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Abstract

We study the problem of estimating the best B term

Fourier representation for a given frequency-sparse signal

(i.e., vector) A of length N � B. More precisely, we

investigate how to deterministically identify B of the largest

magnitude frequencies of Â, and estimate their coefficients,

in polynomial(B, log N) time. Randomized sub-linear time

algorithms, which have a small (controllable) probability

of failure for each processed signal, exist for solving this

problem. However, for failure intolerant applications such as

those involving mission-critical hardware designed to process

many signals over a long lifetime, deterministic algorithms

with no probability of failure are highly desirable. In this

paper we build on the deterministic Compressed Sensing

results of Cormode and Muthukrishnan (CM) [26, 6, 7]

in order to develop the first known deterministic sub-

linear time sparse Fourier Transform algorithm suitable

for failure intolerant applications. Furthermore, in the

process of developing our new Fourier algorithm, we present

a simplified deterministic Compressed Sensing algorithm

which improves on CM’s algebraic compressibility results

while simultaneously maintaining their results concerning

exponential decay.

1 Introduction

In many applications only the top few most energetic
terms of a signal’s Fourier Transform (FT) are of in-
terest. In such applications the Fast Fourier Transform
(FFT), which computes all FT terms, is computation-
ally wasteful. To make our point, we next consider a
simple application-based example in which the FFT can
be replaced by faster approximate Fourier methods.

1.1 Sub-Nyquist Single Frequency Acquisition
Let f : [0, 2π]→ C be a non-identically zero function of
the form

f(x) = C · eiωx

consisting of a single unknown frequency ω ∈ (−N,N ]
(e.g., consider a windowed sinusoidal portion of a wide-
band frequency-hopping signal [21]). Sampling at the
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Nyquist-rate would dictate the need for at least 2N
equally spaced samples from f in order to discover ω
via the FFT without aliasing [3]. Thus, we would have
to compute the FFT of the 2N -length vector

A(j) = f

(
πj

N

)
, 0 ≤ j < 2N.

However, if we use aliasing to our advantage, we can
correctly determine ω with significantly fewer f -samples
as follows:

Let A2 be a 2-element array of f -samples with

A2(0) = f (0) = C, and A2(1) = f (π) = C · (−1)ω.

Calculating Â2 we get that

Â2(0) = C · 1 + (−1)ω

√
2

, and Â2(1) = C · 1 + (−1)ω+1

√
2

.

Note that since ω is an integer, exactly one element of
Â2 will be non-zero. If Â2(0) 6= 0 then we know that
ω ≡ 0 modulo 2. On the other hand, Â2(1) 6= 0 implies
that ω ≡ 1 modulo 2. In this same fashion we may use
several potentially aliased Fast Fourier Transforms in
parallel to discover ω modulo 3, 5, . . . , the O(log N)th

prime. Once we have collected these moduli we can
reconstruct ω via the famous Chinese Remainder
Theorem (CRT).

Theorem 1. Chinese Remainder Theorem
(CRT): Any integer x is uniquely specified mod N
by its remainders modulo m relatively prime integers
p1, . . . , pm as long as

∏m
l=1 pl ≥ N .

To finish our example, suppose that N = 500, 000
and that we have used three FFT’s with 100, 101, and
103 samples to determine that ω ≡ 34 mod 100, ω ≡ 3
mod 101, and ω ≡ 1 mod 103, respectively. Using that
ω ≡ 1 mod 103 we can see that ω = 103 · a + 1 for some
integer a. Using this new expression for ω in our second
modulus we get

(103 · a + 1) ≡ 3 mod 101⇒ a ≡ 1 mod 101.

Therefore, a = 101·b+1 for some integer b. Substituting
for a we get that ω = 10403 · b + 104. By similar work



we can see that b ≡ 10 mod 100 after considering ω
modulo 100. Hence, ω = 104, 134 by the CRT. As an
added bonus we note that our three FFTs will have
also provided us with three different estimates of ω’s
coefficient C.

The end result is that we have used significantly
less than 2N samples to determine ω. Using the CRT
we required only 100 + 101 + 103 = 304 samples from
f to determine ω since 100 · 101 · 103 > 1, 000, 000. In
contrast, a million f -samples would be gathered dur-
ing Nyquist-rate sampling. Besides needing significantly
less samples than the FFT, this CRT-based single fre-
quency method dramatically reduces required compu-
tational effort. And, it’s deterministic. There is no
chance of failure. Of course, a single frequency signal is
incredibly simple. Signals involving more than 1 non-
zero frequency are much more difficult to handle since
frequency moduli may begin to collide modulo various
numbers. Dealing with the potential difficulties caused
by such frequency collisions in a deterministic way com-
prises the majority of this paper.

1.2 Compressed Sensing and Related Work
Compressed Sensing (CS) methods [4, 28, 26, 6, 7]
provide a robust framework for reducing the number
of measurements required to summarize sparse signals.
For this reason CS methods are useful in areas such
as MR imaging [23, 24] and analog-to-digital conver-
sion [21, 20] where measurement costs are high. The
general CS setup is as follows: Let A be an N -length
signal/vector with complex valued entries, and Ψ be a
full rank N × N change of basis matrix. Furthermore,
suppose that Ψ ·A is sparse (i.e., only k � N entries of
Ψ ·A are significant/large in magnitude). CS methods
deal with generating a K×N measurement matrix,M,
with the smallest number of rows possible (i.e., K min-
imized) so that the k significant entries of Ψ ·A can be
approximately recovered from the K-element result of

M ·Ψ ·A.(1.1)

Note that CS is inherently algorithmic since a procedure
for recovering Ψ ·A’s largest k-entries from the result of
Equation 1.1 must be specified.

For the remainder of this paper we will consider the
special CS case where Ψ is the N ×N Discrete Fourier
Transform matrix. Hence, we have

Ψi,j =
e
−2πi·i·j

N

√
N

.(1.2)

Our problem of interest is to find, and estimate the
coefficients of, the k significant entries (i.e., frequencies)
of Â given a frequency-sparse (i.e., smooth) signal A.

In this case the deterministic Fourier CS measurement
matrixes,M·Ψ, produced by [28, 26, 6, 7] require super-
linear O(KN)-time to multiply by A in Equation 1.1.
Similarly, the energetic frequency recovery procedure of
[4, 9] requires super-linear time in N . Hence, none of
[4, 28, 9, 26, 6, 7] have both sub-linear measurement
and reconstruction time.

Existing randomized sub-linear time Fourier algo-
rithms [15, 19, 16] not only show great promise for de-
creasing measurement costs, but also for speeding up
the numerical solution of computationally challenging
multi-scale problems [8, 18]. However, these algorithms
are not deterministic, and so can produce incorrect re-
sults with some small probability on each input signal.
Thus, they aren’t appropriate for long-lived failure in-
tolerant applications.

In this paper we build on the deterministic Com-
pressed Sensing methods of Cormode and Muthukrish-
nan (CM) [26, 6, 7] in order to construct the first known
deterministic sub-linear time sparse Fourier algorithm.
In order to produce our new Fourier algorithm we must
modify CM’s work in two ways: First, we alter CM’s
measurement construction in order to allow sub-linear
time computation of Fourier measurements via alias-
ing. Thus, our algorithm can deterministically approx-
imate the result of Equation 1.1 in time K·polylog(N).
Second, CM use a k-strongly selective collection of sets
[17] to construct their measurements for algebraically
compressible signals. We introduce the notion of a K-
majority k-strongly selective collection of sets which
leads us to a new reconstruction algorithm with better
algebraic compressibility results than CM’s algorithm.
As a result, our deterministic sub-linear time Fourier
algorithm has better then previously possible algebraic
compressibility behavior.

The main contributions of this paper are:

1. We present a new deterministic compressed sens-
ing algorithm that both (i) improves on CM’s alge-
braically compressible signal results, and (ii) has
comparable measurement/run time requirements
to CM’s algorithm for exponentially decaying sig-
nals.

2. We present the first known deterministic sub-
linear time sparse DFT. In the process, we ex-
plicitly demonstrate the connection between com-
pressed sensing and sub-linear time Fourier trans-
form methods.

3. We introduce K-majority k-strongly selective col-
lections of sets which have potential applications to
streaming algorithms along the lines of [25, 13].

The remainder of this paper is organized as follows:



In section 2 we introduce relevant definitions and ter-
minology. Then, in section 3, we define K-majority k-
strongly selective collections of sets and use them to con-
struct our compressed sensing measurements. Section 4
contains our new deterministic compressed sensing al-
gorithm along with analysis of it’s accuracy and run
time. Finally, we present our deterministic sub-linear
time Fourier algorithm in sections 5 and 5.1. Section 6
contains a short conclusion.

2 Preliminaries

Throughout the remainder of this paper we will be
interested in complex-valued functions f : [0, 2π] → C
and signals (or arrays) of length N containing f values
at various t ∈ [0, 2π]. We shall denote such signals by
A, where A(j) ∈ C is the signal’s jth complex value for
all j ∈ [0, N − 1] ⊂ N. Hereafter we will refer to the
process of either calculating, measuring, or retrieving
the f value associated any A(j) ∈ C from machine
memory as sampling from f and/or A. Given a signal
A we define its discrete L2-norm, or Euclidean norm,
to be

‖A‖2 =

√√√√N−1∑
j=0

|A(j)|2.

We will also refer to ‖A‖22 as A’s energy.
For any signal, A, its Discrete Fourier Transform

(DFT), denoted Â, is another signal of length N defined
as follows:

Â(ω) =
1√
N

N−1∑
j=0

e
−2πiωj

N A(j), ∀ω ∈ [0, N).

Furthermore, we may recover A from its DFT via the
Inverse Discrete Fourier Transform (IDFT) as follows:

A(j) = ̂̂A−1

(j) =
1√
N

N−1∑
ω=0

e
2πiωj

N Â(ω), ∀j ∈ [0, N).

We will refer to any index, ω, of Â as a frequency.
Furthermore, we will refer to Â(ω) as frequency ω’s
coefficient for each ω ∈ [0, N). Parseval’s equality tells
us that ‖Â‖2 = ‖A‖2 for any signal. In other words,
the DFT preserves Euclidean norm and energy. Note
that any non-zero coefficient frequency will contribute
to Â’s energy. Hence, we will also refer to |Â(ω)|2 as
frequency ω’s energy. If |Â(ω)| is relatively large we’ll
say that ω is energetic.

Our algorithm produces output of the form
(ω0, C0), . . . , (ωB−1, CB−1) where each (ωj , Cj) ∈
[0, N − 1]× C. We will refer to any such set of B < N
tuples {

(ωj , Cj) ∈ [0, N − 1]× C
∣∣∣ 0 ≤ j < B

}

as a sparse Fourier representation and denote it
with a superscript ‘s’. Note that if we are given a sparse
Fourier representation, R̂

s
, we may consider R̂

s
to be a

length-N signal. We simply view R̂
s

as the N length
signal

R̂(j) =
{

Cj if (j, Cj) ∈ R̂
s

0 otherwise

for all j ∈ [0, N − 1]. Using this idea we may, for
example, compute R from R̂

s
via the IDFT.

A B term/tuple sparse Fourier representation is B-
optimal for a signal A if it contains B of the most ener-
getic frequencies of Â along with their coefficients. More
precisely, we’ll say that a sparse Fourier representation

R̂
s
=
{

(ωj , Cj) ∈ [0, N − 1]× C
∣∣∣ 0 ≤ j < B

}
is B-optimal for A if there exists a valid ordering of Â’s
coefficients by magnitude

|Â(ω0)| ≥ . . . ≥ |Â(ωj)| ≥ . . . ≥ |Â(ωN−1)|(2.3)

so that
{
(ωl, Â(ωl))

∣∣ l ∈ [0, B)
}

= R̂
s
. Note that a sig-

nal may have several B-optimal Fourier representations
if its frequency coefficient magnitudes are non-unique.
For example, there are two 1-optimal sparse Fourier rep-
resentations for the signal

A(j) = 5e
2πij

N + 5e
4πij

N , N > 2.

However, all B-optimal Fourier representations, R̂
s

opt,
for any signal A will always have both the same unique
‖Ropt‖2 and ‖A−Ropt‖2 values.

We continue with two final definitions: Let ωb be a
bth most energetic frequency as per Equation 2.3. We
will say that a signal Â is (algebraically) p-compressible
for some p > 1 if |Â(ωb)| = O(b−p) for all b ∈ [1, N). If
Rs

opt is a B-optimal Fourier representation we can see
that

‖A−Ropt‖22 =
N−1∑
b=B

|Â(ωb)|22 = O

(∫ ∞

B

b−2pdb

)
.(2.4)

Hence, any p-compressible signal A (i.e., any signal
with a fixed c ∈ R so that |A(ωb)|2 ≤ c · b−p for all
b ∈ [1, N)) will have ‖A−Ropt

B ‖22 ≤ c̃p ·B1−2p for some
c̃p ∈ R. For any p-compressible signal class (i.e., for any
choice of p and c) we will refer to the related optimal
O(B1−2p)-size worst case error value (i.e., Equation 2.4
above) as ‖Copt

B ‖22. Similarly, we define an exponentially
compressible (or exponentially decaying) signal for a
fixed α ∈ R+ to be one for which |Â(ωb)| = O(2−αb).
The optimal worst case error is then

‖Copt
B ‖

2
2 = O

(∫ ∞

B

4−αbdb

)
= O(4−αB).(2.5)



Fix δ small (e.g., δ = 0.1). Given a compressible
input signal, A, our deterministic Fourier algorithm will
identify B of the most energetic frequencies from Â
and approximate their coefficients to produce a Fourier
representation R̂

s
with ‖A − R‖22 ≤ ‖A − Ropt‖22 +

δ‖Copt
B ‖22. These are the same types of compressible

signal results proven by CM [6, 7].

3 Construction of Measurements

We will use the following types of subset collections to
form our measurements:

Definition 3.1. A collection, S, of s subsets of [0, N)
is called K-majority k-strongly selective if for any
X ⊂ [0, N) with |X| ≤ k, and for all x ∈ X, the
following are true: (i) x belongs to K subsets in S and,
(ii) more than two-thirds of Sj ∈ S containing x are
such that Sj ∩X = {x} (i.e., every member of X occurs
separated from all other members of X in more than
two-thirds of the K S-subsets it belongs to).

A K-majority k-strongly selective collection of sets
is a more structured version of a k-strongly selective
collection of sets [17, 26]. Every K-majority k-
strongly selective collection of sets not only isolates
each x ∈ X, but does so a 2

3

rd’s majority of the time.
Thus, our newly defined K-majority k-strongly selective
collections will help us count how many times each
significant signal entry is isolated. This added structure
allows a new reconstruction algorithm (Algorithm 1)
with better algebraic compressibility properties than
previous methods.

Next, we will build O(log N) K-majority k-strongly
selective collections of subsets. Each of these O(log N)
collections will ultimately be used to determine ener-
getic frequencies modulo a small prime < N . These
moduli will then be used along with the Chinese Re-
mainder Theorem to reconstruct each energetic fre-
quency in a manner akin to the introduction’s simple
example. Our technique is motivated by the method of
prime groupings first employed in [25]. To begin, we will
denote each of the O(log N) collections of subsets by Sl

where 0 ≤ l ≤ O(log N). We construct each of these
K-majority k-strongly selective collections as follows:

Define p0 = 1 and let

p1, p2, . . . , pl, . . . , pm

be the first m primes where m is such that
m−1∏
l=1

pl ≤
N

k
≤

m∏
l=1

pl.

Hence, pl is the lth prime natural number and we have

p0 = 1, p1 = 2, p2 = 3, p3 = 5, . . . , pm = O(m log m).

Note that we know pm = O(m log m) via the Prime
Number Theorem, and so pm = O(log N log log N).
Each pl will correspond to a different K-majority k-
strongly selective collection of subsets of [0, N) =
{0, . . . , N − 1}.

Along these same lines we let q1 through qK be the
first K (to be specified later) consequitive primes such
that

max(pm, k) ≤ q1 ≤ q2 ≤ . . . ≤ qK .

We are now ready to build S0, our first K-majority k-
strongly selective collection of sets. We begin by letting
S0,j,h for all 1 ≤ j ≤ K and 0 ≤ h ≤ qj − 1 be

S0,j,h = {n ∈ [0, N) | n ≡ h mod qj}.

Next, we progressively define S0,j to be all integer
residues mod qj , i.e.,

S0,j = {S0,j,h | h ∈ [0, qj)},

and conclude by setting S0 equal to all K such qj-residue
groups:

S0 = ∪K
j=1S0,j .

More generally, for 0 ≤ l ≤ m we define Sl to be

∪K
j=1

{
{n ∈ [0, N) | n ≡ h mod plqj}

∣∣ h ∈ [0, plqj)
}

.

Lemma 3.1. Fix k. If we set K ≥ 3(k − 1)blogk Nc +
1 then S0 will be a K-majority k-strongly selective
collection of sets. Furthermore, if K = O(k logk N)
then |S0| = O

(
k2 log2

k N ·max(log k, log logk N)
)
.

Proof. Let X ⊂ [0, N) be such that |X| ≤ k. Further-
more, let x, y ∈ X be such that x 6= y. By the Chi-
nese Remainder Theorem we know that x and y may
only collide modulo at most blogk Nc of the K q-primes
qK ≥ . . . ≥ q1 ≥ k. Hence, x may collide with all the
other elements of X (i.e., with X−{x}) modulo at most
(k − 1)blogk Nc q-primes. We can now see that x will
be isolated from all other elements of X modulo at least
K − (k − 1)blogk Nc ≥ 2(k − 1)blogk Nc + 1 > 2K

3 q-
primes. This leads us to the conclusion that S0 is indeed
K-majority k-strongly selective.

Finally, we have that

|S0| ≤
K∑

j=1

qj ≤ K · qK .

Furthermore, given that K > max(k, m), the Prime
Number Theorem tells us that qK = O(K log K).
Thus, we can see that S0 will indeed contain
O
(
k2 log2

k N ·max(log k, log logk N)
)

sets.



Note that at least O(k logk N) primes are required
in order to create a (K-majority) k-strongly separating
collection of subsets using primes in this fashion. Given
any x ∈ [0, N) a k− 1 element subset X can be created
via the Chinese Remainder Theorem and x moduli so
that every element of X collides with x in any desired
O(logk N) q-primes. We next consider the properties of
the other m collections we have defined: S1, . . . ,Sm.

Lemma 3.2. Let Sl,j,h = {n ∈ [0, N) | n ≡
h mod plqj}, X ⊂ [0, N) have ≤ k elements, and
x ∈ X. Furthermore, suppose that S0,j,h ∩ X = {x}.
Then, for all l ∈ [1,m], there exists a unique b ∈ [0, pl)
so that Sl,j,h+b·qj ∩X = {x}.

Proof. Fix any l ∈ [1,m]. S0,j,h ∩X = {x} implies that
x = h + a · qj for some unique integer a. Using a’s
unique representation modulo pl (i.e., a = b + c · pl) we
get that x = h + b · qj + c · qjpl. Hence, we can see that
x ∈ Sl,j,h+bqj . Furthermore, no other element of X is in
Sl,j,h+t·qj for any t ∈ [0, pl) since it’s inclusion therein
would imply that it was also an element of S0,j,h.

Note that Lemma 3.2 and Lemma 3.1 together
imply that each S1, . . . ,Sm is also a K-majority k-
strongly separating collection of subsets. Also, we can
see that if x ∈ Sl,j,h+b·qj

we can find x mod pl by
simply computing h + bqj mod pl. Finally, we form
our measurement matrix:

Set S = ∪m
l=0Sl. To form our measurement matrix,

M, we simply create one row for each Sl,j,h ∈ S by
computing the N -length characteristic function vector
of Sl,j,h, denoted χSl,j,h

. This leads toM being a Õ(k2)
x N measurement matrix. Here we bound the number
of rows in M by noting that: (i) |S| < m · K · pmqK ,
(ii) m = O(log N), (iii) pm = O(log N · log log N), (iv)
K = O(k log N), and (v) qK = O(K log K).

4 Signal Reconstruction from Measurements

Let Â be an N -length signal of complex numbers with
it’s N entries numbered 0 through N − 1. Our goal
is to identify B of the largest magnitude entries of Â
(i.e., the first B entries in a valid ordering of Â as
in Equation 2.3) and then estimate their signal values.
Toward this end, set

ε =
|Â(ωB)|√

2C
(4.6)

where C > 1 is a constant to be specified later, and let
B′ be the smallest integer such that

N−1∑
b=B′

|Â(ωb)| <
ε

2
.(4.7)

Algorithm 1 Sparse Approximate

1: Input: Signal Â, integers B,B′

2: Output: R̂
s
, a sparse representation for Â

3: Initialize R̂
s
← ∅

4: Set K = 3B′blogB′ Nc
5: Form measurement matrix,M, via K-majority B′-

strongly selective collections (Section 3)
6: Compute M · Â

Identification

7: for j from 0 to K do
8: Sort 〈χS0,j,0 , Â〉, . . . , 〈χS0,j,qj−1 , Â〉 by magnitude
9: for b from 0 to B′ do

10: kj,b ← bth largest magnitude 〈χS0,j,· , Â〉
11: r0,b ← kj,b’s associated residue mod qj

12: for l from 1 to m do
13: tmin ← mint∈[0,pl) |kj,b − 〈χSl,j,t·qj+r0,b

, Â〉|
14: rl,b ← r0,b + tmin · qj mod pl

15: end for
16: Construct ωj,b from r0,b, . . . , rm,b via the CRT
17: end for
18: end for
19: Sort ωj,b’s maintaining duplicates and set C(ωj,b) =

the number of times ωj,b was constructed via line 16
Estimation

20: for j from 0 to K do
21: for b from 0 to B′ do
22: if C(ωj,b) > 2K

3 then
23: C(ωj,b)← 0
24: x = median{real(kj′,b′)|ωj′,b′ = ωj,b}
25: y = median{imag(kj′,b′)|ωj′,b′ = ωj,b}
26: R̂

s
← R̂

s
∪ {(ωj,b, x + iy)}

27: end if
28: end for
29: end for
30: Output B largest magnitude entries in R̂

s

Note that B′ identifies the most energetic insignificant
frequency (i.e., with energy < a fraction of |Â(ωB)|).
We expect to work with sparse/compressible signals so
that B ≤ B′ � N . Later we will give specific values for
C and B′ depending on B, the desired approximation
error, and Â’s compressibility characteristics. For now
we show that we can identify/approximate B of Â’s
largest magnitude entries each to within ε-precision via
Algorithm 1.

Algorithm 1 works by using S0 measurements to
separate Â’s significantly energetic frequencies Ω =
{ω0, . . . , ωB′−1} ⊂ [0, N). Every measurement which
successfully separates an energetic frequency ωj from all
other members of Ω will both (i) provide a good (i.e.,



within ε
2 ≤

| ˆA(ωB)|
2
√

2
) coefficient estimate for ωj , and

(ii) yield information about ωj ’s identity. Frequency
separation occurs because our S0 measurements can
not collide any fixed ωj ∈ Ω with any other member
of Ω modulo more than (B′ − 1) logB′ N q-primes
(see Lemma 3.1). Therefore, more than 2

3

rds of S0’s
3B′ logB′ N + 1 q-primes will isolate any fixed ωj ∈
Ω. This means that our reconstruction algorithm
will identify all frequencies at least as energetic as
ωB at least 2B′ logB′ N + 1 times. We can ignore
any frequencies that are not recovered this often. On
the other hand, for any frequency that is identified
more than 2B′ logB′ N times, at most B′ logB′ N of
the measurements which lead to this identification can
be significantly contaminated via collisions with valid
Ω members. Therefore, we can take a median of the
more than 2B′ logB′ N measurements leading to the
recovery of each frequency as that frequency’s coefficient
estimate. Since more than half of these measurements
must be accurate, the median will be accurate. The
following Theorem is proved in the appendix.

Theorem 2. Let R̂opt be a B-optimal Fourier repre-
sentation for our input signal A. Then, the B term rep-
resentation, R̂

s
, returned from Algorithm 1 is such that

‖A−R‖22 ≤ ‖A−Ropt‖22 + 6B·| ˆA(ωB)|2
C . Furthermore,

Algorithm 1’s Identification and Estimation (lines 7 -
30) run time is O(B′2 log4 N). The number of mea-
surements used is O(B′2 log6 N).

Theorem 2 immediately indicates that Algorithm 1
gives us a deterministic O(m2 log6 N)-measurement,
O(m2 log4 N)-reconstruction time method for exactly
recovering vectors with m non-zero entries. If Â has
exactly m non-zero entries then setting B′ = B = m
and C = 1 will be sufficient to guarantee that both
|Â(ωB)|2 = 0 and

∑N−1
b=B′ |Â(ωb)| = 0 are true. Hence,

we may apply Theorem 2 with B′ = B = m and C = 1
to obtain a perfect reconstruction via Algorithm 1.
However, we are mainly interested in the more realistic
cases where Â is either algebraically or exponentially
compressible. The following theorem presents itself.

Theorem 3. Let Â be p-compressible. Then, Al-
gorithm 1 can return a B term sparse represen-
tation, R̂

s
, with ‖A − R‖22 ≤ ‖A − Ropt‖22 +

δ‖Copt
B ‖22 using O

(
B

2p
p−1 δ

2
1−p log4 N

)
total identifica-

tion/estimation time and O
(
B

2p
p−1 δ

2
1−p log6 N

)
mea-

surements. If Â decays exponentially, Algorithm 1
can return a B term sparse representation, R̂

s
, with

‖A − R‖22 ≤ ‖A − Ropt‖22 + δ‖Copt
B ‖22 using both

Algorithm 2 Fourier Measure

1: Input: f-samples, integers m,K
2: Output: < χSl,j,h

, f̂ >-measurements
3: Zero a O(qKpm)-element array, A
4: for j from 1 to K do
5: for l from 1 to m do
6: A← f(0), f

(
2π

qjpl

)
, . . . , f

(
2π(qjpl−1)

qjpl

)
7: Calculate Â via Chirp z-Transform [27, 2]
8: < χSl,j,h

, f̂ >← Â(h) for each h ∈ [0, qjpl)
9: end for

10: end for
11: Output < χSl,j,h

, f̂ >-measurements

(
B2 + log2 δ

−1
α

)
· polylog(N) measurements and iden-

tification/estimation time.

For p-compressible signals, p > 2, CM’s al-
gorithm [6, 7] takes O

(
B

6p
p−2 δ

6
2−p log6 N

)
- identi-

fication/estimation time and O
(
B

4p
p−2 δ

4
2−p log4 N

)
-

measurements to achieve the same error bound.
As a concrete comparison, CM’s algorithm requires
O(B18δ−6 log6 N)- identification/estimation time and
O(B12δ−4 log4 N)-measurements for 3-compressible sig-
nals. Algorithm 1, on the other hand, requires only
O(B3δ−1 log4 N)- identification/estimation time and
O(B3δ−1 log6 N)-measurements. Hence, we have im-
proved on CM’s algebraic compressibility results. All
that’s left to do in order to develop a deterministic
sub-linear time Fourier algorithm is to compute our CS
Fourier measurements (Algorithm 1 lines 1 - 6) in sub-
linear time.

5 Fast Fourier Measurement Acquisition

Our goal in this section is to demonstrate how to
use Algorithm 1 as means to approximate the Fourier
transform of a signal/function f : [0, 2π] → C, where
(i) f has an integrable pth derivative, and (ii) f(0) =
f(2π), f ′(0) = f ′(2π), . . . , f (p−2)(0) = f (p−2)(2π). In
this case we know the Fourier coefficients for f to be
p-compressible [3, 12]. Hence, for N = q1 · p1 · · · pm

sufficiently large, if we can collect the necessary Algo-
rithm 1 (lines 5 and 6) measurements in sub-linear time
we will indeed be able to use Algorithm 1 as a sub-linear
time Fourier algorithm for f .

Note that in order to validate the use of Algorithm 1
(or any other sparse approximate Fourier Transform
method [15, 16]) we must assume that f exhibits some
multiscale behavior. If f̂ contains no unpredictably en-
ergetic large (relative to the number of desired Fourier
coefficients) frequencies then it is more computationally



efficient to simply use standard FFT/USFFT methods
[5, 22, 1, 10, 11]. The responsible user, therefore, is
not entirely released from the obligation to consider f̂ ’s
likely characteristics before proceeding with computa-
tions.

Choose any Section 3 q-prime qj , j ∈ [1,K], and
any p-prime pl with l ∈ [0,m]. Furthermore, pick
h ∈ [0, qjpl). Throughout the rest of this discussion we
will consider f to be accessible to sampling at any de-
sired predetermined positions t ∈ [0, 2π]. Given this as-
sumption, we may sample f at t = 0, 2π

qjpl
, . . . ,

2π(qjpl−1)
qjpl

in order to perform the following DFT computation:

< χSl,j,h
, f̂ >=

1
qjpl

qjpl−1∑
k=0

f

(
2πk

qjpl

)
e
−2πihk

qjpl .

Using the Fourier expansion for f yields

< χSl,j,h
, f̂ >=

1
qjpl

qjpl−1∑
k=0

( ∞∑
ω=−∞

f̂(ω)e
2πiωk
qjpl

)
e
−2πihk

qjpl .

Finally, exchanging the order of summation above, we
see that < χSl,j,h

, f̂ > reduces to

1
qjpl

∞∑
ω=−∞

f̂(ω)
qjpl−1∑

k=0

e
2πi(ω−h)k

qjpl =
∑

ω≡h mod qjpl

f̂(ω)

via aliasing [3].
Using Sections 3 and 4 we can see that these

measurements are exactly what we need in order to
determine B of the most energetic frequencies of f̂
modulo N = q1 · p1 · · · pm (i.e., B of the most energetic
frequencies of f ’s band-limited interpolant’s DFT). We
are now in the position to modify Algorithm 1 in order
to find a sparse Fourier representation for f̂ . To do
so we proceed as follows: First, remove lines 5 and 6
and replace them with Algorithm 2 for computing all
the necessary < χSl,j,h

, f̂ >-measurements. Second,
replace each “< χSl,j,h

, Â >” by “< χSl,j,h
, f̂ >” in

Algorithm 1’s Identification section. It remains to
show that these Algorithm 1 modifications indeed yield
a sub-linear time approximate Fourier transform. The
following theorem presents itself:

Theorem 4. Let f : [0, 2π] → C have (i) an inte-
grable pth derivative, and (ii) f(0) = f(2π), f ′(0) =
f ′(2π), . . . , f (p−2)(0) = f (p−2)(2π) for some p > 1. Fur-
thermore, assume that f̂ ’s B′ = O

(
B

p
p−1 δ

1
1−p

)
largest

magnitude frequencies all belong to
(
−
⌈

N
2

⌉
,
⌊

N
2

⌋]
.

Then, we may use Algorithm 1 to return a B
term sparse Fourier representation, R̂

s
, for f̂ such

that ‖f̂ − R̂‖22 ≤ ‖f̂ − R̂opt‖22 + δ‖Copt
B ‖22 using

O
(
B

2p
p−1 δ

2
1−p log7 N

)
-time and O

(
B

2p
p−1 δ

2
1−p log6 N

)
-

measurements from f .

If f : [0, 2π] → C is smooth (i.e., has infinitely
many continuous derivatives on the unit circle where
0 is identified with 2π) it follows from Theorem 4 that
Algorithm 1 can be used to find an δ-accurate, with
δ = O

(
1
N

)
, sparse B-term Fourier representation for

f̂ using Õ(B2)-time/measurements. This result dif-
fers from previous sub-linear time Fourier algorithms
[15, 16] in that both the algorithm and the measure-
ments/samples it requires are deterministic. Recall that
the deterministic nature of the algorithm’s required
samples is potentially beneficial for failure intolerant
hardware. In signal processing applications the sub-
Nyquist sampling required to compute Algorithm 1’s
< χSl,j,h

, f̂ >-measurements could be accomplished via
Õ(B) parallel low-rate analog-to-digital converters.

5.1 DFT from Inaccessible Signal Samples
Throughout the remainder of this section we will con-
sider our N -length compressible vector Â to be the
product of the N x N DFT matrix, Ψ, and a non-sparse
N -length vector A. Thus,

Â = ΨA.

Furthermore, we will assume that A contains equally
spaced samples from some unknown smooth function
f : [0, 2π] → C (i.e., A’s band-limited interpolent).
Hence,

A(j) = f

(
2πj

N

)
, j ∈ [0, N).

We would like to use our modified Algorithm 1 along
with Algorithm 2 to find a sparse Fourier representation
for Â. However, unless N

qjpl
∈ N for all qjpl-pairs (which

would imply f had been grossly oversampled), A won’t
contain all the f -samples required by Algorithm 2. Not
having access to f directly, and restricting ourselves to
sub-linear time approaches only, we have little recourse
but to locally interpolate f around our required samples.

For each required Algorithm 2 f -sample at t =
2πh
qjpl

, h ∈ [0, qjpl), we may approximate f(t) to within
O(N−2κ)-error by constructing 2 local interpolents (one
real, one imaginary) around t using A’s nearest 2κ
entries [14]. These errors in f -samples can lead to errors
of size O(N−2κ · pmqK log pmqK) in our < χSl,j,h

, f̂ >

calculations. However, as long as the < χSl,j,h
, f̂ >-

measurement errors are small enough (e.g., O(δ · B−p)
in the p-compressible case) Theorem 4 and all related
Section 4 results and will still hold. After some scratch



work we can see that using 2κ = O(log δ−1 + p)
interpolation points per f -sample ensures all our
< χSl,j,h

, f̂ >-measurement errors are O(δ · B−p). We
have the following result:

Theorem 5. Let Â = ΨA be p-compressible. Then, we
may use Algorithms 1 and 2 to return a B term sparse
representation, R̂

s
, for Â such that ‖A−R‖22 ≤ ‖A−

Ropt‖22 + δ‖Copt
B ‖22 using Õ

(
B

2p
p−1 δ

2
1−p (log δ−1 + p)2

)
-

time and Õ
(
B

2p
p−1 δ

2
1−p (log δ−1 + p)

)
-samples from A.

Notice that Theorem 5 no longer guarantees an
δ = O( 1

N )-accurate Õ(B2)-time DFT algorithm for
smooth data (i.e., A’s containing samples from a smooth
function f). This is because as p → ∞ we require
an increasingly large number of interpolation points
per f -sample in order to guarantee our < χSl,j,h

, f̂ >-
measurements remain O(δ ·B−p)-accurate. However, for
δ = O(log−1 N), we can still consider smooth data A to
be O(log N)-compressible and so achieve a Õ(B2)-time
DFT algorithm.

6 Conclusion

Compressed Sensing (CS) methods provide algorithms
for approximating the result of any large matrix mul-
tiplication as long as it is known in advance that the
result will be sparse/compressible. Hence, CS is po-
tentially valuable for many numerical applications such
as those involving multiscale aspects [8, 18]. In this
paper we used CS methods to develop the first known
deterministic sub-linear time sparse Fourier transform
algorithm. In the process, we introduced a new deter-
ministic Compressed Sensing algorithm along the lines
of Cormode and Muthukrishnan (CM) [6, 7]. Our new
deterministic CS algorithm improves on CM’s algebraic
compressibility results while simultaneously maintain-
ing their results concerning exponential compressibility.

Compressed Sensing is closely related to hashing
methods, combinatorial group testing, and many other
algorithmic problems [25, 13]. Thus, K-majority k-
strongly selective collections of sets and Algorithm 1
may help improve deterministic results concerning
stream hashing/heavy-hitter identification. Further de-
velopment of these/other algorithmic applications is left
as future work.

It is also worthwhile to note that Monte Carlo
Fourier results similar to those of [16] may be obtained
by altering our measurement construction in Section 3.
If we construct our Sl collections by using only a small
subset of O(log B′) randomly chosen qj ’s, we will still
locate all sufficiently energetic entries of Â with high
probability. The discovered entries’ coefficients can

then be approximated by using either (i) standard
USFFT techniques [16, 10, 11, 22], or (ii) another
O(log B′) randomly chosen qj-measurement groups. In
either case, the end result will be a O(B′ · polylog(N))-
time/measurement Fourier algorithm that produces the
same results (e.g., Theorem 4) as above with high
probability.
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A Proof of Theorem 2

We begin by proving two lemmas.

Lemma A.1. IDENTIFICATION: Lines 7 through 19
of Algorithm 1 are guaranteed to recover all valid
ω0, . . . , ωB−1 (i.e., all ω with |Â(ω)| ≥ |Â(ωB)| - there

may be > B such entries) more then 2K
3 times. Hence,

despite line 22, an entry for all such ωb, 0 ≤ b < B, will
be added to R̂

s
in line 26.

Proof. Because of the construction of S0 (i.e., proof
of Lemma 3.1) we know that for each b ∈ [0, B)
there exist more then 2K

3 subsets S ∈ S0 such that
S ∩ {ωb′ | b′ ∈ [0, B′)} = {ωb}. Choose any b ∈
[0, B). Denote the q-primes that isolate ωb from all of
ω0, . . . , ωb−1, ωb+1, . . . , ωB′−1 by

qj1 , qj2 , . . . , qjK′ ,
2K

3
< K ′ ≤ K.

We next show that, for each k′ ∈ [1,K ′], we get
< χS

0,j
k′ ,ωb mod qj

k′

,A > as one of the B′ + 1 largest

magnitude < χS0,j
k′ ,· , Â >-measurements identified in

line 10.
Choose any k′ ∈ [1,K ′]. We know that

ε

2
<

ε√
2

< |Â(ωB)| −
√

2
N−1∑
b′=B′

|Â(ωb′)|

≤ |Â(ωb)| −

∣∣∣∣∣∣
∑

b′∈[B′,N), ωb′≡ωb

Â(ωb′)

∣∣∣∣∣∣
≤
∣∣∣∣< χS

0,j
k′ ,ωb mod qj

k′

, Â >

∣∣∣∣ .
We also know that the (B′ + 1)st largest measurement
L2-magnitude must be < ε

2 . Hence, we are guaranteed
to execute lines 12-15 with an r0,· = ωb mod qjk′ .

Choose any l ∈ [1,m] and set Ω̃ to be{
ωb′
∣∣b′ ∈ [B′, N), ωb′ ≡ ωbmodqjk′ , ωb′ 6= ωbmodqjk′pl

}
.

Using Lemma 3.2 we can see that line 13 inspects all the
necessary residues of ωb mod plqjk′ . To see that tmin

will be chosen correctly we note first that∣∣∣∣< χS
0,j

k′ ,ωbmodqj
k′

, Â > − < χS
0,j

k′ ,ωbmodplqj
k′

, Â >

∣∣∣∣
=

∣∣∣∣∣∣
∑

ωb′∈Ω̃

Â(ωb′)

∣∣∣∣∣∣ ≤ √2
∑

ωb′∈Ω̃

|Â(ωb′)|.

Furthermore, setting r0,· = ωb mod qjk′ and Ω′ to be{
ωb′
∣∣ b′ ∈ [B′, N), ωb′ ≡ ωb mod qjk′ , ωb′ 6= (r0,·+tqjk′ )

mod qjk′pl for t with (r0,· + tqjk′ ) 6= ωb mod qjk′pl

}
,

we have

√
2
∑

ωb′∈Ω̃

|Â(ωb′)| <
ε√
2

< |Â(ωB)|−
√

2
N−1∑
b′=B′

|Â(ωb′)|



≤ |Â(ωb)| −

∣∣∣∣∣∣
∑

ωb′∈Ω′

Â(ωb′)

∣∣∣∣∣∣ .
Finally we can see that

|Â(ωb)| −

∣∣∣∣∣∣
∑

ωb′∈Ω′

Â(ωb′)

∣∣∣∣∣∣ ≤
∣∣∣∣ < χS

0,j
k′ ,ωbmodqj

k′

, Â >

− < χS
0,j

k′ ,(r0,·+tqj
k′

)6=ωbmodplqj
k′

, Â >

∣∣∣∣.
Hence, lines 13 and 14 will indeed select the correct
residue for ωb modulo pl. Therefore, line 16 will
correctly reconstruct ωb at least K ′ > 2K

3 times.

Lemma A.2. ESTIMATION: Every (ω,
˜̂Aω) stored in

R̂
s

in line 26 is such that |Â(ω)− ˜̂Aω|2 < ε.

Proof. Suppose that (ω,
˜̂Aω) is stored in R̂

s
. This only

happens if Â(ω) has been estimated by

< χS
0,j,ω mod qj

, Â > =
∑

ω̃≡ω mod qj

Â(ω̃)

for more then 2K
3 qj-primes. The only way that any such

estimate can have |Â(ω)− < χS
0,j,ω mod qj

, Â > | ≥ ε
2

is if ω collides with one of ω0, . . . , ωB′−1 modulo qj (this
is due to the definition of B′ in Equation 4.7). By the
proof of Lemma 3.1 we know this can happen at most
B′blogB′ Nc < K

3 times. Hence, more then half of the
2K
3 estimates, ˜̂A

′
ω, must be such that |Â(ω)− ˜̂A

′
ω| < ε

2 .
It follows that taking medians as per lines 24 and 25
will result in the desired ε-accurate estimate for Â(ω).

We are now ready to prove Theorem 2.

Theorem 2 Let R̂opt be a B-optimal Fourier repre-
sentation for our input signal Â. Then, the B term
representation R̂

s
returned from Algorithm 1 is such

that ‖A − R‖22 ≤ ‖A − Ropt‖22 + 6B·| ˆA(ωB)|2
C . Fur-

thermore, Algorithm 1’s Identification and Estimation
(lines 7 - 30) run time is O(B′2 log4 N). The number
of measurements used is O(B′2 log6 N).

Proof. Choose any b ∈ [0, B). Using Lemmas A.1
and A.2 we can see that only way some ωb /∈ R̂

s

B is if
there exists some associated b′ ∈ [B,N) so that ωb′ ∈ R̂

s

and
|Â(ωB)|+ ε ≥ |Â(ωb′)|+ ε > | ˜̂Aωb′ | ≥

| ˜̂Aωb
| > |Â(ωb)| − ε ≥ |Â(ωB)| − ε.

In this case we get 2ε > |Â(ωb)| − |Â(ωb′)| ≥ 0 so that

|Â(ωb′)|2 + 4ε
(
ε + |Â(ωB)|

)
≥ |Â(ωb′)|2+(1.8)

4ε
(
ε + |Â(ωb′)|

)
> |Â(ωb)|2.

Now using Lemma A.2 we can see that

‖Â−R̂‖2 =
∑

(ω,·)/∈ ˆR
s

|Â(ω)|2+
∑

(ω,
˜̂
Aω)∈ ˆR

s

|Â(ω)− ˜̂Aω|2 <

∑
(ω,·)/∈ ˆR

s

|Â(ω)|2 + B · ε2.

Furthermore, we have

B · ε2 +
∑

(ω,·)/∈ ˆR
s

|Â(ω)|2 = B · ε2+

∑
b∈[0,B), ωb /∈ ˆR

s

|Â(ωb)|2 +
∑

b′∈[B,N), ωb′ /∈ ˆR
s

|Â(ωb′)|2.

Using observation 1.8 above we can see that this last
expression is bounded above by

B · (5ε2 + 4ε|Â(ωB)|) +
∑

b′∈[B,N), ωb′∈
ˆR

s

|Â(ωb′)|2+

∑
b′∈[B,N), ωb′ /∈ ˆR

s

|Â(ωb′)|2 ≤

‖Â− R̂opt‖22 + B · (5ε2 + 4ε|Â(ωB)|).
Substituting for ε (see Equation 4.6) gives us our result.

We next focus on run time. Algorithm 1’s Iden-
tification (i.e., lines 7 through 19) run time is domi-
nated by the O(KB′m) executions of line 13. And,
each execution of line 13 takes time O(pm). Hence,
given that m = O(log N), pm = O(log N · log log N),
and K = O(B′ logB′ N), we can see that Identification
requires O(B′2 · logB′ N · log2 N · log log N)-time.

Continuing, Algorithm 1’s Estimation (i.e., lines
20 through 30) run time is ultimately determined
by line 22’s if-statement. Although line 22 is exe-
cuted O(KB′) = O(B′2 logB′ N) times, it can only
evaluate to true O(B′) times. Hence, each line
24/25 O(B′ logB′ N log B′)-time median operation will
be evaluated at most O(B′) times. The resulting Esti-
mation runtime is therefore O(B′2 logB′ N log B′).

To bound the number of measurements we recall
that: (i) the number of measurements is < m · K ·
pmqK , (ii) m = O(log N), (iii) pm = O(log N ·
log log N), (iv) K = O(B′ log N), and (v) qK =
O(K log K). Hence, the number of measurements is
O
(
K2 log K log2 N log log N

)
. Substituting for K gives

us the desired bound.


