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ABSTRACT

Certain applications such as Magnetic Resonance Imaging (MRI) require the reconstruction of functions from
Fourier spectral data. When the underlying functions are piecewise-smooth, standard Fourier approximation
methods suffer from the Gibbs phenomenon – with associated oscillatory artifacts in the vicinity of edges and
an overall reduced order of convergence in the approximation. This paper proposes an edge-augmented Fourier
reconstruction procedure which uses only the first few Fourier coefficients of an underlying piecewise-smooth func-
tion to accurately estimate jump information and then incorporate it into a Fourier partial sum approximation.
We provide both theoretical and empirical results showing the improved accuracy of the proposed method, as
well as comparisons demonstrating superior performance over existing state-of-the-art sparse optimization-based
methods.
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1. INTRODUCTION

This paper addresses the problem of reconstructing a 2π-periodic piecewise-smooth function f given its 2N + 1
lowest frequency Fourier series coefficients,

f̂k :=
1

2π

∫ π

−π
f(x)e−ikxdx, k ∈ [−N,N ] ∩ Z. (1)

The Fourier partial sum reconstruction of such piecewise-smooth f ,

SNf(x) :=
∑
|k|≤N

f̂ke
ikx, x ∈ [−π, π), (2)

suffers from the Gibbs phenomenon1 – with its associated non-physical oscillations in the vicinity of jump
discontinuities, and an overall reduced order of accuracy in the reconstruction. In applications such as MR
imaging – where the scanning apparatus collects Fourier coefficients2 of the specimen being imaged – these
oscillatory artifacts and the reduced order of accuracy are significant impediments to the rapid generation of
accurate images. Hence, there exists significant ongoing and inter-disciplinary interest in novel methods of
reconstructing such functions from Fourier spectral data.
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1.1 Related Work

The traditional approach to mitigating Gibbs artifacts is using low-pass filtering.1 However, this does not
completely eliminate all artifacts; filtered reconstructions still suffer from smearing in the vicinity of edges and
improved convergence rates are restricted to regions away from edges. Spectral reprojection methods such as3

work by reconstructing the function in each smooth interval using an alternate (non-periodic) basis such as those
consisting of Gegenbauer polynomials. While these methods have been shown to be highly accurate, they are
sensitive to parameter choice; indeed, small errors in parameter selection or estimated edge location (which are
used to determine the intervals of smoothness) can lead to large reconstruction errors. More recently, there has
been significant interest in compressed sensing4,5 based approaches to this problem.6,7 While these approaches
are indeed extremely powerful and versatile, they are implicitly discrete methods and do not perform well when
provided with continuous measurements as is the case here. Indeed, we show in the empirical results below that
they exhibit poor (first-order) numerical convergence when recovering a piecewise-smooth function f from its
continuous Fourier measurements (1). The method proposed in this paper is perhaps most closely related to those
in8–14 all of which use prony-like methods to estimate the jumps in f (after which the jumps’ deleterious spectral
effects can be mitigated). In contrast to these previous approaches, however, herein we (i) propose the use of a
simple spectral extrapolation scheme together with an alternate (and highly noise robust) non-prony-based jump
estimation procedure, (ii) provide (`2-norm) error analysis of the proposed method for general piecewise-smooth
functions, (iii) present comparisons with state-of-the-art sparse optimization based reconstruction methods, and
(iv) present preliminary 2D reconstruction results.

The rest of this paper is organized as follows: In §2, we relate jump information to the Fourier coefficients of a
piecewise-smooth function. We then show that this jump information can be incorporated into a modified Fourier
partial sum approximation. We also briefly summarize two methods of accurately estimating jump information
when given only Fourier spectral data. §3 provides theoretical error bounds for the proposed reconstruction
method while §4 presents empirical results (and comparisons to existing methods) demonstrating the improved
accuracy.

2. INCORPORATING JUMP INFORMATION

We begin by first relating jump information to the Fourier coefficients of a piecewise-smooth∗function f . Let f
have a finite number of jump discontinuities at −π < x1 < · · · < xJ ≤ π. Furthermore, define the jump function,
[f ], associated with f as follows:

Definition 2.1. The jump function of a piecewise-continuous function f is defined by

[f ](x) := f(x+)− f(x−)

for all x ∈ R, where f(x−) and f(x+) are the left- and right-hand limits of f at x respectively. The value [f ](x)
will sometimes be referred to as the jump height at x. By using integration by parts on the Fourier integral (1)
and the above definition, one can show the following result:

Theorem 2.1. If f : R→ R is piecewise smooth then∣∣∣∣∣∣f̂k −
J∑
j=1

[f ](xj)

2πik
e−ikxj

∣∣∣∣∣∣ ≤ C

k2

holds for all k ∈ Z \ {0}, where C ∈ R+ is an absolute constant that only depends on f ′′ and the jump function

of f ′. As a result, both f̂k = O(1/|k|) and f̂k ∼
∑J
j=1

[f ](xj)
2πik e

−ikxj are true for all k ∈ Z \ {0}. For brevity,

we omit proofs of the analytical results presented here. The interested reader is referred to15 for all proofs and
additional discussion.

∗For specifics of the definition of piecewise-continuity and piecewise-smoothness used in this discussion, see.15



Assuming that the jump locations x1, . . . , xJ and jump heights [f ](x1), . . . , [f ](xJ) of f are known, one can
use Theorem 2.1 to estimate the Fourier coefficients of f for all k ∈ Z \ {0} by

f̂estk :=

J∑
j=1

[f ](xj)

2πik
e−ikxj . (3)

We can now augment (2) by incorporating these jump-based Fourier coefficient estimates. The resulting aug-

mented partial sum approximation, SedgeN f , is defined by

SedgeM f(x) :=
∑
|k|≤N

f̂ke
ikx +

∑
|k|>N

f̂estk eikx (4)

for all x ∈ R. Note that SedgeN f still only utilizes 2N + 1 true Fourier coefficients of f .

We would like to use as many terms from the last sum in (4) as we can. Toward this end, let’s consider the

form of the complete last sum with f̂est0 := 0. It is easy to show that

∞∑
k=−∞

f̂estk eikx =

J∑
j=1

[f ](xj)

 ∑
0<|k|<∞

e−ikxj

2πik
eikx

 .

Note that the kth Fourier coefficient of the 2π-periodic ramp function rj(x), defined by

rj(x) :=

{
−π−x
2π , x < xj

π−x
2π , x > xj

(5)

for all x ∈ [−π, π), is given by (r̂j)k = e−ikxj

2πik for all k ∈ Z \ {0}. Also, (r̂j)0 = 0. Thus, we have that

∞∑
k=−∞

f̂estk eikx =

J∑
j=1

[f ](xj)rj(x).

We are now able to give a more easily computable closed form expression for SedgeN f by noting that

SedgeN f(x) =

N∑
k=−N

(f̂k − f̂estk )eikx +

J∑
j=1

[f ](xj)rj(x). (6)

2.1 Estimating Edge Information from Fourier Data

The above reconstruction for SedgeN f assumes we have exact or accurate estimates of jump locations and jump
values. While this may be available in certain applications, it is more likely that we have to estimate edge
information given Fourier data. One simple approach (a variant of which is utilized, e.g., in8) is to use Prony’s
method.16,17 Multiplying (3) by 2πik, we obtain a weighted complex exponential sum, from which the jump
locations and values can be estimated using Prony’s method.

This Prony-based approach suffers from certain drawbacks; for example, it requires apriori estimates for
the number of jumps, and it is not very tolerant of measurement errors. Alternatively, we propose use of
the concentration kernel18–20 method of edge detection which uses specially chosen “filter” factors known as
concentration factors and Fourier partial sums to approximate the jump function [f ]. The interested reader is
referred to18–20 for details, as well as21 for a statistical detection-theoretic analysis of the method.



3. ERROR ANALYSIS

If f is piecewise smooth then ‖f − SNf‖2 = O(
√

1/N).1 In this section we show that incorporating edge
information allows us to do better. In particular, if we have access to true jump location and height information
we can form SedgeN f from (6) and achieve reduced errors.

Theorem 3.1. If f is piecewise smooth then

||f − SedgeN f ||2 ≤
√

2c2

3N3

for some constant c ∈ R+ which is independent of N .

Of course, in practice one does not have access to true jump location and height information. In such settings
rj of (5) can not be computed exactly. Let r̃j denote another ramp function with a jump at x̃j instead of xj ,
and with an associated magnitude of aj ≈ [f ](xj). We will assume in this section that r̃j(x) is an approximation
of rj(x) produced using only the first 2N + 1 Fourier coefficients of f by one of the methods in §2.1. These
approximate ramp functions can then be used to build an estimated jump-information based approximation of
f given by

f̃(x) =

N∑
k=−N

(f̂k − ˜̂festk )eikx +

J∑
j=1

aj r̃j(x), (7)

where
˜̂
festk denotes the kth Fourier coefficient of

∑J
j=1 aj r̃j . Note that f̃ is an approximation to SedgeN f which is

still formed using only 2N + 1 true Fourier coefficients of f . The next theorem demonstrates that it will closely
approximate f as long as the jump locations and heights are estimated accurately enough.

Theorem 3.2. Let f be a piecewise smooth function, SedgeN f be the edge-augmented Fourier sum approximation

of f with true jump information (6), and f̃ be the edge-augmented Fourier sum approximation of f with estimated
jump information (7). Then, if |x̃j − xj | < ε and |aj − [f ](xj)| < δ both hold for all j ∈ {1, . . . , J}, we have that

||f − f̃ ||2 ≤
√

2c2

3N3
+ Jδ +

√
ε

2π

Jδ +

J∑
j=1

|[f ](xj)|


where c ∈ R+ is a constant independent of N , ε, and δ.

Comparing Theorem 3.2 to ‖f − SNf‖2 = O(
√

1/N) we can see that f̃ from (7) will approximate piecewise

smooth functions with jumps better than SNf will as long as δ is o(1/
√
N) and ε is o(1/N).

4. EMPIRICAL RESULTS

Consider reconstruction of the piecewise-smooth function

f1(x) =


3
2

−3π
4 ≤ x < −π2

7
4 −

x
2 + sin(x− 1

4 ) −π
4 ≤ x <

π
8

11
4 x− 5 3π

8 ≤ x <
3π
4

0 else

(8)

given its first |N | ≤ 50 Fourier series coefficients. Fig. 1(a) shows the reconstruction of f1 using a standard

Fourier partial sum SNf1 (solid line) as well as using the edge-augmented approximation f̃1 (dash-dot line)
proposed in this paper. The concentration edge detection method was used to detect edge information for
generating f̃1. All code used to generate the results in this section can be found at.22 Fig. 1(b) then shows the
associated absolute error in the respective reconstructions. We see that the proposed edge-augmented method is
significantly more accurate, with pointwise errors often about 100 times smaller than a standard Fourier partial
sum.
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Figure 1: Edge-Augmented Fourier Reconstruction of the Piecewise-Smooth Function f1 using the first |N | ≤ 50
Fourier Coefficients

Next, we confirm the analytical results of §3 by plotting the convergence rate of the proposed approximation
in Fig. 2. Here, we plot the absolute reconstruction error as a function of the number of Fourier coefficients N
for a standard Fourier partial sum (+), the edge-augmented reconstruction with true edge information (◦) and
the edge-augmented reconstruction with estimated edge information (×). Once again, the concentration edge
detection procedure was used to estimate edge information. The dashed lines indicate theoretical convergence
rates for reference. Not only does this plot confirm the improved convergence of the approximation, it also shows
that using estimated edge information does not incur significant error.
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Figure 2: Reconstruction Error vs N

Fig. 3a investigates the robustness of the proposed method to measurement noise. The figure plots error
(averaged over 50 trials, measured in dB) when reconstructing f1 from noise corrupted Fourier coefficients,

(ĝ1)k = (f̂1)k + nk, k ∈ [−100, 100] ∩ Z, nk ∼ CN (0, σ2),

where σ2 is chosen as per the desired SNR. For reference, the reconstruction error from noiseless measurements



is indicated using dashed lines (note: this is non-negligible; for example, the partial Fourier sum suffers from
Gibbs artifacts). We see that the proposed method (and the associated concentration edge detection procedure)
is robust and significantly improves on the accuracy of standard Fourier reconstruction methods.
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Figure 3: Empirical Evaluation of the Proposed Method with Noisy Measurements and against other Recon-
struction Methods

Finally, Fig. 3b compares the reconstruction error of the proposed method with a compressed sensing based
procedure when reconstructing the (2π-periodic) piecewise-constant function

f2(x) = Π(x/2) + 0.5Π(x/2− π/4)− 0.5Π(x/2 + π/4), (9)

where Π denotes the standard rectangular function by solving the following TV-minimization problem

min
fCS
2

∥∥∥(FfCS2 − f̂2
)∣∣∣
K

∥∥∥
2

+ λ‖fCS2 ‖TV . (10)

Here, F denotes the DFT matrix, K denotes a uniformly randomly chosen set of Fourier frequencies with
|K| = 2N + 1 = 101, and λ is a regularization parameter. From the figure, we observe that fCS2 has large errors
in the near vicinity of edges. This is due to the inherently discrete nature of compressed sensing methods. If we
were given DFT measurements instead of f̂2, the solution of (10) would be exact.

We conclude by presenting preliminary results demonstrating the extension of the proposed method to the
two-dimensional case. Fig. 4 plots the reconstruction of the function

f3(x, y) = 0.75 1[−9/4,−1/4]×[−5/2,−1/2] + 0.50 1{(x,y)∈R2 | (x−1/2)2+(y−1)2≤1} +

0.35 1{(x,y)∈R2 | (x−5/4)2+(y+5/4)2≤1/4}

(here 1A denotes the indicator function of A ⊂ R2) using its two-dimensional (continuous) Fourier series coef-

ficients (f̂3)k,l for |k|, |l| ≤ 25. We can see that the standard Fourier partial sum reconstruction in Fig. 4(a)
shows significant Gibbs oscillatory artifacts, while the proposed method in Fig. 4(b) is much more accurate.
In essence, the 2D version of the proposed method works by alternately reconstructing (using edge-augmented
Fourier sums) along the rows and columns of the image. As with the one-dimensional case, the concentration
kernel edge detection method is used to estimate edge locations and heights from the given Fourier data. The
interested reader is referred to the companion technical report15 for additional details.
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(a) Standard Fourier Reconstruction, PSNR = 26.97 dB.
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Figure 4: 2D Edge-Augmented Fourier Reconstruction using Fourier coefficients (f̂3)k,l for |k|, |l| ≤ 25 (Recon-
struction error expressed as peak signal to noise ratio (PSNR) in dB)
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sur celles de la force expansive de la vapeur de lalkool,a différentes températures,” J. de lÉcole polytech-
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