
The geometry of graphs and some of its algorithmic applications �Nathan Linial y Eran London Yuri RabinovichInstitute of Computer Science Institute of Mathematics Department of Computer ScienceHebrew University Hebrew University University of TorontoJerusalem 91904 Jerusalem 91904 Toronto, Ontario M5S 1A4Israel Israel Canadanati@cs.huji.ac.il eran@math.huji.ac.il yuri@cs.toronto.eduAbstractIn this paper we explore some implications of viewing graphs as geometric objects. This approacho�ers a new perspective on a number of graph{theoretic and algorithmic problems. There are severalways to model graphs geometrically and our main concern here is with geometric representationsthat respect the metric of the (possibly weighted) graph. Given a graph G we map its vertices toa normed space in an attempt to (i) keep down the dimension of the host space, and (ii) guaranteea small distortion, i.e., make sure that distances between vertices in G closely match the distancesbetween their geometric images.In this paper we develop e�cient algorithms for embedding graphs low{dimensionallywith a smalldistortion. Further algorithmic applications include:� A simple, uni�ed approach to a number of problems on multicommodity 
ows, including theLeighton{Rao Theorem [37] and some of its extensions. We solve an open question in this area,showing that the max{
ow vs. min{cut gap in the k-commodities problem is O(logk). Ournew deterministic polynomial{time algorithm �nds a (nearly tight) cut meeting this bound.� For graphs embeddable in low{dimensional spaces with a small distortion, we can �nd low{diameter decompositions (in the sense of [7] and [43]). The parameters of the decompositiondepend only on the dimension and the distortion and not on the size of the graph.� In graphs embedded this way, small balanced separators can be found e�ciently.Given faithful low{dimensional representations of statistical data, it is possible to obtain meaningfuland e�cient clustering. This is one of the most basic tasks in pattern{recognition. For the (mostlyheuristic) methods used in the practice of pattern{recognition, see [20], especially chapter 6.Our studies of multicommodity 
ows also imply that every embedding of (the metric of) an n-vertex, constant{degree expander into a Euclidean space (of any dimension) has distortion 
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between such questions and classical geometric structures. The approach taken here is to model graphmetrics by mapping the vertices to a real normed spaces in such a way that the distance between anytwo vertices is close to the distance between their geometric images. Embeddings are sought so asto minimize (i) the dimension of the host space, and (ii) the distortion, i.e., the extent to which thecombinatorial and geometric metrics disagree. Speci�cally, we ask:1. How small can the dimension and the distortion be for given graphs? Is it computationally feasibleto �nd good embeddings?2. Which graph{algorithmic problems are easier for graphs with favorable (low{dimensional, smalldistortion) embeddings? What are the combinatorial implications of such embeddings?3. The above discussion extends to embeddings of general �nite metric spaces. What are the algo-rithmic and combinatorial implications in this more general context?Here are some of the answers provided in this paper:1. We develop a randomized polynomial{time algorithm that embeds every �nite metric space in aEuclidean space with minimum distortion. Bourgain [12] had shown that every n-point metriccan be embedded in an O(logn)-dimensional Euclidean space with a logarithmic distortion, andour algorithm �nds embeddings which are at least as good. Better embeddings are provided forparticular families of graphs.2. The geometry of graphs o�ers an excellent framework for studying multicommodity 
ow problems.In particular, our methods yield a very short and conceptual proof for several theorems that relatethe value of the multicommodity 
ow in a network to the minimum cut in it (e.g., the Leighton{Rao Theorem [37]). An open question in this area is solved by the very same argument.A low{diameter decomposition of a graph G is a (not necessarily proper) coloring of the verticeswith few colors, so that all monochromatic connected subgraphs have small diameters. In [43]the precise tradeo� between the number of colors and the diameter was found for general graphs.In particular, both parameters can be made logarithmic in the order of the graph, which is, ingeneral, essentially tight. Here we establish a better tradeo� that depends only on the dimensionand the distortion at which the graph is embeddable, not on the number of vertices. For manyalgorithmic applications of low{diameter decompositions, see [7] and [16].Graphs embeddable in a d-dimensional normed space with a small distortion have balanced sep-arators of only O(d � n1� 1d ) vertices. If the embedding is given, such separators can be found inrandom polynomial time. For closely related work see [49].3. Clustering of statistical data calls for grouping sample points in sets (clusters), so that distancesbetween members of the same cluster are signi�cantly smaller than between points from dis-tinct clusters. If data points reside in a high{dimensional Euclidean space, or even worse, ifdistances between points do not conform with any norm, then clustering is notoriously problem-atic. Our algorithms provide one of the few non{heuristic approaches to this fundamental problemin pattern{recognition.Many problems in this area remain open, some of which appear in Section 8.A preliminary version of this paper appeared in [40]. The present detailed and considerably expandedversion includes a number of new results (see especially Sections 4 and 8). In the version of this2



article submitted January 1994 we conjectured that the present methods are applicable to the study ofmulticommodity 
ow problems. This plan materialized in July 1994 and lead to the revised version ofSeptember 1994. The following results were added in the �nal version of February 1995: A deterministicversion to one of the embeddings algorithms, as well as to the multicommodity 
ow algorithm; A newcharacterization of the least distortion for embeddings into Euclidean space (Corollary 3.5); A newcovering theorem (Claims 3 and 4 of Theorem 7.1).2 Related work and overview of resultsDuring the past few years a new area of research has been emerging, an area which may be aptly calledthe geometry of graphs. This is the study of graphs from a geometric perspective. A comprehensivesurvey of this fascinating area is well beyond our scope, so we restrict ourselves to a few brief remarks andexamples. Geometric models of graphs can be classi�ed as either (i) topological models, (ii) adjacencymodels, or (iii) metric models. The topological approach is mainly concerned with graph planarity andembeddability of graphs on other 2-dimensional manifolds (see [34] for a recent survey). It also dealswith 3-dimensional embeddings of a graph, mostly in the context of knot theory. (See Welsh's book [61]for some of these developments.)Particularly fascinating is the way in which geometric/topological considerations come up in thetheory of forbidden minors [56]. The double cycle cover conjecture (surveyed in [30]) says that in everybridgeless graph there is a collection of cycles which cover every edge exactly twice. It is not hard tosee that this is equivalent to the statement that for every graph G there is a 2-dimensional manifold onwhich G can be embedded so that every edge is incident with two distinct cells (2-dimensional faces) ofthe embedding.In an adjacency model, the geometry respects only the relation of adjacency/nonadjacency of vertices,but not necessarily the actual distance. A prime example for this approach is the Koebe{Andreev{Thurston Theorem (see [36], [3], [4], and [60]) that every planar graph is the contact graph of openlydisjoint planar discs. Higher{dimensional results in the same vein appear in [21], [22], [49], and [55].Another noteworthy adjacency model calls for mapping the vertices of a graph to a Euclidean unitsphere where adjacent vertices are to be mapped to remote points on the sphere. This approach, initiatedin [45], has recently found further interesting algorithmic applications (see [26] and [33]).Let X be a set of k vertices in a graph G. An embedding ' of G in Rk�1 is X-convex if the vertices ofXare mapped to the vertices of a (k�1)-dimensional simplex and '(x) 2 convf'(y)jy is a neighbor of xgfor every x 62 X . It is shown in [41] that G is k-connected i� for every such X there is an X-convex' under which all points are in general position. This result can be put together with orthogonalembeddings (see [45]), an adjacency model where adjacent vertices are mapped to perpendicular vectors.The combination of these two approaches is discussed in [46].We now turn to problems where graph metrics have a role. A low{diameter decomposition of a graph(see [43], [7], [16]) is a (not necessarily proper) coloring of the vertices with � k colors, so that everyconnected monochromatic subgraph has diameter � D. In [43] it is shown that an n-vertex graph hassuch a decomposition whenever kD > n and Dk > n, the conditions being essentially tight. The �rstcondition is necessary, e.g., in decomposing triangulations of Euclidean spaces. The second conditionis necessary for expander graphs. The similarity between this dichotomy and that of positive/negativecurvature in geometry still awaits a satisfactory explanation.Low{dimensional models for �nite metric spaces have previously been studied mostly by functionalanalysts (see [5], [9], [12], [19], [28], [31], [32], and [48]). Study of graph metrics has also led to thenotion of spanners (see [2], [51], and [58]) and hop{sets [15]. Local{global considerations, which are3



commonplace in geometry, arose for graphs as well (see [39] and the references therein, [42], and therecent [54]).All the referenced work notwithstanding, this short discussion leaves out large amounts of relevantwork, for example, on embedding graphs in particular families of graphs such as d-dimensional lattices,cubes, squashed cubes etc. (see [27], [62]). Particularly relevant are notions of dimension that emergefrom such considerations, see, e.g., chapter 5 in [8]. The possibility of embedding graphs in spacesother than Euclidean and spheric geometry is very appealing, and hardly anything has been done inthis direction (but see [59]). We have also said nothing about modeling geometric objects with graphs,which is a related vast area.To initiate our technical discussion, recall that a norm k � k associates a real number kxk with everypoint x in real d-space, where (i) kxk � 0, with equality only if x = 0, (ii) k�xk = j�j kxk, for everyx 2 Rd and every real �, and (iii) for every x; y 2 Rd, kx+ yk � kxk+ kyk. The metric associated withthe norm k � k is d(x; y) = kx� yk. Particularly important are lp norms: k(x1; : : : ; xn)kp = (P jxijp)1=p.We denote Rn equipped with lp norm by lnp . Euclidean norm is, of course, l2.An isometry is a mapping ' from a metric 1 space (X; d) to a metric space (Y; �) which preservesdistances, i.e., �('(x); '(y)) = d(x; y) for all x; y 2 X . Given a connected graph G = (V;E), we oftendenote by G also the metric space induced on V by distances in the graph. Isometries are often toorestricted and much 
exibility is gained by allowing the embedding to distort the metric somewhat.This leads to the main de�nition in this article:De�nition 2.1: Metric Dimension: For a �nite metric space (X; d) and c � 1, de�ne dimc(X) tobe the least dimension of a real normed space (Y; k � k), such that there is an embedding ' of X into Ywhere every two points x1; x2 2 X satisfyd(x1; x2) � k'(x1)� '(x2)k � 1c � d(x1; x2):Such an embedding is said to have distortion � c. The (isometric) dimension of X is de�ned asdim(X) = dim1(X).We recall (Lemma 5.1) that dim(X) � n for every n-point metric space (X; d), whence this de�nitionmakes sense.We list some of the main �ndings on isometric and near{isometric embeddings. Unless stated other-wise, n is always the number of vertices in the graph G or the number of points in a �nite metric space(X; d).The least distortion with which X may be embedded in lp (of any dimension) is denoted by cp(X).Finding good embeddings1. In Theorem 3.2 we show:There is a deterministic polynomial time algorithm that embeds every n-point metric space(X; d) in a Euclidean space with distortion arbitrarily close to the optimum c2(X). By [12],c2(X) = O(logn).In random polynomial time X may be embedded in lO(logn)2 with distortion � (1 + �) � c2(X) (forany � > 0).For every 1 � p � 2, X may be embedded in lO(logn)p with distortion O(c2(X)). Such an em-bedding may be found in random polynomial time. The same distortion can also be attained in1Technically, we are discussing semi{metrics, as we allow two distinct points to have distance zero.4



deterministic polynomial time, but the dimension is O(n2).In random polynomial time X may be also embedded in lO(log2 n)p for every p > 2 with distortionO(logn).If X is the metric of a constant{degree expander graph, then cp(X) = 
(logn) for every 2 � p � 1.2. For every metric space (X; d) on n points there is a 
 > 0 such that the metric 
 � d can beembedded in a Hamming metric with an O(logn) distortion (Corollary 3.8). The bound is tight.Structural consequences1. The gap between the maximum 
ow and the minimum cut in a multicommodity 
ow problemis majorized by the least distortion with which a particular metric can be embedded in l1. Thismetric is de�ned via the Linear Programming dual of a program for the maximum 
ow. This isthe basis for a uni�ed and simple proof to a number of old and new results on multicommodity
ows (Section 4).2. Low{dimensional graphs have small separators: A d-dimensional graph G has a set S ofO(d � n1� 1d ) vertices which separates the graph, so that no component of G n S has more than�1� 1d+1 + o(1)�n vertices (Theorem 6.1).3. The vertices of any d-dimensional graph can be (d + 1)-colored so that each monochromaticconnected component has diameter � 2d2 (compare with [43]).They can also be covered by \patches" so that each r-sphere (r { any positive integer) in thegraph is contained in at least one patch, while no vertex is covered more than d + 1 times. Thediameter of each such patch is � (6d + 2)dr (compare with [7]). Moreover, the patches may be(d+ 1)-colored so that equally colored patches are at distance � 2.That is, there exist low{diameter decompositions with parameters depending on the dimensionalone (Theorem 7.1).4. Low{dimensional graphs have large diameter, diam(G) � nO( 1dim(G) ) (Lemma 5.6).Algorithmic consequences1. Near{tight cuts for multicommodity 
ow problems can be found in deterministic polynomial time(Section 4).2. Given an isometric embedding of G in d dimensions, a balanced separator of size O(d � n1� 1d ) canbe found in random polynomial time (Theorem 6.1).3. Low{dimensional, small{distortion representation of statistical data o�ers a new approach toclustering which is a key problem in pattern{recognition (Section 3.2).Isometric dimensions� All trees have dimension O(logn). The bound is tight (Theorem 5.3).� dim(Kn) = dlog2 ne (Proposition 5.4). (This result essentially goes back to [17].)� Pki=1dlog2 nie � dim(Kn1;:::;nk ) � Pki=1dlog2 nie � 1, where Kn1;:::;nk is the complete k-partitegraph, and ni � 2 (Theorem 5.8). 5



� For cycles: dim(2m-Cycle) = m, and m+ 1 � dim((2m+ 1)-Cycle) � m2 � 1. Consequently,dim(G) � girth(G)4 � 1. However, dim �2 (n-Cycle) = 2 (Proposition 5.10 and Remark 5.11).� dim(d-Cube) = d (Corollary 5.12).3 Low{distortion low{dimensional embeddings3.1 Good embeddingsWe start by quoting:Theorem 3.1: ( Johnson{Lindenstrauss [31], see also [21] ) Any set of n points in a Euclideanspace can be mapped to Rt where t = O( logn�2 ) with distortion � 1 + � in the distances. Such a mappingmay be found in random polynomial time.Proof: (Rough sketch) Although the original paper does not consider computational issues, the proofis algorithmic. Namely, it is shown that an orthogonal projection of the original space (which can beassumed to be n-dimensional) on a random t-dimensional subspace, almost surely produces the desiredmapping. This is because the length of the image of a unit vector under a random projection is stronglyconcentrated around pt=n.Our general results on near{isometric embeddings are summarized in the following theorem:Theorem 3.2:1. ( Bourgain [12], see also [32], [48] ). Every n-point metric space (X; d) can be embedded in anO(logn)-dimensional Euclidean space with an O(logn) distortion.2. There is a deterministic polynomial{time algorithm that for every � > 0 embeds (X; d) in a Eu-clidean space with distortion < c2(X)+ �. In random polynomial{time (X; d) may be embedded inlO(logn)2 with distortion O(c2(X)) (By Claim 1, c2(X) = O(logn)).3. In random polynomial{time (X; d)may be embedded in lO(logn)p (for any 1 � p � 2), with distortionO(c2(X)).4. In deterministic polynomial time (X; d) may be embedded in lO(n2)p (for any 1 � p � 2), withdistortion O(c2(X)).5. In random polynomial{time (X; d) may be embedded in lO(log2 n)p (for any p > 2), with distortionO(logn).6. Every embedding of an n-vertex constant{degree expander into an lp space, 2 � p � 1, of anydimension, has distortion 
(logn).Proof: Claim 1 appears mostly for future reference, but is seen to be an immediate corollary of Claims3 and 5 and Theorem 3.1.To prove Claim 2, let the rows of the matrix M be the images of the points of X under a distortion-cembedding in some Euclidean space. Let further A =MM t. Clearly, A is positive semide�nite, and forevery i 6= j, 1c2d2i;j � ai;i + aj;j � 2ai;j � d2i;j :6



As in [45], [26], and [33] the ellipsoid algorithm can be invoked to �nd an �{approximation of c inpolynomial time.The dimension is reduced to O(logn) by applying Theorem 3.1.To prove Claim 3, use Claim 2 and recall that for any m, lm2 may be embedded in l2mp , for every1 � p � 2, with constant distortion (see [52], chapter 6). This embedding may be found in randompolynomial{time. In fact, it is enough to map lm2 isometrically into a random m-dimensional subspaceof l2mp .It is not hard to see, and is well known (see [18]) that any n points in Euclidean space can beisometrically embedded into lO(n2)1 . In particular, for any �nite metric space X , c1(X) � c2(X).For the deterministic algorithm in Claim 4, start with the algorithm in Claim 2. Once an optimalembedding into Euclidean space (of dimension at most n) is found, proceed with the following explicitembedding of lm2 to lO(m2)p (see [10]):Lemma 3.3: Let F � f�1;+1gm be a 4-wise independent family of vectors, let x 2 Rm and 1 � p � 2.Then, kxk2 � 0@ 1jFj X�i2F j < x; �i > jp1A 1p � p3kxk2:There are explicit constructions of such families F with O(m2) vectors.Therefore, having embedded X into n-dimensional Euclidean space, map this space to lO(n2)p viax 2 ln2 ! 1jFj 1p (< x; �1 >;< x; �2 >; : : : ; < x; �O(n2) >) 2 lO(n2)p :By Lemma 3.3 this embedding adds only a constant distortion.We now turn to Claim 5.The overall structure of the algorithm follows the general scheme of Bourgain's proof: For eachcardinality k < n which is a power of 2, randomly pick O(logn) sets A � V (G) of cardinality k. Mapevery vertex x to the vector (d(x;A)) (where d(x;A) = minfd(x; y)jy 2 Ag) with one coordinate foreach A selected. It is shown that this mapping to lO(log2 n)1 has almost surely an O(logn) distortion.We now turn to the actual proof. Let B(x; �) = fy 2 X jd(x; y)� �g and �B(x; �) = fy 2 X jd(x; y)<�g denote the closed and open balls of radius � centered at x. Consider two points x 6= y 2 X . Let�0 = 0; and let �t be the least radius � for which both jB(x; �)j � 2t and jB(y; �)j � 2t. We de�ne �t aslong as �t < 14d(x; y), and let t̂ be the largest such index. Also let �t̂+1 = d(x;y)4 . Observe that B(y; �j)and B(x; �i) are always disjoint.Notice that A \ �B(x; �t) = ? () d(x;A) � �t, and A \B(y; �t�1) 6= ? () d(y; A) � �t�1.Therefore if both conditions hold, then jd(y; A)� d(x;A)j � �t � �t�1.Let us assume that j �B(x; �t)j < 2t (otherwise we argue for y). On the other hand jB(y; �t�1)j � 2t�1.Therefore, a random set of size �( n2t ) has a constant probability to both intersect B(y; �t�1) and miss�B(x; �t).We randomly select q = O(logn) sets of cardinality 2l, the least nonnegative power of two that is� n2t+1 . Then, with high probability, for each pair x; y, at least q10 of the sets chosen will intersectB(y; �t�1) and miss �B(x; �t).Note that the same applies to �t̂+1 � �t̂, since again we wish to miss a set of size < 2t̂+1, and tointersect a set of size � 2t̂. 7



Therefore for almost every choice of A1; : : : ; Aq:qXi=1 jd(x;Ai)� d(y; Ai)j � logn � (�t � �t�1)10 :We do this now for every l = 1; 2; : : : ; blognc and obtain Q = O(log2 n) sets for which:QXi=1 jd(x;Ai)� d(y; Ai)j � logn10 � t̂+1Xi=1(�i � �i�1) = logn10 � �t̂+1 � log n � d(x; y)40 :The reverse inequality is obtained by observing that jd(x;Ai) � d(y; Ai)j � d(x; y) for every Ai,whence: QXi=1 jd(x;Ai)� d(y; Ai)j � C � log2n � d(x; y):Thus, the mapping which sends every vertex x to the vector (d(x;Ai)Q j i = 1; 2; : : : ; Q), embeds Gin an O(log2 n)-dimensional space endowed with the l1-norm and has distortion O(logn). In fact, forevery p � 1, a proper normalization of this embedding satis�es the same statement with respect to thelp norm.The only modi�cation is that now x gets mapped to (d(x;Ai)Q1=p j i = 1; 2; : : : ; Q): Let �(x; y) denote thelp distance between the image of x and the image of y, i.e.,�(x; y) =  PQi=1 jd(x;Ai)� d(y; Ai)jpQ ! 1p :But for every i, jd(x;Ai)� d(y; Ai)j � d(x; y) whence �(x; y) � d(x; y). On the other hand:d(x; y) � 40 �PQi=1 jd(x;Ai)� d(y; Ai)jlog n = O logn � PQi=1 jd(x;Ai)� d(y; Ai)jQ ! � O(logn � �(x; y));by the monotonicity of p-th moment averages.The proof of Claim 6 is deferred to Proposition 4.2.The following technical corollary will be needed in Section 4.Corollary 3.4:1. Let (X; d) be a �nite metric space and let Y � X. There exists a randomized polynomial{timealgorithm that �nds an embedding ' : X ! lO(log2 jY j)1 , so that d(x; y) � k'(x)� '(y)k for everyx; y 2 X, and if x; y are both in Y , then also k'(x)� '(y)k � 
( 1log jY j) � d(x; y).2. Let (X; d) be a �nite metric space and f(si; ti) j i = 1; 2; : : : ; kg 2 X � X: There exists a de-terministic polynomial time algorithm that �nds an embedding ' : X ! lO(n2)1 , so that d(x; y) �k'(x)�'(y)k for every x; y 2 X, and k'(si)�'(ti)k � 
( 1logk ) � d(si; ti) for every i = 1; 2; : : : ; k.8



Proof: The proof of Claim 1 follows the proof of Claim 5 of Theorem 3.2:Map x to (d(x;Ai) ji = 1; 2; : : : ; O(log2 jY j)), where the sets Ai are randomly chosen subsets of Y .The second part of the Corollary follows the proof of Claim 2 in Theorem 3.2. Next, apply theembedding to lO(n2)1 mentioned in proving Claim 4.Claim 2 of Theorem 3.2 leads to a characterization of c2(X), the least distortion with which (X; d)may be embedded in a Euclidean space of any dimension.The acronym PSD = PSDn denotes the cone of real symmetric n�n positive semide�nite matrices.Corollary 3.5: An n-point metric space (X; d) may be embedded in a Euclidean space with distortion� c i� for every matrix Q 2 PSD which satis�es Q � ~1 = ~0 the following inequality holds:Xqi;j>0 qi;j � d2i;j + c2 Xqi;j<0 qi;j � d2i;j � 0:In particular, this inequality holds for any metric d and any Q 2 PSD that satis�es Q � ~1 = ~0 withc = O(logn).Proof: We retain the notation used in the proof of Claim 2. As observed in that proof, X has such anembedding i� there is matrix A 2 PSDn withd2i;j � ai;i + aj;j � 2ai;j � c2d2i;jfor all i and j. The consistency of such a system of conditions can be decided using convex programmingduality. The analysis is facilitated since we know a complete (in�nite) list of linear inequalities thatde�ne the cone PSD, namely:Proposition 3.6: A matrix P belongs to PSDn i� it satis�es Pi;j pi;j � yi;j � 0 for every Y 2 PSDn.Proof: If Y has rank one, say yi;j =< vi; vj > for some vector v, then P pi;j � yi;j = vPvt. Therefore,the condition that Pi;j pi;j � yi;j � 0 for every Y 2 PSD implies that P 2 PSD. On the other hand,if P 2 PSD, then for the same reason, Pi;j pi;j � yi;j � 0 whenever Y has rank one. The general casefollows, since every Y 2 PSD is a nonnegative combination of matrices of rank one.We return to the proof of Corollary 3.5. By convex programming duality and the fact that a non-negative combination of PSD matrices is again in PSD, it follows that the conclusion of the Corollaryis incorrect, i.e., no such matrix A exists, i� there is a matrix Q 2 PSD such that the inequalityPi;j ai;j � qi;j � 0 contradicts some nonnegative combination of the inequalitiesJi;j : c2d2i;j � ai;i + aj;j � 2ai;j � d2i;j :For the combination in question to be a contradiction, all terms ai;j have to be eliminated. In particular,inequality Ji;j must be multiplied by qi;j=2. More accurately, if qi;j � 0, the right inequality in Ji;j istaken, and otherwise we take the left part of Ji;j multiplied by�qi;j=2. The term involving ai;i disappearsonly if its coe�cient Pj qi;j vanishes, i.e., only if Q � ~1 = ~0 holds. The Corollary follows.Remark 3.7: The case c = 1, i.e., the characterization of metric spaces that isometrically embed inEuclidean space is classical (see [11]).A Hamming space is a metric space which consists of f0; 1g vectors of the same length, equipped withthe Hamming metric. 9



Corollary 3.8: For every n-point metric space (X; d) there is a Hamming space (Y; �) and a 
 > 0such that (X; d) can be embedded in (Y; 
 � �) with distortion O(logn). The bound is tight.Proof: It su�ces to �nd a constant{distortion embedding for every �nite subset of lm1 into a Hammingspace. Nothing is changed by adding the same number to all values at some coordinate. Also recallthat multiplication by a �xed factor is allowed. Therefore, at the cost of an arbitrarily small distortionthe entries of the i-th coordinate may be assumed to be integers, the smallest of which is 0. If thelargest i-th coordinate is r, this coordinate is replaced by r new ones, where xi = s is replaced by snew coordinates of 1 followed by r � s coordinates of 0. This latter step adds no distortion, being anisometry into a Hamming space.Again, the tightness result follows from Proposition 4.2.3.2 Applications to clusteringIt is a recurring situation in pattern{recognition, where one is given a large number of sample points,which are believed to fall into a small number of categories. It is therefore desired to partition the pointsinto a few clusters so that points in the same cluster tend to be much closer than points in distinctclusters. When sampling takes place in a low{dimensional Euclidean space, clustering is reasonablyeasy, but when the dimension is high, or worse still, if the metric is non{Euclidean, reliable clustering isa notoriously di�cult problem. See Duda and Hart [20], in particular chapter 6, for a standard referencein this area.The algorithms we have just described o�er a new approach to clustering. These algorithms arecurrently being practically tested [38] in a project to search for patterns among protein sequences.One pleasing aspect that already emerges is this { the second algorithm in Theorem 3.2 assumes thatthe distance between any pair of points in the space can be evaluated in a single time unit. In thisparticular application, the metric space consists of all presently known proteins. Molecular biologistshave developed a number of measures to estimate the (functional, structural, evolutionary etc.) distancebetween protein sequences, and some widely available software packages (e.g., FASTA, BLAST) calculatethem. At this writing about 40,000 proteins of average length ca. 350 have already been sequenced. Forour purposes, a protein is a word in an alphabet of 20 letters (amino{acids) and it takes about a quarterof a second to compute a single distance according to any of the common metrics, using standard softwareon a typical workstation. A straightforward implementation of the algorithm is therefore infeasible. Thedi�culty stems from having to compute d(x;A) for large A's. A closer observation of the proof showsthat if we fail to include the coordinates which correspond to large A's, the e�ect is that the distancebetween close pairs of points (protein sequences) is reduced in the mapping. This is de�nitely a welcomee�ect in a clustering algorithm, so what seems to be a problem turns out as a kind of a blessing.4 Multicommodity 
ows via low-distortion embeddingsWe brie
y recall some de�nitions about multicommodity network 
ows. G is an undirected n-vertexgraph, with a capacity Ce � 0 associated with every edge e. There are k pairs of (source{sink) nodes(s�; t�), and for each such pair a distinct commodity and a demand D� � 0 are associated. For simplicityof notation we let Ci;j = 0 for all non{edges (i; j). As usual, 
ows have to satisfy conservation of matter,and the total 
ow through an edge must not exceed the capacity of the edge. Maximal multicommodity
ow problems come in a number of 
avors, and we concentrate on the following version: Find max
ow{ the largest � for which it is possible to simultaneously 
ow �D� between s� and t� for all �.10



A trivial upper bound on � is attained by considering cuts in G. For S � V let Cap(S) be the sum ofthe capacities of the edges connecting S and S. Also let Dem(S) be the sum of the demands betweensource{sink pairs separated by S (i.e., jS \ fs�; t�gj = 1). Obviously, � � Cap(S)Dem(S) for every S.In the case of a single commodity (k = 1), the max{
ow min{cut theorem is easily seen to say that� equals the minimum of Cap(S)Dem(S) over S � V .It came as a pleasant surprise when Leighton and Rao showed that in some cases the gap between themax{
ow and the min{cut cannot be too big. We show that this gap is bounded by the least distortionwith which a certain metric associated with the network can be embedded in l1. This fact yields auni�ed approach to Leighton{Rao's [37], and the subsequent [35], [24], and [53]. The result for non{unitdemands is new.Theorem 4.1: 2 There is a deterministic polynomial{time algorithm which given a network G =(V;E;C) and the demands for k source{sink pairs, �nds an S � V for whichCap(S)Dem(S) � O(log k) �max
ow:Proof: The optimal � is the maximum of a certain linear program. By LP duality (e.g., [24]):� = min Pi6=j Ci;j � di;jPk�=1D� � ds�;t� ;where the minimum is over all metrics d on G. We �rst apply Claim 2 of Corollary 3.4 to the mini-mizing metric with X = V (G). The vertices of G are thus mapped to points fx1; : : : ; xng in Rm wherekxi � xjk1 � di;j for all i; j and kxs� � xt�k1 � 
(ds�;t�= logk) for � = 1; : : : ; k. Therefore,Pi6=j Ci;j � kxi � xjk1Pk�=1D� � kxs� � xt�k1 � O(� � log k):Since we are dealing with the lm1 metric we may conclude:Pi6=j Ci;j � kxi � xjk1Pk�=1D� � kxs� � xt�k1 = Pmr=1Pi6=j Ci;j � jxi;r � xj;rjPmr=1Pk�=1D� � jxs�;r � xt�;rj � min1�r�m Pi6=j Ci;j � jxi;r � xj;rjPk�=1D� � jxs�;r � xt�;rj :Let ~r be an index where the minimum is achieved. We claim that no generality is lost in assuming thatall xi;~r are in f0; 1g, whence Pi6=j Ci;j � jxi;~r � xj;~rjPk�=1D� � jxs�;~r � xt�;~rj = Cap(S)Dem(S) ;where S = fijxi;~r = 1g.To justify the assumption xi;~r 2 f0; 1g for every i, we argue that for any real aij = aji, bij = bji,1 � i 6= j � n the minimum of Pi6=j aij jzi�zj jPi6=j bij jzi�zj j (over real z's) can be attained with all zi 2 f0; 1g. This isshown by a variational argument: If the z's take exactly two values, one value can be replaced by zeroand the other by one without a�ecting the expression. Otherwise, let s > t > u be three values taken byz's. Fixing all other values, and letting t vary over the interval [u; s], the expression is the ratio of two2A randomized version of this Theorem appeared in the preliminary version of this paper and in the paper of YonatanAumann and Yuval Rabani [6]. We were recently informed by Naveen Garg [23] that he, too, managed to derandomize avariant of the algorithm that appears in our FOCS '94 paper.11



linear functions in t. Therefore, all z's which equal t can be changed to either s or u without increasingthe expression. This procedure is applied repeatedly until only two values remain.The algorithm is a straight implementation of the proofs. First solve the linear program � =minfPi6=j Ci;j � di;j under the condition Pk�=1D� � ds�;t� = 1, where d is a metric on Gg. Approxi-mate the optimizing metric in l1 as in the second part of Corollary 3.4. Consider the index ~r whichminimizes Pi6=j Ci;j �jxi;~r�xj;~r jPk�=1D��jxs�;~r�xt�;~r j : Finally optimize this expression using the above variational procedureto �nd a near{optimal cut. Note that instead of this last step it su�ces to consider only the cuts to aninitial segment and a �nal segment of the one{dimensional embedding.The proof shows that the max{
ow min{cut gap is accounted for by the distortion in approximatinga certain metric by l1 norm. In those cases where distortion smaller than log k will do, better boundsfollow for the multicommodity 
ow problem. For example { suppose the n-point metric space de�nedby the optimal d is isometrically embeddable in Rs for some small s. Then (as mentioned in the proofof Theorem 7.1) d may be approximated by ls1 with distortion s, yielding a better bound than in thegeneral case.A cut metric on n points is de�ned by picking S � [n] and de�ning d(x; y) = 1 if jS\fx; ygj = 1, andas zero otherwise. A simple but useful fact is that a metric on [n] is realizable in l1 i� it is a nonnegativecombination of cut metrics. This fact explains much of what happens in the proof of Theorem 4.1.Proposition 4.2: Every embedding of an n-vertex constant{degree expander into an lp space, 2 � p � 1,of any dimension, has distortion 
(logn). The metric space of such a graph cannot be embedded withconstant distortion in any normed space of dimension o(log2 n).Proof: As observed in [37] the max{
ow min{cut gap is 
(logn) for the all{pairs, unit{demand 
owproblem on a constant{degree expander, where all capacities are one. Consider the correspondingexpression � = P[i;j]2E di;jPi6=j di;j for certain metrics d. When d is the expander's own metric � = �( 1n logn ).On the other hand, the minimum of � over one-dimensional metrics d is the expander's min{cut, i.e.,
( 1n). Consequently min� over d in l1 is also 
( 1n). This gap implies that every embedding of theexpander's metric in l1 (of any dimension) has distortion 
(logn).The same conclusion holds also for embeddings into lp for 2 � p � 1, because in this range, every�nite dimensional lp space can be embedded in l1 with a constant distortion ([52], chapter 6).Every d-dimensional norm may be approximated with distortion pd by an a�ne image of the Eu-clidean norm (e.g., [52]). Therefore, an embedding of constant distortion into any o(log2 n)-dimensionalnormed space translates into an o(logn)-distortion embedding into l2, which is impossible.Two commoditiesThat max{
ow=min{cut for two commodities ([29] and [57]) can be shown as follows: Let d be themetric for which � = Pi6=j Ci;j �di;jPk�=1D��ds�;t� : Map every vertex x to the point (dx;s1 ; dx;s2) and let D be the l1metric among these points. If we replace d byD, the numerator can only decrease, while the denominatorstays unchanged, whence there is no loss in assuming d to be (a restriction of) the l21 metric. It isnot hard to see that the linear mapping �(z1; z2) = ( z1+z22 ; z1�z22 ) satis�es k�(z1; z2) � �(w1; w2)k1 =k(z1; z2) � (w1; w2)k1. An application of � thus allows us to assume that the metric d is, in fact (arestriction of) l1. From here on, the proof of Theorem 4.1 can be followed to derive our claim.12



5 Isometries5.1 General resultsAll logarithms are to base 2. G = (V;E) is always a connected graph and n is the number of its vertices.Unless otherwise stated, embeddings are into Rd. 3 No distinction is made between a vertex x and itsimage under the embedding. If G can be embedded in (X; k � k) we also say that X realizes G.The unit ball of a d-dimensional real normed space is: B = fx 2 Rd with kxk � 1g. This is aconvex body which is centrally symmetric around the origin. Every centrally symmetric convex body Qinduces a norm, called the Minkowski norm: kxkQ = inff� > 0 such that x� 2 Qg. Thus, normed spacesare denoted either as (Rd; k � k) or as (Rd;Q). The boundary of B is @B = fx 2 Rd with kxk = 1g. Inan isometric embedding of G in Rd the set f x�ydG(x;y) jx 6= y 2 V g is contained in @B. It is not hard to seethat there is no loss of generality in assuming B = convf x�ydG(x;y) j x 6= y 2 V g. That is, we may assumeB is a centrally symmetric convex polytope. A copy of B centered at x is denoted B(x).The following well{known lemma shows that the notion of dimension is well{de�ned.Lemma 5.1: A metric space (X; d) with n points can be isometrically embedded into ln1.Proof: Let X = fx1; : : : ; xng with dij = d(xi; xj). Map xi to a point zi 2 Rn whose k-th coordinate iszik = dik. Then jjzi� zj jj1 = maxkjzik � zjk j � jzij � zjj j = jdij � djj j = dij. On the other hand, for all k,jzik � zjkj = jdik � djkj � dij by the triangle inequality.We show later some examples of graphs with isometric dimension n2 . The highest isometric dimensionamong n-vertex graphs is currently unknown (but see [9] and [63]).The l1 norm is universal in that, as Lemma 5.1 shows, it realizes all graphs (in fact, all �nite metricspaces). In some sense, it is the only universal norm, as the l1 norm de�nes a graph on Zd, whichmust be realized by any other universal norm. Therefore any universal norm must contain a copy ofl1. (Lest the reader suspects that l1 is universal as well, we remark that K2;3 is not embeddable inthis norm, viz. [18].) It is therefore of interest to also study dim(G) (and dimc(G)), the least k suchthat G can be isometrically embedded in lk1 (with distortion c). Clearly dim(G) � dim(G), and thisgap can be exponential (e.g., dim(d-Cube) = d while dim(d-Cube) = 2d�1; see Corollary 5.12 andcomments following Theorem 5.15). One simpli�cation in studying isometric embeddings into ld1 isthat all vertices may be assumed to map to Zd: Given any embedding, round all coordinates up andisometry is preserved.Geodetic paths in G and the face lattice of the unit sphere B are related viaProposition 5.2: Let P = (x1; : : : ; xk) be a geodetic path in G. In an isometric embedding of G in(Rd;B), all vectors xj�xij�i ; k � j > i � 1; lie on the same face of B.J is an isometric subgraph of G if distances within J are the same as in the whole graph G. The dimen-sion of such a subgraph provides a lower bound on dim(G). Examples of isometric subgraphs of G in-clude cliques, induced subgraphs of diameter 2, geodetic paths and irreducible cycles. In particular, sincedim(Cn) � n4 � 1 (Proposition 5.10 and Remark 5.11), if G has �nite girth, then dim(G) � girth(G)4 � 1.To get the reader initiated on methods for estimating isometric dimensions, we present a bound onthe dimension of trees:Theorem 5.3 : For every n-vertex tree T , dim(T ) = O(logn). Moreover, if T has l leaves, thendim(T ) = O(log l). The bounds are tight.3However, d may also denote a metric, and so will be paid extra, [13] page 223.13



Proof: The proof shows that T can be isometrically embedded in lc�logn1 with c = 1log 3�1 . It is well-known that every n-vertex tree T has a \central" vertex O, such that each component of T n fOg has atmost 2n3 vertices. Let R;L be two subtrees of T of size � 2n3 whose union is T , sharing only the vertexO. Find isometric embeddings, one for L and one for R in lc�logn�11 . Such an embedding remains anisometry if all points are translated the same amount. We may thus assume that in the embeddings ofL and R the vertex O is mapped to the origin in Rc�logn�1. The whole tree is isometrically embedded ina space of one more dimension. The coordinates used to embed R and L are maintained, and the valueof the new coordinate is set as follows: For O it is zero, for x 2 V (L) this new coordinate is �dT (O; x)and for x 2 V (R) it is dT (O; x). It is not hard to verify that this is an isometric embedding, as claimed.The upper bound in terms of the number of leaves is obtained by splitting T into two subtrees with asingle common vertex, neither of which contains more than 23 of the leaves of T (see [14] Theorem 2.1').Both bound are tight for stars, dim(K1;n�1) = 
(logn) by Proposition 5.5.5.2 Estimating the dimension { volume considerationsAlthough stated in a di�erent context, [17] shows that dim(Kn) � dlog2 ne. Here is a sketch of anargument based on the original ideas and translated to our language:Proposition 5.4: dim(Kn) = dlog2 ne.Proof: (Sketch) LetKn be isometrically mapped to fx1; : : : ; xng in (Rd;B). LetD = convfx1; : : : ; xng.We claim that the sets D + xi (i = 1; : : : ; n) have disjoint interiors. Assuming this for a moment,notice that since D is convex, D + xi � 2D for all i. Hence n � vol(D) = vol ([i(D + xi)) � vol (2D) =2d � vol(D) and the conclusion follows. To complete the proof, suppose for contradiction that(D + xi) \ (D + xj) has a nonempty interior. This implies that xi � xj is an internal point of D �D.But D �D = convfx� � x� j n � � 6= � � 1g which are all vectors of norm 1, whence D �D � B. Itfollows that xi � xj , a vector of norm 1, is in int(B), a contradiction.On the other hand dim(Kn) � dlog2 ne follows by mapping the vertices of Kn to the vertices of thedlog2 ne-dimensional cube, under l1 norm.Volume considerations yield upper bounds on degrees and a lower bound on the diameter:Proposition 5.5: All vertex degrees in a d-dimensional graph do not exceed 3d�1. This bound is tight.Proof: Place a copy of 12B around a vertex v, and around each of its neighbors. The interiors of allthese balls are disjoint, and their union is contained in 32B(v): If w is a neighbor of v and z 2 12B(w) thenkz�wk � 12 since z 2 12B(w), and kw�vk = 1 by the isometry. Hence kz�vk � kz�wk+kw�vk � 32 .Comparing volumes we get the desired result. Equality is attained by the grid points under l1 norm.Lemma 5.6: diam(G) � 12(n 1d � 1).Proof: Surround each vertex of G by 12B. These balls have disjoint interiors and are contained in(diam(G) + 12)B, centered at an arbitrary vertex of G. The conclusion follows as before. The bound isnearly tight, as we know of graphs with diam(G) � 1p2(n 1d � 1).5.3 Estimating the dimension { ranksIsometric dimensions are related to linear algebra via an alternative de�nition of a norm: Recall thatwe are only concerned with normed spaces (X;B) where B is a centrally symmetric polytope. Associate14



with each pair of opposite facets fF;�Fg of B, a linear functional lF which is identically 1 on F , and�1 on �F . Then 8x 2 X; kxk = maxF jlF (x)j.An n�r matrixM implements a graph G if for all i; j maxk jmik�mjkj = dG(vi; vj): The followingresult o�ers a characterization of dim(G) in terms of matrix ranks:Theorem 5.7: dim(G) = min rank(M), where the minimum is over all matrices M that implementG.Proof: If G is isometrically embeddable in (Rd;B), de�ne M via: miF = lF (vi), where lF is thefunctional corresponding to the pair of opposite facets fF;�Fg of B. Clearly, M implements G, and itsrank is � dim(G).On the other hand, suppose that Mn�s implements G and d = rank(M). Mapping the vertices of Gto the rows of M is an embedding of G to the d-dimensional space L, spanned by the rows of M . Thenorm is induced by the unit sphere B = L\ [�1; 1]s, the intersection of L with the unit cube in Rs. Thefact that M implements G implies that the above mapping is an isometry of G into the normed space(L;B).Here are some applications of the theorem:Theorem 5.8: If n1; n2; : : : ; nk � 2; then dim (Kn1;n2;:::;nk) � Pki=1dlognie � 1:Proof: Let Ai be the i-th part of V and M be a matrix implementing G. For a; b 2 Ai, consider acolumn j where jmaj �mbj j = 2. If x =2 Ai, then d(x; a) = d(x; b) = 1, whence mxj = 12 � (maj +mbj).It follows that if 12 � (maj +mbj) �~1 is subtracted from the j-th column, all entries not in the rows of Aibecome zero. Repeat this step for all columns j that implement the distance between two points fromthe same part. Next, eliminate all other columns. The resulting matrix Q has rank(Q) � rank(M) + 1(elementary operations with a single column can increase the rank by � 1 and eliminating columns canonly decrease it). Q is a direct sum Q = �Qi, where 12Qi implements Kni , whence rank(Qi) � dlog nie.The theorem follows.The upper bound dim (Kn1;n2;:::;nk) � Pki=1dlog nie is shown easily, using l1 norm, as suggested bythe proof of the lower bound.Corollary 5.9: Let G be a clique K2n minus a perfect matching. Then dim(G) = n.Proof: Here, it is obvious that the the elementary operations on the columns do not cause a loss ofone in the dimension.Proposition 5.10: dim(C2m) = m.Proof: The following construction gives an upper bound, with l1 norm: The vertices are mapped tothe following 2m points: for i = 1; : : : ; m : xi =Pit=1 et;for i = m+ 1; : : : ; 2m� 1 : xi =Pmt=i�m+1 et;x2m = 0;where et is the t-th unit vector.For the lower bound, let the matrix A implement C2m, and let v1; : : : ; v2m be the vertices in cyclicorder. All indices are taken modulo 2m. Consider a column t where dG(vj ; vm+j) = m is realized. Ithas the form aj;t = �; aj+1;t = aj�1;t = � + �; aj+2;t = aj�2;t = � + 2�; : : : ; aj+m;t = � +m�, for somereal � and � 2 f�1; 1g. By elementary operations with the column vector ~1 it can be transformed so15



that aj�i;t = aj+i;t = i for i = 0; : : : ; m. We thus obtain an m �m minor whose (r; s)-entry is jr � sj.This matrix is non{singular, being the distance matrix of a path, which is known to be non-singular(e.g., [44] pp. 64-65). This implies rank(A) � m�1. A more careful analysis shows that the elementaryoperations with the all{one vector can be avoided, yielding rank(A) � m.Remark 5.11: For cycles of odd length: m+ 1 � dim(C2m+1) � m2 � 1. The upper bound is achievedwith l1 norm: Let fw1; w2; : : : ; wm+1g be m+1 consecutive vertices in the cycle. Map each vertex x toan (m+ 1)-vector, whose i-th coordinate is d(x; wi). As for a lower bound, the above argument yieldsonly dim(C2m+1) � m2 � 1, though probably dim(Cn) = dn2 e for all n.Consequently:Corollary 5.12: dim(m-Cube) = m.Proof: The m-Cube embeds isometrically in lm1 . The lower bound follows from the fact that them-Cube contains a 2m-Cycle as an isometric subgraph.Consequently, the in�nite cubic grid in Rm has dimension m. Moreover, for the part of the gridG = [1; : : : ; n]m, not only does dim(G) = m, but also dimc(G) = m for any c � n 1m . This bound can beobtained using volume arguments as described in a previous section.The stabbing dimension of a �nite family of convex bodies K in Rd is the least dimension of a linearspace L which intersects every K 2 K.Associate with a connected graph G on n vertices, the polyhedron P = PG � Rn = fx 2 Rn withjxi�xj j � d(vi; vj) for all 1 � i; j � ng. Alternatively, P = fx 2 Rn with jxi�xj j � 1; 8[vi; vj] 2 E(G)g.Clearly, P is a centrally symmetric prism. For each i; j the facets F+i;j and F�i;j are determined by theequation xi � xj = � d(vi; vj). Let F = FG consist of all such faces. (In fact, because of the centralsymmetry, it would su�ce to consider F+i;j alone.)Theorem 5.13: The stabbing dimension of FG coincides with the isometric dimension of G.Proof: Suppose that L \stabs" all the faces in FG, and choose for each pair i; j a vector in L \ Fi;j .Let the matrixM have these vectors as columns. Clearly M implements G; by Theorem 5.7, dim(G) �dim(L).On the other hand, given a matrix of minimum rank implementing G, de�ne L to be the span of itscolumns. Clearly L meets all the required facets, and dim(L) = dim(G).The case when G is a clique has an interesting geometric implication:Theorem 5.14: Let C be the cube [�12 ; 12 ]m. The stabbing dimension of any family of n pairwisedisjoint faces fF1; : : : ; Fng of C is at least dlog2 ne.Proof: Let L be a linear space that meets all Fi. Choose points vi 2 L\Fi, and form an n�m matrixM whose rows are the vi's. Since the faces are disjoint, for each two rows i 6= j there is a column lwhere vi;l = �12 and vj;l = 12 , or vice versa. Since all entries of M are in [�12 ; 12 ], M implements then-Clique.By Theorem 5.7 and Proposition 5.4 rank(M) � dlog2 ne, whence dimL = rankM � dlog2 ne asclaimed.The remaining part of the section concerns dim(G).Theorem 5.15:� dim(G) is the least number of columns in a matrix implementing G.� dim(G) equals half the least number of faces of the unit ball of a normed space in which G can beisometrically embedded. 16



Here are some examples demonstrating the convenience of working with dim(G):(i) dim(Kn) = dlog2 ne.LetM realize Kn, and recall thatM may be assumed to have integer entries. Hence, each column in Mrealizes the distance between every x 2 A and y =2 A for some A � V . Namely, an isometric embeddingof Kn into ld1 is equivalent to covering E(Kn) by d complete bipartite graphs and it is well known thatd � dlog2 ne, as claimed.A similar argument shows that dim (linegraph(Kn)) = �(log n).(ii) dim(d-Cube) = 2d�1.LetM implement the d-Cube and let column t realize d(x; y) = d for some antipodal pair x; y. Withoutloss of generality mtz = d(x; z). Hence every antipodal pair requires a separate column. At the sametime this is just a description of a matrix implementing the d-Cube with 2d�1 columns.6 SeparatorsTheorem 6.1: Let dimc(G) = d and assume that c � d = o(n 1d ). Then G has a set S of O(c � d � n1� 1d )vertices which separates the graph, so that no component of G n S has more than (1 � 1d+1 + o(1))nvertices.Proof: Given a distortion-c embedding of G in (Rd;B), our approach is this: Find two parallel hyper-planes H1; H2 in Rd at distance 1 (distance is taken in the B-norm). S is the set of vertices which areembedded in the closed slab between the two hyperplanes. V1 is the set of vertices embedded strictlyabove H1 and in V2 are those embedded strictly below H2. That S separates V1 and V2 is obvious.What we need is to construct H1 and H2, so that,jSj = O(c � d � n1� 1d )and jV1j; jV2j � �1� 1d+ 1 + o(1)�n:The proof uses a beautiful idea from [50] which starts from the following well known consequence ofHelly's Theorem [64]:Proposition 6.2: For any set V of n points in Rd there exists a centroid O such that every closedhalfspace determined by a hyperplane passing through O contains at least nd+1 points of V .By translation, O may be assumed to be the origin.Partition the points in V according to their distance from O. First we will show that no slab contains\too many" points of V , that are \near" the origin. Then we show that on a random choice of H1, andH2 = �H1, the expected number of points in V which are \far" from the origin and fall in the slab issmall.It is a well known fact (e.g., [52]) that every d-dimensional norm may be approximated with distortionpd by an a�ne image of the Euclidean norm. That is, we may assume that G is embedded in ld2 withdistortion cpd.So we should look for a closed slab H of (Euclidean) width cpd containing \not too many" points ofV . Let n1 = #fx : x 2 V \ H; kxk2 < R0g.Lemma 6.3: Let R0 = �(c � pd). Then n1 � O(c � d � (2R0+ 1)d�1).17



Proof: All distances in G are � 1, so the same holds also for the Euclidean distance of the images.Therefore, if we locate a 12B around each point in V \H we get n1 spheres with disjoint interiors. SinceR0 = �(c � pd), they all reside inside a cylinder of height �(c � pd) and base a (d� 1)-dimensional ballof radius (R0 + 12). Comparing volumes we obtain:n1 � vd � �12�d � vd�1 � �R0 + 12�d�1 �O(c � pd):Where vt is the volume of the unit ball in Rt. Recall that v2t = �tt! and v2t+1 = 2t+1��t1�3���(2t+1) , and inparticular, vtvt+1 = �(pt):Consequently: n1 � O(c � d � (2R0+ 1)d�1):Now, we wish to estimate the probability for a remote point x (i.e., kxk2 � R0) to belong to arandomly chosen slab. A slab is determined by the unit vector perpendicular to its boundary and ourchoice is by the uniform distribution on Sd�1.Lemma 6.4: Let x 2 Rd, kxk2 � R0. Then Pr(x 2 H) � O � c�dR0�.Proof: Associate with each slab H the two points on Sd�1 in the directions of the two unit vectorsperpendicular to the hyperplanes of H. Slabs have width cpd, so the points associated to slabs containingx form a symmetric stripe of width 2c pdkxk2 , on Sd�1. Therefore, the desired probability is the ratiobetween the surface area of this stripe and the surface area of the whole sphere. We recall the followingfact:Remark 6.5: Let C be a measurable subset of Sd�1, and let � be the ((d� 1)-dimensional) measureof C. Let �(C) = fy j y = �x for some x 2 C and 1 � � � 0g, the cone with base C and apex at theorigin. Then the (d-dimensional) measure of �(C) is �d . In particular, the surface area of Sd�1 is d � vd.We need to evaluate the surface area of C, the part of the stripe of width 2c pdkxk2 , that is on Sd�1. Bythe previous remark, this surface area equals d � vol(�(C)). Assume that C is symmetric with respectto the hyperplane zd = 0. Then �(C) � f(z1; : : : ; zd) with Pd�11 z2i � 1 and jzdj � c�pdkxk2 g, and as thevolume of this cylinder is 2 c�pdkxk2vd�1:Pr(x 2 H) � 2c � d3=2kxk2 � vd�1d � vd = O�c � dR0 � :Thus n2, the expected number of remote points x 2 V which belong to H, satis�es n2 = O(n�c�dR0 ).We optimize, by selecting R0 so that n1 � n2. Thenn � c � dR0 � c � d �R0d�1or R0 = �(n 1d ):This yields n1 + n2 = O(c � d � n1� 1d ), for the expected number of points in the slab.The requirements R0 = �(c � pd) and R0 = O(n 1d ) are consistent, since c � d = o(n 1d ) was assumed.The centroid can be found in time linear in n and dd (see [47]). Therefore, given an embedding ofG, the proof translates to a randomized polynomial time algorithm to �nd such a separator, provided18



that d = O( lognlog logn). It is interesting to observe that in [49] an essentially similar separation is obtained,although both the setting and the methods are di�erent.It is not di�cult to see that for G that is a product of d paths of length n1� 1d , the theorem is essentiallytight.7 Low{diameter decompositions of graphsFollowing [43] a decomposition of a graph G = (V;E) is a partition of the vertex set into subsets (calledblocks). The diameter of the decomposition is the least � such that any two vertices belonging to thesame connected component of a block are at distance � � in the graph. Modifying this de�nition inthe spirit of [7], we consider coverings of G wherein distinct blocks may have nonempty intersections.Diameters of coverings are de�ned as for decompositions. The degree of a covering is the largest numberof blocks to which any vertex may belong. A covering is r-subsuming if every r-ball in G is containedin some block of the covering.Theorem 7.1: Let G be a graph with d = dimc(G), d = dimc(G), and let r be a positive integer. Then1. G can be decomposed to d+ 1 blocks, each of diameter � 2cd.2. G can be decomposed to d+ 1 blocks, each of diameter � 2cd2.3. G has a covering by d + 1 blocks, each of diameter � (6d + 2)cr, that is r-subsuming, and thecover has degree � (d+ 1).4. G has a covering by d + 1 blocks, each of diameter � (6d+ 2)dcr, that is r-subsuming, and thecover has degree � (d+ 1).Remark 7.2: Combined with Theorem 3.2 we obtain a decomposition to O(logn) blocks of diameterO(log3 n), and a covering of diameter O(log3 n) with degree O(logn), results slightly inferior to theoptimal (O(logn); O(logn)) from [43] and [7].Proof: We prove the case c = 1, the general case then follows easily. Throughout the proof weuse l1 norm. The key to the proof is the following universal tiling of Rd: Consider Zd, and de�neKi; i = 0; : : : ; d � 1 as the 2d�(2i+1)4d neighborhood of the i-dimensional faces of its cubes (i.e., K0consists of radius 2d�14d cubes centered at the grid points, K1 is the 2d�34d neighborhood of the edges ofthe grid, etc.). De�ne T0 = K0, Ti = Ki�[i�1j=0Kj for i = 1; : : : ; d� 1. Finally, Td is the remaining partof Rd. It is not hard to check now that each Ti is a union of disjoint \bricks", each of diameter < 1, andthat the distance between any two such bricks is � 12d .Claim 1 is now immediate: embed the graph in Rd, and consider the tiling as above, magni�ed byfactor 2d+ �. Each G \ Ti is a proper block.The proof of Claim 2 is slightly more complicated, since one has to correlate between the d-dimensionalgrid and an arbitrary d-dimensional norm. We need a small distortion approximation of B (or a lineartransformation thereof) by a cube. Distortion d is attainable: �rst approximate B by a Euclidean unitball (actually, by its L�owner{John ellipsoid, see [52]), then approximate the unit ball by a unit cube,both distortions being � pd. By recent work of Giannopoulos [25] an O(d0:859) distortion is attainable.19



As before, we embed G in Rd, and superimpose on it the (unit) lattice that approximates B to a factorof d, magni�ed by 2d2 + �. It is easy to check that, again, each Ti de�nes a proper block.If c > 1, the only change is that the diameter of sets covered by a single brick may be multiplied byc. To prove Claim 3: Magnify the tiling by a factor of 6d+ �. Turn the tiling into a covering by de�ningnew blocks as the 1-neighborhoods of the old blocks. Since di�erent blocks of Ti were at least 3 apart,no point in Rd is covered more than d+ 1 times. Furthermore { each 1-neighborhood in Rd is coveredby at least one new block, since Rd is tiled by the old blocks (identify each 1-neighborhood with itscenter). The diameter of each new block is � 6d+ 2, since any two connected components of the sameblock are at least one unit apart.In order to �nish the proof { given r > 0 { magnify the covering by a factor of r, and embed G in Rd.The proof of Claim 4 follows easily from the same arguments.Remark 7.3: We have covered Rd with fT0; : : : ; Tdg, where each Ti is a union of compact sets ofdiameter < 1, any two of which are at least 12d apart. The construction is nearly optimal in two respects:It is impossible to cover Rd with fewer than d + 1 sets each of which is the disjoint union of com-pact sets whose diameters are bounded from above and whose mutual distances are bounded away fromzero. This follows, e.g., from Lemma 3.4 in [43].We next show that for any cover fTigdi=0 as above, there are two sets in the same family whose distancedoes not exceed O( logdd ). Indeed, there must be a Ti with upper density at least 1d+1 . Let T � = Ti+mB(Minkowski Sum), where 2m is the least distance between two connected components of Ti. If K� is atypical connected component of Ti, then the sets K� +mB have disjoint interiors. Also Ti has upperdensity at least 1d+1 in Rd, and therefore also in K� = [(K�+mB). By the Brunn{Minkowski inequality(see [52]): vol(K� +mB)vol(K�) � (vol(K�)1=d + vol(mB)1=d)dvol(K�) ==  1 + �vol(mB)vol(K�)�1=d!d :We used the fact that in any norm vol(B) � vol(K) whenever diam(K) � 2, which can be shown as fol-lows: Consider the symmetrization Q = (K�K)=2 (Minkowski sum). Clearly, Q is centrally symmetricwith respect to the origin, and diam(Q) � diam(K) � 2. Also, by Brunn{Minkowski vol(Q) � vol(K).But the symmetry of Q and the bound on its diameter imply that Q � B and the conclusion follows.By the density properties of Ti, there is an index � for which d � vol(K�+mB)vol(K�) � (1 +m)d which impliesm = O( logdd ), as claimed.We do not know what the bound on m is for various norms. A plausible guess would be thatm = O(1=d) for every norm, and that this is tight for l1.8 Further problemsMany of the questions addressed in this paper can be considered for directed graphs as well as forundirected ones. To get started in this direction, let us de�ne a directed metric on X as a nonnegativereal function d on X �X , which satis�es the directed triangle inequality: d(x; y) + d(y; z) � d(x; z) for20



every x; y; z 2 X . A directed norm in Rn satis�es the same set of requirements as does a norm, exceptthat jj�xjj = �jjxjj is to hold only for nonnegative �. The \unit ball" in such a space, i.e., the set ofthose vectors whose directed norm does not exceed one is a convex set which contains the origin inits interior (central symmetry is no longer required) and any such set B de�nes a directed norm in theobvious way: jjxjj = inff� > 0 such that x� 2 Bg.It is pleasing to observe that an analogue of Lemma 5.1 holds in this more general context:Proposition 8.1: Every n-point directed metric space (X; d) can be isometrically embedded into Rnequipped with an appropriate directed norm.Proof: Let X = fx1; : : : ; xng with di;j = d(xi; xj). Pick n linearly independent vectors fz1; : : : ; zng.Let the unit ball be B = convf zi�zjdi;j ji 6= jg, and map xi to zi. (According to this de�nition B is notfull dimensional. This may be overcome by using B0, a small height bi-pyramid over B. Alternatively,project all zi to the subspace spanned by B.) The only way the claim could fail is that for some pair,say f1; ng, the point z1�znd1;n is in the interior of convf zi�zjdi;j ji 6= jg.If this is the case, then � � z1 � znd1;n =Xi;j �i;j zi � zjdi;jfor some � > 1 and some nonnegative �i;j whose sum is 1. Pick such an equality with � as large aspossible. Let H be the directed graph on vertex set [n] where (i; j) is an edge i� �i;j > 0, and observethat:� H is acyclic: Associated with every directed cycle C in H is a linear dependency with positivecoe�cients: P(i;j)2E(C) �i;j zi�zjdi;j = 0 (with �i;j > 0). It is possible to replace �i;j by �i;j� t ��i;j forall (i; j) 2 E(C) for some t > 0 and renormalize the sum, so as to retain �i;j � 0 while increasing�, contrary to our assumption.� By linear independence of the zi, the only source in H is 1, and the only sink is n.� Without loss of generality no two directed paths in H have the same starting vertex and the same�nal vertex. Otherwise, it is possible to shift weight from one to the other without decreasing �.Consequently, H is a single directed path from 1 to n and the above equality has the form:� � z1 � znd1;n = n�1Xi=1 �i;i+1 zi � zi+1di;i+1with �i;i+1 > 0 and Pn�1i=1 �i;i+1 = 1:The linear independence of the zi's implies that:�d1;n = �1;2d1;2 = �2;3d2;3 = : : := �n�1;ndn�1;n :So 1 =X�i;i+1 = �d1;n Xdi;i+1 � �by the directed triangle inequality, a contradiction.21



It is an intriguing idea that large diameters in graphs can be essentially attributed to low-dimensionality.The easy converse is our Lemma 5.6. Attempts to make this statement precise were, in fact, the initialmotivation for this research. A plausible conjecture along these lines was formulated with the helpof L. Levin. We are grateful for his permission to include it here. Let Zd1 denote the graph of thed-dimensional lattice with l1 metric. De�ne the growth rate �(G) of a graph G as the maximum (overall choices of r and x) of log jB(x;r)jlog(r+1) (where B(x; r) is the r-ball around x).Conjecture 8.2: Let G have growth rate � = �(G). Then ZO(�)1 contains a (not necessarily induced)subgraph isomorphic to G.By a standard counting argument, fewer than �(G) dimensions will not su�ce.The conjecture is true for G = d-Cube and here is a sketch of a proof: First one checks that � =�(d-Cube) = �( dlog d). Let y1; : : : ; yO(�) be randomly selected d-dimensional (�1; 1)-vectors. Each vertexx of the d-Cube, (considered as a d-dimensional (0; 1)-vector) gets mapped to the vector of (real) innerproducts (< x; yi > ji = 1; : : : ; O(�)). Neighboring vertices in the d-Cube are mapped to adjacentvertices in ZO(�)1 , since the yi's are (�1; 1)-vectors. Also, with high probability this mapping is one-to-one: Let x; z be two vertices of the cube, at Hamming distance t = 
(pd). Their images agree inthe i-th coordinate i� < x; yi >=< z; yi >. The probability of this event is exactly the chance for aone{dimensional random walk to be in the origin at time t, i.e., O(t�1=2). Therefore, the probabilitythat x and z have the same image is t�
(�) = o(2�d). Consequently, almost surely no collision occursamong points of Hamming distance 
(pd). On the other hand, if the Hamming distance between x andz is O(pd), their probability of collision is � 2�
(�), but 2�
(�)Ps=O(pd) �ds� = o(1). Therefore withhigh probability this mapping is one-to-one, as claimed. The proof for regular trees follows by similararguments.Note that �(G) may be much smaller than any dimension in which G may be embedded nearlyisometrically:Example 8.3: Construct a tree of depth 2m as follows: For m � i � 1 level i contains exactly (i+ 1)2vertices. Each vertex in level i has at least one child and the 2i+ 3 vertices in a randomly selected sethave two children. Vertices in the last m levels have exactly one child each. The number of verticesin this tree is n = �(m3). Now, while �(G) is a constant, a near isometric embedding of G requiresdimension 
(logn), since the distance between any two of the (m+ 1)2 leaves is between 2m and 4m.The conclusion follows from the standard volume argument.A related notion is the bandwidth, bw(G), of a graph G: It is the least w such that there is a bijectionf : V (G)! [n] for which jf(u)� f(v)j � w whenever [u; v] 2 E.Conjecture 8.4: If dim(G) = d, then bw(G) � O(k(d) � n1� 1d � polylog(n)).This bound is tight as exhibited by the discrete cube ([1; n 1d ]d). The case d = 2 can be solved using[1].A question raised in [12] and [5] is to estimate the least  =  c(n) so that every n-point metricspace can be embedded in a  -dimensional normed space with distortion c. In particular { what is theleast dimension needed to embed a constant{degree expander graph with constant distortion? (We haveshown that it is 
(log2 n).) It is not impossible that a constant{distortion embedding of such graphsrequires 
(n) dimensions.An obvious general question is 22



Problem 8.5: What is the computational complexity of deciding whether dim(G) = d? Similarly fordim(G) and dimc(G).It is not hard to see, e.g., by Proposition 5.5, that almost all n-vertex graphs have dimension at least
(logn). We would like to knowProblem 8.6: What is the typical dimension of an n-vertex graph?We suspect the answer to be linear or nearly linear. The situation for near{isometries is quite di�erent.Since almost all n-vertex graphs have diameter 2, and since dim(Kn) = dlog2 ne, almost all graphssatisfy dim2(G) = O(logn). Furthermore, by the method of [5], dim1+�(G) � c� log n for almost allgraphs and every � > 0. On the other hand dim(G) = 
(n) for most graphs, because almost surelyno single coordinate can implement the distance between more than n pairs x; y with d(x; y) = 2, butalmost surely there are 
(n2) such distances in a random G.We are only starting to understand the role of girth in this �eld (but see [54]), and o�er:Problem 8.7: Let all vertices in G have degree � 3. Does every embedding of G in a Euclidean space(of any dimension) have distortion 
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