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Abstract—Recently, collecting and storing higher order data
has become more feasible with the use of methods from multi-
linear algebra. High order data usually lies in a low dimensional
subspace or manifold along each mode and its intrinsic structure
can be revealed by linear methods such as higher order SVD.
However, these linear approaches may not capture the local
nonlinearities in the data that may occur due to moving sensors
or other nonlinearities in the measurements. In this paper, we
propose to use a piecewise linear model to better identify the
non-linearities in higher order data. The proposed approach
decomposes the higher-order data into subtensors and fits a low
rank model to each subtensor. The proposed approach is applied
to simulated datasets and a video sequence captured across
different angles to show its robustness to non-linear structures.

Index Terms—Tensor algebra, higher order SVD, low-rank
approximation, manifold learning

I. INTRODUCTION

High dimensional data sets in R
D are often assumed to

be lying near a lower d-dimensional manifold, or subspace,

with d � D. When the data points are located on a linear

subspace, this linear structure can be represented by a basis

identified via PCA (or SVD). However, if the data points lie

near a non-linear manifold, the basis obtained by such linear

methods may not encode the data points efficiently [1], [2].

In order to address this issue, many approaches for learning

low dimensional manifolds from high dimensional datasets

have been developed by the machine learning community

(see, e.g., [1]–[4]). For example, Tenenbaum et al. [3],

presented an algorithm that consists of embedding the data

into a graph and then constructing a d-dimensional manifold

by applying multidimensional scaling (MDS) to the graph.

Similarly, Roweis and Saul [4] introduced locally linear

embedding (LLE) approach by assuming that each data point

and its neighbors are lying on a locally linear patch of the

manifold. More recently, Allard et al. [1] proposed generat-

ing data-dependent multi-scale dictionaries called Geometric

Multi-resolution Analysis (GMRA) in order to have a fast

and compact encoding system for nonlinear data. Although

these approaches are useful for identifying embedded low di-

mensional manifold for vector type data, they are not directly

applicable to high-order data sets, such as tensors which occur

in many applications including video, hyperspectral imaging,

social and biological networks [5]–[7].
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Herein we propose a new method for identifying low-

dimensional manifold structure from higher-order data. Our

proposal is both general and simple: one may simply replace

linear methods (e.g., the SVD) with non-linear manifold

learning methods when computing tensor factorizations of

high-order data. Unsurprisingly, doing so results in superior

performance when the data in question has nonlinear, as

opposed to linear, low-dimensional structure. Applications of

this work include finding low-dimensional approximations

to tensor data arising from problems in face recognition,

surveillance video analysis, and anomaly detection in social

networks.

Previously, these problems involving higher order data

have been addressed using higher order SVD (HOSVD).

For example, Vasilescu and Terzopoulos [8] extended the

eigenface concept to the tensorface by using higher order SVD

and taking different modes such as expression, illumination

and pose into account. Yang et al. [9] presented 2D-PCA

for matrices and used it for feature extraction from face

images without converting the images into vectors. Others

[10]–[12] used incremental SVD for tensors for background

modelling and face recognition. Most of the subspace learning

algorithms mentioned above are interested in fitting a low-

rank model to data which lies near a linear subspace and do

not focus on non-linear structures that the datasets possibly

have.

More recently, researchers have extended manifold learn-

ing approaches to tensors. For example, He et al. [13] ex-

tended locality preserving projections [14] to second order

tensors and then used it for dimensionality reduction and

face recognition in a supervised setting. Dai and Yeung [15]

presented generalized tensor embedding methods such as the

tensor extension of local discriminant embedding methods

[16], neighborhood preserving embedding methods [17], and

locality preserving projection methods [14]. Li et al. [18]

proposed a discrimination method which preserves local struc-

tures in each class, and then extended the algorithm to high-

order tensors. However, these methods are mostly limited

to learning the optimal linear transformation for supervised

classification of high-order data. In contrast, we propose novel

unsupervised higher-order manifold learning approaches for

summarizing, reducing, and performing anomaly detection

within tensor data.

The proposed method will be referred to as locally lin-

ear higher order singular value decomposition (LL-HOSVD)

which enables us to deal with piecewise linear low-rank

structure for high-order data. This algorithm consists of 2

main steps: Decomposing the tensor into lower dimensional

subtensors which are expected to have more linear structure,

and then applying HOSVD to these subtensors to identify



their underlying low-dimensional linear structure. Moreover,

we propose two approaches to decompose the tensor into the

subtensors. Finally, we apply the proposed algorithm to two

synthetic datasets as well as a video sequence to exhibit its

robustness to non-linearities.

II. BACKGROUND

A. Tensor Algebra

A multidimensional array with N modes X ∈R
I1×I2×...×IN

is called a tensor, where xi1,i2,..iN denotes the (i1, i2, ..iN)th

element of the tensor X . Vectors obtained by fixing all

indices of the tensor except the one that corresponds to nth

mode are called mode-n fibers. Basic tensor operations are

reviewed below [19], [20].

Tensor norm Norm of a tensor X ∈ R
I1×I2×...×IN is square

root of sum of the squares of all its elements.

‖X ‖=
√√√√ I1

∑
i1=1

I2

∑
i2=1

...
IN

∑
iN=1

x2
i1,i2,...,iN

. (1)

Tensor inner product The inner product of two same sized

tensors X ,Y ∈ R
I1×I2×...×IN is sum of the products of their

elements.

〈X ,Y 〉=
I1

∑
i1=1

I2

∑
i2=1

...
IN

∑
iN=1

xi1,i2,...,iN yi1,i2,...,iN . (2)

Mode-n product The mode-n product of a tensor

X ∈ R
I1×...In×...×IN and a matrix U ∈ R

J×In is denoted as

Y =X ×n U, (Y )i1,i2,...,in−1, j,in+1,...,iN = ∑In
in=1 xi1,...,in,...,iN u j,in

and is of size I1× ...× In−1× J× In+1× ...× IN .

Tensor matricization Process of reordering the elements

of the tensor into a matrix is known as matricization or

unfolding. The mode-n matricization of tensor Y is denoted

as Y(n) and is obtained by arranging mode-n fibers to be

the columns of the resulting matrix. Unfolding the tensor

Y =X ×1 U(1)×2 U(2)...×N U(N) along mode-n is equivalent

to Y(n) = U(n)X(n)(U(N) ⊗ ...U(n+1) ⊗ U(n−1)... ⊗ U(1))�,

where ⊗ is the matrix Kronecker product.

Tensor Rank Unlike matrices, which have a unique defini-

tion of rank, there are multiple rank definitions for tensors

including tensor rank and tensor n-rank. The rank of a tensor

X ∈R
I1×...In×...×IN is the smallest number of rank-one tensors

that form X as their sum. The n-rank of X is the collection

of ranks of mode matrices X(n) and is denoted as:

n-rank(X ) =
(
rank(X(1)), rank(X(2)), ..., rank(X(N))

)
. (3)

B. Higher Order Singular Value Decomposition (HOSVD)

Any tensor X ∈R
I1×I2×...×IN can be decomposed as mode

products of a core tensor S ∈R
I1×I2×...×IN and N orthogonal

projection matrices U(n) ∈ R
In×In which are the left singular

vectors of X(n) [21]:

X = S ×1 U(1)×2 U(2)...×N U(N) (4)

where S is computed as

S = X ×1 (U(1))�×2 (U(2))�...×N (U(N))�. (5)

Let Sin=α be a subtensor of S obtained by fixing the nth

index to α .This subtensor satisfies following properties:

• all-orthogonality: Sin=α and Sin=β are orthogonal for

all possible values of n, α and β subject to α 	= β .

〈Sin=α , Sin=β 〉= 0 when α 	= β . (6)

• ordering:

‖Sin=1 ‖≥‖Sin=2 ‖≥ ...≥‖Sin=In ‖≥ 0 (7)

for all possible values of n.

III. LOCAL HIGHER ORDER SINGULAR VALUE

DECOMPOSITION

In this section, we present a procedure which provides low

n-rank approximation to subtensors of an Nth order tensor

X ∈ R
I1×I2×...×IN to better capture local nonlinearities.

The proposed method starts with decomposing tensor X
into K subtensors Yk ∈R

I1,k×I2,k×...×IN,k with k ∈ {1, 2, ... K}.
Yks are formed by using the following mapping functions fks

defined on the index sets of X and Yk.

Let fk be a mapping function from the index set of

X to the index set of Yk as fk : J1× J2× ... × JN �→
J1,k× J2,k× ... × JN,k, where Jn = {1, 2, ..., In}, Jn,k ={

1, 2, ..., In,k
}

with n ∈ {1, 2, ... N}, and fks satisfy

∪K
k=1Jn,k = Jn and Jn,k ∩ Jn,l = /0 when k 	= l for all k, l ∈
{1, 2, ..., K} . We propose two approaches: direct division

and sequential division to obtain the fk’s and Yk’s as explained

in the next two sections.

Once Yks are obtained, HOSVD is used to obtain the low

n-rank approximation for each Yk. This can be achieved by

using truncated mode matrices obtained by keeping only a few

of the vectors of U(n,k) corresponding to the highest singular

values. For purposes of simplifying the representation, the

same n-rank is selected for each Yk, k ∈ {1, 2, ... K} and this

rank is denoted by R= (r1, r2, ..., rN). Let Ŷk be a low n-rank

approximation of Yk computed as:

Ŷk = Ŝk×1 Û(1,k)×2 Û(2,k)...×N Û(N,k), (8)

where Û(n,k)s are the truncated projection matrices of Yk
obtained by keeping the first rn columns of U(n,k) for n ∈
{1, 2, ... N} and Ŝk is the core tensor

Ŝk = Ŷk×1 (Û(1,k))�×2 (Û(2,k))�...×N (Û(N,k))�. (9)

Therefore,

X̂ fk(J1×J2× ...×JN) = Ŷk, (10)

and combining all of the subtensors Ŷks by using the inverse

mapping functions f−1
k provides piecewise-linear approxima-



tion of X :

X̂ =
K

∑
k=1

Ŷk,( f−1
k (J1,k×J2,k× ...×JN,k))

. (11)

A pseudo code of the algorithm is given in Algorithm 1.

Algorithm 1 Locally Linear Higher Order SVD

1: Input: X̂ : tensor , R = (r1, r2, ..., rN): the desired local n-rank,
C = (c1, c2, ..., cN): the desired number of clusters for mode-n
fibers.

2: Output: X̂
3: K ←∏N

i=1 ci

4:

[{
Ŷ1, Ŷ2, ..., ŶK

}
, { f1, f2, ..., fK}

]
= direct-division(X̂ , C)

or sequential-division(X̂ , C)
5: for k = 1 to K do
6: for n = 1 to N do
7: (U(n,k))← SVD(Y(k,n))

8: (Û(n,k))← truncate(U(n,k),rn)
9: end for

10: Ŝk ← Yk×1 (Û(1,k))�×2 (Û(2,k))�...×N (Û(N,k))�
11: Ŷk ← Ŝk×1 Û(1,k)×2 Û(2,k)...×N Û(N,k),
12: end for
13: X̂ = ∑K

k=1 Ŷk,( f−1
k (J1,k×J2,k× ...×JN,k))

A. Direct Division

In this approach, tensor X ∈R
I1×I2×...×IN is first unfolded

across each mode yielding Xn ∈ R
In×∏ j 	=n I j whose columns

are the mode-n fibers of X . For each mode, the mode-n
fibers are partitioned into cn non-overlapping clusters. We

made use of diffusion maps to partition the mode-n fibers

as follows [22]: Let xn,i be the ith mode-n fiber of X .

First, each xn,i is connected to its k-nearest neighbors with

weights Wi, j = K(xn,i,xn, j) = e−‖xn,i−xn, j‖2/εiε j , where εi is the

Euclidean distance between xn,i and its k/2-nearest neighbors,

to obtain the weighted graph on the mode-n fibers. We then

use the METIS algorithm [23] to partition the constructed

graph for clustering the fibers. This process is applied for each

mode separately. Then, Cartesian product of the fiber labels

coming from different modes yields K = ∏N
i=1 cn subtensors

Yk. This approach is illustrated in Fig. 1a for 2-way tensors.

B. Sequential Division

In this approach, non-overlapping tensors Yks are obtained

by applying clustering to the fibers across each mode and

generating non-overlapping tensors N times repeatedly as

follows. First mode-1 fibers of X are grouped into c1

clusters using the same two step procedure as in approach-

1 through a weighted graph constructed from the fibers and

then partitioning using METIS. Then, mode-2 fibers of each

of the newly created tensors are clustered into c2 clusters

separately which yields c1× c2 subtensors. This procedure is

applied N times by clustering the fibers of different modes at

each step and K = ∏N
i=1 cn subtensors Yk are obtained (Fig.

1b). However, in this procedure, it is not necessary to start

from the mode-1 fibers and choosing different ordering of the

modes yields N! different possible decompositions, Yk.

(a) Direct division

(b) Sequential division

Fig. 1. Illustration of creation of 4 non-overlapping tensors Yk from a 2-
mode tensor X by (a) direct division and (b) sequential division.

IV. RESULTS

In this section, we will evaluate the effectiveness of the

locally linear higher order SVD with direct division (LL-

HOSVD(DD)) and sequential division (LL-HOSVD(SD)) ap-

proaches for revealing the non-linear structure of tensor type

data.

A. Translating Subspaces

In this experiment, we generate two point clouds each

containing 100 Gaussian random variables with zero mean

and identity covariance matrix in R
20 and the subspaces in

which the point clouds live are orthogonal to each other in

R
100. The first point cloud is static whereas the second one

is translating in a subspace that is orthogonal to the first

subspace. After the time point t = 20 the dynamic subspace

starts to overlap with the static subspace and at t = 30 the

dynamic cloud starts to move back to its original place. A

3-mode tensor X ∈ R
100×200×60 is created to represent the

data samples, where the third mode is time. Low n-rank

approximations of X are computed by HOSVD and the

proposed approaches LL-HOSVD(DD) and LL-HOSVD(SD).

Various values of n are used in the experiments and the cluster

number along each mode is chosen as C = (4,4,4) (Table

I). Since the LL-HOSVD(SD) has N! = 6 possible cluster

combinations, we just reported the cluster combination with

the lowest mean squared error (MSE). As seen in Table-I,

both of the proposed approaches give better approximation

than HOSVD in terms of MSE, and the data clouds in the

resulting low rank tensor obtained by the proposed approaches

are better separated than those obtained by HOSVD (Figure

2). Since LL-HOSVD(SD) iteratively divides the subtensors

when creating Yks, it tends to provide finer approximation. As

the rank increases, the approximation gets better as expected.



TABLE I
AVERAGE MSE FOR THE RECONSTRUCTED 3-WAY TENSOR

X ∈ R
100×200×60 FOR MOVING SUBSPACES BY HOSVD,

LL-HOSVD(DD) AND LL-HOSVD(SD) APPROACHES AT VARYING

n-RANK OVER 25 TRIALS.

R = (3,3,3) R = (5,5,5) R = (7,7,7) R = (9,9,9)
HOSVD

0.1131 0.1006 0.0943 0.0885
LL-HOSVD(DD)

0.1029 0.0926 0.0792 0.0662
LL-HOSVD(SD)

0.0838 0.0584 0.0407 0.0285

(a) (b) (c) (d)

(a) (b) (c) (d)

Fig. 2. Sample outputs for two different time points: (a) original image, (b)
HOSVD, (c)LL-HOSVD(DD), (d) LL-HOSVD(SD)

B. Rotating Subspaces

In this section, we generate two point clouds each con-

taining 100 Gaussian random variables with zero mean and a

covariance matrix corresponding to 1st order Gauss-Markov

process in R
20 and the subspaces in which the point clouds

live are orthogonal to each other in R
100. The first point cloud

is static whereas the second one is rotating at a constant speed.

To be able to adjust the speed of the rotation, the rotation

matrix A is constructed as A = I10×10⊗
[

cos(θ) sin(θ)
−sin(θ) cos(θ)

]
.

At t = 10, the angle of the rotation increased to θ = π/60 from

θ = π/120. A 3-mode tensor X ∈ R
100×200×80 is created to

represent data samples, where the third mode is time. Low n-

rank approximations of X are computed by HOSVD and the

proposed approaches LL-HOSVD(DD) and LL-HOSVD(SD).

The various n-ranks for X̂ are used in the experiments and

the cluster number along each mode is chosen as C = (4,4,4)
(Table II). Similar to previous simulations, we reported one

of the LL-HOSVD(SD) results with the lowest MSE. As

seen in Table-II, both of the proposed approaches gives better

approximation than HOSVD in terms of MSE.

C. PIE Dataset

In this experiment, a 3-mode tensor X ∈ R
122×160×138

is created from PIE dataset [24]. The tensor contains 138

images from 6 different yaw angles and varying illumination

TABLE II
AVERAGE MSE FOR THE RECONSTRUCTED 3-WAY TENSOR

X ∈ R
100×200×60 FOR ROTATING SUBSPACES BY HOSVD,

LL-HOSVD(DD) AND LL-HOSVD(SD) APPROACHES AT VARYING

n-RANK OVER 25 TRIALS.

R = (3,3,3) R = (5,5,5) R = (7,7,7) R = (9,9,9)
HOSVD

0.1016 0.0896 0.0786 0.0685
LL-HOSVD(DD)

0.685 0.0540 0.0474 0.0432
LL-HOSVD(SD)

0.0493 0.0231 0.0137 0.0084

conditions collected from a subject where each image is

converted to gray scale and downsampled to 122× 160. n-

rank for X̂ is determined empirically as (20,25,15) for this

experiment and the cluster number along each mode is chosen

as C = (4,4,4). Similar to previous simulations, we reported

the LL-HOSVD(SD) results with the lowest MSE. As seen in

Fig. 3, the proposed approaches provide more details for the

faces with reduced MSE while conventional HOSVD gives

blurry approximations.

(a) (b) (c) (d)

(a) (b) (c) (d)

(a) (b) (c) (d)

Fig. 3. Frames corresponding to 3 different yaw angles obtained from
approximated low n-rank tensor: (a) original image, (b) HOSVD, MSE
= 439.0140, (c) LL-HOSVD(DD), MSE = 140.6469, (d) LL-HOSVD(SD),
MSE = 378.3899

V. CONCLUSIONS

In this study, we introduced a new low-rank tensor ap-

proximation technique which learns the underlying nonlin-

ear structure by fitting locally linear low rank subtensors.

We also proposed two approaches to decompose a tensor

into its subtensors. The proposed framework is evaluated

by applying it to a set of simulated datasets and a video

from different angles. Future work will consider automatic

selection of parameters in the algorithm such as the number

of clusters along each mode and the appropriate rank along

each mode. Combining the algorithm with the multiscale

structure of GMRA will enable us to obtain a multi-resolution

tree structure for high order datasets. Adapting the method

to dynamic tensors for identifying structural changes to the

tensor in time will also be considered.
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