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ABSTRACT

This project aims to reduce the time required to attain more
detailed scans of small interesting regions present in a quick
first-pass sample image. In particular, we concentrate on high
fidelity imaging of small sample features via hyperspectral
Raman imaging (e.g., small scale compositional variations in
bone tissue [4]). The current standard procedure for high
quality hyperspectral Raman imaging of small sample fea-
tures consists of four steps: First-Pass Imaging, Detail Iden-
tification, Planning, and finally Detail Imaging. Tradition-
ally, Detail Imaging and Planning have been carried out man-
ually by human personnel—after acquiring some quick low-
quality data in First-Pass Imaging, a researcher looks for in-
teresting features (Detail Identification) and decides how to
acquire higher-quality data for the interesting features (Plan-
ning), which is done in the final Detail Imaging phase. In
this paper we will discuss automating the Detail Identification
and Planning steps, resulting in a decrease of the procedure’s
total integration time. We fix an arbitrary way to automate
Detail Identification and compare several different Planning
methods. Our primary result is a method guaranteed to re-
turn a least cost (e.g., minimum integration time/number of
scans) Detail Image under a general cost model. Because of
their generality, the methodologies developed here may prove
widely useful to basic biomedical scientists as well as to re-
searchers in the pharmaceutical industry.

Index Terms— Biomedical imaging, Optimization meth-
ods, Raman spectroscopy, Bones, Graph theory

1. INTRODUCTION

Within the last several years many biomedical research
groups have begun studying the compositional chemical prop-
erties that underlie the mechanical properties of bone. Unlike
higher levels of architecture, the compositional level of bone
was previously neglected due to the paucity of tools for non-
destructive bone composition study. Recently the content and
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organization of bone at the molecular level has been success-
fully explored using Raman microspectroscopy and Raman
imaging [1, 3, 4, 5]. These studies, as well as others in the
literature, have begun to shed light on the molecular mech-
anisms of bone failure and response under both normal and
diseased states.

An important hindrance to spectroscopic studies has been
the long data acquisition time required for Raman microspec-
troscopy and Raman imaging. The time required to acquire a
256 × 256-pixel Raman image now varies between about 30
minutes and several hours. Reasons for this long imaging time
include the tendency for current image acquisition protocols
to be simple, manual, and non-adaptive. For example, dur-
ing sample imaging a constant integration (acquisition) time
is traditionally used at every data point despite the fact that
there are usually several different optimal integration times
for different types of regions.

Currently, small-scale sample features are imaged via Ra-
man spectroscopy in four steps. First, during First-Pass Imag-
ing, a low fidelity neighborhood image is quickly obtained.
Then, during Detail Identification, the first-pass image is used
to identify small interesting features—this stage is often done
manually by a human expert. That expert then plans how
to gather data during the fourth step. Finally, during Detail
Imaging, the specimen is imaged again according to the plan
to gather high quality detail data. In this paper we will pro-
pose automating Detail Identification and Planning with the
following goals:

• Make Detail Identification more reliable and more re-
peatable than current manual processes. We expect our
proposal to make this stage quicker as well, though we
have not investigated this experimentally.

• Make the Planning phase provably optimal or nearly-
optimal in the sense of minimizing the time for subse-
quent Detail Imaging.

2. BACKGROUND AND METHODOLOGY

For the remainder of the paper we will consider each Ra-
man image to be ann×m array of spectral data. Every image
location(i, j) will correspond to a physical location in rowi
and columnj of the sample. Each column of the image is



gathered by one scan. Hence, given that each scan providesn
pixels of spectral data, it takesm scans to produce ann ×m
image. During each scan, a sample column of data is illumi-
nated with a laser while the induced radiation from each of
the sample column’sn data points is measured with an EM-
CCD detector. In general we’d like to reduce the total imag-
ing integration time not only for increased speed, but also to
minimize potential sample damage due to the laser illumina-
tion. Hence, given a small collection of interesting sample
positions to be imaged with a long integration time, we’d like
to minimize the number of long scans required to cover the
interesting sample positions.

In this paper, our focus is the comparison of different meth-
ods for the Planning phase. To that end, we will fix a method
for Detail Identification. We discuss this further in Section 4.

The purpose of this paper is to propose a new method
for Raman imaging and give theoretical and proof-of-concept
support using a small amount of data. Ultimately, the effec-
tiveness of our methods must be validated using many sam-
ples; that will be the subject of future work. We will avoid
asking questions that can only be addressed by examining
many samples.

3. OPTIMAL COLUMN/ROW SCANNING

In this section, we assume that Detail Identification has
been performed, resulting in a setP of interesting pixels in
the[n]× [m] grid. We address the Planning stage.

Traditionally, only columns are scanned. Once the sample
is fixed, imaging only takes place by acquiring frames (scan-
ning columns) from left to right. However, it is generally pos-
sible to rotate the specimen by90◦. We therefore consider
the more general problem of minimizing the number of long
column and/or row scans required to cover a small number of
interesting sample points.

Definition 1 Given a setP ⊆ [n]× [m] of p interesting pixel
locations, a setU = C∪R is a feasible cover ofP if C ⊆ [m]
is a set of columns and a setR ⊆ [n] of rows such that, for
every(i, j) ∈ P , eitheri ∈ R or j ∈ C.

A feasible coverU of P is optimal if it has the minimum
size of all feasible covers.

The setP is typically derived from quick First-Pass Imaging.
See the4 × 3 rectangular image in Figure 1 for an example
problem.

In the Figure 1 example image we’d like to scan the five
black pixels. Hence, our set of interesting pixels isP =
{(1, 1), (1, 2), (1, 3), (3, 3), (4, 3)}. Our task is to find the
minimum number of columns and/or rows to scan in order
to image all 5 black pixels.

We next compare three methods for obtaining feasible cov-
ers. They all take a setP of p interesting pixels, and return
a set of columnsC and/or rowsR to be scanned in order to
cover P. The three methods are:

3.1. Push Broom

Let x = min{j | ∃i ∈ N with (i, j) ∈ P} and y =
max{j | ∃i ∈ N with (i, j) ∈ P}. ScanC = {x, x +
1, . . . , y − 1, y} andR = ∅.

The Push Broom method is essentially the current standard
method for scanning a small number of interesting pixels. Af-
ter quickly obtaining a low fidelity first-pass image, a set of
interesting pixels is obtained. The entire region from leftmost
to rightmost column containing interesting pixels is then res-
canned from left to right with a higher integration time.

3.2. Optimal Columns

Scan column setC = {j | ∃i ∈ N with (i, j) ∈ P} and
row setR = ∅. In effect, scan every column containing an
interesting pixel.

3.3. Optimal Rows + Columns

Scan any cover ofP that is Optimal.
It is straightforward to implement the Push Broom and

Optimal Columns methods. Algorithms for Optimal Rows +
Columns have been known [6]; we include a brief discussion
for completeness and to illustrate the computational cost.

Algorithm 2 The FF algorithm for computing an Optimal
Rows + Columns cover of inputP is as follows.

1. Construct ascan graphfor P . The scan graph ofP
is a directed weighted graph,G, with node set{s, t} ∪
{1, 2, . . . , n} ∪ {1, 2, . . . ,m} and edge set{(s, i) | 1 ≤
i ≤ n} ∪ P ∪ {(j, t) | 1 ≤ j ≤ m}. All edges from
the source nodes and into the termination nodet have
a weight of 1. All remainingP edges are given a weight
of∞.

2. Use the Ford-Fulkerson method [2] to find a minimum
cut ofG.

3. Using the final resulting residual network we letC be
the set of columns reachable froms andR be the set of
rows not reachable froms.

We omit the proof of the following.

Theorem 3 Algorithm 2 produces an Optimal Rows +
Columns cover of its input,P .

Example 4 Recall the Figure 1 example image. Figure 1’s
middle graph is the scan graph for the4 × 3 image with
P = {(1, 1), (1, 2), (1, 3), (3, 3), (4, 3)}. Figure 1’s right-
most graph gives theresidual networkthat arises using the
Ford-Fulkerson algorithm for a minimum cut in the scan
graph. In the rightmost graph all gray nodes are reachable
from the source nodes. All white nodes are unreachable



Fig. 1. An Example Problem, The Problem’s Related Scan Graph, and a Scan Graph Solution

froms. Note that the gray(reachable) column 3 and white(not
reachable) row 1 nodes provide us with an Optimal Rows +
Columns cover ofP . By inspecting the example image we
can see that scanning row 1 and column 3 is indeed a min-
imal way of imagingP . Furthermore, we can see that if we
only use columns or rows alone it will require 3 scans to cover
P as opposed to only 2 scans.

The computational cost to run Algorithm 2 is polynomial
in the size of the input,P . Note that the size ofP is at most
the total numbermn of possiblepixels; in the context where
this algorithm is used, we expect that|P | � mn. For a
256 × 256-pixel image, we expect that the time to compute
an Optimal Rows + Columns cover ofP will be less than
the time to acquire data in the Detail Imaging step. In any
case, our focus in this paper is minimizing the data acquisi-
tion time, which we equate with sample damage; we mention
that computation time is acceptable.

4. EMPIRICAL EVALUATION

We compare the performance of Push Broom, Optimal
Columns, and Optimal Rows + Columns on two test prob-
lems. For both test problems we assume that scanning any
row and/or column is just as costly as scanning any other. All
non-P scan graph edges are given a weight (cost) of one.

See Figure 2 for the first test image and results. For our
first test we letI be the noisy Figure 2 “HELLO” image
and let the set of interesting pixels,P , be the lightestp pix-
els in I. Note that this first test contains a variety of both
horizontal and vertical bands of light (i.e., interesting) pix-
els. As a result we can see in Figure 2’s results graph that
the Optimal Rows + Columns method requires substantially
fewer columns and rows than the other two methods to cover
the lightestp ≤ 30% of I ’s pixels. Between the Optimal
Columns and Push Broom methods we can see that the Op-
timal Columns method outperforms the Push Broom method
for covering a very small (i.e., less than about2%) number of
the lightest pixels. However, both Push Broom and Optimal
Columns are about the same cost for largerp.

See Figure 3 for the second test image. In Figure 3 our
imageI is a first-pass Raman image of test sample consisting
of mouse bone embedded in PMMA plastic. Here the lighter

pixels correspond to bone while darker pixels correspond to
PMMA. Gray pixels indicate bone covered by a thin layer of
PMMA. Here our pixels of interest,P , are thep boniest (light-
est) pixels inI. Here weassumethat choosing thep boniest
pixels, for variousp, according to the low-fidelity First-Pass
image is a good way to do Detail Identification; properly ad-
dressing this question is beyond the scope of this paper.

Figure 3’s first-pass bone + PMMA image,I, was pro-
duced by scanning each of the 60 image columns with a 1
second integration time. We would like, however, to scan
each bony (interesting) pixel for 8 seconds. Hence, Figure 3’s
result graph reports60 + 8(# columns/rows to coverP ) sec-
onds for each method. There we can see that both the Optimal
Columns and Optimal Columns + Rows methods outperform
Push Broom for scanning the lightestp ≤ about15% of I ’s
pixels.

Note that Figure 3’s first-pass bone + PMMA image,I, is
biased toward a strong Optimal Columns performance. Not
only does each ofI ’s columns cover more than three times
as many pixels as each row, but all ofI ’s boniest (i.e. light-
est) features are aligned vertically. Generally this will not be
the case. However, even for this difficult test image, Optimal
Rows + Columns still requires less scan time for most small
|P | values (i.e.<≈ 5% pixels scanned).

5. GENERALIZATIONS AND FUTURE WORK

In the Optimal Rows + Columns method there is some flex-
ibility with respect to the edge weights assigned in the scan
graph. Although allP pixel edges should always be given a
weight of∞, the remaining edges from thes node and into
the t node need not all have weight 1. In general the weight
assigned to an edge(s, i) should correspond to the cost of
scanning rowi. Likewise, the weight assigned to an edge
(j, t) should correspond to the cost of scanning columnj. If,
as above, all non-P edges are assigned the weight 1 it means
that all rows and columns require the same unit of cost to
scan. However, each non-P column/row scan graph edge can
indeed be given any desired positive real cost. This leaves the
user a good deal of flexibility in assigning row and column
costs based on the first-pass imageI.

Angles other than 90◦ can be considered as well. If each
pixel is in more than two possible frames (horizontal and ver-



0 5 10 15 20 25 30 350

50

100

150

200

250

Percentage of Total Pixels To Scan

Nu
m

be
r o

f R
ow

s 
an

d 
Co

lu
m

ns
 S

ca
nn

ed

Hello Image Rows/Columns Scanned to Cover Lightest Pixels

 

 

Push Broom
Optimal Columns
Optimal Rows + Columns

Fig. 2. Test Image Along with the Number of Rows+Columns Required to Cover Its Lightest Pixels
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Fig. 3. Bone + PMMA Image, and The Total Time Required to Image Its Boniest (Lightest) Pixels

tical), we know of no efficient computation of an optimal
cover. There are, however, fast approximate algorithms [2]
for the set-cover problem, including a greedy algorithm, with
an approximation ratio ofln(max(m,n)). There is also in-
herent approximation involved in using data from one pass in
order to predict the outcome of a second pass rotated by an
angle that is not a multiple of 90◦. In particular, if the pix-
els are square, pixels of one pass do not line up exactly with
pixels of the second pass. We do not discuss that further here.

Jitter and hysteresis effects on the scanner realignments
necessitated by the Optimal Columns and Optimal Rows +
Columns methods should also be more thoroughly investi-
gated. However, we don’t expect these effects to be important.
The spectrometer used to produce the Figure 3 test image uti-
lizes a mirror which can be positioned to better than 0.2 mi-
crons [3] (small in comparison to Figure 3’s 16 micron length
scale). Stages exist with similar precision. Furthermore, hys-
teresis effects can be mitigated by beginning Detail Imaging
behind each column/row starting point and then progressing
with column/row scans in only one direction.

6. CONCLUSION

In this paper we demonstrated that two proposed scanning
methods, Optimal Columns and Optimal Columns + Rows,

may be useful in decreasing the total integration time required
to rescan a small set of interesting image pixels.
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