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Abstract

(Appears as a regular paper in the Proceedings of IEEE
International Conference on Tools with Artificial Intelli-
gence (ICTAI), Washington D.C, IEEE Computer Society,
Nov. 2002, pp. 138-145. 27 out of 84 submissions were ac-
cepted as regular papers leading to 32 � acceptance rate.)

Significant advances in plan synthesis under classical
assumptions have occurred in last seven years. All such
efficient planners are centralized planners. One very ma-
jor development among these is the Graphplan planner.
Its popularity is clear from its several efficient adapta-
tions/extensions. Since several practical planning problems
are solved in a distributed manner, it is important to adapt
Graphplan to distributed planning. This involves dealing
with significant challenges like decomposing goal and set of
actions without losing completeness. We report two sound
two-agent planners DGP (distributed Graphplan) and IG-
DGP (interaction graph-based DGP). Decomposition of
goal and action set in DGP is carried out manually and
that in IG-DGP is carried out automatically based on a
new representation called interaction graphs. Our empir-
ical evaluation shows that both these distributed planners
are faster than Graphplan. IG-DGP is orders of magnitude
faster than Graphplan. IG-DGP is significantly benefitted
by the interaction graphs which allow decomposition of a
problem into fully independent subproblems under certain
conditions. IG-DGP is a hybrid planner in which a central-
ized planner processes a problem until it becomes separa-
ble into two independent subproblems that are passed to a
distributed planner. This paper also shows that advances
in centralized planning can significantly benefit distributed
planners.

1 Introduction

Broadly, distributed planning is the problem of finding a
course of action that helps a set of agents in a given initial
configuration to collectively satisfy certain desired behav-

ioral constraints. The motivation behind distributed plan-
ning is to get the efficiency of parallel processing, the ro-
bustness of distributed systems and the simplicity of incre-
mental construction and debugging. Problems that are in-
herently distributed (because of different spatial locations
or privacy or security reasons) or decomposable into sub-
problems with limited interactions are good candidates for
distributed planning. Importance of distributed planning is
clear from the DARPA initiative air battle management pro-
gram [2], air campaign planning [10] and the DARPA initia-
tive pilot’s associate program [7]. A brief review of various
distributed planning techniques is given in [8].

Several advances have occurred in synthesis of plans in
a centralized fashion (i.e. using only one agent) under clas-
sical assumptions in last six years. These have made it pos-
sible to generate plans faster and also improve their quality
(generally measured in terms of the number of steps and/or
number of actions). One of them is the highly popular
Graphplan planner [3] which uses a compact representation
called “planning graph”. Graphplan generates plans with
fewest number of steps. Graphplan generated plans faster
than all classical planners developed before 1995. Graph-
plan has been improved/extended in several ways. DPPlan
[1] is a variant of Graphplan which carries out global search
in the space of planning graphs, simplifying them with log-
ical inference rules. STAN [6] is a variant of Graphplan
which detects and pre-compiles pairs of actions and pairs
of propositions that are always mutually exclusive, to avoid
their repeated discovery. [9] report a variant of Graphplan
for temporal planning. Most of the work in distributed plan-
ning is about communication, co-ordination and negotiation
between planning agents. The problem of improving com-
putational efficiency of distributed planners has not been
significantly addressed.

Given this, the potential of Graphplan in distributed plan-
ning is worthy of investigation. We develop two adapta-
tions of Graphplan for distributed planning (DGP and IG-
DGP). Each of these contains two planning agents. DGP
uses a manual decomposition of goal and set of actions.
IG-DGP uses a new representation called an “interaction



graph” which is highly effective at splitting a problem. By
using the interaction graph, the cost of resolving interac-
tions between plans of various agents can be eliminated un-
der certain conditions. Another novel feature of IG-DGP
is the use of a centralized planning technique as a pre-
processing strategy to derive independent subproblems for
distributed planning. DGP and IG-DGP have the follow-
ing in common: agents in these planners use Graphplan
to synthesize individual plans and interactions between the
plans are resolved. Our empirical evaluation of DGP, IG-
DGP and Graphplan shows that though both DGP and IG-
DGP are faster than Graphplan, IG-DGP performs orders of
magnitude faster than Graphplan. Our work shows how re-
cent advances in centralized planning and interaction graph-
based decomposition can benefit distributed planning.

2 Background

In this section, we explain our notation and the Graph-
plan algorithm [3]. Like most classical planners, we use
STRIPS representation. Predicates like ������� are con-
sidered as propositions by rewriting them as ����. An
action (e.g. move(A,B,C)) is a ground instance of an oper-
ator (e.g. move(x,y,z)). Capitalized letters in arguments of
an action/operator are specific objects and lowercase letters
are variables. We use “��” symbol to denote an action. A
planning problem is specified as � ����� 	, where � de-
notes completely specified initial state, � denotes goal and
� denotes the set of actions in domain. We assume that �
contains only true propositions. �� denotes the set of ac-
tions that agent 
 can use to synthesize its plan. Clearly,
�� � �. �� and �� respectively denote initial world state
and conjunctive goal of planning problem of agent 
. FSS
denotes forward state space. The indices of steps in a � step
plan range from � to �� � ��.
Graphplan: Graphplan [3] works in 2 phases. The first
involves growing a planning graph and is called the plan-
graph construction phase. This is a forward phase, begin-
ning with the initial state. The second phase is a solution ex-
traction phase. This is backward search phase starting with
the goal. Plangraph, or planning graph (PG), has two kinds
of levels called action levels and proposition levels. The
0th proposition level is the same as the initial state. The 0th
proposition level occurs before the 0th action level which in
turn occurs before the 1st proposition level which precedes
the 1st action level, etc. In general, the 
 th proposition level
is immediately succeeded by the 
 th action level. And, the

 th action level immediately precedes �
��� th proposition
level. A proposition level and an action level can be consid-
ered as sets whose members are the same as the contents of
these levels. Note that a proposition level is not same as a
world state. A proposition level can have both a fluent and
its negation.

Plangraph is a compact representation of an exponen-
tially large number of action sequences in the search tree
of an FSS planner. The 
 th action level in the plangraph
contains all actions whose all preconditions appear in the 

th proposition level. There is also a dummy action called
a no-op or maintenance action, or persistence action in
the 
 th action level for each proposition in the 
 th proposi-
tion level. The precondition and effect of this action are the
proposition for which the action is created. This action is
included in the plangraph because if no action changing the
truth of the proposition occurs, the truth of the proposition
remains same. The �
� �� th proposition level is the union
of the 
 th proposition level and the effects of the actions in
the 
 th action level. Thus, proposition level 
 is a superset
of proposition level �
 � ��. Similarly, action level 
 is a
superset of action level �
� ��.

There are three kinds of edges in plangraph: (i) edges
from propositions in proposition level 
 to the same propo-
sitions in proposition level �
 � �� (for no-ops), (ii) edges
from propositions in proposition level 
 to actions (whose
precondition list contains these propositions) in action level

 and (iii) edges from actions in action level 
 to proposi-
tions (which are effects of these actions) in proposition level
�
� ��.

A key to the efficiency of Graphplan is the inference of
binary mutex (mutually exclusive) relations. Two kinds of
mutexes are found: (i) mutexes between actions, and (ii)
mutexes between propositions. Each of these two kinds
of mutexes could be static or dynamic. Static mutexes are
found by examining preconditions and effects of actions.
Dynamic mutexes are found by propagating static mutexes
using truths of propositions in the initial state. Note that
dynamic mutexes may be permanent or temporary. Two ac-
tions in action level 
 are mutex if (i) their effects are incon-
sistent (the effect of one action is the negation of some effect
of another action), or (ii) one action deletes some precondi-
tion of another action, or (iii) the actions have preconditions
that are mutex at proposition level 
. For (iii) one needs to
know the definition of mutex propositions given next. Two
propositions ��  in proposition level 
 are mutex if (i) � is
the negation of , or (ii) all ways (actions) of achieving �
are mutex with all ways (actions) of achieving . Note that
while considering all ways of achieving a proposition, no-
ops are also considered.

If the plangraph has a proposition level that contains all
propositions from the goal such that no two of these are
mutex, Graphplan starts a backward search for a plan. For
each proposition in the goal, it chooses a source of sup-
port (an action) in the immediately preceding action level.
The preconditions of these actions become subgoals to be
achieved. If no two preconditions of the chosen actions are
mutex, it chooses sources of support for these subgoals from
the immediately preceding action level and continues this



process. In case subgoals are found to be mutex, it back-
tracks, chooses different sources of support, and repeats this
process. If all combinations of the supporting actions fail
for each subgoal at each proposition level, then Graphplan
grows plangraph with one more action level and one more
proposition level and tries the backward solution extraction
process again. Graphplan is guaranteed to report unsolv-
ability of a problem.

3 DGP

In this section, we describe the DGP algorithm. �� and
�� are obtained by manual decomposition of goal. � � and
�� are obtained by manual decomposition. ��� ���� � �
and ��� � ��� � �. The DGP planning algorithm con-
tains following steps: (i) Agent 1 uses Graphplan to solve
the problem � ����� �� 	. Agent 2 uses Graphplan to
solve the problem� ����� �� 	. (ii) The number of steps
in their plans are made equal by filling the shorter plan with
no-ops. The global plan is obtained by taking a union of
sets of actions at respective steps in individual plans. So
the set of actions at 
 th step in global plan is a union of
the sets of actions at 
 th step in individual plans. (iii) The
global plan is checked by progression. If it is correct and
achieves goal, it is returned. (iv) This is conflict resolution
step. Actions that do not appear in individual plans can be
introduced in the individual plans in this step, only if these
actions appear in individual planning graphs through which
the agents successfully extracted solutions. Conflicts are
resolved by a backward global search whose action selec-
tion is restricted by the actions from corresponding action
levels in individual planning graphs. Note that the back-
ward search is not carried out on planning graph which is
a union of the individual planning graphs. Since the size
of the union of planning graphs is at least as high as the
size of the largest of these, not searching over the union of
planning graphs preserves benefits of decomposition. There
is only one kind of conflict that may occur between individ-
ual plans - an action �� in plan of agent 1 being static mutex
with an action �� at same step 
 in plan of agent 2, including
no-ops. This mutex is removed by selecting some other ac-
tion �� from the action level 
 from the individual planning
graphs and removing either �� or �� . The set of subgoals
that must be true after last 
 steps of the global plan is up-
dated and the backward search is repeated until all subgoals
to be achieved are true in � or the space of repairs is ex-
hausted. (v) Backward global search in step (iv) is repeated
to find a plan of length 1 higher than the previous length.

In the backward search in step (iv), static and dynamic
mutexes between actions in planning graph of agent 1 are
used to identify failing action selections. Static and dy-
namic mutexes between actions in planning graph of agent
2 are also used. These are all found in step (i) itself. Back-

ward search in step (iv) considers only static mutexes be-
tween actions from the same action levels in the two plan-
ning graphs. Note that dynamic mutexes between actions ��
and �� that belong to two different planning graphs are not
found. Their computation requires more global reasoning.
Not computing these mutexes does not hurt the soundness
of DGP, because of the correct and continuous updating of
subgoals to be achieved in backward search in step (iv).

4 IG-DGP

In this section, we first explain the notion of an interac-
tion graph along with some terms from graph theory and a
graph algorithm. Then we describe the IG-DGP planning
algorithm.

4.1 Interaction Graphs

We denote a graph by � ��� 	 where � is the set
of vertices in the graph and � is the set of edges in the
graph. An interaction graph is an undirected, simple bi-
partite graph. Since the graph is simple, no two vertices
have two or more edges connecting them. The graph does
not have any loops. Decomposition based on this graph is
obtained by detecting if it is disconnected and finding its
connected components if it is disconnected. A graph is con-
nected if there is a path to reach each of its vertices from
every other vertex. A graph � ��� �� 	 is a component or
subgraph of graph� ��� �� 	 if �� � �� and �� � ��.

Interaction graph for a problem � ����� 	 is con-
structed in the following manner: Vertices are created for
each proposition true in initial state and each proposition
needed true in goal with some exceptions mentioned later.
Two vertices �� and �� are connected only if the correspond-
ing propositions have a common primary object such that
the proposition in �� belongs to initial state and the propo-
sition in �� belongs to goal. Vehicles, cities, airports and
other (non-airport) locations in transportation logistics are
secondary objects. Some secondary objects are resources,
e.g. trucks, planes and grippers. We assume that the plan-
ning domain contains both primary and secondary objects.
We assume that each proposition in goal contains at least
one primary object. We assume that types of objects like
package, truck, location etc. are given under a separate cat-
egory in problem specification and that they are not a part
of initial state. So vertices for ������������ �����������,
���������� � ��������� �
��������������� etc. do not
appear in an interaction graph. The reason for ignoring
these from the interaction graph is to keep the number of
edges low. Propositions from � which contain only sec-
ondary objects are not represented in the interaction graph.
Whether an object is primary or not is assumed to be given.



Examples of interaction graphs are given in Fig. 1 and
2. Blocks are primary objects and table is secondary object.
Note that if vertices are connected because only secondary
objects like table in blocks world are common, the graph
will generally be connected, even when � ����� 	 can
be split into independent subproblems like � ��� ��� �� 	

and � ��� ��� �� 	 where ��� � ��� � �� � � ��� � ���
and ��� � ��� � �. Note that size of an interaction graph
depends only on � and �. It is not affected by � at all.

D
CA

B
Goal State

D
CA

B

Initial State

ON(A,B)                       ON(B,Table)              ON(D,Table)                   ON(C,D)

Clear(B)                On(B,A)            ON(A,Table)             ON(C,Table)           ON(D,C)             Clear(D)

Figure 1. Disconnected interaction graph

The polynomial time algorithm (pg. 274, [5]) can be
used to test if an interaction graph is disconnected and find
all of its connected components if it is disconnected. IG-
DGP uses this algorithm to find if an interaction graph is
disconnected. If the interaction graph is disconnected and it
has � connected components, then if � is even, two planning
subproblems are formed such that each is based on �

�
com-

ponents. If � is odd, one planning subproblem is formed
based on ���

�
components and other planning subproblem

is formed based on the remaining ���
�

components. So even
if a problem is decomposable into more than two subprob-
lems, IG-DGP splits it into only two subproblems. This de-
cision was taken to keep the implementation simple. Split-
ting into more subproblems can be more beneficial. Differ-
ent planning problems corresponding to different compo-
nents of the interaction graph (when it is disconnected) are
allocated to different agents. For plans of individual agents
to be free of interactions, whether there are shared resources
must be considered. We consider a plane to be one kind of
resource, truck to be another kind of resource etc. We have
the following guideline on decomposition of a problem into
� independent subproblems:
Guideline: If an interaction graph of a planning problem
� ����� 	 has � connected components and there are at
least � resources of each kind, the planning problem can
be split into � independent subproblems � ��� ��� �� 	,
� ��� ��� �� 	, � ��� ��� �� 	, ...� ��� ��� �� 	, such
that � � ��� � �� � ���� ���, ������ ��� � ������� � �
and �� � ���� � �� ������ �� � �, if any one object
of each resource type is enough for an agent 
 to generate
its individual plan, irrespective of the state of the resource
object in ��.

If fewer resources are available, the interaction graph
methodology can still be useful for synthesis of individ-

ual plans and one can use efficient resource allocation algo-
rithms for successful merging of these plans. Even if there
is no distinction between objects (like primary objects and
secondary objects) in a domain, one can still construct a
graph based on � and � and connect vertices with common
objects to derive a decomposition. If such a decomposition
is not good, planning and/or conflict resolution times may
be high.

Let us consider the example in Fig. 1. Interaction
graph yields the following problems � ��� ��� �� 	

and � ��� ��� �� 	. �� � ��������� � ������� �
����� ������� and �� � �������� � ����� �������.
�� � ������� � � ��� �!� � ���!� ������� and �� �
����!� � � ��� ��������. �� is set of all ground in-
stances of"����#� $� %�, such that # �� ������ # �� $� $ ��
%� # �� %� #� $� % � ����� ������. �� is set of all ground
instances of "����#� $� %�, such that # �� ������ # ��
$� $ �� %� # �� %� #� $� % � �!� � ������. Note that
an action involving primary objects of both agents like
"�������� � will no longer be considered by IG-DGP
which uses interaction graph-based decomposition. The
loss of such actions is in fact desirable and it does not cause
loss of completeness of the planner.

4.2 Connected Interaction Graphs

Even if an interaction graph for problem� ����� 	 is
connected, one can find a sequence of actions such that ap-
plying this sequence starting in � leads to a new world state
� � such that interaction graph for the problem� � �� ��� 	
is disconnected. Such an action sequence could be found by
an FSS planner. We are not suggesting FSS search for solv-
ing� ����� 	. We suggest construction of an interaction
graph for each node in search tree of FSS planner, treating
the world state in the node as the initial state, keeping���
same. This can be repeated till a world state � � is found such
that the interaction graph for � � �� ��� 	 is disconnected.
For example, the interaction graph in Fig. 2 becomes dis-
connected after the action of moving block  from � to
! is carried out. In fact the new disconnected interaction
graph is same as the graph in Fig. 1. FSS search has been
shown to be a very efficient planning technique in [4]. Note
that FSS search not only finds a world state for which inter-
action graph is disconnected, but it also finds a part of the
plan. Global plan in such a case is obtained by prepending
to the plan obtained after merging individual plans, the path
in tree of FSS planner that lead from � to � �.

4.3 IG-DGP Algorithm

This consists of the following steps: (i) Construct an in-
teraction graph for the given problem. (ii) If the interaction
graph is connected, carry out breadth-first FSS search until



a new initial world state for which the interaction graph is
disconnected is reached. (iii) Form two planning subprob-
lems and assign them to the agents, if the conditions in the
guideline in section 4.1 are satisfied. (iv) Allow both agents
to generate individual plans using Graphplan. (v) After both
agents have generated individual plans, merge them using
steps (iii), (iv) and (v) of the DGP algorithm. Step (ii) of
IG-DGP involves centralized search.

D
CA

B
Goal State

A
B

C

D

Initial State

ON(A,Table)              ON(B,A)           ON(D,B)          Clear(D)          ON(C,Table)          Clear(C)          

ON(A,B)                       ON(B,Table)              ON(D,Table)                   ON(C,D)

Figure 2. Connected interaction graph

5 Empirical Evaluation

Our empirical results are shown in Fig. 3, 4 and 5.
These are obtained by running DGP, IG-DGP and Graph-
plan on various problems. The experiments were conducted
on a Dual Intel Pentium II 400 MHz SunOS 5.7 machine.
Times for generation of individual plans, resolving con-
flicts between the plans and checking the disconnectedness
of an interaction graph and doing FSS search are reported
in Fig. 3. The times are in cpu seconds, except those
stated to be in cpu miliseconds (ms). * denotes that the
run was terminated after 15 minutes. - denotes that no data
is available because of termination of run. The problems
with names starting with bw are from blocks world. bw-
large.a is a benchmark problem. Actions in this domain
are ground instances of the operator "����#� $� %� where
# �� $� $ �� %� # �� %� # �� �����. This means moving
block # from top of block $ or table to top of block % or
table. Grippers are not represented in the problem, so mul-
tiple blocks whose tops are clear can be moved at same time.
Other problems are from the transportation logistics domain
in which packages are to be delivered to be appropriate lo-
cations using planes and trucks. Trucks can travel between
locations within a city and planes can fly from a location #
to location $ only if both are of type airport. In this figure,
T1, T2 denote the times needed by agent 1 and agent 2 re-
spectively, to generate individual plans. C denotes the time
needed to resolve conflicts between the individual plans to
yield a global plan. T denotes the total time needed to gen-
erate global plan. F denotes the time needed to construct
an interaction graph plus the time needed to check discon-
nectedness of the interaction graph plus the time needed to
do FSS search. The FSS search time in F dominates other

times contributing to F. In some cases, the interaction graph
was disconnected and no FSS search was needed. Note that
F does not apply to DGP. In case of DGP, T = (max(T1,T2)
+ C). In case of IG-DGP, T = (max(T1,T2) + F + C). GP de-
notes Graphplan. Speedup in Fig. 3 is found by dividing the
time needed by GP by the total time needed by IG-DGP. The
current implementation of DGP algorithm does not contain
step (v). However all test problems are such that they can be
solved with the current implementation of DGP, if enough
time is provided.

The subproblems in DGP had the form � ����� �� 	

and� ����� �� 	 such that����� � � and ������� �
�. Note that ��� 	 ��� was not always empty because
some objects had to be accessible to both agents. The goal
was manually split to ensure that �� and �� were as in-
dependent as possible. To ensure a fair evaluation of DGP,
each agent was given access to as few irrelevant actions as
possible. For example, if there were two towers of blocks
&��&� in initial state of a problem such that the goal in-
volved two towers & � and & �� such that & � could be ob-
tained by manipulating blocks from only&� and& �� could
be obtained by manipulating blocks from only & �, agent
1 was not given access to blocks from towers &��&

�� and
agent 2 was not given access to blocks from towers&��&

��

In general, an agent was allowed to move only those blocks
contained in its subgoals along with blocks which were in
towers on the top of these blocks. Because of this, it be-
came necessary to allow both agents to move a block, re-
sulting in ��� 	��� �� '. Each agent was allowed to move
a block that it could move, to top of any other block or ta-
ble. Since each block could be moved by some agent, this
manual decomposition of action set and goal was complete-
ness preserving. In transportation logistics domain, agents
were given different packages to deliver and different ve-
hicles whenever multiple vehicles existed. An agent was
given access to vehicles at same location as that of its pack-
ages in initial state, whenever possible. Each agent could
move its vehicles anywhere and load its packages into any
of its vehicles and unload from them anywhere, as long as
the preconditions of the actions were true. Since each pack-
age and vehicle could be moved by some agent, actions in
��� � ��� were sufficient to solve the problems, preserv-
ing completeness. The results clearly show that IG-DGP
was orders of magnitude faster than GP as well as DGP on
several problems. The problem bw-1 was difficult to split
even for the automatic decomposition technique, because
of several interactions. � in this contained a single tower of
blocks ��������������� (which means that block �� is
on top of block��� �� is on top of block�� etc.). The goal
contained two towers of blocks which were���������� and
��������.

Some details of global plans and plans of individual
agents are reported in Figure 4. A1 and A2 denote the num-



ber of actions in plans of agent 1 and agent 2 respectively.
S1 and S2 denote the number of steps in plans of agent 1
and agent 2 respectively. A and S denote the number of ac-
tions and steps in global plan. The number of actions and
steps in optimal plan are reported in the last column. These
are the minimum number of actions needed in a plan with
minimum number of steps. For DGP, S = (max(S1,S2) +
a), where a is the number of extra steps added by backward
global search while resolving conflicts between individual
plans. a was always zero since step (v) in the DGP algo-
rithm is not implemented. For IG-DGP, S = (max(S1,S2) +
f + a) where f is the number of steps needed by FSS search
to lead to a world state � � such that the interaction graph for
� � and�was disconnected. The values of f for the problems
(in top to bottom order) were 6, 2, 0, 4, 3, 0 , 1, 0 and 0. It
can be seen that the average number of steps in global plans
found by IG-DGP (9) was close to the average number of
steps in optimal plans (8). The average number of actions in
global plans found by IG-DGP (28) was however more than
the average number of actions in optimal plans (21). Note
that Graphplan is guaranteed to find plans with fewest num-
ber of steps. It is not guaranteed to find plans with fewest
number of actions. The number of steps in plans found by
DGP was always same as the number of steps in optimal
plans. This was not always the case for IG-DGP because
the FSS search applied only one action in a world state even
if more could have been applied. The global plans found
by IG-DGP can be post-processed to reduce the number of
actions and steps.

The maximum number of actions in search spaces of the
two agents for DGP and IG-DGP and in the search space of
GP are reported in Figure 5, along with information about
objects in the problems. The maximum number of actions
is found by computing the number of all ground instances
based on the objects that an agent had access to. N1 and
N2 denote this for agent 1 and agent 2 respectively. It is
useful to know this since the worst case size of search space
depends on this. The number of objects in blocks world
was same as the number of blocks. The data for transporta-
tion logistics problems shows the number of planes, cities,
packages, trucks, airport locations and non-airport locations
respectively. To test the effectiveness of interaction graph
technique at reducing the number of actions, we found the
percentage reduction in the maximum number of actions us-
ing the ratio of (r - (N1 + N2)) and r, r being the maximum
number of actions for GP, using N1 and N2 for IG-DGP.
The maximum reduction was 86.2 � (logistics-4), the min-
imum reduction was 49.8 � (bw-4) and the average reduc-
tion was 74.1�. This shows that interaction graphs are very
effective at reducing the maximum number of actions. This
reduces the worst-case size of the search space by an expo-
nential amount. FSS search is likely to need more steps on
problems that are hard to separate. In such a case, the IG-

DGP solving times are likely to go up. Advances in heuris-
tic state-space search [4] can be used to reduce the times
needed by the centralized FSS search.

Note that one may deal with a connected interaction
graph of a problem � ����� 	 by solving a planning
problem� ����� � 	 such that any world state � � in which
�� is true is such that the interaction graph for� � �� ��� 	
is disconnected. For this, one can inspect an interaction
graph and detect some edges whose removal will disconnect
the graph. The goal �� is such that achieving it will also
remove these edges in the graph. Note however that new
edges making the graph connected should not be introduced
in the process of removal of these edges. For example, if the
two edges between ��� ��� and �������� ����� ������
are removed from the graph in Fig. 2, the interaction graph
becomes disconnected. �� that must be fulfilled to achieve
this can be derived using the argument that no primary ob-
ject in one component of the resulting disconnected graph
should appear in any relationship with any primary object in
the remaining part of the graph. The set of primary objects
in two components of the resulting disconnected interaction
graph are ����� and �!� �. To reach a state in which
there is no such relationship, one can achieve � � which
is �
�����!� � 
���!���� 
�����!� � 
���!����

����� � � 
��� ���� 
����� � � 
��� ����.
Our implementation of Graphplan allows specification of
negated subgoals in goal of a problem. We experimented
with this approach as an alternative to FSS search to get
disconnected interaction graphs and found it to be very in-
efficient.

6 Discussion

In this section, we discuss potential extensions of our
work. Our work differs from the previous work in dis-
tributed planning because our main emphasis is on adapting
Graphplan for distributed planning with an automatic prob-
lem decomposition based on an interaction graph. Most
other distributed planners use a highly manual decomposi-
tion of a problem. No domain-independent distributed plan-
ners using automatic decomposition are publicly available
to the best of our knowledge, to compare IG-DGP with.

DGP algorithm is incomplete because it does not con-
sider actions that do not occur in the planning graphs of in-
dividual agents while resolving conflicts. DGP can be made
complete by considering actions that appear in the leveled
off planning graph for the original problem � ����� 	.
IG-DGP can be easily extended to handle problems with
goals that contain subgoals with no primary objects. This
is because subgoals without primary objects can be eas-
ily achieved in most domains without undoing the sub-
goals containing primary objects. Graphplan or some other
centralized planner can be used to achieve such subgoals



Problem DGP (T1,T2,C,T) IG-DGP (T1,T2,C,F,T) GP Speedup
bw-1 5.2, 5.6, *, * 45 ms, 12 ms, 0, 4.24, 4.29 3.481 -
bw-large.a 2.52, 0.8, 32 ms, 2.55 1.04, 3 ms, 0, 0.6, 1.65 12.55 7.6
bw-2 0.74, 0.77, 0, 0.77 0.37, 0.36, 0, 0.06, 0.43 39.22 91.2
bw-3 0.15, 1.88, 5 ms, 1.88 47 ms, 18 ms, 0, 30 ms, 77 ms 1.535 19.9
bw-4 3.37, 10.05, 74.1, 84.1 2 ms, 3.45, 0, 0.63, 4.09 15.98 3.91
logistics-1 0.17, 0.21, 0, 0.21 42 ms, 37 ms, 0, 30 ms, 72 ms 	 30 minutes 	 25000
logistics-2 72 ms, 50 ms, 0, 72 ms 28 ms, 9 ms, 0, 20 ms, 48 ms 0.202 4.21
logistics-3 0.537, 0.534, 0, 0.537 0.119, 0.115, 0, 50 ms, 0.169 	 30 minutes 	 10650
logistics-4 0.936, 0.941, 0, 0.941 0.201, 0.202, 0, 0.14, 0.342 	 30 minutes 	 5263

Figure 3. Empirical results - Planning and other times

Problem DGP (A1/S1, A2/S2, A/S) IG-DGP (A1/S1, A2/S2, A/S) GP Optimal

bw-1 14/8, 12/8, - 3/3, 3/3, 12/9 17/9 11/9
bw-large.a 8/4, 3/3, 11/4 11/6, 2/2, 16/9 10/4 6/4
bw-2 6/6, 6/6, 12/6 6/6, 6/6, 12/6 12/6 12/6
bw-3 9/7, 3/7, 12/7 4/4, 3/3, 11/8 12/7 10/7
bw-4 11/5, 5/5, 16/5 2/2, 12/5, 17/8 16/5 11/5
logistics-1 25/12, 25/12, 50/12 25/12, 25/12, 50/12 - 32/12
logistics-2 16/10, 7/6, 23/10 16/10, 7/6, 24/11 26/10 23/10
logistics-3 29/12, 29/12, 58/12 29/12, 29/12, 58/12 - 40/12
logistics-4 25/11, 25/11, 50/11 25/11, 25/11, 50/11 - 48/11

Figure 4. Empirical results - Number of steps and actions in plans

Problem DGP (N1, N2) IG-DGP (N1, N2) GP Objects
bw-1 294, 180 48, 18 294 7
bw-large.a 504, 360 294, 4 648 9
bw-2 792, 792 180, 180 1584 12
bw-3 224, 448 48, 48 448 8
bw-4 630, 810 4, 448 900 10
logistics-1 1052, 1052 90, 90 1240 2,4,4,4,4,4
logistics-2 360, 360 90, 10 402 1,3,4,3,3,3
logistics-3 1186, 1186 130, 130 1536 2,4,8,4,4,4
logistics-4 5250, 5250 402, 402 5820 2,6,6,6,6,6

Figure 5. Empirical results - Maximum number of actions and objects



from the world state at the end of execution of the plan
found by IG-DGP. Interaction graph and planning graph can
be viewed as complementary representations. Interaction
graphs give an idea about separation of � and � into parts.
However they do not give any information about actions rel-
evant to solving a problem. Planning graphs give informa-
tion about actions relevant to solving a problem, but they do
not tell how to separate � or� into parts. Once subproblems
based on an interaction graph are derived, one can construct
separate planning graphs for these subproblems. Action lev-
els and proposition levels and mutex relations from these
planning graphs can be compared to detect dependencies
between subproblems. If there are such dependencies, an
alternative decomposition can be derived from the interac-
tion graph with/without use of centralized FSS search. This
methodology is very useful when resources are fewer and/or
objects cannot be classified as primary and secondary. In
case resources are inadequate for solving subproblems in-
dependently, it can be detected fast from individual plan-
ning graphs since proposition levels of some such planning
graphs will never contain some subgoals. We have come up
with a generalized version of the IG-DGP algorithm which
does not make assumptions about ���, the total number of
resources and types and number of resources needed for in-
dividual problems. This version only assumes that primary,
secondary and resource objects are explicitly specified. It
includes an automatic resource allocation and re-allocation
and use of a centralized planner if enough resources are not
available.

IG-DGP does not construct an interaction graph after a
disconnected interaction graph is found. Interaction graphs
can be continuously constructed in presence of more agents
than the number of components of an interaction graph, to
carry out an online distribution of planning in a continu-
ous fashion, to reap maximum benefits from parallel oper-
ation of agents. Our work can also be seen as improving
Graphplan in a new way, by automatic decomposition of
a problem using interaction graphs. Integrating this with
existing Graphplan improvement strategies like use of per-
sistent mutexes and goal ordering heuristics can improve
Graphplan further. IG-DGP shows that centralized search
can be used to process a problem until it is easy to separate
it into independent subproblems. The centralized search can
be viewed as centralized planning since the search gener-
ates a part of the plan. Such a centralized planning either
eliminates or significantly reduces cost of resolving interac-
tions among multiple plans. The efficiency of such planners
is likely to depend upon how fast the centralized planning
component works. Advances in centralized planning can
be used to improve such planners. Interaction graph-based
decomposition can also benefit distributed versions of plan-
ners other than Graphplan.

7 Conclusion

Since several practical planners are distributed planners,
potential of Graphplan in distributed planning is worthy of
investigation. Though Graphplan has been improved in sev-
eral ways and adapted to handle conditional effects, met-
ric time, uncertainty and resource quantities, its potential
for distributed planning had not been investigated. We de-
veloped two variants of Graphplan for distributed planning
(DGP and IG-DGP). We also introduced the notion of in-
teraction graphs. Our empirical evaluation shows that both
variants perform significantly better than Graphplan. IG-
DGP is orders of magnitude faster than Graphplan. IG-DGP
uses interaction graphs for intelligently splitting a problem.
IG-DGP shows how hybrid planners containing both a cen-
tralized planner and a distributed planner can be developed.
Though IG-DGP does not construct an interaction graph af-
ter a disconnected interaction graph is found, the graphs
can be continuously constructed to distribute planning ef-
fort continuously, to reap maximum benefits from parallel
operation of agents.
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