2 into low-dimensional Z,,
norms have been used by Trevisan [Tre01] and the au-
thor to show hardness of an approximation of certain
problems (notably TSP) in low-dimensional normed
spaces. The hardness follows from the fact that many
problems are known to be (quasi)-NP-hard to approx-
imate up to certain constant in (1,2) — B metrics, for
B = O(1). Thus, the existence of an approximation

scheme for such problems over [¢ norm, with running

time 22O(d), would imply subexponential-time algo-

rithms for NP-hard problems.

Other applications. The concept of embedding fi-
nite metrics into Euclidean space is intriguing by it-
self. It is plausible that an interesting structure of
the metric can be discovered by analyzing its embed-
ding into low-dimensional spaces. For a case study
see [LLTYO97].

2.3 Embeddings
trees

into probabilistic

This section constitutes the only major departure
from the main theme of this survey, in the sense that
we address here the problem of embedding metric
spaces into convex combinations of trees, instead of
normed spaces. However, as we will see, there is a
fairly close relation between these problems. In par-
ticular, since we know that trees (and therefore their
convex combinations) can be embedded into I; with
no distortion, the embeddings presented in this sec-
tion work as well for the [; norm.

Formally, we will consider the following embed-
dings. Let T =T ...T}), be a sequence of (ordinary)
metrics T; = (X, D;), and let & = a1 ...a; be pos-
itive reals. Then T,« define a probabilistic metric
(X, D) via the formula D(p,q) = >, a;D;(p,q), for
any p,q € X. Without loss of generality we will as-
sume that ), @; = 1; in this way, we can think about
D as the expected distance between p and ¢ according
to the distribution defined by «;’s.

For any finite metric M = (Y, D) and probabilistic
metric (X, D), we say that an embedding f: Y — X
has distortion ¢, if



1. f never contracts, i.e, Di(f(p), £(2) > D(p,q)
forallp,geY andi=1...k

2. f expands by at most a factor of c on the average,
ie., D(f(p), f(q)) < eD(p,q) for any p,q €Y

The requirement (1) means that such embeddings
are stronger than ordinary embeddings of (Y, D) into
(X, D), since the non-contraction property has to be
satisfied by each of the metrics defining (X, D). How-
ever, this stronger requirement is crucial for the ap-
plications, as we will see in a moment. To avoid con-
fusion, we will say that such embeddings are proba-
bilistic (as opposed to ordinary or deterministic ones).

The usefulness of probabilistic metrics comes from
the fact that a sum of metrics is much more pow-
erful than each individual metric. For example,
it is not difficult to show that there are metrics
(e.g., cycles [RR, Gup01]) which cannot be embed-
ded into tree metrics with o(n) distortion. In con-
trast, it is known than any finite metric can be em-
bedded into a probabilistic metric over trees met-
rics with only polylogarithmic distortion ! The first
result of this type has been obtained by Alon et
al [AKPWO1]. Their embeddings had distortion of
20(lognloglogn) = A fow years later Bartal [Bar96]
improved the distortion to O(log®n) and later even
to O(logn loglogn) [Bar98]. He also showed wide ap-
plicability of such embeddings to many on-line and
off-line problems (we will discuss some of them in the
next section). In fact, Bartal’s constructions employ
trees of very special structure called Hierarchically
well-separated trees, or HST’s; this makes the task of
designing algorithms for such trees even easier.

Below, we will show a weaker result which yields

the bound of O(log® n - log A), where A is the diam-
eter of the metric, assuming the minimum interpoint
distance in the metric is 1. Although weaker than the
best known bound, the result has a very simple proof.
The proof is a modification of the proof from [Bar96],
with some additional ideas contributed by David Pe-
leg, Ashish Goel and the author.
Proof: First, we embed (X, D) into [, with distor-
tion @ = O(logn), where d = O(log”n). This can
be done by Matousek’s lemma from section 2.1. By
proper scaling, we can assume that the embedding
does not contract, and the distances are never ex-
panded by more than a factor of a. Therefore, we can
now assume that the metric (X, D) is induced by [Z .
We will show that such metrics can be embedded into
probabilistic trees with O(dlog A) distortion. Then
we will multiply the bound by a = O(logn) to get
the final distortion.

Define an [-partition of X to be the set of disjoint

clusters Xy ... X;, whose union covers X and for any
D, ¢ from the same cluster we have D(p,q) <. In [,
a d-dimensional grid with cubic cells of side length
[ naturally induces an [-partition of X (each X is
defined as the set of points falling to the same cell,
and we ignore empty clusters).

Since we need to define a probabilistic metric, we
need to define probabilistic partitions. Specifically, an
(r, p)-partition is a probability distribution over r - p-
partitions, such that for any p,q € X the probability
z(p, q) that p, ¢ end up in different clusters is bounded
from above by D(p,q)/r. Again, it is easy to see that
for p = d, translating a cubic grid of side rp by a
random vector induces an (r, p)-partition.

Now we are ready to build the (probabilistic) tree.
Instead of describing the distribution explicitly, we
just show how to generate one tree at random from
that distribution. We generate a random tree T re-
cursively. Define r; = A/2%. Firstly, we generate
a random 7gp-partition from a probabilistic (rg, p)-
partition (recall that the latter is a distribution). In
other words, we translate randomly a grid of side r¢p.
Then, we recursively generate a random tree T; for
each partition set X;, (using radii r1, 72 etc). Denote
the root of T; by u; Now comes the crux of the con-
struction: we create an artificial root u, and connect
u to all u;’s with edges of length pry. This defines
our random tree 7.

To make sure that the recursion ends, we stop re-
cursion whenever the cluster to be partitioned con-
tains only one element (there is really not much to
partition there anyway). It is easy to see that the
recursion depth is O(log A). Also, one can observe
that all of the original points of X became leaves of
T.

Now we need to prove that the construction is cor-
rect. Firstly, we will take care of non-contraction. Let
Dr(p,q) be a distance induced by our tree for some
p,q. Since r;’s decrease exponentially, there is always
one r; such that r;p < D(p,q) but r;p > D(p,q)/2.
Thus, at the i-th level of the tree the points p,q are
separated, i.e., they belong to different trees, say T},
and T,. Thus the only path from p and ¢ has to
go through the common ancestor u of 1), and Tj.
But such a path will cost at least two times the
length of any edge from u to its children, which is
two times pr;, which is at least D(p,q). Therefore,
Dr(p,q) > D(p,q) for any T, p, q.

The upper bound on D is only slightly harder to
prove. Basically, for any tree T, the distance be-
tween D(p, q) is dominated (up to a constant factor)
by 2r;p, where ¢ is the highest tree level on which p, g
are still separated. We can bound the latter value



from above by 2p 3", riI(i,T,p, q), where I(i,T,p,q)
is 1if p and ¢ are separated by the partition on the
level ¢, and is 0 otherwise. The expected value of that
sum is equal to

20 riwi(p,q) < 2p) r:D(p,q)/ri
i i

where z; is the probability of a cut on the level ¢.
O

As we mentioned earlier, the trees generated by the
above construction (and the constructions of Bartal)
have very special structure. In particular, on each
path from the root to the leaf, the lengths of the
consecutive edges decrease exponentially (in our case
by a factor of 2). Moreover, the distances from any
node to all of its children are the same. This special
structure makes the task of designing algorithms for
such trees even easier.

A slight problem with the above construction is
that the generated trees contain artificial nodes (i.e.,
nodes which do not belong to the original metric
(Y, D). However, it is not very difficult to see that
those nodes can be removed from the trees by increas-
ing the distortion by only a constant factor. In fact,
one can get rid of such nodes in any tree, as shown
by Gupta [Gup01].

It is easy to see that a convex combination of tree
metrics can be embedded into /; with no distortion.
Thus Q(logn) is a lower bound for the best achievable
distortion, since otherwise we could embed finite met-
rics into I; with distortion o(logn). This means that
the upper and lower bounds are almost tight, modulo
the loglogn factor. However, if the embedded metric
M = (X, D) is “special”, better bounds are known.
In particular, if M is induced by I¢ norm, the distor-
tion becomes O(d™@*(1/p1=1/P)|og ) [CCG198]. If
M is a planar graph metric, one can achieve the dis-
tortion of O(logn) (Garg, Konjevod and Ravi, per-
sonal communication).

We also mention that the probabilistic met-
ric can be found deterministically in polynomial
time [CCGT98].

2.4 Applications of embeddings into
probabilistic trees

The original motivation for the result of Alon et al
was design of competitive online algorithms. An on-
line algorithm performs actions in response to a se-
quence of requests without the knowledge of the fu-
ture requests. Its performance is measured by divid-
ing the cost incurred by the algorithm by the optimal

cost of serving the requests by an “omniscient” algo-
rithm with full knowledge of all requests, and taking
the worst case of this ratio. An example of a classical
on-line problem is the metrical task systems problem.
The input to this problem consists of a metric space
M = (X, D), and a stream of tasks. Each task is an
| X |-dimensional vector of non-negative reals, assign-
ing cost to each point in X. The goal of the algorithm
is to complete each task by maintaining one server.
When a new task (say 7) comes, the algorithm can
move the server from its current position (say x) to
a new position (say y). The cost incurred by the al-
gorithm in each such step is equal to D(z,y) + 7(y);
the total cost is equal to the sum of the costs of all
steps. The (highly nontrivial) decision which the al-
gorithm has to make is choosing the right point y for
each task.

Assume that the “adversary” who designs the
worst case sequence of requests does not have the
knowledge of the random bits chosen by our algo-
rithm (or alternatively, the worst case input is pre-
pared before the algorithm chooses its random bits).
The crucial observation of Alon et al is that for many
problems defined over metric spaces, embedding M
into probabilistic metric (Y, D) (defined, say, by met-
rics T; and coefficients «;) allows one to reduce the
problem over M to the same problem over T; ! In-
deed, assume that we have an algorithm A for Tj’s
with competitive ratio C. To run the algorithm on
the metric M, we choose one of the 7;’s at random ac-
cording to the distribution defined by «;’s. Then we
run A on the metric M “pretending” it is the metric
T;.

Why and when does it work ? If the cost of a so-
lution is defined only in “metric terms” (e.g., as in
the case of metrical task systems), then we can use
the following argument. Firstly observe that by the
property (2) of probabilistic embeddings, an optimal
solution (with cost S) for M is transformed into a so-
lution for T; with expected cost < ¢-S. Therefore, the
algorithm for T; will produce a solution with expected
cost at most C - ¢-S. By the property (1) of prob-
abilistic embeddings, that solution induces a feasible
solution for M with equal or smaller cost. Therefore,
the resulting algorithm for M is ¢- C-competitive (in
the expected sense).

The above approach significantly simplifies the task
of designing algorithms for many problems: instead
of designing an algorithm for general metrics, it is
sufficient to design an algorithm for (quite special)
trees ! Thanks to this approach, several novel on-
line algorithms have been discovered for problems
for which solutions seemed out of reach using ear-



lier methods [Bar96, Bar98, BBBT97]. In particular,
Bartal et al [BBBT97] gave a log®!) n-competitive
algorithm for the aforementioned metrical task sys-
tems problem, solving a long-standing open problem.
Their result has been further improved in [FMO00],
also using probabilistic embeddings.

Another area in which the probabilistic embed-
dings into trees turned out to be useful is the
theory of approximation algorithms. In this case,
the algorithm has full information about the in-
put, but finding the optimum solution is NP-hard,
so one needs to approximate it anyway. Since
many problems are NP-hard for general metrics but
polynomial time solvable for trees, it is not sur-
prising that probabilistic embeddings led to best
known approximation ratios for many problems,
such as: buy-at-bulk network design [AA97], group
Steiner tree problem [GKR98], covering Steiner prob-
lem [KROO], metric labeling [KT99, CKNZ01], min-
imum cost routing tree problem [WLB'99], hier-
archical caching [KPR99]|, capacitated vehicle rout-
ing problem [CR96], concurrent distributed queue-
ing [HTWO01] and min-sum clustering [BCRO1]. In
addition, the first nontrivial approximation ratios for
k-median have been obtained through this method
(the bounds have been improved since then).

We also mention that probabilistic embeddings
into trees have been also used in the applied con-
text [AS98, Sha98, JJJT00]. We elaborate more on
those applications in section 5.

3 Embeddings of norms

In this section we leave the territory of (more or less)
general finite metrics and instead focus on embed-
ding normed spaces. The main difference between
these two scenarios is that the embeddings described
in this section map the whole normed space into the
host space, as opposed to a finite set of points. This
feature becomes extremely useful in many situations
where the set of points of the embedded metric is not
fully known in advance, e.g., when the points consti-
tute a solution to an NP-hard problem, or when they
are given on-line by the user at any point of time. The
price for this feature is (a) lesser generality: the orig-
inal space must have norm (or norm-like) structure,
and (b) weaker guarantees: some of the embeddings
have only probabilistic guarantees, or apply to only
a selected range of distances. Despite of these lim-
itations, embeddings of norms proved very useful in
solving geometric problems, both in theory and prac-
tice.

3.1 Dimensionality reduction

The goal of the dimensionality reduction is to map a
set of points in a high-dimensional space to a space
with low dimension, while (approximately) preserv-
ing important characteristics of the pointset. In our
case, the characteristics to be preserved (approxi-
mately) are all the pairwise distances between the
points in the data set. It is intuitively clear (although
not so easy to prove) that this task cannot be accom-
plished for all points in all pointsets, since otherwise
we could pack the whole high-dimensional space into
a lower-dimensional one. To avoid this problem, we
will make the embedding randomized. Formally, we
say that a distribution over mappings f from metric
M = (X, D) into metric M' = (X', D’) is a random-
ized embedding with distortion ¢ and failure proba-
bility P, if for any pair of points p,q € X we have
D(p,q)/c < D(f(p), f(q)) < D(p, q) with probability
1 — P. We also generalize the definition to the case
when the lower bound for D(f(p), f(q)) holds with
probability 1 — P; and the upper bound holds with
probability 1 — Ps; in this case we call P; the contrac-
tion probability and P» the expansion probability. In
the following, we will call the points f(p) sketches of
D

It is instructive at this point to compare random-
ized embeddings with the probabilistic ones, intro-
duced in earlier sections. Although both definitions
refer to distributions over embeddings rather than
deterministic embeddings, there are two important
differences. Firstly, randomized embeddings provide
bounds on the probability of low distortion, while
probabilistic embeddings provide bounds on ezpected
distortion. This implies that, e.g., in general we
cannot “derandomize” randomized embeddings into
l1, as we did for the probabilistic embeddings. The
second difference is that, in case of randomized em-
beddings, both the lower and the upper bound for
D(f(p), f(q)) holds with certain probability, while for
the probabilistic embeddings the lower bound holds
always. Thus, the two definitions are substantially
different. This said, there does not seem to be any
reason why the first embedding is called “probabilis-
tic” while the second is called “randomized” (revers-
ing the names would work as well). However, since
the definition of probabilistic embeddings seems al-
ready well established, we adopt the term “random-
ized” for embeddings described in this section.

The fundamental result on randomized dimension-
ality reduction was proved by Johnson and Linden-
strauss in 1984 (and rediscovered later in the applied
setting in [Kas98]). It says that:



Lemma 3 There is a randomized embedding from
the space 1$ into lgl with distortion 1+ € and failure
probability eQ(=d'/e*)

We mention that traditionally the Johnson-
Lindenstrauss (JL) lemma is stated in terms of exis-
tence of an (ordinary) embedding of a set P of points
in I¢ into I¢ with d’ = C'logn/e2, C = O(1). This is
a simple corollary of the above lemma, achieved by
taking failure probability lower than 1/n?. However,
as we will see later, it is crucial for most applications
that the embedding is randomized, since (a) it allows
us to guess a good embedding quickly and (b) choos-
ing the embedding does not require prior knowledge
of the points we want to embed.

Since the original proof of the above lemma (by
Johnson and Lindenstrauss) was fairly complex and
guaranteed only a large constant in the exponent, sev-
eral simpler proofs appeared in the literature [FM88,
IM98, DG99, AV99]. Below we present a proof by
Motwani and the author, presented first in [IM98].
The formal statement of their version of the lemma
is as follows.

Lemma 4 Letu be a unit vector in R¢. For any even
positive integer k, let Uy, ..., Uy be random vectors
chosen independently from the d-dimensional Gaus-
sian distribution* N¢(0,1). For X; = u - U;, define
W =W(u) = (X1,...,Xg) and L = L(u) = ||W||3.
Then, for any 8 > 1,

1. E[L] =k,
2. Pr[L > Bk] < O(k) x exp(—£(8 — (1+1n))),
3. Pr[L < k/B] < O(k) xexp(—4(8! = (1-1n §))).

In other words, the lemma shows that the length
of the image of v under a random mapping is sharply
concentrated around its mean. As we will see later,
the choice of the normal distribution to define the
mapping is not crucial and essentially any random
mapping will do as well (this fact is often called “con-
centration of measure phenomenon”).

We make a few observations before we proceed with
the proof. Firstly, the mappings f defined above
(as all other mappings in this section) are linear.
This implies that ||£(p) — f(@)ll: = If(p — @)l =
Ip = dll2 - 1f (w)ll2, where u = (p — g)/Ilp — qllz s a
unit vector. Therefore, the above statement implies
Lemma 3. Second, all entries in the matrix defining f
are chosen independently from the same distribution.

4Bach component is chosen independently from the stan-
dard normal distribution N (0, 1).

This will become crucial for some of the applications
in section 3.2.

Proof: It is well known that a sum of random
variables with normal distribution has itself a nor-
mal distribution, and that its variance is equal to
the variances of the sum components. Since u is a
unit vector, all X;’s follow the normal distribution
with unit variance. Define YV; = X3, ; + X3;, for
i=1,...,k/2. Then, Y; follows the exponential dis-
tribution with parameter A = 1 (see [Fel91, page 47]).

Thus E[L] = 2 E[V;] = (k/2) x 2 = k; also one
can see that L follows the Gamma distribution with
parameters & = § and v = k/2 (see [Fel91, page 46]).
This distribution is a “dual” of the Poisson distribu-

tion, i.e.,
1/2
Pr[L > pk] = Pr[ng <v-—1],

where P is a random variable following the Poisson
distribution with parameter at. From the definition
of Poisson distribution

v—1 (O{t)l
PriPf<v—-1]= E et -
i!

i=0

and therefore

Pr[L > Bk] =

IN
<
]

v
< wve —
= v(ePBe)? = ve v(B-(1F+In5)

which implies (2) since v = k/2. The part (3) can be
proved in a similar fashion.

O

By plugging the bound from the above lemma into

Lemma 3 while setting the failure probability to #,

we obtain that the following corollary.

Corollary 1 There exists a (1 + €)-distortion em-
bedding of n points in 1 into 1§ with d' tending to
4lnn/e* as € tends to 0.

This is the best (asymptotically) upper bound
known so far. As shown in [EIO01], the mapping
guaranteed by the above Corollary can be found in
deterministic O(n*d(logn + 1/¢)°M) time.

Although the proof of Lemma 4 explicitly uses the
fact that the random entries in the embedding matrix
are taken from normal distribution, it is fairly intu-
itive that some version of the lemma should hold even



if we choose the entries from other “reasonable” dis-
tributions. This is indeed true; in fact the first proofs
of JL lemma used matrix with random orthonormal
vectors. Moreover, as shown in [Ach01], a version of
the lemma holds even for the (probably) simplest pos-
sible random distribution, namely when each entry of
the matrix is chosen independently and uniformly at
random from the set {—1,1}. In fact, [Ach01] also
shows that it is sufficient to choose each entry to be
0 with probability 2/3 and —1 or 1 with probability
1/6 each; this allows the mapping to be computed
several times faster. Interestingly enough, his bound
for d' matches (or even slightly improves) the bound
using normal random variables ! (although the proof
is much more complicated).

It is not known if (although likely that) the up-
per bound for d' as in Corollary 1 is tight. The best
lower bound so far is Q(log n/(e? log(1/¢))), which fol-
lows (Charikar and Matousek, personal communica-
tion) from the lower bound for the following problem:
Given n d’-dimensional unit vectors such that all pair-
wise dot products are at most € in magnitude, what
is the minimum value of d' ? Alon (personal commu-
nication) observed that d' = Q(logn/(¢*log(1/¢))),
which implies the aforementioned lower bound. Sim-
ilar lower bounds can be also obtained for p # 2
(Charikar, personal communication).
Dimensionality reduction for I/, norms. Is it
possible to prove an analog of Johnson-Lindenstrauss
lemma for norms different than l»? Surprisingly
enough, the answer to this question is not known.
However, it was shown in [Ind00b] that a somewhat
weaker theorem indeed holds for [;.

Lemma 5 For any 1 > €,6 > 0 there is a random-
ized embedding from I into lf’ with distortion 1 + €
and d' = (log 1/6)°1/€) | with contraction probability
0 and expansion probability 1 — €.

We remark that the above lemma holds as well for
any /, norm, where p € [1,2].

Note two major differences between the above
lemma and JL lemma. Firstly, the dimension d’
depends exponentially (not polynomially) on 1/e.
Second, the probability of (high) expansion is only
slightly bounded away from 1. This implies that the
above “asymmetric” lemma (unlike JL lemma) can-
not be used to embed n point metric in [{ into a
lower-dimensional space with small distortion; in fact
no such result is known. Nevertheless, there are situa-
tions when we can afford the probability of expansion
to be fairly high; in particular, it is the case when we
want to preserve (approximately) the distance from

a fixed point to its nearest neighbor in a set of many
points.

The proof of Lemma 5 uses a tool of indepen-
dent interest, namely p-stable distributions. A dis-
tribution over reals is called p-stable, if for any inde-
pendent random variables X,Y, Z chosen from that
distribution, and for any a,b € R, the distribu-
tion of aX + bY is the same as the distribution of
(|a|? 4 |b|P)*/?Z. Such distributions are known to ex-
ists for any p € (0,2]. In particular (as witnessed
in the proof of Lemma 4) normal distribution is 2-
stable. It is also known that Cauchy distribution
is 1-stable, and Levy distribution is 1/2-stable. Un-
fortunately, these are the only p-stable distributions
whose densities can be expressed in a closed form.
However, for any p there are algorithms for generat-
ing random numbers according to a p-stable distribu-
tion [CMST76].

The proof of Lemma 5 proceeds by choosing each

entry in the embedding matrix (call it A) from a
1-stable (i.e., Cauchy) distribution. In this way we
know that for any vector € R?, each coordinate of
Az has Cauchy distribution as well, and thus ||Az||; is
proportional to ||z||;. Unfortunately, Cauchy distri-
bution does not have the mean, and therefore || Az||;
cannot be shown to be sharply concentrated around
its (infinite) mean. However, one can nevertheless
prove “one-sided” concentration lemma, i.e., that the
left tail of the distribution of ||Az||; is exponentially
small.
Dimensionality reduction for Hamming met-
ric. The dimensionality reduction lemmas presented
so far have been very “continuous”, e.g., they were
constructed between continues spaces using continu-
ous distribution. However, as shown by Kushilevitz
et al [KOR98], one can construct similar embeddings
between Hamming spaces, which clearly are very dis-
crete objects. To state their result, we need to intro-
duce (yet another) more general definition of embed-
dings. We say that a distribution over mappings f
from metric M = (X, D) into metric M' = (X', D') is
a randomized threshold (1,12, 7], 7h)-embedding with
failure probability p, if for any pair of points p,q € X
the following two properties are satisfied

e if D(p,q) <1 then D(f(p), f(q)) <7}
e if D(p,q) > ry then D(f(p), f(q)) > r}

with probability 1 — p.
Armed with this definition, we can formally state
the result of [KOR98] as follows.

Lemma 6 For any r € [1,d] and € > 0 there ex-
ists r' > 0 such that there is a randomized (r,(1 +



e)r,r', v’ + 1)-embedding from d-dimensional Ham-
ming metric into a d'-dimensional Hamming metric
with failure probability P where d' = O(log(1/P)/€?).

The lemma was proved by constructing a random
binary matrix A (with a proper density of 1’s), and
mapping each point p to Ap, where the addition is
performed modulo 2. A slightly different (and non-
linear) embedding was considered in [Ind00a], with
the goal of simplifying the estimation of failure prob-
abilities. Both versions can be modified so that the
embeddings approximately preserve the R/r gap.

3.2 Application of dimensionality re-
duction

Among the embedding techniques discussed in this
survey, dimensionality reduction techniques seem to
have spun the largest number of algorithmic applica-
tions, at least so far. One explanation for this phe-
nomenon seems to be that reducing the dimension
of the input space has an obvious algorithmic advan-
tage, since the running time of most geometric algo-
rithms is at least proportional to the dimensionality
of the space. Therefore, dimensionality reduction is a
natural tool for designing efficient algorithms in high
dimensions. It should be mentioned that for some of
the applications the high-dimensional nature of the
problem is not immediately apparent and discover-
ing it is a major part of algorithm design process.

In the following we sketch the algorithmic appli-
cations of dimensionality reduction discovered so far.
We classify them into 4 categories, depending on the
way the dimensionality reduction is used:

e straightforward implications: results following
from a straightforward composition of dimen-
sionality reduction techniques and known geo-
metric algorithms. The time/space requirements
of the algorithms are reduced from T'(n,d) to
T(n,10g°Y n) + O(ndlog®? n), which yields
polynomial or exponential speedup, depending
on the time bound T'(-,-).

e faster embedding computation: the results ob-
tained by performing the dimensionality re-
duction in time better than O(nd) (often in
O(nlog® n) time). This can be done in sit-
uations where the data set is defined implicitly,
e.g., as a set of all d-length substrings of a given
sequence of numbers.

e continuous clustering problems: the results for
problems where the goal is to find a set of points
Pis-- ., pr € R? minimizing certain function.

e sublinear-storage computation: the results that
use the fact that dimensionality reduction allows
one to use smaller space to represent a high-
dimensional point (i.e., enables input compres-
sion).

We also mention two other applications of dimen-
sionality reduction which do not fit into any of the
above categories. The first of them is robust learning,
introduced by Arriaga and Vempala [AV99]. That pa-
per addresses the problem of learning geometric con-
cepts (say, halfspaces), in situations where the posi-
tive and negative examples are far from the separat-
ing hyperplane. In such a case, they show that one
can learn much more efficiently by embedding the
concept in lower dimensional space and discovering
the lower dimensional representation of the concept.

The second application, this time of the determin-
istic version of JL lemma [EIOO01], is a (fairly) simple
and efficient derandomization of approximation algo-
rithms based on semidefinite programming.
Straightforward implications. A large class of ge-
ometric problems in high-dimensional spaces can be
characterized as proximity problems. The input to
such problems consists of a set P of points in R?.
The goal is to compute certain properties of P. How-
ever, the properties can only be defined in terms of
the distances between the points in P, not the actual
values of the coordinates of those points. For exam-
ple, the problem of computing the closest pair, the
furthest pair, minimum spanning tree, minimum cost
matching and certain clustering problems belong to
to the class of proximity problems.

It is fairly immediate that an approximate solu-
tion to a proximity problem can be found by ap-
plying the dimensionality reduction, and then solv-
ing the problem in the lower dimensional space. Al-
though very simple, this approach enables to achieve
0(d/10g°V n) (ie., in many cases linear) speedup
for the aforementioned proximity problems. In par-
ticular, it yields an O(n?logn/e*+ndlogn/e®) (1+e)-
approximation algorithm for closest pair and diame-
ter in ®7. It is important to note that the aforemen-
tioned applications do not use any special properties
of the dimensionality reduction procedure (like lin-
earity etc).

We also mention that, by using a more careful ap-
proach (essentially, by varying the reduced dimension
in the range [1/€2, O(logn/e?)], as opposed to keep-
ing it fixed at O(logn/e?)) Kleinberg managed to ob-
tain an improved running time of roughly O(n?/e?)
for closest pair as well as similar improvement for
other problems (including nearest neighbor discussed
below). Similar result for the diameter has been ob-



tained in [FP99].

The aforementioned examples of the proximity
problems involve off-line scenario, where the whole
input is given before the computation starts. An-
other set of important problems involve the on-line
case, where part of the input (a set of points P) is
given in advance, and the goal is to create a data
structure which, given a query g, reports, as quickly
as possible, an answer to that query. A prototypical
on-line problem is the nearest neighbor search (also
called post-office or best match problem), in which
case the answer to the query ¢ consists of the point
in P closest to ¢q. In the approximate version of this
problem, the data structure must report any point
p' € P whose distance to ¢ is at most 1 + € times the
distance from ¢ to its nearest neighbor in P.

It is not difficult to observe that the dimensionality
reduction techniques from section 3.1 can be used for
the on-line proximity problems, and nearest neighbor
search in particular. However, for this purpose, the
dimensionality reducing embedding must be oblivi-
ous, since (a) we need to embed points from P with-
out the knowledge of future queries ¢, and (b) we
should be able to embed the query point ¢ fast. Fortu-
nately, randomized embeddings are sufficient for this
purpose, since they guarantee high-probability of cor-
rectness for any fixed pair of points, including pairs
(¢,p),p € P. Therefore, by reducing the dimension
and building a nearest neighbor data structure for
the lower-dimensional pointset, we obtain a (1 + €)-
approximate nearest neighbor data structure which is
correct with a certain probability for a fixed query q.
By employing several data structures in parallel, one
can (with high probability) construct a data structure
which is correct for all queries ¢ [KOR9S].

To apply the above approach we need the “base”
nearest neighbor algorithms. It was shown in [IM98§]
that one can design a (1 + €)-approximate near-
est neighbor data structure for [§ with space
0(1/€)nlog® M n and query time (d + logn +
1/e)°M. A simpler data structure with better
bounds has been recently given in [HP01]. By ap-
plying JL lemma, we obtain a (1 + €)-approximate
nearest neighbor algorithm with similar query time
but space bound nOUog(1/€)/€*) By using similar
approach (but reducing the dimension in Hamming
space, not in ), Kushilevitz et al [KOR98] obtained
an algorithm with similar query time and slightly bet-
ter space bound nO/e), Thus, both algorithms use
space bounded by (pretty high-degree) polynomial
in n and have very fast query time. Also, both of
them can be modified to work under any [, norm, for
p€[L,2].

Faster embedding computation. In the above ap-
plications, the cost O(dn logo(l) n) of computing the
embedding was small compared to the cost of the rest
of the algorithm. Below, we present several scenarios
in which this is not the case, and where it is impor-
tant to compute embedding much faster. Of course,
this task is clearly not possible in general, since any
embedding algorithm reading the whole input must
take at least O(dn) time. However, it becomes pos-
sible, if the set P of d-dimensional points is defined
implicitly.

The first example of such situation involves the fol-
lowing substring difference problem (as well as many
of its generalizations). Let t[1...n] be a sequence
of numbers from R¢. The goal is to build a data
structure, which for any query pair i,5 € {1...n},
reports (quickly) the approximate value of [t[i...7 +
d—tlj...j+d|p, e.g. for p=2, where t[i...i+ d]
denotes the d+ 1-dimensional vector (t[i], ..., t[i+d]).

A naive solution for this problem is to recompute,
for each query, the distance between the two sub-
strings. However, this would take O(d) time per
query. A faster approximate solution can be obtained
using dimensionality reduction. In particular, we can
compute O(logn/e?)-length sketches of all d-length
substrings of ¢, and then compute the distance using
the sketches. However, a naive algorithm comput-
ing the sketches would run in Q(dn) time, which is
quadratic in n for large d. Fortunately, the embed-
dings we use are linear. This means that, given a
random embedding matrix A = [a; ...ax]T, a; € R?,
k = O(logn/€?), we need to compute all inner prod-
ucts a; - t[j...7 + d]. This, however, can be per-
formed in O(nlogn) time per a; using Fast Fourier
Transform ! Therefore, we can reduce the total time
needed to build the data structure to O(nklogn), and
achieve a quadratic speed-up (in the best case).

The above technique (effectively presented
in [Ind98a]) has been extended in [IKMO0O] to sup-
port arbitrary values of d given at the query time,
while using O(nlogo(l) n) storage. This in turn
has been used to give fast algorithm for finding ap-
prozimate period of a sequence, with applications to
data mining time sequences. Another application of
this technique is a fast preprocessing for the nearest
substring problem, which is a version of the nearest
neighbor problem for substrings. Since we will see
later in the section that the c-approximate nearest
neighbor for I can be solved using O(dn't!/¢)
storage/preprocessing time and O(dn'/¢) query
time, the above approach yields an improvement in
the preprocessing and query time.

It is interesting to observe a parallel between



the above “sketching” technique and “fingerprinting”
technique of Karp and Rabin. The fingerprints of
Karp-Rabin have the following two properties:

1. They can be computed for all d-substrings of a
text ¢ in O(n) time

2. With high probability, two substrings are equal
iff their fingerprints are equal

The sketching approach guarantees similar prop-
erties, except that the time needed to compute the
sketches in O(nlogn), and the word “equal” is re-
placed by “similar” in Property 2. Since Karp-Rabin
fingerprints found many applications for the “exact”
combinatorial pattern matching problems, it is not
surprising that the sketching techniques are applica-
ble to the “noisy” versions of those problems.

We briefly mention another situation where the em-

bedding can (and should) be computed faster than in
O(dn) time. Consider the following problem: given
n points and n (d — 1)-dimensional hyperplanes in
R4, find a tree spanning the points such that the tree
edges cross as few input hyperplanes as possible (for
motivation, see [HPI0OO0]). This problem can be solved
exactly in quadratic time; however, approximate so-
lution is good enough. Har-Peled and the author
observed that the “crossing” metric can be isomet-
rically embedded into the square of [Z. Therefore,
we could apply JL lemma, reduce the dimensionality
to O(logn), and then use approximate MST algo-
rithm from [IM98]. Unfortunately, naive dimension-
ality reduction would cost Q(n?) time. However, it
turns out that since the metric is implicitly defined
by only O(n) parameters, a variant of the embedding
can be performed in roughly n?~/¢ time using low-
dimensional geometric tools.
Continuous clustering problems. The goal of
continuous clustering problems is to to find a set of
points ¢; ...cr € ¢ minimizing certain function de-
fined by the input set P of points. For example, one
could try to minimize ) . pmin; D(p,¢;) (this vari-
ant is called k-median) or maxpep min; D(p,c;) (k-
center); the sum of squares of the distances is also
widely used in practice.

If the centers ¢; have to be chosen from a prede-
fined set of points, using dimensionality reduction to
solve (or improve solutions of) the above problems
is straightforward. However, for the continuous clus-
tering problems, a center can occupy any point in
R4, Thus it is not clear how to use the informa-
tion obtained from solving the problem in the lower-
dimensional space, since there is no easy method of
“pulling back” the lower dimensional points into the
high dimensional space. Therefore, special methods

need to be developed to take advantage of dimension-
ality reduction techniques.

The first result of this type has been obtained by
Dasgupta [Das99] (see also recent improvements by
Arora and Kannan [AKO01]) who gave a fast algorithm
for unsupervised learning of Gaussian mixtures. For
the special case of unit variances and equal mixture
weights, this problem can be viewed as finding k cen-
ters which minimize the sum, over all input points p,
of squares of distances from p to its nearest center. It
is assumed that the points p are sampled at random
from the mixture itself, instead of being chosen by an
adversary.

The main idea of the algorithm of [Das99] is to em-
bed the data points into d’ = O(log k/€?)-dimensional
space, identify a “large” cluster C' of points by ex-
haustive search in d’-dimensional space, and then find
the center for C in the original d-dimensional space.
After that, the cluster C' is removed from the data
set and the process is applied recursively. Thus the
lower-dimensional representation of the input points
is only used to identify the structure of the clustering,
not its parameters. However, knowing the structure
of the clustering is sufficient to reduce the complexity
of the problem.

A similar approach was used by Ostrovsky and Ra-
bani [OR00] to obtain an n*+1/9%" _time (1 + €)-
approximate algorithm for the continuous k-median
problem. In this case, they reduce the dimension to
O(logn/€?) and perform the exhaustive search for k
medians in the lower-dimensional space®. Although
it does not seem to be mentioned anywhere, a similar
result (using same techniques) can be also obtained
for the continuous k-center problem.

Data structures with sublinear storage. One
can observe that the “straightforward” applications
of dimensionality reduction described earlier achieve
not only reduction of the running time but also of
the required storage, since they allow us to keep
O(nlogn) (instead of nd) coordinates. However,
there are problems for which even more substantial
(even exponential) storage reduction can be achieved.
A prototypical example of such problems is a data
structure which maintains a d-dimensional vector z
(under increments/decrements of x’s coordinates).
When queried, the data structure reports an approx-
imate value of ||z||,. Such problems have been in-
vestigated since early 80’s. In particular, the case of
p = 0, corresponding to maintaining an approximate
number of non-zero coordinates has been addressed

5Technically, they use dimensionality reduction in Ham-
ming space, not l2, but it does not seem to be crucial for their
results.



in [FM88]. The motivation for this problem (as well
as most other problems described below) comes from
massive databases. In this case the ith coordinate can
be thought of as the number of elements of type ¢; the
coordinate is updated whenever an element is added
or deleted. The number of non-zero elements in such
a vector corresponds to the number of different types
of elements, an important parameter for query opti-
mization and approximate query answering.

The paper [FMS88] presents a randomized algo-
rithm which maintains an (1 4 €)-approximate value
of ||z||o under increments, with probability § > 0 of
error,using O(log(1/8)logn/e?) bits of space®. The
algorithm can also handle decrements, as long as all
coordinates of = are non-negative; in this case the
storage gets multiplied by O(logn). Both algorithms
(as well as all algorithms described below) have con-
stant probability of correctness.

Alon et al [AMS96] were first to consider the prob-
lem of maintaining ||z||, for general (integer) p > 1.
In that seminal paper, they show that sublinear stor-
age can be achieved (with insertions only) for any
fixed value of p. They also gave several lower bounds
for the required storage, in particular a linear lower
bound for the case p = co. Of special interest was
their algorithm for the case p = 2, which achieved
O(log(1/d)logn/e?) space for both insertions and
deletions. Maintaining l5 norm of the count vector
is an important problem in databases, since it allows
one to maintain the size of a self-join of a relation.

Their [, algorithm proceeds by maintaining the
value of Az, where A is a d’ x d matrix with ran-
dom entries from {—1,1}, for d' = O(log(1/8)/€?).
Thus, it is reminiscent of the mapping used for JL
lemma. However, the values in each row are only 4-
wise independent (to make sure the random bits can
be stored in small space as well) and therefore ||z||2
cannot be estimated from ||Az|| since the latter ran-
dom variable is not sharply concentrated. Instead,
they use median estimator to improve the probability
of correctness. Nevertheless, the mapping producing
the sketch of z is linear, which implies that we can
implement any linear operation on the vectors (ad-
dition, subtraction etc) as linear operations on their
sketches.

An polylogarithmic space algorithm for any” p €
(0,2] has been given by the author [Ind00b]®. Again,

6For simplicity, we assume that the values of the coordinates
are taken from {1...n°M},

"The proceedings version of the paper gives proofs only for
integer values of p, but the general case has been subsequently
verified by the author.

8The case p = 0 can also be handled by taking sufficiently
small p, as observed by Cormode, Muthukrishnan and the au-

the algorithm uses linear mapping and therefore
enables to perform arbitrary linear operations on
the vectors. As such, it improves earlier results
by [FKSV99, FS00] for p > 1 (which worked for cer-
tain restricted scenarios) and provides a general so-
lution for any p € [0,2]. The algorithm is explicitly
based on linear embeddings, and uses p-stable distri-
butions (defined earlier in this section) together with
median estimator; the latter can be replaced by a
sum for p = 2. In order to be able to generate the
matrix A in low space, [Ind00b] used Nisan’s pseu-
dorandom generator to generate entries of A. The
generator uses O(log”n) random bits as a seed, and
this quantity dominates the space bound of the algo-
rithm, which is O(log? n + log(1/6) logn/€?).

This concludes the description of the norm-
maintaining data structures. A natural question
arises: is there any other information (apart from
the norm) about the vectors which can be dynam-
ically maintained in small space ? For example, is
it possible to maintain short sketches S(z),S(y) of
non-negative vectors z,y, so that we can estimate
the value of z -y up to a factor of (1 + €) (for any
€ > 0) from the sketches ? If so, this would enable
fast estimation of size of a join of two relations, a
“holy grail” of database query optimization research
during last few years. Unfortunately, it is not diffi-
cult to show (using communication complexity tools)
that such (short) sketches do not exist in general.
However, the vectors z arising in applications are not
adversarially chosen. In fact, they usually can be ap-
proximated by a low-complexity piecewise-constant
function [JKMT98] or as a sum of few wavelet vec-
tors [MVW98]. Therefore, maintaining such approx-
imations of the input vector is of large interest. Can
it be done ? The answer turns out to be yes, by the
following argument. Let N be the number of differ-
ent low-complexity approximations of the vector (say,
the number of piece-wise constant functions with &
pieces). One can verify that N = n®®*) . There-
fore, if we maintain a linear sketch Az of z of length
O(log N) = O(klogn), then with high probability,
for all low-complexity approximations y of z we have
|[A(z — y)|| = ||z — yl|, and therefore we can recover
y approximately closest to x !

The problem with naive implementation of the
above idea is that exhaustive enumeration of all y’s
takes time exponential in k. However, in case of the
wavelet-based histograms, the orthogonality property
of wavelet basis can be used to estimate the wavelet
coefficients (from a sketch) in O(n) time [GKMSO01].
In [GGK™01] the running time (for both wavelet and

thor.



piecewise constant histograms) has been further re-
duced to (logn + 1/e + k)M,

3.3 Switching norms

In this section we address the second class of embed-
dings between norms, namely embeddings between
different norms (in most cases from I, to [,;. As in
the case of dimensionality reduction, the usefulness of
such embeddings comes from the fact that the host
norm is “easier” than the original norm. The em-
bedding of [; into [, presented in the introduction
is a perfect example of such embeddings. In the fol-
lowing we will show more examples and applications
of this type. Most of them are classical results (or
corollaries of such) in the geometric functional anal-
ysis (also called local theory of Banach spaces). For
more thorough and detailed treatment of this type of
results, see the survey article by Lindenstrauss and
Milman [LM].

Embeddings into [;. We start from embeddings
of I, norms, with p € (1,2], into /;. In particular,
we address first the case p = 2. From the celebrated
Dvoretzky theorem [Dvo59] it follows that for any d
and € > 0 there exists d' = d'(d, €) such that I can
be embedded into X = lfl with distortion 1 + ¢; in
fact, Dvoretzky’s theorem shows it is true for any suf-
ficiently dimensional Banach space X. However, for
the special case of X = [ one can obtain much better
dependence of d’ on d and e than for the general case.
In particular, it was shown in [FLM77] that one can
achieve d' = O(dlog(1/€)/€?) (see that paper for ref-
erences to earlier, somewhat weaker, estimates). As
most of the proofs seen so far, the proof of [FLM77]
is probabilistic. Specifically, they show that there is
a randomized embedding of I into llo(log(l/é)/g) with
distortion 1 + € and failure probability ¢ (as before,
the proof uses a random linear embedding). Then, it
is shown that in order to extend the mapping to the
whole space 14, it is sufficient to ensure the mapping
has distortion (say) 1+ €/4 for the points in an €/2-
net of a unit sphere in ¢ (recall that an e-net for a set
S is a set S’ such that for any p € S there is p' € S’
within distance € from p). Since it is easy to show
that such e-nets of size (1/€)°(? exists, the theorem
follows.

In the original proof, the rows of the embedding
matrix were chosen to be random orthonormal vec-
tors. A different proof, which uses a matrix with all
entries independently chosen from normal distribu-
tion, has been given in [Ind00b]. We also mention
that Schechtman [Sch81] showed that it is possible to
obtain constant distortion and d' = O(d) using ran-

dom matrix with entries chosen independently and
uniformly at random from {—1,1}. His proof tech-
nique does not seem to extend to arbitrarily small
distortions 1 + €.

All of the above proofs are probabilistic in nature.
Although this fact is fairly typical (e.g. for the re-
sults presented in this survey), it should be noted
that the situation here is quite different, since we
want to embed a fived metric I (as opposed to an “in-
put” metric (X, D)). In particular, this means that
we could potentially achieve an explicit (closed-form)
description of the embedding, as opposed to the gen-
eral metric embedding or dimensionality reduction.
This naturally leads to the question if the probabilis-
tic bounds mentioned above can be matched using
explicit construction. Although this question still re-
mains unsolved, some progress in that direction has
been made. In particular, as noted in [LLR94], the re-
sults of Berger [Ber97] imply that there is a constant

distortion embedding of I into llo(d2). Her proof uses
embedding matrix obtained by concatenating (hori-
zontally) all vectors from a sample space generating
d four-wise independent random variables with val-
ues in {—1,1}. In a similar way, Indyk [Ind00b] used
Nisan’s pseudorandom generator to derandomize the
aforementioned probabilistic proof using normal ran-
dom variables. The resulting embedding maps (¢ into

l%o(lcgz " with distortion 1+ 1/d%®).

The above results can be generalized to the prob-

lem of embedding ¢ for any p € [1,2] into I (or in
fact, into any I, ¢ € [1,p)). In particular, Johnson
and Schechtman [JS82] showed that one can achieve
distortion 1 + € with d' < ¢(€)d; the function c(e)
“seems to be” O(log(1/€)/e?). Their proof uses p-
stable distributions in a quite elaborate fashion. Note
that choosing all entries of the embedding matrix
independently from a p-stable distribution does not
work by itself, since the resulting randomized embed-
ding does not have the “sharp concentration” prop-
erty. This is due to the fact that p-stable distributions
(for p < 2) are heavy-tailed.
Embeddings into /... Another “very accommodat-
ing” host norm is the [, norm. In particular, we have
seen already that [{ can be isometrically embedded
into l?xf. In fact, this result can be generalized to any
polyhedral norm, i.e., any norm whose unit ball is a
polyhedron (this result seems to be folklore). Specif-
ically, any polyhedral norm defined by a polyhedron
with 2F faces can be isometrically embedded into I£,
by using a linear embedding matrix with each row be-
ing a normal vector of one of the faces.

Since a unit ball in I can be approximated arbi-
trarily well by a polyhedron (using e-nets), it follows



that I¢ can be embedded with distortion 1 + € into
19 where d' = O(1/€)%/? (for even d). Through the
relation between the embeddings and e-nets, one can
prove that this bound is tight (again, this seems to be
a folklore result). On the other hand, it was shown by
Dudley [Dud74] that any convex body B with diam-
eter 1 can be approximated by a polyhedron P with
O(1/€)%/? faces, such the Hausdorff distance between
C and H is at most e. This can be used to show
that any d-dimensional norm can be embedded with
distortion 1 + e into I% with d' < ¢(d)(1/€)%?. This
fact seems to be folklore, but its proof is somewhat
nontrivial since it uses John’s theorem. For more
background on many of the above techniques (e-nets,
John’s theorem) see [Mat].

If we allow randomized (and asymmetric) embed-
dings, it was shown by the author [Ind01] that it is
possible to embed ¢ into {% with distortion 1 + e,
contraction probability §; and expansion probability
8, where d' = (1/e+4log(1/8,)+1/65)°1/€). To com-
pare this result with the earlier (deterministic) em-
beddings, observe that even if we set d; to be inversely
exponential in d, the dimension d’ is still polynomial
in d. On the other hand, d' depends polynomially on
1/62. Making this dependence logarithmic is not pos-
sible, since it would imply (deterministic) embedding
of 1¢ into lg:)(l) with constant distortion.

One implication of the above result is a randomized

(asymmetric) embedding of a product of k Euclidean
spaces (with the distance measured as maximum over
the individual /5 distances) into l. This is obtained
by setting 1/d2 = O(k) and applying the above asym-
metric embedding to all £ Euclidean spaces in paral-
lel.
Embedding into Hamming space. Consider a
subset of [¢ (denoted by M{) in which all points have
coordinates in the integer set {0...M}. It is easy
to see that the space M{ can be embedded into a
Hamming metric with dimension Md: just replace
each coordinate x; by its unary representation. This
was first observed in [LLR94].

3.4 Applications of “internorm” em-
beddings

We start from the applications related to embeddings
into Iy norm. From the previous section, it follows
that [> can be embedded into [;, and /; can in turn
be embedded into Hamming space. Modulo the in-
crease in the dimension (which, although quite se-
vere in general, can be usually reduced to reasonable
proportions), this means that it is sufficient to solve
a given problem in the Hamming space, instead of

Euclidean space. This turns out to be quite use-
ful in a variety of situations. For example, it was
shown in [IM98] that one can design a dynamic c-
approximate data structure for the nearest neigh-
bor problem in d-dimensional Hamming space, with
dn'/°-time per query or update. The above argu-
ment implies that the algorithm can be extended to
[y and [ space. Similarly, the aforementioned near-
est neighbor data structure of [KOR98] was originally
designed for the Hamming space, and extended to [y
and [, spaces via embeddings.

The [, norm is in many respects even “nicer” than
the [y norm. However, the exponential blow-up in
the dimension makes the (deterministic) I, embed-
dings applicable only to situations where the original
dimension d is constant or small. One application
which satisfies this constraint is (1 + €)-approximate
computation of the diameter of n points in I¢, which
by the above results can be performed in O(1/€)%/?n
time. This is due to the fact that in the [, space
the diameter can be computed in linear time, as seen
in the introduction. A similar result can be also ob-
tained for Maximum Spanning Tree, which is also
fairly easy to compute for the I, space.

The randomized asymmetric embedding allows to
avoid the exponential blow-up and can be used even
in the context of high-dimensional problems. In par-
ticular, by embedding a product of Euclidean spaces
into ls and then using an O(1)-approximate near-
est neighbor for I, [Ind98b], one can obtain a O(1)-
approximate nearest neighbor algorithm for product
of ly’s with (d + logn)°™ query time and n©(°gd)
space.

4 Special metrics

In the last section of this survey we focus on embed-
ding of “special” metrics into norms. In particular,
we focus on Hausdorff metric (used in computer vi-
sion) and Levenstein, or edit distance, metric (used in
text processing and computational biology). Embed-
ding these metrics into normed spaces allows us to
use algorithms (e.g., for clustering, nearest neighbor
etc) developed for normed spaces in order to solve
problems in the more complicated metrics. This is
facilitated by the fact that most of the embeddings
described in this section are oblivious.

Hausdorff metric. The Hausdorff metric H,; over
a metric space M = (X, D) is defined as a pair
(Xam,Dyr), where Xy is the set of all subsets of
X, and Dy (A, B) (for any A,B C X) is defined as



Dar(A, B) = max(Dys (A, B), Dar (B, A)), where

.
Dy (A, B) = in D
u (4, B) = maxmin D(a,b)

The usefulness of Hausdorff metric comes from the
fact that it allows to define a distance between sets of
points (e.g., geometric shapes). It becomes even more
useful when it is augmented to be invariant with re-
spect to some transformations of the sets A and B
(e.g., translations). However, even computing indi-
vidual distances Dy (A, B) is a non-trivial task, es-
pecially when geometric transformations are allowed.

What do we know about embedding Hausdorff met-
ric into normed spaces 7 If the underlying metric
M = (X, D) is finite, the Hjs is finite as well and
therefore can be embedded into 1% with low (or no)
distortion. Unfortunately, using Frechet or Matousek
embeddings from section 2.1 would result in d’ expo-
nential in |X|. However, it was shown in [FCI99] that
d' can be reduced to |X| while maintaining the no-
distortion property (they used a variation of Frechet’s
proof). The intuition for this fact is that the Haus-
dorff metric is defined using the “max” operator, and
therefore its structure is very similar to (although
somewhat more complex than) the structure of the
oo norm.

The dimension of the host norm can be further
reduced if we focus on embedding particular Haus-
dorff metrics. In particular, let H}; be the Hausdorff
metric over all s-subsets of M. Farach-Colton and
Indyk [FCI99] showed that if M = [, then H3, can
be embedded into lgl; with distortion 1 + €, where
d = O(s*(1/€)°¥) (the O(-) constant depends on
the diameter of the embedded pointset). This em-
bedding also holds for the Hausdorff metrics invari-
ant under translation, and is oblivious. For general
(finite) metrics M = (X, D) they show that Hj, can

be embedded into lgg(l)lx‘a for any a > 0 with con-
stant distortion (again, the dimension is somewhat
dependent on the diameter of the embedded sets).
Levenstein metric. The Levenstein metric is de-
fined over strings over certain alphabet ¥. Given
two strings s,t € X*, the distance Dp,(s,t) is defined
as minimum number of insertions, deletions or sub-
stitutions needed to transform s into ¢t. Computing
Dy (s,t) is a nontrivial task in itself - the only algo-
rithm for performing this task (even approximately)
has running time [s] - |¢].

Unfortunately, nothing is known so far about em-
beddability of Dj, into normed spaces. However, if we
extend the Levenstein metric to allow operations (in-
sertions, deletions and substitutions) of blocks of char-

acters, instead of just single characters®, it was shown
in [CPSV00, MS00] that the resulting metric D} can
be embedded into ¢ with distortion roughly O(log!),
where [ is the length of the embedded strings. It
should be noted that this does not imply similar em-
beddability of Dr. However, the D metric is prob-
ably as well motivated as Dy as far as the compu-
tational biology applications are concerned, and has
additional applications to string compression.

An additional feature of the above results is that

the embedding can be performed in almost linear
time. This yields a very fast approximation algorithm
for computing D’ (s,t) for individual s,¢ strings.
This is of interest, since computing the exact value of
D4 (s,t) is NP-hard.
Other special metrics. Another interesting metric
which can be embedded into [; is the transposition
distance metric over the set of permutations. For-
mally, the distance Dy (71, 72) is defined as the mini-
mum number of moves of contiguous subsequences to
arbitrary positions needed to transform m; into ms.
It was shown in [CMSO01] that Dz can be embedded
with constant distortion into Iy (in fact, even into
Hamming metric). They also show similar results
for other permutation metrics, including reversal dis-
tance and permutation edit distance.

5 Applied applications

So far in this survey we have been focused on ap-
plications of embeddings techniques to problems of
interest to theoretical computer science. In this sec-
tion we depart from this theme and describe various
applications of low-distortion embeddings in several
applied areas. To keep this section in harmony with
the rest of this survey, we will list the applications
“by theorems”, rather than by application areas.
Bourgain’s lemma. The idea of embedding metric
spaces into normed spaces in order to discover the
structure of the metric has been around for quite a
while (e.g., see [KW84]). However, Bourgain’s lemma
provides a new method for performing such an em-
bedding, with provable distortion guarantees. Along
this line of reasoning, Linial et al [LLTY97] used
Bourgain’s lemma to discover properties of the dis-
tance metric between protein sequences. They ob-
served that many interesting biological properties of
proteins can be (re)-discovered by analyzing the em-
bedding of the metric into l5; see the paper for more
information.

Bartal’s theorem. The theorem of Bartal [Bar96]

9See [CPSV00] for formal definition.



provides an efficient method of constructing a hierar-
chical decomposition of a graph which ensures that
only few edges are cut (on the average). Thus, it
can be naturally used as a tool for decomposing a
communication network into smaller entities. In par-
ticular, variants of Bartal’s algorithm have been used
in [Sha98, AS98, JJJT00], for topology aggregation in
undirected and directed networks, as well as efficient
placement of traffic tracers in a network.

Johnson-Lindenstrauss lemma. The randomized
dimensionality reduction technique has been used
in a fairly large number of applied scenarios. To
the knowledge of the author, it has been first used
in [RK89] as a heuristic for speeding-up the compu-
tation in high-dimensional spaces. Later, the same
idea has been experimentally evaluated in [Kas98].
For his data set, Kaski showed that a random dimen-
sionality reduction resulted in reducing the dimension
from about 5,000 to about 200, while incurring neg-
ligible clustering error. It is interesting to note that
the authors of the above two papers were not aware
of the work of Johnson and Lindenstrauss, and re-
discovered the usefulness of random embeddings by
themselves.

More recently, Dasgupta [Das00] evaluated random
dimensionality reduction as a tool for speeding up the
Expectation Maximization clustering algorithm. He
showed that reducing the dimensionality of the input
space not only does not decrease the probability of
obtaining a good clustering, but in certain cases it
can even increase that probability ! This is due to
the fact that random projection transforms a non-
spherical Gaussian distribution (which is difficult to
handle using EM algorithm) into an almost spherical
one.

The FFT-based algorithm for fast computation of
sketches of substrings of a sequence has been intro-
duced and evaluated in [IKMOO]. It has been subse-
quently used for fast discovery of periodic structure
of massive time series.

Recently, several papers used low-storage algo-
rithms for maintaining approximate values of the [,
norms of vectors in various applied settings. In par-
ticular, Alon et al [AGMS99] evaluated the l-norm
maintenance algorithm of [AMS96], for the purpose of
maintaining the size of a self-join of massive relations.
They showed that it provides estimations of higher
quality than sampling-based methods. Their algo-
rithm has been further used in several other projects,
e.g., in [HGIOO].

Gilbert et al [GKMSO01] introduced and evaluated
a low-storage algorithm for maintaining wavelet coef-
ficients. Their algorithm (using the I3 norm mainte-

nance algorithm as a subroutine) was shown to per-
form almost as well as the exact off-line algorithm,
while reducing the required storage from 50 MB to
5 KB for the case of AT&T call data. Many other
research projects in this area are under development.

6 Conclusions and Open Prob-
lems

In this survey we showed that low-distortion embed-
dings provide a powerful and versatile toolkit for solv-
ing algorithmic problems. Their fundamental nature
makes them applicable in a variety of diverse settings,
while their relation to rich mathematical fields (e.g.,
functional analysis) ensures availability of tools for
their construction.

The most important (even though somewhat naive)
open (-ended) question about algorithmic applica-
tions of embeddings seems to be: what else can we
solve using embeddings ? The answer to this ques-
tion grows longer and longer every year, as new ways
of using embeddings or new application domains are
discovered. The author hopes that this survey will
provide enough material to help the reader discover
novel applications of embeddings him /herself.

In addition, there are several specific questions
which seem to be crucial for deeper understanding of
low-distortion embeddings, as well as their algorith-
mic applications. These questions include the follow-
ing:

1. Can planar graph metrics be embedded into [
with constant distortion ? This seems to be
“morally” true, since it is known that all infi-
nite verter transitive planar graphs are (essen-
tially) either trees, meshes or lines, and each of
these three classes of graphs are easily embed-
dable into I; with constant distortion.

In addition to being a very important structural
question by itself, a positive answer to it would
imply existence of O(1)-approximate algorithms
for the sparsest cut and related problems over
planar graphs (assuming the embedding can be
computed in polynomial time).

2. Is it possible to embed any finite metric into
probabilistic trees with distortion O(logn) ? A
positive answer to this question would improve
approximation factors of many algorithms us-
ing probabilistic embeddings, and in many cases
(e.g., for the buy-at-bulk problem) would give a
tight approximation bound.



3. Is there a close analog of JL lemma for other
norms, especially I; ? This would give a pow-
erful technique for designing approximation al-
gorithms for problems in the /1 norms as in sec-
tion 3.2 (although some of such problems can
be solved even right now, using dimensionality
reduction in Hamming space [OR00]). In addi-
tion, constant-distortion embedding of n-point
subset of I into I1°6™ would imply a O(y/Iogn)-

approximation algorithm for finding best embed-

ding of a finite metric M into l;. This is due to
the fact that if the optimal distortion of such
an embedding is C, then (1) by the conjectured
lemma we can assume O(C)-distortion embed-
ding of M into I!°5™, (2) the latter also induces
an O(yv/lognC)-distortion embedding of M into
l>, which (3) can be found in polynomial time
using semi-definite programming and (4) can be
converted to embedding into l; via the results
of section 3.3. This approach was suggested by
Ashish Goel (personal communication).

4. Is it possible to embed edit distance metric into
[y with low distortion ? A positive answer to
this question would lead to approximate algo-
rithms to several indexing problems under edit
metric. In addition, if the embedding itself was
efficiently computable (subquadratic in the se-
quence length), it would imply subquadratic ap-
proximation algorithm for computing the edit
distance between two sequences. The latter is
one of the biggest unsolved problems in the field
of combinatorial pattern matching.
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Final comments
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