
DSatz: A Directional SAT Solver for Planning

Mark Iwen and Amol Dattatraya Mali
Electrical Engineering and Computer Science

University of Wisconsin, Milwaukee, WI 53211
iwen2724@uwm.edu, mali@miller.cs.uwm.edu, Fax: 1-414-229-2769

Abstract

(Appears as a regular paper in the proceedings of IEEE
International Conference on Tools with Artificial Intelli-
gence (ICTAI), IEEE Computer Society, Washington D.C,
Nov. 2002, pp. 199-208.)

SAT-based planners have been characterized as disjunc-
tive planners that maintain a compact representation of
search space of action sequences. Several ideas from re-
finement planners (conjunctive planners) have been used to
improve performance of SAT-based planners or get a bet-
ter understanding of planning as SAT. One important les-
son from refinement planning is that backward search being
goal directed can be more efficient than forward search. An-
other lesson is that bidirectional search is generally not ef-
ficient. This is because the forward and backward searches
can miss each other. Though effect of direction of plan
refinement (forward, backward, bidirectional etc.) on ef-
ficiency of plan synthesis has been deeply investigated in
refinement planning, the effect of directional solving of SAT
encodings is not investigated in depth. We solved several
propositional encodings of benchmark planning problems
with a modified form (DSatz) of the systematic SAT solver
Satz. DSatz offers 21 options for solving a SAT encoding of
a planning problem, where the options are about assign-
ing truth values to action and/or fluent variables in for-
ward or backward or both directions, in an intermittent or
non-intermittent style. Our investigation shows that back-
ward search on plan encodings (assigning values to fluent
variables first, starting with goal) is very inferior. We also
show bidirectional solving options and forward solving op-
tions turn out to be far more efficient than other solving op-
tions. Our empirical results show that the efficient system-
atic solver Satz which exploits variable dependencies can
be significantly enhanced with use of our variable ordering
heuristics which are also computationally very cheap to ap-
ply. Our main results are that directionality does matter in
solving SAT encodings of planning problems and that cer-
tain directional solving options are superior to others.

1 Introduction

Planning as satisfiability paradigm [5] yielded signifi-
cantly improved results in plan synthesis. In this paradigm,
a SAT instance is generated assuming that a planning so-
lution of � steps exists such that this SAT instance has a
solution if and only if there is a plan of � steps. The SAT
instance compactly represents all action sequences of length
�. A SAT planner can be viewed as a disjunctive planner.
The impact of planning as SAT is clear from several papers
on this paradigm.

Lot of developments in refinement planning (or conjunc-
tive planning) have been shown to be relevant/useful in the
SAT planning framework. Most conjunctive classical plan-
ners are unidirectional (forward state-space only or back-
ward state-space only) including the recent and more ef-
ficient ones like HSP [2], HSP-r [3], VVPLAN [14] and
UNPOP [9]. Bidirectional planners PRODIGY2 [10], NO-
LIMIT [12] and FLECS [13] are incomplete. Forward
search and backward search missing each other or not meet-
ing each other soon, is the most general way to describe
the causes of incompleteness or inefficiency of these plan-
ners respectively. Some of the efficient conjunctive classical
planners are HSP-r [3] and AltAlt [11]. Both these planners
carry out backward state-space search.

Though SAT encodings are declarative representations
and can be processed in a non-directional fashion which
in fact can improve efficiency of plan synthesis, there are
reasons to expect that (i) backward search on the encod-
ings, being goal-directed would be more efficient than for-
ward search and (ii) bidirectional search and forward search
would be inferior, respectively because of the same reasons
that make (i),(ii) happen in refinement planning. Different
truth assignments of action variables in a SAT encoding can
be viewed as different partial plans in refinement planning.

Let us consider the first lesson of superiority of back-
ward search from refinement planning. Since arities of ac-
tions are typically higher than arities of fluents, the number
of fluent variables is less than the number of action vari-
ables. For example, maximum arity of action in transporta-

tion logistics domain is 3 (in load(x,y,z) and unload(x,y,h)
and fly(y,z,h)) and maximum arity of fluent is 2 (in in(x,y),
at(x,z) etc.). With � packages, � cities and � planes, there
will be ����������������� action variables and���������
��� � ����� fluent variables in a � step state-space encod-
ing. This greater than relationship between maximum ac-
tion arity and maximum fluent arity also applies to blocks
world when operator ���	�
� �� � and predicate ���
� ��
are used. ���	�
� �� � moves block
 from top of block �

or table to top of block or table,
 �� �� � �� �
 �� . It is
thus worth investigating whether assigning values to fluent
variables first, starting from goal yields an increase in plan-
ning efficiency, because this is like being goal directed and
having lower branching factor in the search space of a SAT
solver.

Consider the second lesson of inferiority of bidirectional
search. Assigning values to action variables and fluent vari-
ables in solving SAT encodings in bidirectional fashion can
be inferior in general or at least not work as good as unidi-
rectional search because the forward and backward searches
can miss each other. Whether (i), (ii) hold in SAT planning
is not clear. This is because the disjunctive representation,
when solved in backward direction, may not undergo signif-
icant simplification, increasing the solving times. The com-
pact nature of the disjunctive representation may make it
easier for forward search and backward search to meet fast
or detect failures early, making bidirectional search more
efficient. Whether (i), (ii) hold in SAT planning is thus
worthy of investigation since this can make development
of SAT solvers specialized for solving planning problems
possible. To achieve this, we modified the efficient system-
atic SAT solver Satz [8] to implement DSatz (Directional
Satz) which assigns values to action and/or fluent variables
in forward and/or backward directions with an option of
intermittent assignment (alternating between forward and
backward passes). We evaluate DSatz with several options
on various benchmark problems to investigate lessons (i)
and (ii). We show that forward search where both action
and fluent variables are assigned values in forward direction
performs orders of magnitude faster than backward search
where both action and fluent variables are assigned values in
backward direction. We also show that bidirectional search
where both action and fluent variables are assigned values
in both directions gives better results than backward search.
Many directional solving options of DSatz perform better
than Satz.

Our work makes the following contributions.
� A deeper investigation of variable ordering heuristics in
SAT-based planning with the DSatz systematic solver that
offers 21 directional solving options. These options can
be viewed as different variable ordering heuristics that are
computationally very cheap.
� We show that systematic solver Satz that efficiently ex-

ploits variable dependencies, does not necessarily solve
plan encodings faster, despite the dependencies among vari-
ables in the encodings of planning and that it can be signif-
icantly improved with directional solving. This shows that
directionality does matter in solving SAT encodings of plan-
ning.
� We show that performance of the options BABF and
FARF is superior. We also show that increasing the num-
ber of subgoals in goal leads to more unit clauses in en-
codings which increase the encoding simplification oppor-
tunities and considerably enhance the performance of some
backward solving options.

2 Background

In this section, we first explain the working of SAT plan-
ners. Then we explain the state-space encoding [6], fol-
lowed by explanation of the systematic solver Satz. We use
STRIPS representation. An action is assumed to be a fully
ground instance of an operator.

An encoding is composed of several types of constraints
such that these are all satisfied if and only if there is a plan of
� steps. Because of this, the encoding can be passed to any
SAT solver like walk-sat which does local search [5] or Satz
which does systematic search. If � chosen is less than the
minimum plan length, � is increased and a new encoding is
generated and solved. This procedure is repeated until solu-
tion is found. Plans of length lower than � can be found by
making action variables at the extra time steps false, so that
no actions making the plans invalid occur. We explain (and
also empirically evaluate) the state-space encoding with ex-
planatory frame axioms (explained in this section next) be-
cause of its superior performance [4], though other variants
of state-space encodings exist.

The state-space encoding is based on the idea of using
state of world to decide which actions can and cannot oc-
cur, from state-space refinement planning. The clauses in a
state-space encoding capture the following constraints: (i)
Any of the actions from the domain, if it occurs at any of
the time steps � from the interval ��� ����, implies the truth
of its preconditions at � and the truth of its effects at �����.
(ii) The initial state is true at time �. (iii) The goal must be
true at time �. (iv) Conflicting actions (one action deleting a
precondition of another) cannot occur at the same time step.
(v) Persistence of fluents is described by “explanatory frame
axioms” which state that if the truth of a fluent � changes
over an interval ��� � � ��, some action changing that truth
must occur at �.

Satz is a variant of Davis-Putnam-Logemann-Loveland
procedure (DPLL). Given a formula � , DPLL procedure
recursively calls itself on �� �
� and if that does not
yield the result “satisfiable”, it calls itself on �� � �
�,
where
 is a branching variable. DPLL procedure sim-

plifies SAT instances by unit propagation. For example,
��� � ��� � �� � ��� can be simplified to �, if � is assigned
true. Satz includes novel combinations of unit propagation
and the MOM heuristic (maximum occurrences in clauses
of minimum size). The brief explanation of how Satz works
(that we provide next) is from [1]. Satz employs the follow-
ing extensive one step look ahead. It has a series of filters
that it employs. Satz considers T variables, where T is an
empirically determined parameter, in the following way: It
assigns true to a variable and finds no. of binary clauses
yielded by unit propagation after true is assigned to the vari-
able. Let these be p. Then it assigns false to the variable and
it finds the number of binary clauses derived by unit prop-
agation after false is assigned. Let these be n. After p, n
values are found for all of T variables, it branches on vari-
able with highest value of (p . n. 1024 + p + n) first. This
allows satz to produce more balanced search trees. This
score function penalizes variables that produced good sub-
formulas under one assignment (true/false) but not the other
(true/false).

3 Directional Solving

Assigning values to action variables before fluent vari-
ables can considerably simplify an encoding, as shown in
[4]. This is because the truth of fluent variables is de-
pendent on the truth of action variables. This reduces the
search space of a SAT solver from ��������� �� to ��������

� � �� � � � being the number of actions and fluents in
the encoding respectively. Effects of directionality in solv-
ing encodings are not investigated in [4]. Though Satz has
heuristics to do simplification of a SAT instance and these
may in fact assign values by taking into account dependency
between action and fluent variables, Satz does not neces-
sarily solve encodings with the kinds of directional solving
options we implemented. In fact our empirical results from
Fig. 1 show that general SAT solvers like Satz can be im-
proved by certain kinds of directional solving (e.g. bidirec-
tional option BABF) for problems like classical planning.
It is worth investigating a large number (21) of directional
solving options, since different options can allow different
amount of simplification of encodings. In the rest of this
section, we first describe what the solving options in DSatz
are and then explain how Satz was modified to follow them.

18 out of the 21 solving options can be captured in the
form ��
���. Direction options ��� �� may have one of
the three values F, R, B that indicate forward, rear (back-
ward) and bidirectional respectively.
� � may have the val-
ues ��� that indicate action variables and fluent variables
respectively, with the constraint that
� � do not have same
values, the value � being an exception. With the ��
���

form of solving option, variables of type
 are assigned val-
ues in direction �� and it is only after this assignment is

done, that variables of type � are assigned values in �� di-
rection.

In a � step encoding, initial state corresponds to time
step index 0 and goal state corresponds to time step index �.
FAFF option means that both action and fluent variables are
to be assigned values in forward direction, such that action
variables are assigned value first, in the increasing order of
time step indices. After some action variable at each time
step is assigned a value, fluent variables are assigned val-
ues, in increasing order of time steps, so that at each time
step, there are some fluent variables that are assigned val-
ues. Passive variables are those which are assigned or those
whose values are fixed by an assignment to other variables.
For example, if ��� � �� is a clause in the SAT encoding
and � is assigned true, then � has to be assigned true. Then
� and � both become passive variables. If � is set to false,
it continues to be passive, but then � is no longer passive.
With FARF option, action variables are assigned values in
forward direction. After some action variables at each time
step are assigned a value, some fluent variables at each time
step are assigned values, in the decreasing order of step in-
dices (thus following reverse direction). In particular, the
first variable assigned is an action variable from time step
0. The second variable assigned is an action variable from
time steps 0 or 1 unless more than 50 	 of the total number
of action variables from these two time steps are passive. If
the 50 	 limit is exceeded, a variable from time step 2 that
is not passive is assigned. If all variables from time step 2
are passive, a variable from time step 3 that is not passive is
assigned. The third variable assigned is an action variable
from time steps 0 or 1 or 2 unless more than 33.33 	 of the
total number of action variables from these three time steps
are passive. Once action variables are assigned values in
this manner, fluent variables are assigned values in a similar
manner. The solving options RAFF, RARF, FFFA, FFRA,
RFFA and RFRA can be understood in a similar fashion.

Consider the option FABF. FA in this option has meaning
similar to that in FAFF and FARF options explained earlier.
BF means that fluent variables are assigned values in both
directions such that some fluents at time 0 are assigned val-
ues, followed by some fluents at time k, followed by some
fluents at time 1, followed by some fluents at time (k - 1)
and so on. Thus starting with forward direction, the assign-
ment of values to fluents in both directions is interleaved. In
the option BABF, fluent variables are assigned values in a
similar fashion to that in FABF and the action variables are
assigned values so that some action variables at time 0 are
assigned values, followed by assignment of values to some
action variables at time (k - 1), followed by assignment of
values to action variables at time 1, followed by assignment
of action variables at time (k - 2) and so on. As per the
semantics of ��
���, when BABF option is chosen, fluent
variables are assigned values only after action variables are

assigned values, that is, the assignment in BA is done. The
options RABF, BAFF, BARF, BFRA, FFBA, RFBA, BFFA
and BFBA can be understood in a similar fashion.

Second letter B in FB, RB and BB options stands for both
(actions and fluents). First letter B in BB stands for both di-
rections, that is, forward and backward. Note that FB is not
same as FAFF or FFFA, RB is not same as RFRA or RARF
and BB is not same as BABF or BFBA. With the FB solving
option, some fluent variables at time 0 are assigned values,
followed by assignment to some action variables at time 0,
followed by assignment of fluent variables at time 1 and
so on. The RB option is similar to FB with the difference
that the direction of assignment is backward. The BB op-
tion is similar to FB, RB options with the difference that the
assignment takes place in both directions (thus being inter-
mittent). In terms of directionality in searching for solution,
FB, RB and BB are respectively similar to forward state-
space, backward state-space and bidirectional state-space
refinement planning.

Satz was modified to choose branching variable only
from the set of variables permitted by the solving option
chosen. For example, if solving option is FAFF, DSatz
branches only on one of the action variables at a time step in
forward pass because of FA part of FAFF. Thus with FAFF
solving option, after assigning an action variable at time �,
DSatz branches only on action variable at �� � �� if more
than a certain number of action variables from steps 0, 1,
2, ... t are passive and if not all action variables at step t+1
are passive. Satz was not changed in any other way. Thus
DSatz uses heuristics of Satz, to choose branching variable
from multiple variables that meet criterion in the solving
option.

4 Empirical Evaluation

Our empirical evaluation on various problems in bench-
mark domains is shown in Fig. 1,2,3,4 and 5. In Fig. 1,2,3
and 4, * denotes that the option had the lowest solving time
on the problem, - denotes that the problem could not be
solved in 1 hour and ** denotes that the option had the
worst solving time on the problem. We did not simplify
the encodings by unit propagation before feeding them to
DSatz since DSatz simplifies the encodings like Satz. The
encodings were generated by our code written in C. The
encoding generation times were negligible in comparison
with the encoding solving times. The encodings contained
the following clauses: (i) unit clauses representing initial
state and goal, (ii) clauses representing the truths of pre-
conditions and effects of actions whenever they occur, (iii)
clauses representing mutual exclusion relations between ac-
tions �� and �� if �� deletes precondition of �� , and, (iv) ex-
planatory frame axioms. Blocks world, Transportation lo-
gistics, Rocket and Train are parallel domains. Monkey and

Robot are serial domains. Multiple blocks whose tops are
clear can be moved at same time in blocks world. There is
only one operator in this domain (���	�
� �� �). Grippers
are not represented in the problems and preconditions and
effects of ���	�
� �� �. This operator moves block
 from
top of block � or table to top of block or table. Clearly,

 �� �� � �� �
 �� �
 �� ����	.

The first set of empirical results is shown in Fig. 1.
First 18 solving options (from FAFF to BFBA) are in the
form ��
���. The experiments were ran on an SGI O2
running Irix 6.5 (RM5200 processors (300 Mhz MIPS)
with 128 MB RAM). The reported times are cpu sec-
onds. The problem eight b t i is problem of inverting
a tower of 8 blocks. bw large.a, rocket.a and rocket.b
are benchmark problems from BLACKBOX distribution
[7]. m1 logistics.a, m2 logistics.a are modified versions
of logistics.a and m rocket ext.a is a modified version of
rocket ext.a. The 3 problems were modified (by remov-
ing objects) only to reduce encoding sizes, only because
of insufficient memory. m1 logistics.a and m2 logistics.a
are obtained from logistics.a by removing 2 and 3 packages
from it respectively. m rocket ext.a has 5 cargo items. The
encodings were automatically generated, by taking into ac-
count all actions in the domains. The number of steps in the
encodings was set to the lowest value needed to find solu-
tion.

The evaluation in Fig. 1 shows that the BABF solving
option gives better results than other solving options. Ac-
tion and fluent variables are related and in fact one of these
two kinds of variables can be eliminated from the encoding
[6]. It is possible to solve the encodings containing both ac-
tion and fluent variables by assigning values to only action
variables or only fluent variables. Let us revisit the trans-
portation logistics example in the introduction. Assigning
values to fluent variables before action variables can reduce
the size of search space from ����������	�	�����
� to �
,
where � is the number of fluent variables. This gives a rea-
son to expect that assigning values to fluent variables first
might work faster than other directional solving options.
Backward search has been shown to be generally more ef-
ficient in refinement planning. However the option RB that
closely resembles operation of backward state-space refine-
ment search performs the worst.

We conducted a statistical analysis of the empirical re-
sults from Fig. 1. We discuss this below, followed by a
discussion of simplification of SAT encodings. After this,
we discuss empirical results from Fig. 2 and 3.

Satz chooses a variable for branching if it does not de-
tect contradiction by using it. This holds for DSatz as well,
since DSatz is a version of Satz where restrictions are put
only to ensure directionality. It was found that DSatz chose
fewest number of branching variables with BABF option
and highest number of branching variables with the RB op-

tion. The performance of RB is inferior not only because of
larger number of contradictions, but also because such con-
tradictions are not detected early. On the problems that were
solved by all options, BABF lead to lowest average solv-
ing time and RB lead to highest average solving time. On
these problems, the average number of times DSatz chose
branching variable with RB was 190 times higher than that
for BABF. On these problems, the average solving time with
BABF was 93 times lower than that for RB. On these prob-
lems, the average number of nodes in search tree with RB
was 190 times higher than that for BABF. FB and BB lead
to higher number of branching variables as well as larger
number of nodes in tree than BABF.

11 out of 21 solving options (Fig. 1) lead to selection
of fewer branching variables than Satz. These options also
lead to trees containing fewer nodes than with Satz. 9 op-
tions (out of the 11 mentioned above) lead to lower average
solving time than Satz, on problems from Fig. 1 that were
solved by all options.

We discussed statistical analysis of the results above. To
put the results in perspective, we next discuss the simpli-
fication that one can obtain by assigning values to action
and fluent variables. Assigning values to action variables
in forward direction can give lot of simplification. This is
because the occurrence of an action also implies truth of
its preconditions and effects which in turn generates several
unit clauses that can simplify an encoding further. If true is
assigned to an action variable �����, unique value can be as-
signed to a fluent variable that is its precondition (time �) or
effect (time ��� ��). For example, if effects of �� are ����
and its preconditions are �� �, then ����� � ���	 allows unit
propagation yield ���� � ���	� ���� � ���	� ��� � �� �
���	 and ��� � �� � ����	. On the other hand, assigning
values to fluents in backward direction only means that one
can infer that either the truth of the fluent was preserved or
that some action changing it occurred. In the example of � �,
the assignment ���� �� � ���	 does not allow assignment
of unique value to �����. This also holds for the assignments
���� � ���	� ���� � ���	 and ��� � �� � ����	. If unit
clauses containing action variables are not derived, more
simplification does not take place. This is correlated with
the worst performance (solving option RB). Options con-
taining ��
 = BA always give better performance because of
the role of action variables in simplifying encodings and be-
cause BA means assigning values to such variables in both
directions. BABF gives best performance (Fig. 1) both be-
cause of larger amount of simplification and faster failure
detection that this directionality makes possible.

Results on additional problems are shown in Figures 2
and 3. This evaluation was conducted on a Dual Intel Pen-
tium II 400 MHz SunOS 5.7 machine. First 18 solving op-
tions (from FAFF to BFBA) are in the form ��
���. Times
reported are CPU seconds. Four options (RARF, RABF,

RFRA and RFBA) that were found to be less efficient in the
first set of experiments (Fig. 1), were not used in the second
set of experiments reported in Fig. 2 and 3. The number of
steps in the encodings were set to the lowest values needed
to find solution (except robot.a in Fig. 3 explained later).
Some problems in Fig. 2 and 3 are variants of benchmark
problems. The encoding of robot.a (Fig. 3) had fewer steps
than the minimum necessary to find solution, because we
wanted to see whether directional solving worked well also
on unsatisfiable instances.

For each solving option in Fig. 2 and 3, we found the
following values (over 13 problems in Fig. 2 and 3) - (i)
Average solution time, (ii) number of problems on which its
solving time was worst, (iii) number of problems on which
its solving time was best and (iv) the number of problems
solved. We also found the (v) number of nodes in search
tree and (vi) the number of contradictions detected, for each
option on each problem. It was found that solving times
were lower for options that made detection of larger num-
ber of contradictions possible. These options also lead to
search trees with fewer nodes. Results on problems from
Fig. 2 and 3 show that the option FARF had the lowest av-
erage solution time and had lowest solution time on more
problems than all other options. Average solution times for
FAFF and FABF were very close to that for FARF. These
three options are the only ones that solved all 13 problems
from Fig. 2 and 3. These three options also performed bet-
ter than Satz. For these 3 options, the sizes of the search
trees were lower and the number of contradictions detected
were higher. All the six criteria (i, ii, iii, iv, v and vi) applied
to options RAFF, RFFA and RB showed that these options
were very inferior. This second set of experiments shows
that assigning values to action variables in forward direc-
tion is a very good idea.

Initial states in classical planning problems are com-
pletely specified. Goal states are partially specified. As a
result, initial state provides more unit clauses than goal. It is
well known that an encoding can be simplified to greater ex-
tent if there are more unit clauses in it. Does this mean that
the performance of backward solving options can improve
when goal state is completely described or at least made
stronger by adding subgoals? To evaluate this, we carried
out an additional empirical evaluation. The results of this
are shown in Fig. 4 and 5. This evaluation was conducted
on a Sun Ultra 10 machine with 128 MB RAM. The prob-
lems used in this evaluation were obtained from the prob-
lems from Fig. 1,2 and 3 by manually adding more sub-
goals to goal. This increased the number of clauses. This
did not increase the number of variables. We did not add
any negated subgoals to goal. In blocks world problems,
we specified positions of all blocks in goal to have more
subgoals. In transportation logistics and rocket domains,
we included locations of planes and trucks in goal. This

Problem
 Variables
 Clauses FAFF FARF FABF
eight b t i 4232 372625 69.19 69.19 69.33
bw large.a 4518 520872 48.7 (*) 48.81 48.73
m1 logistics.a 4926 79024 168.29 127.01 127.29
m2 logistics.a 5586 89574 19181.68 20000.36 20322.91
rocket.a 1878 14068 1.7 1.75 1.76
rocket.b 1878 14068 1.82 1.96 1.89
m rocket ext.a 1078 8573 0.38 0.37 (*) 0.38
Problem RAFF RARF RABF BAFF BARF
eight b t i 69.46 69.49 69.51 69.57 (**) 69.53
bw large.a 1292.7 1473.88 1474.68 48.86 49.24
m1 logistics.a 2243.14 2518.12 2522.74 267.93 168.29
m2 logistics.a � 12 hrs � 12 hrs � 12 hrs 2240.68 (*) 2728.45
rocket.a 21.24 (**) 20.6 20.59 1.81 1.79
rocket.b 19.36 (**) 19 18.37 1.89 1.96
m rocket ext.a 2.61 (**) 2.26 2.24 0.4 0.4
Problem BABF FFFA FFRA FFBA RFFA
eight b t i 69.48 69.26 69.35 69.21 69.23
bw large.a 49.41 76.05 75.72 76.18 17102.07
m1 logistics.a 110.7 (*) 1400.45 624.06 704.86 3936.97 (**)
m2 logistics.a 2311.64 � 12 hrs 23144.68 25753.39 � 12 hrs
rocket.a 1.8 1.73 1.71 1.74 0.69 (*)
rocket.b 1.96 1.9 1.95 1.98 3.58
m rocket ext.a 0.4 0.38 0.38 0.38 0.5
Problem RFRA RFBA BFFA BFRA BFBA
eight b t i 69.29 69.31 69.35 69.32 69.31
bw large.a 17166.99 17345.17 77.08 77.18 77.41
m1 logistics.a 2233.26 2445.68 1462.49 665.21 1631.07
m2 logistics.a � 12 hrs � 12 hrs � 12 hrs 23665.91 � 12 hrs
rocket.a 0.7 0.7 2.05 2.1 2.08
rocket.b 3.48 3.67 2.25 2.37 2.24
m rocket ext.a 0.49 0.51 0.48 0.48 0.48
Problem FB RB BB Satz
eight b t i 69.34 69.36 69.35 69.03 (*)
bw large.a 77.62 17399.19 (**) 80.2 568.12
m1 logistics.a 712.44 3850.21 504.76 197.16
m2 logistics.a 37262.7 � 12 hrs 36719.21 12216.57
rocket.a 1.79 0.93 1.85 1.25
rocket.b 1.87 4.62 1.95 1.24 (*)
m rocket ext.a 0.4 0.43 0.41 0.41

Figure 1. Empirical evaluation of directional solving of SAT encodings.

Problem
 Variables
 Clauses FAFF FARF FABF
train.a1 1288 14513 0.27 0.27 0.27
train.a2 3875 73726 1.6 1.6 1.55 (*)
train.a3 3504 71908 646.2 662.39 672.19
bw large.b1 8190 1209317 451.61 424.67 (*) 426.83
log-new.a 2612 20877 0.32 0.32 0.32
log-new.b 2318 17321 0.26 (*) 0.27 0.28
monkey.a 356 2949 0.04 0.04 0.04
monkey.b 945 9866 0.16 (*) 0.16 (*) 0.16 (*)
monkey.c 1908 34508 34.81 31.9 (*) 31.75
Problem RAFF BAFF BARF BABF FFFA
train.a1 0.26 0.28 0.26 0.27 0.36
train.a2 - 1.75 1.63 1.64 1.98
train.a3 - 691.31 686.19 656.23 -
bw large.b1 - - - - -
log-new.a 0.3 0.3 0.28 (*) 0.3 0.34
log-new.b 1.16 0.31 0.31 0.31 0.28
monkey.a 0.04 0.05 0.03 0.04 0.04
monkey.b 51.1 0.17 0.34 0.34 3.5
monkey.c - 2133.73 1941.84 2158.64 1772.49
Problem FFRA FFBA RFFA BFFA BFRA
train.a1 0.37 0.38 (**) 0.37 0.27 0.26
train.a2 1.97 1.97 - 1.7 1.6
train.a3 - - - - -
bw large.b1 - - - - -
log-new.a 0.34 0.31 - (**) 0.34 0.3
log-new.b 0.27 0.27 0.29 1.21 1.22
monkey.a 0.04 0.04 0.06 (**) 0.04 0.04
monkey.b 3.48 3.58 150.37 (**) 2.99 2.96
monkey.c 1831.79 1907.47 - 1707.51 1745.39
Problem BFBA FB RB BB Satz
train.a1 0.28 0.25 (*) 0.38 (**) 0.27 0.3
train.a2 1.56 1.98 - 1.92 1.74
train.a3 - 624.67 (*) - 635.12 5569.4
bw large.b1 - - - - � 4 hrs
log-new.a 0.32 0.28 (*) 0.32 0.31 0.3
log-new.b 1.22 (**) 0.27 0.32 0.32 0.28
monkey.a 0.03 0.03 0.04 0.03 0.02 (*)
monkey.b 3.05 3.34 120.43 3.71 2.67
monkey.c 1740.76 1653.79 - 2169.64 1186.5

Figure 2. Evaluation of directional solving of SAT encodings. - denotes that problem could not be solved in 1 hour.

allowed us to derive multiple problems from a problem by
controlling the number of subgoals added. These results
show that the addition of subgoals drastically changed the
performance of some directional solving options. To illus-
trate this, we have reported the ratios of solving times of
some options with and without extra subgoals in Fig. 5. For
example, RB/FAFF denotes the ratio of solving times of the
options RB and FAFF. We have also reported the number
of extra unit clauses added (due to more subgoals) as a per-
centage of the number of clauses in the encoding of original
problem. The results in Fig. 5 are derived using results
from Fig. 1,2,3 and 4. The number of extra unit clauses
added can be found by subtracting the number of clauses in
Fig. 1,2 and 3 from the number of clauses in Fig. 4.

Let us consider the results from Fig. 4. bw large.b1 was
solved by options RFFA and RB in times closer to those for
other options. Results from Fig. 2 show that neither RFFA
nor RB option could solve this problem within 1 hour. This
shows that the extra unit clauses had a significant impact
on the solving times of these options. The ratio of solv-
ing times of the options RAFF and FABF on robot.a re-
duced from 22.54 to 3.25 after extra subgoals were added.
RAFF and FABF had respectively highest and lowest solv-
ing times on the original robot.a problem. The number of
extra clauses added was 0.242	 of the number of clauses in
the original encoding. The ratio of solving times of the op-
tions RFFA and BABF on m1 logistics.a went down from
35.56 to 1.53 when extra clauses (0.078) were added.
RFFA and BABF had respectively highest and lowest solv-
ing times on the original problem. The ratio of solving times
of RB and FAFF options on bw large.a went down from
357.27 to 0.997 after addition of 84 unit clauses to the en-
coding. These were just 0.016 	 of the number of clauses
in the original encoding. RB and FAFF had respectively
highest and lowest solving times on the original bw large.a
problem. The ratio of solving times of BFRA and BAFF on
m2 logistics.a went down from 10.56 to 0.17 after the addi-
tion of 72 unit clauses (0.08 	 of the number of clauses in
the original encoding). BAFF option had the lowest solving
time on the original problem.

5 Discussion

To evaluate the effect of directional solving on SAT en-
codings, we developed the directional solver DSatz which
provides 21 directional solving options and conducted its
empirical evaluation. These options can be viewed as vari-
ous variable ordering heuristics. It is computationally very
cheap to apply these. Though variable ordering heuristics
have been widely investigated and shown to be useful in
constraint satisfaction and SAT solving, their potential had
remained under-investigated in planning as satisfiability.

With the exception of [4], there is no work on solving

SAT encodings using variable ordering heuristics. The im-
plementation [4] is based on the idea of assigning values to
action variables before fluent variables, and directionality is
not necessarily followed. The SAT solver that they modi-
fied to demonstrate the importance of this variable ordering
is Tableau.

Our results on bidirectional search on SAT encodings
show that evaluating this on planning graph of Graphplan is
worthy of investigation. This is especially more useful be-
cause larger problems generally have larger encoding sizes.
These encodings do not always undergo a significant sim-
plification. The current SAT solvers cannot efficiently han-
dle these encodings, despite the very significant progress in
SAT solving in the last decade. Thus it is difficult to fully
exploit the potential of directional solving on SAT represen-
tation, in case of larger problems. Given that local search-
based SAT solvers (that do hill climbing and can make ran-
dom moves) [5] have been very successful, it will be worth
investigating if integrating non-directional and directional
solving is more efficient.

6 Conclusion

To evaluate the effect of directional solving on SAT en-
codings, we developed DSatz, a variant of the efficient sys-
tematic solver Satz. DSatz allows 21 options for solv-
ing SAT encodings, where values are assigned to action
and/or fluent variables in forward and/or backward direc-
tions in/without intermittent manner. These can be viewed
as computationally very cheap variable ordering heuris-
tics. This allows a richer evaluation of SAT planning. We
showed that directionality does matter in solving of SAT
encodings of planning. We showed that the superiority
of backward search and inferiority of bidirectional search
in refinement planning do not show up in SAT planning.
We showed that backward search on SAT encodings yields
inferior performance than both forward and bidirectional
searches. In fact the solving option RB that closely re-
sembles the operation of a backward state-space refinement
planner in SAT representations yields worst performance.
The bidirectional solving option BABF and the solving op-
tion FARF yield better performance than other solving op-
tions, showing that the role of these searches in improv-
ing efficiency of other disjunctive planners like Graphplan
is worthy of investigation.
Acknowledgement: This work was funded by NSF grant
IIS-0119630 to Amol Mali. The authors thank Enrico
Giunchiglia for useful comments.
References
[1] Fahiem Bacchus, Notes of the constraint satisfaction
course offered at University of Toronto, in computer science
department, Available online, 2000.

Problem
 Variables
 Clauses FAFF FARF FABF
robot.a 4830 84695 37.21 33.99 33.71 (*)
robot.b 577 3381 15.48 14.95 14.73
robot.c 612 3591 50.61 51.45 50.41
robot.d 542 3171 61.4 58.79 57.77
Problem RAFF BAFF BARF BABF FFFA
robot.a 759.81 (**) 38.72 34.45 38.69 718.22
robot.b 18.73 27.37 26.52 27.56 9.71 (*)
robot.c 63.08 91.93 89.06 92.35 8.88 (*)
robot.d 78.37 91.02 87.92 91.65 45.35
Problem FFRA FFBA RFFA BFFA BFRA
robot.a 661.31 679.97 445.76 54.56 52.54
robot.b 10.4 10.43 128.92 14.02 14.5
robot.c 9.83 9.7 231.31 36.43 37.46
robot.d 46.31 46.61 66.76 50.15 50.04
Problem BFBA FB RB BB Satz
robot.a 57.13 37.7 490.94 35.43 240.53
robot.b 14.06 51.18 122.65 (**) 65.16 29.78
robot.c 36.73 182.35 217.59 (**) 124.52 93.38
robot.d 55.49 103.89 (**) 68.56 43.9 (*) 48.89

Figure 3. Evaluation of directional solving of SAT encodings.

[2] Blai Bonet, Gabor Loerincs and Hector Geffner, A ro-
bust and fast action selection mechanism for planning, Pro-
ceedings of National Conference on Artificial Intelligence
(AAAI), 1997, pp. 714-719.
[3] Blai Bonet and Hector Geffner, Planning as heuristic
search: New results, Proceedings of European Conference
on Planning (ECP), 1999.
[4] Enrico Giunchiglia, Alessandro Massarotto and Roberto
Sebastiani, Act and the Rest will follow: Exploiting deter-
minism in planning as satisfiability, Proceedings of National
Conference on Artificial Intelligence (AAAI), 1998, 948-
953.
[5] Henry Kautz and Bart Selman, Pushing the envelope:
Planning, propositional logic and stochastic search, Pro-
ceedings of the National Conference on Artificial Intelli-
gence (AAAI), 1996.
[6] Henry Kautz, David McAllester and Bart Selman, En-
coding plans in propositional logic, Proceedings of Knowl-
edge Representation and Reasoning conference (KR), 1996.
[7] Henry Kautz and Bart Selman, Unifying graph-based
and SAT-based planning, Proceedings of International Joint
Conference on Artificial Intelligence (IJCAI), 1999.
[8] Chu Min Li and Anbulagan, Heuristics based on unit
propagation for satisfiability problems, Proceedings of In-
ternational Joint Conference on Artificial Intelligence (IJ-
CAI), 1997.
[9] Drew McDermott, Using regression graphs to control
search in planning, Artificial Intelligence, 109(1-2): 111-
160, 1999.

[10] Steven Minton, Learning effective search control
knowledge: An explanation-based approach, Ph.D thesis,
Technical Report CMU-CS-88-133, 1988.
[11] Biplav Srivastava, XuanLong Nguyen, Subbarao
Kambhampati, Minh B. Do, Ullas Nambiar, Zaiqing Nie,
Romeo Nigenda and Terry Zimmerman, ALTALT: Combin-
ing Graphplan and heuristic state search, AI Magazine, Fall
2001, pp. 88-90.
[12] Manuela M. Veloso, Nonlinear problem solving using
intelligent causal commitment, Technical Report CMU-CS-
89-210, 1989.
[13] Manuela M. Veloso and Peter Stone, FLECS: Planning
with a flexible commitment strategy, Journal of Artificial
Intelligence Research, 3:25-52, 1995
[14] Vincent Vidal and Pierre Regnier, Total order planning
is more efficient than we thought, Procs. of AAAI, 1999, pp.
591-596.

Problem
 Variables
 Clauses FAFF FARF FABF
bw large.a 4518 520956 42.97 42.82 43.71 (**)
bw large.b1 8190 1209420 129.64 129.15 129.21
robot.a 4830 84900 9.51 9.42 10.57
m1 logistics.a 4926 79086 5.59 1.18 1.15 (*)
m2 logistics.a 5586 89646 44.79 (*) 57.06 58.47
Problem RAFF RARF RABF BAFF BARF
bw large.a 43.08 42.79 42.84 42.62 42.86
bw large.b1 129.24 129.36 129.01 129.2 129.28
robot.a 34.4 36.08 37.26 9.24 (*) 13.12
m1 logistics.a 315.39 367.06 370.32 4.55 5.44
m2 logistics.a � 12 hrs � 12 hrs � 12 hrs 1166.83 771.8
Problem BABF FFFA FFRA FFBA RFFA
bw large.a 42.85 43.19 42.76 42.65 43.04
bw large.b1 128.92 129.01 128.73 (*) 129.28 132.66
robot.a 10.01 18.6 19.05 19.1 36.55
m1 logistics.a 4.41 10.58 10.61 11.51 6.73
m2 logistics.a 1185.85 216.41 206.44 227.34 � 12 hrs
Problem RFRA RFBA BFFA BFRA BFBA
bw large.a 42.76 43.07 42.74 42.78 42.91
bw large.b1 130.23 130.47 129.91 129.71 129.74
robot.a 38.38 38.56 17.28 17 17.89
m1 logistics.a 6.57 7.18 11.7 11.5 12.74
m2 logistics.a � 12 hrs � 12 hrs 217.3 203.91 234.54
Problem FB RB BB Satz
bw large.a 42.93 42.85 43.05 40.56 (*)
bw large.b1 129.19 130.62 129.21 � 15 min. (**)
robot.a 9.6 40.73 (**) 33.49 30.1
m1 logistics.a 27.97 389.31 (**) 8.66 2.16
m2 logistics.a 156.83 � 12 hrs 432.94 47.93

Figure 4. Empirical evaluation with extra unit clauses added (due to stronger goal).

Problem Goal Stronger Goal 	 New clauses added
bw large.b1 � 7.97 (RB/FAFF) 1.007 (RB/FAFF) 0.0085
bw large.a 350.96 (RFFA/FABF) 0.98 (RFFA/FABF) 0.016
robot.a 13.22 (RFFA/FABF) 3.46 (RFFA/FABF) 0.242
m1 logistics.a 23.39 (RFFA/FAFF) 1.2 (RFFA/FAFF) 0.078
m2 logistics.a � 19.27 (BFBA/BAFF) 0.2 (BFBA/BAFF) 0.08

Figure 5. Some of the changes in ratios of solving times when extra unit clauses added (due to stronger goal).

